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The Data
• oVirt databases from sosreports 

• ~ 40,000 virtual machine (VM) definitions 

• ~ 700 clusters* 

• ~ 2,200 hosts 

• ~ 60,000 disks

* oVirt specific entity that consists of hosts, VMs, disks, 
networks etc. Consider it a scheduling domain.
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• clusters "group" VMs by 
machine type 

• updating to a newer cluster is a 
nontrivial process



VM 0HOST 0

NUMA
• soft violation: VM does not fit within some of the host's NUMA nodes 

• example: VM 0:NODE 0 doesn't fit within HOST 0:NODE 1 

• could be solved by pinning
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Soft NUMA Violations
• 17.01 % of VM definitions 

• the query considered scheduling domains 
(clusters) 

• "there exists a host in the cluster whose NUMA 
node is smaller than the NUMA node of the VM" 

• worst case in cluster AND host scheduling



VM 0HOST 0

NUMA
• hard violation: VM does not fit within any of the host's NUMA nodes 

• example: VM 0:NODE 0 doesn't fit within HOST 0:NODE 0 or HOST 
0:NODE 1
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Hard NUMA Violations
• 9.74 % of VM definitions 

• scheduling domains were considered 

• "there exists a host in the cluster whose NUMA 
nodes are smaller than the NUMA node of the 
VM" 

• worst case in cluster scheduling



Solution

• warn the user about suboptimal NUMA topology 

• easy to determine on the cluster level 

• important for specific applications (huge DBs) 

• future: create the nodes automatically?



NUMA & CPU pinning
• low adoption, why? 

• no migration (disabled at management level) 

• HA is hard, breaks cluster logic (only HA 
between subset of hosts) 

• limited scheduling (pin to host) 

• can we change that?



NUMA & CPU pinning
• host-passthrough CPU (aka copy features) 

• automatically pin CPUs 

• e.g. 4 NUMA nodes, 12 CPUs per node 

• node CPU0, CPU1 ~> "service" CPUs (emulation thread, IO 
thread, virt daemons) 

• CPU2 through CPU11 ~> compute CPUs 

• if #vCPU > 10, ask the user to add a virtual node 

• easy to think about RT too!



Hugepages

• platform default + extended sizes 

• either preallocated or dynamically allocated 

• at least for x86_64 1 GiB (pdpe1gb) preferred, 
other sizes configurable 

• THP is hit or miss performance-wise



Hugepages

• no cluster-level overcommit 

• no memory hot(un)plug, limited migration 
(management layer constraints) 

• "hard" resource limit 

• NUMA-aware allocation



Hugepages Allocation

• could cause VM start delays 

• opt-out at the host level, disabled in scheduler 

• reserved hugepages concept (DPDK etc.) 

• max(vm_hugepages - free_hugepages, 0)



L3 cache
• https://git.qemu.org/?p=qemu.git;a=commit;h=14c985cffa6cb177fc01a163d8bcf227c104718c 

• QEMU: -cpu foo,l3-cache=on 

• libvirt: <cpu><cache level='3' mode='emulate'/></cpu> 

• less inter-processor interrupts (IPIs) -> less 
VMEXITs 

• essential for SAP workloads



Disk Interface
• choice between IDE, VirtIO-blk, VirtIO-SCSI (+ 

passthrough) 

• 3.6, 4.0 defaults to VirtIO-blk, 4.1+ to VirtIO-SCSI 

• VirtIO-SCSI controller by default in VMs (hotplug 
capability) :( 

• TRIM is important to people!
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IO Threads

• 3.6, 4.0, 4.1 allow specifying # of IO threads 

• no hints about which number to use



IO Threads
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IO Threads
• testing has shown the "sweet spot" to be 1 IO 

thread 

• therefore, oVirt no longer (easily) allows 
arbitrary numbers 

• override via hooks 

• https://mpolednik.github.io/2017/01/23/virtio-blk-vs-virtio-scsi/



VirtIO RNG 

• "low hanging fruit" 

• improves virtually any operation that uses PRNG 
(e.g. OS installation, GPG key generation) 

• optional in 3.6, 4.0, default in 4.1 - no 
downsides?
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VirtIO RNG
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Host Devices
• using real hardware to accelerate the VMs 

• GPUs, NICs, NVMe disks 

• reduced CPU load 

• should still honor NUMA locality 

• hard resource limit
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Host Devices

• easy to tune numa automatically for simple case 
(all host devices within single numa node) 

• more complicated if host devices origin from 
multiple NUMA nodes



Network
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• VirtIO is the preferred "flexibility" 
choice 

• SR-IOV for performance/NFV, 
migration enabled 

• emulated NICs for compatibility 

• looks good as it is



Migration Performance
• relevant for clusters 

• maximum downtime incremented in steps 

• limit number of inbound/outbound migrations to avoid 
oversaturated network 

• post copy - needs to be enabled explicitly, success 
chance dependent on user's network 

• don't expect high bandwidth, redundant network in 
every case
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KSM

• hugetlbfs not scanned by ksmd 

• no overcommit for VMs that are considered high 
performance 

• waste of CPU cycles?



Devices
• graphics, video, USBs, smartcard, watchdog, 

balloon 

• do we need them? 

• no known (to us) performance effects 

• removing them shouldn't hurt 

• no data though



Devices
• some functionality tradeoffs (ballon and memory 

hot(unplug) in the future) 

• running headless 

• no graphics 

• no video 

• no spice/vnc, just console connectivity 

• console proxy to connect to the guests



Implementation
• do as many "safe" tweaks as possible 

• with a single NUMA node, go for device locality 

• warn about suboptimal configuration 

• NUMA violation => suggest a vNODE 

• inform about tradeoffs 

• VirtIO-blk vs VirtIO-SCSI 

• allow user to override as many tunes as possible!



Benchmarks

• synthetic benchmarks show 0-15 % 
performance improvement 

• pgbench ~ 10 % improvement 

• pts/enclode-flac ~ 0.1 % improvement 

• more data in the future as reports come in



Summary
• align everything with NUMA topology 

• suggest pinning where possible (incl. IO thread, emulator thread) 

• suggest hugepages 

• expose l3 cache 

• VirtIO-RNG 

• host devices (hardware) > VirtIO > emulation 

• remove unneeded devices



Summary

• benchmark your workload and tune accordingly!



Questions?
Thank you! 

Slides & Blog @ https://mpolednik.github.io/


