
Helping Users Maximize
VM Performance

Martin Polednik (@mpolednik)
Software Engineer @ Red Hat

The Data
• oVirt databases from sosreports

• ~ 40,000 virtual machine (VM) definitions

• ~ 700 clusters*

• ~ 2,200 hosts

• ~ 60,000 disks

* oVirt specific entity that consists of hosts, VMs, disks,
networks etc. Consider it a scheduling domain.

Machine Types

2%
21%

77%

pc-i440fx-rhel7.2.0
pc-i440fx-rhel7.3.0
rhel6.5.0

• clusters "group" VMs by
machine type

• updating to a newer cluster is a
nontrivial process

VM 0HOST 0

NUMA
• soft violation: VM does not fit within some of the host's NUMA nodes

• example: VM 0:NODE 0 doesn't fit within HOST 0:NODE 1

• could be solved by pinning

NODE 1
32 GiB

NODE 0
64 GiB

NODE 0
48 GiB

Soft NUMA Violations
• 17.01 % of VM definitions

• the query considered scheduling domains
(clusters)

• "there exists a host in the cluster whose NUMA
node is smaller than the NUMA node of the VM"

• worst case in cluster AND host scheduling

VM 0HOST 0

NUMA
• hard violation: VM does not fit within any of the host's NUMA nodes

• example: VM 0:NODE 0 doesn't fit within HOST 0:NODE 0 or HOST
0:NODE 1

NODE 1
32 GiB

NODE 0
32 GiB

NODE 0
48 GiB

Hard NUMA Violations
• 9.74 % of VM definitions

• scheduling domains were considered

• "there exists a host in the cluster whose NUMA
nodes are smaller than the NUMA node of the
VM"

• worst case in cluster scheduling

Solution

• warn the user about suboptimal NUMA topology

• easy to determine on the cluster level

• important for specific applications (huge DBs)

• future: create the nodes automatically?

NUMA & CPU pinning
• low adoption, why?

• no migration (disabled at management level)

• HA is hard, breaks cluster logic (only HA
between subset of hosts)

• limited scheduling (pin to host)

• can we change that?

NUMA & CPU pinning
• host-passthrough CPU (aka copy features)

• automatically pin CPUs

• e.g. 4 NUMA nodes, 12 CPUs per node

• node CPU0, CPU1 ~> "service" CPUs (emulation thread, IO
thread, virt daemons)

• CPU2 through CPU11 ~> compute CPUs

• if #vCPU > 10, ask the user to add a virtual node

• easy to think about RT too!

Hugepages

• platform default + extended sizes

• either preallocated or dynamically allocated

• at least for x86_64 1 GiB (pdpe1gb) preferred,
other sizes configurable

• THP is hit or miss performance-wise

Hugepages

• no cluster-level overcommit

• no memory hot(un)plug, limited migration
(management layer constraints)

• "hard" resource limit

• NUMA-aware allocation

Hugepages Allocation

• could cause VM start delays

• opt-out at the host level, disabled in scheduler

• reserved hugepages concept (DPDK etc.)

• max(vm_hugepages - free_hugepages, 0)

L3 cache
• https://git.qemu.org/?p=qemu.git;a=commit;h=14c985cffa6cb177fc01a163d8bcf227c104718c

• QEMU: -cpu foo,l3-cache=on

• libvirt: <cpu><cache level='3' mode='emulate'/></cpu>

• less inter-processor interrupts (IPIs) -> less
VMEXITs

• essential for SAP workloads

Disk Interface
• choice between IDE, VirtIO-blk, VirtIO-SCSI (+

passthrough)

• 3.6, 4.0 defaults to VirtIO-blk, 4.1+ to VirtIO-SCSI

• VirtIO-SCSI controller by default in VMs (hotplug
capability) :(

• TRIM is important to people!

Disk Interface

di
sk

s

0%

25%

50%

75%

100%

cluster version
3.6 4.0 4.1

IDE
VirtIO (blk)
VirtIO (scsi)

IO Threads

• 3.6, 4.0, 4.1 allow specifying # of IO threads

• no hints about which number to use

IO Threads

VM
s

0.0%

0.4%

0.8%

1.2%

IO threads

1 2 3 4 10 16

IO Threads
• testing has shown the "sweet spot" to be 1 IO

thread

• therefore, oVirt no longer (easily) allows
arbitrary numbers

• override via hooks

• https://mpolednik.github.io/2017/01/23/virtio-blk-vs-virtio-scsi/

VirtIO RNG

• "low hanging fruit"

• improves virtually any operation that uses PRNG
(e.g. OS installation, GPG key generation)

• optional in 3.6, 4.0, default in 4.1 - no
downsides?

VirtIO RNG perf

rngtest (sec)
0 45 90

virtio-rng
no virtio-rng

VirtIO RNG

VM
s

0%

4%

8%

12%

16%

cluster version
3.6 4.0 4.1

Host Devices
• using real hardware to accelerate the VMs

• GPUs, NICs, NVMe disks

• reduced CPU load

• should still honor NUMA locality

• hard resource limit

Host Devices
HOST 0

NODE 0
32 GiB

GPU 0
GPU 1 NODE 0

32 GiB

GPU 2
GPU 3

Host Devices

• easy to tune numa automatically for simple case
(all host devices within single numa node)

• more complicated if host devices origin from
multiple NUMA nodes

Network

1%

99%

pc-i440fx-rhel7.2.0
VirtIO
SR-IOV
e1000

• VirtIO is the preferred "flexibility"
choice

• SR-IOV for performance/NFV,
migration enabled

• emulated NICs for compatibility

• looks good as it is

Migration Performance
• relevant for clusters

• maximum downtime incremented in steps

• limit number of inbound/outbound migrations to avoid
oversaturated network

• post copy - needs to be enabled explicitly, success
chance dependent on user's network

• don't expect high bandwidth, redundant network in
every case

Migration Performance
Legacy Minimal

downtime
Suspend
workload
if needed

Post copy

20 GiB RAM Failed After
12 min

41 min 31
sec

31 min 42
sec 25 min

20 GiB RAM,
50 msec
latency

Failed
After 17min

47 min 24
sec

1 h 12 min
31 sec

48 min 10
sec

40 VM,1 GiB
RAM

AVG: 1 min
40 sec

AVG: 1 min
50 sec AVG: 4 min AVG: 1 min

30 sec

KSM

• hugetlbfs not scanned by ksmd

• no overcommit for VMs that are considered high
performance

• waste of CPU cycles?

Devices
• graphics, video, USBs, smartcard, watchdog,

balloon

• do we need them?

• no known (to us) performance effects

• removing them shouldn't hurt

• no data though

Devices
• some functionality tradeoffs (ballon and memory

hot(unplug) in the future)

• running headless

• no graphics

• no video

• no spice/vnc, just console connectivity

• console proxy to connect to the guests

Implementation
• do as many "safe" tweaks as possible

• with a single NUMA node, go for device locality

• warn about suboptimal configuration

• NUMA violation => suggest a vNODE

• inform about tradeoffs

• VirtIO-blk vs VirtIO-SCSI

• allow user to override as many tunes as possible!

Benchmarks

• synthetic benchmarks show 0-15 %
performance improvement

• pgbench ~ 10 % improvement

• pts/enclode-flac ~ 0.1 % improvement

• more data in the future as reports come in

Summary
• align everything with NUMA topology

• suggest pinning where possible (incl. IO thread, emulator thread)

• suggest hugepages

• expose l3 cache

• VirtIO-RNG

• host devices (hardware) > VirtIO > emulation

• remove unneeded devices

Summary

• benchmark your workload and tune accordingly!

Questions?
Thank you!

Slides & Blog @ https://mpolednik.github.io/

