

Lustre Experience at CEA/DIF

J-Ch Lafoucrière jc.lafoucriere@cea.fr

- CEA/DIF Computing Center
- Lustre File System
- CEA/DIF Lustre Configurations and Performances

CEA/DIF Computing Center

CEA Computing Center

Current supercomputers at CEA/DIF

TERA-10 **Shared Luster Cache** 2 PB (SATA Disks) TERA-10 60 Tflops Disk space: 1 PB Memory: 30 TB (Infini Band **Archive Server** 1 GB/s links) (HPSS/Linux Cluster) Switches) NFS Servers FC SAN & Workstations RESERVE RESERV Level 1 Archive Post processing Visualization Wall 2 PB (SATA Disks) 15 PB (TB tapes) Rendering Cluster Servers Defense

CCRT-B Computing Center Architecture

TERA Computing Center Architecture

Lustre File System

What's Lustre?

A high performance filesystem

- A new storage architecture (storage object)
- Designed for performances

 - ≥90 % hardware efficiency

Open Source Project

- Available as tarball and rpm from CFS (RH, Suse)
 - ☑All tools available to make site specific rpm
 - ≥2.4 and 2.6 Linux kernels support
- Available through vendors integration (HP, LNXI, Cray, Bull, IBM, SUN, ...)
- Managed by CFS as a product, not as a best effort project

Lustre Cluster

Lustre Components

Lustre Design Rules

All software uses stackable modules

- Storage devices are accessed through a local filesystem ldiskfs (an ext3 based FS, very close to ext4) and others in the future (ZFS?)
- Network layer (LNET) is a message passing library

 - □ Transactional RPC or Bulk transfers, use of callbacks
- Networks can be heterogeneous with LNET routers

IO performances

- Large I/O sizes on networks and storage devices
- Highly parallel
- Large client cache

Metadata performances

- Fine and dynamic lock granularity
- Robust design
 - High Availability + journalization

Today Status

Last release is 1.4.10

- Scalable product
- ACL, Extended Attributes, Quotas
- Fault tolerant
- Next major release 1.6.0 (these days)
 - New configuration tools: Only 2 commands, mkfs and mount
 - Online extension
 - Patchless client support
 - Device multimount protection
 - Large OBD (8 TB)

Evolutions

- End 2007, 2008 (1.6.x, 1.8)
 - Storage pools
 - Lustre OST RAID
 - Kerberos support
- Ports to non Linux platforms are planed (may be non OpenSource)
 - Servers port on Solaris will be in userspace
- Servers may move to userspace on Linux

CEA/DIF Lustre Configurations and Performances

Two Lustre architectures

Tera10 Cluster

- o Quadrics Elan4 interconnect, 3 rails each 900 MB/s
- o565 clients
- olO Cell = 2 OSS + 2 DDN couplet

Tera10 Shared Lustre

- Infiniband SDR interconnect
- o~60 clients
- olO Cell = 2 OSS + 1 DDN couplet

Lustre Usage (I)

HPC Cluster File System

- Lustre 1.4.7 or Lustre 1.4.8, with vendor support
- Quadrics (Elan4) or InfiniBand (DDR) networks

 - Network is dedicated to a cluster
- OSS/MDS are 16 or 8 Itanium cores servers
- Dual attached DDN 9550 with fibre channel disks (8D+1P+1S, writethrough), 16 LUN of 1TB
- 4.3 GB/s per IO Cell (2 DDN couplet)
- Mounted by one cluster (few FS per cluster)
- Performance oriented
 - ≥ 100 GB/s on checkpoint/restart like benchmark
 - Single client performance: 2.2 GB/s W, 1.4 GB/s R
- TERA-10 day production is 30 TB

Lustre Usage (II)

- Shared File system
 - Lustre 1.6 Beta 7
 - InfiniBand network (SDR)
 - Native network protocol (OpenIB gen2 LND)
 - Network is shared by clusters
 - OSS/MDS are 4 Xeon core servers
 - Dual attached DDN 9550 with SATA disks (8D+2P+shared S), writethrough), 48 LUN of 8 TB
 - 1.5 GB/s per IO Cell (1 DDN couplet), limit is the 2 IB links
 - 1 FS shared by multiple clusters
 - Capacity oriented:

 - Single client performance: 472 MB/s W, 371 MB/s R
 - Limit is the client machine (only 2 cores)

Shared InfiniBand Network Topology

Capacity File System

- Initially created with 2 DDN couplet = 2 * 330 TB
- Few weeks ago extended in half a day with 2 DDN
 - No need to reformat
 - Now at 1.3 PB in one FS

```
root@cupidon7:~ - cupidon - Konsole <2>
cprot00-0ST00b4 UUID
                          7.2T
                                  215.8G
                                              7.0T
                                                       2% /cea/cache_prot[OST:180]
                          7.2T
cprot00-0ST00b5 UUID
                                  227.3G
                                              6.9T
                                                       3% /cea/cache_prot[OST:181]
cprot00-0ST00b6_UUID
                          7.2T
                                  228.8G
                                              6.9T
                                                       3% /cea/cache_prot[OST:182]
cprot00-0ST00b7_UUID
                          7.2T
                                  228.3G
                                              6.9T
                                                       3% /cea/cache_prot[OST:183]
filesystem summary:
                          1.3P
                                  184.9T
                                              1.1P
                                                      14% /cea/cache_prot
[root@cupidon7 ~]#
[root@cupidon7 ~]#
[root@cupidon7 ~]# df /cea/cache_prot
                                    Used Available Use% Mounted on
                     1K-blocks
Filesystem
           @o2ib:
                            @o2ib:/cprot00
                     1415155704608 198563072040 1216592369544 15% /cea/cache_prot
[root@cupidon7 ~]#
[root@cupidon7 ~]#
[root@cupidon7 ~]# df -h /cea/cache_prot
Filesystem
                      Size Used Avail Use% Mounted on
           @o2ib:
                            @o2ib:/cprot00
                      1.3P 185T 1.2P 15% /cea/cache_prot
[root@cupidon7 ~]#
```

Lustre Performances

Metadata

- 5000 create or rename / s on one FS
- 2500 stat / s on one FS
- IO's
 - The global BW increases linearly with the number of clients and saturates

2 S2A9550 Couplets Saturation (Writethrough, FC Disks) 4300 MB/s

Lustre Scalability on TERA-10

Lustre Administration Feedback

Very easy configuration with Lustre 1.6

- Mass configuration tools are mandatory for large Lustre site
 - HP SFS (HP tools, not open source, not free)
 - Bull lustre_utils (Open source)
 - CFS graphical admin tool (not open source, not free) or CFS lustre_config script (in Lustre distrib)
- Error messages are still for experts
 - Actions started at CFS to fix this issue
- Lustre is very robust

And now?

We continue to grow the Shared filesystem

- **Start testing LNET routers**
- Deploy a cross sites Lustre filesystem over a 40 Gb/s WAN network between 4 sites (part of Carriocas project)
- We work with CFS to implement HSM features in Lustre and to be able to connect Lustre to an archival system (HPSS initially but will work with any storage server)

23

Questions?