
Real Time & Fast Live
Migration Update for NFV

Contributor: Li Liang <liang.z.li@intel.com>

Jiang Yunhong <yunhong.jiang@intel.com>

Speaker: Xiao Guangrong <guangrong.xiao@linux.intel.com>

Agenda

• Real Time Update
• Hardware features

• Software enhancement

• Fast Live Migration Update
• Software enhancement

• Hardware acceleration

Real Time Update: Hardware Features

• Cache Qos

• APICv & Posted Interrupt

• VMX Preemption Timer

Cache Qos

• Cache Monitor
• Cache Monitoring Technology (CMT) : Monitor L3 Cache Occupancy

• Memory Bandwidth Monitoring (MBM): Monitor L3 Total & Local External
Bandwidth

• Have integrated to perf tool

Cache Qos (Cont.)

• Cache Allocation
• Current issue

Cache Allocation

• Cache Allocation
• CAT (Cache Allocation Technology)

• Specify the amount of cache space into which an application can fill

• The application is associated to COS (Class Of Server)

Cache Allocation (Cont.)

• Code and Data Prioritization (CDP) Technology
• It’s an extension of CAT. CDP enables isolation and separate prioritization of

code and data fetches to the L3 cache

Cache Allocation (Cont.)

• Performance data

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 3 6 9 1215182124273033363942454851545760636669727578818487

O
cc

u
ra

n
ce

s

Latency

Cyclictest + stress load with CAT disabled

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

0 3 6 9 1215182124273033363942454851545760636669727578818487

O
cc

u
ra

n
ce

s
Latency

Cyclictest + stress load with CAT

Real Time Update: Hardware Features

• APICv & Posted Interrupt
• Inject the interrupt to guest directly

• Avoid VMExit cost

0

2

4

6

8

10

12

14

16

Minumum Average Maxiumum

Device Interrupt Latency

Non-Optimized Posted Interrupt

Real Time Update: Hardware Features

• VMX preemption
• Latency for tradition vtimer

• Register access to virtual timer device

• Linux High Resolution timer system

• It counts down in VMX non-root mode

• VM-exit when it reaches zero

• Avoid complex host HR timer

• Reduce VMExit and context switch

VM

Hypervisor

HW

Timer Device

Timer ISR

Virtual Timer
Device

Timer

cyclictest

HR Timer

VMX preemption
Timer

Real Time Update: Software Enhancement

• Non-threaded VFIO MSI
• Long path to deliver IRQ for threaded IRQ handler:

Vcpu thread running -> Hardware IRQ happen -> schedule kernel thread for
the VFIO MSI -> schedule to the VCPU thread -> inject IRQ to the guest.

• With non-threaded IRQ

Vcpu thread running -> Hardware IRQ happen -> VFIO IRQ handler -> back to
vCPU thread and inject to the guest

Non-threaded VFIO MSI

• Performance

0

2

4

6

8

10

12

14

16

Minumum Average Maxiumum

Device Interrupt Latency

Non-Optimized Non-Threaded MSI

Fast Live Migration Update: Software
Enhancement
• Skip transmission of guest’s free pages

• Get free pages information from guest and skip them during live migration

Before skip the free pages

Guest used page

After skip the free pages

Guest Free page

Migrated page

Skip transmission of guest’s free pages

• Implementation details
• Start dirty page logging before requesting the free page bitmap

• Traversing the free pages list to construct a free page bitmap

• Using virtio for communication between guest and hypervisor

• Process the raw page bitmap contain holes

• Filter out free pages from migration dirty page bitmap

a b c d e f k l m n

a b c d e f g h i J k l m n RAM from guest’s point of view

below_4g_mem_size

Migration dirty page bitmap

above_4g_mem_size

a b c d e f g h i J k l m n Page bitmap from guest

holes

Skip transmission of guest’s free pages (Cont.)

• Test result
• Idle guest with with 8GiB RAM which just booted (left)

• Guest with 8GiB RAM, first run an application touches 7GiB of RAM, and then
terminate the application (right)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Total time(ms) Downtime(x10us) Transffered ram(MB)

Idle guest just boots

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Total time(ms) Downtime(x10us) Transffered
ram(MB)

Guest has ever run workloads

Original

Optimized

Skip transmission of guest’s free pages (Cont.)

• Test result
• DPDK L2 forwarding, line rate 2013Mbps, 64bytes package.

0

500

1000

1500

2000

2500

Total time(ms) Downtime(x10us) Transffered ram(MB)

DPDK L2 forwarding workload

Original

Optimized

Fast Live Migration Update: Hardware Feature

• QAT (Intel’s Quick Assistant Technology)
• It’s integrated to the chipset which can provide (de)compression and

(de)encryption service

• Throughput can reach to 24Gpbs(100Gbps with newer product)

• (De)Compression multiple pages in a single request

• Can buffer multiple requests

• Use physical address for (de)compression

QAT

• QAT & QEMU
• All the jobs are done in migration thread

• Could send uncompressed page instead of waiting the compression done.

• Zero page checking is not necessary

• Pre-reading ‘/proc/self/pagemap’ and cache the entry can accelerate virtual
to physical address translation

• mlock() is required

QAT (Cont.)

• In 10Gbps network environment
• Workload writes CalgaryCorpus data to the 7GB of guest memory first, and then writes CalgaryCorpus data to

1GB area of guest memory periodically.

• Shorten the total live migration time about 40%, reduce the VM downtime about 70%, reduce the network traffic

about 45% with about 10% extra CPU usage.

0

50

100

150

200

250

300

Total time(x100ms): Downtime(ms): Transferred ram(x100MB): CPU usage (%)

Original

QAT

QAT (Cont.)

• Worst case in 10Gbps network environment

• Workload writes Random number to the 7GB of guest memory first, and then
writes Random number to 1GB of guest memory periodically.

• QAT can do a better job even in the worst case.

0

200

400

600

800

1000

1200

Total time(x10ms): Downtime(ms): Transferred ram(x10MB): CPU usage (%)

Original

QAT

Q/A?

