
1 . 1

QEMU AS A USB MTP RESPONDER
Bandan Das <bsd@redhat.com>

KVM Forum 2016

2 . 1

MULTIPLE WAYS TO SHARE FOLDERS, SUCH AS:
Network based - NFS/Samba/SSHFS
Device based

Virtio - 9pfs, virtio-serial
usb-mtp

2 . 2

ADVANTAGES/DISADVANTAGES
Con�guration

Is there a �rewall ?
Availability of services and support

Does guest support this device ?
Present usb-mtp as another option

More options = good ?

3 . 1

MEDIA TRANSFER PROTOCOL
Introduced by Microsoft as an extension to Picture Transfer Protocol
(PTP)
What is PTP ?

Protocol for transferring digital images from cameras
Application layer protocol

New names : Initiator (Client), Responder (Server)
Atomic operations, controlled by the server

One operation at a time

4 . 1

MEDIA TRANSFER PROTOCOL
Limited �le operations support
Supports many transport layers (TCP/IP, Firewire) although USB is
common

USB device class
Supports DRM
Good adoption - Android, Windows, Linux

Plug and Play in most cases!

5 . 1

MTP VS USB MASS STORAGE
Storage still in control of the device
File corruption is minimized
Interesting tidbit:

Default in Android
Let's Android not having to use VFAT
Prevents OEM from providing users with little application space

6 . 1

MTP HIGH LEVEL WORKFLOW
 Device connected

Transport layer discovery

Device information/OpenSession

 Device capability, name etc

List contents

 Object handles

Object properties such as �le size

 Send object metadata

Object Exchange Request Response

7 . 1

QEMU AND MTP
Exposed to the guest as a USB device

Example usage:

One �le operation at a time
Supports noti�cation of �le changes to the guest
Supports > 4G �les
No write support yet (Copy to device)

... -usb -device usb-mtp,x-root=usbdrive,desc=mtp-share

8 . 1

THE TRANSPORT LAYER
MTP runs on top of USB
USB communication is through endpoints

Each endpoint is a data pipe
One control endpoint
IN endpoints (device -> host, or responder to initiator)
OUT endpoints (host-> device, or initiator to responder)

Types of endpoints
Control
Bulk (Storage data)
Isochronous (Streaming data)
Interrupts (IN endpoint, host polls this endpoint)

9 . 1

A LOOK AT THE DATA STRUCTURES
 /* Device structure corresponding to OpenSession */
 struct MTPState {
 USBDevice dev;
 ...
 MTPData *data_in;
 MTPData *data_out;
 MTPControl *result;
 ...
#ifdef CONFIG_INOTIFY1
 /* inotify descriptor */
 int inotifyfd;
 QTAILQ_HEAD(events, MTPMonEntry) events;
#endif
 }
 ...
 /* Response Dataset from Responder to Initiator */
 struct MTPData {
 uint16_t code;
 uint32_t trans;
 ...
 }

10 . 1

A LOOK AT THE DATA STRUCTURES
/*
 * Request Dataset from Initiator to Responder
 * Formatted by usb-mtp
 */
struct MTPControl {
 uint16_t code;
 uint32_t trans;
 int argc;
 uint32_t argv[5];
}
...
/* Struct that defines contents */
struct MTPObject {
 uint32_t handle;
 uint16_t format;
 char *name;
 ...
}

11 . 1

USB AND MTP INTERACTION
static void usb_mtp_handle_data(USBDevice *dev, USBPacket *p)
{
 ...
 /* Responses from device, including data transfers, error propagation */
 case EP_DATA_IN:
 /* Requests from host */
 case EP_DATA_OUT:
 /* Events such as file change notifications */
 case EP_EVENT:

12 . 1

MTP IMPLEMENTATION INTERNALS
Object Enumeration
Noti�cation changes
Data transfer
File Operations - Write/Copy/Delete etc.

13 . 1

OBJECT ENUMERATION
Initiator sets up a "MTPControl" packet with argv[2] = 0 or 0xffffffff
Initiator sends CMD_GET_OBJECT_HANDLES
Responder does sanity checks on MTPControl packet
Responder does readdir() on root folder and �lls MTPObject structs
recursively
Responder sends a MTPData packet with the MTPObject uint32_t handles
array

14 . 1

DATA TRANSFER
Initiator sends CMD_GET_OBJECT_INFO (Optional)
Responder replies with a MTPData packet with object details such as
name, size
Initiator sends CMD_GET_OBJECT with MTPControl argv[0] set to the
handle
Responder does sanity checks on object handle and looks up the entry
Responder reads �le and �lls up a MTPData packet

Responder keeps track of offset if size > usb payload

15 . 1

NOTIFICATION CHANGES (EP_EVENT)
Convention: device interrupts the host when it needs attention

With USB, host polls for events
Events are propagated when the host polls the interrupt endpoint
Uses inotify (only works with Linux hosts)

Register inotify handlers to all �les in the folders
Call object enumeration when new �le is added
Store inotify events
When host (Initiator) polls this EP, deliver one event at a time

16 . 1

MTP WRITE
MTP does not support edit/write directly
Host(Initiator) can copy �le, edit and copy it back

Or create a new �le
Support for SendObjectInfo that sends a ObjectInfo dataset (I->R)

ObjectInfo sanity checks detremine if device can accept the object
Support for SendObject that follows the above

17 . 1

OUTREACHY INTERNSHIP PROJECT
Isaac Lozano, adding features and �xing bugs
Adding support for > 4G �le transfers

Support for Device properties
Microsoft speci�c data �elds

Not mentioned in spec - conventional values
Adding write support

18 . 1

TODO ITEMS
Adding asynchronous operations

Support for multiple sessions
Performance audit, synchronous operations eats up CPU
Support all MTP �le operations - Write/Move/Delete/Copy etc.
Testing with different guest con�gurations

19 . 1

THANK YOU
Questions ?

