
How to Handle Globally Distributed
QCOW2 Chains?

Eyal Moscovici & Amit Abir
Oracle-Ravello

10/27/17 2 / 32

About Us

● Eyal Moscovici

– With Oracle Ravello
since 2015

– Software Engineer in
the Virtualization
group, focusing on
the Linux kernel and
QEMU

● Amit Abir

– With Oracle Ravello
since 2011

– Virtual Storage &
Networking Team
Leader

10/27/17 3 / 32

Agenda

➔ Oracle Ravello Introduction
➔ Storage Layer Design
➔ Storage Layer Implementation
➔ Challenges and Solutions
➔ Summary

10/27/17 4 / 32

Oracle Ravello - Introduction

● Founded in 2011 by Qumranet founders, acquired in 2016 by Oracle

● Oracle Ravello is a Virtual Cloud Provider
● Allows seamless “Lift and Shift”:

– Migrate on-premise data-center workloads to the public cloud
● No need to change:

– The VM images
– Network configuration
– Storage configuration

10/27/17 5 / 32

Migration to the Cloud - Challenges

● Virtual hardware

– Different hypervisors have different virtual hardware
– Chipsets, disk/net controllers, SMBIOS/ACPI and etc.

● Network topology and capabilities

– Clouds only support L3 IP-based communication
– No switches, VLANs, Mirror-ports and etc.

10/27/17 6 / 32

Virtual hardware support

● Solved by Nested Virtualization:

– HVX: Our own binary translation hypervisor
– KVM: When HW assist available

● Enhanced QEMU, SeaBIOS & OVMF supporting:

– i440bx chipset
– VMXNET3, PVSCSI
– Multiple Para-virtual interfaces (including VMWare backdoor ports)
– SMBIOS & ACPI interface
– Boot from LSILogic & PVSCSI

10/27/17 7 / 32

Network capabilities support

● Solved by our Software Defined Network - SDN
● Leveraging Linux SDN components

– Tun/Tap, TC Actions, Bridge, eBPF and etc.
● Fully distributed network functions

– Leverages OpenVSwitch

10/27/17 8 / 32

Oracle Ravello Flow

1. Import

VM VM

VM

Ravello Image Storage

HW

Cloud VM
(KVM/Xen)

KVM/HVX

VM VMVM

HW

Hypervisor

VM VMVM

Data Center
2. Publish

Public
Cloud

Ravello
Console

10/27/17 9 / 32

Storage Layer - Challenges

● Where to place the VM disks data?
● Should support multiple clouds and regions
● Fetch data in real time
● Clone a VM fast
● Writes to the disk should be persistent

10/27/17 10 / 32

Storage Layer – Basic Solution

● Place the VMs disk images directly on cloud volumes (EBS)
● Advantages:

– Performance
– Zero time to first byte

● Disadvantages:

– Cloud and region bounded
– Long cloning time
– Too expensive

Cloud VM

QEMU

Volume
data

/dev/sdb

10/27/17 11 / 32

Storage Layer – Alternative Solution

● Place a raw file in the cloud object storage
● Advantages:

– Globally available
– Fast cloning
– Inexpensive

● Disadvantages:

– Long boot time
– Long snapshot time
– Same sectors stored many times

Cloud VM

QEMU

Volume
data

/dev/sdb/data

data

Object Storage

Remote access

10/27/17 12 / 32

Storage Layer – Our Solution

● Place the image in the object storage and upload deltas to create a chain
● Advantages:

– Boot starts immediately
– Store only new data
– Globally available
– Fast cloning

– Inexpensive
● Disadvantages:

– Performance penalty

Cloud VM

QEMU

Volume
tip

/dev/sdb/tip

Object Storage
Remote Reads

Local writes

10/27/17 13 / 32

Storage Layer Architecture

● VM disk is backed by a QCow2 image
chain

● Reads are performed by Cloud FS: Our RO
storage layer file system
– Translates disk reads to HTTP requests
– Supports multiple cloud object storages
– Caches read data locally
– Fuse based

QEMU

Disk

Cloud FS

Cloud VM

Object Storage

QCow2 tip

Cloud FS

cache

QCow2 Chain

Cloud Volume

10/27/17 14 / 32

CloudFS - Read Flow

GET /diff4 HTTP/1.1
Host: ravello-vm-disks.s3.amazonaws.com
x-amz-date: Wed, 18 Oct 2017 21:32:02 GMT
Range: bytes=1024-1535

QEMU

Cloud FS

read(”/mnt/cloudfs/diff4”, offset=1024, size=512, ...)

Cloud
Object
Storage

Cloud VM

fuse_op_read(”/mnt/cloudfs/diff4”, offset=1024, size=512...)

/mnt/cloudfs/diff4

10/27/17 15 / 32

CloudFS - Write Flow

● A new tip to the QCow chain is created: qemu-img create

– Before a VM starts
– Before a snapshot (using QMP): blockdev-snapshot-sync

● The tip is uploaded to the cloud storage:

– After the VM stops
– During a snapshot

Cloud VM

QEMU

tip

Object Storage

10/27/17 16 / 32

Accelerate Remote Access

● Small requests are extended to 2MB requests

– Assume data read locality
– Latency vs. Throughput
– Experiments show that 2MB is optimal

● QCow2 chain files have random names

– They hit different cloud workers for cloud
requests

10/27/17 17 / 32

Globally Distributed Chains

● A VM can start on any cloud or region
● New data is uploaded to the same local region

– Data locality is assumed
● Globally distributed chains are created
● Problem: Reading data from remote regions could be long

AWS Sydney

OCI PheonixBase diff1

diff2 diff3

GCE Frankfurt

diff4

10/27/17 18 / 32

Globally Distributed Chains - Solution

● Every region has its own cache for parts of the chain
from different regions

● The first time the VM starts in a new region – every
remote sector read is copied to the regional cache

AWS Sydney OCI Pheonix

Cache

Base diff1 diff2 diff3

Basediff1

10/27/17 19 / 32

Performance Drawbacks of QCow
Chains

● QCow keeps minimal information about the entire chain its
backing file

– QEMU must “walk the chain” to load image metadata (L1
table) to RAM

● Some metadata (L2 tables) is spread across the image

– A single disk read creates multiple random remote reads of
metadata from multiple remote files

● qemu-img commands work on the whole virtual disk

– Hard to bound execution time

10/27/17 20 / 32

Keep QCow2 Chains Short

● A new tip to the QCow chain is created:

– Each VM starts
– Each snapshot

● Problem: Chains are getting longer!

– For Example: a VM with 1 Disks that started 100 times has a chain 100 links
deep.

● Long chains cause:

– High latency: Data/metadata read requires to “walk the chain”
– High memory usage: Each file has its own metadata (L1 tables).

1MB (L1 size) * 100 (links) = 100MB per disk. Assume 10 VMs with 4 Disks
each: 4G of memory overhead

A

Tip
Virtual disk

Base

10/27/17 21 / 32

Keep QCow2 Chains Short (Cont.)

● Solution: merge tip with backing file before upload
– Rebase the tip over the grandparent.
– Only when backing file is small (~300MB) to keep snapshot time minimal

● This is done live/offline:
– Live: using QMP block-stream job command
– Offline: using qemu-img rebase

B (rebase target)

A

Tip Rebased Tip
Virtual disk Virtual disk

B (rebase target)

10/27/17 22 / 32

qemu-img rebase

● Problem: per-byte
comparison between ALL
allocated sectors not present
in tip

– Logic is different then
QMP block-stream rebase

– Requires fetching these
sectors

static int img_rebase(int argc, char **argv)
{
 ...
 for (sector = 0; sector < num_sectors; sector += n) {
 ...
 ret = blk_pread(blk_old_backing,
 sector << BDRV_SECTOR_BITS,
 buf_old, n << BDRV_SECTOR_BITS);
 ...
 ret = blk_pread(blk_new_backing,
 sector << BDRV_SECTOR_BITS,
 buf_new, n << BDRV_SECTOR_BITS);
 ...
 while (written < n) {
 if (compare_sectors(buf_old + written * 512,
 buf_new + written * 512, n - written, &pnum)) {
 ret = blk_pwrite(blk,
 (sector + written) << BDRV_SECTOR_BITS,
 buf_old + written * 512,
 pnum << BDRV_SECTOR_BITS, 0);
 }
 written += pnum;
 }
 }
}

B (rebase
target)

A

Tip
Virtual disk

10/27/17 23 / 32

qemu-img rebase (2)

● Solution: Optimized rebase in the same image chain

– Only Compare sectors that were changed after the rebase target

static int img_rebase(int argc, char **argv)
{
 ...
 // check if blk_new_backing and blk are in the same chain
 same_chain = ...

 for (sector = 0; sector < num_sectors; sector += n) {
 ...
 m = n;
 if (same_chain) {
 ret = bdrv_is_allocated_above(blk, blk_new_backing,
 sector, m, &m);
 if (!ret) continue;
 }
 ...

No need
to compare

this part

B (rebase
target)

A

Tip
Virtual disk

10/27/17 24 / 32

Reduce first remote read latency

● Problem: High latency on first data remote read

– Prolongs boot time
– Prolongs user application startup
– Gets worse with long chains (more remote reads)

Cloud VM

QEMU

tip

Object Storage

10/27/17 25 / 32

Prefetch Disk Data

● Solution: Prefetch disk data

– While the VM is running, start reading the disks
data from the cloud

– Read all disks in parallel
– Only in relatively idle times

10/27/17 26 / 32

Prefetch Disk Data

● Naive solution: read ALL the files in the chain
● Problem: We may fetch a lot of redundant data

– An image may contain overwritten data

B

A

Tip

Redundant
Data

10/27/17 27 / 32

Avoid pre-fetching redundant data

● Solution: Fetch data from the virtual disk exposed to the
guest

– Mount the tip image as a block device
– Read data from the block device
– QEMU will fetch only the relavent data

B

A

Tip
Virtual disk

Redundant
Data

> qemu-nbd –connect=/dev/nbd0 tip.qcow
> dd if=/dev/nbd0 of=/dev/null

10/27/17 28 / 32

Avoid pre-fetching redundant data (2)

● Problem: Reading raw block device read ALL sectors

– Reading unallocated sectors wastes CPU cycles
● Solution: use qemu-img map

– Returns a map of allocated sectors.
– Allows us to read only allocated sectors.

qemu-img map tip.qcow

10/27/17 29 / 32

Avoid pre-fetching redundant data (3)

● Problem: qemu-img map works on the whole disk

– Takes a long time to finish
– We can’t prefetch data during map

10/27/17 30 / 32

Avoid pre-fetching redundant data (4)

● Solution: split the map of the disk

– We added offset and length parameter to the
operation

– Bounds execution time
– Starts prefetch data quickly

qemu-img map -offset 0 -length 1G tip.qcow

10/27/17 31 / 32

Summary

● Oracle Ravello storage layer is implemented using QCow2 chains

– Stored on the public cloud’s object storage
● QCow2 and QEMU implementations are not ideal for our use case

– QCow2 keeps minimal metadata about the entire chain
– Qcow2 metadata is spread across the file
– QEMU must often “walk the chain”

● We would like to work with the community to improve
performance in usecases such as ours

10/27/17 32 / 32

Questions?

Thank you!

