
Userspace NVMe Driver in QEMU

Fam Zheng
Senior Software Engineer

KVM Form 2017, Prague

2

About NVMe

● Non-Volatile Memory Express
● A scalable host interface specification like SCSI and virtio

● Up to 64k I/O queues, 64k commands per queue
● Efficient command issuing and completion handling

● Extensible command sets
● Attached over PCIe, M.2 and fabrics (FC, RDMA)

Why?

Overhead

6

7

8

9

10

Faster device → more visible overhead!

11

* FusionIO is an old model so may
not represent its state-of-art

* SATA (SSD) test is done on a
different host so the relativity
doesn’t matter much

12

* FusionIO is an old model so may
not represent its state-of-art

* SATA (SSD) test is done on a
different host so the relativity
doesn’t matter much

13

Latency Reducing
● KVM optimizations

● kvm_halt_poll by Paolo Bonzini
● QEMU AioContext polling by Stefan Hajnoczi

● Kernel optimizations
● /sys/block/nvme0n1/queue/io_poll by Jens Axboe

(improves aio=threads case)

● Device assignment
● QEMU: -device vfio-pci

● Userspace device driver based on VFIO
● DPDK/SPDK: vhost-user-blk
● QEMU: VFIO driver in this talk

14

Architecture
From QEMU PoV

Guest kernel

QEMU

VirtIO device

BlockBackend

Block layer

QCOW2

Host kernel

POSIX/linux-aioVFIO NVMe driver

vfio-pci.ko
nvme.ko

…
VFS

VirtIO driver

15

Implementation
● $QEMU_SRC/util/vfio-helpers.c

● A generic helper library for userspace drivers
● Manages per device IO virtual address (IOVA) space
● Optimized for I/O operations:

● Pre-allocate IOVA for all guest ram
● Efficient oneshot IOVA allocation for bounce buffer I/O

● $QEMU_SRC/block/nvme.c
● Registers a new BlockDriver (nvme://)
● Handles NVMe logic
● Integrates with AioContext polling
● Prepared for QEMU multiqueue block layer

16

Characteristics

● Commands: READ, WRITE (with FUA), FLUSH
● IOV based (zero-copy)
● One IO queue pair for now
● More efficient for guest I/O
● Less efficient for bounce buffered I/O and utility

● More on this later…
● Device is exclusively used by one VM similar to device assignment

17

I/O Request Lifecycle
virtio-*.ko

↓

Queue virtio request (GPA/vIOVA)

virtio

↓

Map I/O address to host address (HVA)

virtio-blk

↓

Parse request, call blk_aio_preadv/pwritev

block layer

↓

Call NVMe driver

NVMe driver Send request to device

18

NVMe Driver Operations

(1) Check that the addresses and lengths are aligned
 If not, allocate an aligned bounce buffer to do next steps

(2) Map host addresses to IOVAs
(3) Prepare an NVMe Request structure using IOVAs and put it on the NVMe

I/O queue
(4) Kick device by writing to doorbell
(5) Poll for completions of earlier requests
(6) Yield until irq eventfd is readable

19

Address Translations
6 7 8 9

0 1 6 10 11

100 101 106 110 1119998...

IOVA ? ? ? ?

NVMe

?

iova

IOMMU

RWRR ? ...

submission queuepage list

Guest app buffer

Guest physical addr

Host virtual address
(no vIOMMU)

page list is pre-allocated!

20

IOVA Mapping

 struct vfio_iommu_type1_dma_map dma_map = {
 .argsz = sizeof(dma_map),
 .flags = VFIO_DMA_MAP_FLAG_READ |
VFIO_DMA_MAP_FLAG_WRITE,
 .vaddr = (uintptr_t)host,
 .size = size,
 .iova = iova,
 };

 ioctl(vfio_fd, VFIO_IOMMU_MAP_DMA, &dma_map);

 struct vfio_iommu_type1_dma_map dma_map = {
 .argsz = sizeof(dma_map),
 .flags = VFIO_DMA_MAP_FLAG_READ |
VFIO_DMA_MAP_FLAG_WRITE,
 .vaddr = (uintptr_t)host,
 .size = size,
 .iova = iova,
 };

 ioctl(vfio_fd, VFIO_IOMMU_MAP_DMA, &dma_map);

21

Address Translations
6Guest app buffer 7 8 9

Guest physical addr 0 1 6 10 11 ...

Host virtual address
(no vIOMMU) 100 101 106 110 111 ...9998...

IOVA addr space 10 11 16 20 21 ...

20 16 11 21 ✓

iova

RWRR ? ...

I/O queuePRP list

22

How About Host Buffers?

● The (slow) default:
VFIO_IOMMU_MAP_DMA each new buffer to a new address as it comes

● Remedy for hot buffers:

void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size);
void bdrv_unregister_buf(BlockDriverState *bs, void *host);

Map/unmap a buffer to IO virtual address in the same way as guest ram.

23

The IOVA Allocator

Fixed Free Temporary

0 MIN low_water_mark MAXhigh_water_mark

● Keep record of mapped buffers for later use, if advisable
● Distinguish throwaway / fixed mappings with a parameter

int qemu_vfio_dma_map(QEMUVFIOState *s, void *host, size_t size,
 bool temporary, uint64_t *iova)

● Use a pair of self-incrementing counters to track available IOVAs
● When free IOVAs run out, discard all temporary mappings and reset

counter (caller makes sure all old mappings are useless)

24

Usage
● Until patches are merged to mainline:
git clone https://github.com/qemu/famz --branch nvme

● configure && make, as usual
● Bind device to vfio-pci, see also:

https://www.kernel.org/doc/Documentation/vfio.txt
● ./x86_64-softmmu/qemu-system-x86_64 \
-enable-kvm \
… \
-drive file=nvme://0000:44:00.0/1,if=none,id=drive0 \
-device virtio-blk,drive=drive0,id=virtio0

● Syntax:
nvme://<domain:bus:dev.func>/<namespace>
Or, use structured option
-drive \
driver=nvme,device=<domain:bus:dev.func>,namespace=<N>
,if=none...

https://github.com/qemu/famz
https://www.kernel.org/doc/Documentation/vfio.txt

25

26

IOPS Improvement over Linux-aio

(IOPS) Relative

rand-read-1-req +12%

rand-read-4-req +20%

rand-write-1-req +22%

rand-write-4-req +12%

rand-rw-1-req +3%

rand-rw-4-req +22%

27

Configuration Limitations

Approach Limitation

POSIX None

nvme:// One NVMe, one VM

SPDK vhost-user-blk * Host must use hugepages
* Guest must use VirtIO

Device assignment * One NVMe, one VM
* Guest must use NVMe

28

Feature Availability

Approach Host block
features

QEMU block
features Migration

POSIX ✓ ✓ ✓

nvme:// ✗ ✓ ✓

SPDK vhost-user-
blk ✗ ✗ ✓

Device
assignment ✗ ✗ ✗

29

Overall comparison

Functionality

Pe
rfo

rm
an

ce

POSIX

vfio-pci
passthrough

nvme://

SPDK
vhost-user-blk

30

Status and future

● Status
● Patches v3 on qemu-devel@nongnu.org:
● https://lists.gnu.org/archive/html/qemu-block/2017-07/msg00191.html
● Also available at github:

https://github.com/famz/qemu nvme

● TODO
● Get it merged!
● Integrate with multi-queue block layer

mailto:qemu-devel@nongnu.org
https://lists.gnu.org/archive/html/qemu-block/2017-07/msg00191.html
https://github.com/famz/qemu

31

Benchmark configuration
● Host 1: Fedora 26 / RHEL 7 (x86_64)

Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz x2
64GB ram
Intel Corporation DC P3700 380G
FusionIO ioDrive2 340G
Western Digital WD RE4 WD5003ABYX 500GB 7200 RPM 64MB

● Host 2: Fedora 26
Intel(R) Core(TM) i7-4810MQ CPU @ 2.80GHz
16GB ram
Samsung SSD 840 PRO 128G

● Guest: Fedora 26 (x86_64), 1 vCPU, 1GB ram
● Tool: fio-2.18
● Job:

ramp_time = 30
runtime = 30
bs=4k
rw={randread, randwrite, randrw}
iodepth={1, 4}

THANK YOU

