Real Time & Fast Live Migration Update for NFV

Contributor: Li Liang < liang.z.li@intel.com>

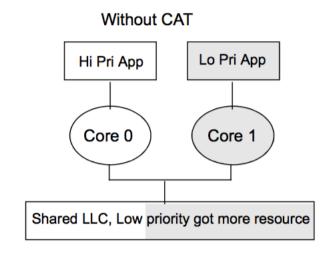
Jiang Yunhong < yunhong.jiang@intel.com>

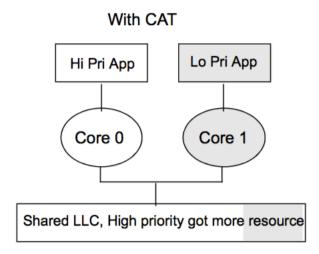
Speaker: Xiao Guangrong <guangrong.xiao@linux.intel.com>

Agenda

- Real Time Update
 - Hardware features
 - Software enhancement
- Fast Live Migration Update
 - Software enhancement
 - Hardware acceleration

Real Time Update: Hardware Features


- Cache Qos
- APICv & Posted Interrupt
- VMX Preemption Timer


Cache Qos

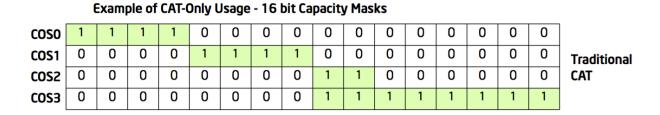
- Cache Monitor
 - Cache Monitoring Technology (CMT): Monitor L3 Cache Occupancy
 - Memory Bandwidth Monitoring (MBM): Monitor L3 Total & Local External Bandwidth
 - Have integrated to perf tool

Cache Qos (Cont.)

- Cache Allocation
 - Current issue

Cache Allocation

Cache Allocation

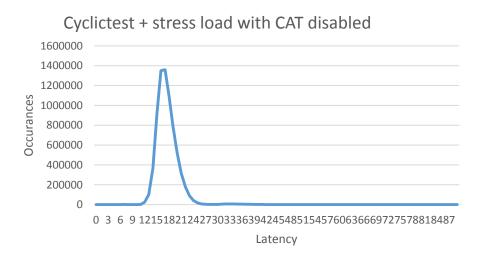

cos3

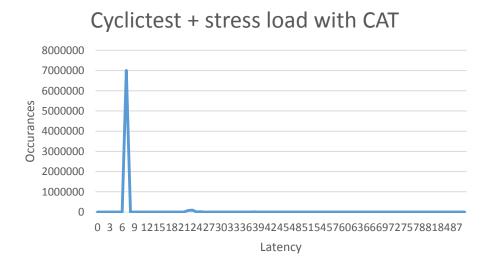
- CAT (Cache Allocation Technology)
- Specify the amount of cache space into which an application can fill
- The application is associated to COS (Class Of Server)

	M7	M6	M5	M4	МЗ	M2	M1	МО	
coso	Α	Α	Α	Α	Α	Α	Α	Α	Default Bitmask
COS1	Α	Α	Α	Α	Α	Α	Α	Α	
cos2	Α	Α	Α	Α	Α	Α	Α	Α	
cosa	Α	Α	Α	Α	Α	Α	Α	Α	
			•	•	•		•	•	•
	M7	M6	M5	M4	МЗ	M2	M1	МО	
coso	Α	Α	Α	Α	Α	Α	Α	Α	Overlapped Bitmask
COS1					Α	Α	Α	Α	
cos2							Α	Α	
cosa								Α	
		•	•	•			•		1
	M7	M6	M5	M4	МЗ	M2	M1	МО	
coso	Α	Α	Α	Α					Isolated Bitmask
COS1					Α	Α			January Dramoun
cosz							Α		

Cache Allocation (Cont.)

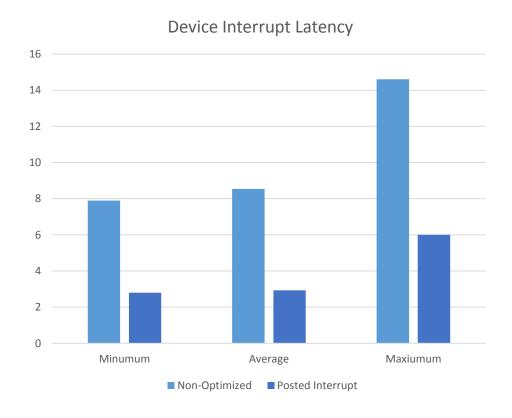
- Code and Data Prioritization (CDP) Technology
 - It's an extension of CAT. CDP enables isolation and separate prioritization of code and data fetches to the L3 cache

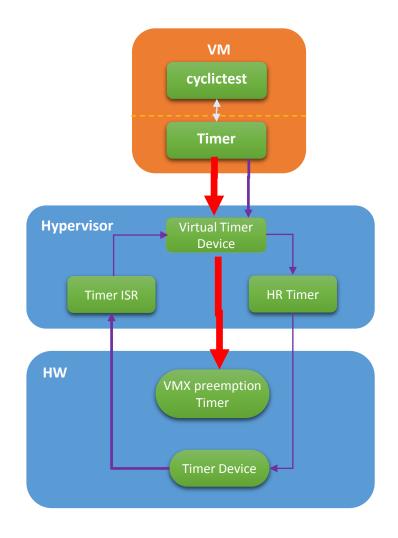



Example of Code/Data Prioritization Usage - 16 bit Capacity Masks

COSO.Data	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	
COSO.Code	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	CAT with
COS1.Data	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	CDP
COS1.Code	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	
Other COS.Data	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	
Other COS.Code	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	

Cache Allocation (Cont.)

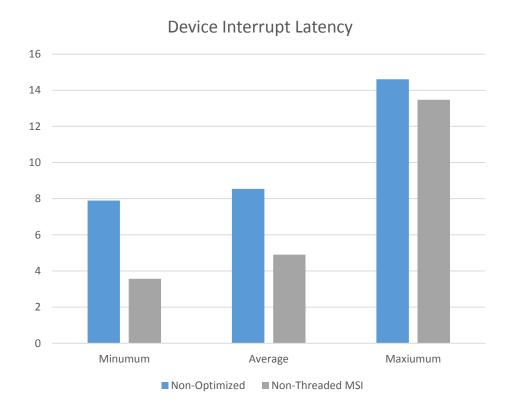

Performance data


Real Time Update: Hardware Features

- APICv & Posted Interrupt
 - Inject the interrupt to guest directly
 - Avoid VMExit cost

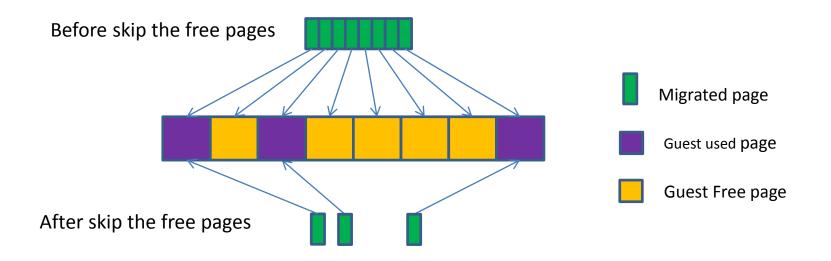
Real Time Update: Hardware Features

- VMX preemption
 - Latency for tradition vtimer
 - Register access to virtual timer device
 - Linux High Resolution timer system
 - It counts down in VMX non-root mode
 - VM-exit when it reaches zero
 - Avoid complex host HR timer
 - Reduce VMExit and context switch

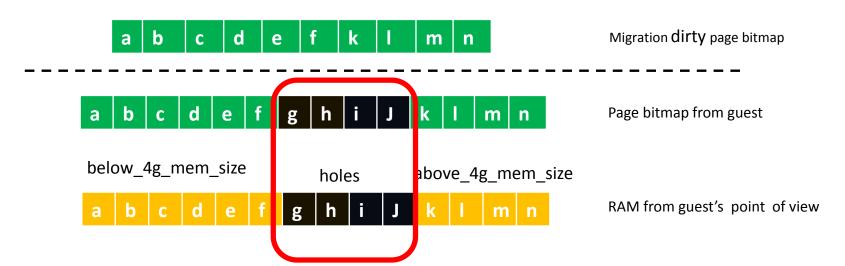


Real Time Update: Software Enhancement

- Non-threaded VFIO MSI
 - Long path to deliver IRQ for threaded IRQ handler:
 Vcpu thread running -> Hardware IRQ happen -> schedule kernel thread for the VFIO MSI -> schedule to the VCPU thread -> inject IRQ to the guest.
 - With non-threaded IRQ
 Vcpu thread running -> Hardware IRQ happen -> VFIO IRQ handler -> back to
 vCPU thread and inject to the guest

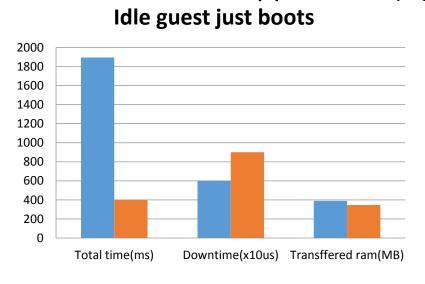

Non-threaded VFIO MSI

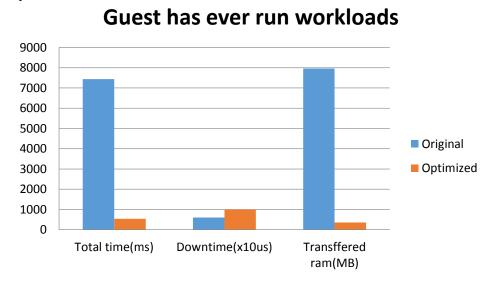
Performance


Fast Live Migration Update: Software Enhancement

- Skip transmission of guest's free pages
 - Get free pages information from guest and skip them during live migration

Skip transmission of guest's free pages

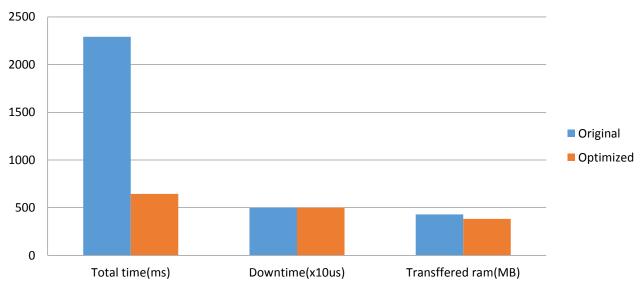

- Implementation details
 - Start dirty page logging before requesting the free page bitmap
 - Traversing the free pages list to construct a free page bitmap
 - Using virtio for communication between guest and hypervisor
 - Process the raw page bitmap contain holes
 - Filter out free pages from migration dirty page bitmap



Skip transmission of guest's free pages (Cont.)

Test result

- Idle guest with with 8GiB RAM which just booted (left)
- Guest with 8GiB RAM, first run an application touches 7GiB of RAM, and then terminate the application (right)



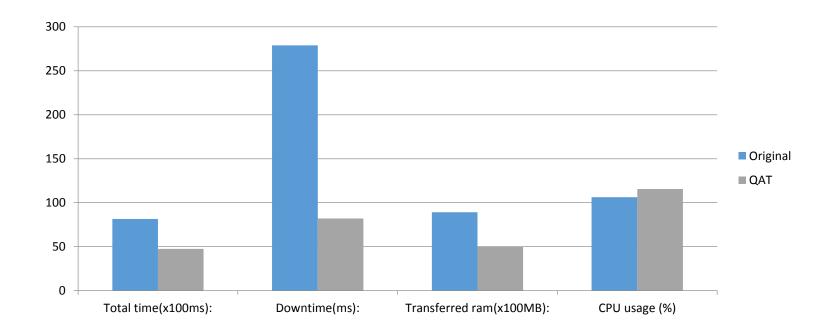
Skip transmission of guest's free pages (Cont.)

- Test result
 - DPDK L2 forwarding, line rate 2013Mbps, 64bytes package.

Fast Live Migration Update: Hardware Feature

- QAT (Intel's Quick Assistant Technology)
 - It's integrated to the chipset which can provide (de)compression and (de)encryption service
 - Throughput can reach to 24Gpbs(100Gbps with newer product)
 - (De)Compression multiple pages in a single request
 - Can buffer multiple requests
 - Use physical address for (de)compression

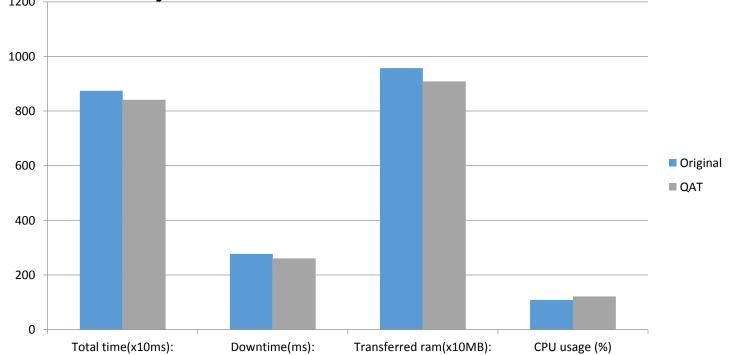
QAT


QAT & QEMU

- All the jobs are done in migration thread
- Could send uncompressed page instead of waiting the compression done.
- Zero page checking is not necessary
- Pre-reading '/proc/self/pagemap' and cache the entry can accelerate virtual to physical address translation
- mlock() is required

QAT (Cont.)

• In 10Gbps network environment


- Workload writes CalgaryCorpus data to the 7GB of guest memory first, and then writes CalgaryCorpus data to 1GB area of guest memory periodically.
- Shorten the total live migration time about 40%, reduce the VM downtime about 70%, reduce the network traffic about 45% with about 10% extra CPU usage.

QAT (Cont.)

- Worst case in 10Gbps network environment
- Workload writes Random number to the 7GB of guest memory first, and then writes Random number to 1GB of guest memory periodically.

• QAT can do a better job even in the worst case.

Q/A?