
Omnipresent and low-overhead application
debugging

Robert Strandh

LaBRI, University of Bordeaux

April, 2020

European Lisp Symposium, Zürich, Switzerland ELS2020



Context: The SICL project

https://github.com/robert-strandh/SICL
Several objectives:

I Create high-quality modules for implementors of Common
Lisp systems.

I Improve existing techniques with respect to algorithms and
data structures where possible.

I Improve readability and maintainability of code.

I Improve documentation.

I Ultimately, create a new implementation based on these
modules.

I Provide excellent debugging facilities.

I Keep system safe.

2/28



Definition of “safety”

For the purpose of this work, we consider a system to be safe if
and only if, there is no manipulation that a user can do that
violates the internal consistency of the system.

We do not include in the definition any protection against the
program giving the wrong answer as a result of incorrect
programming.

3/28



Definition of “application debugging”

The technique described here is meant for debugging “application
code”, as opposed to “system code”.

It is not meant for debugging system components such as the
compiler.

It assumes that the compiler generates code that corresponds to
the semantics of the source code.

4/28



Traditional approach: Process-based debugging

The debugger and the application execute in separate processes
with separate address spaces.

wire
protocol

debugger application

interaction

Used in UNIX-like systems.
Also recommended for CCL and ECL.

5/28



Traditional approach: Process-based debugging

The instructions of the application are modified by the debugger
(using copy-on-write pages).

Does not require any collaboration from the application.

Additional debugging information is needed for source-level
debugging.

Inherently unsafe. The debugger can alter any memory location.

6/28



Same-process debugging

Has many advantages in the context of Common Lisp.

Introduces several problems that must be solved.

Setting a breakpoint in a function used by the evaluator or the
debugger may render the system useless.

Unsafe operations may crash the system or, worse, silently give the
wrong answer.

7/28



Debugging in FLOSS Common Lisp implementations

Inferior or non-existing debugging support.

The trace facility of most implementations uses encapsulation.

Many implementations do not have a working step facility.

ECL accomplishes stepping with a special instruction type in the
bytecode virtual machine.

SBCL has breakpoints, but they are used only for the trace

facility. Stepping is accomplished using the condition system, and
only when the debug quality is sufficiently high.

8/28



Debugging in LispWorks

Breakpoints can be set from the editor or the stepper.

The first time a breakpoint is set, the source code of the defining
form is re-evaluated with additional annotations for the stepper.

If a breakpoint is encountered, the stepper is automatically invoked
if it is not invoked already.

Setting a breakpoint requires source code, so no breakpoints
possible in system code.

The trace facility uses encapsulation.

9/28



Debugging in Allegro

The most complete system of them all.

Breakpoints alter native code, in a way similar to process-based
debugging.

To avoid an unusable system, when a breakpoint is encountered,
the debugger first uninstalls all breakpoints.

This low-level mechanism is used for stepping, source-level
debugging, tracing, etc.

The mechanism is inherently unsafe (with our definition of safety).

10/28



Our technique

The compiler always includes two versions of each function body:

I One version containing “normal”, optimized code.

I One version containing debugging code.

This idea is due to Michael Raskin.

The debugging version contains code for collaboration with the
debugger.

11/28



Our technique

The two different versions are accessible through different entry
points to the function:

I A function call in the normal version invokes the normal entry
point of the callee.

I A function call in the debugging version invokes the
debugging entry point of the callee.

Therefore, debugging does not have any overhead in normal code.

This idea is due to Frode Fjeld.

12/28



Our technique

The debugger and the application run in the same process, but in
different threads.

When the application is invoked from the debugger, the debugging
entry point is called.

This technique makes it possible to set breakpoints in system code,
and even in debugger code.

13/28



Our technique, breakpoints

In the debugging version of a function, the compiler inserts a test
immediately before and immediately after the evaluation of each
form.

This test consults a table indexed with values of the program
counter.

The table indicates whether there is a breakpoint at this location.

This table is managed by the debugger.

A shared queue is provided for communication.

14/28



Our technique, breakpoints

application

interaction

debugger

table
write

read

queue

The user sets breakpoints using debugger commands.

15/28



Our technique, breakpoints

application

interaction

debugger

table
read

queue

The application consults table before/after each form.

16/28



Our technique, breakpoints

application

interaction

debugger

table

inform

queue

At a breakpoint, the application first informs the debugger.

17/28



Our technique, breakpoints

application

interaction

debugger

table

queue
read

It then blocks from reading from the empty queue.

18/28



Our technique, breakpoints

application

interaction

debugger

table

queue

The user examines data and sets/clears breakpoints.

19/28



Our technique, breakpoints

application

interaction

debugger

table

queue
write read

The debugger writes to the queue, unblocking the application.

20/28



Our technique, stepping

Stepping is accomplished by temporary breakpoints inserted by the
debugger.

The user can choose different places to step to

I In to an expression.

I Out of an expression.

I Over an expression.

I Into a function being called.

I Out of the current function being invoked.

The debugger removes the breakpoint from the table, once
encountered.

21/28



Our technique, tracing

Tracing inserts a breakpoint, marked as a trace point.

When a trace point is encountered, the debugger prints a message,
and then immediately unblocks the application.

22/28



Our technique, benefits

Safety. The debugger does not alter the application code.

No wire protocol. Simplified communication.

No disadvantages due to encapsulation for tracing.

No need to recompile with a higher debug value in order to debug
the application.

The full-speed version is used by other threads, so no performance
degradation in those threads.

23/28



Our technique, disadvantages

Code size will more than double.

Incompatibility with existing Common Lisp implementations.

24/28



Our technique, current state

Embryonic implementation of the communication protocol.

Embryonic CLIM-based debugger called Clordane.

25/28



Future work

Modify the SICL compiler to generate two versions of every
function body.

Try using the portable library for adding debugging annotations to
arbitrary code, written by Michael Raskin for implementing/testing
communication between the debugger and the application.

Implement the rest of Clordane.

26/28



Acknowledgments

We would like to thank the following people for providing
information about breakpoints, tracing, and stepping in various
Common Lisp implementations: Martin Simmons (LispWorks),
Micha l “phoe” Herda (CCL), Alex Wood (Clasp), Daniel
Kochmański (ECL), Duane Rettig (Allegro).

We would like to thank Frode Fjeld for giving feedback on early
versions of this paper, and for suggesting the use of multiple entry
points for each function.

We would like to thank Michael Raskin for suggesting that two
versions of each function should be provided, thereby making it
unnecessary for the programmer to choose the level of debugging.

27/28



Thank you

28/28


