
  

How to play libnice-ly with 
your NAT

Youness Alaoui



  

Summary
● What is a NAT?

● Problems with NATs
● How to punch holes in a NAT?
● Types of NATs

● What is ICE?
● What does it do ?
● How does it work ?

● What is Libnice?
● How to use libnice

● Future plans, links, questions?



  

What is a NAT?



  

What is a NAT?

● NAT == Network Address Translation
● Allows multiple computers inside the NAT to 

have an IP address but share the same 
external IP

● Fixes the problem of the limit of IPv4 IP 
addresses available

● A gateway does the translation and everything 
is routed through it



  

What is a NAT ?

Network

192.168.1.100

192.168.1.101

192.168.1.102

192.168.1.103

10.0.0.200

10.0.0.201

10.0.0.202

1.2.3.4 1.2.3.5

Example of two NATs



  

Problems with NATs

Network

192.168.1.100

192.168.1.101

192.168.1.102

192.168.1.103

10.0.0.200

10.0.0.201

10.0.0.202

1.2.3.4 1.2.3.5

To which computer behind the 
NAT should the router forward 
data to when it receives data 
from the network

?

?
?



  

How to punch holes in a NAT?

Network10.0.0.100 1.2.3.4

IP : PORT IP : PORT



  

How to punch holes in a NAT?

Network10.0.0.100 1.2.3.4

?

Router receives a packet on port 1234 to IP 1.2.3.4. 
Message is dropped by the router

IP : PORT IP : PORT



  

How to punch holes in a NAT?

Network10.0.0.100 1.2.3.4

IP : PORT IP : PORT

10.0.0.100:1234 1.2.3.4:1234

PC 10.0.0.100 sends a packet to the network
Router creates a mapping from internal ip/port to 
external ip/port



  

How to punch holes in a NAT?

Network10.0.0.100 1.2.3.4

Router receives a packet on port 1234 to IP 1.2.3.4. 
Router finds the mapping and forwards the packet

IP : PORT IP : PORT

10.0.0.100:1234 1.2.3.4:1234



11

Types of NAT

* Full cone NAT, also known as one-to-one NAT 

IP : PORT IP : PORT

10.0.0.100:1234 1.2.3.4:1234

* (Address) Restricted cone NAT 

IP : PORT IP : PORT / DESTINATION

10.0.0.100:1234 1.2.3.4:1234 / 1.2.3.5

10.0.0.100:1234 1.2.3.4:1234 / 1.2.3.6



12

Types of NAT

* Port-Restricted cone NAT 

IP : PORT IP : PORT / DESTINATION : PORT

10.0.0.100:1234 1.2.3.4:1234 / 1.2.3.5:1234

10.0.0.100:1234 1.2.3.4:1234 / 1.2.3.6:4321

* Symmetric NAT 

IP : PORT IP : PORT / DESTINATION : PORT

10.0.0.100:1234 1.2.3.4:11111 / 1.2.3.5:1234

10.0.0.100:1234 1.2.3.4:22222 / 1.2.3.5:4321



  

What is ICE?



  

What does it do ?

● The Interactive Connectivity Establishment 
(ICE) is an RFC Draft (Currently Draft 19)

● It defines a methodology rather than a protocol
● It makes your life easier (when you don't have 

to implement it)
● It makes sure that two peers are able to 

connect to each other no matter which network 
topology they have

● Uses STUN to punch holes in the NAT



  

How does it work ?

Network

192.168.0.100 192.168.0.101

192.168.1.150

192.168.1.151

10.0.0.200

10.0.0.201

192.168.1.101

1.2.3.4 1.2.3.6

Alice

Bob

TURNSTUN

1.2.3.5

1.2.3.10 1.2.3.11

192.168.1.100
1.2.3.7

Step One : Take this type of network topology



  

How does it work ?

Step two: Make it appear to you like this



  

How does it work ?

● Gathers multiple 'candidates'
● Uses STUN for UDP hole punching
● Creates multiple candidate pairs between local 

and remote candidates and validates each 
pair's connectivity

● Elects the valid candidate pair with the highest 
priority to be used for peer to peer data transfer

● Uses TURN if direct connectivity is impossible



  

How does it work ?

Network

192.168.0.100 192.168.0.101

192.168.1.150

192.168.1.151

10.0.0.20
0

10.0.0.201

192.168.1.101

1.2.3.4 1.2.3.6

Alice

Bob

TURNSTUN

1.2.3.5

1.2.3.10 1.2.3.11

192.168.1.100
1.2.3.7



  

How does it work ?
Gather candidates!

Network

192.168.0.100

192.168.1.150

10.0.0.201
1.2.3.4 1.2.3.6

Alice

Bob

TURNSTUN

1.2.3.10 1.2.3.11 192.168.1.100

1.2.3.7

Alice

Host candidates:
192.168.0.100 port 1234
Server reflexive candidates:
192.168.1.150 port 12345
1.2.3.4 port 123456
Relay reflexive candidates:
1.2.3.11 port 3478

Bob

Host candidates:
192.168.1.100 port 1234
10.0.0.201 port 12345
Server reflexive candidates:
1.2.3.6 port 12345
1.2.3.7 port 1234
Relay reflexive candidates:
1.2.3.11 port 54321
1.2.3.11 port 54322



  

How does it work ?

Alice Bob

Create candidate pairs and verify 
connectivity between each pair (STUN)



  

How does it work ?

Network

192.168.0.100

192.168.1.150

10.0.0.201
1.2.3.4 1.2.3.6

Alice

Bob

TURNSTUN

1.2.3.10 1.2.3.11 192.168.1.100

1.2.3.7

Elect a valid pair and start streaming data



  

What is Libnice?



  

What is Libnice?

● A simple to use library implementing the ICE specifications

● Supports Draft 19, Google Talk, MSN 8.x and WLM 2009 
ICE specifications

● Supports HTTP, SOCKS5 and Google's Pseudossl proxies

● Supports UDP and TCP TURN relays (TURN Draft 12, 
Google talk, MSN)

● Supports UPnP

● Comes with a STUN parsing and formatting library that 
supports STUN RFC 3489 and RFC 5389

● Gstreamer elements are available



  

How to use libnice ?
   guint stream_id;
   gchar buffer[] = "hello world!";

   // Create a nice agent
   NiceAgent *agent = nice_agent_new (NULL, NICE_COMPATIBILITY_DRAFT19);

   // Connect the signals
   g_signal_connect (agent, "candidate-gathering-done",
                  cb_candidate_gathering_done, NULL);
   g_signal_connect (agent, "new-selected-pair",
                     cb_new_selected_pair, NULL);

   // Create a new stream with one component
   stream_id = nice_agent_add_stream (agent, 1);

   // Attach to the component to receive the data
   nice_agent_attach_recv (agent, stream_id, 1, NULL, cb_nice_recv, NULL);

   



  

   // Start gathering local candidates
   nice_agent_gather_candidates (agent, stream_id);

   // ... Wait until the signal candidate-gathering-done is fired ...
   lcands = nice_agent_get_local_candidates(agent, stream_id, 1);

   // ... Send local candidates to the peer and set the peer's remote candidates
   nice_agent_set_remote_candidates (agent, stream_id, 1, rcands);

   // ... Wait until the signal new-selected-pair is fired ...

   // Send our message!
   nice_agent_send (agent, stream_id, 1, sizeof(buffer), buffer);

   // Anything received will be received through the cb_nice_recv callback

   // Destroy the object
   g_object_unref(agent);

How to use libnice ?



  

Future plans and links

● Add ICE-TCP support
● Add a reliable mode where TCP over UDP 

would be used
● Upgrade TURN support from Draft 12 to 15
● Add NAT-PMP support
● Integration with Telepathy D-Bus Tubes

● http://nice.freedesktop.org
● http://collabora.co.uk

http://nice.freedesktop.org/
http://collabora.co.uk/


  

Questions ?



  

Questions ?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

