
Object based Storage
Cluster File Systems &
Parallel I/O

Peter J. Braam
Stelias Computing
and Carnegie Mellon University
braam@cs.cmu.edu

Your speaker…
� - 1991: Full time mathematician
� 1991 – clustering, storage, file systems

� Regular faculty at Oxford, UK
� Lead Coda project at CMU 96 – 99
� Full time @ stelias: 99 –

� Current projects:
� InterMezzo: similar to Coda
� Object based storage: this talk
� A distributed lock manager for Linux

Stelias Computing
� Small
� Open source only
� Pioneers new solutions
� File Systems, Clusters & Storage

Networked File Systems

� Distributed file systems (InterMezzo)
� Single system image, location transparency
� Disconnected operation, replication

� Cluster file systems (Lustre)
� Sharing database files among systems
� Recovery from failed nodes

� Parallel file systems (POBIO)
� Support distributed computing
� Large files, resource management

Talk overview
� Object storage

� Components
� Lustre: object based cluster file system
� Parallel I/O and Object storage

� Linux clustering
� InterMezzo
� Discussion

Object Storage

http://www.lustre.org

What are OBSDs ?
� Object Based Storage Device

� More intelligent than block device

� Speak storage at “inode level”
� create, unlink, read, write, getattr, setattr

� OBSD implementations:
� Device driver: lower half of an fs
� PDL/NASD style OBD’s – fixed protocol
� “Real obds” – ask disk vendors

Components of OB Storage
� Storage Object Device Drivers

� class drivers – attach driver to interface
� Targets, clients – remote access
� Direct drivers – to manage physical storage
� Logical drivers – for storage management

� object storage applications:
� (cluster) file systems
� Advanced storage: parallel I/O, snapshots
� Specialized apps: caches, db’s, filesrv

Object Based Disk
File System
(OBDFS)

Simulated Ext2
Direct OBD driver

(obdext2)

SBD
(e.g. IDE disk)

/dev/obd1 mount
on /mnt/obd
type “obdfs”

/dev/obd1 of type
“ext2” attached to
/dev/hda2

Object Based
Database

Raid0 Logical OBD
Driver (obdraid0)

Direct
SCSI OBD

Data on
/dev/obd2

/dev/obd2
Type “raid0”
attached to
/dev/obd3 & 4

Direct
SCSI OBD

/dev/obd3 /dev/obd4

Clustered Object
Based File System

on host A

OBD Client Driver
Type SUNRPC

Mount of /dev/obd2
FS type “lustre”

/dev/obd2
Type “rpcclient”

Direct SCSI OBD/dev/obd3

Clustered Object
Based File System

on host B

OBD Client Driver
Type VIA

Mount of /dev/obd2
FS type “lustre”

/dev/obd2
Type “viaclient”

OBD Target
Type SUNRPC

OBD Target
Type VIA

Both targets are
Attached to /dev/obd3

OBDFS

Monolithic
File system

Object File System:

• file/dir data: lookup
• set/read attrs
• remainder:ask obsd

Object based
storage device

• all allocation
• all persistence

Page
Cache

Object
Device
Methods

Buffer cache

Why obd’s…
� Storage management: easier

� File system snapshots
� Hot file migration
� Hot resizing
� Raid
� Backup

� File systems:
� Clustering much simpler
� Component vs monolithic

� Example: parallel I/O

Flexibility with stacking
� Object protocols can be “chained”,

“stacked”
� Similar to NT/VMS device driver model

� Plug and Play storage management

� Examples…

Hot data migration:

/dev/hda1 /dev/hdb2/dev/hda1 /dev/hdb2

Logical Migratorext2obd

ext2obd ext3obd

ext3obd

/dev/obd0 /dev/obd0 /dev/obd0

Before… During… After…

Key principle: dynamically switch object device types

LOVM: can do it all - Raid

Logical Object Volume Management:

/dev/obd0
(type RAID-0)

Attachment meta data:
Stripe on /dev/obd{1,2,3}

(no objects)

/dev/obd1 (type ext2obd)
Obj meta data + blocks 1,4,7

/dev/obd2 (type ext2 obd)
Obj meta data + blocks 2,5,8

/dev/obd3 (type ext2obd)
Obj meta data + blocks 3,6,9

Objects may be files, or not…
� Common case:

� Object, like inode, represents a file

� Object can also:
� represent a stripe (RAID)
� bind an (MPI) File_View
� redirect to other objects

Snapshot setup

� Result:
� /dev/obd2 is read only clone
� /dev/obd1 is copy on write (COW) for 8am

OBD ext2 direct driver

OBD logical snapshot driver

/dev/obd0

/dev/obd1
snap=current
device= obd0

/dev/obd2
snap=8am
device =obd0

attachment

Attachment meta data

Snapshots in action

� mount /dev/obd1 /mnt/obd
� mount /dev/obd2 /mnt/obd/8am

� Modify /mnt/obd/files

� Result:
� new copy in /mnt/obd/files
� old copy in /mnt/obd/8am

Snap_write

objectX

7am
bla bla

objectX

7am
bla bla

9am
bla bla

objY objZ

OBDFS

COWbefore after

POBIO

Parallel Object Based I/O
� Object Read/Write primitives

� Send multiple buffers
� To multiple disk destinations
� “true scatter/gather”, not just VM

� Needed ADIO logical object driver
� Abstract device I/O
� Lower level interface to implement MPI-IO

� filetypes:
� MPI_Data & File type support in logical

OBD layer

Collective, shared, async I/O
� need an object open:

� that takes MPI_Comm

� waiting primitives for I/O completion
� Easy to do with DLM

� shared file pointers

Noncontiguous I/O

A
D

IO
 t

o
O

B
D

 d
ri

ve
r

open with MPI
file type

Noncontiguous
read/write O

B
D

 c
lie

n
t

O
B

D
 T

ar
ge

t

C
ol

le
ct

iv
e

&
 s

h
ar

ed
 O

B
D

Collective or shared handle open

R
A

ID
/A

gg
re

ga
ti

on D
ir

ec
t

O
B

D
D

ir
ec

t
O

B
D

D
ir

ec
t

O
B

D

• OBD protocol has scatter/gather non contiguous RW

net

compute node storage node

POBIO with File System

POBIO
client

POBIO-FS

MP-IO

O
B

D
 C

lie
n

tADIO
iface

FS
iface

JO
B

O
B

D
 T

ar
g e

t POBIO
server

R
A

ID
/S

n
ap

Direct

Direct

Direct

File Manager (one)

storage node(many)

Only if comp node !=
storage node

compute node (many)

FS conn

Fast I/O path

Resource path

Resource management
� Make explicit provisions for

� Scheduler resource records
� (Pre-)Replication of (segments of) data

� Use file manager to get handles
� Manages directory information
� Returns “fast path” file handles to replica

POBIO – resource mgmt

Job scheduler

Manage Object Handles
- replica management
- file system directory data
- map resource handles to replicas

Start jobs
With resource handles

Register resource
handles & request
pre-replication

Compute node

Open file:
- use resource handle
- fast path to replica

Receive and store
Replicas of data objects

Fast path

Initiate
replication
and re-storage

Replication
path

Storage node

Resource management node

M
an

ag
em

en
t

pa
th

POBIO – further comments
� Many components already exist

� We have object based file system
� Aggregation & snapshot drivers
� Infrastructure for stacking objects

� Not monolithic:
� Can build separate components

� Would love to build a prototype

Linux clusters

Clusters - purpose
� Assume:

� Have a limited number of systems
� On a secure System Area Network

� Require:
� A scalable almost single system image
� Fail-over capability
� Load-balanced redundant services
� Smooth administration

Ultimate Goal
� provide generic components
� OPEN SOURCE
� Inspiration: VMS VAX Clusters
� New:

� Scalable (100,000’s nodes)
� Modular

� Need distributed, cluster & parallel FS’s
� InterMezzo, GFS/Lustre, POBIO-FS

The Linux “Cluster Cabal”:

� Peter J. Braam – CMU, Stelias Computing, Red Hat

� Stephen Tweedie – Red Hat

� Who is doing what?

� Tweedie
� Project leader
� Core cluster services

� Braam
� DLM
� InterMezzo FS
� Lustre Cluster FS

� Many others

� McVoy
� Cluster computing
� SMP clusters

� Red Hat
� Cluster apps & admin

� UMN
� GFS: Shared block FS

Technology Overview

Modularized VAX cluster architecture (Tweedie)

Channel Layer

Integrity

Link Layer

Transition Cluster db

Barrier Svc

Event system

Quorum

DLM

Cluster Admin/Apps

Cluster FS & LVM

Distr. Computing

Core Support Clients

Events

� Cluster transition:
� Whenever connectivity changes
� Start by electing “cluster controller”

� Only merge fully connected sub-clusters
� Cluster id: counts “incarnations”
� Barriers:

� Distributed synchronization points

Scalability – e.g. Red Hat cluster

/redhat/usa /redhat/scotland /redhat/canada

P PP

� P = peer
� Proxy for remote core cluster
� Involved in recovery

� Communication
� Point to point within core clusters
� Routable within cluster
� Hierarchical flood fill

� File Service
� Cluster FS within cluster
� Clustered Samba/Coda etc

� Other stuff
� Membership / recovery
� DLM / barrier service
� Cluster admin tools

SAN

Lustre File System

� Lustre ~ Linux Cluster

� Object Based Cluster File System
� Based on OBSD’s

� Symmetric - no file manager
� Cluster wide Unix semantics: DLM
� Journal recovery
� Suitable for e.g. clustered database files

Benefits of Lustre design

� Space & object allocation
� Managed where it is needed
� Eliminate sharing bitmaps etc

� Consequences
� Somewhat similar to Calypso (IBM)
� IBM (Devarakonda etc): less traffic
� Much simpler locking

InterMezzo

http://www.inter-mezzo.org

Target
� Replicate or cache directories

� Automatic synchronization
� Disconnected operation
� Proxy servers
� Scalable

� Purpose
� Entire System Binaries
� Home directories: laptop/desktop

� Very simple
� Coda style protocols
� Wrap around local file systems as cache

Server

Client 1

Client 3Client 2

4. Replicators synchronized

3. Forward

mkdir...
create...
rmdir…
store...

2. Reintegrate

mkdir...
create...
rmdir…
store...

1. Modify folder
collection

VFS/
IFSMGR/
IOMgr

Lento:
Cache Manager

Filter: data fresh?

Local file system

Kernel Update Journal

mkdir...
create...
rmdir...
unlink...
link….

P
re

st
o

no

Update propagation
& fetching with
InterMezzo servers

application

File system
request

Basic InterMezzo

Conclusion
� Lots of interesting projects
� Object Based Storage

� Promising: needs exploration
� Modular structure
� Requires only commodity hardware

� InterMezzo
� Finding wide acceptance
� Lots of work needed

Distributed Lock Manager

Locks & resources
� Purpose: generic, rich lock service
� Will subsume “callbacks”, “leases” etc.

� Lock resources: resource database
� Organize resources in trees
� Most lock traffic is local

� High performance
� node that acquires resource manages tree

Typical simple lock sequence

Sys A: has
Lock on R

Sys B: need
Lock on R

Who has R?
Sys A

Sys B: need
Lock on R

Resource mgr =
Vec[hash(R)]

Block B’s request:
Trigger owning process

Sys B: need
Lock on R

I want lock on A

Owning process:
releases lock

Grant lock to sys B

A few details…

� Six lock modes
� Acquisition of locks
� Promotion of locks
� Compatibility of locks

� First lock acquisition
� Holder will manage
resource tree

� Remotely managed
� Keep copy at owner

� Callbacks:
� On blocking requests
� On release, acquisition

� Recovery (simplified):
� Dead node was:

� Mastering resources
� Owning locks

� Re-master rsrc
� Drop zombie locks

