

Nested Virtualization: Hyper-V on KVM

Ladi Prosek

October 26th 2017

- 1. What
- 2. Why
- 3. How

- 1. What is Hyper-V? What is nested virtualization?
- 2. Why
- 3. How

- 1. What is Hyper-V? What is nested virtualization?
- 2. Why should we care?
- 3. How

- 1. What is Hyper-V? What is nested virtualization?
- 2. Why should we care?
- 3. How does it work?

Hyper-V

- Microsoft's x86 virtualization solution
- Ships as
 - Microsoft Hyper-V Server standalone product
 - Hyper-V role Windows Server, higher editions of client Windows
- Type-1 hypervisor, root/parent partition hosts the management OS

Hyper-V (cont)

Nested virtualization

• Running a hypervisor in a VM

Windows Nested VM ... I

Hyper-V ... I

Linux / KVM ... I

Hardware

... L2 guest

... L1 guest, L1 hypervisor

... LO hypervisor

Why Hyper-V on KVM?

- Testing, development, training, demos, ..., general tinkering
 - May eliminate the need for dedicated HW
 - All the benefits of virtualization when the workload is virtualization
- Virtualization-based security (VBS)
 - New in Windows Server 2016 and Windows 10
 - Hyper-V used under the covers to protect the OS from itself / from malware
 - Praised by security researchers
- Hyper-V on Hyper-V works (Azure supports nested already)
 - Expecting demand for Hyper-V on KVM also
 - And maybe KVM on Hyper-V as well

Virtualization-based security

- Virtual Trust Level (VTL)
 - VTL 0 is normal, VTL 1 is secure
 - SLAT enforced
- Hyper-V no longer trusts the root partition running in VTL 0
- Small amount of code runs in VTL 1
 - Minimal kernel + security related modules
 - User mode trustlets
- Device Guard prevents running unsigned/untrusted code
 - SLAT enforced W^X
 - Together with secure boot, IOMMU, TPM, ...
- Credential Guard hides cryptographic secrets
 - SLAT enforced !R

Experiment

```
void experiment(void)
{
    char ret_instruction = 0xc3;
    void (*func_ptr)(void) = (void (*)(void))&ret_instruction;
    func_ptr();
}
```


Experiment (cont)

:(

Your PC ran into a problem and needs to restart. We're just collecting some error info, and then we'll restart for you.

40% complete

For more information about this issue and possible fixes, visit https://www.windows.com/stopcode

If you call a support person, give them this info: Stop code: ATTEMPTED EXECUTE OF NOEXECUTE MEMORY

Experiment (enhanced)

```
void experiment(void)
{
    char ret_instruction = 0xc3;
    void (*func_ptr)(void) = (void (*)(void))&ret_instruction;

    make_page_executable(&ret_instruction);

    func_ptr();
}
```

6 6 6 6 3 2 1 0	5 5 5 5 5 5 5 5 9 8 7 6 5 4 3 2 1 M	¹ M-1	3 3 3 2 2 2 2 2 2 2	1 1 1 0 9	8 7	6	5 4	4 3	2 1	0	
X	Reserved		Address of 4KB page frame	lgn.	G A	D	A (P P C W	U /S V	<u> </u>	PTE: 4KB page

Experiment (enhanced, VBS on)

:(

Your PC ran into a problem and needs to restart. We're just collecting some error info, and then we'll restart for you.

20% complete

For more information about this issue and possible fixes, visit https://www.windows.com/stopcode

If you call a support person, give them this info Stop code: SYSTEM SERVICE EXCEPTION

How does it work?

- Same as KVM on KVM but the devil is in the detail...
- Issues found so far
 - Missing features (very few)
 - Ex: Descriptor table exits (EXIT_REASON_GDTR_IDTR, EXIT_REASON_LDTR_TR)
 - KVM bugs (many)
 - Ex: Dereferencing CR3 under PAE + EPT
 - Hyper-V bugs (very few)
 - Ex: Assuming the presence of IOAPIC_REG_EOI
- ~20 KVM patches so far, and a tiny bit of QEMU work

Future work

- Performance!
 - Windows boot time currently doubles after enabling VBS :(
- Paravirtualized features as per Hyper-V Top-Level Functional Spec
 - Enlightened VMCS
 - Enlightened MSR bitmap
 - Virtual TLB
- Please test Hyper-V L1 when making nVMX / nSVM changes
 - Windows Server 2016 evaluation available for download
 - Use standard HV enlightenments
 - -cpu ...,hv_relaxed,hv_spinlocks=0x1fff,hv_vapic,hv_time
 - -cpu ...,-hypervisor required for older Hyper-V versions

Debugging tips

- QEMU GDB stub
 - qemu -gdb tcp::1234
 - (gdb) target remote localhost:1234
 - Hyper-V lives in hvix64.exe (Intel), hvax64.exe (AMD)
 - No public symbols
 - Addresses change due to ASLR search for patterns
- Windows kernel debugger
 - bcdedit /hypervisorsettings {serial or 1394 settings} bcdedit /set hypervisordebug on bcdedit /set hypervisorlaunchtype auto
 - Run windbg on another Windows VM

Demo!

Welcome to Microsoft Windows . . .

The PC operating environment that lets you use today's most popular applications -- and tomorrow's most powerful ones.

Summary

- Hyper-V on KVM works
 - But expect rough edges, especially around performance
- Virtualization-based security uses Hyper-V
 - Marketing names: Device guard, Credential guard
- Installing the Hyper-V role starts an L2

Resources & QA

- Ladi Prosek < lprosek@redhat.com >
- http://ladipro.wordpress.com
- Alex Ionescu's BATTLE OF SKM AND IUM: http://www.alex-ionescu.com/blackhat2015.pdf

