
Copyright © 2016 Red Hat Inc.

Userland Page Faults and BeyondUserland Page Faults and Beyond
Why How and What’s NextWhy How and What’s Next

Red Hat, Inc.

Andrea Arcangeli <aarcange at redhat.com>

LinuxCon North America, Toronto

24 Aug 2016

https://www.redhat.com/

Copyright © 2016 Red Hat Inc.

2

Topics
● Normally page faults are a kernel internal thing..

– Why offload page faults to userland?
● Initial use case that required it

● Upstream/production status
● How the userfaultfd API works
● Other use cases
● Development status
● Demo

Copyright © 2016 Red Hat Inc.

3

Why: Memory Externalization
● Memory externalization is about running a program with

part (or all) of its memory residing on a remote node

● Memory is transferred from the memory node to the
compute node on access

● Memory can be transferred from the compute node to the
memory node if it's not frequently used during memory
pressure

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memory

userfault

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memory

memory
pressure

Copyright © 2016 Red Hat Inc.

4

Postcopy live migration
● Postcopy live migration is a form of memory

externalization

● When the QEMU compute node (destination) faults on a
missing page that resides in the memory node (source) the
kernel has no way to fetch the page

– Solution: let QEMU in userland handle the pagefault

Partially funded by the Orbit European Union project

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memory

userfault

QEMU
source

QEMU
destination

Postcopy live migration

Copyright © 2016 Red Hat Inc.

5

Source
Node

Destination
Node

uffd postcopy live migration

QEMU
destination

userfaultfd thread
Blocked poll()/read()

Kernel/guest mode
destination

vcpuN RUNNING
Memory is missing

QEMU
Source

Memory

Userfaultfd

U
se

rl
an

d
N

et
w

or
k

pr
ot

oc
ol

Copyright © 2016 Red Hat Inc.

6

Source
Node

Destination
Node

userfaultfd event notification

QEMU
destination

userfaultfd thread
POLLIN/readwake

Kernel/guest mode
destination

Blocks in-kernel
vcpuN thread

QEMU
Source

Memory

Userfaultfd

Address of the fault
U

se
rl

an
d

N
et

w
or

k
pr

ot
oc

ol

Copyright © 2016 Red Hat Inc.

7

Source
Node

Destination
Node

QEMU network page request

QEMU
destination

userfaultfd thread
sends page request

Kernel mode
destination

Blocked in-kernel
vcpuN thread

QEMU
Source

Memory
gets page request

U
se

rl
an

d
N

et
w

or
k

pr
ot

oc
ol

Pa
ge

 r
eq

ue
st

Userfaultfd

Copyright © 2016 Red Hat Inc.

8

Source
Node

Destination
Node

QEMU receives page

QEMU
destination

userfaultfd thread
Page received

Kernel mode
destination

Blocked in-kernel
vcpuN thread

QEMU
Source

Memory
sends page

U
se

rl
an

d
N

et
w

or
k

pr
ot

oc
ol

Pa
ge

 r
ec

ei
ve

d

Userfaultfd

Copyright © 2016 Red Hat Inc.

9

Source
Node

Destination
Node

UFFDIO_ZEROPAGE/COPY

QEMU
destination

userfaultfd thread
UFFDIO_COPY/...

Kernel mode
destination

vcpuN waken
vcpuN RUNNING

QEMU
Source

Memory

U
se

rl
an

d
N

et
w

or
k

pr
ot

oc
ol

Userfaultfd
UFFDIO_COPY

UFFDIO_ZEROPAGE

● vcpuN thread blocked the whole time in kernel mode
● vcpuN never returned to userland
● vcpuN never received signals and never had to invoke

other syscalls to notify and wake up the userfaultfd
thread

Copyright © 2016 Red Hat Inc.

10

Missing pages notification
● QEMU destination running in the compute node must be

notified the first time a page fault happens if a page is still
missing

Destination guest virtual memory (kernel vma)

Not mapped virtual addresses (pages) must notify userland on access

Copyright © 2016 Red Hat Inc.

11

UFFDIO_COPY - atomic memcpy()

1

2 3 4 5 6

tmp_addr

Guest physical address space

2 3 4 5 6

tmp_addr

Guest physical address space

Copy
Of 1

1

Copyright © 2016 Red Hat Inc.

12

userfaultfd latency

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
0

200

400

600

800

1000

1200

1400

1600

userfault latency during postcopy live migration - 10Gbit
qemu 2.5+ - RHEL7.2+ - stressapptest running in guest

<= latency in milliseconds

nu
m

be
r

of
 u

se
rf

au
lts

Userfaults triggered on pages that were already in network-flight are
instantaneous. Background transfer seeks at the last userfault address.

Copyright © 2016 Red Hat Inc.

13

KVM precopy live migration

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Before precopy

After precopy

During precopy

Precopy never completes until the database benchmark completes

10Gbit NIC
120GiB guest
Database TPM

~120sec
Time to

Transfer RAM
over network

pre
copy

Copyright © 2016 Red Hat Inc.

14

KVM postcopy live migration

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Before postcopy

During postcopy

After postcopy

virsh migrate .. --postcopy --timeout <sec> --timeout-postcopy
virsh migrate .. --postcopy --postcopy-after-precopy

precopy runs
From 5m

To 7m

postcopy runs
From 7m

To about ~9m
deterministic

pre
copy

post
copy

khugepaged
collapses THPs

Copyright © 2016 Red Hat Inc.

15

All available upstream
● Userfaultfd() syscall in Linux Kernel >= v4.3
● Postcopy live migration in:

– QEMU >= v2.5.0
● Author: David Gilbert @ Red Hat Inc.

– Postcopy in Libvirt >= 1.3.4
– OpenStack Nova >= Newton

● … and coming soon in production starting with:
– RHEL 7.3

Copyright © 2016 Red Hat Inc.

16

What’s Next?
● The current upstream kernel support is limited to:

– Missing faults (i.e. missing pages)
– Anonymous memory (i.e. malloc)

● What about:
– other types of memory

● tmpfs
● hugetlbfs
● perhaps real filesystem pagecache too

– Write Protect faults
– Removing the memory atomically… after adding it with UFFDIO_COPY
– sending the opened userfaultfd to a different “manager” process

● so that it can manage the memory behinds its back in a non-
cooperative way

Copyright © 2016 Red Hat Inc.

17

userfaultfd API
● The ioctl(uffd,...) API is versioned
● Can be extended in a backwards compatible way
● The current version of the API can already provide

all features mentioned in the previous slide
– Thanks to the Linux Kernel community feedback

● Not specific to postcopy:
– new way to manage the memory to do things

that weren’t possible before

Copyright © 2016 Red Hat Inc.

18

UFFDIO_API
ufd = syscall(__NR_userfaultfd, O_CLOEXEC)

struct uffdio_api api_struct;

api_struct.api = UFFD_API;

/* = 0 → userland asks for default pagefault support

WP support if kernel returns UFFD_FEATURE_PAGEFAULT_FLAG_WP */

api_struct.features = 0;

/* non cooperative mode */

/* api_struct.features = UFFD_FEATURE_EVENT_FORK | UFFD_FEATURE_EVENT_REMAP |

UFFD_FEATURE_EVENT_MADVDONTNEED; */

if (ioctl(ufd, UFFDIO_API, &api_struct)) {

/* err */

}

ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |

 (__u64)1 << _UFFDIO_UNREGISTER;

if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {

/* err */

}

Copyright © 2016 Red Hat Inc.

19

UFFDIO_REGISTER
struct uffdio_register reg_struct;

reg_struct.range.start = (uintptr_t)host_addr;

reg_struct.range.len = length;

reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;

if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) {

/* err */

}

Copyright © 2016 Red Hat Inc.

20

Wait for event
● poll() / epoll() (/ select)

struct pollfd pollfd[1];

pollfd[0].fd = uffd;

pollfd[0].events = POLLIN;

ret = poll(pollfd, 1, -1);

● Read()
struct uffd_msg msg;

ret = read(uffd, &msg, sizeof(msg));

● Check uffd_msg event
if (msg.event != UFFD_EVENT_PAGEFAULT) { /* err */ }

offset = (char *)(unsigned long)msg.arg.pagefault.address -
area_dst;

Copyright © 2016 Red Hat Inc.

21

struct uffd_msg
struct uffd_msg {

__u8 event;
__u8 reserved1;
__u16 reserved2;
__u32 reserved3;
union {

struct {
__u64 flags;
__u64 address;

} pagefault;
struct {

__u32 ufd;
} fork;
struct {

__u64 from;
__u64 to;
__u64 len;

} remap;
struct {

__u64 start;
__u64 end;

} madv_dn;
struct {

/* unused reserved fields */
__u64 reserved1;
__u64 reserved2;
__u64 reserved3;

} reserved;
} arg;

} __packed;

sizeof(struct uffd_msg) 32bit/64bit ABI enforcement
Zeros here, can extend with UFFD_FEATURE flags

UFFD_EVENT_* tells which part of the union is valid

Default cooperative support tracking pagefaults
UFFD_EVENT_PAGEFAULT

Non cooperative support tracking MM syscalls
UFFD_EVENT_FORK
UFFD_EVENT_REMAP
UFFD_EVENT_MADVDONTNEED

Copyright © 2016 Red Hat Inc.

22

Handle fault
● UFFDIO_COPY

struct uffdio_copy uffdio_copy;

uffdio_copy.dst = (unsigned long) area_dst + offset;

uffdio_copy.src = (unsigned long) area_src + offset;

uffdio_copy.len = page_size;

uffdio_copy.mode = 0;

uffdio_copy.copy = 0;

if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy)) {

/* err */

}

● UFFDIO_ZEROPAGE
struct uffdio_zeropage zero_struct;

zero_struct.range.start = (uint64_t)(uintptr_t)host;

zero_struct.range.len = getpagesize();

zero_struct.mode = 0;

if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) {

/* err */

}

Copyright © 2016 Red Hat Inc.

23

Possible use cases
● Replace mprotect/mremap+SIGSEGV
● Efficient snapshotting
● JIT/to-native compilers removal of write bits
● Non cooperative usage
● CRIU lazy restore from disk
● Add robustness to shared memory
● Add host enforcement to QEMU balloon driver backend
● Distributed shared memory
● Obsoletes soft_dirty
● Obsoletes “volatile pages” SIGBUS notification

Copyright © 2016 Red Hat Inc.

24

userfaultfd vs SIGSEGV
● Note: the translation is not strictly 1:1 and

many more combinations are possible...

UFFDIO_REGISTER_MODE_MISSING
UFFDIO_COPY

UFFDIO_ZEROPAGE
poll() / epoll() / blocking read()

mprotect(PROT_NONE)
mprotect(PROT_READ|PROT_WRITE)

SIGSEGV signal

UFFDIO_REGISTER_MODE_WP
UFFDIO_WRITEPROTECT

UFFDIO_WRITEPROTECT_MODE_WP
poll() / epoll() / blocking read()

mprotect(PROT_READ)
mprotect(PROT_READ|PROT_WRITE)

SIGSEGV signal

UFFDIO_REMAP
UFFDIO_*

poll() / epoll() / blocking read()

mremap()
SIGSEGV signal

Copyright © 2016 Red Hat Inc.

25

userfaultfd vs SIGSEGV
● The poll() / epoll() / read() notification is much faster than

a SIGSEGV signal
– No signal masking complexities and inefficiencies
– The blocked task blocks in-kernel and never returns to

userland
● UFFDIO_ ioctls are faster and more SMP scalable than

their syscall equivalents like mprotect/mremap
– All locks are lightweight
– “vmas” are never modified in fast paths
– No risk of running out “vmas”

https://lab.nexedi.cn/kirr/wendelin.core/blob/master/bigfile/virtmem.c

https://lab.nexedi.cn/kirr/wendelin.core/blob/master/bigfile/virtmem.c

Copyright © 2016 Red Hat Inc.

26

Efficient Snapshotting
● Huawei working on QEMU/KVM postcopy live snapshotting
● Redis can use it too
● No need of fork()

– Use threads instead
● COW faults can be throttled

– COW faults after fork() cannot be throttled
● THP always enabled will run optimally

– It is userland that decides the granularity of the fault so if it wants
to COW at 4KiB granularity it can

– THP becomes more “transparent” than it already was
● Requires WP support

https://lists.nongnu.org/archive/html/qemu-devel/2016-01/msg00664.html

http://redis.io/topics/latency

https://lists.nongnu.org/archive/html/qemu-devel/2016-01/msg00664.html
http://redis.io/topics/latency

Copyright © 2016 Red Hat Inc.

27

Optimize away JIT/to-native
compilers write bits

● JIT/to-native compilers always set a bit to track which
“Cards”/pages were modified

● WP support can allow the garbage collector to track which
pages were modified to avoid collecting write bits

● Similar to dirty logging mode in QEMU/KVM
● IIRC this was one the targeted optimizations of the OSv

unikernel
– userfaultfd might achieve the equivalent result but

without linking the JVM run time in the kernel
● Requires WP support

https://medium.com/@MartinCracauer/generational-garbage-collection-write-barriers-write-protection-and-userfaultfd-2-8b0e796b8f7f

http://jcdav.is/2015/11/09/More-JVM-Signal-Tricks/

https://medium.com/@MartinCracauer/generational-garbage-collection-write-barriers-write-protection-and-userfaultfd-2-8b0e796b8f7f
http://jcdav.is/2015/11/09/More-JVM-Signal-Tricks/

Copyright © 2016 Red Hat Inc.

28

Non cooperative usage
● Virtuozzo and IBM working on it
● QEMU is aware of the uffd, the guest apps are not
● The app sends a “uffd” to a “manager” and then it keeps

running unaware the “manager” is managing the
memory behinds its back

● Container postcopy live migration
● fork()/mremap() and other VM syscalls must send

userfaultfd events
– Not only page faults will send events to userland

● Nesting of uffds is going to be “interesting”
http://www.slideshare.net/kerneltlv/userfaultfd-and-postcopy-migration

http://www.slideshare.net/kerneltlv/userfaultfd-and-postcopy-migration

Copyright © 2016 Red Hat Inc.

29

CRIU lazy restore from disk
● Start the restored task immediately

– Despite the load of its memory from disk
isn’t complete

● Conceptually similar to postcopy live
migration
– The program memory is read from disk

instead of being transferred through the
network

https://criu.org/Userfaultfd

https://criu.org/Userfaultfd

Copyright © 2016 Red Hat Inc.

30

Add robustness to shmem
● Oracle contributed the UFFDIO_MISSING support to hugetlbfs
● IBM contributed the UFFDIO_MISSING support to tmpfs
● If the database hits a bug and accidentally writes a byte in a

shmem file hole, a new page is silently allocated and the
corruption goes unnoticed

● An accidental read of zeros from a shmem file hole would also go
unnoticed

● userfaultfd at zero cost notifies the database that something
unexpectedly tried to read or write to a hugetlbfs or tmpfs file hole
– “no vma split” and UFFDIO_COPY are the main feature here
– For this use case if an userfaultfd event ever happens, it is sign a

bug is causing memory corruption

Copyright © 2016 Red Hat Inc.

31

Host enforcement for memory
ballooning

● The QEMU/KVM memory balloon driver is
not host enforced

● After the host backend driver calls
MADV_DONTNEED, the guest can still deflate
the memory balloon

● userfaultfd UFFDIO_MISSING support, at
zero cost, can allow QEMU/KVM to notice
the guest is malicious and terminate it

Copyright © 2016 Red Hat Inc.

32

Distributed shared memory
● Distributed Shared Memory project at Berkeley
● Other research interest
● Needs UFFDIO_REMAP to extract memory

– mremap() equivalent
● Needs WP support to allow read-shared, write-

exclusive model
● Can interact with HMM (Heterogeneous Memory

Management) and NVIDIA’s unified memory
– GPU userfaults?

Copyright © 2016 Red Hat Inc.

33

Obsoletes soft_dirty
● Soft dirty tells userland, which pages were modified during a certain

runtime
● It has to scan all pagetables of all memory that could possibly have

been modified to find out
– O(N) complexity where N is the number of pages
– It still requires an initial wrprotect fault

● WP support is likely to simply obsolete soft_dirty because it will still
scale well with an unlimited amount of memory
– Similar to Intel VMM PML hw feature (Page Modification Logging)
– Main drawback is that userfaultfd blocks the WP fault
– It should be possible to add an event async queue model to turn

on and off at run time with an UFFDIO_ASYNC ioctl, to prevent the
wrprotect fault to block

Copyright © 2016 Red Hat Inc.

34

Obsoletes volatile pages SIGBUS
● “Volatile pages” may be reclaimed and freed by the Linux

Virtual Memory at any time
– They could contain uncompressed graphic bitmaps

that can be re-created at low cost
● Worth to keep in memory only as long as there is

no Virtual Memory pressure
– A prominent “volatile pages” use case is Android

● userfaultfd can tell userland if the volatile page is
missing

● No need of their own missing “volatile page” SIGBUS
framework to notify userland

Copyright © 2016 Red Hat Inc.

35

Development status
● tmpfs, hugetlbfs support works (selftests provided for both)
● Write Protect support works

– Needs accuracy with swapping, blocker but in progress..
● WP|MISSING support works but it may need some extension

– UFFDIO_COPY will always add the page read-write
– Zeropages created by UFFDIO_ZEROCOPY remains readonly forever

● non cooperative support works
– Minor issues:

● Cannot recreate shared anon pages
● Cannot handle uffd nesting

● UFFDIO_REMAP is implemented but not in aa.git and shall be revisited
– Only distributed shared memory needs it

Copyright © 2016 Red Hat Inc.

36

Git userfault branch
● https://git.kernel.org/cgit/linux/kernel/git/andrea/aa.git/log/?h=userfault

https://git.kernel.org/cgit/linux/kernel/git/andrea/aa.git/log/?h=userfault

Copyright © 2016 Red Hat Inc.

37

userfaultfd in action
● Time for a live migration demo!

Copyright © 2016 Red Hat Inc.

Live migration total time

Total time
0

50

100

150

200

250

300

350

400

450

500

autoconverge
postcopyse

co
nd

s

Copyright © 2016 Red Hat Inc.

Max UDP latency
0

5

10

15

20

25

precopy timeout
autoconverge
postcopyse

co
nd

s

Live migration max perceived
downtime latency

Copyright © 2016 Red Hat Inc.

40

Q/A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

