
Managing the New Block Layer

Kevin Wolf <kwolf@redhat.com>
Max Reitz <mreitz@redhat.com>

KVM Forum 2017



Part I

User management



Section 1

The New Block Layer



The New Block Layer

Block layer role

Block layer

Emulated guest block devices

Guest

Host storage



The New Block Layer

Block layer duties

Read/write data from/to host storage (outside
of QEMU)

Interpret image formats
Manipulate data on the way:

Encryption
Throttling
Duplication



The New Block Layer

Block drivers

Accessing host storage:
Protocol drivers (e.g. file, nbd)

Interpret image formats:
Format drivers (e.g. qcow2)

Data manipulation:
Filter drivers (e.g. throttle, quorum)



The New Block Layer

Block driver “instantiation”

node

parents

children



The New Block Layer

General block layer structure

Host storage

Protocol node

Format node

Filters. . .

Guest device



The New Block Layer

Block trees

From Minecraft



The New Block Layer

Growing a tree

foo [qcow2]

Root node

foo-protocol [file] bar [raw]

bar-protocol [nbd]

Host storage

Host storage

file
backing

file

POSIX/Win32

NBD



The New Block Layer

Rooting the tree

foo [qcow2]

foo-protocol [file] bar [raw]

bar-protocol [nbd]

BlockBackend

Guest device

Host storage

Host storage

file
backing

file



The New Block Layer

Filters

Format nodes have metadata, filters do not
⇒ can put filters anywhere into the graph

Throttling: Was basically at the device; can now
be put anywhere

Quorum: Data duplication; arbitrarily stackable
(or you can throttle individual children)



The New Block Layer

Management – how and why

Tree construction

Runtime modifications
Why?

Runtime block device configuration
Filter driver configuration
External snapshots
. . .

Op blockers to keep it safe



Section 2

Tree construction



Tree construction

Node configuration: Runtime options (1)

Generally:

driver: String (mandatory)

node-name: String (mandatory for root nodes)

Specific options, e.g. for file:

filename: String (mandatory)

. . . (see QMP reference,
BlockdevOptionsFile object)



Tree construction

Node configuration: Example (1)

{ "driver": "file",

"node-name": "protocol-node",

"filename": "foo.qcow2" }

protocol-node
[file]



Tree construction

Node configuration: Runtime options (2)

Specific options for qcow2:

file: Reference to a node (mandatory)

. . . (see QMP reference,
BlockdevOptionsQcow2 object)



Tree construction

Node configuration: Example (2a)

{ "driver": "qcow2",

"node-name": "format-node",

"file": "protocol-node" }

format-node
[qcow2]

protocol-node
[file]

file



Tree construction

Node configuration: Example (2b)

{ "driver": "qcow2",

"node-name": "format-node",

"file": {

"driver": "file",

"filename": "foo.qcow2"

} }

format-node
[qcow2]

#block042
[file]

file



Tree construction

Passing this JSON object into QEMU

QMP command: blockdev-add

{ "execute": "blockdev-add",

"arguments": {

"driver": "file",

"node-name": "protocol-node",

"filename": "foo.qcow2"

} }



Tree construction

Passing this JSON object into QEMU

Command line option: -blockdev

-blockdev '{

"driver": "file",

"node-name": "protocol-node",

"filename": "foo.qcow2"

}'



Tree construction

Rooting block trees

Both -device and device add:
Pass the root’s node-name to the drive property

-blockdev '{ "driver": "file",

"node-name": "drv0",

"filename": "foo.raw" }' \

\

-device virtio-blk,drive=drv0
drv0 [file]

BlockBackend

virtio-blk



Tree construction

“Hey, what about -drive?”

Why you should no longer use -drive:
Does not directly correspond to the QAPI
schema

Has a different file
Has format probing

All in all: Evolved into kind of a monstrosity

With anything but if=none: Creates guest
device

With if=none: Creates BlockBackend



Tree construction

So what about BlockBackend now?

You should not worry about it.

Only used internally now

-blockdev + -device create it automatically

Block trees are identified through the root’s
node-name



Section 3

Runtime configuration



Runtime configuration

blockdev-del

Counterpart to blockdev-add

Details:

Nodes are refcounted

Automatic deletion when refcount reaches 0
Nodes added with blockdev-add therefore
must have a strong reference from the monitor –
blockdev-del deletes this

Cannot blockdev-del in-use nodes



Runtime configuration

Graph manipulation (1)

Present: blockdev-snapshot

(and blockdev-snapshot-sync)

Attach a node to another node as the latter’s
backing child

[file]

[qcow2]

[file]

[qcow2]

file file

backing



Runtime configuration

Graph manipulation (1)

Present: blockdev-snapshot

(and blockdev-snapshot-sync)

Attach a node to another node as the latter’s
backing child

[file]

[qcow2]

[file]

[qcow2]

file file

backing



Runtime configuration

Graph manipulation (2)

Begun: x-blockdev-change

Add/remove children to/from a block node
Currently only for quorum
For adding backing children: blockdev-snapshot

Note: Most children are not optional

Not yet implemented: Node replacement



Runtime configuration

Graph manipulation (3)

Proposal: blockdev-insert-node and
blockdev-remove-node

Effectively insert a new node between two
existing nodes, or undo this operation

Functionally a node replacement with various
constraints



Runtime configuration

Graph manipulation (3)

Parent

Child

Filter Filter

Child



Runtime configuration

Graph manipulation (3)

Parent

Child

Filter Filter

Child



Runtime configuration

Graph manipulation (3)

Parent

Filter

Child



Runtime configuration

Implicit graph manipulation

Block jobs on completion:

e.g. mirror: Replaces source with target

(commit, stream: Depends.)

Future persistent (?) option: Prevent block job
from such automatic graph manipulation



Runtime configuration

Speaking of block jobs...

...they are going to have filter nodes now:

Mirror block job

Source Target

...

...
...



Runtime configuration

Speaking of block jobs...

(You can and should name this node)

Mirror block job

[mirror]

Source Target

...

...
...

backing



Runtime configuration

Speaking of block jobs...

(You can and should name this node)

Mirror block job

[mirror]

Source Target

...

...
...

file target



Part II

Op blockers



Users of block nodes

We have many different users of block nodes

Other block nodes (parent nodes)

Guest devices

Block jobs

Monitor commands (e.g. block resize)

Built-in NBD server

Live block migration



Conflicting users of block nodes

Some of them don’t work well together

Can’t resize image during backup job

Commit job invalidates intermediate nodes

Guest doesn’t expect a changing disk

...



Avoiding conflicts: bs->in use

Easy: Let’s just flag devices for exclusive access

virtio-blk

disk [qcow2]

in use

disk.file [file]

drive-mirror

set in use = 1

resize

check in use

8



Avoiding conflicts: bs->in use

Easy: Let’s just flag devices for exclusive access

virtio-blk

disk [qcow2]

in use = 1

disk.file [file]

drive-mirror resize

check in use

8



Avoiding conflicts: bs->in use

Easy: Let’s just flag devices for exclusive access

Set bs->in use = true for exclusive access

All other users check the flag first

Except guest devices, they are always allowed

Very simple solution

Way too restrictive

And also a bit too lax



Avoiding conflicts: BLOCK OP TYPE *

Okay... So we’ll distinguish specific operations

bdrv op block()

prevents a specific operation from running

bdrv op is blocked()

is checked first before the operation

BLOCK OP TYPE RESIZE

BLOCK OP TYPE EXTERNAL SNAPSHOT

BLOCK OP TYPE MIRROR SOURCE

...



Avoiding conflicts: BLOCK OP TYPE *

virtio-blk

disk [qcow2]

BLOCK OP TYPE RESIZE = NULL

BLOCK OP TYPE COMMIT = NULL

...

disk.file [file]

drive-mirror

set blockers

resize

check blockers8



Avoiding conflicts: BLOCK OP TYPE *

virtio-blk

disk [qcow2]

BLOCK OP TYPE RESIZE = [&blocker]

BLOCK OP TYPE COMMIT = NULL

...

disk.file [file]

drive-mirror resize

check blockers8



Avoiding conflicts: BLOCK OP TYPE *

Still not quite perfect

Easy to forget calling the functions
Need to know all conflicting operations

Ideally including future ones

In practice: Just block everything else
That didn’t quite achieve the goal...

Usually only called for root node
Not how the block layer works in 2017



Avoiding conflicts: Permissions

Define requirements in terms of low-level operations

Which operations do I need?

Which ones may others use while I am active?



Avoiding conflicts: Permissions

Small set of low-level operations
CONSISTENT READ – read meaningful data

Not meaningful: intermediate nodes during commit

WRITE – change data
WRITE UNCHANGED – invisible (re)writes

e.g. streaming, which pulls unchanged data from a
backing file to an overlay

RESIZE – resize the image
GRAPH MOD – something with the graph

To be figured out, but people expect we need it



Avoiding conflicts: Permissions

Make it a mandatory core concept
When attaching to a node...

...required permissions must be specified

...shared permissions must be specified

If permissions conflict, attaching fails
Permissions are checked with assert()

If you write without write permission, you crash



Avoiding conflicts: Permissions

Almost no user configuration needed
QEMU generally knows the requirements

Block drivers need write access if opened read-write
Sparse image formats need resize for the file, too
Non-raw drivers can’t tolerate concurrent writes to
the image file

Exception: Guest devices
Whether writes are okay depends on the guest
New share-rw=on|off property for -device



Example: Permission system in practice

virtio-blk
share-rw=off

disk [qcow2]

disk.file [file]

backing [qcow2]

backing.file [nbd]

READ
WRITE

READ
RESIZE
WRITE

READ
WRITE
RESIZE

READ
WRITE
RESIZE

READ

READ
WRITE
RESIZE

READ
READ
WRITE
RESIZE

virtio-blk
share-rw=off

virtio-blk
share-rw=off

8
READ

WRITE

READ
RESIZE
WRITE

virtio-blk
share-rw=off

read-only

READ
READ

RESIZE
WRITE

READ
WRITE

READ
RESIZE
WRITE

READ
WRITE
RESIZE

READ
WRITE
RESIZE

READ

READ
WRITE
RESIZE

READ
READ
WRITE
RESIZE

virtio-blk
share-rw=on

3
READ

WRITE

READ
RESIZE
WRITE

Colour key:
Required permissions
Shared with other users
Blocked for other users



Example: Permission system in practice

virtio-blk
share-rw=off

disk [qcow2]

disk.file [file]

backing [qcow2]

backing.file [nbd]

READ
WRITE

READ
RESIZE
WRITE

READ
WRITE
RESIZE

READ
WRITE
RESIZE

READ

READ
WRITE
RESIZE

READ
READ
WRITE
RESIZE

virtio-blk
share-rw=off

virtio-blk
share-rw=off

8
READ

WRITE

READ
RESIZE
WRITE

virtio-blk
share-rw=off

read-only

READ
READ

RESIZE
WRITE

READ
WRITE

READ
RESIZE
WRITE

READ
WRITE
RESIZE

READ
WRITE
RESIZE

READ

READ
WRITE
RESIZE

READ
READ
WRITE
RESIZE

virtio-blk
share-rw=on

3
READ

WRITE

READ
RESIZE
WRITE

Colour key:
Required permissions
Shared with other users
Blocked for other users



Example: Permission system in practice

virtio-blk
share-rw=off

disk [qcow2]

disk.file [file]

backing [qcow2]

backing.file [nbd]

READ
WRITE

READ
RESIZE
WRITE

READ
WRITE
RESIZE

READ
WRITE
RESIZE

READ

READ
WRITE
RESIZE

READ
READ
WRITE
RESIZE

virtio-blk
share-rw=off

virtio-blk
share-rw=off

8
READ

WRITE

READ
RESIZE
WRITE

virtio-blk
share-rw=off

read-only

READ
READ

RESIZE
WRITE

READ
WRITE

READ
RESIZE
WRITE

READ
WRITE
RESIZE

READ
WRITE
RESIZE

READ

READ
WRITE
RESIZE

READ
READ
WRITE
RESIZE

virtio-blk
share-rw=on

3
READ

WRITE

READ
RESIZE
WRITE

Colour key:
Required permissions
Shared with other users
Blocked for other users



Example: Permission system in practice

virtio-blk
share-rw=off

disk [qcow2]

disk.file [file]

backing [qcow2]

backing.file [nbd]

READ
WRITE

READ
RESIZE
WRITE

READ
WRITE
RESIZE

READ
WRITE
RESIZE

READ

READ
WRITE
RESIZE

READ
READ
WRITE
RESIZE

virtio-blk
share-rw=off

virtio-blk
share-rw=off

8
READ

WRITE

READ
RESIZE
WRITE

virtio-blk
share-rw=off

read-only

READ
READ

RESIZE
WRITE

READ
WRITE

READ
RESIZE
WRITE

READ
WRITE
RESIZE

READ
WRITE
RESIZE

READ

READ
WRITE
RESIZE

READ
READ
WRITE
RESIZE

virtio-blk
share-rw=on

3
READ

WRITE

READ
RESIZE
WRITE

Colour key:
Required permissions
Shared with other users
Blocked for other users



Example: Permission system in practice

virtio-blk
share-rw=off

disk [qcow2]

disk.file [file]

backing [qcow2]

backing.file [nbd]

READ
WRITE

READ
RESIZE
WRITE

READ
WRITE
RESIZE

READ
WRITE
RESIZE

READ

READ
WRITE
RESIZE

READ
READ
WRITE
RESIZE

virtio-blk
share-rw=off

virtio-blk
share-rw=off

8
READ

WRITE

READ
RESIZE
WRITE

virtio-blk
share-rw=off

read-only

8
READ

READ
RESIZE
WRITE

READ
WRITE

READ
RESIZE
WRITE

READ
WRITE
RESIZE

READ
WRITE
RESIZE

READ

READ
WRITE
RESIZE

READ
READ
WRITE
RESIZE

virtio-blk
share-rw=on

3
READ

WRITE

READ
RESIZE
WRITE

Colour key:
Required permissions
Shared with other users
Blocked for other users



Example: Permission system in practice

virtio-blk
share-rw=off

read-only

disk [qcow2]

disk.file [file]

backing [qcow2]

backing.file [nbd]

READ
READ
RESIZE
WRITE

READ
WRITE
RESIZE

READ
WRITE
RESIZE

READ

READ
WRITE
RESIZE

READ
READ
WRITE
RESIZE

virtio-blk
share-rw=off

virtio-blk
share-rw=off

8
READ

WRITE

READ
RESIZE
WRITE

virtio-blk
share-rw=off

read-only

3 READ
READ

RESIZE
WRITE

READ
WRITE

READ
RESIZE
WRITE

READ
WRITE
RESIZE

READ
WRITE
RESIZE

READ

READ
WRITE
RESIZE

READ
READ
WRITE
RESIZE

virtio-blk
share-rw=on

3
READ

WRITE

READ
RESIZE
WRITE

Colour key:
Required permissions
Shared with other users
Blocked for other users



Example: Permission system in practice

virtio-blk
share-rw=on

disk [qcow2]

disk.file [file]

backing [qcow2]

backing.file [nbd]

READ
WRITE

READ
RESIZE
WRITE

READ
WRITE
RESIZE

READ
WRITE
RESIZE

READ

READ
WRITE
RESIZE

READ
READ
WRITE
RESIZE

virtio-blk
share-rw=off

virtio-blk
share-rw=off

8
READ

WRITE

READ
RESIZE
WRITE

virtio-blk
share-rw=off

read-only

READ
READ

RESIZE
WRITE

READ
WRITE

READ
RESIZE
WRITE

READ
WRITE
RESIZE

READ
WRITE
RESIZE

READ

READ
WRITE

RESIZE
READ

READ
WRITE
RESIZE

virtio-blk
share-rw=on

3
READ

WRITE

READ
RESIZE
WRITE

Colour key:
Required permissions
Shared with other users
Blocked for other users



Example: Permission system in practice

virtio-blk
share-rw=on

disk [qcow2]

disk.file [file]

backing [qcow2]

backing.file [nbd]

READ
WRITE

READ
RESIZE
WRITE

READ
WRITE
RESIZE

READ
WRITE
RESIZE

READ

READ
WRITE
RESIZE

READ
READ
WRITE
RESIZE

virtio-blk
share-rw=off

virtio-blk
share-rw=off

8
READ

WRITE

READ
RESIZE
WRITE

virtio-blk
share-rw=off

read-only

READ
READ

RESIZE
WRITE

READ
WRITE

READ
RESIZE
WRITE

READ
WRITE
RESIZE

READ
WRITE
RESIZE

READ

READ
WRITE
RESIZE

READ
READ
WRITE
RESIZE

virtio-blk
share-rw=on

3
READ

WRITE

READ
RESIZE
WRITE

Colour key:
Required permissions
Shared with other users
Blocked for other users



Image locking

Goal: Extend permission system across processes

Use Open File Description (OFD) locks

Locks can be taken on byte ranges
Each permission = pair of shared locks

Byte 100-163: Permission used
Byte 200-263: Permission can’t be shared

For check: Could exclusive lock be set?



Getting image locking out of the way

What to do if you get locking errors?

Check that share-rw is set correctly

If so, you’re doing something unsafe
Unsafe because of active writers:

Can ignore if read-only and unreliable results are okay
QEMU: Override with force-share=on in
-drive/-blockdev (applies to whole tree)
qemu-img: Override with -U or --force-share

Want to do something evil and all else fails?
locking=off (node-level option for file)



Part III

Action items for management tools



Avoid BlockBackend names

Node and device names are enough for everyone

Explicitly managing a third type of objects is
cumbersome. For you and for QEMU.

When creating devices, use node names instead
Replace existing use of BB names in QMP

All device commands accept qdev IDs/QOM paths
All backend commands accept node names

Goal: No id=... in -drive needed
And don’t use the default IDs, obviously



-blockdev and blockdev-add

-drive and drive add compatibility impedes
development. We want to get rid of it sooner
rather than later.
Start using -blockdev/blockdev-add now

Preferably even yesterday

If you got rid of BB names, not too hard



Filter nodes

Legacy config may create filter nodes internally

Manage filter nodes manually instead
If you let QEMU create filters automatically...

the internal node is unnamed
internal nodes may not appear in the right order
it makes managing the graph harder for you

New in 2.11: I/O throttling filter (throttle)



Block jobs

Expect that jobs insert filter nodes in the graph
Assign names to these filter nodes

Option of the QMP command to start a job

Make use of explicit job deletion
...as soon as QEMU implements it
This avoids race conditions



Permission system

Ideally, just don’t use dangerous setups
Only dangerous setups result in new errors

Make sure to set share-rw correctly
Avoid force-share and locking=off

Use the monitor of the running VM instead
If you must, prefer force-share where possible
If you think you must, think twice.
Many people said they need to disable locking.
Most of them were wrong.



Questions?


	User management
	The New Block Layer
	Tree construction
	Runtime configuration

	Op blockers
	Action items for management tools

