
connect.linaro.org

LEADING  
COLLABORATION  

IN THE ARM  
ECOSYSTEM

To EL2, and Beyond!
Optimizing the Design and Implementation of KVM/ARM

Christoffer Dall <cdall@kernel.org> 
Shih-Wei Li <shihwei@cs.columbia.edu>

–Popek and Golberg
[Formal requirements for virtualizable third generation architectures ’74]

“Efficient, isolated duplicate  
of the real machine”

“…a statistically dominant subset of the virtual processor’s
instructions be executed directly by the real processor, with no

software intervention by the VMM.”

IBM 360/91
Columbia University Computer Center machine room in

February or March 1969

PDP-10
KL10 CPU and MH10 memory cabinets  

Originally installed 1985 at Sikorsky Aircraft

Gigabyte R270-T61 
96 Cores

Dual Cavium ThunderX

Hardware

OS Kernel

App AppApp

Hardware

Hypervisor

VM

Kernel

App App

VM

Kernel

App App

Native Virtual Machines

Virtualization

Privileged

Non-privileged

Privileged

Non-privileged

Non-virtualizable architectures

ARM Hardware Virtualization Support

VT-x
!=

Virtualization Extensions

x86 Virtualization Support

Root (Hypervisor) Non-Root (VM)

VM Exit

VMCS

VM Entry

ARM Virtualization Extensions

Kernel

UserEL0

EL1

HypervisorEL2

EL2

• Separate CPU mode designed to run hypervisors

• Not designed to run full operating systems

• Reduced virtual memory support compared to EL1

• Limited support for interacting with userspace in EL0

ARM VE and Hypervisors

Xen

Dom0

Linux

App App

DomU

Linux

App AppEL0

EL1

EL2
?

KVM/ARM

• KVM is integreated with Linux

• Linux is a full operating system designed
to run in EL1

• KVM cannot run VMs without EL2

KVM/ARM Split-Mode
Host

Linux

AppApp

VM

Kernel

AppApp

KVM

KVM lowvisor

EL0

EL1

EL2
1. Hypercall

2. Return3. Hypercall
4. Return

switch
state

What if we could do this?

Host

Linux

AppApp

VM

Kernel

AppApp

KVM

EL0

EL1

EL2
1. Hypercall 2. Return

ARMv8.1 VHE

• Virtualization Host Extensions

• Supports running unmodified
OSes in EL2 without using EL1

Linux

EL0

EL1

EL2

AppApp

VHE #1: Backwards Compatible

• HCR_EL2.E2H complete enables and disables VHE

• When disabled, completely backwards compatible with ARMv8.0

• Example: Xen disables VHE

VHE #2: Expands Functionality of EL2

• Expanded EL2 functionality

• Inherits all EL1 MMU features

• New virtual EL2 timer

• A corresponding EL2 system register for each EL1 system register

VHE #3: Support Userspace in EL0

• TGE: Trap General Exceptions

• Routes all exceptions to EL2

• VHE no longer disables stage 1 MMU in EL0
Linux

EL0

EL1

EL2

AppApp

Exceptions

VHE #4: EL2&0 Translation Regime

• Same page table format as EL1

• Used in EL0 with TGE bit set

• Linux is written to run in
EL1

• EL<x> is controlled by
EL<x> system registers

• VHE runs Linux in EL2

• Unmodified!

VHE #5: System Register Redirection

Linux

EL0

EL1

EL2

AppApp

EL1 Registers

EL2 Registers

Linux

• Linux is written to run in
EL1

• VHE runs Linux in EL2

• Unmodified!

VHE #5: System Register Redirection

Linux

EL0

EL1

EL2

AppApp

EL1 Registers

EL2 Registers

Linux

VHE: System Register Redirection

mrs x0, ESR_EL1

VHE #5: System Register Redirection

ESR_EL1

mrs x0, ESR_EL1

VHE Disabled

ESR_EL2

VHE #5: System Register Redirection

ESR_EL1

mrs x0, ESR_EL1

ESR_EL2

VHE Enabled

VHE #5: System Register Redirection

ESR_EL1

mrs x0, ESR_EL12
VM

Kernel

AppAppEL0

EL1

EL2

Host

AppApp

Linux KVM

VHE #5: More System Register Redirection

• Some registers change bit position to be similar between EL1 and EL2

• Example:

• VHE: CNTKCTL_EL1 redirects to CNTHTCL_EL2

• But they have different layouts

• VHE: EL2 register changes layout to EL1 register (with extra bits)

Legacy KVM/ARM without VHE

HypervisorLinux

EL2

EL1
KVM

Lowvisor

Trap

Run VM

KVM/ARM with VHE

HypervisorLinux

EL2 KVM world switch

Function  
Call

Run VM

No VHE hardware

• How do we measure VHE performance?

• None available at start of this work

• Still no publicly available hardware

Linux in EL2
Modify Linux to:

1. Access EL2 registers

2. Use EL2 virtual memory
system

3. Support user space
applications in EL0

EL0

EL1

EL2 Linux

Userspace

KVM

System Registers Accesses

• Lots of: 
 
#ifndef CONFIG_EL2_KERNEL  
msr tcr_el1, x0  
#else  
msr tcr_el2, x0  
#endif

EL1 VA Space (39 bits)

Userspace

0x7f ffffffff

0x0

Kernel

0xffffffff ffffffff

0xffffff80 00000000

TTBR0_EL1 TTBR1_EL1

EL2 VA Space (39 bits)
0x7f ffffffff

0x0

TTBR0_EL2

Where do we put
the kernel and

userspace?

EL2 Split VA Space

Kernel

0x7f ffffffff

0x0

TTBR0_EL2

Userspace

• Problem A: address space
compression

• Problem B: Page table
formats

• Problem C: requires TLB
invalidation

0x3f ffffffff
0x40 00000000

*Only problems on non-VHE hardware!

Sharing Page Tables in EL0 and EL2

• Same page table between user and kernel

• Different page table format in EL0 and EL2 

Descriptor bit EL0 EL2
AP[2] R/W R/W
AP[1] User access RES1

UXN/XN UXN XN
PXN PXN RES0

Descriptor bit EL0 EL2
AP[2] R/W R/W
AP[1] User access RES1

UXN/XN UXN XN
PXN PXN RES0

The AP[1] bit and Linux in EL2
• AP[1] controls if userspace can access the page

• Must be set to 0 for kernel mappings

• RES1 in EL2

RES1 definition

ARMv8.0 hardware must treat non-register RES1 bits as: 
 

“reads-as-written with no effect on the behaviour of the CPU”

Descriptor bit EL0 EL2
AP[2] R/W R/W
AP[1] User access RES1

UXN/XN UXN XN
PXN PXN RES0

UXN/XN and PXN for Linux in EL2

• PXN has no effect outside EL1

• UXN/XN means ‘execute never’ in both modes

• Cannot separate user and kernel executable

No ASID Support in EL2

• Address Space Identifiers (ASID)

• Avoids TLB aliasing by tagging accesses with per-context ID

• No ASID support in EL2

• Must invalidate EL2 TLB on host process context switch

Routing Exceptions to EL2

Kernel

UserEL0

EL1 Exceptions
from kernel

Exceptions
from userspace

Kernel

UserEL0

EL2 Exceptions
from kernel

Exceptions
from userspaceEL1

Linux in EL1 Linux in EL2

Routing Exceptions to EL2

• HCR_EL2.TGE traps general exceptions to EL2

• Does NOT work, because TGE without VHE disables MMU in userspace

Routing Exceptions to EL2

• Forward exceptions with
software using a small shim

Kernel

UserEL0

EL2

EL1 shim

Linux in EL2 on non-VHE hardware

The bad (and the ugly)

• Less secure than Linux in EL1

• Relies on strictly correct
implementation of RES1 page
table bits

• Potentially worse performance for
host workloads

The Good

• Good prototyping tool!

• Closely emulates performance of
VHE for running VMs

Experimental Setup

• AMD Seattle B0 ARM Server

• 64-bit ARMv8-A

• 2.0 GHz AMD A1100 CPU

• 8-way SMP

• 16 GB RAM

• 10 GB Ethernet (passthrough)

*Measurements obtained using Linux in EL2.

VHE Performance at First Glance

CPU Clock Cycles non-VHE VHE*

Hypercall 3.181 3.045

*Measurements obtained using Linux in EL2.

The KVM Run Loop

vcpu_load

vcpu_put

vcpu run loop

while (1) {
 prepare();
 run_vcpu();
 handle_exit();
}

KVM/ARM Optimization

• Move logic out of the run loop and into
vcpu_load and vcpu_put

• Only possible with VHE  
(or Linux in EL2)

vcpu_load

vcpu_put

vcpu run
loop

ARM Generic Timers
• Also known as “Architected

Timers”

• Timer hardware directly
programmable by guest

• Expired timers generate
physical interrupts for the
hypervisor

KVM/ARM Timers
VCPU entry

• Programs timer with guest state

VCPU is running

• When the timer fires it causes an exit to the hypervisor

VCPU exit

• Reads guest timer state to memory

• Disables hardware timer

• In software: If timer is expired, inject virtual interrupt

Optimized KVM/ARM Timers
VCPU load

• Programs timer with guest state

VCPU is running

• When the timer fires it causes an exit to the hypervisor

KVM is running

• When the time fires, the timer ISR injects virtual interrupts to the guest.

VCPU put

• Reads guest timer state to memory

• Disables hardware timer

EL1 System Registers
VM

Kernel

AppAppEL0

EL1

EL2

Host

AppApp

Linux KVM

• Defer saving/restoring
EL1 system register
state to vcpu_load and
vcpu_put

Virtualization Features
VM

Kernel

AppAppEL0

EL1

EL2

Host

AppApp

Linux KVM

• Legacy KVM/ARM design
enabled/disabled virtualization
features on every transition

• Virtual/Physical interrupts

• Stage 2 memory translation KVM Lowvisor

Disable traps

Enable traps

Virtualization Features
VM

Kernel

AppAppEL0

EL1

EL2

Host

AppApp

Linux KVM

Optimized version:

• Leave virtualization
features enabled

• Host EL2 never uses
stage 2 translations
and always has full
hardware access.

Rewrite the World-Switch

• Rewrite the world
switch code

• Very simple VHE
function

• Complicated non-VHE
function

kvm_arch_vcpu_ioctl_run
{
 ...
 while (1) {
 ...
 if (has_vhe()) /* static key */
 ret = kvm_vcpu_vhe_run(vcpu);
 else
 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
 ...
 }
 ...
}

Experimental Setup

• AMD Seattle B0 ARM Server

• 64-bit ARMv8-A

• 2.0 GHz AMD A1100 CPU

• 8-way SMP

• 16 GB RAM

• 10 GB Ethernet (passthrough)

*Measurements obtained using Linux in EL2.

• Dell r320 x86 Server

• 64-bit Intel

• 2.1 GHz Xeon E5-2450

• 8-way SMP

• 16 GB RAM

• 10 GB Ethernet (passthrough)

Microbenchmark Results

CPU Clock Cycles non-VHE VHE OPT * x86

Hypercall 3.181 752 1.437

I/O Kernel 3.992 1.604 2.565

I/O User 6.665 7.630 6.732

Virtual IPI 14.155 2.526 3.102

*Measurements obtained using Linux in EL2.

Application Workloads

Application Description

Kernbench Kernel compile

Hackbench Scheduler stress

Netperf Network performance

Apache Web server stress

Memcached Key-Value store

Application Workloads

0.00

0.50

1.00

1.50

2.00

Kernbench
Hackbench

TCP_STREAM

TCP_MAERTS
TCP_RR

Apache
Memcached

non-VHE VHE OPT* x86

*Measurements obtained using Linux in EL2. See BKK16 talk.

Normalized overhead
(lower is better)

Conclusions
• Optimize and redesign KVM/ARM for VHE

• Significant improvement in microbenchmark results

• Significant improvement in application benchmark results

• Similar (or better) performance characteristics compared to x86

• Published in USENIX ATC’17: 
https://www.usenix.org/system/files/conference/atc17/atc17-dall.pdf

Code
• Timer optimization patches (v4): 

https://lists.cs.columbia.edu/pipermail/kvmarm/2017-October/027836.html

• Core optimization patches: 
https://lists.cs.columbia.edu/pipermail/kvmarm/2017-October/027523.html

• Linux in EL2 (not for upstream, not supported, don’t come crying…):  
https://github.com/chazy/el2linux

• Target is v4.16

• Reviews are welcome

