
6/10/2001 1
Cluster File Systems, Inc

Lustre
Scalable Clustered
Object Storage

Peter J. Braam
braam@clusterfs.com
http://www.clusterfilesystems.com

mailto:braam@clusterfs.com
mailto:braam@clusterfs.com
http://www.clusterfilesystems.com/
http://www.clusterfilesystems.com/

2 6/6/2002

The first 3 years…

1999 CMU – Seagate – Stelias Computing

2000 Los Alamos, Sandia, Livermore:
need new File System

2001: Lustre design to meet the SGS-FS requirements?

2002: things moving faster
Lustre on MCR (1000 node Linux Cluster – bigger ones coming)

Lustre Hardware (BlueArc, others coming)

Very substantial ASCI pathforward contract (with HP & Intel)

3 6/6/2002

Key requirements

I/O throughput – 100’s GB/sec

Meta data scalability – 10,000’s nodes, ops/sec, trillions of files

Cluster recovery – simple & fast

Storage management – snapshots, HSM

Networking – heterogeneous networks

Security – strong and global

4 6/6/2002

Approach

Initially Linux focused
Was given blank sheet
Learn from successes

GPFS on ASCI White
TUX web server, DAFS protocol
Sandia Portals Networking
Use existing disk file systems: ext3, XFS, JFS

New protocols
InterMezzo, Coda

5 6/6/2002

Lustre

6 6/6/2002

Access Control

Data Transfers

Coherence
Management

Storage
Management

Clients

Storage Area Network
(FC, GigE, IB)

Meta Data Control

Security and
Resource

Databases

Object
Storage
Targets

7 6/6/2002

clients10,000’s

System & Parallel
File I/O
File locking

1000’s

Directory Operations,
Metadata &
Concurrency

10’s

Object storage
Targets (OST)

Metadata servers
(MDS)

Recovery
File status
File creation

Lustre System

8 6/6/2002

Lustre Devices

Lustre has numerous modules, all offering certain api’s
Stacking is a key feature for Lustre

Initially tried having “object devices”

Devices now have drivers exporting up to 4 api’s:
Administrative – a mandatory API

Object Storage

Metadata handling

Locking

9 6/6/2002

Ingredient 1: Storage Networking

10 6/6/2002

Lustre networking
Currently runs over

TCP,
Quadrics
Myrinet

Other networks in progress:
SAN’s
I/B
NUMA interconnects (@ GB/sec)
Bus interconnects
Offload cards
SCTP

11 6/6/2002

Device|Library (Elan,TCP,...)
now: Elan & IP
soon: Sandia, GMPortal NAL’s

Portal Library

NIO API Sandia’s API
CFS improved impl.

Request Processing

Move small & large buffers
Generate events

0-copy marshalling libraries
service framework
client request dispatch
connection & address naming
generic recovery infrastructure

Lustre
Network

Stack

12 6/6/2002

Device|Library (Elan,TCP,...)
now: Elan & IP
soon: Sandia, GMPortal NAL’s

Portal Library

NIO API Sandia’s API
CFS improved impl.

Request Processing

Move small & large buffers
Generate events

0-copy marshalling libraries
service framework
client request dispatch
connection & address naming
generic recovery infrastructure

Lustre
Network

Stack

13 6/6/2002

Device|Library (Elan,TCP,...)
now: Elan & IP
soon: Sandia, GMPortal NAL’s

Portal Library

NIO API Sandia’s API
CFS improved impl.

Request Processing

Move small & large buffers
Generate events

0-copy marshalling libraries
service framework
client request dispatch
connection & address naming
generic recovery infrastructure

Lustre
Network

Stack

14 6/6/2002

Portals

Sandia Portals message passing
simple message passing API

support for remote DMA

support for plugging in device support

Network Abstraction Layers

We have no definitive answers on best design of the NALs yet

Not so suitable for SCSI layering

15 6/6/2002

Initial performance figures

Networking
OST can handle 40,000 requests/sec

Quadrics network: 340MB/sec

IP: 110MB/sec

Client to disk
One client: 220MB/sec (5 threads)

All targets saturate, linear scaling, demo up to 1.5GB/sec

16 6/6/2002

Lustre & SAN

From the galaxy to a 4 node Linux cluster

Exploit SAN’s – retain OST/MDS
TCP/IP: to allocate blocks, do metadata

SAN: for file data movement

17 6/6/2002

Ingredient 2: object storage

18 6/6/2002

What is Object Based Storage?

Object Based Storage Device
More intelligent than block device

Speak storage at “inode level”
create, unlink, read, write, getattr, setattr
iterators, security, almost arbitrary processing

So…
Protocol allocates physical blocks, no names for files

Requires
Management & security infrastructure

19 6/6/2002

Object Based Disk
Server (OBD server)

Object Based Disk (OBD)

Lock
Server

Ext2 OBD
(raw inodes)

OBD Filter

File system
Ext3, Reiser, XFS, JFS,…

re
co

ve
ry

alternatives

networking

OST

Object
Storage

Target

20 6/6/2002

How does object storage help?

21 6/6/2002

File – I/O

Open file on metadata system
Get information

What objects
What storage controllers
What part of the file
Striping pattern

Use connection to storage controllers you need
Do logical object writes to OST
From time to time OST updates MDS with new file sizes

22 6/6/2002

I/O bandwidth requirements

Required: 100’s GB/sec

Consequences:
Saturate 100’s – 1000’s of storage controllers

Block allocation must be spread over cluster

Lock management must be spread over cluster

This almost forces object storage controller approach

23 6/6/2002

Ingredient 3: Storage Management

24 6/6/2002

Components of OB Storage

Storage Object Device Drivers
Class driver – attach driver to interface

Targets, clients – remote access

Direct drivers – to manage physical storage

Logical drivers – for intelligence & storage management

Object storage “applications” – eg. the file system

25 6/6/2002

Examples of logical modules

Storage management:
System software, trusted

Often inside the standard data path,

Often involves iterators

Eg: security, snapshots, versioning data migration, raid

Lustre offers active disks
almost arbitrary intelligence can be loaded into OST driver stack

Largely unexplored – LANL wanted to process gene matching

26 6/6/2002

Clustered Object
Based File System

on host A

OSC - Client
Type TCP/IP

Clustered Object
Based File System

on host B

OSC - Client
Type I/B

OST - Target
Type TCP/IP

OST - Target
Type I/B

Direct OBD

27 6/6/2002

LOV: striping & raid

Logical Object Volume Management:

/dev/obd1
Obj meta data + blocks 1,4,7

/dev/obd0
(type RAID-0)

Setup meta data:
Stripe on /dev/obd{1,2,3}

(no objects)

/dev/obd2
Obj meta data + blocks 2,5,8

/dev/obd3
Obj meta data + blocks 3,6,9

28 6/6/2002

Lustre Clients

Lustre File System

Logical Object Volume
(LOV driver)

OSC1 … OSCn

Data object api Metadata api

MDC

29 6/6/2002

Lustre Collaborative Read Cache

Add read scalability to system

Read is preceeded by read-lock request
Lock server knows what is going to be read

Lock server knows who has that cached already

Lock server includes a referral

Separate read cache servers, possibly in a tree

Whole cluster acts as read-cache for each other

30 6/6/2002

COBD – caching OBD

Client FS

OSC

OSTclient
COBD

Redirected I/O
Initial lock req OSC

Caching OBD
OST

Fill cache
Direct OBD

OST

31 6/6/2002

Example of management: hot data migration:
Key principle: dynamically switch object device types

Before… During… After…

/dev/obd0 /dev/obd0 /dev/obd0

Logical Migratorobdext2 obdext3

/dev/hda1 /dev/hdb2/dev/hda1

obdext2 obdext3

/dev/hdb2

32 6/6/2002

Objects may be files, or not…

Common case:
Object, like inode, represents a file

Object can also:
represent a stripe (RAID)

bind an (MPI) File_View

redirect to other objects

33 6/6/2002

Snapshot setup

attachment

OBD direct driver
/dev/obd0

OBD logical snapshot driver/dev/obd1
snap=current
device= obd0

/dev/obd2
snap=8am
device =obd0 setup meta data

Result:
/dev/obd2 is read only clone
/dev/obd1 is copy on write (COW) for 8am

34 6/6/2002

Snapshots in action
object file system

Modify /mnt/obd/files

Result:
new copy in /mnt/obd/files

old copy in /mnt/obd/8am

Snap_write

after

objectX

7am
bla bla

objectX

7am
bla bla

9am
bla bla

objY objZ

COWbefore

35 6/6/2002

Ingredient 4: metadata handling

36 6/6/2002

Intent based locks & Write Back caching

Protocol adaptation between clients and MDS

Low concurrency - write back caching
On client in memory updates with delayed replay on MDS

High concurrency
Want single network request per transaction, no lock revocations

Intent based locks – lock includes all info to complete transaction

37 6/6/2002

Linux VFS changes: intent lookups

FSVFS

sys_mkdir
namei
intent mkdir

Test if OK
no:

d_intent_release

vfs_mkdir

d_intent_release

Inode lookup operation /or/
Dentry revalidate operation
FS arranges for ‘mkdir’ locks

Release lock

Inode mkdir operation (use intent)

Release lock

38 6/6/2002

Two types of metadata locks:

Long locks –
Lock tail of pathname, help with concurrency

e.g. locking the root directory is BAD
so lock /home/peter & /home/phil separately

Short Locks
Lock a directory subtree -help for delegation

e.g. a single lock on /home/phil is GOOD

39 6/6/2002

Metadata updates

Metadata Driver

Reintegration
of replay
records

create, mkdir, setattr,
rename, link, etc

Metadata service

Handle incoming replay
requests

revoke
short locks

revoke
intent &
replay
locks

MDS

Lock Service

Analyse intent,
Invoke Metadata Driver
Return:
- lock,
- lookup
- result of update

revoke
long locks

Metadata WB Cache

Holds Many Records
Flushed by daemon or
Lock revocation call

Intent based Lookup

VFS gives Lustre all
info at lookup time

CLIENT

40 6/6/2002

Subdivision of metadata across cluster

Directories:
hash by name

assign hash values to MDS cluster nodes

Inodes:
Assign 16GB ext3 block groups to MDS cluster nodes

Result:
many ops can proceed in parallel

Journaled metadata file system at the core

41 6/6/2002

Recovery

Client – MDS updates
Deals with lost replies, requests & disk updates
Replay mechanism: two phase response

Locks
Forcefully revoke locks from dead clients
Re-establish existing locks with recovering services

Recovery Interaction with storage targets
Preallocation of objects
Orphaned inodes and data objects, replay logs

42 6/6/2002

Metadata odds and ends

43 6/6/2002

Logical Metadata Drivers

We have not forgotten about:
Local persistent metadata cache, like AFS/Coda/InterMezzo

Replicated metadata server driver

Remotely mirrored MDS

44 6/6/2002

Light weight CFS

Lightweight CFS
Export both interfaces from a file system

Results in shared ext3 file system

Combine with SAN approach

45 6/6/2002

Conclusions - prospects

46 6/6/2002

Project

Have 15 developers now – expect a few more

Are working on deployment on
LLNL MCR cluster (1000 nodes) – with BlueArc OST’s

PNNL IA64 cluster – HP system

End of 2002 – expect solid Lustre Lite 1.0

47 6/6/2002

Lustre Feature Roadmap

Parallel I/O

Write back metadata

Collaborative read cache

Basic Unix security

Metadata cluster

2003

Lustre Lite
Performance (2.5)

POSIX compliant

Intent based scalable
metadata

File I/O very fast

Basic Unix security

Single Failover MDS / OST

2002

Lustre Lite
(Linux 2.4)

2004

Global namespace

Load balanced MD

Storage management

Advanced Security

Metadata cluster

Lustre

48 6/6/2002

Lustre

Great vehicle for advanced storage software
Things are _really_ done differently

Leverage existing components

Initial signs of performance and stability very promising

	Lustre Scalable Clustered Object Storage
	The first 3 years…
	Key requirements
	Approach
	Lustre
	Lustre Devices
	Ingredient 1: Storage Networking
	Lustre networking
	Portals
	Initial performance figures
	Lustre & SAN
	Ingredient 2: object storage
	What is Object Based Storage?
	How does object storage help?
	File – I/O
	I/O bandwidth requirements
	Ingredient 3: Storage Management
	Components of OB Storage
	Examples of logical modules
	LOV: striping & raid
	Lustre Clients
	Lustre Collaborative Read Cache
	COBD – caching OBD
	Example of management: hot data migration:
	Objects may be files, or not…
	Snapshot setup
	Snapshots in action
	Ingredient 4: metadata handling
	Intent based locks & Write Back caching
	Linux VFS changes: intent lookups
	Two types of metadata locks:
	Metadata updates
	Subdivision of metadata across cluster
	Recovery
	Metadata odds and ends
	Logical Metadata Drivers
	Light weight CFS
	Conclusions - prospects
	Project
	Lustre Feature Roadmap
	Lustre

