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Outline

● Introduction to Fibre Channel and NPIV
● Fibre Channel and NPIV in Linux and QEMU
● A new NPIV interface for virtual machines
● virtio-scsi 2.0?
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What is Fibre Channel?

● High-speed (1-128 Gbps) network interface
● Used to connect storage to server (“SAN”)

FC-4

FC-3

FC-2

FC-1

FC-0

Application protocols: FCP (SCSI), FC-NVMe

Signaling protocols (FC-FS): link speed, frame defnitions ...

Data link (MAC) layer

PHY layer

Link services (FC-LS): login, abort, scan…
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Ethernet NIC vs. Fibre channel HBA

● Bufer credits: fow control at the MAC level
● HBAs hide the raw frames from the driver
● IP-address equivalent is dynamic and mostly 

hidden
● Devices (ports) identifed by World Wide Port 

Name (WWPN) or World Wide Node Name 
(WWNN)
– Similar to Ethernet MAC address
– But: not used for addressing network frames
– Also used for access control lists (“LUN masking”)
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Initiator Client

Target Server

PLOGI Port login: prepare communication with a target

PRLI Process login: select protocol (SCSI, NVMe,…), optionally 
establish connection

Fibre channel HBA vs. Ethernet NIC

MAC address WWPN/WWNN World Wide Port/Node Name (2x64 bits)

IP address Port ID 24-bit number

DHCP FLOGI Fabric login (usually placed inside switch)

Zeroconf Name server Discover other active devices
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Exchange

Command phase
(sequence #1)

Working phase
(sequence #2)

Status phase
(sequence #3)

SCSI command

FCP_CMND_IU

FCP_DATA_IU

FCP_RSP_IU

FC command format

● FC-4 protocols defne 
commands in terms of 
sequences and exchanges

● The boundary between 
HBA frmware and OS 
driver depends on the h/w

● No equivalent of “tap” 
interfaces
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FC Port addressing

● FC Ports are addressed by WWPN/WWNN or 
FCID

● Storage arrays associate disks (LUNs) with 
FC ports

● SCSI command are routed from initiator to 
target to LUN
– Initiator: FC port on the HBA
– Target: FC port on the storage array
– LUN: (relative) LUN number on the storage 

array
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FC Port addressing

Node 1

Node 2

WWPN 1a

WWPN 1b

WWPN 2a

WWPN 2b

A B

WWPN 1a, WWPN 1b

WWPN 3a

WWPN 3b

WWPN 4a

WWPN 4b

WWPN 2a, WWPN 2b

WWPN 5

SAN
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FC Port addressing

● Resource allocation based on FC Ports
● FC Ports are located on FC HBA
● But: VMs have to share FC HBAs
● Resource allocation for VMs not possible
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NPIV: N_Port_ID virtualization

● Multiple FC_IDs/WWPNs on the same switch 
port
– WWPN/WWNN pair (N_Port_ID) names a vport
– Each vport is a separate initiator

● Very diferent from familiar networking 
concepts
– No separate hardware (unlike SR-IOV)
– Similar to Ethernet macvlan
– Must be supported by the FC HBA
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NPIV: N_Port_ID virtualization

Node 1

Node 2

WWPN 1a

WWPN 1b

WWPN 2a

WWPN 2b

A B

WWPN 1a, WWPN 1b

WWPN 3a

WWPN 3b

WWPN 4a

WWPN 4b

WWPN 2a, WWPN 2b

WWPN 5

SAN
WWPN 5
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NPIV and virtual machines

● Each VM is a separate initiator
– Diferent ACLs for each VM
– Per-VM persistent reservations

● The goal: map each FC port in the guest to 
an NPIV port on the host. 
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NPIV in Linux

● FC HBA (ie the PCI Device) can support 
several FC Ports
– Each FC Port is represented as an fc_host 

(visible in /sys/class/fc_host)
– Each FC NPIV Port is represented as a separate 

fc_host
● Almost no diference between regular and 

virtual ports
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NPIV in Linux

FC-HBA

Linux HBA
Driver

scsi_host

NPIV scsi_host

sda

sdb

sdc

sdd

FC Port

FC NPIV Port
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QEMU does not help...

● PCI device assignment
– Uses the VFIO framework
– Exposes an entire PCI device to the guest

● Block device emulation
– Exposes/emulates a single block device
– virtio-scsi allows SCSI command passthrough

● Neither is a good match for NPIV
– PCI devices are shared between NPIV ports
– NPIV ports presents several block devices
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NPIV passthrough and KVM

PCI SCSI

HBA

LUN

VFIO

virtio-scsi
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LUN-based NPIV passthrough

● Map all devices from a vport into the guest
● New control command to scan the FC bus
● Handling path failure

– Use existing hot-plug/hot-unplug infrastructure
– Or add new virtio-scsi events so that /dev/sdX 

doesn’t disappear
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LUN-based NPIV passthrough

● Assigned NPIV vports do not “feel” like FC
– Bus rescan in the guest does not map to LUN 

discovery in the host
– New LUNs not automatically visible in the VM

● Host can scan LUN for partitions, mount fle 
systems, etc.
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Can we do better?

PCI SCSI

HBA

LUN

VFIO

virtio-scsi

vport ??
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Mediated device passthrough

● Based on VFIO
● Introduced for vGPU
● Driver virtualizes itself, and the result is 

exposed as a PCI device
– BARs, MSIs, etc. are partly emulated, partly 

passed-through for performance
– Typically, the PCI device looks like the parent

● One virtual N_Port per virtual device
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Mediated device passthrough

● Advantages:
– No new guest drivers
– Can be implemented entirely within the driver

● Disadvantages:
– Specifc to each HBA driver
– Cannot stop/start guests across hosts with 

diferent HBAs
– Live migration?
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What FC looks like

FLOGI

PLOGI

PRLI

Exchange #1

SCN

Exchange #2

SCSI command

FCP_CMND_IU

FCP_DATA_IU

FCP_RSP_IU
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What virtio-scsi looks like

SCSI command

Request
bufer

Response
bufer

Payload

Request
queues

Control
queue

Event
queue
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vhost

● Out-of-process implementation of virtio
– A vhost-scsi device represents a SCSI target
– A vhost-net device is connected to a tap device

● The vhost server can be placed closer to 
the host infrastructure
– Example: network switches as vhost-user-net 

servers
– How to leverage this for NPIV?
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Initiator vhost-scsi

● Each vhost-scsi device represents an 
initiator

● Privileged ioctl to create a new NPIV vport
– WWPN/WWNN → vport fle descriptor
– vport fle descriptor compatible with vhost-scsi

● Host driver converts virtio requests to HBA 
requests

● Devices on the vport will not be visible on 
the host
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Initiator vhost-scsi

● Advantages:
– Guests are unaware of the host driver
– Simpler to handle live migration (in principle)

● Disadvantages:
– Need to be implemented in each host driver 

(around a common vhost framework)
– Guest driver changes likely necessary (path 

failure etc.)
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Live migration

● WWPN/WWNN are unique (per SAN)
● Can log into the SAN only once
● For live migration both instances need to 

access the same devices at the same time
● Not possible with single WWPN/WWNN
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Live migration

Node 1

Node 2

WWPN 1a

WWPN 1b

WWPN 2a

WWPN 2b

A B

WWPN 1a, WWPN 1b

WWPN 3a

WWPN 3b

WWPN 4a

WWPN 4b

WWPN 2a, WWPN 2b

WWPN 5

SAN
WWPN 5
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Live migration

Node 1

Node 2

WWPN 1a

WWPN 1b

WWPN 2a

WWPN 2b

A B

WWPN 1a, WWPN 1b

WWPN 3a

WWPN 3b

WWPN 4a

WWPN 4b

WWPN 2a, WWPN 2b

WWPN 5

SAN

WWPN 5
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Live migration

● Solution #1: Use “generic” temporary 
WWPN during migration

● Temporary WWPN has to have access to all 
devices; potential security issue

● Temporary WWPN has to be 
scheduled/negotiated between VMs
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Live migration

● Solution #2: Use individual temporary 
WWPNs

● Per VM, so no resource confict with other 
VMs

● No security issue as the temporary WWPN 
only has access to the same devices as the 
original WWPN

● Additional management overhead; WWPNs 
have to be created and registered with the 
storage array
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Live migration: multipath to the 
rescue

● Register two WWPNs for each VM; activate 
multipathing

● Disconnect the lower WWPN for the source 
VM during migration, and the higher WWPN 
for the target VM.

● Both VMs can access the disk; no service 
interruption

● WWPNs do not need to be re-registered.
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Is it better?

PCI SCSI

HBA

LUN

VFIO

virtio-scsi

vport VFIO mdev
Initiator

vhost-scsi
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Can we do even better?

PCI SCSI

HBA

LUN

VFIO

virtio-scsi

FC

vport ??VFIO mdev
Initiator

vhost-scsi
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virtio-scsi 2.0?

● virtio-scsi has a few limitations compared 
to FCP
– Hard-coded LUN numbering (8-bit target, 16-bit 

LUN)
– One initiator id per virtio-scsi HBA (cannot do 

“nested NPIV”)
● No support for FC-NVMe
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virtio-scsi device addressing

● virtio-scsi uses a 64-bit hierarchical LUN
– Fixed format described in the spec
– Selects both a bus (target) and a device (LUN)

● FC uses a 128-bit target (WWNN/WWPN) + 
64-bit LUN

● Replace 64-bit LUN with I_T_L nexus id
– Scan fabric command returns a list of target ids
– New control commands to map I_T_L nexus
– Add target id to events
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●Emulating NPIV in the VM

● FC NPIV port (in the guest) maps to FC 
NPIV port on the host

● No feld in virtio-scsi to store the initiator 
WWPN

● Additional control commands required:
– Create vport on the host
– Scan vport on the host
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Towards virtio-fc?

FCP exchange

FCP_CMND_IU

FCP_DATA_IU

FCP_RSP_IU

virtio-scsi request

Request
bufer

Response
bufer

Payload

virtio-fc request

FCP_CMND_IU

FCP_RSP_IU

Payload
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Towards virtio-fc

● HBAs handle only “cooked” FC commands; 
raw FC frames are not visible

● “Cooked” FC frame format diferent for 
each HBA

● Additional abstraction needed
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virtio-fc request

FCP_CMND_IU or
NVMe_CMND_IU

FCP_RSP_IU or
NVMe_RSP_IU

Payload

FCP exchange

FCP_CMND_IU

FCP_DATA_IU

FCP_RSP_IU

FC-NVMe exchange

NVMe_CMND_IU

NVMe_DATA_IU

NVMe_RSP_IU

Towards virtio-fc?

FCP_CMND_IU NVMe_CMND_IU
FCP_CMND_IU or
NVMe_CMND_IU

Request header
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Towards virtio-fc?

● Not a 1:1 mapping – still a “cooked” frame
– Simplifed compared to FCP and FC-NVMe
– Remember drivers do not even see raw frames

● Reuse FC defnitions to avoid obsolescence
– Support for NVMe from the beginning
– Overall IU structure
– Possibly, PLOGI/FLOGI structure too

● Things learnt from virtio-scsi can be reused
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Summary

● “Initiator vhost” as the abstraction for NPIV 
vports
– Common framework for Linux + driver code
– Very few changes required in QEMU and libvirt

● Live migration can be handled at the libvirt 
and/or guest levels

● Could extend virtio-scsi or go with virtio-fc
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