
Instrumenting, Introspection, and
Debugging with QEMU

Pavel Dovgalyuk

Institute for System Programming
of the Russian Academy of Sciences

Our projects

• Working on QEMU projects since 2010 (version 0.13)

• Software analysis for x86

• Deterministic replay

• Reverse debugging

• Deterministic replay

• Now working on introspection and debugging projects

2

Virtual machine introspection

• Extracting data for debugging and
analysis

• Semantic gap problem

3

GDB

• Remote debugging

• Guest system is executed as a single
program

• Process information is not available

• Single-stepping may change the
execution result

4

Deterministic and reverse
debugging

• Using icount for deterministic timers

• Using checkpoints for faster rewind to the
desired moment of execution

• GDB reverse debugging commands

– reverse-continue, step, next, finish

• Still work-in-progress for mainline QEMU

5

GDB + scripts

• GDB interacts with QEMU using complex
packets

• Conditional breakpoints lead to many VM
stops and debugger-QEMU
communication

• Very slow for VMI

6

WinDbg

• Support stealth Windows debugging with
WinDbg

• More information than in GDB

• Submitted to qemu-devel

• https://github.com/ispras/qemu/tree/windbg

7

Native VMI

• Instrumenting guest or TCG code

• Memory access and interrupt callbacks

• Memory and CPU state query interface

8

QEMU-based VMI frameworks

• PyREBox

• PANDA

• DECAF

• ISP RAS

• and other less mature systems

9

PyREBox

• PyREBox – Python scriptable Reverse
Engineering sandbox

• QEMU 2.10

• Uses Volatility memory forensics

• Python scripting for automated analysis

• Implements interface for mining the VM
memory

• https://github.com/Cisco-Talos/pyrebox/

10

PANDA

• Platform for Architecture-Neutral
Dynamic Analysis

• QEMU 2.8.50

• VM introspections

• Taint analysis

• CPU record-replay

• https://github.com/panda-re/panda 11

DECAF

• Dynamic Executable Code Analysis
Framework

• QEMU 1.0

• VM introspection plugins

• Taint analysis

• https://github.com/sycurelab/DECAF

12

ISP RAS

• Our own approach

• QEMU 2.8.50

• Subsystem for dynamically loaded
plugins

• Syscalls and API logging for i386

• https://github.com/ispras/qemu/tree/plugins

13

VMI requirements for QEMU

• Translation events

• Memory operation events

• Execution events

• Exception events

• Disk and DMA events

• Keyboard and network events

• TLB events

• Monitor commands

 14

Instruction instrumentation

• Instrument at translation

– Specific instructions

– Specific addresses

• Get callbacks at execution

15

Instruction instrumentation

0xb7707010: mov %ebx,%edx

0xb7707012: mov 0x8(%esp),%ecx

0xb7707016: mov 0x4(%esp),%ebx

0xb770701a: mov $0x21,%eax

0xb770701f: int $0x80

---- b770701f 00000000

movi_i64 tmp13,$0xb7707020

movi_i64 tmp14,$0x7fef9a788670

call start_system_call, $0x0,$0,tmp13,tmp14

movi_i32 tmp3,$0xffffffffb770701f

st_i32 tmp3,env,$0x20

movi_i32 tmp11,$0x2

movi_i32 tmp12,$0x80

call raise_interrupt, $0x0,$0,env,tmp12,tmp11

set_label $L0

exit_tb $0x7fef8e6dca13

16

TCG Instrumentation

• Platform-independent instrumentation

• Used for taint analysis in DECAF and
PANDA

• Not complete because of helpers

17

Memory instrumentation

• Memory ops performed through
softmmu-callbacks and translated code

– DECAF supports only callbacks

• Memory forensics through exported load
functions

18

Memory instrumentation

• Logging

• Cache simulator

• Forensics

• Anomalies detection

19

Interrupts and exceptions

• Only asynchronous callbacks

• Logging peripheral interrupts

• Detecting page mapping

20

Instrumentation/introspection
applications

• Logging syscalls

• Logging API

• Logging memory accesses

– for cache simulator

– for debugging the firmwares

21

QEMU instrumentation

• 10+ attempts to add instrumentation API

• Does it have to be included into mainline?

• QEMU-VMI interface is very narrow

– ~20 callbacks

– ~50 externally accessible functions

22

