
 1

The future of virtio: riddles, myths
and surprises

Michael S. Tsirkin
Jens Freimann

Fall 2017

 2

Virtio initialization

Virtio device

ID: 0x1 Device Features: 0x120000000

Guest OS:
 load driver for ID: 0x1

Driver: supported features: 0x100001000

Device Features: 0x120000000 Driver features:
0x100000000

&

Driver features:
0x100000000 status

OK / Fail

 3

Virtio initialization

Virtio device

ID: 0x1 Device Features: 0x120000000

Guest OS:
 load driver for ID: 0x1

Driver: supported features: 0x100001000

Device Features: 0x120000000 Driver features:
0x100000000

&

Driver features:
0x100000000 status

OK / Fail

 4

Myth #1: “changing virtio would
break existing drivers”

● Really:
feature negotiation can ensure compatibility

● Forward and backward
● For devices and drivers

● Let’s see it in action ...

 5

Virtio input: add multitouch feature

● Feature bit: VIRTIO_INPUT_F_MULTITOUCH = 0
● New (multi-touch aware) device: device features = 0x1
● New driver: supported features = 0x1
● Driver features: 0x1 & 0x1 = 0x1
● Device and driver:

if (driver_features &
 (1 << VIRTIO_INPUT_F_MULTITOUCH))
 enable multi-touch support

● Updated device & driver: multi-touch enabled!

 6

Compatibility: existing drivers

● Device features = 0x1
● Driver supported = 0x0
● Driver features = 0x0
● 0x0 & (1 << VIRTIO_INPUT_F_MULTITOUCH) == 0
● Device: option 1: disable multi-touch: compatible!
● Device: option 2: set status = fail

Not worse than building a new device!
Can suggest upgrading a driver.

 7

Compatibility: existing devices

● Device features: 0x0
● Driver supported: 0x1
● Driver features: 0x0
● 0x0 & (1 << VIRTIO_INPUT_F_MULTITOUCH) == 0
● Driver: option 1: disable multi-touch
● Driver: option 2: set status = fail

Can suggest upgrading a device.

 8

Compatibility: virtio 0.9 versus 1.0

● virtio 1.0 – made default Jul 2016
● Switched devices to a different register layout
● Gated by a feature bit:

/* v1.0 compliant. */
#define VIRTIO_F_VERSION_1 32

● No one noticed!

 9

Myth #2
Changing virtio requires writing a

specification
● Absolutely the right thing to do
● Does not have to be step 0!

● Virtio priorities:
– Code compatibility
– IPR compatibility
– Interface compatibility

 10

Code compatibility:
avoid conflicting with others

● New device: reserve an ID. Spec patch:

● Existing device: reserve a feature bit. E.g. :

diff --git a/content.tex b/content.tex
@@ -3022,3 +3022,5 @@ Device ID & Virtio Device \\
 \hline
+23 & misc device \\
+\hline
 \end{tabular}

@@ -4800,5 +4802,6 @@ guest memory statistics
 \item[VIRTIO_BALLOON_F_DEFLATE_ON_OOM (2)] Deflate balloon on
 guest out of memory condition.
+\item[VIRTIO_BALLOON_F_XXXX (3)] Reserved for
+ feature XXXX.
 \end{description}

 11

How to get it in the spec?

● git clone https://github.com/oasis-tcs/virtio-spec
Edit :)

● sh makeall.sh (needs xelatex, e.g. from texlive)
● virtio-comment-subscribe@lists.oasis-open.org
● Patch: virtio-comment@lists.oasis-open.org
● If no comments – email, ask for a vote ballot
● Total time: up to 2 weeks

https://github.com/oasis-tcs/virtio-spec
mailto:virtio-comment-subscribe@lists.oasis-open.org
mailto:virtio-comment@lists.oasis-open.org

 12

IPR compatibility: allow others to
implement compatible devices

● Open-source an implementation
● Subscribe to virtio-dev@lists.oasis.org
● Agree to IPR rules (non-assertion mode)
● Send a copy of the patches (e.g. qemu, linux,

dpdk) to virtio-dev@lists.oasis.org
● Virtio GPU at this point now.

mailto:virtio-dev@lists.oasis.org
mailto:virtio-dev@lists.oasis.org

 13

Interface compatibility

● Document assumptions for inter-operability
● Virtio membership is not required
● Membership is open - members vote on ballots
● Hints:

– Document device and driver separately
– Use MUST/SHOULD/MAY keywords
– Ask for help!

● Virtio crypto and input at this point

 14

Myth #3
virtio has lowest possible overhead

for host/guest communication

● “Efficient: Virtio devices consist of rings of
descriptors for both input and output, which are
neatly laid out to avoid cache effects from both
driver and device writing to the same cache
lines”.

● True - but is this really efficient?

 15

Virt queue: shared memory
host/guest communication

buffer

Descriptor
: addr
: len
: next

head

head
+ len

avail idx used idx

avail ring

used ring

 16

CPU caching

● Communication through shared memory
requires cache synchronization (invalidate,
miss, …).

● This impacts latency.

MEMORY

1

2

CACHE

CACHE

Coherence
protocol

 17

Counting misses: no batching

● Access = cache miss →
5 cache misses
 per request

 18

Counting misses: batching

● Virtio 1.0 queue layout: batching

● Batch=4 →
5 misses per batch
1.25 misses per request

1 Miss per
batch

1 Miss per
batch

1 Miss per up
to 32 reqs

1 Miss per up
to 16 reqs

1 Miss per up
to 4 reqs

 19

Cache miss cost

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

160

180

200

Shared memory

Shared cache

batch

n
s

 20

Reducing the overhead

● Information is spread across too many data
structures

● Tighter packing will save cache misses.
● How about packing everything in a single data

structure?

 21

Descriptor ring

● Driver writes out available descriptors in a ring
● Device writes out used descriptors in the same

ring
● Descriptor: addr, len, avail, used
● To mark a descriptor available, flip the avail bit
● To mark a descriptor as used, flip the used bit

 22

Descriptor states

Avail: 0 → 1

Driver

Used: 0 → 1

Device

Avail: 1 → 0

Driver

Used: 1 → 0

Device

Ring
wrap around

Avail = used: ok for guest to produce
Avail != used: ok for host to consume

 23

Host: pseudo code (in-order)

static int used = 1;

while(desc[idx].avail == used) ←miss?

 relax();

process(&desc[idx]);

desc[idx].used = used; ←miss?

idx = idx + 1;

if (idx == size)

 Idx = 0;

 used = !!used;

 24

Out-of-order: descriptor id
● Host: used 1

11/0

1/0

● Guest: available 9

0/0
idid

id

Host: use

Avail/used

1/0

1/0
1/0
1/0
1/0
1/0
1/0
1/0

0/0
0/0
0/0
0/0
0/0
0/0

0/0

1/0
1/0
1/0
1/0
1/0
1/0

0/0
0/0
0/0
0/0
0/0
0/0

1/1
0/0
0/0
0/01/0
1/0
1/0

Guest: available

 25

CPU caching

● Both host and guest incur misses on access
● No batching: 2 to 4 misses per descriptor
● Batch=4:

2 to 4 misses per batch
4 descriptors per cache line →
0.5 to 1 misses per descriptor

● Better than virtio 1.0 even in the worst case

 26

In-order: descriptor id
● Host: consumed 9

11/0

1/0

● Guest: produced 9

0/0
idid

id

Host: consume

Guest: produce

Avail/used

1/0

1/0
1/0
1/0
1/0
1/0
1/0
1/0

0/0
0/0
0/0
0/0
0/0
0/0

0/0

1/0
1/0
1/0
1/0
1/0
1/0

0/0
0/0
0/0
0/0
0/0
0/0

0/0
0/0
0/0
0/01/0
1/0
1/0

One write per batch of descriptors
Driver ensures avail != used

 27

Request processing: comparison

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

160

180

200

Virtio 1.0

Virtio 1.0 shared cache

Virtio 1.1

Virtio 1.1 shared cache

batch

ns

 28

Mpps
16

17

18

19

20

21

22

23

virtio 1.0
virtio 1.1

Virtio queue is not optimal
we will fix it

64 byte packet throughput

 29

Riddle #1: event suppression

● Each queue has two event index structures
● Which descriptor should trigger an interrupt
● Can we put this in the descriptor itself?
● Should we?
● Just use polling?

 30

Riddle #2: why powers of 2?

2 VQs * 1K
descriptors

fills a 32K cache

2VQs * 0.75K
descriptors

free cache for data

 31

Powers of two: pseudo code

unsigned next_power_of_two(unsigned index, unsigned size)
{
 return (index + 1) & (size - 1);
}

unsigned next_non_power_of_two(unsigned index, unsigned
size)
{
 return ++index >= size ? 0 : index;
}

 32

Surprise #1: hardware is special

● Let’s assume a pass-through device
implementing virtio. Shouldn’t this just work?

● Maybe – but not optimally!
● Hypervisor: processes descriptors one by one
● Hardware: can process many in parallel
● Needs to be told how many are available
● Include number of available entries in a kick

 33

Surprise #2: writes are expensive

● PCI Express payload is full dword.
● Flipping single bits across PCIE is expensive
● In-order processing will help reduce number of

writes

 34

Summary

● Virtio 1.1 is shaping up to be a big release
– Performance
– Hardware offloads

● Join the fun
– Still lots of open questions
– Implementation and benchmarking of the new

features
– Virtio BoF tomorrow

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

