### Lustre Scalable Clustered Object Storage

### Peter J. Braam

braam@clusterfs.com

http://www.clusterfilesystems.com

# Cluster File Systems, Inc



### The first 3 years...

- I999 CMU Seagate Stelias Computing
- 2000 Los Alamos, Sandia, Livermore:
  - need new File System
- **2001:** Lustre design to meet the SGS-FS requirements?
- 2002: things moving faster
  - Lustre on MCR (1000 node Linux Cluster bigger ones coming)
  - Lustre Hardware (BlueArc, others coming)
  - Very substantial ASCI pathforward contract (with HP & Intel)



### Key requirements

- I/O throughput IOO's GB/sec
- Meta data scalability 10,000's nodes, ops/sec, trillions of files
- Cluster recovery simple & fast
- Storage management snapshots, HSM
- Networking heterogeneous networks
- Security strong and global



# Approach

- Initially Linux focused
- Was given blank sheet
- Learn from successes
  - GPFS on ASCI White
  - TUX web server, DAFS protocol
  - Sandia Portals Networking
  - Use existing disk file systems: ext3, XFS, JFS
- New protocols
  - InterMezzo, Coda



### Lustre



5 6/6/2002





### Lustre System

Cluster File Systems, Inc 🜔

### Lustre Devices

- Lustre has numerous modules, all offering certain api's
  - Stacking is a key feature for Lustre
- Initially tried having "object devices"
- Devices now have drivers exporting up to 4 api's:
  - Administrative a mandatory API
  - Object Storage
  - Metadata handling
  - Locking



# Ingredient I: Storage Networking



# Lustre networking

- Currently runs over
  - TCP,
  - Quadrics
  - Myrinet
- Other networks in progress:
  - SAN's
  - I/B
  - NUMA interconnects (@ GB/sec)
  - Bus interconnects
  - Offload cards
  - SCTP





Cluster File Systems, Inc (



Cluster File Systems, Inc (



Cluster File Systems, Inc (

### Portals

- Sandia Portals message passing
  - simple message passing API
  - support for remote DMA
  - support for plugging in device support
  - Network Abstraction Layers
- **We have no definitive answers on best design of the NALs yet**
- Not so suitable for SCSI layering



# Initial performance figures

- Networking
  - OST can handle 40,000 requests/sec
  - Quadrics network: 340MB/sec
  - IP: IIOMB/sec
- Client to disk
  - One client: 220MB/sec (5 threads)
  - All targets saturate, linear scaling, demo up to 1.5GB/sec



### Lustre & SAN

- From the galaxy to a 4 node Linux cluster
- Exploit SAN's retain OST/MDS
  - TCP/IP: to allocate blocks, do metadata
  - SAN: for file data movement



# Ingredient 2: object storage



17 6/6/2002

# What is Object Based Storage?

- Object Based Storage Device
  - More intelligent than block device
- Speak storage at "inode level"
  - create, unlink, read, write, getattr, setattr
  - iterators, security, almost arbitrary processing
- **So...** 
  - Protocol allocates physical blocks, no names for files
- Requires
  - Management & security infrastructure





## How does object storage help?



File - I/O

- Open file on metadata system
- Get information
  - What objects
  - What storage controllers
  - What part of the file
  - Striping pattern
- Use connection to storage controllers you need
  - Do logical object writes to OST
  - From time to time OST updates MDS with new file sizes



# I/O bandwidth requirements

- Required: IOO's GB/sec
- Consequences:
  - Saturate 100's 1000's of storage controllers
  - Block allocation must be spread over cluster
  - Lock management must be spread over cluster
- This almost forces object storage controller approach



# Ingredient 3: Storage Management



23 6/6/2002

# Components of OB Storage

- Storage Object Device Drivers
  - Class driver attach driver to interface
  - **Targets, clients** remote access
  - Direct drivers to manage physical storage
  - **Logical drivers** for intelligence & storage management
  - Object storage "applications" eg. the file system



# Examples of logical modules

- Storage management:
  - System software, trusted
  - Often inside the standard data path,
  - Often involves iterators
  - Eg: security, snapshots, versioning data migration, raid
- Lustre offers active disks
  - almost arbitrary intelligence can be loaded into OST driver stack
  - Largely unexplored LANL wanted to process gene matching





### LOV: striping & raid

### **Logical Object Volume Management:**



### Lustre Clients



Cluster File Systems, Inc 🜔

### Lustre Collaborative Read Cache

- Add read scalability to system
- Read is preceded by read-lock request
  - Lock server knows what is going to be read
  - Lock server knows who has that cached already
  - Lock server includes a referral
- Separate read cache servers, possibly in a tree
  Whole cluster acts as read-cache for each other



# COBD - caching OBD



## Example of management: hot data migration:

Key principle: dynamically switch object device types



### Objects may be files, or not...

### Common case:

Object, like inode, represents a file

Object can also:

- represent a stripe (RAID)
- bind an (MPI) File\_View
- redirect to other objects





#### Result:

/dev/obd2 is read only clone

/dev/obdl is copy on write (COW) for 8am 33 6/6/2002

#### Cluster File Systems, Inc 🜔

### Snapshots in action

#### object file system

Modify /mnt/obd/files

**Snap\_write** 

- Result:
  - new copy in /mnt/obd/files
  - old copy in /mnt/obd/8am



# Ingredient 4: metadata handling



### Intent based locks & Write Back caching

- Protocol adaptation between clients and MDS
- Low concurrency write back caching
  - On client in memory updates with delayed replay on MDS
- High concurrency
  - Want single network request per transaction, no lock revocations
  - Intent based locks lock includes all info to complete transaction



# Linux VFS changes: intent lookups

### VFS



sys\_mkdir namei intent mkdir Test if OK no: d\_intent\_release vfs\_mkdir d\_intent\_release

Inode lookup operation /or/ Dentry revalidate operation FS arranges for `mkdir' locks

Release lock

Inode mkdir operation (use intent)

Release lock

Cluster File Systems, Inc

## Two types of metadata locks:

- Long locks
  - Lock tail of pathname, help with concurrency
  - e.g. locking the root directory is BAD
    - so lock /home/peter & /home/phil separately
- Short Locks
  - Lock a directory subtree -help for delegation
  - e.g. a single lock on /home/phil is GOOD



## Metadata updates



Cluster File Systems, Inc

### Subdivision of metadata across cluster

- Directories:
  - hash by name
  - assign hash values to MDS cluster nodes
- Inodes:
  - Assign I6GB ext3 block groups to MDS cluster nodes
- Result:
  - many ops can proceed in parallel
  - Journaled metadata file system at the core



# Recovery

### Client — MDS updates

- Deals with lost replies, requests & disk updates
- Replay mechanism: two phase response
- Locks
  - Forcefully revoke locks from dead clients
  - Re-establish existing locks with recovering services
- Recovery Interaction with storage targets
  - Preallocation of objects
  - Orphaned inodes and data objects, replay logs

### Metadata odds and ends



# Logical Metadata Drivers

- We have not forgotten about:
  - Local persistent metadata cache, like AFS/Coda/InterMezzo
  - Replicated metadata server driver
  - Remotely mirrored MDS



# Light weight CFS

### Lightweight CFS

- Export both interfaces from a file system
- Results in shared ext3 file system
- Combine with SAN approach



# **Conclusions - prospects**



45 6/6/2002

### Project

#### Have 15 developers now — expect a few more

#### Are working on deployment on

- LLNL MCR cluster (1000 nodes) with BlueArc OST's
- PNNL IA64 cluster HP system
- End of 2002 expect solid Lustre Lite 1.0



## Lustre Feature Roadmap

| Lustre Lite<br>(Linux 2.4)        | Lustre Lite<br>Performance (2.5) | Lustre             |
|-----------------------------------|----------------------------------|--------------------|
| 2002                              | 2003                             | 2004               |
| Single Failover MDS / OST         | Metadata cluster                 | Metadata cluster   |
| Basic Unix security               | Basic Unix security              | Advanced Security  |
| File I/O very fast                | Collaborative read cache         | Storage management |
| Intent based scalable<br>metadata | Write back metadata              | Load balanced MD   |
| POSIX compliant                   | Parallel I/O                     | Global namespace   |



### Lustre

Great vehicle for advanced storage software

- Things are \_\_really\_\_ done differently
- Leverage existing components
- Initial signs of performance and stability very promising

