
The CMUCL Motif Toolkit

April 17, 2003

1 Naming conventions

In general, names in the Lisp Motif interface are derived directly from the C
original. The following rules apply:

1. Drop Xt ” and Xm(also XmN, XmC, etc.) prefixes

2. Separate words by dashes (-) rather than capitalization

3. Resource names and enumeration values are given as keywords

4. Replace underscores () with dashes (-)

Examples:

XtCreateWidget =⇒ create-widget
XmNlabelString =⇒ :label-string
XmVERTICAL =⇒ :vertical

Some exceptions:
Compound string functions (XmString . . .) are prefixed by compound-string-
rather than string- in Lisp.

Functions or resources, with the exception of the compound-string-xxx
functions, which require compound string arguments, may be given Lisp SIMPLE-STRINGs
instead.

The arguments to functions are typically the same as the C Motif equiva-
lents. Some exceptions are:

• Widget creation functions have a &rest arg for resource values.

• Functions which take a string table/length pair in C only take a list of
strings in Lisp.

• Registering functions such as ADD-CALLBACKuse a &rest arg for regis-
tering an arbitrary number of client-data items.

2 Starting things up

The Motif toolkit interface is divided into two parts. First, there is a server
process written in C which provides an RPC interface to Motif functions. The
other half is a Lisp package which connects to the server and makes requests on
the user’s behalf. The Motif interface is exported from the TOOLKIT (nickname
XT) package.

1

2.1 Variables controlling connections

DEFAULT-SERVER-HOST A string naming the machine where the Motif
server is to be found. The default is NIL, which causes a connection to be
made using a Unix domain socket on the local machine. Any other name must
be a valid machine name, and the client will connect using Internet domain
sockets.

DEFAULT-DISPLAY Determines the display on which to open windows.
The default value of NIL instructs the system to consult the DISPLAY environ-
ment variable. Any other value must be a string naming a valid X display.

DEFAULT-TIMEOUT-INTERVAL An integer specifying how many seconds
the Lisp process will wait for input before assuming that the connection to the
server has timed out.

2.2 Handling Connections

OPEN-MOTIF-CONNECTION (hostname xdisplay-name app-name app-class)
Opens a connection to a server on the named host and opens a display connec-
tion to the named X display. The app-name and app-class are for defining
the application name and class for use in resource specifications. An optional
process-id argument can be passed if a local server process has already been
created. This returns a MOTIF-CONNECTION object.

CLOSE-MOTIF-CONNECTION (connection) This closes a toolkit connec-
tion which was created by OPEN-MOTIF-CONNECTION.

MOTIF-CONNECTION Bound in contexts such as callback handlers to the
currently active toolkit connection.

X-DISPLAY Bound in contexts such as callback handlers to the currently
active CLX display.

WITH-MOTIF-CONNECTION ((connection) &body forms) This macro
establishes the necessary context for invoking toolkit functions outside of call-
back/event handlers.

WITH-CLX-REQUESTS (&body forms) Macro that ensures that all CLX
requests made within its body will be flushed to the X server before proceeding
so that Motif functions may use the results.

RUN-MOTIF-APPLICATION (init-function) This is the standard CLM
entry point for creating a Motif application. The init-function argument will
be called to create and realize the interface. It returns the created MOTIF-
CONNECTION object. Available keyword arguments are:

2

:init-args list of arguments to pass to init-function
:application-class application class (default "Lisp")
:application-name application name (default "lisp")
:server-host name of Motif server to connect to
:display name of X display to connect to

QUIT-APPLICATION () This is the standard function for closing down a
Motif application. You can call it within your callbacks to terminate the appli-
cation.

3 The Server

The C server is run by the motifd program. This will create both Inet and
Unix sockets for the Lisp client to connect to. By default, the Inet and Unix
sockets will be specific to the user.

When a Lisp client connects to the server, it forks a copy of itself. Thus each
Lisp application has an exclusive connection to a single C server process. To
terminate the server, just Ĉ it.
Switches to change behavior:

-global Sockets created for use by everyone rather than being user-
specific.

-local No Inet socket is created and the Unix socket is process-specific
-noinet Instructs the server not to create an Inet socket.
-nounix Instructs the server not to create a Unix socket.
-nofork Will keep the server from forking when connections are made.

This is useful when debugging the server or when you want
the server to die when the application terminates.

-trace Will spit out lots of stuff about what the server is doing. This is
only for debugging purposes.

Typically, users do not need to be concerned with server switches since, by
default, servers are created automatically by your Lisp process. However, if
you wish to share servers, or use servers across the network, you will need to
run the server manually.

4 Widget creation

CREATE-APPLICATION-SHELL (&rest resources) Creates the applicationShell
widget for a new Motif application.

CREATE-WIDGET, CREATE-MANAGED-WIDGET (name class parent &rest
resources) These create new widgets. CREATE-WIDGETdoes not auto-
matically manage the created widget, while CREATE-MANAGED-WIDGETdoes.

CREATE-<widget class> (parent name &rest resources) Conve-
nience function which creates a new widget of class <widget class> . For
instance, CREATE-FORMwill create a new XmFormwidget.

3

*CONVENIENCE-AUTO-MANAGE*Controls whether convenience functions au-
tomatically manage the widgets they create. The default is NIL.

5 Callbacks

Callbacks are registered with the ADD-CALLBACKfunction. Unlike Motif in C,
an arbitrary number of client-data items can be registered with the callback.
Callback functions should be defined as:

(defun callback-handler (widget call-data \&rest client-data) ...)

The passed widget is that in which the callback has occurred, and the call-
data is a structure which provides more detailed information on the callback.
Client-data is some number of arguments which have been registered with the
callback handler. The slots of the call-data structure can be derived from the C
structure name using the standard name conversion rules. For example, the
call-data structure for button presses has the following slot (aside from the
standard ones): click-count.

To access the X event which generated the callback, use the following:

(defun handler (widget call-data \&rest client-data)
(with-callback-event (event call-data)

;; Use event structure here
))

Since callback procedures are processed synchronously, the Motif server
will remain blocked to event handling until the callback finishes. This can be
potentially troublesome, but there are two ways of dealing with this problem.
The first alternative is the function UPDATE-DISPLAY. Invoking this function
during your callback function will force the server to process any pending re-
draw events before continuing. The other (slightly more general) method is to
register deferred actions with the callback handling mechanism. Deferred ac-
tions will be invoked after the server is released to process other events and the
callback is officially terminated. Deferred actions are not invoked if the current
application was destroyed as a result of the callback, since any requests to the
server would refer to an application context which was no longer valid. The
syntax for their usage is:

(with-callback-deferred-actions <forms>)

You may register only one set of deferred actions within the body of any
particular callback procedure, as well as within event handlers and action pro-
cedures. Registering a second (or more) set of deferred actions will overwrite
all previous ones.

When using deferred action procedures, care must be taken to avoid refer-
encing invalid data. Some information available within callbacks is only valid
within the body of that callback and is discarded after the callback terminates.
For instance, events can only be retrieved from the call-data structure within
the callback procedure. Thus the code

4

(with-callback-deferred-actions
(with-callback-event (event call-data)

(event-type event)))

is incorrect since the event will be fetched after the callback is terminated,
at which point the event information will be unavailable. However, the code

(with-callback-event (event call-data)
(with-callback-deferred-actions

(event-type event)))

is perfectly legitimate. The event will be fetched during the callback and
will be closed over in the deferred action procedure.

6 Action procedures

Action procedures can be registered in translation tables as in the following
example:

<Key> q: Lisp(SOME-PACKAGE:MY-FUNCTION)\n

The generating X event can be accessed within the action handler using:

(with-action-event (event call-data)
... use event here ...

)

7 Event handlers

X events are also represented as structured objects with slot names which are
directly translated from the C equivalent. The accessor functions are named by
<event name>-<slot name> . Some examples:

(event-window event) This applies to all events
(event-type event) So does this

(button-event-x event) Some button event
(button-event-button event) accessors

At the moment, XClientMessage and XKeyMapevents are not supported
(they will be in the not too distant future).

Provided conveniences
Since Motif requires the use of font lists for building non-trivial compound

strings, there are some Lisp functions to ease the pain of building them:

BUILD-SIMPLE-FONT-LIST (name font-spec) Returns a font list of with
the given name associated with the given font. For example,

(build-simple-font-list "MyFont" "8x13")

5

BUILD-FONT-LIST (flist-spec) This allows for the construction of font
lists with more than one font. An example:

(build-font-list ‘(("EntryFont" ,entry-font-name)
("HeaderFont" ,header-font-name)
("ItalicFont" ,italic-font-name)))

There are certain callbacks which are of general use, and standard ones are
provided for the programmer’s convenience. For all callbacks except QUIT-APPLICATION-CALLBACK ,
you register some number of widgets with ADD-CALLBACK. These will be the
widgets acted upon by the callback:

QUIT-APPLICATION-CALLBACK () Callback to terminate the current ap-
plication.

DESTROY-CALLBACK Destroys all the widgets passed to it.

MANAGE-CALLABCK Manages all the widgets passed to it.

UNMANAGE-CALLBACKUnmanages all the widgets passed to it.

POPUP-CALLBACK Calls popup on all widgets passed to it.

POPDOWN-CALLBACKCalls popdown on all widgets passed to it.

8 Some random notes

• When using functions such as REMOVE-CALLBACK, the client-data passed
must be EQUALto the client-data passed to ADD-CALLBACK.

• When using REMOVE-CALLBACK, etc., the function may be supplied as
either ’FUNCTION or #’FUNCTION. However, they are considered dif-
ferent so use the same one when adding and removing callbacks.

• You cannot directly access the XmNitems resources for List widgets and
relatives. Instead, use (SET-ITEMS <widget>) and (GET-ITEMS
<widget>) .

9 Things that are missing

• Real documentation

• Support for XClientMessage and XKeyMapevents

• Callback return values (e.g. XmTextCallback ’s)

• Ability to send strings longer than 4096 bytes.

6

10 A brief example

The following gives a simple example that pops up a window containing a
“Quit” button. Clicking on the button exits the application. Note that the ap-
plication runs concurrently with CMUCL: you can evaluate forms in the lis-
tener while the Motif application is running. Exiting the application does not
cause CMUCL to exit; once you have quit the application, you can run it again.

To run this example, save the code to a file named motif-example.lisp
and in the CMUCL listener, type

USER> (compile-file "motif-example")
; Loading #p"/opt/cmucl/lib/cmucl/lib/subsystems/clm-library.x86f".
;; Loading #p"/opt/cmucl/lib/cmucl/lib/subsystems/clx-library.x86f".
; Byte Compiling Top-Level Form:
; Converted my-callback.
; Compiling defun my-callback:
; Converted test-init.
; Compiling defun test-init:
; Converted test.
; Compiling defun test:
; Byte Compiling Top-Level Form:
#p"/home/CMUCL/motif-example.x86f"
nil
nil
USER> (load *)
; Loading #p"/home/CMUCL/motif-example.x86f".
t
USER> (motif-example:test)
#<X Toolkit Connection, fd=5>
Got callback on #<X Toolkit Widget: push-button-gadget 82D89A0>
Callback reason was cr-activate
Quit button is #<X Toolkit Widget: push-button-gadget 82D7AD0>
USER> (quit)

7

The source code:

;;; file motif-example.lisp

(eval-when (:load-toplevel :compile-toplevel)
(require :clm))

(defpackage :motif-example
(:use :cl :toolkit)
(:export #:test))

(in-package :motif-example)

(defun my-callback (widget call-data quit)
(format t "Got callback on ˜A˜%" widget)
(format t "Callback reason was ˜A˜%" (any-callback-reason call-data))
(format t "Quit button is ˜A˜%" quit))

(defun test-init ()
(let* ((shell (create-application-shell))

(rc (create-row-column shell "rowColumn"))
(quit (create-push-button-gadget rc "quitButton"

:label-string "Quit"))
(button (create-push-button-gadget rc "button"

:highlight-on-enter t
:shadow-thickness 0
:label-string "This is a button")))

(add-callback quit :activate-callback #’quit-application-callback)
(add-callback button :activate-callback ’my-callback quit)

(manage-child rc)
(manage-children quit button)
(realize-widget shell)))

(defun test ()
(run-motif-application ’test-init))

8

