
T10
Working draft NCITS TBD-200X Project 1355D

Revision 3
 1 October 2000

Information Technology -
SCSI Object Based Storage Device Commands (OSD)

Notice:

This is a draft proposed standard for an American National Standard of T10, a Technical Committee of
Accredited Standards Committee NCITS. As such, this is not a completed standard. The T10 Technical
Committee may modify this document as a result of comments received during its processing and its
approval as a standard.

Permission is granted to members of NCITS, its technical committees, and their associated task groups
to reproduce this document for the purposes of NCITS standardization activities without further
permission, provided this notice is included. All other rights are reserved. Any commercial or for-profit
duplication is strictly prohibited.

Abstract: This standard specifies the functional requirements for the Object Based Storage
commands. Objects designate entities in which computer systems store data. The purpose of this
abstraction is to assign to the storage device the responsibility for managing where data is located on
the device.

T10 Technical Editor: Gene Milligan
Seagate Technology Inc. OKM151
10321 West Reno
Oklahoma City, OK 73127-9705
P.O. Box 12313
Oklahoma City, OK 73157-2313
USA

Tel: (405) 324-3070
Fax: (405) 324-3794
Email: gene_milligan@notes.seagate.com

Reference number
ISO/IEC ***** : 199x

ANSI NCITS 306 - 199x
Printed October, 2, 2000 7:45AMOctober, 1, 2000 7:42PM

Other Points of Contact:

T10 Chair T10 Vice-Chair

John B. Lohmeyer George O. Penokie

LSI Logic IBM

4420 Arrows West Drive Department 2B7

Colorado Springs, CO 80907-3444 3605 Highway 52 North

Tel: (719) 533-7560 Rochester, MN 55901

Fax: (719) 533-7036 Tel: (507) 253-5208

Email: lohmeyer@ix.netcom.com Fax: (507) 253-2880

Email: gop@us.ibm.com

NCITS Secretariat

NCITS Secretariat

1250 Eye Street, NW Suite 200

Washington, DC 20005

Telephone: 202-737-8888

Facsimile: 202-638-4922

Email: ncits@itic.org

T10 Web Site www.t10.org

T10 Reflector: To subscribe send e-mail to majordomo@T10.org with ‘subscribe’ in message the
body

To unsubscribe send e-mail to majordomo@T10.org with ‘unsubscribe’ in the message body

Internet address for distribution via T10 reflector: T10@T10.org

Document Distribution:

Global Engineering Telephone: 303-792-2181 or

15 Inverness Way East 800-854-7179

Englewood, CO 80112-5704 Facsimile: 303-792-2192

Revision history:

Revision 0:
Initial draft

Revision 1:

Converted to ISO/IEC style.

Edits agreed in 1/2000 T10 meeting.

Revision 2:

General edits through 5.2.

Item 1-d of 00-262r0 per 7/2000 T10 OSD WG.

Item 1-e of 00-262r0 per 7/2000 T10 OSD WG.

Item 2.1 and 2.3 of 00-262r0 per 7/2000 T10 OSD WG.

Item 3.4 of 00-262r0 per 7/2000 T10 OSD WG.

Added reservations clause as a point of departure.

Modified abstract partiall y based upon comments from John Wilkes of HP and made other
edits as suggested by some of his comments.

Eliminating footnotes.

Revision 3:

Markups from 9/14/2000 T10 working group.

T10/00-330r0

General edits from 5.3 to the end of the draft.

Added acronyms per working group request.

Added hierarchy diagram to conventions and model per working group request.

ANSI (r)
NCITS.***:199x

Draft

American National Standards
for Information Systems –

 SCSI Object Based Storage Device Commands (OSD)

Secretariat
National Committee for Information Technology Standards

Approved mm dd yy

American National Standards Institute, Inc.

Abstract
This SCSI command set is designed to provide efficient peer-to-peer operation of input/output logical
units by an operating system using Object Based Storage commands. Objects designate entities in
which computer systems store data. The purpose of the OSD abstraction is to assign to the storage
device the responsibility for managing where data is located on the device.

Contents

1 Scope . 1

2 Normative References . 3

2.1 Approved references . 3
2.2 References under development . 3

3 Definitions . 3

3.1 Terms . 3
3.1.1 application client: . 3
3.1.2 Block Based Storage device (SBC). 3
3.1.3 Heterogeneous. 4
3.1.4 Object. 4
3.1.5 Object Based Storage Device (OSD). 4
Object Storage Architecture (OSA). 4
3.1.7 Object Group. 4
3.1.8 Session. 4
3.1.9 Storage device. 4
3.1.10 Storage Management. 4
3.1.11 Storage Area Network (SAN). 5

3.2 Symbols and abbreviations . 5
3.3 Keywords . 5

3.3.1 expected: . 5
3.3.2 mandatory: . 5
3.3.3 may: . 5
3.3.4 may not: . 6
3.3.5 obsolete: . 6
3.3.6 optional: . 6
3.3.7 reserved: . 6
3.3.8 shall: . 6
3.3.9 should: . 6
3.3.10 vendor-specific: . 6

3.4 Conventions . 6
3.4.1 General . 6
3.4.2 Hierarchy diagram conventions . 7

4 SCSI OSD Model . 7

4.1 Overall Architecture . 7
4.2 Elements of the example configuration . 8
4.3 Description of the OSD Architecture .11

4.3.1 SCSI Model .11
4.3.2 Storage devi ce organization. .11

4.4 OSD Sessions .12
4.4.1 Objects .13

4.4.1.1 Object Types .13

4.4.1.2 Object Organization .14
4.4.1.3 Well-Known Objects .14

4.4.2 Object Group Object List (GOL) in an Object Group Control Object15
4.5 Overview of OSA Operation .15

4.5.1 Preparing a device for OSD operation .15
4.5.2 Startup – Discovery and Configuration. .15

Verification . 1615
4.5.3 Accessing data on the OSD Example .16
4.5.4 OSD Mandatory Actions template. .17
4.5.5 OSD Optional Action .18

4.6 Reservations .19
5 Data fields .21

5.1 Command format .21
5.2 Variable Length CDB Definition .22

5.2.1 Fields used in Actions and Responses .22
5.2.1.1 Service Action Code .22
5.2.1.2 Attribute Mask .22
5.2.1.3 Length. .22
5.2.1.4 Object ID .23
5.2.1.5 Option Byte 1. .23
5.2.1.6 Option Byte 2. .23
5.2.1.7 Object Group ID. .23
5.2.1.8 Object Group Remaining Capacity. .24
5.2.1.9 Source Storage device. .24
5.2.1.10 Session ID. .24
5.2.1.11 Starting byte address. .24

5.3 Attributes .24
5.4 Data Storage Policies .24

5.4.1 Classes of Object Attributes .25
5.4.2 Other Attributes .27

5.4.2.1 OSD Control Object (DCO) .27
5.4.2.2 Over-subscription. .27
5.4.2.3 Object Group Control Object (GCO). .27

5.4.3 Setting Session Parameter Values .28
5.4.3.1 General Structure. .28
5.4.3.2 Attribute-Setting Commands .28
5.4.3.3 Attribute-Retrieving Commands .29

Commands .29

6.1 Format OSD (Mandatory) .31
6.2 CREATE (Mandatory). .31
6.3 LIST (Mandatory) .33
6.4 OPEN (Optional) .33
6.5 READ (Mandatory) .35
6.6 WRITE (Mandatory). .37

6.7 APPEND (Mandatory) .38
6.8 FLUSH Object (Mandatory). .39
6.9 CLOSE (Optional) .40
6.10 REMOVE (Mandatory). .41
6.11 CREATE OBJECT GROUP (Mandatory) .42
6.12 REMOVE OBJECT GROUP (Mandatory). .42
6.13 IMPORT Object (optional) .43
6.14 GET ATTRIBUTES (Mandatory). .45
6.15 SET ATTRIBUTES (Mandatory) .46

Figures

Figure 2 - Comparison of traditional and OSD storage models 8

Figure 3 - Example OSA Configuration ... 9

Figure 4 - Basic SCSI hierarchy (reference only)...11

Figure 5 - Basic OSD hierarchy ..12

Table 7 OSD Mandatory commands with field lengths18

Table 8 - OSD Optional Action with field lengths ...18

Table 11 - Option byte 1..23

Table 12 - Option byte 2..23

Table 13 - Potential Object Attributes ...26

Table 14 - Potential Storage Device Control Object Attributes27

Table 15 - Object Group Control Object Attributes ...28

Table 16 - Parameter Modifiers ..28

Table 17 - Commands for object based storage devices30

Table 18 - Format OSD...31

Table 19 - Format OSD Response..31

Table 20 - CREATE Object Action ..32

Table 21- Response to CREATE Object Action ..33

Table 22 - OPEN Object Action ..34

Table 23 - Response to OPEN Object Action..35

Table 24 - Read Action..36

Table 25 - Response to Read Object Action ..37

Table 26 - WRITE Object Action...37

Table 27 - Response to WRITE Object Action ..38

Table 28 - APPEND..39

Table 29 - APPEND to Object Response...39

Table 30 - FLUSH Object Operation..40

Table 31 - FLUSH Object Response...40

Table 32 - CLOSE Object Action ..41

Table 33 - Response to CLOSE Object Action..41

Table 34 - REMOVE Object Action ...41

Table 35 - REMOVE Object Response..42

Table 36 - CREATE OBJECT GROUP Action ..42

Table 37 - Response to CREATE OBJECT GROUP42

Table 38 - REMOVE OBJECT GROUP Action ...43

Table 39 - Response to REMOVE OBJECT GROUP Action...........................43

Table 40 - Import Object Action ..44

Table 41 - Response to Import Object Action..45

Table 42 - GET ATTRIBUTES Action..46

Table 43 – Response to GET ATTRIBUTE Action...46

Table 44 - SET ATTRIBUTES Action ..47

Table 45 - Response to Set Attribute Action ...47

Figure 1 CREATE Action Option byte 2 ...48

Figure 2 OPEN Action Options ...49

Figure 3 WRITE Action Option byte 2..50

Figure 4 WRITE Action Option byte 2..51

Figure 5 APPEND Action Option byte 2...51

Figure 6 REMOVE Object Action Option byte 2 ..52

Figure 7 APPEND Action Option byte 2...53

Figure 8 Option byte 1 support for aggregation ...60

Table 51 - Example 2: Read Aggregated Objects ...66

Foreword

(This foreword is not part of American National Standard NCITS XXX-200X.)

This SCSI command set is designed to provide efficient peer-to-peer operation of input/output logical
units by an operating system using Object Based Storage commands. The SCSI command set
assumes an underlying command-response protocol.

This SCSI command set provides multiple operating systems concurrent control over one or more
input/output logical units. However, the multiple operating systems are assumed to properly
coordinate their actions to prevent data corruption. This SCSI standard provides commands that
assist with coordination between multiple operating systems. However, details of the coordination
are beyond the scope of the SCSI command set.

This standard defines a logical unit model for Object Based Storage Device logical units. Also
defined are SCSI commands that apply to Object Based Storage Device logical units.

Objects designate entities in which computer systems store data. The purpose of this abstraction is
to assign to the storage device the responsibility for managing where data is located on the device.

This standard was developed by T10 in cooperation with industry groups during 1999 through 200X.
Most of its features have been tested in pilot products implementing these concepts in conjunction
with standard transport protocols.

This standard contains four informative annexes that are not considered part of this standard.

Requests for interpretation, suggestions for improvement or addenda, or defect reports are welcome.
They should be sent to the National Committee for Information Technology Standards (NCITS, ITI,
1250 Eye Street, NW, Suite 200, Washington, DC 20005.

SCSI OSD Command Set D1355r2

1

1 Scope

This standard defines the command set extensions to control operation of Object Based
Storage devices. The clause(s) of this standard pertaining to the SCSI Object Based Storage
Device class, implemented in conjunction with the applicable clauses of the ANSI NCITS XXX
-200X SCSI Primary Commands –2 (SPC-2), fully specify the standard command set for SCSI
Object Based Storage devices.

The objective of this standard is to provide the following:

a) Permit an application Requesterclient to communicate with a logical unit that declares
itself to be a Object Based Storage device in the device type field of the INQUIRY
command response data over an SCSI service delivery subsystem;

b) Enable construction of a shared storage processor cluster with equipment and software
from many different vendors;

c) Define commands unique to the type of SCSI Object Based Storage devices;

d) Define commands to manage the operation of SCSI Object Based Storage devices.

Figure 1 - SCSI standards - general structure

Figure 1Figure 1Figure 1 is intended to show the general structure of SCSI standards. The
figure is not intended to imply a relationship such as a hierarchy, protocol stack, or system
architecture. It indicates the applicability of a standard to the implementation of a given
transport.

At the time this standard was generated examples of the SCSI general structure included:

Physical Interconnects:

Fibre Channel Arbitrated Loop -2 [ANSI NCITS XXX –199X or 200X]

Fibre Channel - Physical and Signaling Interface [ANSI X3.230-1994]

SCSI OSD Command Set D1355r2

2

High Performance Serial Bus [IEEE 1394-1995]

SCSI Parallel Interface -2 [ANSI NCITS 302-1999]

SCSI Parallel Interface -3 [ANSI NCITS XXX-200X]

Serial Storage Architecture Physical Layer 1 [ANSI X3.293-1996]

Serial Storage Architecture Physical Layer 2 [ANSI NCITS 307-1998]

Transport Protocols:

Serial Storage Architecture Transport Layer 1 [ANSI X3.295-1996]

SCSI-3 Fibre Channel Protocol [ANSI X3.269-1996]

SCSI-3 Fibre Channel Protocol - 2 [NCITS T10/1144D]

SCSI Serial Bus Protocol -2 [NCITS T10/1155D]

Serial Storage Architecture SCSI-2 Protocol [ANSI X3.294-1996]

Serial Storage Architecture SCSI-3 Protocol [ANSI NCITS 309-1998]

Serial Storage Architecture Transport Layer 2 [ANSI NCITS 308-1998]

Shared Command Set:

SCSI-3 Primary Commands [ANSI NCITS 301-1997]

SCSI Primary Commands – 2 [ANSI NCITS XXX-200X]

Device-Type Specific Command Sets:

SCSI Object Based Storage Device Commands (this standard)

SCSI-3 Block Commands [ANSI NCITS 306-1998]

SCSI-3 Enclosure Services [ANSI NCITS 305-1998]

SCSI-3 Stream Commands [NCITS T10/997D]

SCSI-3 Medium Changer Commands [NCITS T10/999D]

SCSI-3 Controller Commands [ANSI X3.276-1997]

SCSI Controller Commands - 2 [ANSI NCITS 318-1998]

SCSI-3 Multimedia Command Set [ANSI NCITS 304-1997]

SCSI Multimedia Command Set - 2 [NCITS T10/1228D]

Architecture Model:

SCSI-3 Architecture Model [ANSI X3.270-1996]

SCSI Architecture Model - 2 [NCITS T10/1157D]

Common Access Method:

SCSI Common Access Method [ANSI X3.232-1996]

SCSI Common Access Method - 3 [NCITS T10/990D]

The Small Computer System Interface -2 (ANSI X3.131-1994) is referred to herein as SCSI-2.
The term SCSI in this standard refers to versions of SCSI defined since SCSI-2.

The set of SCSI standards specifies the interfaces, functions, and operations necessary to
ensure interoperability between conforming SCSI implementations. This standard is a

SCSI OSD Command Set D1355r2

3

functional description. Conforming implementations may employ any design technique that
does not violate interoperability.

2 Normative References

The following standards contain provisions that, through reference in the text, constitute
provisions of this American National Standard. At the time of publication, the editions
indicated were valid. All standards are subject to revision, and parties to agreements based
on this American National Standard are encouraged to investigate the possibility of applying
the most recent editions of the standards listed below.

Copies of the following documents can be obtained from ANSI: Approved ANSI standards,
approved and draft international and regional standards (ISO, IEC, CEN/CENELEC, ITU-T),
and approved standards of other countries (including BSI, JIS, and DIN). For further
information, contact ANSI’s Customer Service Department at 212-642-4900 (telephone), 212-
302-1286 (fax) or via the World Wide Web at http://www.ansi.org.

Additional availability contact information is provided below as needed.

2.1 Approved references

ANSI NCITS XXX.200X , Information technology - SCSI Primary Commands –2

ANSI NCITS XXX.200X , Information technology - SCSI Architecture Model –2

2.2 References under development

At the time of publication, the following referenced standard was still under development. For
information on the current status of the document, or regarding availability, contact the
relevant standards body as indicated.

Editor’s Note: This subclause may not be needed.

Note 1 - For more information on the current status of the document, contact the NCITS Secretariat at 202-737-
8888 (telephone), 202-638-4922 (fax) or via Email at ncits@itic.org. To obtain copies of this document, contact
Global Engineering at 15 Inverness Way East Englewood, CO 80112-5704 at 800-854-7179 (telephone), 303-792-
2181 (telephone), or 303-792-2192 (fax).

3 Definitions

3.1 Terms

3.1.1 application client:

An object that is the source of SCSI commands. Further definition of an application client may
be found in the SCSI Architecture Model -2 (SAM-2).

Note 2 – In typical networking applications a network client putting its workload on a server, which in turn submits
I/O requests to storage, is not the applicable application client. The network client’s server is, as the server is the
element actually engaging in I/O with the OSD.

3.1.2 Block Based Storage device (BBSDSBC).

 A storage device that manages space as an ordered set of fixed length blocks. This is the
typical mode used prior to the introduction of OSD.

SCSI OSD Command Set D1355r2

4

3.1.3 Heterogeneous.

A computing environment characterized by the presence of multiple computer systems, at
least two of which run operating systems employing non mutually intelligible file systems.

3.1.4 Object.

 An ordered set of bytes within a storage device and associated with a unique identifier.
Data is referenced by the identifier and an offset into the object. It is allocated and placed on
the media by the storage device.

3.1.5 Object Based Storage Device (OSD).

 A storage device in which data is organized and accessed as objects.

3.1.6 Object Based Storage Object Storage Architecture (OBSOSA).

 This term is used to describe a storage architecture employing OSD.

3.1.7 Object Group.

 A subset of the Objects on a single OSD. The subset may have a capacity quota associated
with it.

3.1.8Requester.

 A node in a cluster or network of systems with an application client that submits a request
for action by a storage device. The term Requester is used as a general description for
systems including both clients and servers, as either could be directly connected to OBSD
and impose workloads on it. A client with an application client putting its workload on a
server, which in turn has an application client that submits I/O requests to storage, is not a
Requester. The client’s server is, as the server is the element actually engaging in I/O with
the OBSD.

3.1.93.1.8 Session.

 A set of I/O operations, subscribing to a set of previously specified quality of service
characteristics, submitted by an application client Requester to an OSD device. A session is
initiated by an OPEN on an object and terminated by a CLOSE on the object.

3.1.103.1.9 Storage device.

 A secondary storage unit that preserves a non-volatile copy of data sent to it and a means
for retrieving any subset of that data. Discs, tapes, CD-ROM’s and storage subsystems are
examples of storage devices. An Object Based Storage device may be any of these.

3.1.113.1.10 Storage Management.

 The task of enabling, controlling and maintaining physical storage (e.g., disk, tape, optical
storage) to store, retain and deliver data. Storage Management also includes selecting the
appropriate storage device considering activity, cost of storage, and requirements for quality
of service.

SCSI OSD Command Set D1355r2

5

3.1.123.1.11 Storage Area Network (SAN).

A peer connection between one or more storage devices and one or more computers.

3.2 Symbols and abbreviations

CDB command descriptor block
HSM Hierarchical Storage Manager
I/O input/output
ID identifier
LSB least significant bit
MMC SCSI-3 Multimedia Command Set
MSB most significant bit
OBS Object Based Storage
OSA Object Storage Architecture
OSD Object Based Storage Device Commands
QoS Quality of Service
SAM SCSI-3 Architecture Model
SCC SCSI-3 Controller Commands
SCSI either SCSI-2 or SCSI-3
SCSI-2 the Small Computer System Interface-2
SCSI-3 the Small Computer System Interface-3
SPC SCSI-3 Primary Command Set standard
XOR exclusive-or

3.23.3 Keywords

Keywords to differentiate levels of requirements and optionality.

3.2.1allowed:

Commands issued by initiators not holding the reservation or by initiators not registered when
a registrants only persistent reservation is present should complete normally.

3.2.2conflict:

Commands issued by initiators not holding the reservation or by initiators not registered when
a registrants only persistent reservation is present shall not be performed and the device
server shall terminate the command with a RESERVATION CONFLICT status.

3.2.33.3.1 expected:

Used to describe the behavior of the hardware or software in the design models assumed by
this standard. Other hardware and software design models may also be implemented that
comply with the interoperability requirements of this standard

3.2.43.3.2 mandatory:

 Indicates items required to be implemented as defined by this standard.

3.2.53.3.3 may:

Indicates flexibility of choice with no implied preference.

SCSI OSD Command Set D1355r2

6

3.3.4 may not:

A keyword that indicates flexibility of choice with no implied preference (equivalent to
"may or may not").

3.2.63.3.5 obsolete:

 Indicates items that were defined in prior SCSI standards but have been removed from this
standard. (Editor’s note: Probably this one will be omitted since this is a first standard and
therefore is not obsoleting anything in a prior standard.)

3.3.6 optional:

 Describes features that are not required to be implemented by this standard. However, if any
optional feature defined by the standard is implemented, it shall be implemented as defined
by this standard.

3.2.83.3.7 reserved:

 Refers to bits, bytes, words, fields, and code values that are set aside for future
standardization. Their use and interpretation may be specified by future extensions to this or
other standards. A reserved bit, byte, word, or field shall be set to zero, or in accordance with
a future extension to this standard. The recipient may not check reserved bits, bytes, words,
or fields. Receipt of reserved code values in defined fields shall be treated as an error.

3.2.93.3.8 shall:

 Indicates a mandatory requirement. Unless part of an optional feature that is not
implemented, dDesigners are required to implement all such mandatory requirements to
ensure interoperability with other standard conformant products.

3.2.103.3.9 should:

 Indicates flexibility of choice with a strongly preferred alternative. Equivalent to the phrase “it
is recommended.”

3.2.113.3.10 vendor-specific:

 Items (e.g., a bit, field, code value, etc.) that are not defined by this standard and may be
vendor defined.

3.33.4 Conventions

3.4.1 General

Lower case is used for words having the normal English meaning. Certain words and terms
used in this standard have a specific meaning beyond the normal English meaning. These
words and terms are defined either in clause 3or in the text where they first appear.

Listed items in this standard do not represent any priority. Any priority is explicitly indicated.
Formal lists (e.g., (a) red; (b) blue; (c) green) connoted by letters are in an arbitrary order.
Formal lists (e.g., (1) red; (2) blue; (3) green) connoted by numbers are in a required
sequential order.

SCSI OSD Command Set D1355r2

7

If a conflict arises between text, tables, or figures, the order of precedence to resolve conflicts
is text; then tables; and finally figures. Not all tables or figures are fully described in text.
Tables show data format and values.

The ISO/IEC convention of numbering is used (i.e., the thousands and higher multiples are
separated by a space and a comma is used as the decimal point as in 65 536 or 0,5).

The additional conventions are:

The names of abbreviations, commands, and acronyms used as signal names are in all
uppercase (e.g., IDENTIFY DEVICE);

Fields containing only one bit are referred to as the "NAME" bit instead of the "NAME" field;

Field names are in SMALL CAPS to distinguish them from normal English;

Numbers that are not immediately followed by lower-case b or h are decimal values;

Numbers immediately followed by lower-case b (xxb) are binary values;

Numbers immediately followed by lower-case h (xxh) are hexadecimal values;

The most significant bit of a binary quantity is shown on the left side and represents the
highest algebraic value position in the quantity;

If a field is specified as not meaningful or it is to be ignored, the entity that receives the
field shall not check that field.

3.4.2 Hierarchy diagram conventions

Hierarchy diagrams show how entities are related to each other. In the corresponding
hierarchy diagram, labeled boxes denote entities. The composition and relation of one entity
to others is shown by the connecting lines. The I-beam symbol denotes a relationship where
an entity contains either one or the other or both of a pair of other ent ities . In the hierarchy
diagram, entities that are required to have one and only one instance are shown as simple
boxes. The hierarchy diagram also shows multiple instances of an object by the presence of a
shadow. Entities that are optional are indicated by light diagonal lines. An entity that may not
have any instances, have only one instance, or have multiple instances is shown with both
diagonal lines and a shadow. The instance indications shown in a hierarchy diagram are
approximate, detailed requirements appear in the accompanying text. For a more detailed
description of hierarchy diagrams see SAM-2.

4 SCSI OSD Model

4.1 Overall Architecture

The object abstraction is designed to re-divide the responsibility for managing the access to
data on a storage device by assigning to the storage device additional activities in the area of
space management. See Figure 2Figure 2Figure 2.

SCSI OSD Command Set D1355r2

8

File system
User Component

File system
Storage Component

Sector/LBA INTERFACE

APPLICATIONS

SYSTEM CALL INTERFACE

TRADITIONAL MODEL

APPLICATIONS

SYSTEM CALL INTERFACE

OSD INTERFACE

OSD MODEL

File system
User Component

 Block I/O manager

OSD Storage
Management Component

Block I/O manager

Figure 2 - Comparison of traditional and OSD storage models

The user component of the file system contains such functions as:

Hierarchy management;

Naming;

User access control.

Although the storage management component is focused on mapping the file system logical
constructs to the physical organization of the storage media, the file system will continue to
have the ability to influence the properties of data through the specification of attributes.
These can, for instance, direct the location of an object to be in close proximity to another
object or to be in some part of the available space that has some higher performance
characteristic – such as on the outer zone of a disc drive to get higher data rate.

We have seen over the last several years many sub-components of storage management
move to the storage device, such as geometry mapping, media flaw re-vectoring and media
error correction. The model extends this trend to include the decisions as to where to allocate
storage capacity for individual data entities and managing free space.

4.2 Elements of the example configuration

One objective of Object Based StorageThe Object Storage Architecture (OBSOSA) is to
enable the sharing of storage in a heterogeneous processor cluster. This is more complex
than simply defining a new protocol. The following illustrates how a protocol supporting the
object abstraction might fit into an overall architecture. See Figure 3Figure 3Figure 4.

In this example, the OBSOSA architecture has three, plus a potential fourth, constituents:
OSD, Storage Area Network (SAN), and Requesters host systems, a potential fourth element
may be a dedicated Policy/Storage Manager.

The Object Based Storage Devices are the storage components of the system to be shared.
(e.g., They include disc drives, RAID subsystems, tape drives, tape libraries, optical drives,

SCSI OSD Command Set D1355r2

9

jukeboxes, or other storage devices) to be shared. They may have a SAN attachment with a
path to the Requesters initiators that will access them.

The Requesters application clients are typically part of initiators within are the servers or
clients sharing and directly accessing the OSD via a network. All I/O activity is between the
Requesters application clients and the OSD. (A Policy/Storage Manager would also be an
application client Requester.)

The SAN or other interconnect is used by all OBSOSA components to intercommunicate. It is
assumed the SAN has the properties of both networks and channels.

A Policy/Storage Manager, if present , may perform management and security functions such
as request authentication and aggregation management. The Policy/Storage Manager could
relieve the Requesters other application clients of some storage management responsibilities .
In other instances of OBSOSA systems, a dedicated Policy/Storage Manager may not be
needed. The equivalent function may be distributed among the Requesters application clients.
This model ignores the role of the Policy/Storage Manager as it is not needed to describe how
the commands work.

Policy/Storage
Manager

Host
Systems

Object Based Storage
DevicesDevices

SAN

Figure 334 - Example OBSOSA Configuration

4.3Object Types

An OSD device is a logical unit within a SCSI device. As such, an OSD device will return the
OSD Device Type value in response to an INQUIRY command. An OSD device contains only
objects. Objects have two types of information associated with them:

a) Meta-data

b) Data

Meta-data describe specific characteristics or attributes of the object. This includes the size of
the meta-data, the total amount of bytes occupied by the object (including meta-data), logical
size of the object, as well as other parameters. The user data is contained in the object.

There are three different types of objects:

a) Root: this unique object is always present in the device. Its Meta-data contains device-
global characteristics. This includes the total capacity of the logical unit, maximum
number of objects that it may contain, as well as certain quality of service
characteristics (such as data integrity characteristics (e.g., the device stores all its
data in RAID5)). Its data contains the list of currently valid Group IDs. The root object
is maintained by the OSD.

b) Group: this object is created by specific commands from an initiator. Its purpose is to
contain a list of UserObjects that share some common attributes. Its meta-data
contains its GroupID (a 32bit unsigned integer), the maximum number of UserObjects
it may contain, the current number of UserObjects, the quota capacity of the group, the
current capacity utilized by the group, as well as quality of service attributes common
to all the objects in the group. The default attributes for a Group are inherited from the

SCSI OSD Command Set D1355r2

10

attributes of the device (i.e., Root object). The Data component of a Group is the list of
currently valid UserObject IDs. The Group object is maintained by the OSD.

c) UserObject: these are the primary objects that contain user data. Consequently, the
Data for this kind of object is user data; the OSD manages this data on behalf of the
initiators. The Meta-data for a UserObject contains characteristics specific to the
object. This includes the UserObject ID (a 64 bit unsigned integer), the logical size of
the user data, and quality of service attributes. Default attributes for a UserObject are
inherited from the attributes of the group in which it is contained.

When first shipped, there may only be a Root object. Its attributes are the “factory defaults”.
There may be no Groups or UserObjects such that the Data for the root object is empty. A
FORMAT command to the OSD shall restore the device to this original state.

There is only one Root object per OSD. There may be many Group objects (up to the capacity
of the OSD). The Root and Group objects may be called “well-known” in that the structure of
the meta-data and data associated with these objects is predefined.

Additionally, for the Root object, the GroupID and ObjectID are predefined (zero in both
cases). For the Group object, the GroupID is that of the group itself (it is assigned by the OSD
when the group is created), and the ObjectID is predefined (zero). Only UserObjects contain
arbitrary data (the content of this data is owned by the initiators). UserObjects have a
GroupID of the group they belong to. Their ObjectID is that assigned by the OSD when the
object is created.

Meta-data attributes for an object may be queried by the GET_ATTRIBUTE service action and
may be changed by the SET_ATTRIBUTE service action.

To get a list of the valid GroupIDs, an initiator may do a LIST service action against the Root
object. To get a list of the ObjectIDs in a group, the initiator may do a LIST service action
against the Group object. READ and WRITE service actions to these objects are not allowed.

READ/WRITE/APPEND service actions are used to interface with the data of a UserObject.

4.4Sessions

A session is a set of state information maintained in the OSD for the purposes of setting
parameters for data transfer. Sessions are used only for Read and Write (including Append)
type actions of user data. Except for the default session, sessions are not persistent across a
reset event or a power off cycle.

Every OSD has a default session, that determines the parameters of its underlying data
transfer machinery. The SessionID of the default session is zero. Optionally, an OSD device
may support other session parameters. The SessionID of any session other than the default
session shall be non-zero. The SessionIDs are created by the OSD and provided to the
initiator in returned data of an OPEN_SESSION service action. The parameters that govern a
session may be queried (GET_SESSION_PARAMS) and changed SET_SESSION_PARAMS).

Read and Write service actions shall be handled only under an existing session. That is, such
actions cannot create a session, they can only fall under the auspices of an existing one.

A CLOSE_SESSION is used to close one or all non-default sessions.

The number of sessions that an OSD device supports is vendor-specific (but it shall be at
least one, for the default session).

Once a session is established, read/write actions may be requested within the context of that
session.

SCSI OSD Command Set D1355r2

11

One parameter of a session may be an expiration time. Consequently, some sess ions may
close automatically. The close of a session or the change of parameters for a session shall
not affect the data transfer for any read/write action already being serviced by the OSD within
that session. Only new read/write actions specifying that SessionID shall be affected.

4.54.3 Description of the OSD Architecture

4.3.1 SCSI Model

Figure 4Figure 4 is shown for reference only . For normative description of the SCSI Model
see SAM-2.

Domain

SCSI
Device

Target Initiator

Service
Delivery

Subsystem

Service
Delivery Port

Interconnect
Subsystem

Logical
Unit

Application
Client

Device
Server

Task Set
(Queue)

Untagged
Task

Tagged
Task

Task
Manager

Figure 44 - Basic SCSI hierarchy (reference only)

4.5.14.3.2 Storage device organization

Data is stored in abstracted subsets of the available capacity on the storage device.
Abstracted indicates that the data is not accessible at block or sector addresses relative to
the capacity of the storage device and that the storage device allocates space for data and
supplies to the requester application client a unique identifier that the requesterapplication
client will use to access the data. The identifier is an unsigned integer that the storage device
uses to connect an I/O request with the data to which it applies. It is not intended or expected
that the object abstraction be a complete file system. There is no notion of naming,

SCSI OSD Command Set D1355r2

12

hierarchical relationships, streams or file system style ownership and access control done
within the object abstraction. The omitted features are assumed still to be the responsibility
of the OS file system.

Editor’s note: There are some access restrictions that are being included. Should there be an
exception to some form of file level access control that is not included?

OSD
Device

Target Service
Delivery Port

Logical
Unit

Device
Server

Task Set
(Queue)

Untagged
Task

Tagged
Task

Task
Manager

Session Root Object

Group Object

User Object

Parameters Attributes

Attributes

Policy

Figure 55 - Basic OSD hierarchy

4.4 OSD Sessions

A session is a set of state information maintained in the OSD for the purposes of setting
parameters for data transfer. Sessions are used only for Read and Write (including Append)
type actions of user data. Except for the default session, sessions are not persistent across a
reset event or a power off cycle.

Every OSD has a default session, that determines the parameters of its underlying data
transfer machinery. The SessionID of the default session is zero. Optionally, an OSD device
may support other session parameters. The SessionID of any session other than the default
session shall be non-zero. The SessionIDs are created by the OSD and provided to the
initiator in returned data of an OPEN_SESSION service action. The parameters that govern a
session may be queried (GET_SESSION_PARAMS) and changed SET_SESSION_PARAMS).

Read and Write service actions shall be handled only under an existing session. That is, such
actions cannot create a session, they can only fall under the auspices of an existing one.

SCSI OSD Command Set D1355r2

13

A CLOSE_SESSION is used to close one or all non-default sessions.

The number of sessions that an OSD device supports is vendor-specific (but it shall be at
least one, for the default session).

Once a session is established, read/write actions may be requested within the context of that
session.

One parameter of a session may be an expiration time. Consequently, some sessions may
close automatically. The close of a session or the change of parameters for a session shall
not affect the data transfer for any read/write action already being serviced by the OSD within
that session. Only new read/write actions specifying that SessionID shall be affected.

4.5.24.4.1 Objects

4.4.1.1 Object Types

An OSD device is a logical unit within a SCSI device. An OSD device returns the OSD
device type value in response to an INQUIRY command. An OSD device contains only
objects not logical blocks. All objects contain attributes .

Attributes describe specific characteristics of the object. This includes the size of the
attributes, the total amount of bytes occupied by the object (including attributes), logical size
of the object, as well as other parameters. The user data is contained in the object.

There are three different types of objects:

a) Root: this unique object is always present in the device. Its attributes contains device-
global characteristics. This includes the total capacity of the logical unit, maximum
number of objects that it may contain, as well as certain quality of service
characteristics (such as data integrity characteristics (e.g., the device stores all its
data in RAID5)). Its data contains the list of currently valid Group IDs. The root object
is maintained by the OSD.

b) Group: this object is created by specific commands from an initiator. Its purpose is to
contain a list of UserObjects that share some common attributes. Its attributes contains
its GroupID (a 32bit unsigned integer), the maximum number of UserObjects it may
contain, the current number of UserObjects, the quota capacity of the group, the
current capacity utilized by the group, as well as quality of service attributes common
to all the objects in the group. The default attributes for a Group are inherited from the
attributes of the device (i.e., Root object). The Data component of a Group is the list of
currently valid UserObject IDs. The Group object is maintained by the OSD.

c) UserObject: these are the primary objects that contain user data. Consequently, the
Data for this kind of object is user data; the OSD manages this data on behalf of the
initiators. The Attributes for a UserObject contains characteristics specific to the
object. This includes the UserObject ID (a 64 bit unsigned integer), the logical size of
the user data, and quality of service attributes. Default attributes for a UserObject are
inherited from the attributes of the group in which it is contained.

When first shipped, there may only be a Root object. Its attributes are the “factory defaults”.
There may be no Groups or UserObjects such that the Data for the root object is empty. A
FORMAT command to the OSD shall restore the device to this original state.

There is only one Root object per OSD. There may be many Group objects (up to the capacity
of the OSD). The Root and Group objects may be called “well-known” in that the structure of
the attributes and data associated with these objects is predefined.

SCSI OSD Command Set D1355r2

14

Additionally, for the Root object, the GroupID and ObjectID are predefined (zero in both
cases). For the Group object, the GroupID is that of the group itself (it is assigned by the OSD
when the group is created), and the ObjectID is predefined (zero). Only UserObjects contain
arbitrary data (the content of this data is owned by the initiators). UserObjects have a
GroupID of the group they belong to. Their ObjectID is that assigned by the OSD when the
object is created.

Attributes for an object may be queried by the GET_ATTRIBUTE service action and may be
changed by the SET_ATTRIBUTE service action.

To get a list of the valid GroupIDs, an initiator may do a LIST service action against the Root
object. To get a list of the ObjectIDs in a group, the initiator may do a LIST service action
against the Group object. READ and WRITE service actions to these objects are not allowed.

READ/WRITE/APPEND service actions are used to interface with the data of a UserObject.

There are four attribute fields needed to establish access to data in an object. See Table
1Table 1Table 1

Table 1 - Addressing bytes in an object

Field Size Usage

OBJECT GROUP ID 4 Identifies in which subset of the Device’s Objects’ the desired object
resides

OBJECT ID 8 Calls out the object being accessed
DISPLACEMENT 8 Identifies the starting location within the object of the data transfer
LENGTH 8 Number of bytes to be transferred

Addressing is in bytes. The objects on a storage device are grouped into sets. There may be
one or more groups for the entire device.

4.5.34.4.1.2 Object Organization

OSD Objects are collected into groups, called Object Groups. Optionally, there may be a
capacity quota associated with a group, such that the OSD will ensure that the sum of storage
capacity occupied by all the objects in a group does not exceed the capacity quota. The OSD
device can be directed to reject WRITE, CREATE or APPEND operations to an object that
would result in an object group consuming more storage capacity than it has been assigned.
The capacity quota lets several independent requesters application clients, for instance, to be
at work filling an OSD device with objects, without the danger of any consuming more than
an allocated percentage of the available capacity.

4.5.44.4.1.3 Well-Known Objects

A well-known Object is one that always has a specific object ID. A well-known Object shall
exist on every storage device or in every Object Group. These objects serve as landmarks for
an application client or Requester navigating the OSD organization. Table 2Table 2Table 3
includes example Object identifiers associated with each for illustration purposes.

Editor’s note: Does the well-known object “exist in every storage device or in every Object
Group” of does it “exist in every storage device and in every Object Group”

SCSI OSD Command Set D1355r2

15

Table 223 - Well Known Objects

Object Group ID Object ID Usage

0 1 Storage Device Control Root Object
N 1 Object Group Control Object

4.5.54.4.2 Object Group Object List (GOL) in an Object Group Control Object

When an Object Group is created, a second well-known Object will also be built - the point of
departure for navigating through the Objects. It will have the same identifier in every Object
Group. The Object Group Control Object as part of its data includes a list of the Object ID's
for all Objects resident in this Object Group.

Editor's Note: T10 should evaluate the usage of zero values for fields as we progress.
The 9/14/2000 WG decided a zero ID for the Root Object is OK.

4.64.5 Overview of OBS OSA Operation

4.6.14.5.1 Preparing a device for OSD operation

In order for a logical unit to accept and process OSD commands, it shall have been initialized
as an OSD device. An application client issues the commands in Table 3Table 3Table 5 to
initialize and OSD device.

Table 335 - Initialization Sequence

Operation Parameters Notes
Format OSD LENGTH (optional) Construct OSD control structures

CREATE OBJECT GROUP Capacity Quota (optional) Initialize Set into which Objects may be created

Upon completion of these two commands the storage device is an OSD device and shall
accept other OSD mandatory commands and may accept OSD optional commands.

4.6.24.5.2 Startup – Discovery and Configuration

Startup, discovery, and configuration techniques are a function of the interconnect protocols.
When the OBSOSA device is powered up the OSD device shall identify itself to all initiators
or to a common point of reference, such as a name service on the Interconnect. The details
of the discovery process is beyond the scope of OSD. For example, in a Fibre Channel fabric
based OBSOSA, the OSD devices, Policy/Storage Manager (if any), and Requesters other
application clients would log onto the fabric. From the fabric they may learn of the existence
of all other OBSOSA components. They may use these fabric services to identify all other
components. The Requesters application clients learn of the existence of the OSD devices
they may have access to, while the OSD devices may learn where to go when they need to
locate another storage device. Similarly the Policy/Storage Manager (if any) learns of the
existence of OSD devices from the fabric services.

Optionally each OBSOSA component may identify to the Policy/Storage Manager any special
configuration information.. Storage device level service attributes may be communicated once
to the Policy/Storage Manager, where all other components may learn of them. For example
an Requesterapplication client may need to be informed of the introduction of additional
storage subsequent to startup, noted by an attribute set when the Requester application client
logs onto the Policy/Storage Manager. The Policy/Storage Manager may do this automatically
whenever a new OSD device is added to the configuration, including conveying important
characteristics, such as it being RAID 5, mirrored, etc.

SCSI OSD Command Set D1355r2

16

4.6.2.14.5.2.1 Object Based Storage devicesVerification

OSD devices have two important functions at start up. First, they log on to the network.
Second, they shall not perform unauthorized activity. Both a requester and an OSD device
may complete startup before an optional Policy/Storage Manager has had time to provide to
the OSD device access control information. This leaves the OSD exposed to otherwise
prohibited access. To prevent this, the OSD shall retain in non-volatile memory sufficient
information to prevent unauthorized early access.

Editor’s note: Are the Persistent Reservation requirements sufficient for the last requirement?
If not where is the “sufficient information” defined? Does the “sufficient information” have to
be accessible before the media is ready.

The OSD device shall reject invalid I/O requests With a CHECK CONDITION status and a
sense key of ILLEGAL REQUEST. All OBSOSA elements shall collaborate to enforce the
security of the system. The details of the security collaboration are TBD or beyond the scope
of this standard.

Editor’s note: Are we going to take on the TBD or make the whole issue beyond the
scope?

4.6.2.2Requesters

Requesters shall identify themselves to the network so that the optional Policy/Storage
Manager may locate them and communicate to them sufficient direction to start storage
access. The details of the identification process is beyond the scope of this standard.
Depending on the security practice of a particular installation, A Requester may be denied
access to some equipment. From the set of accessible storage devices it may then locate the
files, databases, and free space available.

Editor’ note: Should this last sentence be deleted?

4.6.34.5.3 Accessing data on the OSD Example

File system function is beyond the scope of this standard, but for the sake of illustration a
simple PC/UNIX-like file system is assumed in this example. The file system consists of a
single file in a single subdirectory:

 /father/son

Where “father” is the name of the directory to be created and “son” is the file.

Table 4Table 4Table 7 lists the sequence of OSD commands that may result in the file system
being created. It is assumed that the OSD device and the Object Group are known.

Table 447 - OSD command sequence for creating a file

Step Operation Group,
Object

Notes – What file system does with the data

1 Get Attribute n,1 Get Object ID of root object = object id “r”
2 READ n,r Make sure “father” does not already exist.
3 CREATE n Returns object “s”, which will hold file “son”
4 CREATE n Returns object “f”, which will hold directory “father”
5 WRITE n,s Write contents of “son” – one or more WRITEs involved
6 WRITE n,f Write contents of “father” - one or WRITEs involved
7 WRITE n,r Root directory revised to contain “father”

The version of the CREATE action used in this example includes the actual transfer of data to
the new object. See Table 5Table 5Table 9. Separate WRITEs are not need to fill “son” or
“father” with data.

SCSI OSD Command Set D1355r2

17

Table 559 - OSD command sequence using CREATE with data

Step Operation Group, Object Notes – What file system does with the data

1 Get Attribute n,1 Get OBJECT ID of ROOT OBJECT = OBJECT ID “r”
2 READ n,r Make sure “father” does not already exist.
3 CREATE n Returns object “s”, which holds file “son”
4 CREATE n Returns object “f”, which holds directory “father”
5 WRITE n,r Root directory revised to contain “father”

Error! Reference source not found. is an example that includes OPEN and CLOSE actions.
These could be used to “lock” the root directory while it is being updated with the new
directory “father”.

Table 6611 - OSD command sequence with OPEN and CLOSE actions

Step Operation Group,
Object

Notes – What file system does with the data

1 Get Attribute n,1 Get OBJECT ID of root object = object id “r”
2 OPEN n,r Returns SESSION ID, QoS is “lock” this object ???
3 READ n,r Make sure “father” does not already exist.
4 CREATE n Returns object “s”, which will hold file “son”
5 CREATE n Returns object “f”, which will hold directory “father”
6 WRITE n,s Write contents of “son” – one or more WRITEs involved
7 WRITE n,f Write contents of “father” - one or WRITEs involved
8 WRITE n,r Root directory revised to contain “father”
9 CLOSE n,r Unlock root directory

4.6.44.5.4 OSD Mandatory Actions template

Table 7Table 7Table 12 lists the action codes mandatory for OSD devices:

SCSI OSD Command Set D1355r2

18

Table 7712 OSD Mandatory commands with field lengths

Field
Action

Options Object
Group

Object
ID

Session
ID

Starting
byte

Byte
Length

Attribute
Mask

Reserved

Bytes Bytes Bytes Bytes Bytes Bytes Bytes Bytes

Format OSD 2 8 4

CREATE Object 2 4 4 (o) 8 8 8 (o)

OPEN 2 4 8 4 (o) 8 (o)

READ 2 4 8 4 (o) 8 8

WRITE 2 4 8 4 (o) 8 8

APPEND 2 4 8 4 (o) 8

FLUSH Object 2 4 8

CLOSE 2 4 8 4 (o)

REMOVE 2 4 8

CREATE OBJECT
GROUP

2

REMOVE Object Gr. 2

Get Attributes 2 4 8 4 (o) 8

Set Attributes 2 4 8 4 (o) 8

Notes:

 1) The (o) indicates fields that have optional meaning depending on a specified
option.

The length field on the Format OSD action contains the amount of capacity to be allocated to
the OSD.

OPEN and CLOSE as an object frame a session composed of a set of actions requiring
additional management support or quality of service.

APPEND is a write command with no starting byte. The OSD determines the last byte of an
object and puts the data accompanying the command at the end of the object, then updates
the OBJECT_LOGICAL_LENGTH. This command allows multiple requesters application clients to
contribute to a log file without each in turn having to gain control of the object and lock it from
access by others.

The GET ATTRIBUTE and SET ATTRIBUTE actions are like mode sense and mode select
commands for the OSD environment in that they are used to interrogate and supply operating
mode attributes for objects, object groups, and OSD themselves.

4.6.54.5.5 OSD Optional Action

Editor’s note: Should Table 8 OSD Optional Action include a Source Object ID?

The Import Object command enables an Requester application client to instruct an OSD
device to read an Object from a second OSD creating and writing a copy onto itself.

Table 8814 - OSD Optional Action with field lengths

Field
Action

Options Object
Group

Object
ID

Session
ID

Starting
byte

Byte
Length

Source
OSD

Source
Group

IMPORT OSD 2 4 8 4 8 8 16 4

SCSI OSD Command Set D1355r2

19

4.74.6 Reservations

The access enabled or access disabled condition determines when an application client may
store or retrieve user data on all or part of the medium. Access may be restricted for read
operations, write operations, or both. This attribute may be controlled by an external
mechanism, by session parameters or by the PERSISTENT RESERVE IN and RELEASE
PERSISTENT RESERVE OUT commands (see ANSI NCITS TBD SPC-3). The OSD does not
support the RESERVE and RELEASE commands.

These RESERVE and RELEASE commands define how different types of restricted access
may be achieved, and to whom the access is restricted. This subclause describes the
interaction of the application client that requested the reservation, and the other application
clients.

Reservations are further controlled by the optional PERSISTENT RESERVE IN and
PERSISTENT RESERVE OUT commands. For the requirements of this standard, reservations
and releases made by use of the PERSISTENT RESERVE IN and PERSISTENT RESERVE
OUT commands are the same as those using the RESERVE and RELEASE commands. See
the ANSI NCITS TBD SPC-3 standard for a description and the requirements of the various
reservation commands.

An application client uses reservations to gain a level of exclusivity in access to all or part of
the medium for itself or another application client. It is expected that the reservation is
retained until released. The device server ensures that the application client with the
reservation is able to access the reserved media within the operating parameters established
by that application client.

Reservation restrictions are placed on commands as a result of access qualifiers associated
with the type of reservation. The details of commands that are allowed under what types of
reservations are described in Table 9Table 9Table 15. For the reservation restrictions placed
on commands for the Reserve/Release management method see Table 9Table 9Table 15
column [A]. For the reservation restrictions placed on commands for the Persistent
Reservations management method, see the columns under [B] in Table 9Table 9Table 15.

Commands from initiators holding a reservation should complete normally. The behavior of
commands from registered initiators when a registrants only persistent reservation is present
is specified in Table 9Table 9Table 15. A command that does not explicitly write the medium
shall be checked for reservation conflicts before the command enters the current task state
for the first time. Once the command has entered the current task state, it shall not be
terminated with a RESERVATION CONFLICT due to a subsequent reservation. A command
that explicitly writes the medium shall be checked for reservation conflicts before the device
server modifies the medium or cache as a result of the command. Once the command has
modified the medium, it shall not be terminated with a RESERVATION CONFLICT due to a
subsequent reservation.

For each command, this standard or SPC-3 defines the conditions that result in
RESERVATION CONFLICT.

SCSI OSD Command Set D1355r2

20

Table 9915— OSD commands that are allowed in the presence of various reservations

Addressed LU has this type of persistent reservation

Held by another initiator [B]

From any initiator From initiator not
registered

Command

Addressed LU
is reserved by
another
initiator [A] Write

Excl
Excl
Access

From
registered
initiator (RO
all types) Write

Excl - RO
Exclusive
Access -
RO

APPEND Conflict Conflict Allowed Conflic t Conflict

CLOSE Allowed Conflict Allowed Allowed Conflict

CREATE Conflict Conflict Allowed Conflict Conflict

CREATE OBJECT GROUP Conflict Conflict Allowed Conflict Conflict

Format OSD Conflict Conflict Allowed Conflict Conflict

FLUSH Object Conf lict Conflict Allowed Conflict Conflict

GET ATTRIBUTES Allowed Conflict Allowed Allowed Conflict

IMPORT Conflict Conflict Allowed Conflict Conflict

INQUIRY Allowed Allowed Allowed Allowed Allowed

LIST Allowed Conflict Allowed Allowed Conflict

LOG SELECT Conflict Conflict Allowed Conflict Conflict

LOG SENSE Allowed Allowed Allowed Allowed Allowed

MODE SELECT(10) Conflict Conflict Allowed Conflict Conflict

MODE SENSE(10) Conflict Conflict Allowed Conflict Conflict

OPEN Allowed Conflict Allow ed Allowed Conflict

PERSISTENT RESERVE IN Allowed Allowed Allowed Allowed Allowed

PERSISTENT RESERVE OUT
(REGISTER)

Allowed Allowed Allowed Allowed Allowed

PERSISTENT RESERVE OUT
(CLEAR, PREMPT, RELEASE)

N/A N/A Allowed (1) Conflict Conflict

PERSISTENT RESERVE OUT
(RESERVE)

Conflict Conflict Conflict Conflict Conflict

PREVENT-ALLOW MEDIUM
REMOVAL (Prevent=0)

Allowed Allowed Allowed Allowed Allowed

PREVENT-ALLOW MEDIUM
REMOVAL (Prevent<>0)

Conflict Conflict Allowed Conflict Conflict

READ Allowed Conflict Allowed Allowed Conflict

READ BUFFER Conflict Conflict Allowed Conflict Conflict

RECEIVE DIAGNOSTIC RESULTS Conflict Conflict Allowed Conflict Conflict

REMOVE Conflict Conflict Allowed Conflict Conflict

REMOVE OBJECT GROUP Conflic t Conflict Allowed Conflict Conflict

REPORT LUNS Allowed Allowed Allowed Allowed Allowed

REQUEST SENSE Allowed Allowed Allowed Allowed Allowed

SEND DIAGNOSTIC Conflict Conflict Allowed Conflict Conflict

SET ATTRIBUTES Conflict Conflict Allowed Conflict Conflict

(continued)

SCSI OSD Command Set D1355r2

21

(concluded)
Addressed LU has this type of persistent reservation

Held by another initiator

From any initiator From initiator not
registered

Command

Write
Excl

Excl
Access

From
registered
initiator (RO
all types) Write

Excl - RO
Exclusive
Access -
RO

START/STOP UNIT START=1
and POWER CONDITION=0

Allowed Allowed Allowed Allowed Allowed

START/STOP UNIT START=0
or POWER CONDITION<>0

Conflict Conflict Allowed Conflict Conflict

OSD SYNCHRONIZE CACHE Conflict Conflict Allowed Conflict Conflict

TEST UNIT READY Conflict Conflict Allowed Conflict Conflict

WRITE Conflict Conflict Allowed Conflict Conflict

WRITE BUFFER Conflict Conflict Allowed Conflict Conflict

Key: [A] = Reserve/Release, [B] = Persistent Reservations LU = Logical Unit, Excl = Exclusive, RO = Registrants Only,
<> Not Equal

Notes:

(1) Reservation is not released.

Allowed = Commands issued by initiators not holding the reservation or by initiators not registered when a registrants
only persistent reservation is present should complete normally.

Conflict: Commands issued by initiators not holding the reservation or by initiators not registered when a registrants only
persistent reservation is present shall not be performed and the device server shall terminate the command with a
RESERVATION CONFLICT status.

Editor’s note: This table will be filled in with all of the OSD commands.

Editor's note: The SPC commands should be deleted from this table before forwarding
to prevent conflict and are shown for temporary reference only.

Note 3: When a system is integrated with more than one application client, agreement is required between the
application clients as to how media is reserved and released during operations, otherwise, an application client
may be locked out of access to a logical unit in the middle of an operation.

5 Data fields

5.1 Command format

The standard method for issuing SCSI I/O commands to storage devices involves a set of
data grouped together in a Command Descriptor Block (CDB). The OSD CDB comprises a 10-
byte header that shall not be encrypted, followed by a body section that may either be
encrypted or not depending on the content of a controlling field in the header.

A command is communicated by sending a command descriptor block to the device server.
The OSD commands use the variable length CDB format (see SPC-3). The command
descriptor block shall have an operation code as its first byte and a control byte as its second
byte. The general structure of the operation code and control byte are defined in SAM-2. If a
device server receives a CDB containing an operation code that is invalid or not supported, it
shall return CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and an
additional sense code of INVALID COMMAND OPERATION CODE.

SCSI OSD Command Set D1355r2

22

5.2 Variable Length CDB Definition

Table 101017 - Variable Length CDB

Bit 7 6 5 4 3 2 1 0
Byte

0 Operation Code (7Fh)
1 Control
2 Reserved
3 Reserved
4 Reserved
5 ENCRYPTION IDENTIFICATION
6 Reserved
7 Additional CDB Length (n-7)
8 (MSB) Service Action
9 (LSB)

10
- Service Action specific fields
n

The encryption identification field indicates whether CDB bytes 8 through n are encrypted.
The value also indicates the encryption key to use for decryption. A value of zero indicates no
encryption. The other values are TBD.

The additional CDB length field indicates the number of additional CDB bytes. This number
shall be a multiple of 4.

The SERVICE ACTION field indicates the action being requested by the application client.
Each service action code description defines a number of service action specific fields that
are needed for that service action.

5.2.1 Fields used in Actions and Responses

The following fields are used in the OSD CDBs.

5.2.1.1 Service Action Code

This is a two byte field that uniquely identifies the operation to be performed.

5.2.1.2 Attribute Mask

This 64-bit field is a bit mask, with one bit for each page of attributes to be read or written. A
bit set to one indicates to the OSD device that the corresponding attribute shall be written or
supplied by the OSD device.

Editor’s note: Needs further definition.

Editor’s note: Should CRC for OSD service actions be defined and mandatory? A
pseudo requirement was in a footnote.

5.2.1.3 Length

The length field is:

SCSI OSD Command Set D1355r2

23

(1) an unsigned 64 bit integer representing the length of the data transfer supplied in the
action by the requesterapplication client ;

(2) the actual length of the transfer supplied by the OSD device in the response to the action
or;

(3) the size in bytes of the storage device to be formatted as an OSD device.

5.2.1.4 Object ID

The Object ID is an unsigned 64 bit integer assigned by the OSD device.

5.2.1.5 Option Byte 1

Option Byte 1 is a set of fields used to modify or control the Action.

Table 111118 - Option byte 1

Bit 7 6 5 4 3 2 1 0
Byte 0 Reserved Reserved Reserved DPO FUA Reserved Reserved Reserved

The disable page out (DPO) bit allows the application client to influence the replacement of
logical blocks in the cache. For write operations, setting this bit to one advises the device
server to not replace existing blocks in the cache memory with the write data. For read
operations, setting this bit to one causes blocks of data that are being read to not replace
existing ones in the cache memory.

. The force unit access (FUA) bit is used to indicate that the device server shall access the
physical medium. For a write operation, setting FUA to one causes the device server to
complete the data write to the physical medium before completing the command. For a read
operation, setting FUA to one causes the logical blocks to be retrieved from the physical
medium.

5.2.1.6 Option Byte 2.

Option Byte 2 is a set of fields used to modify or control the Action. O2-0 through O2-7
specify conditions or qualifiers for each action as specified in this standard.

Table 121219 - Option byte 2

Bit 7 6 5 4 3 2 1 0
Byte 0 O2-7 O2-6 O2-5 O2-4 O2-3 O2-2 O2-1 O2-0

5.2.1.7 Object Group ID.

This is an unsigned 32-bit integer assigned by the OSD device. There is a requirement with
some actions (GET ATTRIBUTES, SET ATTRIBUTES, FLUSH and REMOVE OBJECT
GROUP) to reference the entire OSD device, not just a single Object Group. The value 0 in
this field references the entire OSD device.

SCSI OSD Command Set D1355r2

24

5.2.1.8 Object Group Remaining Capacity.

This is an unsigned 64-bit integer supplied by the OSD device in response to WRITE,
APPEND, IMPORT or CREATE actions and indicating the amount of capacity remaining in the
space quota for the referenced Object Group.

5.2.1.9 Source Storage device.

This 16 byte field contains an OSD name (used externally to address the named OSD device).
It is used in the IMPORT action to identify the source for an object whose data is to be
imported into the requesting OSD device. Interconnect addressing conventions govern the
translation of an OSD name into an interconnect-specific address.

5.2.1.10 Session ID.

This four-byte field binds a request to a previously granted quality of service agreement.

5.2.1.11 Starting byte address.

This is an unsigned 64-bit integer supplied by the requesterapplication client and indicating
the location where the read or write is to commence in the specified object relative to the first
byte (byte 0).

5.3 Attributes

Attributes are characteristics associated with objects to prescribe desired behaviors and/or
effects upon object access, or to assign intrinsic properties to objects for use as meta-
dataattributes . Since OSD objects are intended to contain data, an object’s attributes may
apply to its data as well. The use of attributes may enable the exploitation of the OSD
architecture by applications running at a remote host or within the OSD device itself.

Editor’s note: Where is the concept of running applications in the OSD device underpinned?
@@ This is the end of general editing in revision 2.

In some cases attributes specify OSD performance expectations. Benchmarks will may be
used to enable OSD manufacturers to specify attribute ranges that are meaningful for their
devices. An auditing mechanism will need to exist to measure the device’s actual performance
for compliance purposes.

5.4 Data Storage Policies

Policy refers to the set of conditions and subsequent actions (to be performed in the event the
associated condition(s) is/ (are) met) connected to the management of data and/or storage.
Policies are typically time- or event -driven, are independent of storage geometry, and
frequently occur independently of any application processes. Common examples of policies
include conditional or time-based backup, archive, and delete processing, data movement,
and device maintenance.

Policies, though relevant to the management and disposition of objects and their contents, are
beyond the scope of this documentstandard.

Editor's note: Should we leave policies beyond the scope, add withingwithin the scope
a method to convey policies, or delete them altogether?

SCSI OSD Command Set D1355r2

25

5.3.25.4.1 Classes of Object Attributes

Four classes of attributes are manifestspecified: OSD-determined, static, session, and
extended. The device sets OSD-determined attributes as a result of an operation on the
object. Classes are particularly useful to policy-driven space maintenance processes, and
include:

Nearby Object – Object ID of an Object as close as possible to which this object should be
located;

Depending(??) Object – Object ID of an Object on which this object is dependent;

Copied Object – Object ID of Object of which that this object is a copy of;

Object logical length – The highest byte address that will return data on a READ request.

Editor’s note: These classes need discussion and are there others not specified?.

Static attributes are persistent characteristics that are set by the process creating or updating
the object. These attributes are ideally suited for use by host file systems, and include such
object meta-dataattributes as:

�OBJECT_SIZE - The amount of storage space the OSD device associates with this object;.

�CREATED_TIME – the time the object was initially created;, based on the OSD device’s
clock

�DATA_MODIFIED_TIME – the time the object was last written into; or edited, based on the
OSD device’s clock

�DATA_ACCESS_TIME – the time the object was last read or written into;, based on the
OSD device’s clock

�ATTRIBUTE_MODIFIED_TIME – the time the attributes of the object were last modified; .

�EXPIRATION _TIME_STAMP – The time when the object is no longer required;

�INDELIBLE – a ‘non-modifiable’ indicator; .

�TRANSIENT_OBJECT – This identifies an object that the file system does not expect to
survive power failures.off/on cycles.

�F ILE SYSTEM – Identification of the file system under which the object was created; .

�F ILE SYSTEM SPECIFIC ATTRIBUTES - File system-specific information, uninterpreted by the
OSD device.

Editor's note: Who is going to maintain the File System registration? Should we delete the
FILE SYSTEM attribute or just make it a host assignable code with no registration implication
for T10?

SCSI OSD Command Set D1355r2

26

Table 131320 - Possible Potential Object Attributes

Type Name Set by Length Semantics

Clustering Nearby_Object Set Attribute 16 Locate this Object near another

Depending
Object

Depending_Object Set Attribute 16 This Object is dependent on the named
object

Copied_Object OSD 8 Object was created Copy ObjectCloning

Object_Logical_Length OSD, Set Attr. 8 Largest offset written

Size Object_Size OSD, Set Attr. 8 Number of Bytes Allocated for Object

Access control state Set Attribute 2 Access version

2 Reserved

Created_Time OSD, CREATE 8 Timestamp of object creation

Access
control

Data_Modified_Time OSD, CLOSE 8 Timestamp of last object data modification

Data_Accessed_Time OSD, OPEN 8 Timestamp of last data access

Attribute_Modified_-Time OSD, Set Attr. 8 Timestamp of last attribute modification

Time

Expiration_Time_-stamp CREATE, Set
Attribute

8 Timestamp after which object is not
required

Miscellaneous Object_Attributes OSD, Set
Attribute

8 Bits of Object properties for self-mgmt

00: indelibility

01: transcient_object

File_System_ID Set Attribute 2 Identification of the OS creating the objectFile System

FS-Specific Set Attribute 256 Us u ninterpreted by OSD ??”s”??

Session attributes specify changeable characteristics that may be directly modified by the
accessing process. The parameters may be set when the process establishes a session with
the OSD device. The value set of the process-object dynamic parameters is maintained
independently of other process-object sets, even if the same object is used; hence, the OSD
device needs to relate a unique session-id to the value set associated with each process-
object pair. Dynamic parameters include:

Editor’s note what does the value set statement refer to?

�TIME TO INITIAL ACCESS (TIA) – The maximum time delay (in milliseconds) that can be
tolerated until the first byte of data from the object is delivered.

�SUSTAINED ACCESS RATE (SAR) – The on-going average data rate (in bytes per second)
that data should be read from or written to the object.

�FREQUENCY OF ACCESS (IOR) – The average number of requests per second that may be
expected to read data from or write data into the object.

�ACCESS REQUEST SIZE (ARS) – The average request size of data to be read from or
written into the object.

Each of these dynamic parameters are specified separately for:

�READ VS. WRITE PARAMETER – indicates the parameter is for read requests or for write
requests

�RANDOM VS. SEQUENTIAL ACCESS – indicates the specification is for random access
requests or for sequential requests.

SCSI OSD Command Set D1355r2

27

Extended parameters are TBD.not defined at this time, but the capability is provided to enable
new and/or higher level parameters to be provided in the future. Provision is made in the
command structure for supporting these parameters in the future (cf. Section 5.3.4.1.).

5.3.35.4.2 Other Attributes

It is recognized that both object groups and the OSD device themselves could may have
attributes associated with them. They could may have default values for the contained
objects as well as special properties that pertain to the larger entities. Access to these
attributes is achieved by associating special, well known object ID’s with object groups and
the OSD device. In these cases the interpretation of an attribute mask and its values changes
as below.

5.3.3.15.4.2.1 OSD Control Object (DCO)

This object contains the attributes the OSD device shall maintain that relate to the storage
device itself or that relate to all objects on the storage device. The attributes are maintained
by the SET ATTRIBUTE function. Each logical unit has one DCO. Control objects are
intended to serve , for OBSOSA systems, a function similar to SCSI MODE SENSE and MODE
SELECT.

Table 141421 - Potential Storage Device Control Object Attributes

Attribute Length Semantics
NAME 8 Immutable identifier
USER NAME 8 Installation supplied name
CLOCK 8 Monotonic counter
M ASTER KEY 16 master key, controlling storage device key
STORAGE DEVICE KEY 16 storage device key, controlling Object Group keys
PROTECTION LEVEL n defines protection options
OBJECT_GROUP_COUNT 4 Number of Object Groups on storage device
ATTRIBUTES 4 Properties of this Storage device

00 00 00 01: Over-subscription of capacity
OBJECT_ATTRIBUTES n Properties common to all objects on storage device

5.3.3.25.4.2.2 Over-subscription

This attribute, if set, allows the Object Group quota to exceed the capacity of the device.

Editor's note: Yes. And then what? Is capacity prior to compression or post
compression?

5.3.3.35.4.2.3 Object Group Control Object (GCO)

This object contains the properties of a single Object Group. It describes not only the Object
Group but also any object attributes that pertain to all objects in the Object Group. The OSD
device will shall have one GCO for each Object Group defined on the storage device. Optional
quotas can may be set to put limits on space associated with each ID object or the space
used by all objects of the Object Group. Group Control oObjects are intended to serve for
OBSOSA systems a function similar to SCSI MODE SENSE and MODE SELECT.

SCSI OSD Command Set D1355r2

28

Table 151522 - Object Group Control Object Attributes

Name Length Semantics

Group_Key 16 Encryption keys

Current_Working_Key 16

Previous_Working_Key 16

Object_Group_capacity_quota 8 Limit on sum of sizes of objects in this Object Group

Remaining_Capacity 8 Available Capacity in Group remaining against quota

Root_Object 8 Object ID of starting point for navigating objects

Object_size_limit 8 No object can extend beyond this length

Object_Attributes n Defines properties associated with all objects in Object
Group

5.3.45.4.3 Setting Session Parameter Values

5.3.4.15.4.3.1 General Structure

The general command modifiers for setting parameters can be viewed as:

Table 161623 - Parameter Modifiers

Parameter Identifier Comparator Low/Only Value High Value

Where:

�Parameter Identifier - indicates the particular parameter being set.; tThe identifier
enables discriminating among static, dynamic, and extended parameters ;

�Comparator - is one of ‘value’, ‘less than’, ‘greater than’, or ‘inclusive’. value indicates a
specific desired amount (specified by Low/Only Value below) is given. less than and
greater than indicate that the Low/Only Value is to be viewed as the maximum or
minimum values (respectively) for the parameter. inclusive indicates that the
parameter is to lie within the range specified by Low/Only Value and High Value (see
below);.

�Low/Only Value – an integer representing the bottom of a range, if one is indicated by
the comparator; otherwise, it is the unique value;

�High Value – an integer representing the top of a range, if one is indicated by the
comparator; otherwise it is absent, otherwise.

Editor's note: Should absent be changed to zero?

Attribute retrieval command(s) only specify utilize the attribute identifier.

5.3.4.25.4.3.2 Attribute-Setting Commands

SCSI OSD Command Set D1355r2

29

The following commands may be used to set object attributes:

�CREATE – sets static and dynamic attributes ; . dDynamic attributes, if specified, become
the defaults for any session or command that subsequently accesses this object;

�OPEN – sets dynamic attributes; if attributes are specified, this command creates a new
session-identifier for the object;

�IMPORT OBJECT – sets static and dynamic attributes .; dDynamic attributes, if specified,
become the defaults for any session that subsequently accesses this object ;

�SET OBJECT ATTRIBUTES – sets static and dynamic attributes .; i If a non-null session-
identifier is specified, sets dynamic attributes for that session.

Return codes are used to communicate the success/failure of setting the appropriate
attributes.

5.3.4.35.4.3.3 Attribute-Retrieving Commands

The following commands may be used to retrieve object attribute settings:

�GET OBJECT ATTRIBUTES – all attributes may be specified requested.

TBD

The attributes and corresponding values are returned as a result of the commands.

6 Actions (Commands)

The followingcommands in Table 17Table 17 are the operations that an OSD device will have
to may perform as its contribution to the OBSOSA environment. The action field in the CDB
uniquely identifies the operation to take place. Each section The command subclauses
describes the service provided by that operation and the information that shall be passed to
the OSD device in order for it to perform that function. The information that could be returned
by the storage device to the Requesterapplication client is also listed to develop a clearer
idea of what the function entails.

Only the unencrypted versions of the commands are described. It is felt that more work must
be done to define tThe security architecture before specifying any the encryption and
authentication fields can be defined is TBD.

In the CDB descriptions some fields are described as optional. The fields are always present.
An optional field is one that may have a value of zero to indicate that it is not to be used
implemented.

Editor's note: The zero statement needs to be verified for each command.

SCSI OSD Command Set D1355r2

30

Table 1717 - Commands for object based storage devices

Command name Operation code Action

Code

Type Subclause

APPEND 7Fh 8807h M

CLOSE 7Fh 8809h O

CREATE 7Fh 8802h M

CREATE OBJECT GROUP 7Fh 880Bh M

Format OSD 7Fh 8801h M

FLUSH Object 7Fh 8808h M

GET ATTRIBUTES 7Fh 880Eh M

IMPORT 7Fh 880Dh O

INQUIRY 12h N/A M SPC-3

LIST 7Fh 8803h M

LOG SELECT 4Ch N/A O SPC-3

LOG SENSE 4Dh N/A O SPC-3

MODE SELECT(10) 55h N/A O SPC-3

MODE SENSE(10) 5Ah N/A O

OPEN 7Fh 8804h O

PERSISTENT RESERVE IN 5Eh N/A M SPC-3

PERSISTENT RESERVE OUT 5Fh N/A M SPC-3

PREVENT-ALLOW MEDIUM REMOVAL 1Eh N/A O SPC-3

READ 7Fh 8805h M

READ BUFFER 3Ch N/A O SPC-3

RECEIVE DIAGNOSTIC RESULTS 1Ch N/A O SPC-3

REMOVE 7Fh 880Ah M

REMOVE OBJECT GROUP 7Fh 880Bh M

REPORT LUNS A0h N/A O SPC-3

REQUEST SENSE 03h N/A M SPC-3

SEND DIAGNOSTIC 1Dh N/A M SPC-3

SET ATTRIBUTES 7Fh 880F M

START STOP UNIT 1Bh N/A O SBC-2

OSD SYNCHRONIZE CACHE TBD TBD O TBD

TEST UNIT READY 00h N/A M SPC-3

WRITE 7Fh 8806h

WRITE BUFFER 3Bh N/A O SPC-3

Key: M = Command implementation is mandatory.

O = Command implementation is optional.

OB = Obsolete

SPC = SCSI Primary Commands

Notes: All remaining OSD operation codes and action codes (8800h, 8810h-88ffh) are reserved for future
standardization.

SCSI OSD Command Set D1355r2

31

6.1 Format OSD (Mandatory)

This action code causes the Storage DOSD device to delete all UserObjects, delete all Group
objects, and set the attributes for the Root object to defaults. There are no parameters or
other identifiers required in this service action. It results in meta-dataattribute structures being
constructed that support the creation and access of objects.

Table 181824 - Format OSD

Bit 7 6 5 4 3 2 1 0
Byte

8 (MSB) FORMAT OSD ACTION CODE (8801h)
9 (LSB)
10 OPTION BYTE 1
11 OPTION BYTE 2
24 (MSB)
25 Reserved
26
27 (LSB)
28 (MSB)
29
30 LENGTH
31 (OSD _CAPACITY)
32
23
34
35 (LSB)

If the OSD Length is set to 0, the entire device is formatted as an OSD device. Any other
value specifies the total OSD device capacity in Bytes. If the value is greater than the
maximum OSD device capacity the value is rounded down to the OSD device capacity for the
format operation. OSD device capacity is the sum of the root object, group objects, and all
potential user objects including attributes and user data after compression.

Editor's note: The definition of OSD device capacity has not yet been agreed to.

Table 191925 - Format OSD Response

 Bit 7 6 5 4 3 2 1 0
 Byte

 0 SCSI STATUS BYTE

6.2 CREATE (Mandatory)

The CREATE causes the OSD device to allocate an unused OBJECT ID. The Requester
application client uses this when once before issuing WRITEs to the new object. In addition,
the Requester application client can may specify several optionals attributes it wants for the
object.

An optional special instance of this command includes all data associated with an Object, so
that in one command an object can may be created, written and closed. The Length field is
always present, though its content may be meaningful only when certain options are invoked.

Editor's note: Always present appears to be in conflict with the table.

SCSI OSD Command Set D1355r2

32

Table 202026 - CREATE Object Action

Bit 7 6 5 4 3 2 1 0
Byte

8 (MSB) CREATE ACTION CODE (8802h)
9 (LSB)
10 OPTION BYTE 1
11 OPTION BYTE 2
12 (MSB)
13 OBJECT GROUP ID
14
15 (LSB)
16 (MSB)
17
18
19 STARTING BYTE
20 ADDRESS
21
22
23 (LSB)
24 (MSB)
25
26
27 LENGTH
28 (optional)
29
30
31 (LSB)
32 (MSB)
33
34 ATTRIBUTE

35 MASK
36 (optional)

37
38
39 (LSB)

The information transfer includes the attributes, followed by object data, if present.

The response to the CREATE action includes the OBJECT ID allocated for the new Object.
This is returned by the OSD device upon completion of the CREATE Action.

SCSI OSD Command Set D1355r2

33

Table 212127- Response to CREATE Object Action

 Bit 7 6 5 4 3 2 1 0
 Byte

 0 SCSI STATUS BYTE
 1 (MSB)
 2
 3
 4
 5 OBJECT ID
 6
 7
 8 (LSB)
 9 (MSB)
 10
 11
 12 OBJECT GROUP REMAINING CAPACITY
 13
 14
 15
 16 (LSB)
 17 (MSB)
 18 SESSION ID
 19 (optional)
 20 (LSB)

6.3 LIST (Mandatory)

The LIST service action is used to get data from the Root or a Group object. This service
action is a DataIn type service action and has the following syntax:

LIST(GroupID, Number, Index, [SortOrder], AllocationLength)

A zero GroupID refers to the Root object and non-zero GroupID refers to a valid Group object.
Number specifies the number of IDs to be returned (GroupIDs if referencing the Root object
and UserObject IDs otherwise). Index specifies the starting position of the IDs within the
specified SortOrder, with initial position value of zero. SortOrder is optional. The default order
is vendor specific. Support for specific SortOrder rules is TBD. The AllocationLength is the
amount of space (in bytes) set aside in the DataIn buffer of the initiator. The returned data
shall contain a header that specifies the sort order, the GroupID, and other additional data to
allow for the returned parameter data to be self-parsable. (Details are TBD.)

The LIST service action shall ignore session parameters.

Editor’s note: It does not seem appropriate to both fetch UserObjects and ignore session
parameters.

6.4 OPEN (Optional)

Theis OPEN communicates to the OSD device that a certain object is to be accessed. It also
indicates the kind of operations permitted on the object. The OPEN allows the Requester
application client to prefetch read and write data for the specified Object. The Requester
application client may optionally start an I/O session via the OPEN. All parameters are
supplied. The LENGTH and SESSION ID fields may be set to zero, indicating they are not to be
used. If non-zero, LENGTH indicates the number of bytes to be pre-allocated for this object.
This also allows the Requester application client to caches writes, with confirmation that there
will be available storage capacity to store the data when it is eventually sent to the OSD
device. The OSD device pre-allocates capacity of this amount.

The SESSION ID establishes that I/O to this object are to have specific quality of service
properties, those associated with this SESSION ID, which that had been returned to the
Requester application client in a response to a previous OPEN Object. This lets an

SCSI OSD Command Set D1355r2

34

Requester application client associate the IO activity on several objects with a common
session.

Table 222228 - OPEN Object Action

Bit 7 6 5 4 3 2 1 0
Byte

8 (MSB) OPEN ACTION CODE (8804h)
9 (LSB)
10 OPTION BYTE 1
11 OPTION BYTE 2
12 (MSB)
13
14 OBJECT GROUP ID
15 (LSB)
16 (MSB)
17 OBJECT ID
18
19
20
21
22
23 (LSB)
24 (MSB)
25
26
27 LENGTH
28
29
30
31 (LSB)
32 (MSB)
33
34
35 ATTRIBUTE MASK
36 (optional)
37
38
39 (LSB)
40 (MSB) SESSION ID
41 (optional)
42
43 (LSB)

SCSI OSD Command Set D1355r2

35

Table 232329 - Response to OPEN Object Action

Bit 7 6 5 4 3 2 1 0

Byte

0 SCSI Status Byte

1 (MSB)

2

3

4

5 Object_Logical_Length

6

7

8 (LSB)

9 (MSB)

10 Session ID

11 (optional)

12 (LSB)

13 (MSB)

14

15 Object Group remaining Capacity

16

17

18

19

20 (LSB)

 Editor's note: Should the Session ID and Object Group Remaining Capacity be
reversed in the order of bytes?

6.5 READ (Mandatory)

The storage device is requested to return data to the Requester application client from a
specified object. A priority mechanism to aid the OSD device in reordering queued
commands is an option.

SCSI OSD Command Set D1355r2

36

Table 242430 - Read Action

Bit 7 6 5 4 3 2 1 0
Byte

8 (MSB) READ ACTION CODE (8805h)
9 (LSB)
10 OPTION BYTE 1
11 OPTION BYTE 2
12 (MSB)
13
14 OBJECT GROUP ID
15 (LSB)
16 (MSB)
17
18
19 OBJECT ID
20
21
22
23 (LSB)
24 (MSB)
25
26
27 STARTING BYTE
28 ADDRESS
29
30
31 (LSB)
32 (MSB)
33
34
35 TRANSFER LENGTH
36
37
38
39
40 (MSB)
41 SESSION ID
42 (optional)
43 (LSB)

Data is returned as an information transfer.

SCSI OSD Command Set D1355r2

37

Table 252531 - Response to Read Object Action

 Bit 7 6 5 4 3 2 1 0
 Byte

 0 SCSI STATUS BYTE
 1 (MSB)
 2
 3
 4 LENGTH
 5 OF DATA
 6 RETURNED
 7
 8 (LSB)

6.6 WRITE (Mandatory)

This will The WRITE shall cause the specified number of bytes to be written to the designated
object at the relative location also specified. Information required is similar to that for a READ.
A WRITE to a byte that is greater than the object logical length will shall implicitly increase
the logical length of the object. If there is a capacity quota on the Object Group to which for
this object belongs, the OSD device shall tests to make sure the WRITE does not exceed the
quota. If it does, the operation is rejected. See {{Annex A1.17}}.

Table 262632 - WRITE Object Action

Bit 7 6 5 4 3 2 1 0
Byte

8 (MSB) WRITE ACTION CODE (8806h)
9 (LSB)
10 OPTION BYTE 1
11 OPTION BYTE 2
12 (MSB)
13
14 OBJECT GROUP ID
15 (LSB)
16 (MSB)
17
18
19
20 Object ID
21
22
23 (LSB)
24 (MSB)
25
26
27 STARTING BYTE
28 ADDRESS

29
30
31 (LSB)
32 (MSB)
33
34
35 LENGTH

36
37
38
39 (LSB)
40 (MSB)
41 SESSION ID
42 (optional)
43 (LSB)

Data is supplied in an information transfer.

SCSI OSD Command Set D1355r2

38

Table 272733 - Response to WRITE Object Action

 Bit 7 6 5 4 3 2 1 0
 Byte

 0 SCSI STATUS BYTE
 1 (MSB)
 2
 3
 4 OBJECT GROUP
 5 REMAINING CAPACITY
 6
 7
 8 (LSB)

6.7 APPEND (Mandatory)

This will The APPEND shall cause the specified number of bytes to be written to the
designated object starting immediately after the object logical length. The information required
is similar to that for a READ or WRITE except that no starting location is provided. The OSD
device is responsible for determining thisthe start location. The APPEND will shall also
cause the logical length of the Object to be updated reflecting the data added by the APPEND
command. (This action could easily be constructed as an option on the WRITE action rather
than as a separate action.)

Data is sent as an information transfer.

SCSI OSD Command Set D1355r2

39

Table 282834 - APPEND

Bit 7 6 5 4 3 2 1 0
Byte

8 (MSB) APPEND ACTION CODE (8807h)
9 (LSB)
10 OPTION BYTE 1
11 OPTION BYTE 2
12 (MSB)
13
14 OBJECT GROUP ID
15 (LSB)
16 (MSB)
17
18
19
20
21
22 OBJECT ID
23 (LSB)
24 (MSB)
25
26
27 TRANSFER LENGTH
28
29
30
31 (LSB)
32 (MSB)
23 SESSION ID
34 (optional)
35 (LSB)

Table 292935 - APPEND to Object Response

 Bit 7 6 5 4 3 2 1 0
 Byte

 0 SCSI STATUS BYTE
 1 (MSB)
 2
 3
 4 STARTING BYTE
 5 ADDRESS
 6 (of APPEND action)
 7
 8 (LSB)
 9 (MSB)
 10
 11
 12 OBJECT GROUP
 13 REMAINING CAPACITY
 14
 15
 16 (LSB)

6.8 FLUSH Object (Mandatory)

This ensures all data and attribute bytes for the specified object are stored in non-volatile
media.

SCSI OSD Command Set D1355r2

40

Table 303036 - FLUSH Object Operation

Bit 7 6 5 4 3 2 1 0
Byte

8 (MSB) FLUSH OBJECT ACTION CODE (8808h)
9 (LSB)
10 OPTION BYTE 1
11 OPTION BYTE 2
12 (MSB)
13
14 OBJECT GROUP ID
15 (LSB)
16 (MSB)
17
18
19 OBJECT ID
20
21
22
23 (LSB)

Table 313137 - FLUSH Object Response

 Bit 7 6 5 4 3 2 1 0
 Byte

 0 SCSI STATUS BYTE

6.9 CLOSE (Optional)

This will The CLOSE shall cause the Object to be identified as no longer in use by a given
session.

Editor’s note: John Wilkes asks what happens if optional session ID in OPEN was not given?

SCSI OSD Command Set D1355r2

41

Table 323238 - CLOSE Object Action

Bit 7 6 5 4 3 2 1 0
Byte

8 (MSB) CLOSE ACTION CODE (8809h)
9 (LSB)
10 OPTION BYTE 1
11 OPTION BYTE 2
12 (MSB)
13
14 OBJECT GROUP ID
15 (LSB)
16 (MSB)
17 OBJECT ID
18
19
20
21
22 (LSB)
23 (MSB)
24
25 SESSION ID
26
27 (LSB)

Table 333339 - Response to CLOSE Object Action

 Bit 7 6 5 4 3 2 1 0
 Byte

 0 SCSI STATUS BYTE

6.10 REMOVE (Mandatory)

Deletes an Object.

Table 343440 - REMOVE Object Action

Bit 7 6 5 4 3 2 1 0
Byte

8 (MSB) REMOVE ACTION CODE (880Ah)
9 (LSB)
10 OPTION BYTE 1
11 OPTION BYTE 2
12 (MSB)
13
14 OBJECT GROUP ID
15 (LSB)
16 (MSB)
17
18
19
20
21
22 OBJECT ID
23 (LSB)

SCSI OSD Command Set D1355r2

42

Table 353541 - REMOVE Object Response

 Bit 7 6 5 4 3 2 1 0
 Byte

 0 SCSI STATUS BYTE
 1 (MSB)
 2
 3
 4 OBJECT GROUP
 5 REMAINING CAPACITY
 6
 7
 8 (LSB)

6.11 CREATE OBJECT GROUP (Manda tory)

This command shall cause the OSD device to aAllocate on the storage device a new set of
objects. The operation would implicitly shall establish an object list and group control object
for the Object Group.

Table 363642 - CREATE OBJECT GROUP Action

Bit 7 6 5 4 3 2 1 0
Byte

8 (MSB) CREATE OBJECT GROUP ACTION CODE (880Bh)
9 (LSB)
10 OPTION BYTE 1
11 OPTION BYTE 2
12 (MSB)
13
14
15
16 CAPACITY QUOTA
17
18
19 (LSB)

The response to the CREATE OBJECT GROUP action includes the Object Group ID assigned
by the OSD device.

Table 373743 - Response to CREATE OBJECT GROUP

 Bit 7 6 5 4 3 2 1 0
 Byte

 0 SCSI STATUS BYTE

6.12 REMOVE OBJECT GROUP (Mandatory)

This is the function that will shall delete an Object Group from the OSD device. Any Objects it
the Object Group contains will shall be deleted.

Editor's note: What is the outcome if an Object is a member of more than one Object Group?

SCSI OSD Command Set D1355r2

43

Table 383844 - REMOVE OBJECT GROUP Action

Bit 7 6 5 4 3 2 1 0
Byte

8 (MSB) REMOVE OBJECT GROUP ACTION CODE (880Ch)
9 (LSB)
10 OPTION BYTE 1
11 OPTION BYTE 2
12 (MSB)
13
14 OBJECT GROUP ID
15 (LSB)

Table 393945 - Response to REMOVE OBJECT GROUP Action

 Bit 7 6 5 4 3 2 1 0
 Byte

 0 SCSI STATUS BYTE
 1 (MSB)
 2
 3
 4 LOGICAL UNIT
 5 REMAINING CAPACITY
 6
 7
 8 (LSB)

6.13 IMPORT Object (optional)

The IMPORT function will shall enable the OSD device to access another OSD device to
retrieve a specified object and create another copy of it the object on the requesting OSD
device.

This function will shall copy an object from another storage device by issuing OPEN, READs
and a CLOSE or just a READ to that the designated storage OSD device, transferring the
object. This command effectively issues a CREATE, sufficient WRITEs and a CLOSE to
create the object on the addressed OSD.

SCSI OSD Command Set D1355r2

44

Table 404046 - Import Object Action

Bit 7 6 5 4 3 2 1 0
Byte

8 (MSB) IMPORT ACTION CODE (880Dh)
9 (LSB)
10 OPTION BYTE 1
11 OPTION BYTE 2
12 (MSB)
13 DESTINATIONSOURCE
14 OBJECT GROUP ID
15 (LSB)
16 (MSB)
17
18
19 SOURCE OBJECT ID
20
21
22
23 (LSB)
24 (MSB)
25
26
27
28
29
30
31 SOURCE OSD
32
33
34
35
36
37
38
39 (LSB)
40 (MSB)
41
42
43 ATTRIBUTE MASK

44
45
46
47 (LSB)
48 (MSB)
49 SOURCDESTINATION E OBJECT GROUP ID
50
51 (LSB)

Editor’s note: The order of fields in this table has been criticized.

Editor's note: How shall the source ID be parsed? Should it be the first 8 bytes for
target and the last 8 bytes for logical unit as in the SPC COPY?

SCSI OSD Command Set D1355r2

45

Table 414147 - Response to Import Object Action

 Bit 7 6 5 4 3 2 1 0
 Byte

 0 SCSI STATUS BYTE
 1 (MSB)
 2
 3
 4
 5
 6 OBJECT ID
 7
 8 (LSB)
 9 (MSB)
 10
 11
 12 OBJECT GROUP
 13 REMAINING CAPACITY
 14
 15
 16 (LSB)

6.14 GET ATTRIBUTES (Mandatory)

The function GET ATTRIBUTES shall retrieve,s for the specified object, the meta-
dataattributes associated with the object. It is also used to interrogate and the Object Group
default and storage device wide attributes. The bit mask identifies the attributes being
interrogated. An inbound (OSD to requesterapplication client) information transfer transmits
the attributes to the requesterapplication client . Security keys are not returned.

SCSI OSD Command Set D1355r2

46

Table 424248 - GET ATTRIBUTES Action

Bit 7 6 5 4 3 2 1 0
Byte

8 (MSB) GET ATTRIBUTES ACTION CODE (880Eh)
9 (LSB)
10 OPTION BYTE 1
11 OPTION BYTE 2
12 (MSB)
13
14 OBJECT GROUP ID
15 (LSB)
16 (MSB)
17
18
19 OBJECT ID
20
21
22
23 (LSB)
24 (MSB)
25
26
27 ATTRIBUTE MASK
28
29
30
31 (LSB)
32 (MSB)
33 SESSION ID
34 (optional)
35 (LSB)

 Table 434349 – Response to GET ATTRIBUTE Action

 Bit 7 6 5 4 3 2 1 0
 Byte

 0 SCSI Status Byte

Editor's note: The Attribute Mask needs to be specified.

6.15 SET ATTRIBUTES (Mandatory)

The SET ATTRIBUTES function shall sets attributes for a specified Object. The attributes
values are sent via an outbound (from requesterapplication client to OSD device) information
transfer. The Security keys (See 5.4.2.15.3.3.1 for a description of these attributes) are shall
be the only attributes that are set by the SET ATTRIBUTE action but cannot be read by the
GET ATTRIBUTE action. If the session ID field is non-zero, then the attributes being set shall
apply to the session and not to the (static) object.

Editor's note: Does the latter requirement suggest that the if the session ID is non-zero,
the Object ID should be zero?

SCSI OSD Command Set D1355r2

47

Table 444450 - SET ATTRIBUTES Action

Bit 7 6 5 4 3 2 1 0
Byte

8 (MSB) SET ATTRIBUTES ACTION CODE (880Fh)
9 (LSB)
10 OPTION BYTE 1
11 OPTION BYTE 2
12 (MSB)
13
14 OBJECT GROUP ID
15 (LSB)
16 (MSB)
17
18
19 OBJECT ID
20
21
22
23 (LSB)
24 (MSB)
25 SESSION ID
26 (optional)
27 (LSB)
28 (MSB)
29
30
31
32 ATTRIBUTE MASK
33
34
35 (LSB)

Table 454551 - Response to Set Attribute Action

 Bit 7 6 5 4 3 2 1 0
 Byte

 0 SCSI Status Byte

SCSI OSD Command Set D1355r2

48

Annex

A

Research Notes (informative)

A.1 Overview

This section Annex A attempts to capture some of the more important discussion concerning
the commands. There was not unanimity in the above definitions, and the following may
serve useful in helping a wider audience understand the rationale for the choices that were
made.

Editor's note: This annex should be deleted or set in a different vane prior to forwarding OSD

A.2 FORMAT OSD

It should not be possible to just start using a storage device in LBA mode after it has been
initialized as an OSD device. To return a device to LBA mode after it has been initialized as
an OSD device, a SET ATTRIBUTE command could turn the OSD device operation off a
vendor specific action (e.g., download microcode) needs to be taken. This should may cause
the entire contents of the storage device to be destroyed.

A.3 CREATE

Possible options:

Bit 7 6 5 4 3 2 1 0
Byte 0 reserved Reserved reserved reserved reserved ATTR SESS CMPL

Figure 1 CREATE Action Option byte 2

CMPL is set to one when the CREATE action is to cause a complete object to be created,
written and closed. A data phase associated with the CREATE action will convey the object
data to the OSD device. The LENGTH field in the CREATE Action will contain the length of this
data. This is intended to improve performance in environments where many small objects are
being created.

SESS is set to one if the requesterapplication client requires the OSD device to set up an I/O
session. This will require the OSD device to maintain state for the duration of the OPEN
session. It SESS is made an optional because it was thought that many or most I/O would not
have quality of service requirements attached to them. In this case no session state is
maintained.

ATTR is set to one to indicate that the information transfer includes attribute data for the
object to be created.

The CREATE action was thought to be the appropriate time to establish any object specific
attributes, including directing an object to be located near another, locating it with respect to
the data rate possibilities on the storage device or establishing any other management policy
associated with it.

A possible option (not included yet) is a degree-of-contiguity field. For instance, if a new
object shall should have a minimum degree of contiguity, this attribute could direct the
storage device to allocate space in units of that size to ensure that degree of contiguity.
Another view holds that this is too “physical” a specification and more appropriate would be a
quality of service indicator that specified the performance level required . In other words,

SCSI OSD Command Set D1355r2

49

havesuch that the requesterapplication client describes the requirement rather than the
solution.

Some of the object attributes discussed, in addition to those in 5.3, include:

Make this file password protected. Rejected as not the right place to put a password.

• Encrypt this object. This is probably too expensive to put in a disc drive. While it could be
done in a subsystem, the security enthusiasts who looked at it thought this was not the right
place to do encryption anyhow.

• Specify if sub object level locking is required. This is still too ill-definednot
fleshed out .

• Specify versioning. This was rejected – as more appropriately done by the OS.
• Mirror support - cause all updates to be mirrored onto another object. No one

could has come up with a concrete requirement for this.
• Allocate space in units of a specified minimum size. The motive for this

attribute was to allow the requesterapplicat ion client to specify a minimum
degree of contiguity as mentioned above.

• Set rights (as in UNIX)
• Create an object to emulate an BBSDSBC SBC storage device. Assign a LUN

to it. (LUN shall be returned upon completion.)

A.4 OPEN

Possible Options:

Bit 7 6 5 4 3 2 1 0
Byte 0 reserved reserved reserved RDNLY WRNLY ATTR SESS SEQ

Figure 2 OPEN Action Options

SEQ is set to indicate that this session will should access the object sequentially.

SESS is set to one if the requesterapplication client requires the OSD device to set up an I/O
session. This will may require the OSD device to maintain state for the duration of the open
session. It is made an option because it was thought that many or most I/O would not have
quality of service requirements attached to them. In this case no session state is maintained.

ATTR is set to one to indicate that the information transfer includes attribute data for the
object to be created.

WRNLY is set to identify a session that is to consist of WRITEs only.

RDNLY is set to one, the OSD device is instructed to only allow Reads to the referenced
object. WRONLY and RDNLY cannot both be set for a given session.

There was much discussion on the merits of an OPEN action. Some felt that OPEN was not
needed at all. Some participants felt strongly it should not equate to an application file open.
That is, it should not be expected that an OSD OPEN need be issued just because the
application submitted a file open to the Operating System. The OSD OPEN provides a point
at which quality of service requirements can may be expressed to the OSD device. The
storage device canmay, in turn, reject the OPEN if the desired service level cannot be
supplied. If no special attributes – such as Quality of Service requirements – were needed,
the OPEN could may be implicit with the first READ on an object.

One view of the OPEN and CLOSE commands is that they can should frame the usage of an
object. The storage device could may use the awareness of an object not being open as the
signal that it can may take management action on the object. This might include starting a

SCSI OSD Command Set D1355r2

50

backup action by informing a backup agent of the candidate object. The OSD device
conceivably could may also profit from the OPEN and CLOSE by better managing its cache.

Since an important benefit of the OSD is storage management, especially performance, the
ability to establish quality of service attributes associated with a particular access of an object
is deemed valuable. Thus, if a video object is to be read sequentially on one occasion for
delivery to a customer, the quality of service requirements might be quite a bit more important
than if it is being read sequentially simply for backup. It should be possible to express to the
OSD device this difference in requirements.

It is thought that a session ID will be required to identify under which set of quality of service
attributes a given I/O is submitted. For instance a single requesterapplication client could
may have both operations underway simultaneously. The OSD device would have no way of
knowing for a given read request, whether it had to meet the stringent requirements of the
video delivery application or only had to get the data out to satisfy the backup operation. A
session ID could may let the OSD device discriminate between multiple sets of quality of
service requests.

Were If SESSION ID’s were always used, there would be no need for both a SESSION ID and the
[OBJECT ID, OBJECT GROUP ID] set on READ, WRITE and APPEND commands. This would
simplify the fast path operations, but always require the OSD device to keep state for each
OPEN. Since the OSD device's ability to hold OPEN state is finite, it could may result in the
OSD device being unable to accept an OPEN due to not having space to hold any more state
information. Since most operations would not have any QoS requirements, it seems desirable
to make the session an option. This lets the OSD device handle most requests it receives,
without having to keep state for all tasks that desire to access an object. This also means
that any requesterapplication client can may simply READ an object without first issuing an
OPEN (again, assuming no QoS requirements).

The optional length parameter for the OPEN allows an Requester application client to pre-
allocate and hold space in anticipation of WRITEs. This is a quality of service feature,
persists only for the lifetime of the session and might be specified with the size attributes in
5.3 rather than an explicit argument on this action. The requesterapplication client can may
cache I/O, with the confidence that there will be space available when the cache is flushed.
There might be a better way of doing this; but, clearly, something is needed to support
requester application client (client or host, if you like) caching.

A.5 READ

Possible options:

Bit 7 6 5 4 3 2 1 0
Byte 0 Reserved reserved reserved reserved PRIORITY

Figure 3 WRITE Action Option byte 2

PRIORITY is a 4 bit integer that puts a relative time criticality on the submitted request. A
lower value is a higher priority. The OSD device could may use this to help order the
execution of the requests in its queue. The intent of priority is to identify classes of relative
performance in the I/O queue. A system couldmay, for instance, decide to define class 4 as
normal I/O, with class 5 being background work and class 3, exceptional request that shall
should be put ahead of all normal requests.

It could has been argued (and was unendingly!) that a priority capability is redundant to the
quality of service attributes, which all agreed would be a more powerful vehicle for managing
performance. Still, both are included so that the industry can decide if PRIORITY has a value
in the presence of QoS attributes.

There was also a request to have a PRIORITY designation for requests that are not to be
executed until a certain amount of idle time has passed. This has not been defined, but could

SCSI OSD Command Set D1355r2

51

be supported with a set of Priority values, such as 12 – 14. A time attribute defining the delay
interval would be needed to support this.

A READ can may return the entire contents of an object by supplying a length longer than that
of the object. The OSD device will should return all data and, in the response, the actual
length of the data sent to the requesterapplication client. For instance, a READ with a length
of 64K can may be used to read any object having a length less than or equal to 64K. The
READ will should send back as much data as the object contains, with the length of that data
supplied in the response.

A.6 WRITE

Possible options:

Bit 7 6 5 4 3 2 1 0
Byte 0 reserved reserved reserved Reserved PRIORITY

Figure 4 WRITE Action Option byte 2

An attribute on the Object to which the WRITE has been issued could may cause other events
to occur. If mirroring support was called for on the target storage device (as indicated by an
attribute on each object), a WRITE could may automatically cause the WRITE to be
propagated to another OSD to keep it in sync with the written to OSD.

A.7 APPEND

Possible options:

Bit 7 6 5 4 3 2 1 0
Byte 0 reserved reserved reserved Reserved PRIORITY

Figure 5 APPEND Action Option byte 2

The idea behind the APPEND command is that it leaves to the OSD device the task of
concurrency control for a certain class of objects. That is, several requesters application
clients could may be logging data to an object. If each had to determine the length of the
object, acquire an exclusive access rights and write its data, the performance would be far
poorer than if each could just issues an WRITEAPPEND. This feature does not work in all
cases, of course, but logging and similar operations can may be supported where the precise
ordering of the log entries is not a concern.

A.8 FLUSH Object

This command can may also be used for synchronizing the object group or the storage device
by specifying the appropriate value to indicate that one or all Object Groups are to be flushed.

A.9 CLOSE

The discussions on CLOSE were similar to those on OPEN. Many felt that CLOSE is not
needed. Most felt, however, that there was value in identifying to the OSD device that an
Object was not going to be used by the Requester application client any longer. The OSD
device could may take action based on this knowledge. One possible action would be to
direct an agent to back up the object. This might be desirable if the object had just been
updated and had an attribute that called for backing up any time the object was updated.
There was stronger support for CLOSE than OPEN.

SCSI OSD Command Set D1355r2

52

Any changes as a result of writing to the Object, if not already written to the media, could may
be committed at this time.

It was recognized that an object being created should not be left in an ambiguous state if the
CLOSE is not received. The OSD device could may either discard the partially created object
or it could may establish the existence with the data that has been written to it so far. Which
of these to actions to take could may be a matter of policy, established at the OSD device,
Object Group or object level.

Some believe that Requester application client failure recovery is made harder by requiring a
CLOSE in order to not lose written data, especially as the FLUSH operations can may be
used for ensuring written data is on stable media. An alternative view of CLOSE is that,
independent of zero or multiple proceeding OPEN actions, a CLOSE action on an object is an
assertion that Requester application client activity with this object has ceased.

A.10 REMOVE Object

Potentialssible options:

Bit 7 6 5 4 3 2 1 0
Byte 0 reserved reserved reserved reserved reserved reserved reserved DESTR

Figure 6 REMOVE Object Action Option byte 2

DESTR is set to one to instruct the OSD device that it should obliterate the data in the object
to be removed so that no trace is left on the media (i.e.., security erase).

One issue that must needs to be resolved is the issuance of a REMOVE action when the
object is still open as a result of some other activity. The prevailing view was that it should be
rejected. This would only work in an environment that consistently issued OPEN and CLOSE
actions.

A.11 CREATE OBJECT GROUP and REMOVE OBJECT GROUP

There was considerable disagreement on the need for Object Groups, and what form they
should take. The great majority of responses was that they were not needed. Others pointed
out how an Object Group concept could be useful, especially in support of legacy OSs
because it is quite likely that different file systems, databases, volume managers and virtual
memory systems will may not be coded to use distributed capacity allocation protocol among
themselves. The operation supporting Object Groups are included not to necessarily endorse
the need for them. It is hoped that, first, they will serve to flag the question as to whether
they are needed, and, second, to suggest how they might be implemented should Object
Groups be deemed a requirement. The preferred definition was that an Object Group defined
a collection of objects. There would not be a physical segmentation of the storage device tied
to the Object Group. It does not describe a subset of the storage capacity. There can may be
a capacity quota associated with an Object Group, which could be used in legacy OSs as a
limit on the amount of space consumed by the objects in an Object Group. This of course
leaves open the whole question of over-commitment. There probably should be a choice of
policy as to whether the capacity of the storage device can may be oversubscribed or not.

This function will also create a well-known object holding Object Group attributes, which
cannot should not be removed as long as the Object Group exists. This The root object will
may serve as the starting point for navigating the objects in the Object Group.

The OBJECT ID length was a subject of some discussion. While most felt the longer (– i.e. 64
bit) – field was appropriate, an argument for efficiency held that 32 bit was sufficient. The
outcome was that the field was defined as 64 bits, with the possibility of defining an option bit
that would restrict the length to 32 bits.

SCSI OSD Command Set D1355r2

53

A.12 IMPORT Object

Bit 7 6 5 4 3 2 1 0
Byte 0 reserved reserved reserved reserved PRIORITY

Figure 7 APPEND Action Option byte 2

It was not unequivocal that IMPORT is necessary – or even a very good idea. While the value
of moving objects between storage devices without host intervention has value, it was not
clear that the oversight of such an operation should be left to the storage devices.
Nevertheless, the command was left in because some saw it usable, especially in smaller
system environments.

A.13 GET OBJECT ATTRIBUTES

GET ATTRIBUTES and SET ATTRIBUTES are used to retrieve or update object characteristics.
Originally a 32-bit mask was defined. Some felt that any field mask was just too restrictive at
this point. With the prospect of QoS attributes being extremely complex, there probably
should be a more open ended mechanism for communicating attribute information between
the requesterapplication client and the OSD device, For example, 5.3 suggests a keyword
driven mechanism. A 64-bit mask is the implementation described, but this certainly needs
more work.

It should be possible to retrieve attributes for multiple Objects with a single GET ATTRIBUTE
operation. For instance, a single request could may return the storage device Object and all
Object Group Object attributes if there was a convention for describing a list of target objects.

There was some discussion about a list directed operation, whereby the attributes for a set of
objects could may be retrieved or set. There was no consensus on the format that the list
should take. There still needs to be a lot of work on the set attributes an object may have.

A.14 SET OBJECT ATTRIBUTES

This property is used with special instances of this command to set certain OSD
characteristics. The drive key, which is used to manage the OSD enforcement of
authentication and security, is set using this command.

The installation-supplied name is also passed to the OSD device by this command. Since
many installations will may want to ensure that names are not ambiguous, the thought is that
setting the name should be a closely controlled operation.

A.15 GET, SET STORAGE DEVICE ASSOCIATIONS

Though not included in the commands, a method for defining and interrogating sets of OSD
could may be useful, especially in support of RAID configurations.

These actions would may define or interrogate relationships among storage devices. This
would may be necessary for inter-storage device communications. (A possible implementation
would may be one of the storage devices being identified as the “master” or first of set, with
the others being dependent members of the set. The first of set would may be responsible for
disseminating to the other members changes in set attributes. Other members would may
reject attribute settings if they were not from the first of set.)

The motive for defining OSD sets that the storage devices themselves are aware of, is to
enable an implementation of a RAID function or mirroring at the OSD level. This corresponds
to a software RAID on a string of discs. It was not clear how a RAID function could should be
provided across OSD without the storage devices knowing the number of storage devices in
the RAID group, the arrangement (i.e. order) of the group and the addresses.

SCSI OSD Command Set D1355r2

54

Storage device associations, in combination with object based XOR commands make it
possible to have controller independent array configurations.

A.16 Sessions

Sessions are sets of I/O requests that are to honored by the OSD device in the same way.
That is, the Requester application client can may use the Set Attribute action to establish the
quality of service characteristics associated with the session. The OSD device is expected to
accept the contract – by virtue of not rejecting the Set Attribute action with session attributes
– and process the I/O requests per those quality of service requirements. The session ID is
returned by the OSD device in the response to an OPEN or CREATE action. The Requester
application client then supplies this session ID in each Read, WRITE, or APPEND request. In
addition the Requester application client can may supply the ID of a previously set up session
in an OPEN to require that the OSD device also process the I/Os for this object with the same
quality of service as requested for the object with which the session was originally
established.

A.17 Scatter-Gather operations

To maximize transfer efficiency, scatter-gather variants of the READ and WRITE commands
should be considered. The scatter-gather variants should take as arguments a number of
{offset, len} tuples describing the sets of bytes to be read/written. The data should be
transferred on the wire in the order that it is described in the access. Thus, a READ of {
{27,3}, {0,4} } would transfer bytes in the following order: {27, 28, 29, 0, 1, 2, 3}.

The spec standard should probably describe the atomicity of READ and WRITE operations, as
well as the scatter-gather variants. It does not seem necessary to implement "extra"
guarantees of atomicity for the scatter-gather variants. That is, "READ-SG { obj 37, { {16384,
8192}, {32768, 8192} } }" does not seem to require atomicity not also provided by performing
separately "READ { obj 37, offset 16384, len 8192}" and "READ { obj 37, offset 32768, len
8192}", although implementations of the OSD spec standard could may certainly feel free to
provide additional guarantees.

IMPORT should be modified to move a range of bytes within an object rather than whole
objects. This can may be done by adding two offsets and a length to the description of an
IMPORT operation. One offset would be the offset in the source object, the other the offset in
the destination object, and the third is the number of bytes to transfer. A scatter-gather
variant, IMPORT-SG, should take a list of such byte ranges to import. Utilizing the scatter-
gather variant, a storage manager could may perform a restriping operation from an m disk
array to an n disk array with at most n*m total IMPORT directives without forcing multiple
reads or writes of the same bytes.

A.18 Attributes

The distinction between Object logical Length and Object Size is that the former defines the
range of addresses in which read actions return data and the second reports the real capacity
consumed by representing the object’s data. Some believe that Set Attributes should take a
new value of Object Logical Length which, if smaller than the current value, truncates the
object (destroying data with addresses beyond the new value) and if larger than the current
value, extends the range of addresses that responds to reads, implicitly defining the value of
newly addressable addresses to be zeros.

The attribute, Data_Access_Time, was discussed extensively. Many felt that the performance
cost for maintaining this was excessive, therefore not to be included. Others held that it is
necessary to the OSD device intelligently participating in HSM functions.

SCSI OSD Command Set D1355r2

55

There was some sentiment for the interpretation of the Last_Access_Time being the time of
the last OPEN action on the object.

A.19 Policy

Policy refers to the set of conditions and subsequent actions (to be performed in the event the
associated condition(s) is met) connected to the management of data and/or storage. Policies
are typically time- or event-driven, are independent of storage geometry, and frequently occur
independently of any application processes. Common examples of policies include conditional
or time-based backup, archive, and delete processing, data movement, and storage device
maintenance.

Policies, though relevant to the management and disposition of objects and their contents, are
beyond the scope of this documentstandard.

Some felt that even though eliminating a sector dependency was valuable, there still would be
a need for a block size attribute to give the requesters application client's good guidance for
laying out objects and transferring on wise boundaries. This can may eliminate or at least
minimize the storage device’s need to do read-modify-write sequences due to mis-aligned
transfers. Blocksize here refers to the modulus that will align transfers to desirable
boundaries. Every object is assumed to begin on such a boundary.

A.20 Rationale and Justification

The use of attributes to characterize OSD objects stems from the desire to reduce device
dependencies within accessing applications, achieve a higher (i.e. simpler and more
application pertinent) level of specification, and enable more powerful asynchronous or semi-
autonomous functions at the device. In order to achieve these goals, we have examined
similar concepts embodied in system-managed storage, QoS, and policy management, and
applied them to the object-based device environment. Accordingly, it is felt that this design
supports the desired objectives:

• Reduced device dependencies – the attributes contain no device specifics. ; indeed, Aan
OSD device is free to self-manage and optimize itself as long as the result continues to
achieve the attribute specifications.

• Higher level of specification – the attributes are biased in the direction of processing
and/or data requirements, rather than device capabilities.

• Function enablement – functions such as data movement, querying, and performance
optimization that are often performed at the host can may be performed elsewhere in the
network (e.g. , by a storage management processor) or by the OSD device itself; .
Aadditionally, the extended attribute capability may be used to enable more powerful
functions (e.g. , data base assists, cryptographics, format translation) to be performed
outboard of the host.

SCSI OSD Command Set D1355r2

56

Annex

B

OSD related Topics (informative)

B.1 Relationship to file systems

Data is stored in fully self-defined and self-contained objects , whichthat the storage device
on which they reside is responsible for maintaining. Within the constraints of the security
policy in place, the object-based architecture makes it possible for any requesterapplication
client to inspect a storage device to discover what objects exist there and access them. The
application client It need not know anything about the OSD device’s physical characteristics
or even the operating system that created the objects.

While objects might appear to look and work very much like traditional files , they are not the
same. There is no hierarchical organization as in most file systems. Although (Iit could may
reasonably be argued that the OSD-Object Group-object organization is, in fact, a hierarchy.)
There is no naming function. An object mightmay contain several files, or an object may only
be part of a file. It is hoped assumed that Objects can may be operating system
independent, with (almost) any OS able to superimpose its file system structures on the object
abstraction. The OS files, directories and meta-dataattributes, – other than space
management mechanisms, – are constructed as objects.

The object abstraction shall makes available information valuable to the optimal exploitation
of the storage. For quality of service and management reasons the object semantics should
expose enough of the storage device’s capabilities to do so without infringing on its sovereign
self-management. Capabilities are not meant here to be a description of hardware, but
rather, performance characteristics, such as the data rate, time to first byte, and other
attributes described above. For instance, a typical disc drive today has several strata of
transfer rates. The specifics of these should be known to a degree sufficient to allow a file
allocation policy to take advantage of them. This could may take the form of service levels
and capacity quotas for each.

Reliability characteristics would are also be attributes. A disc array could may include mirror,
RAID and JBOD storage. An object could may be created on the type of storage that provides
the appropriated reliability level as a result of a reliability attribute supplied with a CREATE
action.

B.2 Object Groups

Operating systems commonly provide for allocating disc space into one or more mutually
exclusive regions, called partitions. A similar facility is available on an OSD device with this
significant difference: the OSD Object Groups are not divisions of the storage space, but
simply logical collections of objects.

One use of the Object Groups is to segregate the name space of an OSD device so that
multiple, non-cooperating managers (such as file systems, VM pagers, LVMs, or database
managers) can may use the same OSD without conflict. , since they usually assume that
others do not exist.

There may optionally be a capacity quota associated with an Object Group to enable
management of space consumption by the objects in the Object Group. Each Object Group
may have a capacity quota associated with it for this purpose. This can may be used to
protect against objects consuming space unreasonably. Should an Object Group fill, and
there still be available space on the storage device, space could may be added to the Object
Group quota by subtracting from another Object Group quota.

SCSI OSD Command Set D1355r2

57

Not tying Object Groups to specific amounts or segments of the storage device capacity has
another benefit. Every disc drive and many disc arrays have zones offering different data
rates. For some applications, such as video or image processing, it is may be important to be
able to put certain files in the high data rate zones of the storage. If Object Groups actually
divided up the space, it might be that only the first Object Group could hold objects that would
have the property of the highest data rate a storage device offered. By not tying Object
Groups to storage location, multiple Object Groups could may contain objects in the high data
rate zones (possibly by specifying a quality of service attribute that called for such allocation).

This makes it possible for objects to be grouped into Object Groups for management
purposes, with each of the Object Groups able to offer high data rate allocation, – up to the
capacity limit of those zones , of course. A video processing shop might have several projects
underway simultaneously. The objects for each project could may be stored in a separate
Object Group with the video images being allocated in the outer zones and the program files
or control information being put in lower data rate zones.

The storage device will maintains an object list for each of its Object Groups and space
management information for the entire storage device.

B.3 Identifiers (ID’s)

The identifier associated with an object is chosen by the storage device and returned to the
Requester application client in response to the command to create an object. The ID will be
an unsigned 64-bit integer. The length could be set to a smaller size by defining a storage
device attribute that directs the OSD device to only issue ID values less than 64 bits –
perhaps 32 bits. Specific ID’s could may be reserved for well-known objects. Experience to
date suggests some wWell known objects will are needed to enable a file system to start
navigating through the objects on the OSD device.

There were a couple of suggestions for Allowing the Requester application client to supply
OBJECT ID at CREATE time, instead of having the OSD device assign and return it. This
makes may have made garbage collection easier for the Requester application client , but
would have introduceds a severe performance penalty on CREATE. The OSD device would
have to verify that the OBJECT ID was not already in use, which could take a very long time on
a storage device that had hundreds of thousand of Objects. So, it has been left with specified
that the OSD device assignsing it, with the recognition that it is a subject needing further
investigation.

B.4 Relationship to Sector Based Storage devices

B.4.1 Emulating a BBSDSBC device on an OSD device

While there will likely be a continuing need to support BBSDSBC and relative sector
addressing, there is a security problem with allowing a storage device to switch from OSD to
BBSDSBC and back. To ensure data security the change from BBSDSBC to OSD shall - and
the change from OSD to BBSDSBC should - obliterate the contents of the storage device. The
mechanism to accomplish the change is vendor specific.

It should be possible to emulate a BBSDSBC storage device on an OSD device. The OSD
device can may allocate an object matching the desired size of the logical BBSDSBC. It
assigns this a LUN, letting an Requester application client that cannot support the OBSOSA
build its file system and access data in this special object as though it were a separate
physical storage device.

Editor’s note: This capability may not survive the development.

SCSI OSD Command Set D1355r2

58

B.4.2 BBSDSBC SCSI commands

The response to the following SCSI commands would be invalid operations in OSD mode:

FORMAT UNIT SEEK READ EXTENDED VERIFY REBUILD
REASSIGN BLOCKS RESERVE WRITE EXTENDED READ LONG XDWRITE
RELEASE READ SEEK EXTENDED WRITE LONG XPWRITE
READ CAPACITY WRITE WRITE AND VERIFY WRITE SAME XDREAD
READ DEFECT REGENERATE PRE-FETCH

The following SCSI commands would be valid on an OSD device:

MODE SELECT PREVENT/ALLOW MEDIUM REMOVAL INQUIRY
MODE SENSE SYNCHRONIZE CACHE REQUEST SENSE
START & STOP TEST UNIT READY SEND DIAGNOSTIC

B.5 Data Sharing and Concurrent Update

Some who have participated in the NASD research think that sScalability could may be
improved with an optimistic control scheme where Requesters application clients can may act
as though there is no conflict unless there are actually simultaneous attempts to access the
same records by multiple Requesters application clients. They could may learn this from the
OSD device themselves when attempting to gain control of objects for the purpose of updating
them. An attribute set by an Requester application client establishes that it intends to update
certain data. The attribute is reset after completion of the WRITEs. Only if another
Requester application client attempts to set the same attribute is there a need to resolve a
conflict. This approach seems to have the potential to greatly reduce the inter- system traffic
servers generate today to maintain data consistency.

A flexible but simple extension to the action set of Clause 6 to support concurrency control at
the OSD device is to make some actions conditional on attribute values and allow successful
conditional actions to “set” attributes atomically. For example the attribute modifier structure
of 5.4.3.15.3.4.1 can may be applied to OPEN, Read, WRITE, APPEND and SET ATTRIBUTE
actions before these actions make any change to an OSD state or transmit any data.
Specifically, if each of a sequence of attribute modifiers shall evaluates successfully before
the rest of the action is enacted, then attribute values can may be tested and modified and
action maycan be conditional. In this scenario, the semantics of Clause 5.4.3.15.3.4.1 should
be extended with a byte offset and bit length (because some attributes, such as the FS-
specific field, are large enough to be unwieldy to manipulate as a primitive value) and the
Comparator values should be extended to differentiate between “test current value” and
“overwrite current value” (which always succeeds).

The feedback from data base community has consistently been that they do not want any help
in this area. That is fine; anyone with a concurrency control technique can continue to use it.
Any new work in this area would only be another option that could be used if found beneficial.
It is expected that more work will be done in this area.

B.6 OSD and aggregation

B.6.1 Overview

Aggregation is used here to describes data structures that span storage devices. Three
common uses are redundancy, performance and capacity. Traditional storage architectures
implement these on a block level interface. An OSD device hides the block specifics, so the
equivalent functions shall be are made available at the object interface of the OSD device.

In the case of capacity spanning, for instance, there is often a need to have files allocated
across storage devices. A large database might span several drives. There shall be a means

SCSI OSD Command Set D1355r2

59

by which a A file system maycan create, access and manage a collection of objects located
on several storage devices as if they constituted a single file.

When an Requester application client solicits permission to access a file that is held in
multiple objects, it shall should also have mapping information that will let the Requester
application client direct its I/O commands to the appropriate storage device. It is transparent
to OSD devices and the objects they contain are assumed to be unaware that they may be
only parts of larger storage or data constructs. (The still unIf defined, Storage device
Association being the is an exception.) This does not preclude an OSD device subsystem
from internally aggregating among OSD device’s logical units it manages.

B.6.2 Aggregation for redundancy – RAID and mirroring

Mirroring and RAID are used to protect against the loss of a storage device by making it
possible to recover the data located on the lost storage device using data stored on other
storage devices. The XOR functionality can may be adapted to work on the object interface.
In fact, it is possible for the XOR operations mayto be done implicitly whenever a WRITE
command addresses an OSD device that is parity protected. The OSD device can may cause
the additional steps necessary to maintain the parity protection to take place by converting
the WRITE to the equivalent of an XDWRITE, either standard or third party version. It could
may cause the following:

1. The old data to be read
2. The new data to be written
3. The two above to be XOR’d together
4. The target OSD on which the parity is to be updated to be calculated
5. Both #3 and #4 above to be returned to the requesterapplication client .

The requesterapplication client could then issue a WRITE to the parity object on the
destination storage device, resulting in the equivalent of an XPWRITE. Note that this is a
possible exception to the rule of OSD not being cognizant of other OSD. This implementation
of RAID support is more efficient if each storage device in the parity set being aware of its
membership in the set including the identity of each other member.

In an alternative method, the OSD device could issue a third party WRITE command to the
appropriate parity drive to complete the XPWRITE part of the parity protection.

Mirroring can be handled in at least two ways. The requesters application client can be
responsible for einsuring the WRITEs are issued to both storage devices, or the mirror
storage devices can may take responsibility for propagating WRITEs to the other.
Determining which of these is the more desirable may depend on the needs of a particular
installation, but both could may be possible used as each method has its advantage.

B.6.3 Aggregation for capacity - spanning

As was described above, for databases and other large files that cando not fit on a single
storage device, there shall be is a method for spreading them across several devices . This is
has been done today in legacy systems by creating logical volumes that span disc drives.
When an Requester application client wishes needs to access such a database, the volume
manager is responsible for directing the request to the appropriate drive, based on the
displacement of the request into the data. The OBSOSA would uses a similar method.

The Requester application client needs a mapping function similar to that of the volume
manager in a BBSDSBC environment. When the requesterapplication client goes to accesses
the Policy/Storage Manager to get authorization to access the database, the spanning
information is also returned. The Requester application client will may use this to transform a
file request into an object request to the appropriate OSD.

SCSI OSD Command Set D1355r2

60

B.6.4 Aggregation for performance – striping

Striping is handled in the same way as spanning, except that a single large-data request will
results in an object request to each of the storage devices in the stripe group.

B.6.5 Accessing Aggregated Objects

The following is a description of one method for accessing aggregated objects. It is included
to illustrate one method for supporting aggregated objects. It is by no means the only
possibility. It assumes an option in Option byte 1:

Bit 7 6 5 4 3 2 1 0
Byte 0 Reserved Reserved Reserved DPO FUA Reserved Reserved NO-REDIRECT

Figure 8 Option byte 1 support for aggregation

When NO-REDIRECT is set to one ,indicates that the Requester application client does not
support mapping of an object onto multiple OSD and will does not accept mapping
information.

When a Requestor accesses an object, it shall first obtains a valid capability (see C.2.3) for
doing so. One way that the Requestor might accomplish this is that it might possess the
necessary keys to compute a valid capability for accessing the given object on the given OSD
device. Alternativelynother is that it might may negotiate with an external service (such as a
file system policy manager) to obtain this capabili tyinformation. The ways in which an
Requestor application client might perform such a negotiation are beyond the scope of this
documentstandard. , but in this discussion it is assumed that a Policy/Storage Manager is
supplying capabilities.

The essence of this suggested method for accessing aggregated objects is that an Requester
application client discover the nature of an aggregated object (that is, its mapping) as a side
effect of trying to access the aggregated object as if it was a simple (single OSD) object. An
aggregated object that is being accessed as a simple object is referred to as a virtual object
and the OSD device that is named in accessing a virtual object is referred to as a Storage
Manager (which may actually be a Policy/Storage Manager). The term capability in this
context refers to a Security token described in C.6.40. For the purposes of this section, a
Capability may be considered an opaque set of bytes provided for security purposes.
However, because a privileged key may be included in a Capability, it is recommended that
Storage Managers encrypt responses that include maps.

The Storage Manager named by a virtual object shall respond to requests as any OSD would.
However, to realize the scaling benefits possible with network-based storage, it is desirable
that Requesters application clients be able to directly access individual OSD devices
providing backing store for virtual (aggregated) objects. To do this, Requesters application
client must need to become aware that the object they are addressing as {OSD-NAME, OBJECT
GROUP ID, OBJECT ID} is in fact mapped over for example {{OSD-NAME1, OBJECT GROUP ID1,
OBJECT ID1}, {OSD-NAME2, OBJECT GROUP ID2, OBJECT ID2}, ...} for example.

In responding to a virtual object request, the Storage Manager may choose to include in its
response the mapping of the virtual object onto member OSD devices or not . It may also
choose to act as a proxy on behalf of the requestor or not. If the NO-REDIRECT bit is set in
OPTION BYTE 1 of the request, the Storage Manager shall acts as a proxy on behalf of the
Requestor, and may not include the mapping of the object onto the aggregate members.

B.6.6 Description of Aggregate Layouts

In this subsection a possible structure for virtual object maps is described. To ensure the
ability of all Requesters application clients to be able to at least throw away layout

SCSI OSD Command Set D1355r2

61

descriptions that they cannot are not able to parse, layout descriptions shall begin with the
number of bytes used to describe the following layout (excluding the length field). After the
layout descriptor length field (4 bytes) is the first byte of the layout, which shall be is a layout
type field (1 byte). If the layout type is unfamiliarnot recognized, the Requester application
client can may use the descriptor length field to discard the entire layout description, and by
remembering to set the no-redirect bit for future accesses to that virtual object, rely on the
Storage Manager to proxy all accesses on that virtual object.

The following description uses these abstract data types:

1 An Obj-Descrip is a tuple containing {OSD-NAME, OBJECT GROUP ID, OBJECT ID, SIGNED
CAPABILITY }, where Signed Capabilities are described in C.2.3,

2 A fully-qualified layout description is a tuple containing {layout descriptor length, layout type, type-
specific layout description} where a type-specific layout description may contain one or more
embedded fully-qualified layout descriptions.

The following are defined for type-specific layout descriptions:

3 Simple mirrored set (type=1). The first 16 bits of the type-specific layout description
represent the number of elements in the mirrored set, and the remaining bits contain a
list of the length specified by the number of elements of Obj-Descrips. Note that this may
also be used to represent the "trivial" storage management option of a non-mirrored, non-
striped object by describing a mirrored set with only one member.

4 Mirrored set (type=2). The first 16 bits of the type-specific layout description represent
the number of elements in the mirrored set. The remaining bits contain a list, of length as
specified in the preceding field, of fully-qualified layout descriptions. This layout type
differs from a simple mirrored set in that where the simple mirrored layout is a set of
Objects, the mirrored set allows the elements of its set to be virtual objects, each
possibly may haveing different layouts.

5 Striped set (type=3). The first 16 bits are a count of the number of (virtual) objects that
the described object’s data is striped over. The next 32 bits are the stripe unit size (the
number of contiguous bytes in the described object mapped to one constituent object).
The remaining bits contain a list, of length given by the first field, of fully-qualified layout
descriptions. The order that data in the described object is striped over constituent
objects is the order of constituent fully-qualified layout descriptions in this list.

6 RAID-5 left symmetric set (type=4). The first 16 bits contain the number of stripe units in
the parity-protected “group”. That is, the first field’s value is one more than a count of the
number of (virtual) objects that the described object’s data is striped over. The next 32
bits are the stripe unit size (the number of contiguous data bytes in the described object
mapped to one constituent object). In each parity-protected group, one constituent object
stores a bit-wise parity of the stripe units of the rest of the group. The assignment of
parity to constituent objects follows from the RAID level 5 parity rotation called left-
symmetric (cite Edward Lee’s ACM Transactions on Computers paper on parity
distributions). The rest of the bits contain a list, of length specified by the first field, of
fully-qualified layout descriptions.

7 Concatenated set (type=5). The first 16 bits are a count of the number of objects that are
used to contain the data. The remaining bits are a list, of length given by the first field, of
fully-qualified layout descriptions of constituent objects which, if concatenated in the
given order, represent the content of the described virtual object. The constituent objects
may have arbitrary sizes individually, requiring a Requester application client to obtain
attributes of each constituent object before issuing re-directed object accesses.

8 Vendor-specific set (type=6). The first 32 bits of the description are a vendor id, followed
by a 16-bit value representing a vendor-specific layout type and the (arbitrarily long)
vendor-type-specific layout arguments. This allows storage system vendors to sell both
Storage Manager and Requester application client software with specialized layout
algorithms.

Note 4 :Note that mMost layout description types can may be nested. This allows the description of layouts such as
"mirrored, striped" without rapidly consuming the layout type namespace. The "Simple mirrored set" type is the only
one defined to disallow nesting. Most layout descriptions will utilize this as the root type to describe the layout. It
is also possible that iIndividual vendors might define non-nested layout types, although this is not recommended.

SCSI OSD Command Set D1355r2

62

B.6.7 Other Type Values

Other layout type values that should possibly may be considered for standardization: RAID
level 6 (XOR parity and Reed-Solomon parity); EvenOdd; non-rotating XOR parity (that is,
RAID level 4); parity declustering (cite Peter Chen’s 1994 ACM Computing Survey’s article).

B.6.8 Example 1: Simple mirrored pair

In this example, a virtual object is mapped on a pair of constituent objects on two different
OSD devices. Each object is a mirror of the other. Capabilities and their size (capability-sz)
are discussed in C.2.3.

Table 46 - Aggregation: Simple Mirroring Descriptor

Value Size (bytes) Description

3 + 2 *(16+4+8+ capability-sz) 4 size of subsequent layout
description

1 1 layout type (1=simple mirrored
set)

2 2 Number of objects in mirrored set

Obj-Descrip-1 16+4+8+capability-sz Descriptor for a non-virtual object

Obj-Descrip-2 16+4+8+capability-sz Descriptor for a non-virtual object

 Figure 9 Aggregation: Simple Mirroring Descriptor

B.6.9 Example 2: Simple striping

In this example, a virtual object is striped over four simple objects with a stripe unit size of 4
KB. For convenience the following refers to the size of an Obj-Descrip as obj-descrip-sz
(which, by the preceding example, is 16+4+8+capability-sz bytes).

SCSI OSD Command Set D1355r2

63

Table 47 - Aggregation: Striping Descriptor

Value Size (bytes) Description

7 + 4 * (4+3+obj-
descrip-sz)

4 size of subsequent layout description

3 1 layout type (3=striped)

4 2 count of objects in striped set

4096 4 stripe unit size, in bytes, for striped set

obj-descrip-sz+3 4 size of layout description of stripe member 1

1 1 layout type (1=simple mirrored set)

1 2 number of items in mirrored set

obj-descrip1 obj-descrip-sz object 1 description (OSD-name, Group. Object,
Capability)

obj-descrip-sz+3 4 size of layout description of stripe member 2

1 1 layout type (1=simple mirrored set)

1 2 number of items in mirrored set

obj-descrip2 obj-descrip-sz object 2 description (OSD-name, Group. Object,
Capability)

obj-descrip-sz+3 4 size of layout description of stripe member 3

1 1 layout type (1=simple mirrored set)

1 2 number of items in mirrored set

obj-descrip3 obj-descrip-sz object 3 description (OSD-name, Group. Object,
Capability)

obj-descrip-sz+3 4 size of layout description of stripe member 4

1 1 layout type (1=simple mirrored set)

1 2 number of items in mirrored set

obj-descrip4 obj-descrip-sz object 4 description (OSD-name, Group. Object,
Capability)

Figure 10 Aggregation: Striping Descriptor

B.6.10 Storage Managers Responding to Requests

There are four possibilities for what an Requestor application client might find included in the
response from a Storage Manager: If both a map and a command response are included, the
response is sent first. Hence, an Requester application client shall allocates at least 4 bytes
more than the expected response size to be able to determine if a valid map was received
(because an Requester application client does not necessarily know the size of the included
map).

SCSI OSD Command Set D1355r2

64

Table 48 - Aggregation: Responses

Response
Type

MAP

Included

RESPONSE

Included

DESCRIPTION

1 Y Y The Storage Manager completes the request on behalf of the
requestor, and forwards the result back. Additionally, the
mapping of the object onto the aggregate members is included in
the response. This response is disallowed when NO-REDIRECT
is specified in the request.

2 Y N The Storage Manager responds with only the mapping of the
object onto the aggregate members. The Requester application
client shall repeats the request, either by mapping the request
onto the members of the aggregate, or back to the Storage
Manager after setting the NO-REDIRECT bit in Option Byte 1.
This is should be disallowed when NO-REDIRECT is specified.

3 N Y The Storage Manager transparently completes the request on
behalf of the Requester application client , and forwards the result
to the Requester application client . To the Requester application
client , it appears as if the object named by Obj-Descrip is merely
a single simple object on a single OSD.

4 N N The Storage Manager does not complete the request, and no
mapping for the object is provided to the Requestor. This result is
considered an error, and as such, the Storage Manager shall
provide an error code indicating why the request was not
completed (for example, an argument was invalid).

Figure 11 Aggregation: Responses

When NO-REDIRECT is specified for a request, response type=3 is the only valid successful
result of an operation.

B.6.11 Example 1

In this example, an Requester application client already holds a valid capability for performing
Get Attributes and Read operations on a virtual (aggregated) object (V_obj_id). The capability
was provided by a possibly separate Policy/Storage Manager that may not know the mapping
for the virtual object. The Storage Manager which that backs the virtual object is assumed to
have in its cache the attributes of the virtual object and knows that the virtual object is striped
over simple objects on OSD1, OSD2, and OSD3. In the example, the Requester application
client acquires the virtual object’s attributes, providing sufficient space to receive the map,
then reads at least three times the virtual object’s stripe unit size.

SCSI OSD Command Set D1355r2

65

Table 49 - Example 1: Read Aggregated Object

Step Operation Key Attributes Source Destination Options

1 Get Attribute V_obj_id RequesterApplica
tion client

Storage
Manager

-

2 Get Attribute
response

Attributes, map Storage Manager RequesterApplic
ation client

Response, map
included

3 Read obj_id-1 RequesterApplica
tion client

OSD1 -

4 Read obj_id-2 RequesterApplica
tion client

OSD2 -

5 Read obj_id-3 RequesterApplica
tion client

OSD3 -

6 Read response data OSD1 RequesterApplic
ation client

-

7 Read response data OSD2 RequesterApplic
ation client

-

8 Read response data OSD3 RequesterApplic
ation client

-

Figure 12 Example 1: Read Aggregated Object

If the Requestor did not understand recognize the map provided in Step 2, or is not able to
implement the layout specified by the map, one might seethe result might be:

Table 50 - Example 1: Read Aggregated Objects without mapping support

Step Operation Key Attributes Source Destination Options

1 Get Attribute V_obj_id RequesterApplica
tion client

Storage
Manager

-

2 Get Attribute
response

attributes, map Storage Manager RequesterApplic
ation client

response, map
included

3 Read V_obj_id RequesterApplica
tion client

Storage
Manager

NO-REDIRECT

4 Read response data Storage Manager RequesterApplic
ation client

-

Figure 13 Example 1: Read Aggregated Objects without mapping support

B.6.12 Example 2

This example is identical to the previous, except that the Requestor does not perform a GET
ATTRIBUTES operation before performing the READ and the Storage Manager chooses to
does not provide any data with the map it returns on the first read of the virtual object.

SCSI OSD Command Set D1355r2

66

Table 51 - Example 2: Read Aggregated Objects

Step Operation Key Attributes Source Destination Options

1 Read V_obj_id RequesterApplica
tion client

Storage
Manager

-

2 Read response map Storage Manager RequesterApplic
ation client

map included

3 Read obj_id-1 RequesterApplica
tion client

OSD1 -

4 Read obj_id-2 RequesterApplica
tion client

OSD2 -

5 Read Obj_id3 RequesterApplica
tion client

OSD3 -

6 Read response data OSD1 RequesterApplic
ation client

-

7 Read response data OSD2 RequesterApplic
ation client

-

8 Read response data OSD3 RequesterApplic
ation client

-

Figure 14 Example 2: Read Aggregated Objects

In this example, if the Requester application client could does not perform the mapping itself,
this would look likethe results are:

Table 52 - Example 2: Read Aggregated Objects without mapping support

Step Operation Key Attributes Source Destination Options

1 Read REQ V_obj_id RequesterApplica
tion client

Storage
Manager

-

2 Read REP map Storage Manager RequesterApplic
ation client

map included

3 Read REQ V_obj_id RequesterApplica
tion client

Storage
Manager

NO-REDIRECT

2 Read REP Data Storage Manager RequesterApplic
ation client

Response incl.

Figure 15 Example 2: Read Aggregated Objects without mapping support

B.7 Booting From an OSD device

Initial loading of the OS and starting configuration is possible with OSD. In fact one of the
OBSOSA goals is to make that process even more efficient.

B.7.1 Cold Boot

This sequence should not be much different from a sequence on BBSDSBC. The same files
will haveneed to be located and read. The page or swap files will have the same function and
be used in the same way. To find “boot blocks” and other bootstrapping data a boot EPROM
uses attributes on well-known objects such as an Object Group’s Group Control Object,
instead of fixed sector addresses used by BBSDSBCs.

SCSI OSD Command Set D1355r2

67

B.7.2 Warm Boot

The warm boot process exposes a fundamental conflict between the desires of minimized
boot up time versus full security. OSD can may provide several choices on how to achieve
balance or compromise among the choices.

During the shutdown of some systems, it could may be fairly easy for a system to define a
quick boot image object and write the required state to it. This could may be a well-known
object or one defined for this purpose and named as an attribute to a well-known object.
Alternatively, many systems have the ability to keep a small amount of state information, such
as a boot object ID, through shutdowns. It would only require a very small amount of BIOS
code to OPEN and READ this object. No directory would have to be searched, no location
information would have to be kept. The system could may read this object to recover its
running state and be up and going quite quickly. The requesterapplication client writing the
boot image could may embed in the image a security code (signature) that only it could
decipher. This would let the system identify a boot image that has been corrupted.

Another possibility is that the SAN discovery process could may reveal, to the system starting
up, the list of boot storage devices in some priority order. The low level code in the system
could may go down this list to find a valid, well-known boot object. The access control on this
object could may be a special case allowing for anonymous READs. That is, it could be read
without the need for authentication (which admittedly has not been defined yet!). It is
conceivable that a denial of service attack could may be used on this object. Since anyone
can read it with no special permission, an intruder could may continuously read to disrupt the
other systems that have a valid requirement to do so. Some solutions were proposed, but
nothing seems to quite fill the bill yet.

Note : Note that tThe object abstraction offers several advantages here. There is no need to keep track of any
physical disc location. In fact even if the Boot Object were moved on the storage device, the system could may
just as readily read it. Also the recorded state may include several open files. The object attributes could may
identify if any of these were changed or invalidated since the shutdown, making it possible to either quickly come
up or to identify right away that the state information is outdated and a cold boot shall should be done.

B.8 External Dependencies

OSD is an enabling technology. OSD provides robust, platform-independent access to storage
objects that are designed so that almost any file system could may be built using their
capabilities. The NSIC/NASD working group believes that OSD can result in the benefits
enumerated in Section 0. However, other I/O subsystem components must need to evolve to
take advantage of OSD' properties in order for those benefits to be realized. The following
table summarizes the evolution of other system components that the NSIC believes to be
necessary in order for consumers to realize the benefits of OSD.

SCSI OSD Command Set D1355r2

68

Table 53 - OSD Dependencies

Component What's Required

File system and other data managers File systems typically manage their own storage capacity. To effectively
use the capabilities of an OSD device, a file system would have to be
rewritten to use the OSD device's storage management functions, while
retaining its own naming conventions, directory structure, and access
semantics.

A further possibility arises when OSD is combined with user mode
network access, as with the Virtual Interface Architecture (VIA) . VIA
would allow s file systems and database managers to communicate
directly with OSD devices without traversing the system I/O or network
stack once a connection was is established. The low latency achieved
thereby would enables clusters of computers to share access to storage
resources (for "shared nothing" clusters) or to share data with minimal
inter-node locking traffic. Exploitation of this feature would requires
modification of the data managers to use a VIA interface, in addition to
the modifications listed above.

I/O software stack OSD devices require commands and responses that are not part of
typical legacy storage device driver stacks today. Drivers would have to
evolve to issue OSD commands and respond appropriately. APIs would
have to be developed to allow file systems, database managers and
applications to issue these commands.

Cluster software An OSD device is aware of both the data constituting a data Object and
the attributes of data Objects. It can may therefore perform certain
management functions (e.g., defragmentation, shuffling for performance
optimization) autonomously, and in a host-independent way.

Management tools Depending upon the extent to which management features are
implemented in OSD devices, data management tools (e.g., backup
managers and hierarchical storage management products) will have to
be modified to take advantage of those features. In general, the change
required to for management tools to utilize OSD capabilities is a change
from being the data movement engine to being the director of the OSD
device's data movement engine.

Figure 16 OSD Dependencies

SCSI OSD Command Set D1355r2

69

Annex

C

Known Unresolved Issues or Uncompleted Topics (informative)

C.1 Audit Trails

An audit trail is a history of all instances of all (or of a subset of) operations applied to the
OSD device. Audit trails are used by security analysis and performance management tools.
However, the necessity of logging an audit trail of OBSOSA activity to itself OSD devices
could may pose capacity, throughput and fault tolerance problems. These could may be
ameliorated by having the option to log the audit trail on another network storage device
dedicated to that function or by including in the OSD device non-magnetic NVRAM temporary
storage to delay and group audit records before transfer to OSD device media. Even so, the
bandwidth consumed by a sizable number of storage devices logging records would obviously
reduce the application bandwidth.

It might seem that a single extra message for each I/O is not a big deal, but iIn a transaction
environment a single extra message for each I/O it is a BIG deal! significantly degrades
performance. All I/O is essentially a message and the I/O subsystem is typically message
bound. We already have some experience with this kind of thing on a drive where the SMART
feature causes logging of environmental data. It can have a significant impact on
performance. And the SMART log data is only summary information.

C.2 Clocks

Each storage device will should have a readable monotonically incrementing clock to be used
for time stamping secure messages and object attributes. Either this clock mustshould be
synchronized securely system wide, or the server will have need to accommodate the
discrepancies in values from storage device to storage device. The system will have need to
provide a mechanism to reload the clock, or the server’s’ accommodation, should the storage
device lose power.

It is possible that tTime stamps on object attributes will may not have the accuracy that the
same stamps would have if they were constructed by a server-based Policy/Storage Manager
software or Requesters application clients . Such server systems can may be accommodated
by OBSOSA because the server software can may construct their own time stamps and
record them in the FS-specific attribute space (which is uninterpreted by the OSD device).
However, very inaccurate (low resolution) OSD clocks will still have significant impact on
timestamp-based security protocols (detection and elimination of overheard and replayed
commands is often based on message timestamps).

The representation of time should perhaps be larger. ; 32 bits will be inadequate for a fine-
grained timer that records elapsed time since some canonical epoch (such as midnight Jan 1
1970 GMT) and is required to never wrap around. Also, the definition of the clock as a counter
fails to specify a resolution, which allows implementations that increment the clock in a non-
temporal manner (for example, if every arriving message increments the clock, it is
monotonically non-decreasing). One recommendation calls for a 64-bit clock that represents
nanoseconds elapsed since the canonical epoch. This allows enough resolution to bind the
value represented by this clock to elapsed time, and still guarantee provide uniqueness of
timestamps without fear of wrapping (that clock would not wrap until June of AD 2554).
Another common 64-bit representation of time utilizes the high 32-bits for the number of
seconds from the epoch, and the low 32-bits for the number of nanoseconds since the last
second tick. This suffers from three problems. One is that the 32-bit second clock will wrap in
2038. The other is that a large number of values that this 64-bit number may contain are
invalid, necessitating extra sanity checks. The third is that simple arithmetic and comparisons
involving these values requires additional complexity, whereas comparing, adding, and
subtracting 64-bit integers is comparatively simple.

SCSI OSD Command Set D1355r2

70

C.3 List directed operations

Almost all file systems offer the ability to get the attributes of a set of files and, often, to
change the attributes on a set. There is not yet provision for a similar capability on OBSOSA
objects, but this will have to be added. It would not be difficult to define, but it is thought that
file systems requirements need to be taken into consideration in determining the most
appropriate approach. It will have need to include a means for getting the status of all
sessions by SESSION ID.

C.4 Responses

A single byte has been allocated to hold the standard SCSI response. It may well be that this
is insufficient; But the OSD device may have need of more error reporting capability than is
possible in a single byte. This should be looked at but has not yet been adequately
investigated.

C.5 Addressing

The limits on node addressing is seen as may be too restrictive. In addition, the fixed
association of Requester application client with a single network address is too restricting. An
Requester application client host system could may easily have two or more NIC’s. It should
be possible to take advantage of this without explicit direction from the Requester application
client to change from using one address to using another.

Editor’s note: Why isn’t this transparent to OSD?

C.6 Security

C.6.1 Overview

There are several schools of thought concerning data security. One view is that we canshould
not depend on the entire network being secure. , so sSome type of cryptographic protocol is
needed to build data security upon. (The distribution of Policy/Storage Manager keys to
Requesters application clients and OSD devices throughout the addressable network requires
some secure distribution method outside the scope of this proposalstandard.)

Signing and encrypting data at the application before sending it to OBSOSA systems solves
one part of the problem. It prevents unauthorized agents which that are able to snoop
messages on the interconnect from gathering much useful information from the transmissions.
In this scheme the storage device (OSD or BBSDSBC) is unaware of whether the data is
encrypted or not and simply stores it or retrieves it as requested. This doesn’t require any
new features in the storage. However, this approach does not prevent an unauthorized agent
from sabotaging (vandalizing?) data as it is transferred so that later access is not able to
recover the appropriate data and it does not prevent unauthorized agents from consuming
storage capacity or deleting (and overwriting) previously storedage data.

C.6.2 Encryption Considerations in the long CDB format

To protect OBSOSA resources, in addition to user data, commands shall should be verified by
an OSD device to be authentic and unaltered. The inclusion of a digital signature in the
action-specific fields or the inclusion of a weaker verification code (such as CRC) in the
action-specific fields of an encrypted command provides the needed verifiability. If encryption
is (also) employed, then data privacy is also provided.

The ANSI-approved SPC-2 long CDB format has provision for indicating that cryptographic
operations shall should be executed by a receiving OSD device before it accepts a command.

SCSI OSD Command Set D1355r2

71

The encryption identification field in the long CDB format provides this indication. The first 8
bytes of the CDB are never encrypted. When the encryption identification field (which that is
within the 8 unencrypted bytes) indicates that the CDB is encrypted, the storage device shall
appliesy cryptography to the rest of the CDB bytes. The action-specific fields should include
CRC, digital signature or other verification bytes so the target OSD can may verify that the
command has not been modified in transfer.

When the CDB is encrypted, it may be important that all commands be the same size. If they
aren’t, an unauthorized entity could may learn information about the commands based on the
transferred sizes. This is where the filler bytes come in. Each command will should have
enough filler bytes added so that all encrypted commands will be a standard size.

The remaining sectionsder of this cClause and all of the next describe one strategy for
defining the action-specific payload or data content using this long CDB. The security scheme
described was developed for OBSOSA based on experience from the CMU NASD
implementation.

In the long term, the CMU team assert, sSecurity shall should be ensured by mechanisms that
protect the integrity and privacy of OSD communications. To avoid specialization to any
particular file system or server application, OSD security mechanisms shall should correctly
enforce a wide range of possible access policies whose details will may not be determined
until OSD systems are available to the software designers, users and administrators of a
specific application system. Thus, the details of access control policy and user
authentication/authorization are beyond the scope of this proposal standard. Instead, tThis
proposal annex defines mechanisms for an OSD device to authenticate that a command has
been authorized by a Policy/Storage Manager and for encrypting and decrypting these
commands according to Policy/Storage Manager specifications.

Authentication is implemented by utilizing a secure hash function to provide digital signatures
on requests, responses, and capabilities. Privacy is implemented by using an encryption
function to permute action and data bits to ensure that an eavesdropper who does not
possess a secret shared by both communication endpoints cannot interpret the transferred
bits.

The keyed secure hash function in this proposal annex is defined to be HMAC-SHA-1, and the
encryption function is Triple-DES.

Security is achieved through the sharing of secrets. Fundamentally, to perform an access, an
Requester application client shall demonstrates that either it shares a secret with the OSD
device, or that the access was previously authorized by a Storage/Policy Manager , whichthat
shares a secret with the OSD device. Key management is a critical security function, but as it
is inherently a system-wide function, it is properly a function of a higher level than the storage
system. For our purposes, kKeys shall should be distributed privately to Requesters
application clients by Storage/Policy Managers, valid for a lifetime that is inversely
proportional to their frequency of use, and protected against disclosure by a device's owner
and users.

C.6.3 Secrets / OSD Key Hierarchy

The secrets shared between OSD devices and other members of the distributed storage
system are known as Kkeys. Keys are 128-bit values. Keys shall should be transmitted from
time to time, so any operation transmitting a key shallshould be encrypted with a different key.
Because each use of a key exposes that key to a degree of attack, keys that are used
regularly should be changed regularly. To facilitate this rotation of keys, a hierarchy of keys is
provided:

SCSI OSD Command Set D1355r2

72

OSD Key hierarchy:

 Master key

 |

 device key

 |

 Object Group key(s)

 / | \

 Object Group working key A

 Object Group working key B

When Initially an OSD device ships from the factory, it has a single key preinstalled. This is
known as the master key. The master key may only be modified by a command encrypted with
the previous value of the master key. It is recommended that this key only be changed when
the OSD device is attached to a physically secured private network without any gateway to
Requester application client systems (that is, on a two-port network on the desk of an
administrator).

Editor’s note: How does the OSD know that is where it is?

The DEVICE KEY is set infrequently using the master key or the previous value of the device
key. This key exists to provide a more frequently used variant of the master key. With this
key, the master key need only be used in operations which that modify this key., which This
helps protect the master key from attack.

Each Object Group has a unique OBJECT GROUP KEY. An Object Group Key is set at
Object Group creation time, and is modified with the device key or the previous value of the
Object Group key. In this manner, two file system managers utilizing different Object Groups
on the same OSD can may be provided separate Object Group keys, and thus be totally
denied access to one another’s' Object Groups. Each Object Group also has two OBJECT
GROUP WORKING KEYS, A and B, which that are set using the Object Group key. As with
the master and device keys, the working keys are intended to limit the use of the Object
Group Key.

It is expected that most operations which that require the use of a key in theis key hierarchy
will use Object Group working keys, and that Policy/Storage managers will change the Object
Group working keys regularly (for instance, daily). Two Object Group working keys are
provided in each Object Group because OSD capabilities, authenticated by a working key
signature, are reusable over an extended (e.g., 12 hour) time period. By having a second
working key to use in future capability generation, the first of these working keys can may be
changed without invalidating capabilities signed with the other, which. This allows capabilities
generated shortly before a working key is changed to continue to work until they gracefully
time out according to their expiration time.

C.6.4 Security Capabilities

RequesterApplication clients (that is, not except for Policy/Storage Managers) will should
never possess one of the keys in the OSD key hierarchy. Instead, they will should be issued
individual capabilities by storage/policy managers. A capability describes the accesses that
which Requester application clients are allowed to perform by proving that they have been
given that capability. Capabilities are validated by means of a secure hash of the capability,
which that is available to the Requester application client , and a key from the key hierarchy,
which that is not available to the Requester application client but is available to both the
Policy/Storage manager and the targeted OSD. This computation is known as signing a hash,
or a signature, because only the holder of the key can may generate the hash. Although an
Requester application client candoes not generate this hash, it can may hold the hash and

SCSI OSD Command Set D1355r2

73

use it to prove to the OSD device that that the Policy/Storage Manager granted the associated
capability. Because an Requester application client candoes not generate a correct hash and
because the correct hash includes the capability fields as well as the secret key, an
Requester application client that has been granted a specific capability candoes not change
any values in the capability’s fields and uses this new capability for interactions with the OSD
device.

A central feature of this OSD capability system is that these signed hashes can may
themselves be treated as a key, provided that the Policy/Storage Manager has distributed
them securely. By using the signed hash distributed to it as a secret in the computation of a
derived signed hash, an Requester application client can may prove to an OSD device that it
holds the first signed hash. Hence we call these signed hashes CAPABILITY KEY-
SIGNATURES to emphasize their roles as keys. A SIGNED CAPABILITY is the union of a
capability and its capability key-signature.

This section is concerned only with defining capabilities; Section C.2.5 discusses binding of
capabilities to actions.

C.6.5 Security Capability format

Capabilities are 95 bytes long and contain the following fields:

Permissions (32 bits)
Expiration time (64 bits)
Device name (64 bits)
Flavor select (4 bits)
Key identifier (4 bits)
Object Group (8 bits)
Minimum security (8 bits) (see C.2.5)
Flavor-specific (288 bits)

As described above, the permissions word is a bit-wise OR of the operations permitted by this
capability. The expiration time is a timestamp beyond which the OSD device should no longer
honor this capability. The device name is the unique identifier of the OSD device. This
ensures that a capability intended for use on one OSD can should not be used on another,
even in the (unlikely) event of key duplication. The key identifier indicates what key in the
OSD key hierarchy was used to generate the capability key-signature that will may be used to
prove that the Requester application client has been granted this capability. The Object Group
field indicates what Object Group this capability is valid for (some operations, such as Set
Device Association, do not need to check for a match with this field). Like the keys in the OSD
key hierarchy, the capability key-signature should never be transmitted over the network
without encrypting it. The minimum security requirement mandates a minimum set of security
requirements that any operation performed using this capability shallshould meet (see section
C.2.6). Capability flavors (a type specifier) allow different definitions of the scope of a
capability.

C.6.6 Permissions

Every capability includes an enumeration of what operations are to be permitted by it. This is
in the form of a 32-bit word, where each bit represents an operation. If the bit is 1, the
operation is permitted. If the bit is 0, this capability does not permit the operation.

Permission bits:

Bit 31 CREATE

Bit 30 OPEN / CLOSE

SCSI OSD Command Set D1355r2

74

Bit 29 READ

Bit 28 WRITE

Bit 27 APPEND

Bit 26 FLUSH OBJECT

Bit 25 FLUSH OBJECT GROUP

Bit 24 REMOVE

Bit 23 CREATE OBJECT GROUP

Bit 22 REMOVE OBJECT GROUP

Bit 21 GET OBJECT ATTRIBUTES

Bit 20 SET OBJECT ATTRIBUTES

Bit 19 GET DEVICE ASSOCIATION

Bit 18 SET DEVICE ASSOCIATION

Bits 17..0 Reserved

C.6.7 Key identifier values

Values for the key identifier are:

0 Master key

1 Device key

2 Object Group key

3 Object Group working key A

4 Object Group working key B

5..7 rReserved

The remaining eight values (i.e., bit 3 set in the key identifier field) are defined here for use in
Section C.2.5. These values are not valid for the key identifier field of a capability.

8 capability key-signature with signature basis key = master key

9 capability key-signature with signature basis key = device key

10 capability key-signature with signature basis key = object group key

11 capability key-signature with signature basis key = object group working key A

12 capability key-signature with signature basis key = object group working key B

13..15 Rreserved

C.6.8 Flavors

C.6.8.1 Overview

A capability shall also indicates on what object(s) the operations indicated by its permissions
are authorized. There is more than one way in which that a capability may do so. These ways
are known as flavors. This proposal offers three object defining schemes: no object (OSD
only), one object, and a set of objects determined by matching against attribute fields that are
uninterpreted by the OSD device.

The flavor of a capability is determined by the flavor-select field. Valid values for this field are:

SCSI OSD Command Set D1355r2

75

0 Null

1 Single-range

2 Match

3..15 Reserved

Each individual flavor defines the meaning of the bits in the flavor-specific field of the
capability. All bits of the flavor-specific field, including those that are not used by the
individual flavor, are included in the computation of the capability key-signature.

C.6.8.2 Null flavor

The flavor-specific field is entirely unused. This flavor is primarily intended for operations
(such as CREATE OBJECT GROUP, get/set device association, etc) which that do not refer
to a particular object.

Definition: The operations enumerated in the permissions word are permitted on the named
device, restricted to the named Object Group (when applicable), before the specified
expiration time.

C.6.8.3 Single-range flavor

The single-range flavor is designed to allow access to a single object, or a range of bytes
within a single object.

The flavor-specific field of the single-range flavor contains:

object identifier (64 bits)

offset (64 bits)

length (64 bits)

access control state (16 bits)

object creation time (64 bits)

Definition: The accesses enumerated in the permissions word are permitted, provided that:

9 All requirements of the Null flavor are met.

10The access control state in the capability matches the access control state in the
object's attributes. This enables simple revocation of a capability by a Policy/Storage
Manager.

11If the length is nonzero, operations upon the data contents of the object, such as READ,
WRITE, and APPEND, may only operate upon bytes in the range [offset, offset+length-
1]. In the case of append, the object may be extended from its current length but may
not be extended to a length exceeding offset+length-1.

12If the length is 0, operations may not operate on bytes in the range [0, offset-1]. This
makes no restriction if offset is also 0.

1313 If the object creation time of the capability is non-zero, then the creation time
attribute of the object shall be equal to the object creation time field of the capability.
With this restriction, this definition of a capability is not adversely impacted by
changing the designator of an object’s ID from the OSD device, as it is in this
document, to the Requester application client , as some have advocated.

Editor’s note: What does the last sentence mean?

SCSI OSD Command Set D1355r2

76

C.6.8.4 Match flavor

The match flavor is definedsigned to allow access to multiple objects satisfying predetermined
properties. This may dramatically reduce the frequency that of Requester application clients
shall obtaining new capabilities from Policy/Storage Managers. Because this flavor allows the
capability creator to specify four separate values that shall may be found in an object’s
attributes, it subsumes the access control state and creation time restrictions of the single-
range capability flavor. However, this flavor offers no analog to the range restrictions of the
single-range capability flavor; it grants no access or access to any range of an object.

The flavor-specific field of the match flavor contains:

offset0 (8 bits)

offset1 (8 bits)

offset2 (8 bits)

offset3 (8 bits)

mask0 (32 bits)

mask1 (32 bits)

mask2 (32 bits)

mask3 (32 bits)

match0 (32 bits)

match1 (32 bits)

match2 (32 bits)

match3 (32 bits)

Definition: The accesses enumerated in the permissions word are permitted, provided that

14all requirements of the null flavor are met, and

15for each N {0,1,2,3}: the bitwise AND of maskN and the 4 bytes starting at byte offsetN
of the FS-specific field of the object's attributes is equal to matchN. This allows file
managers to issue capabilities that are valid for objects satisfying certain properties
that the file manager has pre-configured by setting specific values in the FS-specific
field of each object.

C.6.9 Revisiting byte 5 of the long CDB, the encryption identifier

Some assert that tThe size of the encryption identifier, byte 5 of the long CDB, may beis too
small. For example, since the Object Group ID is 8 bits in size, it is not possible for each
Object Group to have a distinct key and name this key in the encryption identifier without
consuming all the information space of this identifier, that which should also specify at least
the absence of encryption. It is desirable to have a separate key for each Object Group in
systems in which when Object Group’s are assigned to non-cooperating application managers
which that each believe they have a dedicated OSD at their disposal.

In the sub-sections that follow bByte 5 of the long CDB may be is ignored and its functions
are redundantly specifiedoverridden by additional requirements . One of the 256 values of
byte 5 of the long CDB could may indicate that the following scheme is to be employed, for
example. Moreover, for completeness, the security description of C.2 does not how CDBs
(and action arguments) are to be increased to accommodate the security arguments. This
shall should be done before security mechanisms requiring more than 8 bits of attribute
values can may be employed by OBSOSA systems.

SCSI OSD Command Set D1355r2

77

C.6.10 Securing operations

When an Requester application client sends a CDB to an OSD device, it sets bits in a
security-type attribute in the CDB describing the security provided on for the request. This
security-type also serves to specify the minimum security requirement for the response from
the OSD device. The security-type attribute shall should be transmitted in clear text, since it
specifies the keys and algorithms that apply to the rest of the command.

The security-type attribute contains the following fields:

Key identifier (4 bits)

Object Group (8 bits)

Security level (16 bits)

The key identifier field is identical to the key identifier specified in C.2.3.3 and allows all 16
values. The key specified by the key identifier field will may be referred to as the Operation
key. Note that tThe operation key (including the capability key-signature, if that is the key
being used) itself is not transmitted in most commands. The OSD device either computes it
from the information included in the capability (for a capability key-signature) or retrieves it
from local key storage (for one of the other keys).

The object group field indicates to which object group an object-group-specific key applies.
This is significant only when the key identifier indicates a object group key, object group
working key, or capability key-signature which uses the object group key or object group
working key.

Requests to the OSD device may be authorized either directly by one of the keys from the
OSD device's key hierarchy, which we will referrefereed to as a DIRECT KEY, or by
specifying a capability. Since Requester application clients will typically not hold any key in
the OSD key hierarchy, it is likely that only Policy/Storage will never issue requests that use a
direct key. However, this facility is provided to allow a manager to issue requests directly to
the OSD device without the overhead associated with constructing a capability. A request
specified with a direct key should be treated by the OSD device as equivalent to a null-
flavored capability with the permission bits set to all ones.

The security level field of the security-type indicates which bytes transferred are signed
and/or encrypted. If a transferred byte is signed, then its value is included in a signed hash
computation and the resulting hash value (signature) is also sent in order for the receiver to
verify it. The signed hash size is 128 bits and it is sent after the fields it verifies.

The key used for signatures or encryption is the operation key, as defined above. The only
exception to this is an encrypted capability, when the specified operation key is a capability
key-signature. In this case, an OSD device needs to be able to read the capability in order to
compute the capability key-signature., so tThe capability cannot be encrypted with the yet-to-
be-determined key. Instead, the BASIS KEY for the capability key-signature is used to encrypt
and decrypt the capability. That is, if the operation key is "capability key-signature from object
group working key A", then the capability is encrypted with object group working key A. Once
the capability has been decrypted, the OSD device can may compute the corresponding
capability key-signature and use that as the operation key for all subsequent encryption and
signature operations. Capabilities do not need to be signed separately from the rest of the
command arguments because signatures do not obscure the capability’s values.

The bits in the security level field are defined as:

9..15 Reserved

8 Capability is encrypted

7 Arguments are signed

SCSI OSD Command Set D1355r2

78

6 Arguments are encrypted

5 Data-in are signed

4 Data-in are encrypted

3 Data-out shall be signed

2 Data-out shall be encrypted

1 Result shall be signed

0 Result shall be encrypted

When arguments are signed, the data-in phase shall should begin with a signature of all the
bits (including the first 8 bytes) in the CDB. When data-in is signed, the data-in phase ends
with a signature of all the bytes in the CDB and the data-in phase, excluding the signature of
the CDB (if present).

If arguments are encrypted, all bytes in the CDB following first 8 clear text bytes and
excluding the security-type attribute field are encrypted. If data-in is encrypted, all bytes
transferred as part of the data-in phase.

The data-out phase shall begin with a byte of security information, which is defined as:

Bits 7..4 Reserved
Bit 3 Data-out is signed
Bit 2 Data-out is encrypted
Bit 1 Result is signed
Bit 0 Result is encrypted

If the data-out buffer is signed, the data-out phase buffer transfer ends with a signature of all
the bytes in the data-out phase, including the security information byte. If the result is signed,
the data-out buffer signature is followed by a signature of the result block. If the data-out
buffer is encrypted, all bytes transferred during the data-out phasebuffer transfer, including
the data-out buffer and result signatures, are encrypted.

Note that when sending large amounts of data in the data-in buffer and data-out buffer
phasestransfers , it may be necessary to add intermediate signatures to validate portions of
the data to avoid buffering problems. One approach is to mandate a signature every N bytes
in the data stream. Another approach is to mandate a signature every time the data stream for
a Read, WRITE, or APPEND crosses a logical boundary; for example, the end of a
scatter/gather component, or the offset within the object associated with the current byte in
the stream crosses an M byte boundary. The union of these signature requirements is what
was used in CMU’s prototype.

C.6.11 Minimum Security Requirements

A MINIMUM SECURITY REQUIREMENT is an enumeration of what security shall should be
present for a request to be accepted and potentially succeed. The minimum security
requirement field defines the same values as the security level field (see C.6.10 C.2.5).

Each object group has a minimum security requirement as an attribute. Actions within that
object group are only permitted if the meet at least the minimum security requirement.

Each capability also has a minimum security requirement. This allows policy/storage
managers to force instruct Requester application clients to use protection when performing
certain operations.

SCSI OSD Command Set D1355r2

79

C.6.12 SET KEY Operation

Since it is desirable to change the keys in the key hierarchy on a regular basis to avoid key
compromise, it is necessary to provide some mechanism for changing keys. We recommend
adding a new operation, SET KEY should be added, for this purpose, though it is conceivable
that the SET ATTRIBUTE operation could be overloaded to provide this functionality.

The SET KEY operation has a minimum security requirement of all 1s (i.e., encryption and
authentication are mandatory). It shall The SET KEY should be authorized by a null-flavored
capability signed with a key that is at the same level or higher in the key hierarchy.

Because the master key is the first key to be set on the drive, and its secrecy is the most
critical, it is recommended that alteration of the master key only be performed when the drive
is attached to a small, secure network. Some discussion has taken place as to whether
alteration of the master key should ever be allowed, or whether it should be immutable. In
this argument, lLoss of the master key should be considered a catastrophic failure and the
device destroyed, security erased, or at least reformatted, obliterating all data as determined
by the policy manager.

It is recommended that the lower-level keys in the hierarchy be changed more frequently than
the upper-level keys, and that the lowest-level key possible be used for all routine operations.
This avoids unnecessary exposure of high-level keys.

SCSI OSD Command Set D1355r2

80

Annex

D

Motivation for the NSIC OSD (Informative)

D.1 Overview

NSIC uses the term NASD to mean Network Attached Storage device. In this context, a
storage device is anything that provides persistent storage and represents itself to hosts as a
single entity for the purpose of transmitting or receiving commands and data. By a strict
interpretation of this definition, any storage device that attaches directly to a network could be
called a NASD. In practice, however, the NSIC/NASD Working Group usesd the term to
denote storage devices whose general character is similar to the Carnegie Mellon University
Parallel Data Laboratory's Network Attached Secure Disk . See references at end of Clause
in the bibliography .

The NSIC/NASD Working Group has chosen a subset of the full potential functionality of
NASD for its first standardization effort. This subset is the Object Based Storage Device
(OSD) described in this document standard.

D.2 Potential OSD Products

The NSIC/NASD Working Group is defineding an architecture for object-based storage
devices. The definition deliberately encompasseds the concept of virtual OSD devices
exported by storage aggregators (e.g., RAID controllers) as well as actual storage devices
(e.g., disck drives, and tape drives, and solid state discks). It is entirely possible that tThe
first OSD "storage devices" introduced to the market will in fact may be virtual storage devices
instantiated by controllers managing conventional discks. While sacrificing the fine scaling
granularity that would result from physical OSD devices, the controller approach would may
have the advantage of deferring the necessity to implement host- or Policy/Storage Manager-
assisted aggregation in order to gain OSD benefits.

D.3 Benefits of OSD

The NSIC/NASD Working Group is was motivated to develop an architecture for OSD devices
by the expectation that OSD devices will deliver value to consumers of storage subsystems.
The properties are believed to be particularly attractive for clustered computing. The expected
benefits are as follows:

It might seem that there is nothing in the problems of clustering or Storage Area Networks
that dictates the use of Object based storagethe Object Storage Architec ture to solve them.
In fact object based storage does so much to improve the cluster architecture that NSIC feels
it is essential to realize the full benefits of the clustered system architecture. Though this is
far from doing the subject justice, here are several reasons for this position.

1.Higher quality storage management operations with less host effort ;

Objects really make the self-management of storage possible. Without the storage device
having sufficient knowledge of the resident data, it cannot assume the responsibility for
managing space. Storage devices could not participate in any attribute management without
the knowledge of what constitutes a meaningful subset of its space or when it is appropriate
to take action. More effective management will result from the storage devices able to
participate intelligently.

SCSI OSD Command Set D1355r2

81

If management policies can be communicated to the storage device so that it can act
independently to execute them, the result will be not only less human intervention
required but also

tighter and more timely control;.

Consider the case of weekly backup. Systems are usually backed up during an idle period on
weekends, so that the system availability is not interrupted during the business week. This
also produces a backup that is guaranteed to be consistent. This window has been gradually
shrinking at the same time system capacities have been exploding. Trying to find time to
interrupt a system long enough to backup possibly terabytes of data has become an almost
insoluble problem.

By taking action on an object based on attributes assigned to it, The OSD device could inform
a backup function whenever an object has reached the correct state for its backup to be
taken. The backup of all files could be spread over a longer period - during which others are
still being updated -without affecting data integrity.

Often, it is not quite so simple. It may be that several objects constitute an interdependent
set that must be backed up together and only when all have reached a consistent stat e.
Consider a database consisting of 6 files, none of which can be backed up until either all have
been closed or until one designated as the object on which all of the others are dependent
has been closed. A Policy/Storage Manager may be needed to manage this kind of
relationship between Objects. In this case, when one of the objects has been updated, an
attribute could cause a signal to a this manager that would result in an attribute set in a
different object. If each of the other five objects in this set were to do this, the OSD device
could act on all the required attributes being set in the sixth to initiate a backup process.

Other attributes that could invoke action by the OSD device include encryption, compression,
versioning, parity redundancy and HSM style migration. In each of these, the storage device
would only have to be informed of the policy with respect to a specific object or set of objects.
It could then perform the function itself or inform an agent designated to provide that service.

Compression and encryption could be done right on the OSD device, so that only the fact that
one is required for an object need be communicated to the storage device. For a
management function that must go off the drive, such as HSM, not only the policy is needed
but also the identification of an agent to perform the function.

2.The controlled sharing of data; can be controlled more efficiently when the storage
device knows what constitutes an entity.

If two systems were to share a BBSD, all the meta-dataattributes activity would have to be
serialized for concurrent access. In an OSD device much of the meta-dataattributes activity is
opaque to the systems, which need only concern themselves with access conflicts to user
data or file directories. Also space management being done by the storage device eliminates
any contention or confusion that could arise from two systems trying to allocate space on the
same storage device at the same time.

3.easier Hheterogeneous computing ; should be made much easier by an object
abstraction.

There is essentially no commonality among OSs meta-dataattributes structures. OSD should
make it possible to have common foundation on which any OS can overlay its file system. An
OSD device enforces a host-independent concept of storage objects. It is therefore possible
for any host with a file system supporting OSD storage to share storage devices with other
interconnected hosts, even if their file structures are incompatible

4.1. Mminimizes data access synchronization requirements for clustered servers ;.

SCSI OSD Command Set D1355r2

82

Since each read or WRITE to an OSD device is within the context of an object, the OSD
device itself enforces the isolation of servers' data accesses in "shared nothing" clusters. In
shared data clusters, OSD can minimize inter-server lock traffic by allowing the use of
optimistic locking protocols.

5.While there are a lot of issues revolving around performance benefits in a clustered
system architecture, some obvious performance benefits come with the Objects. ;

a.The meta-dataattributes never leaves the storage device, eliminating a certain
amount of I/O.

b.The storage device may knows which objects are closed or open, and is able to use
that information to more effectively manage its cache.

c .Prefetching can may be much more effective as the storage device knows the layout
of the object being read. The storage device can may more effectively determine
sequential access patterns – or could be told of sequentiality.

d.The cache in the storage device can may hold meta-dataattributes once for multiple
systems accessing it.

e.The storage device can may participate in quality of service decisions, such as
where to locate data most appropriately. It can only do this if it has responsibility
for allocating storage. By comparison, few OSs can allocate data by zone on a
disc drive.

f.Adding a storage device also adds an engine to manage its space. This should
contribute to better scalability by not burdening a server with additional processing
requirements for each storage device attached.

SCSI OSD Command Set D1355r2

83

Annex

E

ReferencesBibliography

Borowsky, E., et al, “Eliminating storage headaches through self-management”,
www.hpl.hp.com/SSP/papers/IWQoS97.pdf

Golding, R et al, “Attribute-managed Storage”, October 1995.
www.hpl.hp.com/SSP/papers/MSIO.pdf

Bellare, M., et. al., “Keying Hash Functions for Message Authentication”, Crypto ‘96, 1996.

Gibson, G, et al, “File systems for Network-Attached Secure Disks”, March 1997.
www.pdl.cs.cmu.edu/PDL-FTP/NASD/CMU-CS-97-118.pdf

Gibson, G., et al., “File Server Scaling with Network-Attached Secure Disks”, ACM
SIGMETRICS, June 1997. www.pdl.cs.cmu.edu/PDL-FTP/NASD/Sigmetrics97.pdf

Gobioff, H., Gibson, G., Tygar, D., “Security for Network Attached Storage Devices”, CMU-
CS-97-185, October 1997. www.pdl.cs.cmu.edu/PDL-FTP/NASD/CMU-CS-97-185.pdf

Gibson, G et al. "A Cost -Effective, High-Bandwidth Storage Architecture," 8th ASPLOS,
October 1998. www.pdl.cs.cmu.edu/PDL-FTP/NASD/asplos98.pdf

Amiri, K., Gibson, G, Golding, R., “Scalable Concurrency Control and Recovery for Shared
Storage Arrays, CMU-CS-99-111, February 1999. www.pdl.cs.cmu.edu/PDL-
FTP/NASD/CMU-CS-99-111.pdf

