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Motivation

● No copy is better than copy

● Zerocopy TX without RX should feel lonely

● It was 7 years since the last attempt. Can we do better?



More motivation



Zerocopy: TX vs RX

Transmit

● Downstream routing is easy

● Memory is always at hand

● Still has problems
○ head-of-line blocking

Receive

● Destination is not yet known

● Need memory for DMA

● Does not exist yet



Virtio RX path
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Assumptions

● Modern NICs are multiqueue

○ Dedicate queues to virtual NIC

● Guest allocates the buffers

○ Remapping DMA region to guest is more complex

● Tight coupling between physical and virtual NICs

○ Restrict zerocopy-RX to macvtap



Zero-Copy Rx Architecture
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Initialization

● Isolate set of queues in physical NIC

● Create 1:1 correspondence between physical and virtual queues

● Clear RX descriptor ring

● Drop pre-allocated RX buffers in physical NIC driver



Memory allocation

● virtio-net (guest)
○ Allocate buffers

■ DMA’able memory (PAGE_SIZE granularity and page aligned)

● vhost-net
○ Post buffers to macvtap

■ New control flag MSG_ZCOPY_RX_POST for macvtap_recvmsg()

● macvtap
○ Allocate skb
○ Map iovec to skb (similar to zerocopy_sg_from_iter)

○ Pass the buffers to physical NIC
■ New method ndo_post_rx_buffer()

● Physical NIC driver adds new buffers to RX descriptor ring



Packet receive

● Physical NIC driver
○ DMA directly to the guest buffers

○ Setup skb structure

○ netif_rx() and friends

● macvtap
○ Queue skb as ready for the userspace

○ Inform vhost-net about the virtio descriptor associated with the skb.



Packet receive (cont)

● vhost-net
○ handle_rx_zero_copy():

■ Update virtqueue

■ Kick macvtap with ->recvmsg(MSG_ZCOPY_RX)

● macvtap (again)
○ macvtap_do_read_zero_copy()

■ skb_array_consume

■ Cleanup



API changes

netdev

● ->ndo_set_zerocopy_rx(struct net_device *pdev,
                      struct net_device *vdev)
○ Pass vdev down the stack to the ethernet adapter to bind physical and virtual queues.

○ Similar to ->ndo_dfwd_add_station(), maybe just add flags there…
● ->ndo_post_rx_buffer(struct net_device *dev,

                     struct sk_buff *skb)
○ Passes a single (page aligned) buffer to the ethernet adapter

○ skb contains pointer to the upper level device and ubuf_info



API changes (cont)

macvtap

● MSG_ZCOPY_RX_POST
○ Control message from vhost-net to macvtap to propagate the buffers from guest to the 

lower levels

● MSG_ZCOPY_RX
○ Flag indicating that message contains preallocated buffers that should not be copied to 

userspace



API changes (cont)

virtio-net

● add_recvbuf_full_page()
○ Ethernet adapter driver expects page size aligned buffers

○ Existing add_recvbuf_*() do not care since the data was always copied



Issues

● No unified mechanism for RX memory allocation
○ Each driver wraps alloc_page() differently

○ Page pool is a savior?

● What to do when running out of buffers
○ Drop?

○ Fallback to copy?

● virtio does not know how to deal with fragment offsets
○ skb_copy_datagram_iter() takes care of frag->page_offset

● Allocating page for Ethernet frame is wasteful
○ Even worse for architectures with PAGE_SIZE > 4K



Implementation status

● Progress is slower than expected

● Initial implementation for ixgbe, plans to add other NICs later on

● Zerocopy packets reach the guest :-)

● Not stable enough to run benchmarks :-(



Thank you!


