
1

Lustre: building a cluster file
system for 1,000 node clusters

Phil Schwan
phil@clusterfs.com
http://www.clusterfs.com

2 - Summer 2003

Topics

! 60-second Lustre introduction
! A slice of what went well
! One critical mistake
! Questions
! Time permitting: on deck for 2003-2004

3 - Summer 2003

(very) Basics

! GPLed cluster file system for Linux
! Stable on 2.4.x, making rapid progress for 2.6

! Aims for POSIX compliance
! Layering of object protocols
! Distributed lock manager
! Usually separate metadata and file data

servers

4 - Summer 2003

Data Transfers

Namespace
Management

Storage
Management

Clients

High-Speed Interconnect
(GigE, Elan3, Myrinet)

Meta Data Server

Object
Storage
Targets

5 - Summer 2003

What went well

Distributed Lock Manager

6 - Summer 2003

Simplicity

! Based on VAX DLM concepts

! Built from scratch

! Why not use the IBM DLM?
! 1/10th of the size (4,000 lines of code)
! We don’t need most complicated features
! We do need different extensions

7 - Summer 2003

DLM extensions

! Extent locks
! A new lock type, with an extra field
! Policy for automatic extent growth
! Common case: one user, one lock

! Lots of file systems don’t manage this well
! One lock per file – no concurrency
! One lock per block/page – billions of locks
! Locks? Where?

8 - Summer 2003

DLM extensions part 2

! Intent locking
! Allows the DLM to make policy decisions
! Grant a lock in a low-concurrency situation
! Perform the operation in a high-concurrency

situation
! More on intent locks coming up

9 - Summer 2003

What went well

Scaling metadata to 1,000 nodes

10 - Summer 2003

Scaling metadata to 1,000 nodes

! Consider: 2,000 processes on 1,000 nodes
! All create one or more files simultaneously
! In the same directory

! This is not contrived—some LLNL science
runs do this every hour

11 - Summer 2003

Metadata option #1: lock the
directory
! Take a write lock on the parent directory
! Check to see if the file exists
! Add the new directory entry

! Very efficient for the single-user case
! Easy to implement: mimics the VFS code
! A complete disaster for our 1,000-node

example

12 - Summer 2003

Metadata option #2: raw calls

! Execute operations entirely on the server
! Don’t return locks to clients, only a status

code

! Avoids lock ping-pong
! File creations can take one RPC
! Not very good for the single-user case

13 - Summer 2003

What went wrong

Metadata Intent Locking

14 - Summer 2003

Current Linux VFS

VFS FS

sys_mkdir

namei

Test if OK

vfs_mkdir

Inode lookup operation
Dentry revalidate operation

Inode mkdir operation

15 - Summer 2003

We added “intents” to lookups

FSVFS

sys_mkdir
namei

intent mkdir

Test if OK
no:

d_intent_release

vfs_mkdir

d_intent_release

Inode lookup operation /or/
Dentry revalidate operation
FS arranges for ‘mkdir’ locks

Release lock

Inode mkdir operation

Release lock

16 - Summer 2003

What’s the point?

! VFS code prefers to lock directories
! The intent code reorganizes around that

! Not all metadata loads are alike
! Locking directories is terrible for concurrent

updates
! Server execution is terrible for the common

single-client case

! Intents give the option to the file system

17 - Summer 2003

Intents gone wrong

! Juggling too many things
! Needed too many locks to safely use the VFS

code
! Too many corner cases

! Server view of execution must exactly match the
client’s view

! There was a simpler solution right around
the corner…

18 - Summer 2003

Intents become “raw” operations

! Still gives the lock manager an opportunity to
choose

! If contention is low…
! Server returns a write-back lock

! If contention is high…
! Server executes for us, sends a return code
! Returns no locks at all
! We skip all client VFS code

19 - Summer 2003

What went well

Object Protocols

20 - Summer 2003

Lustre file I/O in brief

! Object protocols were a no-brainer
! No shared-block file system will scale to

1,000 nodes
! Shared disk much too expensive
! Locking for block allocation

! Lustre storage targets manage object and
block allocation

21 - Summer 2003

Lustre file I/O in brief

! Very simple object-based protocol. For
example:

! lock(object id, start, end) " returns lock handle
! write(object id, offset, data, length)
! unlock(lock handle)

22 - Summer 2003

Yes, but does it work?

23 - Summer 2003

What went so-so

Debugging

24 - Summer 2003

Debugging

! An extensive logging system
! The log output is frequently more than the size of the I/O
! Full debug is gigabytes for a simple test

! Tools to filter and contextualize the logs
! Using the logs requires immense understanding

“also, if you think the stuff in the Matrix about people
learning to “read” is lame, then you haven’t
watched Phil read Lustre debug logs.” – Jacob

25 - Summer 2003

Tools

! Linus hates them, but we thrive on good
debug tools

! The first time we write a piece of code, we
test it in UML under GDB

! We make extensive use of mcore, netdump,
and crash on the real hardware
! Saves more time than I care to count

! Working on kgdb-over-UDP extension
! Turns out someone already started

26 - Summer 2003

Debug issues

! Sometimes we let our tools slip
! Improving our tools almost immediately

improves our work
! The tools on ia64 were terrible for a long time

! It’s not a trivial system
! It’s still a 1,000-node state machine

! Overall, we get a B for debugging

27 - Summer 2003

The real world

! 3 of the top 8 supercomputers in the world run
Linux. Lustre runs on all 3.
! LLNL MCR: 1,100-node ia32 cluster (#3)
! LLNL ALC: 950-node ia32 cluster (#6)
! PNNL EMSL: 950-node ia64 cluster (#8)

! Installing in 2003-2004:
! NCSA: 1,000 nodes
! SNL/ASCI Red Storm: 8,000 nodes
! LANL Pink: 1,000 nodes

! Chosen for ASCI PathForward SGS file system

	Lustre: building a cluster file system for 1,000 node clusters
	Topics
	(very) Basics
	What went well
	Simplicity
	DLM extensions
	DLM extensions part 2
	What went well
	Scaling metadata to 1,000 nodes
	Metadata option #1: lock the directory
	Metadata option #2: raw calls
	What went wrong
	Current Linux VFS
	We added “intents” to lookups
	What’s the point?
	Intents gone wrong
	Intents become “raw” operations
	What went well
	Lustre file I/O in brief
	Lustre file I/O in brief
	Yes, but does it work?
	What went so-so
	Debugging
	Tools
	Debug issues
	The real world

