
Zero-copy Receive for vhost

Kalman Meth, Mike Rapoport, Joel Nider

{meth,joeln}@il.ibm.com

rppt@linux.vnet.ibm.com

This project has received funding from the European
Union’s Horizon 2020 research and innovation

programme under grant agreement No 645402.

Virtualization and IO

Bare metal

SR-IOV

paravirtual

emulated

Pe
rf

o
rm

an
ce

Flexibility

:-)
:-(

:-):-(

paravirt +
zerocopy

:-P

Motivation

● No copy is better than copy

● Zerocopy TX without RX should feel lonely

● It was 7 years since the last attempt. Can we do better?

More motivation

Zerocopy: TX vs RX

Transmit

● Downstream routing is easy

● Memory is always at hand

● Still has problems
○ head-of-line blocking

Receive

● Destination is not yet known

● Need memory for DMA

● Does not exist yet

Virtio RX path

p

Host
VM Guest

user space

kernel space

User buffer

Guest
kernel
buffer

Guest
kernel
buffer

Guest
kernel
buffer

………
….

network

DMAKVM Hypervisor

Ethernet adapter

virtio

Ethernet ring
buffer(s)

VM GuestVM Guest

M
A

C
1

M
A

C
4

M
A

C
3

M
A

C
2

NIC

Socket
interface

Host
kernel
buffer

Host
kernel
buffer

Host
kernel
buffer

Host
kernel
buffer

Copy data between
guest buffers and
host buffers

Assumptions

● Modern NICs are multiqueue

○ Dedicate queues to virtual NIC

● Guest allocates the buffers

○ Remapping DMA region to guest is more complex

● Tight coupling between physical and virtual NICs

○ Restrict zerocopy-RX to macvtap

Zero-Copy Rx Architecture

p

Host
VM Guest

user space

kernel space

User buffer

Guest
kernel
buffer

Guest
kernel
buffer

Guest
kernel
buffer

………
….

network

DMA

KVM Hypervisor

Ethernet adapter

macvlan

macvtap

virtio

Per-MAC
ring
buffer

VM GuestVM Guest

M
A

C
1

M
A

C
4

M
A

C
3

M
A

C
2

NIC

Socket
interface

Pass the buffers
down through
the kernel
layers

Initialization

● Isolate set of queues in physical NIC

● Create 1:1 correspondence between physical and virtual queues

● Clear RX descriptor ring

● Drop pre-allocated RX buffers in physical NIC driver

Memory allocation

● virtio-net (guest)
○ Allocate buffers

■ DMA’able memory (PAGE_SIZE granularity and page aligned)

● vhost-net
○ Post buffers to macvtap

■ New control flag MSG_ZCOPY_RX_POST for macvtap_recvmsg()

● macvtap
○ Allocate skb
○ Map iovec to skb (similar to zerocopy_sg_from_iter)

○ Pass the buffers to physical NIC
■ New method ndo_post_rx_buffer()

● Physical NIC driver adds new buffers to RX descriptor ring

Packet receive

● Physical NIC driver
○ DMA directly to the guest buffers

○ Setup skb structure

○ netif_rx() and friends

● macvtap
○ Queue skb as ready for the userspace

○ Inform vhost-net about the virtio descriptor associated with the skb.

Packet receive (cont)

● vhost-net
○ handle_rx_zero_copy():

■ Update virtqueue

■ Kick macvtap with ->recvmsg(MSG_ZCOPY_RX)

● macvtap (again)
○ macvtap_do_read_zero_copy()

■ skb_array_consume

■ Cleanup

API changes

netdev

● ->ndo_set_zerocopy_rx(struct net_device *pdev,
 struct net_device *vdev)
○ Pass vdev down the stack to the ethernet adapter to bind physical and virtual queues.

○ Similar to ->ndo_dfwd_add_station(), maybe just add flags there…
● ->ndo_post_rx_buffer(struct net_device *dev,

 struct sk_buff *skb)
○ Passes a single (page aligned) buffer to the ethernet adapter

○ skb contains pointer to the upper level device and ubuf_info

API changes (cont)

macvtap

● MSG_ZCOPY_RX_POST
○ Control message from vhost-net to macvtap to propagate the buffers from guest to the

lower levels

● MSG_ZCOPY_RX
○ Flag indicating that message contains preallocated buffers that should not be copied to

userspace

API changes (cont)

virtio-net

● add_recvbuf_full_page()
○ Ethernet adapter driver expects page size aligned buffers

○ Existing add_recvbuf_*() do not care since the data was always copied

Issues

● No unified mechanism for RX memory allocation
○ Each driver wraps alloc_page() differently

○ Page pool is a savior?

● What to do when running out of buffers
○ Drop?

○ Fallback to copy?

● virtio does not know how to deal with fragment offsets
○ skb_copy_datagram_iter() takes care of frag->page_offset

● Allocating page for Ethernet frame is wasteful
○ Even worse for architectures with PAGE_SIZE > 4K

Implementation status

● Progress is slower than expected

● Initial implementation for ixgbe, plans to add other NICs later on

● Zerocopy packets reach the guest :-)

● Not stable enough to run benchmarks :-(

Thank you!

