
 1

Quo Vadis Virtio?

2016

Michael S. Tsirkin
Red Hat

Uses material from https://lwn.net/Kernel/LDD3/
Gcompris, tuxpaint, childplay
Distributed under the Creative commons
license, except logos which are C/TM
respective owners.

https://lwn.net/Kernel/LDD3/

 2

1.0 - towards an OASIS standard
 GUEST

DPDK:
vhost

DMA

 GUEST

VHOST:
net,scsi

 FIRMWARE

SLOFSLOF SCSI

 3

Standartization

● Next: v1.1
● Devices

– Virtio-input

– Virtio-gpu

– Virtio-vsock

– Virtio-9p

● Transport
 - IOMMU / Guest PMD

 4

What to expect?

● Devices
– Virtio-crypto

– Virtio-pstore

– Virtio-sdm

– Virtio-peer

● Enabling performance optimizations

● Transport
 - Vhost-pci

! ● Features
 - Balloon page hints

 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

160

180

200

Virtio 1.0

batch

ns
Request processing time

 6

Why does batching help?

● batch=1

1

2

Producer

Consumer

 7

Why does batching help?

● batch=2: pipelining increases throughput

1

2

Producer

Consumer

 8

SYNC

CPU caching

● Communicating through a shared memory
location requires cache synchronisations.

● Number of these impacts latency.

1

2

CACHE

CACHE

 9

Virtio 1.0: no batching

● Access = cache miss →

5 cache misses
 per request

 10

CPU caching

● Virtio 1.0 queue layout: batching

● Batch=4 →
5 misses per batch
1.25 misses per request

1 Miss per
batch

1 Miss per
batch

1 Miss per up
to 32 reqs

1 Miss per up
to 16 reqs

1 Miss per up
to 4 reqs

 11

Estimating caching effects:
Hyperthreading

● Shared cache
● Pipelining effects still in force

● Not a clean experiment:
HTs can conflict on CPU

● Still interesting

1

2

CACHE

 12

Request processing: comparison

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

160

180

200

Virtio 1.0

Virtio 1.0 HT

batch

ns

 13

Virtio 1.0 vs 1.1 (partial)

● 1.0: 26 byte 3 bit ● 1.1: 14 byte 6 bit

id

id

lenlen

idx

idx

addr

len

flags

next

addr

len

id

F/M/L
flags

V

 14

Virtio 1.1: read/write descriptors
● Host: consumed 4

11
1
1
1
1
11
1
1
1
1

10
0
0

1
11
1
1
1
1

0

● Guest: produced 9

● V=0 – OK for guest to produce
● V=1 – OK for host to consume

0

0
0
0
0
0
0
0

00
0
0
0
0
0
0

idid

id

Host: consume

Guest: produce

 15

Host: pseudo code (in-order)

while(!desc[idx].v) ←miss?
 relax();
process(&desc[idx]);
desc[idx].v = 0; ←miss?
Idx = (idx + 1) % size;

● Write access can trigger miss

 16

CPU caching

● Both host and guest incur misses on access
● No batching: 2 to 4 misses per descriptor
● Batch=4:

2 to 4 misses per batch
4 descriptors per cache line →
0.5 to 1 misses per descriptor

● Better than virtio 1.0 even in the worst case

 17

Request processing: comparison

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

160

180

200

Virtio 1.0 Virtio 1.0 HT

Virtio 1.1 Virtio 1.1 HT

batch

ns

 18

Virtio 1.0: mergeable buffers

● Small packet

● Forwarding guest:
no access
necessary

● Large packet

num_buffers
 = 1

num_buffers
 = 3

- seg_num = header->num_buffers;

+ //seg_num = header->num_buffers;
● Small packet throughput +15% (Andrew Theurer)

 19

Virtio 1.1: potential gains

● Small packet ● Large packet

- seg_num = header->num_buffers;

+ while (!(desc.fml & L)) {...}
● Avoid 1 miss per packet. Performance - TBD

F
M
L

FL

 20

Parallel ring processing?

● Virtio 1.0: workers contend on idx cache line
● Virtio 1.1: can host or guest parallelize?
● If order does not matter

(e.g. network TX completion):

● Each worker polls and handles its own descriptors

 21

IO kick / interrupt mitigation

● event index mechanism
– Similar to avail/used idx

– Miss when enabling interrupts/IO

● flags mechanism
– keep interrupts/IO enabled under light load

● first/middle/last to get interrupt per batch
– Linux: batching using skb->xmit_more

 22

Research

● Rings are RW
– security issue?

– Virtio-peer proposal?

● Test on different CPUs
– AMD (MOESI)

– ARM

– Power

● Integrate in existing virtio implementations

 23

VIRTIO_F_IOMMU_PLATFORM

● Legacy: virtio bypasses the vIOMMU if any
– Host can access anywhere in Guest memory

– Good for performance, bad for security

● New: Host obeys the platform vIOMMU rules
● Guest will program the IOMMU for the device
● Legacy guests enabling IOMMU will fail

– Luckily not the default on KVM/x86

● Allows safe userspace drivers within guest

 24

Virtio PMD: static vIOMMU map

● Cost: up to 4-5% for small packets. Tuning TBD
● Vhost-user can do the same

Virtio PMD

Guest kernel
VFIO

QEMU

vhost

Guest memory
vIOMMU PTEs

G
V

A

G
P

A

IN
V

A
L

ID
A

T
E

 25

Future use-cases for vIOMMU

● Vhost-pci: VM2 can access all of VM1 memory

● Vhost-vIOMMU can limit VM2 access to VM1

VM1:
virtio driver

VM2:
vhost driver

Guest memory

vIOMMU Vhost-vIOMMU

 26

Wild ideas

● Apic programming: about 20% of exits
– Virtio-apic might help coalesce with host polling?

● Idle – kvm already doing some polling
– Virtio-idle and combine with vhost polling?

● Kgt – write-protect kernel memory in EPT
– Extend virtio-ballon page hints?

 27

Implementation projects

● Indirect descriptors – extra indirection
– when not to use?

● Vhost polling
– Scalability with overcommit – better integration with

the scheduler?

● Error recovery
– Host errors: restart backend transparently

– Guest errors: guest to reset device

 28

Contributing

● Implementation
– virtualization@lists.linux-foundation.org

– qemu-devel@nongnu.org

– … if in doubt – copy more

● Spec (must copy on interface changes)
– virtio-dev@lists.oasis-open.org

● Driving spec changes
– Report: virtio-comment@lists.oasis-open.org

– https://issues.oasis-open.org/browse/VIRTIO

mailto:virtualization@lists.linux-foundation.org
mailto:qemu-devel@nongnu.org
mailto:virtio-dev@lists.oasis-open.org
mailto:virtio-comment@lists.oasis-open.org
https://issues.oasis-open.org/browse/VIRTIO

 29

Summary

● Virtio 1.1 is shaping up to be a big release
– Performance

– Security

– Features

● Join the fun
– Spec is open: 9 active contributors / 7 companies

– Implementations are open > 60 active contributors
in the last year

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

