

LUSTRE ROADMAP and FUTURE PLANS

Sun HPC Consortium June 15, 2008

Peter Bojanic
Director Lustre Group
Sun Microsystems

Lustre HPC Filesystem

Open, Seamless and Comprehensive

Access

Visualization
Workstation,
Thin Clients,
Remote
Access

Developer

Compilers,
Debuggers,
Optimization
Tools,
Libraries

Management

Workload, Systems and Cluster Management

OS

Linux, Solaris

Interconnect

InfiniBand or Ethernet

Storage/ Archive

Cluster Storage, Backup, Archive, File Systems, HSM

Systems

Racks or Blades Variety of CPU Architectures

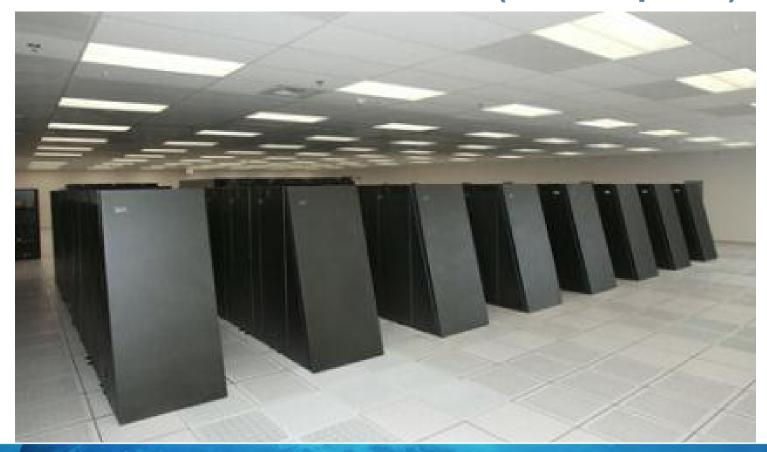
Sun Services

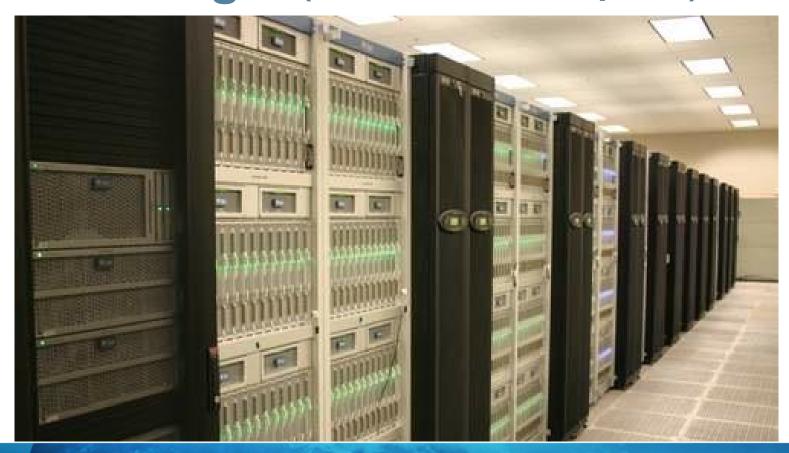
Sun Customer Ready

What is Lustre?

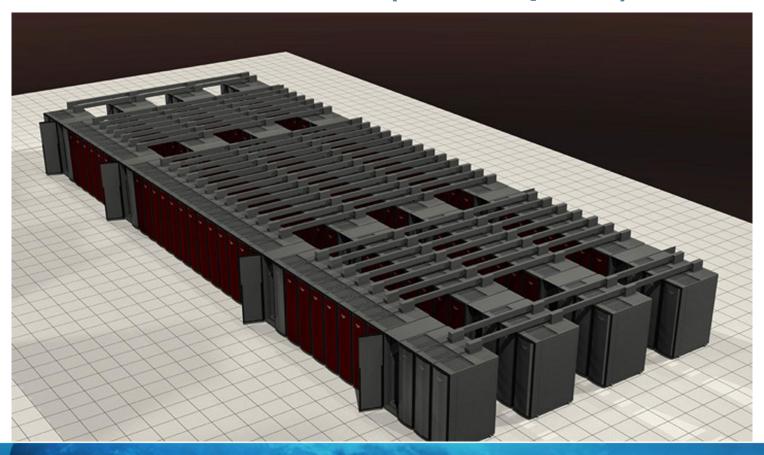
- Parallel, scalable shared POSIX file system
- Key benefits
 - Petabytes of storage one name space
 - > Tens of thousands of clients
 - High-performance heterogenous networking and routing
 - High availability
 - Open source, multi-platform and multivendor
 - > Object-based architecture

Lustre Deployments Today

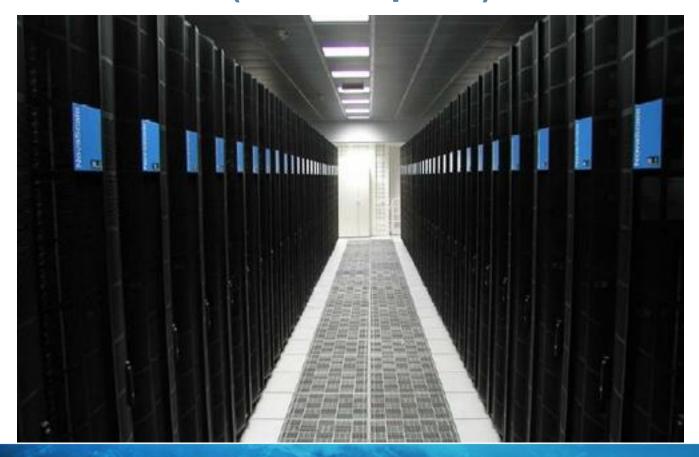

- Largest market share in HPC (IDC's HPC User Forum Survey 2007)
- Adopted by the largest systems in the world
 - > 7 of top 10 run Lustre, including #1
 - > 30% of top 100 (www.top500.org November 2007 list)
- Partners
 - > Bull, Cray, DDN, Dell, HP, Hitachi, SGI, Terascala
- Growth in commercial deployments
 - > Big wins oil & gas, rich media, ISPs, chip design


Livermore BlueGene/L (#1 in Top 500)

1.9 PB storage; 35.6 GB/s IO throughput; 212,992 client processes


TACC Ranger (Possible #2 in Top 500)

1.73 PB storage; 40 GB/s IO throughput; 3,936 quad-core clients


Sandia Red Storm (#6 in Top 500)

340 TB storage; 50 GB/s I/O throughput; 25,000 clients

CEA Tera-10 (#19 in Top 500)

1 PB storage; 100 GB/s I/O throughput; 4,352 dual-core clients

Lustre Today

WORLD #Clients

Clients: 25,000 – Red Storm

Processes: 212,992 – BlueGene/L Can have Lustre root file systems

#Servers

Metadata Servers: 1 + failover

OSS servers: up to 450, OST's up to 4000

Capacity

Number of files: 2Billion

File System Size: 32PB, Max File size: 1.2PB

WORLD Performance

Single Client or Server: 2 GB/s +

BlueGene/L – first week: 74M files, 175TB written

Aggregate IO (One FS): ~130GB/s (PNNL)
Pure MD Operations: ~15,000 ops/second

Stability

Software reliability on par with hardware reliability

Increased failover resiliency

Networks

Native support for many different networks, with routing

Features

Quota, Failover, POSIX, POSIX ACL, secure ports

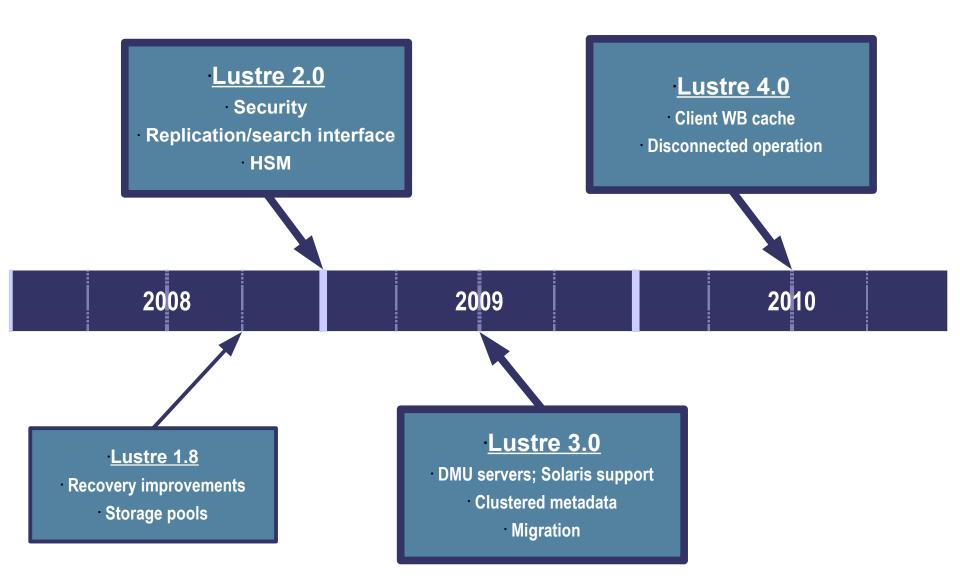
Varia

Training, Level 1,2 & Internals. Certification for Level 1

CFS Acquisition

- Oct 1, 2007 the Sun acquisition of CFS closed
 - The theme is continuity
 - No employees, partners or customers were lost
- Lustre remains open source under GPL
 - > All designs and the internals course are on lustre.org
 - > CVS is open
 - > Architecture discussions now on lustre-devel
- Sun continues to work with CFS partners
 - Expanding the network of partners
 - No special versions of Lustre for anyone

New Lustre Partnerships



Lustre Roadmap – June, 2008

Lustre Release Taxonomy

- Historically, Lustre release numbers did not accurately reflect major changes to the product
 - Major architectural changes were previously targeted for releases like 1.6, 1.8
- Transition to a more conventional taxonomy (x.y.z)
 - x: Major architectural changes
 - > y: Minor new features
 - > z: Maintenance bug fixes

This will help both customers and partners better understand the risk and impact of new Lustre Releases

Lustre 1.8

- Introduces a modest set of new features
 - > Recovery improvements
 - Protocol interoperability between b1_6 and HEAD
 - > OST Pools
- ServiceTags support
 - Enable Lustre customers to optionally register their installations to receive service and training benefits
- Based on b1_6 instead of HEAD branch
 - Substantially reduced risk for customers that want to adopt these features
- Target release: September, 2008

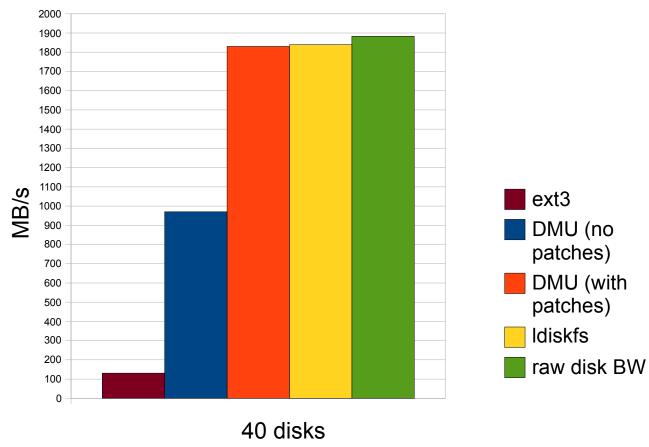
Lustre 2.0

- Major new version of Lustre that introduces substantial architectural changes and features
 - > Security (GSS/Kerberos)
 - > Replication/search interface
 - Network Request Scheduler
 - > HSM
- Based on HEAD branch
 - Provides a foundation for Clustered Metadata (CMD)
 - > But no CMD support yet in this release
- Target release: December, 2008

Lustre 3.0

- Introduces Clustered Metadata
 - Code is already in HEAD but will be turned on by default
 - Complete full complement of recovery use cases
- DMU servers and related enhancements
 - Major dependency on ZFS quotas
- Migration and space management tools
 - > To migrate from Idiskfs to ZFS storage volumes
 - For space balancing and storage volume evacuation
- Target release: June, 2009

Data Integrity


- Lustre ensures data integrity over the network
 - Compare data before and after network DMA
 - When the feature was added it discovered a few network cards silently corrupting data!
- ZFS DMU has storage integrity
 - Copy-on-write, transactional design
 - > Everything is checksummed
 - > RAID-Z/Mirrored protection
 - > Background disk scrubbing
 - > Self-healing

Lustre/ZFS Performance

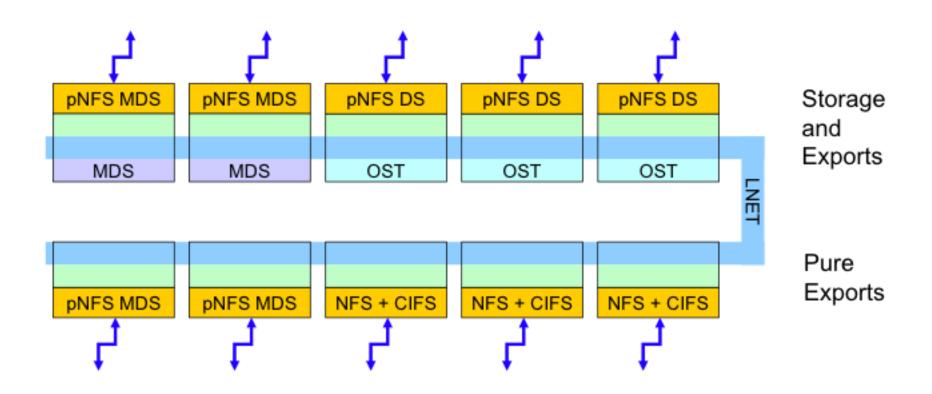
May, 2008

RAID-0 streamed write throughput

Data measured on Sun Fire X4500 (Thumper) RAID 0 with RHEL4Update6 Zero-copy and other patches buy us ~90% of raw disk!

HSM

- Collaboration with CEA in France
 - Most ambitious Lustre community development effort ever undertaken
 - High Level Design (HLD) completed in January, 2008 and shared with Lustre community
 - > Presentation by CEA at LUG in Sonoma, CA
- Modular architecture to support multiple HSM engines
 - > First interface with HPSS
 - Early planning stages for SAM-QFS integration
 - Discussions underway with SGI for DMF integration



Lustre-pNFS

- pNFS essential for enterprise support
 - Higher performance than monolithic NFS servers
 - Support larger unified name space
- pNFS integration
 - > pNFS exports from Lustre client on Linux
 - Solaris pNFS protocol servers layered on Lustre
- Make LNET an RDMA transport for NFS
 - Offer proven Lustre features to NFS standards efforts

Example Clustered Server Config

Client Support

- pCIFS client for Windows
 - Early customer evaluations in progress
- Clustered Samba (CTDB) Exports
 - > Good performance; purely Open Source solution
- Windows client port
 - Technology preview expected by the end CY08; production version six months later
- Solaris client port in early planning stages
- Client portability library
 - Facilitate porting Lustre to Windows and Solaris

Pushing the Limits

- Network Request Scheduler
 - Achieve higher IO throughput by better coordinating IO across the cluster
- Flash Cache
 - Read and write-optimized flash cache as "power assist" to DMU
 - More advanced Flash Cache to accelerate client checkpoint operations
- Client Metadata Writeback Cache
 - Achieve metadata performance comparable to a local file system

THANK YOU.

Peter Bojanic pbojanic@sun.com

