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1.0 - towards an OASIS standard
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Standartization

● Next: v1.1
● Devices

– Virtio-input

– Virtio-gpu

– Virtio-vsock

– Virtio-9p

● Transport
  - IOMMU / Guest PMD
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What to expect?

● Devices
– Virtio-crypto

– Virtio-pstore

– Virtio-sdm

– Virtio-peer

● Enabling performance optimizations

● Transport
  - Vhost-pci

! ● Features
  - Balloon page hints
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Why does batching help?

● batch=1

1

2

Producer

Consumer



 7

Why does batching help?

● batch=2: pipelining increases throughput
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SYNC

CPU caching

● Communicating through a shared memory 
location requires cache synchronisations.

● Number of these impacts latency.
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Virtio 1.0: no batching

● Access = cache miss →

5 cache misses
 per request
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CPU caching

● Virtio 1.0 queue layout: batching

● Batch=4 →
5 misses per batch
1.25 misses per request

1 Miss per 
batch

1 Miss per 
batch

1 Miss per up 
to 32 reqs

1 Miss per up 
to 16 reqs

1 Miss per up 
to 4 reqs
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Estimating caching effects: 
Hyperthreading

● Shared cache
● Pipelining effects still in force

● Not a clean experiment:
HTs can conflict on CPU

● Still interesting

1

2

CACHE



 12

Request processing: comparison
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Virtio 1.0 vs 1.1 (partial)

● 1.0: 26 byte 3 bit ● 1.1: 14 byte 6 bit
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Virtio 1.1: read/write descriptors
● Host: consumed 4
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● Guest: produced 9

● V=0 – OK for guest to produce
● V=1 – OK for host to consume
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Host: pseudo code (in-order)

while(!desc[idx].v)    ←miss?
     relax();
process(&desc[idx]);
desc[idx].v = 0;         ←miss?
Idx = (idx + 1) % size;

● Write access can trigger miss
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CPU caching

● Both host and guest incur misses on access
● No batching: 2 to 4 misses per descriptor
● Batch=4:

2 to 4 misses per batch
4 descriptors per cache line →
0.5 to 1 misses per descriptor

● Better than virtio 1.0 even in the worst case
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Request processing: comparison
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Virtio 1.0: mergeable buffers

● Small packet

● Forwarding guest:
no access
necessary

● Large packet

num_buffers
 = 1

num_buffers
 = 3

-               seg_num = header->num_buffers;

+            //seg_num = header->num_buffers;
● Small packet throughput +15% (Andrew Theurer)
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Virtio 1.1: potential gains

● Small packet ● Large packet

-               seg_num = header->num_buffers;

+              while (!(desc.fml & L)) {...}
● Avoid 1 miss per packet. Performance - TBD
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Parallel ring processing?

● Virtio 1.0: workers contend on idx cache line
● Virtio 1.1: can host or guest parallelize?
● If order does not matter

(e.g. network TX completion):

● Each worker polls and handles its own descriptors
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IO kick / interrupt mitigation

● event index mechanism
– Similar to avail/used idx

– Miss when enabling interrupts/IO

● flags mechanism
– keep interrupts/IO enabled under light load 

● first/middle/last to get interrupt per batch
– Linux: batching using skb->xmit_more
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Research

● Rings are RW
– security issue?

– Virtio-peer proposal?

● Test on different CPUs
– AMD (MOESI)

– ARM

– Power

● Integrate in existing virtio implementations
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VIRTIO_F_IOMMU_PLATFORM

● Legacy: virtio bypasses the vIOMMU if any
– Host can access anywhere in Guest memory

– Good for performance, bad for security

● New: Host obeys the platform vIOMMU rules
● Guest will program the IOMMU for the device
● Legacy guests enabling IOMMU will fail

– Luckily not the default on KVM/x86

● Allows safe userspace drivers within guest
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Virtio PMD: static vIOMMU map

● Cost: up to 4-5% for small packets. Tuning TBD
● Vhost-user can do the same
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Future use-cases for vIOMMU

● Vhost-pci: VM2 can access all of VM1 memory

● Vhost-vIOMMU can limit VM2 access to VM1

VM1:
virtio driver

VM2:
vhost driver

Guest memory

vIOMMU Vhost-vIOMMU
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Wild ideas

● Apic programming: about 20% of exits
– Virtio-apic might help coalesce with host polling?

● Idle – kvm already doing some polling
– Virtio-idle and combine with vhost polling?

● Kgt – write-protect kernel memory in EPT
– Extend virtio-ballon page hints?
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Implementation projects

● Indirect descriptors – extra indirection
– when not to use?

● Vhost polling
– Scalability with overcommit – better integration with 

the scheduler?

● Error recovery
– Host errors: restart backend transparently

– Guest errors: guest to reset device
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Contributing

● Implementation
– virtualization@lists.linux-foundation.org

– qemu-devel@nongnu.org

– … if in doubt – copy more

● Spec (must copy on interface changes)
– virtio-dev@lists.oasis-open.org

● Driving spec changes
– Report: virtio-comment@lists.oasis-open.org

– https://issues.oasis-open.org/browse/VIRTIO

mailto:virtualization@lists.linux-foundation.org
mailto:qemu-devel@nongnu.org
mailto:virtio-dev@lists.oasis-open.org
mailto:virtio-comment@lists.oasis-open.org
https://issues.oasis-open.org/browse/VIRTIO
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Summary

● Virtio 1.1 is shaping up to be a big release 
– Performance

– Security

– Features

● Join the fun
– Spec is open: 9 active contributors / 7 companies

– Implementations are open > 60 active contributors 
in the last year
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