

Userspace NVMe Driver in QEMU

Fam Zheng Senior Software Engineer

KVM Form 2017, Prague

About NVMe

- Non-Volatile Memory Express
- A scalable host interface specification like SCSI and virtio
 - Up to 64k I/O queues, 64k commands per queue
 - Efficient command issuing and completion handling
- Extensible command sets
- Attached over PCIe, M.2 and fabrics (FC, RDMA)

Why?

Overhead

SATA HDD Baremetal Performance

SATA HDD Virtualization Overhead

SATA HDD and SSD Performance Comparison

SATA SSD Virtualization Overhead

SATA SSD, NVMe and Ramdisk Virtualization Overhead

SATA SSD, FusionIO and NVMe Virtualization Latency

SATA SSD, FusionIO and NVMe Latency Overhead

Latency Reducing

- KVM optimizations
 - kvm_halt_poll by Paolo Bonzini
 - QEMU AioContext polling by Stefan Hajnoczi

- Kernel optimizations
 - /sys/block/nvmeOn1/queue/io_poll by Jens Axboe (improves aio=threads case)
- Device assignment
 - QEMU: -device vfio-pci
- Userspace device driver based on VFIO
 - DPDK/SPDK: vhost-user-blk
 - QEMU: VFIO driver in this talk

Architecture From QEMU PoV

Implementation

- \$QEMU_SRC/util/vfio-helpers.c
 - A generic helper library for userspace drivers
 - Manages per device IO virtual address (IOVA) space
 - Optimized for I/O operations:
 - Pre-allocate IOVA for all guest ram
 - Efficient oneshot IOVA allocation for bounce buffer I/O
- \$QEMU_SRC/block/nvme.c
 - Registers a new BlockDriver (nvme://)
 - Handles NVMe logic
 - Integrates with AioContext polling
 - Prepared for QEMU multiqueue block layer

Characteristics

- Commands: READ, WRITE (with FUA), FLUSH
- IOV based (zero-copy)
- One IO queue pair for now
- More efficient for guest I/O
- Less efficient for bounce buffered I/O and utility
 - More on this later...
- Device is exclusively used by one VM similar to device assignment

I/O Request Lifecycle

virtio-*.ko Queue virtio request (GPA/vIOVA)

1

virtio Map I/O address to host address (HVA)

1

virtio-blk Parse request, call blk_aio_preadv/pwritev

1

block layer Call NVMe driver

1

NVMe driver Send request to device

NVMe Driver Operations

- (1) Check that the addresses and lengths are aligned If not, allocate an aligned bounce buffer to do next steps
- (2) Map host addresses to IOVAs
- (3) Prepare an NVMe Request structure using IOVAs and put it on the NVMe I/O queue
- (4) Kick device by writing to doorbell
- (5) Poll for completions of earlier requests
- (6) Yield until irq eventfd is readable

Address Translations

Guest app buffer 6 8 9 Guest physical addr 10 0 Host virtual address 110 111 98 99 100 101 106 (no vIOMMU) page list is pre-allocated! page list submission queue IOVA ? R W iova IOMMU **NVMe**

IOVA Mapping

```
struct vfio_iommu_typel_dma_map dma_map = {
    .argsz = sizeof(dma_map),
    .flags = VFIO_DMA_MAP_FLAG_READ |
VFIO_DMA_MAP_FLAG_WRITE,
    .vaddr = (uintptr_t)host,
    .size = size,
    .iova = iova,
};
ioctl(vfio_fd, VFIO_IOMMU_MAP_DMA, &dma_map);
```


Address Translations

Guest app buffer

Guest physical addr

Host virtual address (no vIOMMU)

IOVA addr space

How About Host Buffers?

- The (slow) default:
 VFIO_IOMMU_MAP_DMA each new buffer to a new address as it comes
- Remedy for hot buffers:

```
void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size);
void bdrv_unregister_buf(BlockDriverState *bs, void *host);
```

Map/unmap a buffer to IO virtual address in the same way as guest ram.

The IOVA Allocator

- Keep record of mapped buffers for later use, if advisable
 - Distinguish throwaway / fixed mappings with a parameter

int qemu_vfio_dma_map(QEMUVFIOState *s, void *host, size_t size, bool temporary, uint64_t *iova)

- Use a pair of self-incrementing counters to track available IOVAs
- When free IOVAs run out, discard all temporary mappings and reset counter (caller makes sure all old mappings are useless)

Usage

- Until patches are merged to mainline:
 git clone https://github.com/qemu/famz --branch nvme
- configure && make, as usual
- Bind device to vfio-pci, see also: https://www.kernel.org/doc/Documentation/vfio.txt
- ./x86_64-softmmu/qemu-system-x86_64 \
 -enable-kvm \
 ... \
 -drive file=nvme://0000:44:00.0/1, if=none, id=drive0 \
 -device virtio-blk, drive=drive0, id=virtio0
- Syntax: nvme://<domain:bus:dev.func>/<namespace>

 Or, use structured option -drive \ driver=nvme, device=<domain:bus:dev.func>, namespace=<N>, if=none...

NVMe Performance Comparison

IOPS Improvement over Linux-aio

(IOPS)	Relative	
rand-read-1-req	+12%	
rand-read-4-req	+20%	
rand-write-1-req	+22%	
rand-write-4-req	+12%	
rand-rw-1-req	+3%	
rand-rw-4-req	+22%	

Configuration Limitations

Approach	Limitation
POSIX	None
nvme://	One NVMe, one VM
SPDK vhost-user-blk	* Host must use hugepages * Guest must use VirtIO
Device assignment	* One NVMe, one VM * Guest must use NVMe

Feature Availability

Approach	Host block features	QEMU block features	Migration
POSIX	✓	✓	✓
nvme://	X	✓	
SPDK vhost-user- blk	X	X	✓
Device assignment	X	X	X

Overall comparison

Status and future

- Status
 - Patches v3 on qemu-devel@nongnu.org:
 - https://lists.gnu.org/archive/html/qemu-block/2017-07/msg00191.html
 - Also available at github: https://github.com/famz/qemu nvme
- TODO
 - Get it merged!
 - Integrate with multi-queue block layer

Benchmark configuration

- Host 1: Fedora 26 / RHEL 7 (x86_64)
 Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz x2
 64GB ram
 Intel Corporation DC P3700 380G
 FusionIO ioDrive2 340G
 Western Digital WD RE4 WD5003ABYX 500GB 7200 RPM 64MB
- Host 2: Fedora 26 Intel(R) Core(TM) i7-4810MQ CPU @ 2.80GHz 16GB ram Samsung SSD 840 PRO 128G
- Guest: Fedora 26 (x86_64), 1 vCPU, 1GB ram
- Tool: fio-2.18
- Job:
 ramp_time = 30
 runtime = 30
 bs=4k
 rw={randread, randwrite, randrw}
 iodepth={1, 4}

THANK YOU