Name

madvise — give advice about use of memory

Synopsis

#include <sys/mman.h>
int madvise( void *addr,
  size_t length,
  int advice);
 
[Note] Note
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
madvise():
_BSD_SOURCE

DESCRIPTION

The madvise() system call advises the kernel about how to handle paging input/output in the address range beginning at address addr and with size length bytes. It allows an application to tell the kernel how it expects to use some mapped or shared memory areas, so that the kernel can choose appropriate read-ahead and caching techniques. This call does not influence the semantics of the application (except in the case of MADV_DONTNEED), but may influence its performance. The kernel is free to ignore the advice.

The advice is indicated in the advice argument which can be

MADV_NORMAL

No special treatment. This is the default.

MADV_RANDOM

Expect page references in random order. (Hence, read ahead may be less useful than normally.)

MADV_SEQUENTIAL

Expect page references in sequential order. (Hence, pages in the given range can be aggressively read ahead, and may be freed soon after they are accessed.)

MADV_WILLNEED

Expect access in the near future. (Hence, it might be a good idea to read some pages ahead.)

MADV_DONTNEED

Do not expect access in the near future. (For the time being, the application is finished with the given range, so the kernel can free resources associated with it.) Subsequent accesses of pages in this range will succeed, but will result either in reloading of the memory contents from the underlying mapped file (see mmap(2)) or zero-fill-on-demand pages for mappings without an underlying file.

MADV_REMOVE (Since Linux 2.6.16)

Free up a given range of pages and its associated backing store. Currently, only shmfs/tmpfs supports this; other file systems return with the error ENOSYS.

MADV_DONTFORK (Since Linux 2.6.16)

Do not make the pages in this range available to the child after a fork(2). This is useful to prevent copy-on-write semantics from changing the physical location of a page(s) if the parent writes to it after a fork(2). (Such page relocations cause problems for hardware that DMAs into the page(s).)

MADV_DOFORK (Since Linux 2.6.16)

Undo the effect of MADV_DONTFORK, restoring the default behavior, whereby a mapping is inherited across fork(2).

MADV_HWPOISON (Since Linux 2.6.32)

Poison a page and handle it like a hardware memory corruption. This operation is only available for privileged (CAP_SYS_ADMIN) processes. This operation may result in the calling process receiving a SIGBUS and the page being unmapped. This feature is intended for testing of memory error-handling code; it is only available if the kernel was configured with CONFIG_MEMORY_FAILURE.

MADV_SOFT_OFFLINE (Since Linux 2.6.33)

Soft offline the pages in the range specified by addr and length. The memory of each page in the specified range is copied to a new page, and the original page is offlined (i.e., no longer used, and taken out of normal memory management). The effect of the MADV_SOFT_OFFLINE operation is normally invisible to (i.e., does not change the semantics of) the calling process. This feature is intended for testing of memory error-handling code; it is only available if the kernel was configured with CONFIG_MEMORY_FAILURE.

MADV_MERGEABLE (since Linux 2.6.32)

Enable Kernel Samepage Merging (KSM) for the pages in the range specified by addr and length. The kernel regularly scans those areas of user memory that have been marked as mergeable, looking for pages with identical content. These are replaced by a single write-protected page (which is automatically copied if a process later wants to update the content of the page). KSM only merges private anonymous pages (see mmap(2)). The KSM feature is intended for applications that generate many instances of the same data (e.g., virtualization systems such as KVM). It can consume a lot of processing power; use with care. See the kernel source file Documentation/vm/ksm.txt for more details. The MADV_MERGEABLE and MADV_UNMERGEABLE operations are only available if the kernel was configured with CONFIG_KSM.

MADV_UNMERGEABLE (since Linux 2.6.32)

Undo the effect of an earlier MADV_MERGEABLE operation on the specified address range; KSM unmerges whatever pages it had merged in the address range specified by addr and length.

RETURN VALUE

On success madvise() returns zero. On error, it returns −1 and errno is set appropriately.

ERRORS

EAGAIN

A kernel resource was temporarily unavailable.

EBADF

The map exists, but the area maps something that isn't a file.

EINVAL

This error can occur for the following reasons:

  • The value len is negative.

  • addr is not page-aligned.

  • advice is not a valid value

  • The application is attempting to release locked or shared pages (with MADV_DONTNEED).

  • MADV_MERGEABLE or MADV_UNMERGEABLE was specified in advice, but the kernel was not configured with CONFIG_KSM.

EIO

(for MADV_WILLNEED) Paging in this area would exceed the process's maximum resident set size.

ENOMEM

(for MADV_WILLNEED) Not enough memory: paging in failed.

ENOMEM

Addresses in the specified range are not currently mapped, or are outside the address space of the process.

CONFORMING TO

POSIX.1b. POSIX.1-2001 describes posix_madvise(3) with constants POSIX_MADV_NORMAL, etc., with a behavior close to that described here. There is a similar posix_fadvise(2) for file access.

MADV_REMOVE, MADV_DONTFORK, MADV_DOFORK, MADV_HWPOISON, MADV_MERGEABLE, and MADV_UNMERGEABLE are Linux-specific.

NOTES

Linux Notes

The current Linux implementation (2.4.0) views this system call more as a command than as advice and hence may return an error when it cannot do what it usually would do in response to this advice. (See the ERRORS description above.) This is nonstandard behavior.

The Linux implementation requires that the address addr be page-aligned, and allows length to be zero. If there are some parts of the specified address range that are not mapped, the Linux version of madvise() ignores them and applies the call to the rest (but returns ENOMEM from the system call, as it should).

SEE ALSO

getrlimit(2), mincore(2), mmap(2), mprotect(2), msync(2), munmap(2)

COLOPHON

This page is part of release 3.25 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.


Copyright (C) 2001 David Gómez <davidgejazzfree.com>

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Since the Linux kernel and libraries are constantly changing, this
manual page may be incorrect or out-of-date.  The author(s) assume no
responsibility for errors or omissions, or for damages resulting from
the use of the information contained herein.  The author(s) may not
have taken the same level of care in the production of this manual,
which is licensed free of charge, as they might when working
professionally.

Formatted or processed versions of this manual, if unaccompanied by
the source, must acknowledge the copyright and authors of this work.

Based on comments from mm/filemap.c. Last modified on 10-06-2001
Modified, 25 Feb 2002, Michael Kerrisk, <mtk.manpagesgmail.com>
Added notes on MADV_DONTNEED
2010-06-19, mtk, Added documentation of MADV_MERGEABLE and
    MADV_UNMERGEABLE
2010-06-15, Andi Kleen, Add documentation of MADV_HWPOISON.
2010-06-19, Andi Kleen, Add documentation of MADV_SOFT_OFFLINE.