Graphical Models and Kernel Methods

Jerry Zhu

Department of Computer Sciences University of Wisconsin–Madison, USA

> MLSS June 17, 2014

Outline

Graphical Models

Probabilistic Inference Directed vs. Undirected Graphical Models Inference Parameter Estimation

Kernel Methods

Support Vector Machines Kernel PCA Reproducing Kernel Hilbert Spaces

Outline

Graphical Models

Probabilistic Inference Directed vs. Undirected Graphical Models Inference

Kernel Methods

Support Vector Machines Kernel PCA Reproducing Kernel Hilbert Spaces

Outline

Graphical Models

Probabilistic Inference

Directed vs. Undirected Graphical Models Inference Parameter Estimation

Kernel Methods

Support Vector Machines Kernel PCA Reproducing Kernel Hilbert Spaces

- red ball = \$\$\$
- You randomly picked an envelope, randomly took out a ball and it was black

- red ball = \$\$\$
- You randomly picked an envelope, randomly took out a ball and it was black
- Should you choose this envelope or the other envelope?

Probabilistic inference

- Probabilistic inference
 - ► Joint distribution on $E \in \{1, 0\}, B \in \{r, b\}$: P(E, B) = P(E)P(B | E)

- Probabilistic inference
 - ► Joint distribution on $E \in \{1, 0\}, B \in \{r, b\}$: P(E, B) = P(E)P(B | E)

•
$$P(E=1) = P(E=0) = 1/2$$

- Probabilistic inference
 - ► Joint distribution on $E \in \{1, 0\}, B \in \{r, b\}$: P(E, B) = P(E)P(B | E)

•
$$P(E=1) = P(E=0) = 1/2$$

▶
$$P(B = r \mid E = 1) = 1/2, P(B = r \mid E = 0) = 0$$

- Probabilistic inference
 - ► Joint distribution on $E \in \{1, 0\}, B \in \{r, b\}$: P(E, B) = P(E)P(B | E)
 - P(E=1) = P(E=0) = 1/2
 - $P(B = r \mid E = 1) = 1/2, P(B = r \mid E = 0) = 0$

► The graphical model:

- Probabilistic inference
 - ► Joint distribution on $E \in \{1, 0\}, B \in \{r, b\}$: P(E, B) = P(E)P(B | E)
 - P(E=1) = P(E=0) = 1/2
 - ▶ $P(B = r \mid E = 1) = 1/2, P(B = r \mid E = 0) = 0$

Ε

В

▶ The graphical model:

Statistical decision theory: switch if P(E = 1 | B = b) < 1/2

- Probabilistic inference
 - ► Joint distribution on $E \in \{1, 0\}, B \in \{r, b\}$: P(E, B) = P(E)P(B | E)
 - P(E=1) = P(E=0) = 1/2
 - ▶ $P(B = r \mid E = 1) = 1/2, P(B = r \mid E = 0) = 0$

Ε

► The graphical model:

Statistical decision theory: switch if P(E = 1 | B = b) < 1/2 $P(E = 1 | B = b) = P(B=b|E=1)P(E=1) = \frac{1}{2} \times \frac{1}{2} = 1/2$

В

•
$$P(E = 1 | B = b) = \frac{P(B=b)E=1P(E=1)}{P(B=b)} = \frac{1/2 \times 1/2}{3/4} = 1/3.$$

Switch.

• The world is reduced to a set of random variables x_1, \ldots, x_d

• The world is reduced to a set of random variables x_1, \ldots, x_d

▶ e.g. (x_1, \ldots, x_{d-1}) a feature vector, $x_d \equiv y$ the class label

▶ The world is reduced to a set of random variables x_1, \ldots, x_d

▶ e.g. (x_1, \ldots, x_{d-1}) a feature vector, $x_d \equiv y$ the class label

▶ Inference: given joint distribution $p(x_1, ..., x_d)$, compute $p(X_Q \mid X_E)$ where $X_Q \cup X_E \subseteq \{x_1 ... x_d\}$

▶ The world is reduced to a set of random variables x_1, \ldots, x_d

▶ e.g. (x_1, \ldots, x_{d-1}) a feature vector, $x_d \equiv y$ the class label

- ▶ Inference: given joint distribution $p(x_1, ..., x_d)$, compute $p(X_Q \mid X_E)$ where $X_Q \cup X_E \subseteq \{x_1 ... x_d\}$
 - e.g. $Q = \{d\}$, $E = \{1 \dots d 1\}$, by the definition of conditional

$$p(x_d \mid x_1, \dots, x_{d-1}) = \frac{p(x_1, \dots, x_{d-1}, x_d)}{\sum_v p(x_1, \dots, x_{d-1}, x_d = v)}$$

▶ The world is reduced to a set of random variables x_1, \ldots, x_d

▶ e.g. (x_1, \ldots, x_{d-1}) a feature vector, $x_d \equiv y$ the class label

- ▶ Inference: given joint distribution $p(x_1, ..., x_d)$, compute $p(X_Q \mid X_E)$ where $X_Q \cup X_E \subseteq \{x_1 ... x_d\}$
 - e.g. $Q = \{d\}$, $E = \{1 \dots d 1\}$, by the definition of conditional

$$p(x_d \mid x_1, \dots, x_{d-1}) = \frac{p(x_1, \dots, x_{d-1}, x_d)}{\sum_v p(x_1, \dots, x_{d-1}, x_d = v)}$$

• Learning: estimate $p(x_1, \ldots, x_d)$ from training data $X^{(1)}, \ldots, X^{(N)}$, where $X^{(i)} = (x_1^{(i)}, \ldots, x_d^{(i)})$

• joint distribution $p(x_1, \ldots, x_d)$

- joint distribution $p(x_1, \ldots, x_d)$
 - exponential naïve storage $(2^d$ for binary r.v.)

- joint distribution $p(x_1, \ldots, x_d)$
 - exponential naïve storage (2^d for binary r.v.)
 - hard to interpret (conditional independence)

- joint distribution $p(x_1, \ldots, x_d)$
 - exponential naïve storage (2^d for binary r.v.)
 - hard to interpret (conditional independence)

• inference $p(X_Q \mid X_E)$

- joint distribution $p(x_1, \ldots, x_d)$
 - exponential naïve storage (2^d for binary r.v.)
 - hard to interpret (conditional independence)
- inference $p(X_Q \mid X_E)$
 - Often can't afford to do it by brute force

- joint distribution $p(x_1, \ldots, x_d)$
 - exponential naïve storage (2^d for binary r.v.)
 - hard to interpret (conditional independence)
- inference $p(X_Q \mid X_E)$
 - Often can't afford to do it by brute force
- ▶ If $p(x_1, \ldots, x_d)$ not given, estimate it from data

- joint distribution $p(x_1, \ldots, x_d)$
 - exponential naïve storage (2^d for binary r.v.)
 - hard to interpret (conditional independence)
- inference $p(X_Q \mid X_E)$
 - Often can't afford to do it by brute force
- If $p(x_1, \ldots, x_d)$ not given, estimate it from data
 - Often can't afford to do it by brute force

- joint distribution $p(x_1, \ldots, x_d)$
 - exponential naïve storage (2^d for binary r.v.)
 - hard to interpret (conditional independence)
- inference $p(X_Q \mid X_E)$
 - Often can't afford to do it by brute force
- If $p(x_1, \ldots, x_d)$ not given, estimate it from data
 - Often can't afford to do it by brute force
- ► Graphical model: efficient representation, inference, and learning on p(x₁,...,x_d), exactly or approximately

• Graphical model = joint distribution $p(x_1, \ldots, x_d)$

• Graphical model = joint distribution $p(x_1, \ldots, x_d)$

Bayesian network or Markov random field

- Graphical model = joint distribution $p(x_1, \ldots, x_d)$
 - Bayesian network or Markov random field
 - conditional independence

- Graphical model = joint distribution $p(x_1, \ldots, x_d)$
 - Bayesian network or Markov random field
 - conditional independence

▶ Inference = $p(X_Q \mid X_E)$, in general $X_Q \cup X_E \subset \{x_1 \dots x_d\}$

- Graphical model = joint distribution $p(x_1, \ldots, x_d)$
 - Bayesian network or Markov random field
 - conditional independence
- Inference = $p(X_Q \mid X_E)$, in general $X_Q \cup X_E \subset \{x_1 \dots x_d\}$
 - exact, MCMC, variational

- Graphical model = joint distribution $p(x_1, \ldots, x_d)$
 - Bayesian network or Markov random field
 - conditional independence
- ▶ Inference = $p(X_Q \mid X_E)$, in general $X_Q \cup X_E \subset \{x_1 \dots x_d\}$
 - exact, MCMC, variational
- If $p(x_1, \ldots, x_d)$ not given, estimate it from data

- Graphical model = joint distribution $p(x_1, \ldots, x_d)$
 - Bayesian network or Markov random field
 - conditional independence
- Inference = $p(X_Q \mid X_E)$, in general $X_Q \cup X_E \subset \{x_1 \dots x_d\}$
 - exact, MCMC, variational
- If $p(x_1, \ldots, x_d)$ not given, estimate it from data
 - parameter and structure learning

Graphical-Model-Nots

Graphical model is the study of probabilistic models

Graphical-Model-Nots

- Graphical model is the study of probabilistic models
- Just because there are nodes and edges doesn't mean it's a graphical model

Graphical-Model-Nots

- Graphical model is the study of probabilistic models
- Just because there are nodes and edges doesn't mean it's a graphical model
- These are not graphical models:

Outline

Graphical Models

Probabilistic Inference Directed vs. Undirected Graphical Models Inference Parameter Estimation

Kernel Methods

Support Vector Machines Kernel PCA Reproducing Kernel Hilbert Spaces

Also called Bayesian networks

- Also called Bayesian networks
- ► A directed graph has nodes x₁,..., x_d, some of them connected by directed edges x_i → x_j

- Also called Bayesian networks
- ► A directed graph has nodes x₁,..., x_d, some of them connected by directed edges x_i → x_j
- A cycle is a directed path $x_1 \rightarrow \ldots \rightarrow x_k$ where $x_1 = x_k$

- Also called Bayesian networks
- ► A directed graph has nodes x₁,..., x_d, some of them connected by directed edges x_i → x_j
- A cycle is a directed path $x_1 \rightarrow \ldots \rightarrow x_k$ where $x_1 = x_k$
- A directed acyclic graph (DAG) contains no cycles

 A Bayesian network on the DAG is a family of distributions satisfying

$$\{p \mid p(x_1, \dots, x_d) = \prod_i p(x_i \mid Pa(x_i))\}$$

where $Pa(x_i)$ is the set of parents of x_i .

 A Bayesian network on the DAG is a family of distributions satisfying

$$\{p \mid p(x_1, \dots, x_d) = \prod_i p(x_i \mid Pa(x_i))\}$$

where $Pa(x_i)$ is the set of parents of x_i .

▶ p(x_i | Pa(x_i)) is the conditional probability distribution (CPD) at x_i

 A Bayesian network on the DAG is a family of distributions satisfying

$$\{p \mid p(x_1, \dots, x_d) = \prod_i p(x_i \mid Pa(x_i))\}$$

where $Pa(x_i)$ is the set of parents of x_i .

- ▶ p(x_i | Pa(x_i)) is the conditional probability distribution (CPD) at x_i
- ▶ By specifying the CPDs for all *i*, we specify a joint distribution *p*(*x*₁,...,*x*_d)

Example: Burglary, Earthquake, Alarm, John and Marry

Binary variables

 $P(B, \sim E, A, J, \sim M)$ $= P(B)P(\sim E)P(A \mid B, \sim E)P(J \mid A)P(\sim M \mid A)$ $= 0.001 \times (1 - 0.002) \times 0.94 \times 0.9 \times (1 - 0.7)$ $\approx .000253$

•
$$p(y, x_1, \dots, x_d) = p(y) \prod_{i=1}^d p(x_i \mid y)$$

•
$$p(y, x_1, \dots, x_d) = p(y) \prod_{i=1}^d p(x_i \mid y)$$

Plate representation on the right

•
$$p(y, x_1, \dots, x_d) = p(y) \prod_{i=1}^d p(x_i \mid y)$$

- Plate representation on the right
- ▶ p(y) multinomial

•
$$p(y, x_1, \dots, x_d) = p(y) \prod_{i=1}^d p(x_i \mid y)$$

- Plate representation on the right
- ▶ p(y) multinomial
- ▶ p(x_i | y) depends on the feature type: multinomial (count x_i), Gaussian (continuous x_i), etc.

No Causality Whatsoever

The two BNs are equivalent in all respects

Do not read causality from Bayesian networks

No Causality Whatsoever

The two BNs are equivalent in all respects

- Do not read causality from Bayesian networks
- They only represent correlation (joint probability distribution)

No Causality Whatsoever

The two BNs are equivalent in all respects

- Do not read causality from Bayesian networks
- They only represent correlation (joint probability distribution)
- However, it is perfectly fine to design BNs causally

What do we need probabilistic models for?

• Make predictions. $p(y \mid x)$ plus decision theory

What do we need probabilistic models for?

- Make predictions. $p(y \mid x)$ plus decision theory
- Interpret models. Very natural to include latent variables

Example: Latent Dirichlet Allocation (LDA)

A generative model for $p(\phi, \theta, z, w \mid \alpha, \beta)$: For each topic t $\phi_t \sim \text{Dirichlet}(\beta)$ For each document d $\theta \sim \text{Dirichlet}(\alpha)$ For each word position in dtopic $z \sim \text{Multinomial}(\theta)$ word $w \sim \text{Multinomial}(\phi_z)$ Inference goals: $p(z \mid w, \alpha, \beta)$, $\operatorname{argmax}_{\phi, \theta} p(\phi, \theta \mid w, \alpha, \beta)$

► Two r.v.s A, B are independent if

$$P(A,B) = P(A)P(B)$$
$$P(A|B) = P(A)$$
$$P(B|A) = P(B)$$

► Two r.v.s A, B are independent if

$$P(A,B) = P(A)P(B)$$

$$P(A|B) = P(A)$$

$$P(B|A) = P(B)$$

► Two r.v.s A, B are conditionally independent given C if

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$

$$P(A \mid B, C) = P(A \mid C)$$

$$P(B \mid A, C) = P(B \mid C)$$

► Two r.v.s A, B are independent if

$$P(A,B) = P(A)P(B)$$
$$P(A|B) = P(A)$$
$$P(B|A) = P(B)$$

Two r.v.s A, B are conditionally independent given C if

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$

$$P(A \mid B, C) = P(A \mid C)$$

$$P(B \mid A, C) = P(B \mid C)$$

This extends to groups of r.v.s

Two r.v.s A, B are independent if

$$P(A,B) = P(A)P(B)$$
$$P(A|B) = P(A)$$
$$P(B|A) = P(B)$$

Two r.v.s A, B are conditionally independent given C if

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$

$$P(A \mid B, C) = P(A \mid C)$$

$$P(B \mid A, C) = P(B \mid C)$$

- This extends to groups of r.v.s
- Conditional independence in a BN is precisely specified by d-separation ("directed separation")

d-Separation Case 1: Tail-to-Tail

► A, B in general dependent

d-Separation Case 1: Tail-to-Tail

- A, B in general dependent
- A, B conditionally independent given C (observed nodes are shaded)

d-Separation Case 1: Tail-to-Tail

- A, B in general dependent
- A, B conditionally independent given C (observed nodes are shaded)
- An observed C is a tail-to-tail node, blocks the undirected path A-B

d-Separation Case 2: Head-to-Tail

d-Separation Case 2: Head-to-Tail

- A, B in general dependent
- A, B conditionally independent given C

d-Separation Case 2: Head-to-Tail

- A, B in general dependent
- A, B conditionally independent given C
- An observed C is a head-to-tail node, blocks the path A-B

d-Separation Case 3: Head-to-Head

A, B in general independent

d-Separation Case 3: Head-to-Head

- A, B in general independent
- A, B conditionally dependent given C, or any of C's descendants

d-Separation Case 3: Head-to-Head

- A, B in general independent
- A, B conditionally dependent given C, or any of C's descendants
- An observed C is a head-to-head node, unblocks the path A-B

d-Separation

 Variable groups A and B are conditionally independent given C, if all undirected paths from nodes in A to nodes in B are blocked

d-Separation Example 1

The undirected path from A to B is unblocked by E (because of C), and is not blocked by F

d-Separation Example 1

- The undirected path from A to B is unblocked by E (because of C), and is not blocked by F
- ► A, B dependent given C

d-Separation Example 2

The path from A to B is blocked both at E and F

d-Separation Example 2

- The path from A to B is blocked both at E and F
- ► A, B conditionally independent given F

Also known as Markov Random Fields

- Also known as Markov Random Fields
- Recall directed graphical models require a DAG and locally normalized CPDs

- Also known as Markov Random Fields
- Recall directed graphical models require a DAG and locally normalized CPDs
 - efficient computation

- Also known as Markov Random Fields
- Recall directed graphical models require a DAG and locally normalized CPDs
 - efficient computation
 - but restrictive

- Also known as Markov Random Fields
- Recall directed graphical models require a DAG and locally normalized CPDs
 - efficient computation
 - but restrictive
- ► A clique C in an undirected graph is a set of fully connected nodes (full of loops!)

- Also known as Markov Random Fields
- Recall directed graphical models require a DAG and locally normalized CPDs
 - efficient computation
 - but restrictive
- ► A clique C in an undirected graph is a set of fully connected nodes (full of loops!)
- Define a nonnegative potential function $\psi_C: X_C \mapsto \mathbb{R}_+$

- Also known as Markov Random Fields
- Recall directed graphical models require a DAG and locally normalized CPDs
 - efficient computation
 - but restrictive
- A clique C in an undirected graph is a set of fully connected nodes (full of loops!)
- Define a nonnegative potential function $\psi_C: X_C \mapsto \mathbb{R}_+$
- An undirected graphical model is a family of distributions satisfying

$$\left\{ p \mid p(X) = \frac{1}{Z} \prod_{C} \psi_{C}(X_{C}) \right\}$$

- Also known as Markov Random Fields
- Recall directed graphical models require a DAG and locally normalized CPDs
 - efficient computation
 - but restrictive
- ► A clique C in an undirected graph is a set of fully connected nodes (full of loops!)
- Define a nonnegative potential function $\psi_C: X_C \mapsto \mathbb{R}_+$
- An undirected graphical model is a family of distributions satisfying

$$\left\{ p \mid p(X) = \frac{1}{Z} \prod_{C} \psi_{C}(X_{C}) \right\}$$

• $Z = \int \prod_{C} \psi_{C}(X_{C}) dX$ is the partition function

▶ $x_1, x_2 \in \{-1, 1\}$

- ▶ $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1x_2}$

- ▶ $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1x_2}$

▶
$$p(x_1, x_2) = \frac{1}{Z}e^{ax_1x_2}$$

- ▶ $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1x_2}$
- ▶ $p(x_1, x_2) = \frac{1}{Z} e^{ax_1 x_2}$

$$\blacktriangleright \ Z = (e^a + e^{-a} + e^{-a} + e^a)$$

- ► $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1x_2}$
- ► $p(x_1, x_2) = \frac{1}{Z} e^{ax_1 x_2}$

$$\blacktriangleright \ Z = (e^a + e^{-a} + e^{-a} + e^a)$$

► $p(1,1) = p(-1,-1) = e^a/(2e^a + 2e^{-a})$

- ► $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1x_2}$

•
$$p(x_1, x_2) = \frac{1}{Z} e^{a x_1 x_2}$$

$$\blacktriangleright \ Z = (e^a + e^{-a} + e^{-a} + e^a)$$

- ▶ $p(1,1) = p(-1,-1) = e^a/(2e^a + 2e^{-a})$
- $\blacktriangleright \ p(-1,1) = p(1,-1) = e^{-a}/(2e^a + 2e^{-a})$

- ▶ $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1x_2}$
- $p(x_1, x_2) = \frac{1}{Z} e^{a x_1 x_2}$

$$\blacktriangleright \ Z = (e^a + e^{-a} + e^{-a} + e^a)$$

- ▶ $p(1,1) = p(-1,-1) = e^a/(2e^a + 2e^{-a})$
- ▶ $p(-1,1) = p(1,-1) = e^{-a}/(2e^a + 2e^{-a})$
- When the parameter a > 0, favor homogeneous chains

- ▶ $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1x_2}$
- $p(x_1, x_2) = \frac{1}{Z} e^{a x_1 x_2}$

$$\blacktriangleright \ Z = (e^a + e^{-a} + e^{-a} + e^a)$$

- ▶ $p(1,1) = p(-1,-1) = e^a/(2e^a + 2e^{-a})$
- ▶ $p(-1,1) = p(1,-1) = e^{-a}/(2e^a + 2e^{-a})$
- When the parameter a > 0, favor homogeneous chains
- When the parameter a < 0, favor inhomogeneous chains

Log-Linear Models

• Real-valued feature functions $f_1(X), \ldots, f_k(X)$

Log-Linear Models

- Real-valued feature functions $f_1(X), \ldots, f_k(X)$
- Real-valued weights w_1, \ldots, w_k

$$p(X) = \frac{1}{Z} \exp\left(\sum_{i=1}^{k} w_i f_i(X)\right)$$

Log-Linear Models

- ▶ Real-valued feature functions $f_1(X), \ldots, f_k(X)$
- Real-valued weights w_1, \ldots, w_k

$$p(X) = \frac{1}{Z} \exp\left(\sum_{i=1}^{k} w_i f_i(X)\right)$$

• Equivalent to MRF $p(X) = \frac{1}{Z} \prod_C \psi_C(X_C)$ with

$$\psi_C(X_C) = \exp\left(w_C f_C(X)\right)$$

Example: Ising Model

 $\overset{\theta_s(x_i) \overset{\theta_{s'}}{\longrightarrow} (x_i) \overset{}{\longrightarrow} (x_i$

$$p_{\theta}(x) = \frac{1}{Z} \exp\left(\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t\right)$$

•
$$f_s(X) = x_s$$
, $f_{st}(X) = x_s x_t$

Example: Image Denoising

[From Bishop PRML]

noisy image

 $\operatorname{argmax}_X P(X|Y)$

$$p_{\theta}(X \mid Y) = \frac{1}{Z} \exp\left(\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t\right)$$
$$\theta_s = \begin{cases} c & y_s = 1\\ -c & y_s = 0 \end{cases}, \quad \theta_{st} > 0$$

$$p(X) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(X-\mu)^{\top} \Sigma^{-1}(X-\mu)\right)$$

Multivariate Gaussian

$$p(X) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(X-\mu)^{\top} \Sigma^{-1}(X-\mu)\right)$$

- Multivariate Gaussian
- The $n \times n$ covariance matrix Σ positive semi-definite

$$p(X) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(X-\mu)^{\top} \Sigma^{-1}(X-\mu)\right)$$

- Multivariate Gaussian
- The $n \times n$ covariance matrix Σ positive semi-definite
- Let $\Omega = \Sigma^{-1}$ be the precision matrix

$$p(X) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(X-\mu)^{\top} \Sigma^{-1}(X-\mu)\right)$$

- Multivariate Gaussian
- The $n \times n$ covariance matrix Σ positive semi-definite
- Let $\Omega = \Sigma^{-1}$ be the precision matrix
- x_i, x_j are conditionally independent given all other variables, if and only if Ω_{ij} = 0

$$p(X) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(X-\mu)^{\top} \Sigma^{-1}(X-\mu)\right)$$

- Multivariate Gaussian
- The $n \times n$ covariance matrix Σ positive semi-definite
- Let $\Omega = \Sigma^{-1}$ be the precision matrix
- x_i, x_j are conditionally independent given all other variables, if and only if Ω_{ij} = 0
- When $\Omega_{ij} \neq 0$, there is an edge between x_i, x_j

Conditional Independence in Markov Random Fields

Two group of variables A, B are conditionally independent given another group C, if A, B become disconnected by removing C and all edges involving C

Outline

Graphical Models

Probabilistic Inference Directed vs. Undirected Graphical Models Inference Parameter Estimation

Kernel Methods

Support Vector Machines Kernel PCA Reproducing Kernel Hilbert Spaces

Exact Inference

Inference by Enumeration

Let X = (X_Q, X_E, X_O) for query, evidence, and other variables.

Inference by Enumeration

- ▶ Let X = (X_Q, X_E, X_O) for query, evidence, and other variables.
- Goal: $P(X_Q \mid X_E)$

Inference by Enumeration

- ▶ Let X = (X_Q, X_E, X_O) for query, evidence, and other variables.
- Goal: $P(X_Q \mid X_E)$

$$P(X_Q \mid X_E) = \frac{P(X_Q, X_E)}{P(X_E)} = \frac{\sum_{X_O} P(X_Q, X_E, X_O)}{\sum_{X_Q, X_O} P(X_Q, X_E, X_O)}$$

Inference by Enumeration

- ▶ Let X = (X_Q, X_E, X_O) for query, evidence, and other variables.
- Goal: $P(X_Q \mid X_E)$

$$P(X_Q \mid X_E) = \frac{P(X_Q, X_E)}{P(X_E)} = \frac{\sum_{X_O} P(X_Q, X_E, X_O)}{\sum_{X_O, X_O} P(X_Q, X_E, X_O)}$$

Summing exponential number of terms: with k variables in X_O each taking r values, there are r^k terms

Inference by Enumeration

- ▶ Let X = (X_Q, X_E, X_O) for query, evidence, and other variables.
- Goal: $P(X_Q \mid X_E)$

$$P(X_Q \mid X_E) = \frac{P(X_Q, X_E)}{P(X_E)} = \frac{\sum_{X_O} P(X_Q, X_E, X_O)}{\sum_{X_Q, X_O} P(X_Q, X_E, X_O)}$$

- Summing exponential number of terms: with k variables in X_O each taking r values, there are r^k terms
- Not covered: Variable elimination and junction tree (aka clique tree)

Forward sampling

- Forward sampling
- Gibbs sampling

- Forward sampling
- Gibbs sampling
- Collapsed Gibbs sampling

- Forward sampling
- Gibbs sampling
- Collapsed Gibbs sampling
- ► Not covered: block Gibbs, Metropolis-Hastings, etc.

- Forward sampling
- Gibbs sampling
- Collapsed Gibbs sampling
- ► Not covered: block Gibbs, Metropolis-Hastings, etc.
- Unbiased (after burn-in), but can have high variance

▶ Consider the inference problem $p(X_Q = c_Q \mid X_E)$ where $X_Q \cup X_E \subseteq \{x_1 \dots x_d\}$

$$p(X_Q = c_Q \mid X_E) = \int \mathbb{1}_{(x_Q = c_Q)} p(x_Q \mid X_E) dx_Q$$

▶ Consider the inference problem $p(X_Q = c_Q \mid X_E)$ where $X_Q \cup X_E \subseteq \{x_1 \dots x_d\}$

$$p(X_Q = c_Q \mid X_E) = \int \mathbb{1}_{(x_Q = c_Q)} p(x_Q \mid X_E) dx_Q$$

► If we can draw samples x⁽¹⁾_Q,...x^(m)_Q ~ p(x_Q | X_E), an unbiased estimator is

$$p(X_Q = c_Q \mid X_E) \approx \frac{1}{m} \sum_{i=1}^m \mathbf{1}_{(x_Q^{(i)} = c_Q)}$$

▶ Consider the inference problem $p(X_Q = c_Q \mid X_E)$ where $X_Q \cup X_E \subseteq \{x_1 \dots x_d\}$

$$p(X_Q = c_Q \mid X_E) = \int \mathbb{1}_{(x_Q = c_Q)} p(x_Q \mid X_E) dx_Q$$

• If we can draw samples $x_Q^{(1)}, \ldots x_Q^{(m)} \sim p(x_Q \mid X_E)$, an unbiased estimator is

$$p(X_Q = c_Q \mid X_E) \approx \frac{1}{m} \sum_{i=1}^m \mathbf{1}_{(x_Q^{(i)} = c_Q)}$$

▶ The variance of the estimator decreases as *O*(1/*m*)

▶ Consider the inference problem $p(X_Q = c_Q \mid X_E)$ where $X_Q \cup X_E \subseteq \{x_1 \dots x_d\}$

$$p(X_Q = c_Q \mid X_E) = \int \mathbb{1}_{(x_Q = c_Q)} p(x_Q \mid X_E) dx_Q$$

• If we can draw samples $x_Q^{(1)}, \ldots x_Q^{(m)} \sim p(x_Q \mid X_E)$, an unbiased estimator is

$$p(X_Q = c_Q \mid X_E) \approx \frac{1}{m} \sum_{i=1}^m \mathbf{1}_{(x_Q^{(i)} = c_Q)}$$

- ▶ The variance of the estimator decreases as *O*(1/*m*)
- ▶ Inference reduces to sampling from $p(x_Q \mid X_E)$

Forward Sampling

• Draw $X \sim P(X)$

Forward Sampling

- Draw $X \sim P(X)$
- Throw away X if it doesn't match the evidence X_E

1. Sample $B \sim \text{Ber}(0.001)$: $r \sim U(0,1)$. If (r < 0.001) then B = 1 else B = 0

- 1. Sample $B \sim \text{Ber}(0.001)$: $r \sim U(0,1)$. If (r < 0.001) then B = 1 else B = 0
- 2. Sample $E \sim Ber(0.002)$

- 1. Sample $B \sim \text{Ber}(0.001)$: $r \sim U(0,1)$. If (r < 0.001) then B = 1 else B = 0
- 2. Sample $E \sim Ber(0.002)$
- 3. If B = 1 and E = 1, sample $A \sim Ber(0.95)$, and so on

- 1. Sample $B \sim \text{Ber}(0.001)$: $r \sim U(0, 1)$. If (r < 0.001) then B = 1 else B = 0
- 2. Sample $E \sim \text{Ber}(0.002)$
- 3. If B = 1 and E = 1, sample $A \sim Ber(0.95)$, and so on
- 4. If A = 1 sample $J \sim Ber(0.9)$ else $J \sim Ber(0.05)$

- 1. Sample $B \sim \text{Ber}(0.001)$: $r \sim U(0,1)$. If (r < 0.001) then B = 1 else B = 0
- 2. Sample $E \sim \text{Ber}(0.002)$
- 3. If B = 1 and E = 1, sample $A \sim Ber(0.95)$, and so on
- 4. If A = 1 sample $J \sim Ber(0.9)$ else $J \sim Ber(0.05)$
- 5. If A = 1 sample $M \sim Ber(0.7)$ else $M \sim Ber(0.01)$

▶ Say the inference task is P(B = 1 | E = 1, M = 1)

- Say the inference task is P(B = 1 | E = 1, M = 1)
- Throw away all samples except those with (E = 1, M = 1)

$$p(B = 1 \mid E = 1, M = 1) \approx \frac{1}{m} \sum_{i=1}^{m} \mathbf{1}_{(B^{(i)} = 1)}$$

where m is the number of surviving samples

- Say the inference task is P(B = 1 | E = 1, M = 1)
- Throw away all samples except those with (E = 1, M = 1)

$$p(B=1 \mid E=1, M=1) \approx \frac{1}{m} \sum_{i=1}^{m} \mathbf{1}_{(B^{(i)}=1)}$$

where m is the number of surviving samples • Can be highly inefficient (note P(E = 1) tiny)

- Say the inference task is P(B = 1 | E = 1, M = 1)
- Throw away all samples except those with (E = 1, M = 1)

$$p(B = 1 \mid E = 1, M = 1) \approx \frac{1}{m} \sum_{i=1}^{m} \mathbf{1}_{(B^{(i)} = 1)}$$

where m is the number of surviving samples

- Can be highly inefficient (note P(E = 1) tiny)
- Does not work for Markov Random Fields (can't sample from P(X))

 Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.

- Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.
- Directly sample from $p(x_Q \mid X_E)$

- Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.
- Directly sample from $p(x_Q \mid X_E)$
- Works for both graphical models

- Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.
- Directly sample from $p(x_Q \mid X_E)$
- Works for both graphical models
- Initialization:

- Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.
- Directly sample from $p(x_Q \mid X_E)$
- Works for both graphical models
- Initialization:
 - Fix evidence; randomly set other variables

- Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.
- Directly sample from $p(x_Q \mid X_E)$
- Works for both graphical models
- Initialization:
 - Fix evidence; randomly set other variables

▶ e.g.
$$X^{(0)} = (B = 0, E = 1, A = 0, J = 0, M = 1)$$

► For each non-evidence variable x_i, fixing all other nodes X_{-i}, resample its value x_i ~ P(x_i | X_{-i})

- ► For each non-evidence variable x_i, fixing all other nodes X_{-i}, resample its value x_i ~ P(x_i | X_{-i})
- This is equivalent to $x_i \sim P(x_i \mid \mathsf{MarkovBlanket}(x_i))$

- For each non-evidence variable x_i , fixing all other nodes X_{-i} , resample its value $x_i \sim P(x_i \mid X_{-i})$
- This is equivalent to $x_i \sim P(x_i \mid \mathsf{MarkovBlanket}(x_i))$
- ► For a Bayesian network MarkovBlanket(x_i) includes x_i's parents, spouses, and children

$$P(x_i \mid \mathsf{MarkovBlanket}(x_i)) \propto P(x_i \mid Pa(x_i)) \prod_{y \in C(x_i)} P(y \mid Pa(y))$$

where Pa(x) are the parents of x, and C(x) the children of x.

45 / 123

- For each non-evidence variable x_i , fixing all other nodes X_{-i} , resample its value $x_i \sim P(x_i \mid X_{-i})$
- This is equivalent to $x_i \sim P(x_i \mid \mathsf{MarkovBlanket}(x_i))$
- ► For a Bayesian network MarkovBlanket(x_i) includes x_i's parents, spouses, and children

$$P(x_i \mid \mathsf{MarkovBlanket}(x_i)) \propto P(x_i \mid Pa(x_i)) \prod_{y \in C(x_i)} P(y \mid Pa(y))$$

where Pa(x) are the parents of x, and C(x) the children of x.

► For many graphical models the Markov Blanket is small.

45 / 123

- For each non-evidence variable x_i , fixing all other nodes X_{-i} , resample its value $x_i \sim P(x_i \mid X_{-i})$
- This is equivalent to $x_i \sim P(x_i \mid \mathsf{MarkovBlanket}(x_i))$
- ► For a Bayesian network MarkovBlanket(x_i) includes x_i's parents, spouses, and children

$$P(x_i \mid \mathsf{MarkovBlanket}(x_i)) \propto P(x_i \mid Pa(x_i)) \prod_{y \in C(x_i)} P(y \mid Pa(y))$$

where Pa(x) are the parents of x, and C(x) the children of x.

- For many graphical models the Markov Blanket is small.
- For example,

 $B \sim P(B \mid E=1, A=0) \propto P(B)P(A=0 \mid B, E=1)$

45 / 123

• Say we sampled
$$B = 1$$
. Then
 $X^{(1)} = (B = 1, E = 1, A = 0, J = 0, M = 1)$

- Say we sampled B = 1. Then $X^{(1)} = (B = 1, E = 1, A = 0, J = 0, M = 1)$
- ▶ Starting from $X^{(1)}$, sample $A \sim P(A \mid B = 1, E = 1, J = 0, M = 1)$ to get $X^{(2)}$

Gibbs Sampling

- Say we sampled B = 1. Then X⁽¹⁾ = (B = 1, E = 1, A = 0, J = 0, M = 1)
- ▶ Starting from $X^{(1)}$, sample $A \sim P(A \mid B = 1, E = 1, J = 0, M = 1)$ to get $X^{(2)}$
- Move on to J, then repeat $B, A, J, B, A, J \dots$

Gibbs Sampling

- Say we sampled B = 1. Then X⁽¹⁾ = (B = 1, E = 1, A = 0, J = 0, M = 1)
- ▶ Starting from $X^{(1)}$, sample $A \sim P(A \mid B = 1, E = 1, J = 0, M = 1)$ to get $X^{(2)}$
- Move on to J, then repeat $B, A, J, B, A, J \dots$
- ▶ Keep all samples after burn in. P(B = 1 | E = 1, M = 1) is the fraction of samples with B = 1.

Gibbs Sampling Example 2: The Ising Model

This is an undirected model with $x \in \{0, 1\}$.

$$p_{\theta}(x) = \frac{1}{Z} \exp\left(\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t\right)$$

Gibbs Example 2: The Ising Model

• The Markov blanket of x_s is A, B, C, D

Gibbs Example 2: The Ising Model

- The Markov blanket of x_s is A, B, C, D
- In general for undirected graphical models

$$p(x_s \mid x_{-s}) = p(x_s \mid x_{N(s)})$$

N(s) is the neighbors of s.

Gibbs Example 2: The Ising Model

- The Markov blanket of x_s is A, B, C, D
- In general for undirected graphical models

$$p(x_s \mid x_{-s}) = p(x_s \mid x_{N(s)})$$

N(s) is the neighbors of s.

The Gibbs update is

$$p(x_s = 1 \mid x_{N(s)}) = \frac{1}{\exp(-(\theta_s + \sum_{t \in N(s)} \theta_{st} x_t)) + 1}$$

 \blacktriangleright A Markov chain is defined by a transition matrix $T(X' \mid X)$

- \blacktriangleright A Markov chain is defined by a transition matrix $T(X' \mid X)$
- \blacktriangleright Certain Markov chains have a stationary distribution π such that $\pi = T\pi$

- A Markov chain is defined by a transition matrix $T(X' \mid X)$
- \blacktriangleright Certain Markov chains have a stationary distribution π such that $\pi = T\pi$
- Gibbs sampler is such a Markov chain with $T_i((X_{-i}, x'_i) \mid (X_{-i}, x_i)) = p(x'_i \mid X_{-i})$, and stationary distribution $p(x_Q \mid X_E)$

- \blacktriangleright A Markov chain is defined by a transition matrix $T(X' \mid X)$
- \blacktriangleright Certain Markov chains have a stationary distribution π such that $\pi = T\pi$
- Gibbs sampler is such a Markov chain with $T_i((X_{-i}, x'_i) \mid (X_{-i}, x_i)) = p(x'_i \mid X_{-i})$, and stationary distribution $p(x_Q \mid X_E)$
- But it takes time for the chain to reach stationary distribution (mix)

- A Markov chain is defined by a transition matrix $T(X' \mid X)$
- \blacktriangleright Certain Markov chains have a stationary distribution π such that $\pi = T\pi$
- Gibbs sampler is such a Markov chain with $T_i((X_{-i}, x'_i) \mid (X_{-i}, x_i)) = p(x'_i \mid X_{-i})$, and stationary distribution $p(x_Q \mid X_E)$
- But it takes time for the chain to reach stationary distribution (mix)
 - Can be difficult to assert mixing

- A Markov chain is defined by a transition matrix $T(X' \mid X)$
- \blacktriangleright Certain Markov chains have a stationary distribution π such that $\pi = T\pi$
- Gibbs sampler is such a Markov chain with $T_i((X_{-i}, x'_i) \mid (X_{-i}, x_i)) = p(x'_i \mid X_{-i})$, and stationary distribution $p(x_Q \mid X_E)$
- But it takes time for the chain to reach stationary distribution (mix)
 - Can be difficult to assert mixing
 - In practice "burn in": discard $X^{(0)}, \ldots, X^{(T)}$

- A Markov chain is defined by a transition matrix $T(X' \mid X)$
- \blacktriangleright Certain Markov chains have a stationary distribution π such that $\pi = T\pi$
- Gibbs sampler is such a Markov chain with $T_i((X_{-i}, x'_i) \mid (X_{-i}, x_i)) = p(x'_i \mid X_{-i})$, and stationary distribution $p(x_Q \mid X_E)$
- But it takes time for the chain to reach stationary distribution (mix)
 - Can be difficult to assert mixing
 - In practice "burn in": discard $X^{(0)}, \ldots, X^{(T)}$
 - ► Use all of X^(T+1),... for inference (they are correlated); Do not thin

 \blacktriangleright In general, $\mathbb{E}_p[f(X)] \approx \frac{1}{m} \sum_{i=1}^m f(X^{(i)})$ for $X^{(i)} \sim p$

- ▶ In general, $\mathbb{E}_p[f(X)] \approx \frac{1}{m} \sum_{i=1}^m f(X^{(i)})$ for $X^{(i)} \sim p$
- Sometimes X = (Y, Z) where $\mathbb{E}_{Z|Y}$ has a closed-form

- ▶ In general, $\mathbb{E}_p[f(X)] \approx \frac{1}{m} \sum_{i=1}^m f(X^{(i)})$ for $X^{(i)} \sim p$
- ▶ Sometimes X = (Y, Z) where $\mathbb{E}_{Z|Y}$ has a closed-form

If so,

$$\mathbb{E}_p[f(X)] = \mathbb{E}_{p(Y)}\mathbb{E}_{p(Z|Y)}[f(Y,Z)]$$
$$\approx \frac{1}{m}\sum_{i=1}^m \mathbb{E}_{p(Z|Y^{(i)})}[f(Y^{(i)},Z)]$$

for $Y^{(i)} \sim p(Y)$

- ▶ In general, $\mathbb{E}_p[f(X)] \approx \frac{1}{m} \sum_{i=1}^m f(X^{(i)})$ for $X^{(i)} \sim p$
- ▶ Sometimes X = (Y, Z) where $\mathbb{E}_{Z|Y}$ has a closed-form

If so,

$$\mathbb{E}_p[f(X)] = \mathbb{E}_{p(Y)} \mathbb{E}_{p(Z|Y)}[f(Y,Z)]$$
$$\approx \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{p(Z|Y^{(i)})}[f(Y^{(i)},Z)]$$

for $Y^{(i)} \sim p(Y)$

▶ No need to sample Z: it is collapsed

- ▶ In general, $\mathbb{E}_p[f(X)] \approx \frac{1}{m} \sum_{i=1}^m f(X^{(i)})$ for $X^{(i)} \sim p$
- ▶ Sometimes X = (Y, Z) where $\mathbb{E}_{Z|Y}$ has a closed-form

If so,

$$\mathbb{E}_p[f(X)] = \mathbb{E}_{p(Y)} \mathbb{E}_{p(Z|Y)}[f(Y,Z)]$$
$$\approx \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{p(Z|Y^{(i)})}[f(Y^{(i)},Z)]$$

for $Y^{(i)} \sim p(Y)$

- ▶ No need to sample Z: it is collapsed
- ► Collapsed Gibbs sampler $T_i((Y_{-i}, y'_i) | (Y_{-i}, y_i)) = p(y'_i | Y_{-i})$

- ▶ In general, $\mathbb{E}_p[f(X)] \approx \frac{1}{m} \sum_{i=1}^m f(X^{(i)})$ for $X^{(i)} \sim p$
- ▶ Sometimes X = (Y, Z) where $\mathbb{E}_{Z|Y}$ has a closed-form

If so,

$$\mathbb{E}_p[f(X)] = \mathbb{E}_{p(Y)} \mathbb{E}_{p(Z|Y)}[f(Y,Z)]$$
$$\approx \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{p(Z|Y^{(i)})}[f(Y^{(i)},Z)]$$

for $Y^{(i)} \sim p(Y)$

- No need to sample Z: it is collapsed
- ► Collapsed Gibbs sampler $T_i((Y_{-i}, y'_i) | (Y_{-i}, y_i)) = p(y'_i | Y_{-i})$
- Note $p(y'_i \mid Y_{-i}) = \int p(y'_i, Z \mid Y_{-i}) dZ$

Collapse θ, ϕ , Gibbs update:

$$P(z_i = j \mid \mathbf{z}_{-i}, \mathbf{w}) \propto \frac{n_{-i,j}^{(w_i)} + \beta n_{-i,j}^{(d_i)} + \alpha}{n_{-i,j}^{(\cdot)} + W\beta n_{-i,\cdot}^{(d_i)} + T\alpha}$$

n^(w_i): number of times word *w_i* has been assigned to topic *j*, excluding the current position

Collapse θ, ϕ , Gibbs update:

$$P(z_i = j \mid \mathbf{z}_{-i}, \mathbf{w}) \propto \frac{n_{-i,j}^{(w_i)} + \beta n_{-i,j}^{(d_i)} + \alpha}{n_{-i,j}^{(\cdot)} + W\beta n_{-i,\cdot}^{(d_i)} + T\alpha}$$

- ▶ n^(w_i)_{-i,j}: number of times word w_i has been assigned to topic j, excluding the current position
- n^(d_i): number of times a word from document d_i has been assigned to topic j, excluding the current position

Collapse θ, ϕ , Gibbs update:

$$P(z_i = j \mid \mathbf{z}_{-i}, \mathbf{w}) \propto \frac{n_{-i,j}^{(w_i)} + \beta n_{-i,j}^{(d_i)} + \alpha}{n_{-i,j}^{(\cdot)} + W\beta n_{-i,\cdot}^{(d_i)} + T\alpha}$$

- ▶ n^(w_i)_{-i,j}: number of times word w_i has been assigned to topic j, excluding the current position
- n^(d_i)_{-i,j}: number of times a word from document d_i has been assigned to topic j, excluding the current position
- n^(·)_{-i,j}: number of times any word has been assigned to topic j, excluding the current position

Collapse θ, ϕ , Gibbs update:

$$P(z_i = j \mid \mathbf{z}_{-i}, \mathbf{w}) \propto \frac{n_{-i,j}^{(w_i)} + \beta n_{-i,j}^{(d_i)} + \alpha}{n_{-i,j}^{(\cdot)} + W\beta n_{-i,\cdot}^{(d_i)} + T\alpha}$$

- ▶ n^(w_i)_{-i,j}: number of times word w_i has been assigned to topic j, excluding the current position
- n^(d_i)_{-i,j}: number of times a word from document d_i has been assigned to topic j, excluding the current position
- n^(·)_{-i,j}: number of times any word has been assigned to topic j, excluding the current position
- ▶ $n_{-i,\cdot}^{(d_i)}$: length of document d_i , excluding the current position

Belief Propagation

Factor Graph

For both directed and undirected graphical models

Factor Graph

- For both directed and undirected graphical models
- Bipartite: edges between a variable node and a factor node

Factor Graph

- For both directed and undirected graphical models
- Bipartite: edges between a variable node and a factor node
- Factors represent computation

Also known as belief propagation (BP)

- Also known as belief propagation (BP)
- Exact if the graph is a tree; otherwise known as "loopy BP", approximate

- Also known as belief propagation (BP)
- Exact if the graph is a tree; otherwise known as "loopy BP", approximate
- ► The algorithm involves passing *messages* on the factor graph

- Also known as belief propagation (BP)
- Exact if the graph is a tree; otherwise known as "loopy BP", approximate
- ► The algorithm involves passing *messages* on the factor graph
- Alternative view: variational approximation (more later)

Example: A Simple HMM

The Hidden Markov Model template (not a graphical model)

Example: A Simple HMM

▶ Observing $x_1 = R, x_2 = G$, the directed graphical model

Example: A Simple HMM

▶ Observing $x_1 = R, x_2 = G$, the directed graphical model

► A message is a vector of length *K*, where *K* is the number of values *x* takes.

Messages

- ► A message is a vector of length *K*, where *K* is the number of values *x* takes.
- There are two types of messages:

Messages

- ► A message is a vector of length *K*, where *K* is the number of values *x* takes.
- There are two types of messages:
 - 1. $\mu_{f \to x}$: message from a factor node f to a variable node x $\mu_{f \to x}(i)$ is the *i*th element, $i = 1 \dots K$.

Messages

- ► A message is a vector of length *K*, where *K* is the number of values *x* takes.
- There are two types of messages:
 - 1. $\mu_{f \to x}$: message from a factor node f to a variable node x $\mu_{f \to x}(i)$ is the *i*th element, $i = 1 \dots K$.
 - 2. $\mu_{x \to f}$: message from a variable node x to a factor node f

• Assume tree factor graph. Pick an arbitrary root, say z_2

- Assume tree factor graph. Pick an arbitrary root, say z_2
- Start messages at leaves.

- Assume tree factor graph. Pick an arbitrary root, say z_2
- Start messages at leaves.
- ▶ If a leaf is a factor node f, $\mu_{f \to x}(x) = f(x)$

$$\mu_{f_1 \to z_1}(z_1 = 1) = P(z_1 = 1)P(R|z_1 = 1) = 1/2 \cdot 1/2 = 1/4$$
$$\mu_{f_1 \to z_1}(z_1 = 2) = P(z_1 = 2)P(R|z_1 = 2) = 1/2 \cdot 1/4 = 1/8$$

- Assume tree factor graph. Pick an arbitrary root, say z_2
- Start messages at leaves.
- ▶ If a leaf is a factor node f, $\mu_{f \to x}(x) = f(x)$

$$\mu_{f_1 \to z_1}(z_1 = 1) = P(z_1 = 1)P(R|z_1 = 1) = 1/2 \cdot 1/2 = 1/4$$
$$\mu_{f_1 \to z_1}(z_1 = 2) = P(z_1 = 2)P(R|z_1 = 2) = 1/2 \cdot 1/4 = 1/8$$

• If a leaf is a variable node x, $\mu_{x \to f}(x) = 1$

 $\pi_1 = \pi_2 = 1/2$

Message from Variable to Factor

A node (factor or variable) can send out a message if all other incoming messages have arrived

Message from Variable to Factor

- A node (factor or variable) can send out a message if all other incoming messages have arrived
- ▶ Let x be in factor f_s . $ne(x) \setminus f_s$ are factors connected to x excluding f_s .

$$\mu_{x \to f_s}(x) = \prod_{f \in ne(x) \setminus f_s} \mu_{f \to x}(x)$$
$$\mu_{z_1 \to f_2}(z_1 = 1) = 1/4$$
$$\mu_{z_1 \to f_2}(z_1 = 2) = 1/8$$

Message from Factor to Variable

• Let x be in factor f_s . Let the other variables in f_s be $x_{1:M}$.

$$\mu_{f_s \to x}(x) = \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m=1}^M \mu_{x_m \to f_s}(x_m)$$

3.0

 $P(z_1)P(x_1 | z_1)$ $P(z_2 | z_1)P(x_2 | z_2)$

Message from Factor to Variable

• Let x be in factor f_s . Let the other variables in f_s be $x_{1:M}$.

$$\mu_{f_s \to x}(x) = \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m=1}^M \mu_{x_m \to f_s}(x_m)$$

. .

In this example

$$\begin{split} \mu_{f_2 \to z_2}(s) &= \sum_{s'=1}^2 \mu_{z_1 \to f_2}(s') f_2(z_1 = s', z_2 = s) \\ &= 1/4P(z_2 = s | z_1 = 1) P(x_2 = G | z_2 = s) \\ &+ 1/8P(z_2 = s | z_1 = 2) P(x_2 = G | z_2 = s) \end{split}$$

 $P(z_1)P(x_1 | z_1)$ $P(z_2 | z_1)P(x_2 | z_2)$

Message from Factor to Variable

• Let x be in factor f_s . Let the other variables in f_s be $x_{1:M}$.

$$\mu_{f_s \to x}(x) = \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m=1}^M \mu_{x_m \to f_s}(x_m)$$

. .

In this example

$$\mu_{f_2 \to z_2}(s) = \sum_{s'=1}^{2} \mu_{z_1 \to f_2}(s') f_2(z_1 = s', z_2 = s)$$

= $1/4P(z_2 = s|z_1 = 1)P(x_2 = G|z_2 = s)$
 $+ 1/8P(z_2 = s|z_1 = 2)P(x_2 = G|z_2 = s)$

• We get
$$\mu_{f_2 \to z_2}(z_2 = 1) = 1/32$$
, $\mu_{f_2 \to z_2}(z_2 = 2) = 1/8$

 $P(z_1)P(x_1 | z_1)$ $P(z_2 | z_1)P(x_2 | z_2)$

Up to Root, Back Down

The message has reached the root, pass it back down

$$\mu_{z_2 \to f_2}(z_2 = 1) = 1$$
$$\mu_{z_2 \to f_2}(z_2 = 2) = 1$$

 $\pi_1 = \pi_2 = 1/2$

Keep Passing Down

$$\mu_{f_2 \to z_1}(s) = \sum_{s'=1}^2 \mu_{z_2 \to f_2}(s') f_2(z_1 = s, z_2 = s') = 1P(z_2 = 1|z_1 = s)P(x_2 = G|z_2 = 1) + 1P(z_2 = 2|z_1 = s)P(x_2 = G|z_2 = 2).$$

Keep Passing Down

$$\mu_{f_2 \to z_1}(s) = \sum_{s'=1}^2 \mu_{z_2 \to f_2}(s') f_2(z_1 = s, z_2 = s') = 1P(z_2 = 1 | z_1 = s) P(x_2 = G | z_2 = 1) + 1P(z_2 = 2 | z_1 = s) P(x_2 = G | z_2 = 2).$$

$$\mu_{f_2 \to z_1}(z_1 = 1) = 7/16$$

$$\mu_{f_2 \to z_1}(z_1 = 2) = 3/8$$

From Messages to Marginals

 Once a variable receives all incoming messages, we compute its marginal as

$$p(x) \propto \prod_{f \in ne(x)} \mu_{f \to x}(x)$$

From Messages to Marginals

 Once a variable receives all incoming messages, we compute its marginal as

$$p(x) \propto \prod_{f \in ne(x)} \mu_{f \to x}(x)$$

► In this example $P(z_1|x_1, x_2) \propto \mu_{f_1 \to z_1} \cdot \mu_{f_2 \to z_1} = \binom{1/4}{1/8} \cdot \binom{7/16}{3/8} = \binom{7/64}{3/64} \Rightarrow \binom{0.7}{0.3}$ $P(z_2|x_1, x_2) \propto \mu_{f_2 \to z_2} = \binom{1/32}{1/8} \Rightarrow \binom{0.2}{0.8}$

From Messages to Marginals

 Once a variable receives all incoming messages, we compute its marginal as

$$p(x) \propto \prod_{f \in ne(x)} \mu_{f \to x}(x)$$

- ► In this example $P(z_1|x_1, x_2) \propto \mu_{f_1 \to z_1} \cdot \mu_{f_2 \to z_1} = \binom{1/4}{1/8} \cdot \binom{7/16}{3/8} = \binom{7/64}{3/64} \Rightarrow \binom{0.7}{0.3}$ $P(z_2|x_1, x_2) \propto \mu_{f_2 \to z_2} = \binom{1/32}{1/8} \Rightarrow \binom{0.2}{0.8}$
- One can also compute the marginal of the set of variables x_s involved in a factor f_s

$$p(x_s) \propto f_s(x_s) \prod_{x \in ne(f)} \mu_{x \to f}(x)$$

• Observing x = v,

▶ Observing x = v,

we can absorb it in the factor (as we did); or

- Observing x = v,
 - we can absorb it in the factor (as we did); or
 - set messages $\mu_{x \to f}(x) = 0$ for all $x \neq v$

- Observing x = v,
 - we can absorb it in the factor (as we did); or
 - set messages $\mu_{x \to f}(x) = 0$ for all $x \neq v$

▶ Observing X_E,

• Observing x = v,

- we can absorb it in the factor (as we did); or
- set messages $\mu_{x \to f}(x) = 0$ for all $x \neq v$
- ▶ Observing *X_E*,
 - multiplying the incoming messages to $x \notin X_E$ gives the *joint* (not $p(x|X_E)$):

$$p(x, X_E) \propto \prod_{f \in ne(x)} \mu_{f \to x}(x)$$

• Observing x = v,

- we can absorb it in the factor (as we did); or
- set messages $\mu_{x \to f}(x) = 0$ for all $x \neq v$
- ▶ Observing X_E,
 - multiplying the incoming messages to $x \notin X_E$ gives the *joint* (not $p(x|X_E)$):

$$p(x, X_E) \propto \prod_{f \in ne(x)} \mu_{f \to x}(x)$$

The conditional is easily obtained by normalization

$$p(x|X_E) = \frac{p(x, X_E)}{\sum_{x'} p(x', X_E)}$$

Loopy Belief Propagation

Loopy Belief Propagation

- So far, we assumed a tree graph
- When the factor graph contains loops, pass messages indefinitely until convergence

Loopy Belief Propagation

- So far, we assumed a tree graph
- When the factor graph contains loops, pass messages indefinitely until convergence
- Loopy BP may not convergence, but "works" in many cases

Outline

Graphical Models

Probabilistic Inference Directed vs. Undirected Graphical Models Inference

Parameter Estimation

Kernel Methods

Support Vector Machines Kernel PCA Reproducing Kernel Hilbert Spaces

Assume the graph structure is given

- Assume the graph structure is given
- Parameters:

- Assume the graph structure is given
- Parameters:
 - ▶ θ_i in CPDs $p(x_i \mid pa(x_i), \theta_i)$ in directed graphical models

$$p(X) = \prod_{i} p(x_i \mid Pa(x_i), \theta_i)$$

- Assume the graph structure is given
- Parameters:
 - ▶ θ_i in CPDs $p(x_i \mid pa(x_i), \theta_i)$ in directed graphical models

$$p(X) = \prod_{i} p(x_i \mid Pa(x_i), \theta_i)$$

• Weights w_i in undirected graphical model

$$p(X) = \frac{1}{Z} \exp\left(\sum_{i=1}^{k} w_i f_i(X)\right)$$

- Assume the graph structure is given
- Parameters:
 - ▶ θ_i in CPDs $p(x_i \mid pa(x_i), \theta_i)$ in directed graphical models

$$p(X) = \prod_{i} p(x_i \mid Pa(x_i), \theta_i)$$

• Weights w_i in undirected graphical model

$$p(X) = \frac{1}{Z} \exp\left(\sum_{i=1}^{k} w_i f_i(X)\right)$$

Principle: maximum likelihood estimate

► *fully observed*: all dimensions of *X* are observed

► *fully observed*: all dimensions of *X* are observed

• given X^1, \ldots, X^n , the MLE is

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log p(X^{i} \mid \theta)$$

► *fully observed*: all dimensions of *X* are observed

• given X^1, \ldots, X^n , the MLE is

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \sum_{i=1}^n \log p(X^i \mid \theta)$$

log likelihood factorizes for directed models (easy)

► *fully observed*: all dimensions of *X* are observed

• given X^1, \ldots, X^n , the MLE is

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \sum_{i=1}^n \log p(X^i \mid \theta)$$

- log likelihood factorizes for directed models (easy)
- gradient method for undirected models

► *fully observed*: all dimensions of *X* are observed

• given X^1, \ldots, X^n , the MLE is

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \sum_{i=1}^n \log p(X^i \mid \theta)$$

- log likelihood factorizes for directed models (easy)
- gradient method for undirected models

• partially observed: $X = (X_o, X_h)$ where X_h unobserved

- ► *fully observed*: all dimensions of *X* are observed
 - given X^1, \ldots, X^n , the MLE is

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \sum_{i=1}^n \log p(X^i \mid \theta)$$

- log likelihood factorizes for directed models (easy)
- gradient method for undirected models
- ▶ partially observed: $X = (X_o, X_h)$ where X_h unobserved
 - given X_o^1, \ldots, X_o^n , the MLE is

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log \left(\sum_{X_{h}} p(X_{o}^{i}, X_{h} \mid \theta) \right)$$

- ► *fully observed*: all dimensions of *X* are observed
 - given X^1, \ldots, X^n , the MLE is

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \sum_{i=1}^{n} \log p(X^{i} \mid \theta)$$

- log likelihood factorizes for directed models (easy)
- gradient method for undirected models
- ▶ partially observed: $X = (X_o, X_h)$ where X_h unobserved
 - given X_o^1, \ldots, X_o^n , the MLE is

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log \left(\sum_{X_{h}} p(X_{o}^{i}, X_{h} \mid \theta) \right)$$

log likelihood does not factorize

- ► *fully observed*: all dimensions of *X* are observed
 - given X^1, \ldots, X^n , the MLE is

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \sum_{i=1}^n \log p(X^i \mid \theta)$$

- log likelihood factorizes for directed models (easy)
- gradient method for undirected models
- ▶ partially observed: $X = (X_o, X_h)$ where X_h unobserved
 - given X_o^1, \ldots, X_o^n , the MLE is

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log \left(\sum_{X_{h}} p(X_{o}^{i}, X_{h} \mid \theta) \right)$$

- log likelihood does not factorize
- The EM algorithm finds a local maximum

 \blacktriangleright Let ${\mathcal M}$ be all allowed candidate features

- \blacktriangleright Let ${\mathcal M}$ be all allowed candidate features
- Let $M \subseteq \mathcal{M}$ be the "active subset"

$$P(X \mid M, \theta) = \frac{1}{Z} \exp\left(\sum_{i \in M} \theta_i f_i(X)\right)$$

- \blacktriangleright Let ${\mathcal M}$ be all allowed candidate features
- Let $M \subseteq \mathcal{M}$ be the "active subset"

$$P(X \mid M, \theta) = \frac{1}{Z} \exp\left(\sum_{i \in M} \theta_i f_i(X)\right)$$

•
$$score(M) = \max_{\theta} \ln P(\mathsf{Data} \mid M, \theta)$$

- \blacktriangleright Let ${\mathcal M}$ be all allowed candidate features
- Let $M \subseteq \mathcal{M}$ be the "active subset"

$$P(X \mid M, \theta) = \frac{1}{Z} \exp\left(\sum_{i \in M} \theta_i f_i(X)\right)$$

•
$$score(M) = \max_{\theta} \ln P(\mathsf{Data} \mid M, \theta)$$

 The score is always better for larger M – needs regularization or Bayesian treatment

- \blacktriangleright Let ${\mathcal M}$ be all allowed candidate features
- Let $M \subseteq \mathcal{M}$ be the "active subset"

$$P(X \mid M, \theta) = \frac{1}{Z} \exp\left(\sum_{i \in M} \theta_i f_i(X)\right)$$

•
$$score(M) = \max_{\theta} \ln P(\mathsf{Data} \mid M, \theta)$$

- The score is always better for larger M needs regularization or Bayesian treatment
- M and θ treated separately; combinatorial search over M

• Consider a *d*-dimensional multivariate Gaussian $N(\mu, \Sigma)$

- Consider a *d*-dimensional multivariate Gaussian $N(\mu, \Sigma)$
- The graphical model has p nodes x_1, \ldots, x_d

- Consider a *d*-dimensional multivariate Gaussian $N(\mu, \Sigma)$
- The graphical model has p nodes x_1, \ldots, x_d
- ► The edge between x_i, x_j is absent if and only if $\Omega_{ij} = 0$, where $\Omega = \Sigma^{-1}$

- Consider a *d*-dimensional multivariate Gaussian $N(\mu, \Sigma)$
- The graphical model has p nodes x_1, \ldots, x_d
- ▶ The edge between x_i, x_j is absent if and only if $\Omega_{ij} = 0$, where $\Omega = \Sigma^{-1}$
- Equivalently, x_i, x_j are conditionally independent given other variables

Example

• If we know
$$\Sigma = \begin{pmatrix} 14 & -16 & 4 & -2 \\ -16 & 32 & -8 & 4 \\ 4 & -8 & 8 & -4 \\ -2 & 4 & -4 & 5 \end{pmatrix}$$

Example

• If we know
$$\Sigma = \begin{pmatrix} 14 & -16 & 4 & -2 \\ -16 & 32 & -8 & 4 \\ 4 & -8 & 8 & -4 \\ -2 & 4 & -4 & 5 \end{pmatrix}$$

• Then $\Omega = \Sigma^{-1} = \begin{pmatrix} 0.1667 & 0.0833 & 0.0000 & 0 \\ 0.0833 & 0.0833 & 0.0417 & 0 \\ 0.0000 & 0.0417 & 0.2500 & 0.1667 \\ 0 & 0 & 0.1667 & 0.3333 \end{pmatrix}$

Example

• If we know
$$\Sigma = \begin{pmatrix} 14 & -16 & 4 & -2 \\ -16 & 32 & -8 & 4 \\ 4 & -8 & 8 & -4 \\ -2 & 4 & -4 & 5 \end{pmatrix}$$

• Then $\Omega = \Sigma^{-1} = \begin{pmatrix} 0.1667 & 0.0833 & 0.0000 & 0 \\ 0.0833 & 0.0833 & 0.0417 & 0 \\ 0.0000 & 0.0417 & 0.2500 & 0.1667 \\ 0 & 0 & 0.1667 & 0.3333 \end{pmatrix}$

The corresponding graphical model structure is

 \blacktriangleright Let data be $X^{(1)},\ldots,X^{(n)}\sim N(\mu,\Sigma)$

- \blacktriangleright Let data be $X^{(1)},\ldots,X^{(n)}\sim N(\mu,\Sigma)$
- ► The log likelihood is $\frac{n}{2} \log |\Omega| \frac{1}{2} \sum_{i=1}^{n} (X^{(i)} \mu)^{\top} \Omega(X^{(i)} \mu)$

• Let data be
$$X^{(1)}, \ldots, X^{(n)} \sim N(\mu, \Sigma)$$

- The log likelihood is $\frac{n}{2} \log |\Omega| - \frac{1}{2} \sum_{i=1}^{n} (X^{(i)} - \mu)^{\top} \Omega(X^{(i)} - \mu)$
- ► The maximum likelihood estimate of ∑ is the sample covariance

$$S = \frac{1}{n} \sum_{i} (X^{(i)} - \bar{X})^{\top} (X^{(i)} - \bar{X})$$

where \bar{X} is the sample mean

• Let data be
$$X^{(1)}, \ldots, X^{(n)} \sim N(\mu, \Sigma)$$

- The log likelihood is $\frac{n}{2} \log |\Omega| - \frac{1}{2} \sum_{i=1}^{n} (X^{(i)} - \mu)^{\top} \Omega(X^{(i)} - \mu)$
- \blacktriangleright The maximum likelihood estimate of Σ is the sample covariance

$$S = \frac{1}{n} \sum_{i} (X^{(i)} - \bar{X})^{\top} (X^{(i)} - \bar{X})$$

where \bar{X} is the sample mean

 $\blacktriangleright\ S^{-1}$ is not a good estimate of Ω when n is small

► For centered data, minimize a regularized problem instead:

$$-\log|\Omega| + \frac{1}{n}\sum_{i=1}^{n}X^{(i)^{\top}}\Omega X^{(i)} + \lambda\sum_{i\neq j}|\Omega_{ij}|$$

For centered data, minimize a regularized problem instead:

$$-\log|\Omega| + \frac{1}{n}\sum_{i=1}^{n}X^{(i)^{\top}}\Omega X^{(i)} + \lambda\sum_{i\neq j}|\Omega_{ij}|$$

Known as GLASSO

Outline

Graphical Models

Probabilistic Inference Directed vs. Undirected Graphical Models Inference Parameter Estimation

Kernel Methods

Support Vector Machines Kernel PCA Reproducing Kernel Hilbert Spaces

• Traditionally, an item x is a feature vector in \mathbb{R}^d

• Traditionally, an item x is a feature vector in \mathbb{R}^d

Feature engineering decides what the features are

• Traditionally, an item x is a feature vector in \mathbb{R}^d

- Feature engineering decides what the features are
- Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
 - Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly
- Many algorithms actually only use inner products $x_i^{\top} x_j$

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
 - Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly
- Many algorithms actually only use inner products $x_i^{\top} x_j$
 - ▶ Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^\top x_j$

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
 - Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly
- Many algorithms actually only use inner products $x_i^{\top} x_j$
 - ▶ Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^T x_j$
 - We can just give K to these algorithms

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
 - Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly
- Many algorithms actually only use inner products $x_i^{\top} x_j$
 - ▶ Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^T x_j$
 - We can just give K to these algorithms
- ▶ What if we give any matrix K' to these algorithms?

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
 - Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly
- Many algorithms actually only use inner products $x_i^{\top} x_j$
 - ▶ Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^T x_j$
 - We can just give K to these algorithms
- ▶ What if we give any matrix K' to these algorithms?
 - ▶ They work if K' is positive semi-definition (kernel matrix)

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
 - Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly
- Many algorithms actually only use inner products $x_i^{\top} x_j$
 - ▶ Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^T x_j$
 - We can just give K to these algorithms
- ▶ What if we give any matrix K' to these algorithms?
 - ▶ They work if K' is positive semi-definition (kernel matrix)
 - ► There are feature vectors $\phi(x) \in \mathbb{R}^D$ such that $K'_{ij} = \phi(x_i)^\top \phi(x_j)$

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
 - Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly
- Many algorithms actually only use inner products $x_i^{\top} x_j$
 - ▶ Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^T x_j$
 - We can just give K to these algorithms
- ▶ What if we give any matrix K' to these algorithms?
 - ▶ They work if K' is positive semi-definition (kernel matrix)
 - ▶ There are feature vectors $\phi(x) \in \mathbb{R}^D$ such that $K'_{-} = \phi(x_{-})^{\top} \phi(x_{-})$
 - $K'_{ij} = \phi(x_i)^\top \phi(x_j)$
 - $\phi(x)$ implicit feature engineering

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
 - Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly
- Many algorithms actually only use inner products $x_i^{\top} x_j$
 - ▶ Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^T x_j$
 - We can just give K to these algorithms
- ▶ What if we give any matrix K' to these algorithms?
 - ▶ They work if K' is positive semi-definition (kernel matrix)
 - ► There are feature vectors $\phi(x) \in \mathbb{R}^D$ such that
 - $K'_{ij} = \phi(x_i)^\top \phi(x_j)$
 - $\phi(x)$ implicit feature engineering
- Precise definition: Reproducing Kernel Hilbert Space (RKHS)

Outline

Graphical Models

Probabilistic Inference Directed vs. Undirected Graphical Models Inference Parameter Estimation

Kernel Methods

Support Vector Machines

Kernel PCA Reproducing Kernel Hilbert Spaces

The Linearly Separable Case

▶
$$x \in R^d$$
, $y \in \{-1, 1\}$

- $\blacktriangleright \ x \in R^d \text{, } y \in \{-1,1\}$
- discriminant function $f(x) = w^{\top}x + b$

- $\blacktriangleright \ x \in R^d \text{, } y \in \{-1,1\}$
- discriminant function $f(x) = w^{\top}x + b$
- classification rule sign(f(x))

- $\blacktriangleright \ x \in R^d \text{, } y \in \{-1,1\}$
- discriminant function $f(x) = w^{\top}x + b$
- classification rule sign(f(x))
- ▶ linear decision boundary $\{x \in \mathbb{R}^d \mid f(x) = 0\}$ orthogonal to w

Distance between a correctly classified x and the decision boundary:

$$\frac{yf(x)}{\|w\|}$$

► Training task: given {(x, y)_{1:n}}, find a decision boundary w, b to maximize the distance to the closest point

$$\max_{w,b} \min_{i=1}^n \frac{y_i(w^\top x_i + b)}{\|w\|}$$

Equivalently,

$$\min_{\substack{w,b\\ s.t.}} \frac{\frac{1}{2} \|w\|^2}{s.t.} \quad y_i(w^\top x_i + b) \ge 1 \quad i = 1 \dots n$$

Equivalently,

$$\min_{\substack{w,b\\ w,b}} \frac{\frac{1}{2}}{\|w\|^2}$$

s.t. $y_i(w^\top x_i + b) \ge 1$ $i = 1 \dots n$

• Primal problem, uses feature vectors $x_i \in \mathbb{R}^d$

Equivalently,

$$\min_{\substack{w,b \\ s.t.}} \frac{\frac{1}{2} \|w\|^2 }{s.t. \ y_i(w^\top x_i + b) \ge 1 \ i = 1 \dots n }$$

- Primal problem, uses feature vectors $x_i \in \mathbb{R}^d$
- The equivalent dual problem will involve only inner products $x_i^\top x_j$

The dual problem

$$\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\mathsf{T}} x_j + \sum_{i=1}^{n} \alpha_i$$

s.t.
$$\alpha_i \ge 0 \quad i = 1 \dots n$$
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

The dual problem

$$\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\mathsf{T}} x_j + \sum_{i=1}^{n} \alpha_i$$

s.t.
$$\alpha_i \ge 0 \quad i = 1 \dots n$$
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

• d+1 primal variables w, b

The dual problem

$$\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\mathsf{T}} x_j + \sum_{i=1}^{n} \alpha_i$$

s.t.
$$\alpha_i \ge 0 \quad i = 1 \dots n$$
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

• d+1 primal variables w, b

• n dual variables α (interesting when $d \gg n$)

To classify a test point x

• primal discriminant function $f(x) = w^{\top}x + b$

To classify a test point \boldsymbol{x}

- primal discriminant function $f(x) = w^{\top}x + b$
- dual discriminant function $f(x) = \sum_{i=1}^{n} \alpha_i y_i x_i^{\top} x + b$

To classify a test point x

- primal discriminant function $f(x) = w^{\top}x + b$
- dual discriminant function $f(x) = \sum_{i=1}^{n} \alpha_i y_i x_i^{\mathsf{T}} x + b$
- another inner-product

Support vectors

► The Karush-Kuhn-Tucker complementarity condition: $\alpha_i(y_i(w^{\top}x_i+b)-1)=0, i=1...n$

Support vectors

- ► The Karush-Kuhn-Tucker complementarity condition: $\alpha_i(y_i(w^{\top}x_i+b)-1)=0, i=1...n$
- y_i(w^Tx_i + b) − 1 > 0 (x_i outside the margin) ⇒ α_i = 0 (x_i not support vector)

Support vectors

- ► The Karush-Kuhn-Tucker complementarity condition: $\alpha_i(y_i(w^{\top}x_i+b)-1)=0, i=1...n$
- ► $y_i(w^{\top}x_i + b) 1 > 0$ (x_i outside the margin) $\Rightarrow \alpha_i = 0$ (x_i not support vector)
- $\alpha_i \neq 0$ (x_i is support vector) $\Rightarrow y_i(w^\top x_i + b) = 1$ (x_i on the margin)

Relax margin constraints

$$y_i(w^\top x_i + b) \ge 1 - \xi_i$$

Relax margin constraints

$$y_i(w^\top x_i + b) \ge 1 - \xi_i$$

Slack variables $\xi_i \ge 0$

Relax margin constraints

$$y_i(w^\top x_i + b) \ge 1 - \xi_i$$

- Slack variables $\xi_i \ge 0$
- Large enough ξ_i allows x_i on the wrong side of the decision boundary

Primal problem

$$\min_{\substack{w,b,\xi\\ w,b,\xi}} \frac{\frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

s.t. $y_i(w^\top x_i + b) \ge 1 - \xi_i \quad i = 1 \dots n$
 $\xi_i \ge 0$

$$\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\mathsf{T}} x_j + \sum_{i=1}^{n} \alpha_i$$

s.t.
$$0 \le \alpha_i \le C \quad i = 1 \dots n$$
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

Dual problem

$$\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j + \sum_{i=1}^{n} \alpha_i$$

s.t.
$$0 \le \alpha_i \le C \quad i = 1 \dots n$$
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

> Again, data enter optimization as inner products

$$\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j + \sum_{i=1}^{n} \alpha_i$$

s.t.
$$0 \le \alpha_i \le C \quad i = 1 \dots n$$
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

- Again, data enter optimization as inner products
- Support vectors:

$$\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j + \sum_{i=1}^{n} \alpha_i$$

s.t.
$$0 \le \alpha_i \le C \quad i = 1 \dots n$$
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

- Again, data enter optimization as inner products
- Support vectors:
 - $\alpha_i = 0 \Rightarrow x_i$ not a support vector

$$\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{x}_j + \sum_{i=1}^{n} \alpha_i$$

s.t.
$$0 \le \alpha_i \le C \quad i = 1 \dots n$$
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

- Again, data enter optimization as inner products
- Support vectors:
 - $\alpha_i = 0 \Rightarrow x_i$ not a support vector
 - ▶ $0 < \alpha_i < C \Rightarrow \xi = 0$, support vector x_i on the margin

$$\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{x}_j + \sum_{i=1}^{n} \alpha_i$$

s.t.
$$0 \le \alpha_i \le C \quad i = 1 \dots n$$
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

- Again, data enter optimization as inner products
- Support vectors:
 - $\alpha_i = 0 \Rightarrow x_i$ not a support vector
 - $0 < \alpha_i < C \Rightarrow \xi = 0$, support vector x_i on the margin
 - $\alpha = C \Rightarrow x_i$ inside the margin if $\xi \le 1$, or on the wrong side of the decision boundary if $\xi > 1$

The discriminant function is

$$f(x) = \sum_{i=1}^{n} \alpha_i y_i x_i^{\mathsf{T}} x + b$$

The discriminant function is

$$f(x) = \sum_{i=1}^{n} \alpha_i y_i x_i^{\mathsf{T}} x + b$$

Inner product again

► SVM dual problem only involves inner products $x_i^{\top} x_j$

► SVM dual problem only involves inner products $x_i^{\top} x_j$

• Let
$$K(x_i, x_j) = x_i^\top x_j$$

► SVM dual problem only involves inner products $x_i^{\top} x_j$

• Let
$$K(x_i, x_j) = x_i^\top x_j$$

• Replace $x_i^{\top} x_j$ with $K(x_i, x_j)$ everywhere

- ► SVM dual problem only involves inner products $x_i^{\top} x_j$
- Let $K(x_i, x_j) = x_i^\top x_j$
- Replace $x_i^{\top} x_j$ with $K(x_i, x_j)$ everywhere
- Tautology

▶ Instead of $K(x_i, x_j) = x_i^\top x_j$, let K be any positive definite function

- Instead of K(x_i, x_j) = x_i[⊤]x_j, let K be any positive definite function
- K p.d. if $\forall n, \forall x_1 \dots x_n$ the matrix

$$K_n = \begin{bmatrix} K(x_1, x_1) & \dots & K(x_1, x_n) \\ & \vdots \\ K(x_n, x_1) & \dots & K(x_n, x_n) \end{bmatrix}$$

is positive semi-definite.

- ▶ Instead of $K(x_i, x_j) = x_i^\top x_j$, let K be any positive definite function
- K p.d. if $\forall n, \forall x_1 \dots x_n$ the matrix

$$K_n = \begin{bmatrix} K(x_1, x_1) & \dots & K(x_1, x_n) \\ & \vdots & \\ K(x_n, x_1) & \dots & K(x_n, x_n) \end{bmatrix}$$

is positive semi-definite.

• K_n positive semi-definite if $\forall \mathbf{z} = (z_1, \dots, z_n)^\top \in \mathbb{R}^n$,

$$\mathbf{z}^{\top} K_n \mathbf{z} \ge 0$$

- P.d. K examples:
 - Linear kernel

$$k(x_i, x_j) = x_i^\top x_j$$

- P.d. K examples:
 - Linear kernel

$$k(x_i, x_j) = x_i^\top x_j$$

Polynomial kernel

$$k(x_i, x_j) = (1 + x_i^\top x_j)^p$$

- P.d. K examples:
 - Linear kernel

$$k(x_i, x_j) = x_i^\top x_j$$

Polynomial kernel

$$k(x_i, x_j) = (1 + x_i^\top x_j)^p$$

Radial Basis Function (RBF) kernel

$$k(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$

▶ SVM dual problem can use any p.d. K (kernelize)

- ▶ SVM dual problem can use any p.d. K (kernelize)
- ► There exists a feature mapping φ() such that K(x_i, x_j) = φ(x_i)^Tφ(x_j)

- ▶ SVM dual problem can use any p.d. K (kernelize)
- ► There exists a feature mapping φ() such that K(x_i, x_j) = φ(x_i)^Tφ(x_j)
 - $\phi()$ may not be finite dimensional

- ▶ SVM dual problem can use any p.d. K (kernelize)
- ► There exists a feature mapping $\phi()$ such that $K(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$
 - $\phi()$ may not be finite dimensional
 - $\phi()$ may not be unique

- ▶ SVM dual problem can use any p.d. K (kernelize)
- ► There exists a feature mapping $\phi()$ such that $K(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$
 - $\phi()$ may not be finite dimensional
 - $\phi()$ may not be unique
- What does the kernel trick buy us?

►
$$x_1 = -1(+), x_2 = 0(-), x_3 = 1(+)$$

•
$$x_1 = -1(+), x_2 = 0(-), x_3 = 1(+)$$

Not a linearly separable dataset

•
$$x_1 = -1(+), x_2 = 0(-), x_3 = 1(+)$$

- Not a linearly separable dataset
- But we can map x to \mathbb{R}^3

$$\phi(x) = (1, \sqrt{2}x, x^2)^\top$$

and separate them with a hyperplane

►
$$x_1 = -1(+), x_2 = 0(-), x_3 = 1(+)$$

- Not a linearly separable dataset
- But we can map x to \mathbb{R}^3

$$\phi(x) = (1, \sqrt{2}x, x^2)^\top$$

and separate them with a hyperplane

Non-linear decision boundary in the original space

►
$$x_1 = -1(+), x_2 = 0(-), x_3 = 1(+)$$

- Not a linearly separable dataset
- But we can map x to \mathbb{R}^3

$$\phi(x) = (1, \sqrt{2}x, x^2)^\top$$

and separate them with a hyperplane

- Non-linear decision boundary in the original space
- Equivalently, we used a kernel

$$K(x_i, x_j) = \phi(x_i)^{\top} \phi(x_j) = (1 + x_i x_j)^2$$

in *linear* SVM without slack variables.

Outline

Graphical Models

Probabilistic Inference Directed vs. Undirected Graphical Models Inference Parameter Estimation

Kernel Methods

Support Vector Machines Kernel PCA Reproducing Kernel Hilbert Spaces

Summary of the kernel trick:

data as inner products

- data as inner products
- ▶ p.d. *K* kernel

- data as inner products
- ▶ p.d. K kernel
- induced feature map $\phi()$ such that $K(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$

- data as inner products
- ▶ p.d. K kernel
- induced feature map $\phi()$ such that $K(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$
- \blacktriangleright choosing the kernel K equivalent to feature engineering

- data as inner products
- ▶ p.d. K kernel
- ▶ induced feature map $\phi()$ such that $K(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$
- \blacktriangleright choosing the kernel K equivalent to feature engineering
- many algorithms can be kernelized

Unsupervised learning

- Unsupervised learning
- Given $x_1 \dots x_n \in \mathbb{R}^d$, finds directions of maximum spread

- Unsupervised learning
- Given $x_1 \dots x_n \in \mathbb{R}^d$, finds directions of maximum spread

Centering data:

$$x_i \leftarrow x_i - \bar{x}$$

where $\bar{x} = \frac{1}{n} \sum_{j} x_{j}$

- Unsupervised learning
- Given $x_1 \dots x_n \in \mathbb{R}^d$, finds directions of maximum spread
- Centering data:

$$x_i \leftarrow x_i - \bar{x}$$

where $\bar{x} = \frac{1}{n} \sum_{j} x_{j}$

• $d \times d$ sample covariance matrix

$$C = \frac{1}{n} \sum_{i} x_i x_i^{\top}$$

Eigendecomposition

$$C = U\Lambda U^{\top} = \sum_{j=1}^{d} \lambda_j u_j u_j^{\top}$$

Eigendecomposition

$$C = U\Lambda U^{\top} = \sum_{j=1}^{d} \lambda_j u_j u_j^{\top}$$

• Eigenvalues $\lambda_1 \geq \ldots \geq \lambda_d \geq 0$ the variances

Eigendecomposition

$$C = U\Lambda U^{\top} = \sum_{j=1}^{d} \lambda_j u_j u_j^{\top}$$

- Eigenvalues $\lambda_1 \geq \ldots \geq \lambda_d \geq 0$ the variances
- ► Eigenvectors $u_1 \dots u_d$ the principal components with decreasing importance

$$Cu_j = \lambda_j u_j, \quad j = 1 \dots d$$

Eigendecomposition

$$C = U\Lambda U^{\top} = \sum_{j=1}^{d} \lambda_j u_j u_j^{\top}$$

- Eigenvalues $\lambda_1 \geq \ldots \geq \lambda_d \geq 0$ the variances
- ► Eigenvectors $u_1 \dots u_d$ the principal components with decreasing importance

$$Cu_j = \lambda_j u_j, \quad j = 1 \dots d$$

• $u_1 \dots u_d$ orthonormal basis of \mathbb{R}^d , rotated axes

 \blacktriangleright Dimension reduction: project to the top $k \leq d$ directions

- ▶ Dimension reduction: project to the top $k \le d$ directions
- U_k the first k columns of $U = [u_1 \mid u_2 \mid \ldots \mid u_d]$

- ▶ Dimension reduction: project to the top $k \le d$ directions
- U_k the first k columns of $U = [u_1 \mid u_2 \mid \ldots \mid u_d]$
- $x \in \mathbb{R}^d$ projected to \mathbb{R}^k by

$$U_k^\top x = \begin{bmatrix} u_1^\top x \\ \vdots \\ u_k^\top x \end{bmatrix}$$

- Dimension reduction: project to the top $k \leq d$ directions
- U_k the first k columns of $U = [u_1 \mid u_2 \mid \ldots \mid u_d]$
- $x \in \mathbb{R}^d$ projected to \mathbb{R}^k by

$$U_k^\top x = \begin{bmatrix} u_1^\top x \\ \vdots \\ u_k^\top x \end{bmatrix}$$

▶ U_k minimizes training set ℓ_2 -error among rank-k projections

$$\sum_{i=1}^{n} \|x_i - U_k^{\top} x_i\|_2^2$$

- ▶ Dimension reduction: project to the top $k \le d$ directions
- U_k the first k columns of $U = [u_1 \mid u_2 \mid \ldots \mid u_d]$
- $x \in \mathbb{R}^d$ projected to \mathbb{R}^k by

$$U_k^\top x = \begin{bmatrix} u_1^\top x \\ \vdots \\ u_k^\top x \end{bmatrix}$$

▶ U_k minimizes training set ℓ_2 -error among rank-k projections

$$\sum_{i=1}^{n} \|x_i - U_k^{\top} x_i\|_2^2$$

So far PCA with feature vectors in ℝ^d. Next: PCA with inner products

PCA with inner products

• For
$$j = 1 \dots d$$

$$Cu_j = \lambda_j u_j$$

$$\frac{1}{n} \sum_{i=1}^n x_i x_i^\top u_j = \lambda_j u_j$$

$$\sum_{i=1}^n \frac{(x_i^\top u_j)}{n\lambda_j} x_i = u_j$$

PCA with inner products

• For
$$j = 1 \dots d$$

$$Cu_j = \lambda_j u_j$$

$$\frac{1}{n} \sum_{i=1}^n x_i x_i^{\mathsf{T}} u_j = \lambda_j u_j$$

$$\sum_{i=1}^n \frac{(x_i^{\mathsf{T}} u_j)}{n\lambda_j} x_i = u_j$$

• Any u_i can be written in the form

$$u_j = \sum_{i=1}^n \frac{\alpha_{ji} x_i}{\alpha_{ji}} x_i$$

PCA with inner products

• For
$$j = 1 \dots d$$

$$Cu_j = \lambda_j u_j$$
$$\frac{1}{n} \sum_{i=1}^n x_i x_i^\top u_j = \lambda_j u_j$$
$$\sum_{i=1}^n \frac{(x_i^\top u_j)}{n\lambda_j} x_i = u_j$$

• Any u_j can be written in the form

$$u_j = \sum_{i=1}^n \frac{\alpha_{ji} x_i}{\alpha_{ji}} x_i$$

• $\alpha_{ji} \in \mathbb{R}$, value not obvious (involving u_j)

• $n \times n$ matrix K with $K_{ij} = x_i^\top x_j$

• $n \times n$ matrix K with $K_{ij} = x_i^\top x_j$

• $\alpha_j = (\alpha_{j1}, \ldots, \alpha_{jn})^\top$ satisfy the eigenvalue equation

 $K\alpha_j = n\lambda_j\alpha_j$

Why?

$$Cu_{j} = \lambda_{j}u_{j}$$

$$x_{i}^{\top}Cu_{j} = x_{i}^{\top}\lambda_{j}u_{j}, \quad i = 1...n$$

$$x_{i}^{\top}\left(\frac{1}{n}\sum_{k=1}^{n}x_{k}x_{k}^{\top}\right)\left(\sum_{m=1}^{n}\alpha_{jm}x_{m}\right) = x_{i}^{\top}\lambda_{j}\sum_{m=1}^{n}\alpha_{jm}x_{m}$$

$$\frac{1}{n}\sum_{k=1}^{n}\sum_{m=1}^{n}\alpha_{jm}x_{i}^{\top}x_{k}x_{k}^{\top}x_{m} = \sum_{m=1}^{n}\lambda_{j}\alpha_{jm}x_{i}^{\top}x_{m}$$

$$\frac{1}{n}\sum_{k=1}^{n}\sum_{m=1}^{n}\alpha_{jm}K_{ik}K_{km} = \sum_{m=1}^{n}\lambda_{j}\alpha_{jm}K_{im}$$

$$\frac{1}{n}K_{i}K\alpha_{j} = \lambda_{j}K_{i}\alpha_{j}, \quad i = 1...n$$

$$\frac{1}{n}KK\alpha_{j} = \lambda_{j}K\alpha_{j}$$

$$K\alpha_{j} = n\lambda_{j}\alpha_{j}$$

assuming $n \leq d$ and K invertible

•
$$\alpha_j = (\alpha_{j1}, \dots, \alpha_{jn})^\top$$
 satisfy the eigenvalue equation
 $K\alpha_j = n\lambda_j\alpha_j$

•
$$\alpha_j = (\alpha_{j1}, \dots, \alpha_{jn})^\top$$
 satisfy the eigenvalue equation
 $K\alpha_j = n\lambda_j\alpha_j$

• Norm of α_j is also fixed:

$$\begin{aligned} \|u_j\| &= 1\\ u_j^\top u_j &= 1\\ \sum_{k,m=1}^n \alpha_{jk} x_k^\top x_m \alpha_{jm} &= 1\\ \sum_{k,m=1}^n \alpha_{jk} K_{km} \alpha_{jm} &= 1\\ \alpha_j^\top K \alpha_j &= 1\\ \alpha_j^\top n \lambda_j \alpha_j &= 1\\ \|\alpha_j\| &= \sqrt{\frac{1}{n\lambda_j}} \end{aligned}$$

► Compute \(\alpha_1, \ldots, \alpha_k\) by solving the eigenvalue equation (k largest eigenvalues)

- ► Compute \(\alpha_1, \ldots, \alpha_k\) by solving the eigenvalue equation (k largest eigenvalues)
- Project (new) point x to top $k \leq n$ directions

$$\begin{bmatrix} u_1^\top x \\ \vdots \\ u_k^\top x \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n \alpha_{1i} x_i^\top x \\ \vdots \\ \sum_{i=1}^n \alpha_{ki} x_i^\top x \end{bmatrix} = \begin{bmatrix} \alpha_1^\top K_x \\ \vdots \\ \alpha_k^\top K_x \end{bmatrix}$$

where $K_x = (K(x_1, x), \dots, K(x_n, x))^\top$ and $K(x_i, x) = x_i^\top x$

Kernel PCA

Perhaps replacing $K_{ij} = x_i^{\top} x_j$ with any kernel $K(x_i, x_j)$?

• Equivalently, we are doing standard PCA in $\phi(x)$ space

Kernel PCA

Perhaps replacing $K_{ij} = x_i^{\top} x_j$ with any kernel $K(x_i, x_j)$?

- Equivalently, we are doing standard PCA in $\phi(x)$ space
- But... is the training set centered $\sum_{i=1}^{n} \phi(x_i) = 0$?

Kernel PCA

Perhaps replacing $K_{ij} = x_i^{\top} x_j$ with any kernel $K(x_i, x_j)$?

- Equivalently, we are doing standard PCA in $\phi(x)$ space
- But... is the training set centered $\sum_{i=1}^{n} \phi(x_i) = 0$?
- Need to center K

Centering the kernel for training

$$\phi'(x_i) = \phi(x_i) - \frac{1}{n} \sum_{k=1}^n \phi(x_k)$$

$$\phi'(x_i)^\top \phi'(x_j) = \left(\phi(x_i) - \frac{1}{n} \sum_{k=1}^n \phi(x_k)\right)^\top \left(\phi(x_j) - \frac{1}{n} \sum_{k=1}^n \phi(x_k)\right)$$

$$K'_{ij} = K_{ij} - \frac{1}{n} \sum_{k=1}^n K_{jk} - \frac{1}{n} \sum_{k=1}^n K_{ik} + \frac{1}{n^2} \sum_{k,m=1}^n K_{km}$$

Finding α_j by solving the eigenvalue problem

$$K'\alpha_j = n\lambda_j\alpha_j$$

▶ New point x needs to be centered $\phi'(x) = \phi(x) - \sum_{i=1}^{n} \phi(x_i)$

- ▶ New point x needs to be centered $\phi'(x) = \phi(x) \sum_{i=1}^{n} \phi(x_i)$
- Note x not involved in computing the training set mean

- ▶ New point x needs to be centered $\phi'(x) = \phi(x) \sum_{i=1}^{n} \phi(x_i)$
- Note x not involved in computing the training set mean
- Recall *j*-th projection is $\alpha_j^\top K'_x$

- ▶ New point x needs to be centered $\phi'(x) = \phi(x) \sum_{i=1}^{n} \phi(x_i)$
- Note x not involved in computing the training set mean
- Recall *j*-th projection is $\alpha_j^\top K'_x$

•
$$K'_x = (K'(x_1, x), \dots, K'(x_n, x))^\top$$

- ▶ New point x needs to be centered $\phi'(x) = \phi(x) \sum_{i=1}^{n} \phi(x_i)$
- Note x not involved in computing the training set mean
- Recall *j*-th projection is $\alpha_j^\top K'_x$

•
$$K'_x = (K'(x_1, x), \dots, K'(x_n, x))^\top$$

- ▶ New point x needs to be centered $\phi'(x) = \phi(x) \sum_{i=1}^{n} \phi(x_i)$
- Note x not involved in computing the training set mean
- Recall *j*-th projection is $\alpha_j^{\top} K'_x$
- $K'_x = (K'(x_1, x), \dots, K'(x_n, x))^\top$

$$K'(x_i, x) = K(x_i, x) - \frac{1}{n} \sum_{k=1}^{n} K(x_k, x) - \frac{1}{n} \sum_{k=1}^{n} K_{ik} + \frac{1}{n^2} \sum_{k,m=1}^{n} K_{km}$$

Outline

Graphical Models

Probabilistic Inference Directed vs. Undirected Graphical Models Inference Parameter Estimation

Kernel Methods

Support Vector Machines Kernel PCA Reproducing Kernel Hilbert Spaces Let $\mathcal F$ be a vector space over $\mathbb R.$ A function $\|\cdot\|_{\mathcal F}:\mathcal F\mapsto\mathbb R_{\ge 0}$ is a norm if

•
$$||f||_{\mathcal{F}} = 0$$
 iff $f = 0$ (separation)

Let $\mathcal F$ be a vector space over $\mathbb R.$ A function $\|\cdot\|_{\mathcal F}:\mathcal F\mapsto\mathbb R_{\ge 0}$ is a norm if

•
$$||f||_{\mathcal{F}} = 0$$
 iff $f = 0$ (separation)

•
$$||af||_{\mathcal{F}} = |a|||f||_{\mathcal{F}}$$
 (positive homogeneity)

Let $\mathcal F$ be a vector space over $\mathbb R.$ A function $\|\cdot\|_{\mathcal F}:\mathcal F\mapsto\mathbb R_{\ge 0}$ is a norm if

•
$$||f||_{\mathcal{F}} = 0$$
 iff $f = 0$ (separation)

•
$$||af||_{\mathcal{F}} = |a|||f||_{\mathcal{F}}$$
 (positive homogeneity)

•
$$||f + g||_{\mathcal{F}} \le ||f||_{\mathcal{F}} + ||g||_{\mathcal{F}}$$
 (triangle inequality)

Example

• Let μ be a positive measure on $\mathcal{X} \subset \mathbb{R}^d$ and $p \geq 1$

Example

- Let μ be a positive measure on $\mathcal{X} \subset \mathbb{R}^d$ and $p \geq 1$
- Let $L_p(\mathcal{X},\mu) = \left\{ f : \mathcal{X} \mapsto \mathbb{R} \text{ measurable } | \int_{\mathcal{X}} |f(x)|^p d\mu < \infty \right\}$

Example

- Let μ be a positive measure on $\mathcal{X} \subset \mathbb{R}^d$ and $p \geq 1$
- ▶ Let $L_p(\mathcal{X}, \mu) = \left\{ f : \mathcal{X} \mapsto \mathbb{R} \text{ measurable } | \int_{\mathcal{X}} |f(x)|^p d\mu < \infty \right\}$

•
$$\|f\|_p = \left(\int_{\mathcal{X}} |f(x)|^p d\mu\right)^{rac{1}{p}}$$
 is a norm

Cauchy sequence

A sequence $\{f_n\}_{n=1}^{\infty}$ of elements of a normed vector space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ is a Cauchy sequence if:

$$\blacktriangleright \ \forall \epsilon > 0, \exists N$$

A sequence $\{f_n\}_{n=1}^\infty$ of elements of a normed vector space $(\mathcal{F},\|\cdot\|_{\mathcal{F}})$ is a Cauchy sequence if:

$$\blacktriangleright \quad \forall \epsilon > 0, \exists N$$

$$\forall n, m \ge N, \|f_n - f_m\|_{\mathcal{F}} < \epsilon$$

Convergent sequence

A sequence $\{f_n\}_{n=1}^{\infty}$ of elements of a normed vector space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ converges to $f \in \mathcal{F}$ if: $\forall \epsilon > 0, \exists N$

Convergent sequence

A sequence $\{f_n\}_{n=1}^{\infty}$ of elements of a normed vector space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ converges to $f \in \mathcal{F}$ if:

$$\blacktriangleright \quad \forall \epsilon > 0, \exists N$$

$$\forall n \ge N, \|f_n - f\|_{\mathcal{F}} < \epsilon$$

Convergent sequence

A sequence $\{f_n\}_{n=1}^{\infty}$ of elements of a normed vector space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ converges to $f \in \mathcal{F}$ if:

 $\blacktriangleright \ \forall \epsilon > 0, \exists N$

$$\forall n \ge N, \|f_n - f\|_{\mathcal{F}} < \epsilon$$

• f must be in \mathcal{F}

• Convergent \Rightarrow Cauchy

- Convergent \Rightarrow Cauchy
- ► Cauchy may not converge (in *F*)

- Convergent \Rightarrow Cauchy
- ► Cauchy may not converge (in *F*)
- Example: C[0,1] bounded continuous functions on [0,1]

- Convergent \Rightarrow Cauchy
- ► Cauchy may not converge (in *F*)
- Example: C[0,1] bounded continuous functions on [0,1]

•
$$||f|| = \sqrt{\int_0^1 f(x)^2 dx}$$

- Convergent \Rightarrow Cauchy
- Cauchy may not converge (in *F*)
- Example: C[0,1] bounded continuous functions on [0,1]

•
$$||f|| = \sqrt{\int_0^1 f(x)^2 dx}$$

• $f_n(x) = 0$ for $x \in [0, \frac{1}{2} - \frac{1}{n}]$, 1 otherwise

- Convergent \Rightarrow Cauchy
- Cauchy may not converge (in *F*)
- Example: C[0,1] bounded continuous functions on [0,1]

•
$$||f|| = \sqrt{\int_0^1 f(x)^2 dx}$$

- $f_n(x) = 0$ for $x \in [0, \frac{1}{2} \frac{1}{n}]$, 1 otherwise
- $\{f_n(x)\}$ is Cauchy, but not convergent (limit $\notin C[0,1]$)

Banach space

 One may complete the vector space by adding the limits of all Cauchy sequences

Banach space

- One may complete the vector space by adding the limits of all Cauchy sequences
- A Banach space is a complete normed space

Banach space

- One may complete the vector space by adding the limits of all Cauchy sequences
- A Banach space is a complete normed space

Example:

$$\begin{split} L_p(\mathcal{X},\mu) &= \left\{ f: \mathcal{X} \mapsto \mathbb{R} \text{ measurable } |\int_{\mathcal{X}} |f(x)|^p d\mu < \infty \right\} \\ \text{with norm } \|f\|_p &= \left(\int_{\mathcal{X}} |f(x)|^p d\mu\right)^{\frac{1}{p}} \text{ is a Banach space} \end{split}$$

▶ Let \mathcal{F} be a vector space over \mathbb{R} . A function $\langle \cdot, \cdot \rangle_{\mathcal{F}} : \mathcal{F} \times \mathcal{F} \mapsto \mathbb{R}$ is an inner product if

- ▶ Let \mathcal{F} be a vector space over \mathbb{R} . A function $\langle \cdot, \cdot \rangle_{\mathcal{F}} : \mathcal{F} \times \mathcal{F} \mapsto \mathbb{R}$ is an inner product if
 - $\langle af_1 + bf_2, g \rangle_{\mathcal{F}} = a \langle f_1, g \rangle_{\mathcal{F}} + b \langle f_2, g \rangle_{\mathcal{F}}$

Let F be a vector space over ℝ. A function
⟨·, ·⟩_F : F × F → ℝ is an inner product if
⟨af₁ + bf₂, g⟩_F = a⟨f₁, g⟩_F + b⟨f₂, g⟩_F
⟨f, g⟩_F = ⟨g, f⟩_F

$$\langle J, g \rangle_{\mathcal{F}} = \langle g, J \rangle_{\mathcal{F}}$$

•
$$\langle f, f \rangle_{\mathcal{F}} \ge 0$$
 with 0 iff $f = 0$

▶ Let \mathcal{F} be a vector space over \mathbb{R} . A function $\langle \cdot, \cdot \rangle_{\mathcal{F}} : \mathcal{F} \times \mathcal{F} \mapsto \mathbb{R}$ is an inner product if

$$\langle af_1 + bf_2, g \rangle_{\mathcal{F}} = a \langle f_1, g \rangle_{\mathcal{F}} + b \langle f_2, g \rangle_{\mathcal{F}}$$

$$\langle f,g\rangle_{\mathcal{F}} = \langle g,f\rangle_{\mathcal{F}}$$

•
$$\langle f, f \rangle_{\mathcal{F}} \geq 0$$
 with 0 iff $f = 0$

• An inner product space is a normed space with $||f|| = \sqrt{\langle f, f \rangle}$

 A Hilbert space is a complete inner product space, i.e. a Banach space with an inner product

Hilbert space

 A Hilbert space is a complete inner product space, i.e. a Banach space with an inner product

• Example: $L_2(\mathcal{X}, \mu)$ is a Hilbert space with inner product

$$\langle f,g \rangle = \int_{\mathcal{X}} f(x)g(x)d\mu$$

• Let \mathcal{F}, \mathcal{G} be normed vector spaces over \mathbb{R}

- Let \mathcal{F}, \mathcal{G} be normed vector spaces over $\mathbb R$
- A function $A : \mathcal{F} \mapsto \mathcal{G}$ is a linear operator iff

- Let \mathcal{F}, \mathcal{G} be normed vector spaces over \mathbb{R}
- A function $A: \mathcal{F} \mapsto \mathcal{G}$ is a linear operator iff

$$\blacktriangleright A(af) = aA(f), \ \forall a \in R, f \in \mathcal{F}$$

- Let \mathcal{F}, \mathcal{G} be normed vector spaces over \mathbb{R}
- A function $A: \mathcal{F} \mapsto \mathcal{G}$ is a linear operator iff

$$\blacktriangleright A(af) = aA(f), \ \forall a \in R, f \in \mathcal{F}$$

• $A(f_1 + f_2) = A(f_1) + A(f_2), \ \forall f_1, f_2 \in \mathcal{F}$

- Let \mathcal{F}, \mathcal{G} be normed vector spaces over \mathbb{R}
- A function $A: \mathcal{F} \mapsto \mathcal{G}$ is a linear operator iff

$$\bullet \ A(af) = aA(f), \ \forall a \in R, f \in \mathcal{F}$$

- $A(f_1 + f_2) = A(f_1) + A(f_2), \ \forall f_1, f_2 \in \mathcal{F}$
- When $\mathcal{G} = \mathbb{R}$, A is a linear functional

- Let \mathcal{F}, \mathcal{G} be normed vector spaces over \mathbb{R}
- A function $A: \mathcal{F} \mapsto \mathcal{G}$ is a linear operator iff

$$\bullet \ A(af) = aA(f), \ \forall a \in R, f \in \mathcal{F}$$

- $A(f_1 + f_2) = A(f_1) + A(f_2), \ \forall f_1, f_2 \in \mathcal{F}$
- When $\mathcal{G} = \mathbb{R}$, A is a linear functional

• Example: For a fixed
$$h \in \mathcal{F}$$
,

$$A_h(f) = \langle f, h \rangle_{\mathcal{F}}$$

is a linear functional

Continuity

► $A : \mathcal{F} \mapsto \mathcal{G}$ is continuous at $f_0 \in \mathcal{F}$, if for every $\epsilon > 0$, $\exists \delta$ s.t. $\|f - f_0|_{\mathcal{F}} < \delta \implies \|Af - Af_0\|_{\mathcal{G}} < \epsilon$

Continuity

- $A: \mathcal{F} \mapsto \mathcal{G}$ is continuous at $f_0 \in \mathcal{F}$, if for every $\epsilon > 0$, $\exists \delta$ s.t. $\|f - f_0|_{\mathcal{F}} < \delta \implies \|Af - Af_0\|_{\mathcal{G}} < \epsilon$
- \blacktriangleright A is continuous on ${\mathcal F}$ if it is continuous at all $f\in F$

In a Hilbert space \mathcal{F} , all continuous linear functionals are of the form $\langle \cdot, g \rangle_{\mathcal{F}}$, for some $g \in \mathcal{F}$.

• Let \mathcal{X} be a non-empty set

- Let \mathcal{X} be a non-empty set
- Let \mathcal{H} be a Hilbert space of functions $f: \mathcal{X} \mapsto \mathbb{R}$

- Let \mathcal{X} be a non-empty set
- Let \mathcal{H} be a Hilbert space of functions $f: \mathcal{X} \mapsto \mathbb{R}$
- For a fixed $x \in \mathcal{X}$ the functional $\delta_x : \mathcal{H} \mapsto \mathbb{R}$ defined as

$$\delta_x(f) = f(x)$$

is the Dirac evaluation functional at \boldsymbol{x}

- Let \mathcal{X} be a non-empty set
- Let \mathcal{H} be a Hilbert space of functions $f: \mathcal{X} \mapsto \mathbb{R}$
- For a fixed $x \in \mathcal{X}$ the functional $\delta_x : \mathcal{H} \mapsto \mathbb{R}$ defined as

$$\delta_x(f) = f(x)$$

is the Dirac evaluation functional at \boldsymbol{x}

• δ_x is linear:

$$\delta_x(af+bg) = (af+bg)(x) = af(x) + bg(x) = a\delta_x(f) + b\delta_x(g)$$

- Let \mathcal{X} be a non-empty set
- Let \mathcal{H} be a Hilbert space of functions $f: \mathcal{X} \mapsto \mathbb{R}$
- For a fixed $x \in \mathcal{X}$ the functional $\delta_x : \mathcal{H} \mapsto \mathbb{R}$ defined as

$$\delta_x(f) = f(x)$$

is the Dirac evaluation functional at \boldsymbol{x}

• δ_x is linear:

 $\delta_x(af+bg) = (af+bg)(x) = af(x) + bg(x) = a\delta_x(f) + b\delta_x(g)$

• Is δ_x continuous?

- Let \mathcal{X} be a non-empty set
- Let \mathcal{H} be a Hilbert space of functions $f: \mathcal{X} \mapsto \mathbb{R}$
- For a fixed $x \in \mathcal{X}$ the functional $\delta_x : \mathcal{H} \mapsto \mathbb{R}$ defined as

$$\delta_x(f) = f(x)$$

is the Dirac evaluation functional at x

• δ_x is linear:

 $\delta_x(af+bg) = (af+bg)(x) = af(x) + bg(x) = a\delta_x(f) + b\delta_x(g)$

- Is δ_x continuous?
- Not necessarily

A Hilbert space H of functions f : X → ℝ defined on a non-empty set X is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all x ∈ X

- A Hilbert space H of functions f : X → ℝ defined on a non-empty set X is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all x ∈ X
- ▶ The reproducing kernel of \mathcal{H} is a function $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ if it satisfies

- A Hilbert space H of functions f : X → ℝ defined on a non-empty set X is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all x ∈ X
- ▶ The reproducing kernel of \mathcal{H} is a function $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ if it satisfies
 - $\blacktriangleright \ k(\cdot, x) \in \mathcal{H}, \forall x \in \mathcal{X}$

- A Hilbert space H of functions f : X → ℝ defined on a non-empty set X is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all x ∈ X
- ▶ The reproducing kernel of \mathcal{H} is a function $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ if it satisfies

$$k(\cdot, x) \in \mathcal{H}, \forall x \in \mathcal{X}$$

 $\blacktriangleright \ \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x), \forall f \in \mathcal{H}, x \in \mathcal{X} \text{ (reproducing)}$

- A Hilbert space H of functions f : X → ℝ defined on a non-empty set X is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all x ∈ X
- ▶ The reproducing kernel of \mathcal{H} is a function $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ if it satisfies

$$k(\cdot, x) \in \mathcal{H}, \forall x \in \mathcal{X}$$

 $\blacktriangleright \ \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x), \forall f \in \mathcal{H}, x \in \mathcal{X} \text{ (reproducing)}$

Obviously,

$$\langle k(\cdot,y),k(\cdot,x)\rangle_{\mathcal{H}}=k(x,y)$$

- A Hilbert space \mathcal{H} of functions $f : \mathcal{X} \mapsto \mathbb{R}$ defined on a non-empty set \mathcal{X} is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all $x \in \mathcal{X}$
- ▶ The reproducing kernel of \mathcal{H} is a function $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ if it satisfies

$$k(\cdot, x) \in \mathcal{H}, \forall x \in \mathcal{X}$$

$$\blacktriangleright \ \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x), \forall f \in \mathcal{H}, x \in \mathcal{X} \text{ (reproducing)}$$

Obviously,

$$\langle k(\cdot,y),k(\cdot,x)\rangle_{\mathcal{H}}=k(x,y)$$

H is an RKHS (i.e. its evaluation functionals δ_x are continuous) iff *H* has a reproducing kernel

Positive definiteness

▶ A symmetric function $h : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive definite if $\forall n, \forall a \in \mathbb{R}^n, \forall x_1 \dots x_n \in \mathcal{X}$,

$$a^{\top}Ha \ge 0$$

where H is the $n \times n$ matrix with $H_{ij} = h(x_i, x_j)$

Positive definiteness

► A symmetric function $h : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive definite if $\forall n, \forall a \in \mathbb{R}^n, \forall x_1 \dots x_n \in \mathcal{X}$,

$$a^{\top}Ha \ge 0$$

where H is the $n \times n$ matrix with $H_{ij} = h(x_i, x_j)$

Reproducing kernels are positive definite

Positive definiteness

► A symmetric function $h : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive definite if $\forall n, \forall a \in \mathbb{R}^n, \forall x_1 \dots x_n \in \mathcal{X}$,

$$a^{\top}Ha \ge 0$$

where H is the $n \times n$ matrix with $H_{ij} = h(x_i, x_j)$

- Reproducing kernels are positive definite
- Let $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ be positive definite. There is a unique RKHS $\mathcal{H} = \{f : \mathcal{X} \mapsto \mathbb{R}\}$ with reproducing kernel k [Moore-Aronszajn]

• Let \mathcal{X} be a non-empty set

- Let \mathcal{X} be a non-empty set
- Let k be a positive definite kernel on $\mathcal{X} \times \mathcal{X}$

- Let \mathcal{X} be a non-empty set
- Let k be a positive definite kernel on $\mathcal{X}\times\mathcal{X}$
- Let \mathcal{H}_k be the corresponding RKHS

- Let \mathcal{X} be a non-empty set
- Let k be a positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- Let \mathcal{H}_k be the corresponding RKHS
- Let training data be $(x_1, y_1) \dots (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$

- Let \mathcal{X} be a non-empty set
- Let k be a positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- Let \mathcal{H}_k be the corresponding RKHS
- Let training data be $(x_1, y_1) \dots (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$
- ▶ Let the regularizer function $\Omega : \mathbb{R}_{\geq 0} \mapsto \mathbb{R}$ be strictly monotonically increasing

- Let \mathcal{X} be a non-empty set
- Let k be a positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- Let \mathcal{H}_k be the corresponding RKHS
- Let training data be $(x_1, y_1) \dots (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$
- ▶ Let the regularizer function $\Omega : \mathbb{R}_{\geq 0} \mapsto \mathbb{R}$ be strictly monotonically increasing
- Let the empirical risk function \hat{R} be arbitrary

- Let \mathcal{X} be a non-empty set
- Let k be a positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- Let \mathcal{H}_k be the corresponding RKHS
- Let training data be $(x_1, y_1) \dots (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$
- Let the regularizer function Ω : ℝ_{≥0} → ℝ be strictly monotonically increasing
- Let the empirical risk function \hat{R} be arbitrary
- Any minimizer

 $\operatorname{argmin}_{f \in \mathcal{H}_{k}} \hat{R}((x_{1}, y_{1}, f(x_{1})), \dots, (x_{n}, y_{n}, f(x_{n}))) + \Omega(\|f\|)$

admits the form

$$\sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$$

Graphical Models

▶ Koller & Friedman, Probabilistic Graphical Models. MIT 2009

Graphical Models

- ► Koller & Friedman, Probabilistic Graphical Models. MIT 2009
- Wainwright & Jordan, Graphical Models, Exponential Families, and Variational Inference. FTML 2008

Graphical Models

- ► Koller & Friedman, Probabilistic Graphical Models. MIT 2009
- Wainwright & Jordan, Graphical Models, Exponential Families, and Variational Inference. FTML 2008
- Bishop, Pattern Recognition and Machine Learning. Springer 2006.

Graphical Models

- ► Koller & Friedman, Probabilistic Graphical Models. MIT 2009
- Wainwright & Jordan, Graphical Models, Exponential Families, and Variational Inference. FTML 2008
- Bishop, Pattern Recognition and Machine Learning. Springer 2006.

Kernel Methods

 Schölkopf & Smola, Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT 2001

Graphical Models

- ► Koller & Friedman, Probabilistic Graphical Models. MIT 2009
- Wainwright & Jordan, Graphical Models, Exponential Families, and Variational Inference. FTML 2008
- Bishop, Pattern Recognition and Machine Learning. Springer 2006.

- Schölkopf & Smola, Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT 2001
- Shawe-Taylor & Cristianini, Kernel Methods for Pattern Analysis. Cambridge 2004

Graphical Models

- ► Koller & Friedman, Probabilistic Graphical Models. MIT 2009
- Wainwright & Jordan, Graphical Models, Exponential Families, and Variational Inference. FTML 2008
- Bishop, Pattern Recognition and Machine Learning. Springer 2006.

- Schölkopf & Smola, Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT 2001
- Shawe-Taylor & Cristianini, Kernel Methods for Pattern Analysis. Cambridge 2004
- Dino Sejdinovic, Arthur Gretton, What is an RKHS? Online notes 2014