
OMG, NPIV!
Virtualizing Fibre Channel with Linux and KVM

Paolo Bonzini, Red Hat
Hannes Reinecke, SuSE

KVM Forum 2017



2

Outline

● Introduction to Fibre Channel and NPIV
● Fibre Channel and NPIV in Linux and QEMU
● A new NPIV interface for virtual machines
● virtio-scsi 2.0?



3

What is Fibre Channel?

● High-speed (1-128 Gbps) network interface
● Used to connect storage to server (“SAN”)

FC-4

FC-3

FC-2

FC-1

FC-0

Application protocols: FCP (SCSI), FC-NVMe

Signaling protocols (FC-FS): link speed, frame defnitions ...

Data link (MAC) layer

PHY layer

Link services (FC-LS): login, abort, scan…



4

Ethernet NIC vs. Fibre channel HBA

● Bufer credits: fow control at the MAC level
● HBAs hide the raw frames from the driver
● IP-address equivalent is dynamic and mostly 

hidden
● Devices (ports) identifed by World Wide Port 

Name (WWPN) or World Wide Node Name 
(WWNN)
– Similar to Ethernet MAC address
– But: not used for addressing network frames
– Also used for access control lists (“LUN masking”)



5

Initiator Client

Target Server

PLOGI Port login: prepare communication with a target

PRLI Process login: select protocol (SCSI, NVMe,…), optionally 
establish connection

Fibre channel HBA vs. Ethernet NIC

MAC address WWPN/WWNN World Wide Port/Node Name (2x64 bits)

IP address Port ID 24-bit number

DHCP FLOGI Fabric login (usually placed inside switch)

Zeroconf Name server Discover other active devices



6

Exchange

Command phase
(sequence #1)

Working phase
(sequence #2)

Status phase
(sequence #3)

SCSI command

FCP_CMND_IU

FCP_DATA_IU

FCP_RSP_IU

FC command format

● FC-4 protocols defne 
commands in terms of 
sequences and exchanges

● The boundary between 
HBA frmware and OS 
driver depends on the h/w

● No equivalent of “tap” 
interfaces



7

FC Port addressing

● FC Ports are addressed by WWPN/WWNN or 
FCID

● Storage arrays associate disks (LUNs) with 
FC ports

● SCSI command are routed from initiator to 
target to LUN
– Initiator: FC port on the HBA
– Target: FC port on the storage array
– LUN: (relative) LUN number on the storage 

array



8

FC Port addressing

Node 1

Node 2

WWPN 1a

WWPN 1b

WWPN 2a

WWPN 2b

A B

WWPN 1a, WWPN 1b

WWPN 3a

WWPN 3b

WWPN 4a

WWPN 4b

WWPN 2a, WWPN 2b

WWPN 5

SAN



9

FC Port addressing

● Resource allocation based on FC Ports
● FC Ports are located on FC HBA
● But: VMs have to share FC HBAs
● Resource allocation for VMs not possible



10

NPIV: N_Port_ID virtualization

● Multiple FC_IDs/WWPNs on the same switch 
port
– WWPN/WWNN pair (N_Port_ID) names a vport
– Each vport is a separate initiator

● Very diferent from familiar networking 
concepts
– No separate hardware (unlike SR-IOV)
– Similar to Ethernet macvlan
– Must be supported by the FC HBA



11

NPIV: N_Port_ID virtualization

Node 1

Node 2

WWPN 1a

WWPN 1b

WWPN 2a

WWPN 2b

A B

WWPN 1a, WWPN 1b

WWPN 3a

WWPN 3b

WWPN 4a

WWPN 4b

WWPN 2a, WWPN 2b

WWPN 5

SAN
WWPN 5



12

NPIV and virtual machines

● Each VM is a separate initiator
– Diferent ACLs for each VM
– Per-VM persistent reservations

● The goal: map each FC port in the guest to 
an NPIV port on the host. 



13

NPIV in Linux

● FC HBA (ie the PCI Device) can support 
several FC Ports
– Each FC Port is represented as an fc_host 

(visible in /sys/class/fc_host)
– Each FC NPIV Port is represented as a separate 

fc_host
● Almost no diference between regular and 

virtual ports



14

NPIV in Linux

FC-HBA

Linux HBA
Driver

scsi_host

NPIV scsi_host

sda

sdb

sdc

sdd

FC Port

FC NPIV Port



15

QEMU does not help...

● PCI device assignment
– Uses the VFIO framework
– Exposes an entire PCI device to the guest

● Block device emulation
– Exposes/emulates a single block device
– virtio-scsi allows SCSI command passthrough

● Neither is a good match for NPIV
– PCI devices are shared between NPIV ports
– NPIV ports presents several block devices



16

NPIV passthrough and KVM

PCI SCSI

HBA

LUN

VFIO

virtio-scsi



17

LUN-based NPIV passthrough

● Map all devices from a vport into the guest
● New control command to scan the FC bus
● Handling path failure

– Use existing hot-plug/hot-unplug infrastructure
– Or add new virtio-scsi events so that /dev/sdX 

doesn’t disappear



18

LUN-based NPIV passthrough

● Assigned NPIV vports do not “feel” like FC
– Bus rescan in the guest does not map to LUN 

discovery in the host
– New LUNs not automatically visible in the VM

● Host can scan LUN for partitions, mount fle 
systems, etc.



19

Can we do better?

PCI SCSI

HBA

LUN

VFIO

virtio-scsi

vport ??



20

Mediated device passthrough

● Based on VFIO
● Introduced for vGPU
● Driver virtualizes itself, and the result is 

exposed as a PCI device
– BARs, MSIs, etc. are partly emulated, partly 

passed-through for performance
– Typically, the PCI device looks like the parent

● One virtual N_Port per virtual device



21

Mediated device passthrough

● Advantages:
– No new guest drivers
– Can be implemented entirely within the driver

● Disadvantages:
– Specifc to each HBA driver
– Cannot stop/start guests across hosts with 

diferent HBAs
– Live migration?



22

What FC looks like

FLOGI

PLOGI

PRLI

Exchange #1

SCN

Exchange #2

SCSI command

FCP_CMND_IU

FCP_DATA_IU

FCP_RSP_IU



23

What virtio-scsi looks like

SCSI command

Request
bufer

Response
bufer

Payload

Request
queues

Control
queue

Event
queue



24

vhost

● Out-of-process implementation of virtio
– A vhost-scsi device represents a SCSI target
– A vhost-net device is connected to a tap device

● The vhost server can be placed closer to 
the host infrastructure
– Example: network switches as vhost-user-net 

servers
– How to leverage this for NPIV?



25

Initiator vhost-scsi

● Each vhost-scsi device represents an 
initiator

● Privileged ioctl to create a new NPIV vport
– WWPN/WWNN → vport fle descriptor
– vport fle descriptor compatible with vhost-scsi

● Host driver converts virtio requests to HBA 
requests

● Devices on the vport will not be visible on 
the host



26

Initiator vhost-scsi

● Advantages:
– Guests are unaware of the host driver
– Simpler to handle live migration (in principle)

● Disadvantages:
– Need to be implemented in each host driver 

(around a common vhost framework)
– Guest driver changes likely necessary (path 

failure etc.)



27

Live migration

● WWPN/WWNN are unique (per SAN)
● Can log into the SAN only once
● For live migration both instances need to 

access the same devices at the same time
● Not possible with single WWPN/WWNN



28

Live migration

Node 1

Node 2

WWPN 1a

WWPN 1b

WWPN 2a

WWPN 2b

A B

WWPN 1a, WWPN 1b

WWPN 3a

WWPN 3b

WWPN 4a

WWPN 4b

WWPN 2a, WWPN 2b

WWPN 5

SAN
WWPN 5



29

Live migration

Node 1

Node 2

WWPN 1a

WWPN 1b

WWPN 2a

WWPN 2b

A B

WWPN 1a, WWPN 1b

WWPN 3a

WWPN 3b

WWPN 4a

WWPN 4b

WWPN 2a, WWPN 2b

WWPN 5

SAN

WWPN 5



30

Live migration

● Solution #1: Use “generic” temporary 
WWPN during migration

● Temporary WWPN has to have access to all 
devices; potential security issue

● Temporary WWPN has to be 
scheduled/negotiated between VMs



31

Live migration

● Solution #2: Use individual temporary 
WWPNs

● Per VM, so no resource confict with other 
VMs

● No security issue as the temporary WWPN 
only has access to the same devices as the 
original WWPN

● Additional management overhead; WWPNs 
have to be created and registered with the 
storage array



32

Live migration: multipath to the 
rescue

● Register two WWPNs for each VM; activate 
multipathing

● Disconnect the lower WWPN for the source 
VM during migration, and the higher WWPN 
for the target VM.

● Both VMs can access the disk; no service 
interruption

● WWPNs do not need to be re-registered.



33

Is it better?

PCI SCSI

HBA

LUN

VFIO

virtio-scsi

vport VFIO mdev
Initiator

vhost-scsi



34

Can we do even better?

PCI SCSI

HBA

LUN

VFIO

virtio-scsi

FC

vport ??VFIO mdev
Initiator

vhost-scsi



35

virtio-scsi 2.0?

● virtio-scsi has a few limitations compared 
to FCP
– Hard-coded LUN numbering (8-bit target, 16-bit 

LUN)
– One initiator id per virtio-scsi HBA (cannot do 

“nested NPIV”)
● No support for FC-NVMe



36

virtio-scsi device addressing

● virtio-scsi uses a 64-bit hierarchical LUN
– Fixed format described in the spec
– Selects both a bus (target) and a device (LUN)

● FC uses a 128-bit target (WWNN/WWPN) + 
64-bit LUN

● Replace 64-bit LUN with I_T_L nexus id
– Scan fabric command returns a list of target ids
– New control commands to map I_T_L nexus
– Add target id to events



37

●Emulating NPIV in the VM

● FC NPIV port (in the guest) maps to FC 
NPIV port on the host

● No feld in virtio-scsi to store the initiator 
WWPN

● Additional control commands required:
– Create vport on the host
– Scan vport on the host



38

Towards virtio-fc?

FCP exchange

FCP_CMND_IU

FCP_DATA_IU

FCP_RSP_IU

virtio-scsi request

Request
bufer

Response
bufer

Payload

virtio-fc request

FCP_CMND_IU

FCP_RSP_IU

Payload



39

Towards virtio-fc

● HBAs handle only “cooked” FC commands; 
raw FC frames are not visible

● “Cooked” FC frame format diferent for 
each HBA

● Additional abstraction needed



40

virtio-fc request

FCP_CMND_IU or
NVMe_CMND_IU

FCP_RSP_IU or
NVMe_RSP_IU

Payload

FCP exchange

FCP_CMND_IU

FCP_DATA_IU

FCP_RSP_IU

FC-NVMe exchange

NVMe_CMND_IU

NVMe_DATA_IU

NVMe_RSP_IU

Towards virtio-fc?

FCP_CMND_IU NVMe_CMND_IU
FCP_CMND_IU or
NVMe_CMND_IU

Request header



41

Towards virtio-fc?

● Not a 1:1 mapping – still a “cooked” frame
– Simplifed compared to FCP and FC-NVMe
– Remember drivers do not even see raw frames

● Reuse FC defnitions to avoid obsolescence
– Support for NVMe from the beginning
– Overall IU structure
– Possibly, PLOGI/FLOGI structure too

● Things learnt from virtio-scsi can be reused



42

Summary

● “Initiator vhost” as the abstraction for NPIV 
vports
– Common framework for Linux + driver code
– Very few changes required in QEMU and libvirt

● Live migration can be handled at the libvirt 
and/or guest levels

● Could extend virtio-scsi or go with virtio-fc


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

