Graphical Models and Kernel Methods

Jerry Zhu

Department of Computer Sciences University of Wisconsin–Madison, USA

> MLSS June 17, 2014

Outline

[Graphical Models](#page-2-0)

[Probabilistic Inference](#page-3-0) [Directed vs. Undirected Graphical Models](#page-37-0) [Inference](#page-103-0) [Parameter Estimation](#page-206-0)

[Kernel Methods](#page-238-0)

[Support Vector Machines](#page-250-0) [Kernel PCA](#page-302-0) [Reproducing Kernel Hilbert Spaces](#page-341-0)

Outline

[Graphical Models](#page-2-0)

[Probabilistic Inference](#page-3-0) [Directed vs. Undirected Graphical Models](#page-37-0) [Inference](#page-103-0) [Parameter Estimation](#page-206-0)

[Kernel Methods](#page-238-0)

[Support Vector Machines](#page-250-0) [Kernel PCA](#page-302-0) [Reproducing Kernel Hilbert Spaces](#page-341-0)

Outline

[Graphical Models](#page-2-0)

[Probabilistic Inference](#page-3-0)

[Directed vs. Undirected Graphical Models](#page-37-0) [Inference](#page-103-0) [Parameter Estimation](#page-206-0)

[Kernel Methods](#page-238-0)

[Support Vector Machines](#page-250-0) [Kernel PCA](#page-302-0) [Reproducing Kernel Hilbert Spaces](#page-341-0)

$$
\blacktriangleright \mathsf{red ball} = \$\$\$
$$

- red ball $= $$ \$\$\$
- \triangleright You randomly picked an envelope, randomly took out a ball $$ and it was black

- red ball $= $$ \$\$\$
- \triangleright You randomly picked an envelope, randomly took out a ball \vdash and it was black
- \triangleright Should you choose this envelope or the other envelope?

 \blacktriangleright Probabilistic inference

- \blacktriangleright Probabilistic inference
	- \triangleright Joint distribution on $E \in \{1,0\}, B \in \{r,b\}$: $P(E, B) = P(E)P(B | E)$

- \blacktriangleright Probabilistic inference
	- \triangleright Joint distribution on $E \in \{1,0\}, B \in \{r,b\}$: $P(E, B) = P(E)P(B | E)$
	- $P(E = 1) = P(E = 0) = 1/2$

- \blacktriangleright Probabilistic inference
	- \triangleright Joint distribution on $E \in \{1,0\}, B \in \{r,b\}$: $P(E, B) = P(E)P(B | E)$

$$
\blacktriangleright \; P(E=1) = P(E=0) = 1/2
$$

$$
\blacktriangleright \ P(B = r \mid E = 1) = 1/2, P(B = r \mid E = 0) = 0
$$

- \blacktriangleright Probabilistic inference
	- \triangleright Joint distribution on $E \in \{1,0\}, B \in \{r,b\}$: $P(E, B) = P(E)P(B \mid E)$
	- $P(E = 1) = P(E = 0) = 1/2$
	- $P(B = r | E = 1) = 1/2, P(B = r | E = 0) = 0$

 \blacktriangleright The graphical model:

- \blacktriangleright Probabilistic inference
	- \triangleright Joint distribution on $E \in \{1,0\}, B \in \{r,b\}$: $P(E, B) = P(E)P(B \mid E)$
	- $P(E = 1) = P(E = 0) = 1/2$
	- $P(B = r | E = 1) = 1/2, P(B = r | E = 0) = 0$
	- \blacktriangleright The graphical model:

Statistical decision theory: switch if $P(E = 1 | B = b) < 1/2$

B

E

- \blacktriangleright Probabilistic inference
	- \triangleright Joint distribution on $E \in \{1,0\}, B \in \{r,b\}$: $P(E, B) = P(E)P(B \mid E)$
	- $P(E = 1) = P(E = 0) = 1/2$
	- $P(B = r | E = 1) = 1/2, P(B = r | E = 0) = 0$
	- \blacktriangleright The graphical model:

- Statistical decision theory: switch if $P(E = 1 | B = b) < 1/2$
- $P(E = 1 | B = b) = \frac{P(B=b|E=1)P(E=1)}{P(B=b)} = \frac{1/2 \times 1/2}{3/4} = 1/3.$ Switch.

 \blacktriangleright The world is reduced to a set of random variables x_1, \ldots, x_d

 \blacktriangleright The world is reduced to a set of random variables x_1, \ldots, x_d

► e.g. (x_1, \ldots, x_{d-1}) a feature vector, $x_d \equiv y$ the class label

 \blacktriangleright The world is reduced to a set of random variables x_1, \ldots, x_d

► e.g. (x_1, \ldots, x_{d-1}) a feature vector, $x_d \equiv y$ the class label

Inference: given joint distribution $p(x_1, \ldots, x_d)$, compute $p(X_O | X_E)$ where $X_O \cup X_E \subseteq \{x_1 \dots x_d\}$

 \blacktriangleright The world is reduced to a set of random variables x_1, \ldots, x_d

► e.g. (x_1, \ldots, x_{d-1}) a feature vector, $x_d \equiv y$ the class label

- Inference: given joint distribution $p(x_1, \ldots, x_d)$, compute $p(X_O | X_F)$ where $X_O \cup X_F \subseteq \{x_1 \dots x_d\}$
	- ► e.g. $Q = \{d\}$, $E = \{1 \dots d 1\}$, by the definition of conditional

$$
p(x_d | x_1, \ldots, x_{d-1}) = \frac{p(x_1, \ldots, x_{d-1}, x_d)}{\sum_v p(x_1, \ldots, x_{d-1}, x_d = v)}
$$

 \blacktriangleright The world is reduced to a set of random variables x_1, \ldots, x_d

► e.g. (x_1, \ldots, x_{d-1}) a feature vector, $x_d \equiv y$ the class label

- Inference: given joint distribution $p(x_1, \ldots, x_d)$, compute $p(X_O | X_E)$ where $X_O \cup X_E \subseteq \{x_1 \dots x_d\}$
	- ► e.g. $Q = \{d\}, E = \{1 \dots d 1\}$, by the definition of conditional

$$
p(x_d | x_1, \ldots, x_{d-1}) = \frac{p(x_1, \ldots, x_{d-1}, x_d)}{\sum_v p(x_1, \ldots, x_{d-1}, x_d = v)}
$$

Elearning: estimate $p(x_1, \ldots, x_d)$ from training data $X^{(1)},\ldots,X^{(N)},$ where $X^{(i)}=(x_1^{(i)})$ $x_1^{(i)}, \ldots, x_d^{(i)}$ $\binom{u}{d}$

ightharpoontribution $p(x_1, \ldots, x_d)$

- ightharpoontribution $p(x_1, \ldots, x_d)$
	- \blacktriangleright exponential naïve storage $(2^d$ for binary r.v.)

- ioint distribution $p(x_1, \ldots, x_d)$
	- \blacktriangleright exponential naïve storage $(2^d$ for binary r.v.)
	- \triangleright hard to interpret (conditional independence)

- ightharpoontriangleright in the joint distribution $p(x_1, \ldots, x_d)$
	- \blacktriangleright exponential naïve storage $(2^d$ for binary r.v.)
	- \triangleright hard to interpret (conditional independence)

inference $p(X_Q | X_E)$

- ightharpoontriangleright in the joint distribution $p(x_1, \ldots, x_d)$
	- \blacktriangleright exponential naïve storage $(2^d$ for binary r.v.)
	- \triangleright hard to interpret (conditional independence)
- inference $p(X_Q | X_E)$
	- \triangleright Often can't afford to do it by brute force

- ightharpoontriangleright in the joint distribution $p(x_1, \ldots, x_d)$
	- \blacktriangleright exponential naïve storage $(2^d$ for binary r.v.)
	- \triangleright hard to interpret (conditional independence)
- inference $p(X_{Q} | X_{E})$
	- \triangleright Often can't afford to do it by brute force
- If $p(x_1, \ldots, x_d)$ not given, estimate it from data

- ioint distribution $p(x_1, \ldots, x_d)$
	- \blacktriangleright exponential naïve storage $(2^d$ for binary r.v.)
	- \triangleright hard to interpret (conditional independence)
- inference $p(X_{Q} | X_{E})$
	- \triangleright Often can't afford to do it by brute force
- If $p(x_1, \ldots, x_d)$ not given, estimate it from data
	- \triangleright Often can't afford to do it by brute force

- ioint distribution $p(x_1, \ldots, x_d)$
	- \blacktriangleright exponential naïve storage $(2^d$ for binary r.v.)
	- \triangleright hard to interpret (conditional independence)
- inference $p(X_{\mathcal{O}} | X_{E})$
	- \triangleright Often can't afford to do it by brute force
- If $p(x_1, \ldots, x_d)$ not given, estimate it from data
	- \triangleright Often can't afford to do it by brute force
- \triangleright Graphical model: efficient representation, inference, and learning on $p(x_1, \ldots, x_d)$, exactly or approximately

Graphical model = joint distribution $p(x_1, \ldots, x_d)$

Graphical model = joint distribution $p(x_1, \ldots, x_d)$

Bayesian network or Markov random field

- Graphical model = joint distribution $p(x_1, \ldots, x_d)$
	- \triangleright Bayesian network or Markov random field
	- \blacktriangleright conditional independence

- Graphical model = joint distribution $p(x_1, \ldots, x_d)$
	- \triangleright Bayesian network or Markov random field
	- \blacktriangleright conditional independence

Inference = $p(X_O | X_E)$, in general $X_O \cup X_E \subset \{x_1 \dots x_d\}$

- Graphical model = joint distribution $p(x_1, \ldots, x_d)$
	- \triangleright Bayesian network or Markov random field
	- \blacktriangleright conditional independence
- Inference $= p(X_O \mid X_E)$, in general $X_O \cup X_E \subset \{x_1 \dots x_d\}$
	- \blacktriangleright exact, MCMC, variational

- Graphical model = joint distribution $p(x_1, \ldots, x_d)$
	- \triangleright Bayesian network or Markov random field
	- \blacktriangleright conditional independence
- \triangleright Inference = $p(X_Q | X_E)$, in general $X_Q \cup X_E \subset \{x_1 \dots x_d\}$
	- \triangleright exact, MCMC, variational
- If $p(x_1, \ldots, x_d)$ not given, estimate it from data

- **Graphical model = joint distribution** $p(x_1, \ldots, x_d)$
	- \triangleright Bayesian network or Markov random field
	- \blacktriangleright conditional independence
- Inference $= p(X_O \mid X_E)$, in general $X_O \cup X_E \subset \{x_1 \dots x_d\}$
	- \triangleright exact, MCMC, variational
- If $p(x_1, \ldots, x_d)$ not given, estimate it from data
	- \blacktriangleright parameter and structure learning

Graphical-Model-Nots

 \triangleright Graphical model is the study of probabilistic models

Graphical-Model-Nots

- \triangleright Graphical model is the study of *probabilistic models*
- I Just because there are nodes and edges doesn't mean it's a graphical model
Graphical-Model-Nots

Graphical model is the study of probabilistic models

- I Just because there are nodes and edges doesn't mean it's a graphical model
- \blacktriangleright These are not graphical models:

Outline

[Graphical Models](#page-2-0)

[Probabilistic Inference](#page-3-0) [Directed vs. Undirected Graphical Models](#page-37-0) [Inference](#page-103-0) [Parameter Estimation](#page-206-0)

[Kernel Methods](#page-238-0)

[Support Vector Machines](#page-250-0) [Kernel PCA](#page-302-0) [Reproducing Kernel Hilbert Spaces](#page-341-0)

 \blacktriangleright Also called Bayesian networks

- \blacktriangleright Also called Bayesian networks
- A directed graph has nodes x_1, \ldots, x_d , some of them connected by directed edges $x_i \rightarrow x_j$

- \blacktriangleright Also called Bayesian networks
- A directed graph has nodes x_1, \ldots, x_d , some of them connected by directed edges $x_i \rightarrow x_j$
- A cycle is a directed path $x_1 \rightarrow \ldots \rightarrow x_k$ where $x_1 = x_k$

- \blacktriangleright Also called Bayesian networks
- A directed graph has nodes x_1, \ldots, x_d , some of them connected by directed edges $x_i \rightarrow x_j$
- A cycle is a directed path $x_1 \rightarrow \ldots \rightarrow x_k$ where $x_1 = x_k$
- \triangleright A directed acyclic graph (DAG) contains no cycles

 \triangleright A Bayesian network on the DAG is a family of distributions satisfying

$$
\{p \mid p(x_1, \ldots, x_d) = \prod_i p(x_i \mid Pa(x_i))\}
$$

where $Pa(x_i)$ is the set of parents of $x_i.$

 \triangleright A Bayesian network on the DAG is a family of distributions satisfying

$$
\{p \mid p(x_1, \ldots, x_d) = \prod_i p(x_i \mid Pa(x_i))\}
$$

where $Pa(x_i)$ is the set of parents of $x_i.$

 $\blacktriangleright \ p(x_i \mid Pa(x_i))$ is the conditional probability distribution (CPD) at x_i

 \triangleright A Bayesian network on the DAG is a family of distributions satisfying

$$
\{p \mid p(x_1, \ldots, x_d) = \prod_i p(x_i \mid Pa(x_i))\}
$$

where $Pa(x_i)$ is the set of parents of $x_i.$

- $\blacktriangleright \ p(x_i \mid Pa(x_i))$ is the conditional probability distribution (CPD) at x_i
- By specifying the CPDs for all i, we specify a joint distribution $p(x_1, \ldots, x_d)$

Example: Burglary, Earthquake, Alarm, John and Marry

Binary variables

 $P(B, \sim E, A, J, \sim M)$

- $= P(B)P(\sim E)P(A | B, \sim E)P(J | A)P(\sim M | A)$
- $= 0.001 \times (1 0.002) \times 0.94 \times 0.9 \times (1 0.7)$
- $≈$.000253

$$
\blacktriangleright p(y, x_1, \dots x_d) = p(y) \prod_{i=1}^d p(x_i \mid y)
$$

$$
\blacktriangleright \ p(y, x_1, \dots x_d) = p(y) \prod_{i=1}^d p(x_i \mid y)
$$

 \blacktriangleright Plate representation on the right

$$
\blacktriangleright \ p(y, x_1, \dots x_d) = p(y) \prod_{i=1}^d p(x_i \mid y)
$$

- \blacktriangleright Plate representation on the right
- \blacktriangleright $p(y)$ multinomial

$$
\blacktriangleright p(y, x_1, \ldots x_d) = p(y) \prod_{i=1}^d p(x_i \mid y)
$$

- \blacktriangleright Plate representation on the right
- \blacktriangleright $p(y)$ multinomial
- $\blacktriangleright \; p(x_i \mid y)$ depends on the feature type: multinomial (count x_i), Gaussian (continuous x_i), etc.

No Causality Whatsoever

The two BNs are equivalent in all respects

 \triangleright Do not read causality from Bayesian networks

No Causality Whatsoever

The two BNs are equivalent in all respects

- Do not read causality from Bayesian networks
- \triangleright They only represent correlation (joint probability distribution)

No Causality Whatsoever

The two BNs are equivalent in all respects

- Do not read causality from Bayesian networks
- They only represent correlation (joint probability distribution)
- However, it is perfectly fine to *design* BNs causally

What do we need probabilistic models for?

 \blacktriangleright Make predictions. $p(y | x)$ plus decision theory

What do we need probabilistic models for?

- \blacktriangleright Make predictions. $p(y | x)$ plus decision theory
- \blacktriangleright Interpret models. Very natural to include latent variables

Example: Latent Dirichlet Allocation (LDA)

A generative model for $p(\phi, \theta, z, w \mid \alpha, \beta)$: For each topic t $\phi_t \sim \text{Dirichlet}(\beta)$ For each document d $\theta \sim$ Dirichlet(α) For each word position in d topic $z \sim$ Multinomial(θ) word $w \sim$ Multinomial(ϕ_z) Inference goals: $p(z | w, \alpha, \beta)$, $\argmax_{\phi, \theta} p(\phi, \theta | w, \alpha, \beta)$

 \triangleright Two r.v.s A, B are independent if

$$
P(A, B) = P(A)P(B)
$$

\n
$$
P(A|B) = P(A)
$$

\n
$$
P(B|A) = P(B)
$$

 \triangleright Two r.v.s A, B are independent if

$$
P(A, B) = P(A)P(B)
$$

\n
$$
P(A|B) = P(A)
$$

\n
$$
P(B|A) = P(B)
$$

 \triangleright Two r.v.s A, B are conditionally independent given C if

$$
P(A, B | C) = P(A | C)P(B | C)
$$

\n
$$
P(A | B, C) = P(A | C)
$$

\n
$$
P(B | A, C) = P(B | C)
$$

 \triangleright Two r.v.s A, B are independent if

$$
P(A, B) = P(A)P(B)
$$

\n
$$
P(A|B) = P(A)
$$

\n
$$
P(B|A) = P(B)
$$

 \triangleright Two r.v.s A, B are conditionally independent given C if

$$
P(A, B | C) = P(A | C)P(B | C)
$$

\n
$$
P(A | B, C) = P(A | C)
$$

\n
$$
P(B | A, C) = P(B | C)
$$

 \triangleright This extends to groups of r.v.s

 \triangleright Two r.v.s A, B are independent if

$$
P(A, B) = P(A)P(B)
$$

\n
$$
P(A|B) = P(A)
$$

\n
$$
P(B|A) = P(B)
$$

 \triangleright Two r.v.s A, B are conditionally independent given C if

$$
P(A, B | C) = P(A | C)P(B | C)
$$

\n
$$
P(A | B, C) = P(A | C)
$$

\n
$$
P(B | A, C) = P(B | C)
$$

- \triangleright This extends to groups of r.v.s
- \triangleright Conditional independence in a BN is precisely specified by d-separation ("directed separation")

d-Separation Case 1: Tail-to-Tail

 \triangleright A, B in general dependent

d-Separation Case 1: Tail-to-Tail

- \triangleright A, B in general dependent
- \triangleright A, B conditionally independent given C (observed nodes are shaded)

d-Separation Case 1: Tail-to-Tail

- \triangleright A, B in general dependent
- \triangleright A, B conditionally independent given C (observed nodes are shaded)
- \triangleright An observed C is a tail-to-tail node, blocks the undirected path A-B

d-Separation Case 2: Head-to-Tail

 \triangleright A, B in general dependent

d-Separation Case 2: Head-to-Tail

- \triangleright A, B in general dependent
- \triangleright A, B conditionally independent given C

d-Separation Case 2: Head-to-Tail

- \triangleright A, B in general dependent
- \triangleright A, B conditionally independent given C
- \triangleright An observed C is a head-to-tail node, blocks the path A-B

d-Separation Case 3: Head-to-Head

 \triangleright A, B in general independent

d-Separation Case 3: Head-to-Head

- \triangleright A, B in general independent
- \triangleright A, B conditionally dependent given C, or any of C's descendants

d-Separation Case 3: Head-to-Head

- \triangleright A, B in general independent
- \triangleright A, B conditionally dependent given C, or any of C's descendants
- An observed C is a head-to-head node, unblocks the path $A-B$

d-Separation

 \triangleright Variable groups A and B are conditionally independent given C, if all undirected paths from nodes in A to nodes in B are blocked

d-Separation Example 1

 \triangleright The undirected path from A to B is unblocked by E (because of C), and is not blocked by F

d-Separation Example 1

- \triangleright The undirected path from A to B is unblocked by E (because of C), and is not blocked by F
- A, B dependent given C

d-Separation Example 2

 \triangleright The path from A to B is blocked both at E and F

d-Separation Example 2

- \triangleright The path from A to B is blocked both at E and F
- \triangleright A, B conditionally independent given F

▶ Also known as Markov Random Fields

- \triangleright Also known as Markov Random Fields
- \triangleright Recall directed graphical models require a DAG and locally normalized CPDs

- \triangleright Also known as Markov Random Fields
- \triangleright Recall directed graphical models require a DAG and locally normalized CPDs
	- \blacktriangleright efficient computation

- **Also known as Markov Random Fields**
- \triangleright Recall directed graphical models require a DAG and locally normalized CPDs
	- \blacktriangleright efficient computation
	- \blacktriangleright but restrictive

- **Also known as Markov Random Fields**
- \triangleright Recall directed graphical models require a DAG and locally normalized CPDs
	- \blacktriangleright efficient computation
	- \blacktriangleright but restrictive
- \triangleright A clique C in an undirected graph is a set of fully connected nodes (full of loops!)

- **Also known as Markov Random Fields**
- \triangleright Recall directed graphical models require a DAG and locally normalized CPDs
	- \blacktriangleright efficient computation
	- \blacktriangleright but restrictive
- \triangleright A clique C in an undirected graph is a set of fully connected nodes (full of loops!)
- \triangleright Define a nonnegative potential function $\psi_C : X_C \mapsto \mathbb{R}_+$

- **Also known as Markov Random Fields**
- \triangleright Recall directed graphical models require a DAG and locally normalized CPDs
	- \blacktriangleright efficient computation
	- \blacktriangleright but restrictive
- \triangleright A clique C in an undirected graph is a set of fully connected nodes (full of loops!)
- \triangleright Define a nonnegative potential function $\psi_C : X_C \mapsto \mathbb{R}_+$
- \triangleright An undirected graphical model is a family of distributions satisfying

$$
\left\{ p \mid p(X) = \frac{1}{Z} \prod_C \psi_C(X_C) \right\}
$$

- **Also known as Markov Random Fields**
- \triangleright Recall directed graphical models require a DAG and locally normalized CPDs
	- \blacktriangleright efficient computation
	- \blacktriangleright but restrictive
- \triangleright A clique C in an undirected graph is a set of fully connected nodes (full of loops!)
- \triangleright Define a nonnegative potential function $\psi_C : X_C \mapsto \mathbb{R}_+$
- \triangleright An undirected graphical model is a family of distributions satisfying

$$
\left\{ p \mid p(X) = \frac{1}{Z} \prod_C \psi_C(X_C) \right\}
$$

 \blacktriangleright $Z = \int \prod_C \psi_C(X_C) dX$ is the partition function

 $\triangleright x_1, x_2 \in \{-1, 1\}$

- \triangleright $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1x_2}$

- \triangleright $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1x_2}$

$$
\blacktriangleright p(x_1, x_2) = \frac{1}{Z} e^{ax_1x_2}
$$

- \triangleright $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1x_2}$
- $p(x_1, x_2) = \frac{1}{Z}e^{ax_1x_2}$

$$
\blacktriangleright Z = (e^a + e^{-a} + e^{-a} + e^a)
$$

- \triangleright $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1x_2}$
- $p(x_1, x_2) = \frac{1}{Z}e^{ax_1x_2}$

$$
\blacktriangleright Z = (e^a + e^{-a} + e^{-a} + e^a)
$$

 $p(1,1) = p(-1,-1) = e^a/(2e^a + 2e^{-a})$

- \triangleright $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1x_2}$
- $p(x_1, x_2) = \frac{1}{Z}e^{ax_1x_2}$

$$
\blacktriangleright Z = (e^a + e^{-a} + e^{-a} + e^a)
$$

- $p(1,1) = p(-1,-1) = e^a/(2e^a + 2e^{-a})$
- $p(-1, 1) = p(1, -1) = \frac{e^{-a}}{2e^{a} + 2e^{-a}}$

- \triangleright $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1x_2}$
- $p(x_1, x_2) = \frac{1}{Z}e^{ax_1x_2}$

$$
\blacktriangleright Z = (e^a + e^{-a} + e^{-a} + e^a)
$$

- $p(1,1) = p(-1,-1) = e^a/(2e^a + 2e^{-a})$
- $p(-1, 1) = p(1, -1) = \frac{e^{-a}}{2e^{a} + 2e^{-a}}$
- \blacktriangleright When the parameter $a > 0$, favor homogeneous chains

- \triangleright $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1x_2}$
- $p(x_1, x_2) = \frac{1}{Z}e^{ax_1x_2}$

$$
\blacktriangleright Z = (e^a + e^{-a} + e^{-a} + e^a)
$$

- $p(1,1) = p(-1,-1) = e^a/(2e^a + 2e^{-a})$
- $p(-1, 1) = p(1, -1) = \frac{e^{-a}}{2e^{a} + 2e^{-a}}$
- \blacktriangleright When the parameter $a > 0$, favor homogeneous chains
- \blacktriangleright When the parameter $a < 0$, favor inhomogeneous chains

Log-Linear Models

Real-valued feature functions $f_1(X), \ldots, f_k(X)$

Log-Linear Models

- Real-valued feature functions $f_1(X), \ldots, f_k(X)$
- Real-valued weights w_1, \ldots, w_k

$$
p(X) = \frac{1}{Z} \exp\left(\sum_{i=1}^{k} w_i f_i(X)\right)
$$

Log-Linear Models

- Real-valued feature functions $f_1(X), \ldots, f_k(X)$
- Real-valued weights w_1, \ldots, w_k

$$
p(X) = \frac{1}{Z} \exp\left(\sum_{i=1}^{k} w_i f_i(X)\right)
$$

 \blacktriangleright Equivalent to MRF $p(X) = \frac{1}{Z}\prod_{C}\psi_C(X_C)$ with

$$
\psi_C(X_C) = \exp(w_C f_C(X))
$$

Example: Ising Model

θ*^s* H^{α} *x^s xt st* This is an undirected model with $x \in \{0, 1\}$.

$$
p_{\theta}(x) = \frac{1}{Z} \exp \left(\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t \right)
$$

$$
\blacktriangleright f_s(X) = x_s, f_{st}(X) = x_s x_t
$$

Example: Image Denoising

[From Bishop PRML] noisy image $\argmax_{X} P(X|Y)$

$$
p_{\theta}(X \mid Y) = \frac{1}{Z} \exp\left(\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t\right)
$$

$$
\theta_s = \begin{cases} c & y_s = 1 \\ -c & y_s = 0 \end{cases}, \quad \theta_{st} > 0
$$

$$
p(X) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(X - \mu)^{\top} \Sigma^{-1} (X - \mu)\right)
$$

 \blacktriangleright Multivariate Gaussian

$$
p(X) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(X - \mu)^{\top} \Sigma^{-1} (X - \mu)\right)
$$

- \blacktriangleright Multivariate Gaussian
- \blacktriangleright The $n \times n$ covariance matrix Σ positive semi-definite

$$
p(X) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(X - \mu)^{\top} \Sigma^{-1} (X - \mu)\right)
$$

- \blacktriangleright Multivariate Gaussian
- \blacktriangleright The $n \times n$ covariance matrix Σ positive semi-definite
- \blacktriangleright Let $\Omega = \Sigma^{-1}$ be the precision matrix

$$
p(X) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(X - \mu)^{\top} \Sigma^{-1} (X - \mu)\right)
$$

- \blacktriangleright Multivariate Gaussian
- \blacktriangleright The $n \times n$ covariance matrix Σ positive semi-definite
- \blacktriangleright Let $\Omega = \Sigma^{-1}$ be the precision matrix
- \blacktriangleright x_i, x_j are conditionally independent given all other variables, if and only if $\Omega_{ij} = 0$

$$
p(X) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(X - \mu)^{\top} \Sigma^{-1} (X - \mu)\right)
$$

- \blacktriangleright Multivariate Gaussian
- \blacktriangleright The $n \times n$ covariance matrix Σ positive semi-definite
- \blacktriangleright Let $\Omega = \Sigma^{-1}$ be the precision matrix
- \blacktriangleright x_i, x_j are conditionally independent given all other variables, if and only if $\Omega_{ij} = 0$
- \blacktriangleright When $\Omega_{ij} \neq 0$, there is an edge between x_i, x_j

Conditional Independence in Markov Random Fields

 \triangleright Two group of variables A, B are conditionally independent given another group C, if A, B become disconnected by removing C and all edges involving C

Outline

[Graphical Models](#page-2-0)

[Probabilistic Inference](#page-3-0) [Directed vs. Undirected Graphical Models](#page-37-0) [Inference](#page-103-0) [Parameter Estimation](#page-206-0)

[Kernel Methods](#page-238-0)

[Support Vector Machines](#page-250-0) [Kernel PCA](#page-302-0) [Reproducing Kernel Hilbert Spaces](#page-341-0) Exact Inference

Inference by Enumeration

In Let $X = (X_Q, X_E, X_Q)$ for query, evidence, and other variables.

Inference by Enumeration

- In Let $X = (X_Q, X_E, X_Q)$ for query, evidence, and other variables.
- Goal: $P(X_O | X_E)$

Inference by Enumeration

- In Let $X = (X_Q, X_E, X_Q)$ for query, evidence, and other variables.
- Goal: $P(X_O | X_E)$

i

$$
P(X_Q | X_E) = \frac{P(X_Q, X_E)}{P(X_E)} = \frac{\sum_{X_O} P(X_Q, X_E, X_O)}{\sum_{X_Q, X_O} P(X_Q, X_E, X_O)}
$$
Inference by Enumeration

- In Let $X = (X_O, X_E, X_O)$ for query, evidence, and other variables.
- Goal: $P(X_O | X_E)$

i

$$
P(X_Q | X_E) = \frac{P(X_Q, X_E)}{P(X_E)} = \frac{\sum_{X_O} P(X_Q, X_E, X_O)}{\sum_{X_Q, X_O} P(X_Q, X_E, X_O)}
$$

Summing exponential number of terms: with k variables in X_{O} each taking r values, there are r^k terms

Inference by Enumeration

- In Let $X = (X_O, X_E, X_O)$ for query, evidence, and other variables.
- Goal: $P(X_O | X_E)$

I

$$
P(X_Q | X_E) = \frac{P(X_Q, X_E)}{P(X_E)} = \frac{\sum_{X_O} P(X_Q, X_E, X_O)}{\sum_{X_Q, X_O} P(X_Q, X_E, X_O)}
$$

- Summing exponential number of terms: with k variables in X_{O} each taking r values, there are r^k terms
- \triangleright Not covered: Variable elimination and junction tree (aka clique tree)

 \blacktriangleright Forward sampling

- \blacktriangleright Forward sampling
- \blacktriangleright Gibbs sampling

- \blacktriangleright Forward sampling
- \blacktriangleright Gibbs sampling
- \blacktriangleright Collapsed Gibbs sampling

- \blacktriangleright Forward sampling
- \blacktriangleright Gibbs sampling
- \blacktriangleright Collapsed Gibbs sampling
- \triangleright Not covered: block Gibbs, Metropolis-Hastings, etc.

- \blacktriangleright Forward sampling
- \blacktriangleright Gibbs sampling
- \triangleright Collapsed Gibbs sampling
- \triangleright Not covered: block Gibbs, Metropolis-Hastings, etc.
- \triangleright Unbiased (after burn-in), but can have high variance

Consider the inference problem $p(X_Q = c_Q | X_E)$ where $X_Q \cup X_E \subseteq \{x_1 \dots x_d\}$

$$
p(X_Q = c_Q | X_E) = \int 1_{(x_Q = c_Q)} p(x_Q | X_E) dx_Q
$$

Consider the inference problem $p(X_Q = c_Q | X_E)$ where $X_O \cup X_E \subseteq \{x_1 \dots x_d\}$

$$
p(X_Q = c_Q \mid X_E) = \int 1_{(x_Q = c_Q)} p(x_Q \mid X_E) dx_Q
$$

If we can draw samples $x_O^{(1)}$ $\overset{(1)}{Q}, \ldots \overset{(m)}{Q} \sim p(x_Q \mid X_E)$, an unbiased estimator is

$$
p(X_Q = c_Q | X_E) \approx \frac{1}{m} \sum_{i=1}^{m} 1_{(x_Q^{(i)} = c_Q)}
$$

Consider the inference problem $p(X_Q = c_Q | X_E)$ where $X_O \cup X_E \subseteq \{x_1 \dots x_d\}$

$$
p(X_Q = c_Q \mid X_E) = \int 1_{(x_Q = c_Q)} p(x_Q \mid X_E) dx_Q
$$

If we can draw samples $x_O^{(1)}$ $\overset{(1)}{Q}, \ldots \overset{(m)}{Q} \sim p(x_Q \mid X_E)$, an unbiased estimator is

$$
p(X_Q = c_Q | X_E) \approx \frac{1}{m} \sum_{i=1}^{m} 1_{(x_Q^{(i)} = c_Q)}
$$

 \blacktriangleright The variance of the estimator decreases as $O(1/m)$

Consider the inference problem $p(X_Q = c_Q | X_E)$ where $X_O \cup X_E \subseteq \{x_1 \dots x_d\}$

$$
p(X_Q = c_Q \mid X_E) = \int 1_{(x_Q = c_Q)} p(x_Q \mid X_E) dx_Q
$$

If we can draw samples $x_O^{(1)}$ $\overset{(1)}{Q}, \ldots \overset{(m)}{Q} \sim p(x_Q \mid X_E)$, an unbiased estimator is

$$
p(X_Q = c_Q | X_E) \approx \frac{1}{m} \sum_{i=1}^{m} 1_{(x_Q^{(i)} = c_Q)}
$$

- \blacktriangleright The variance of the estimator decreases as $O(1/m)$
- Inference reduces to sampling from $p(x_Q | X_E)$

Forward Sampling

► Draw $X \sim P(X)$

Forward Sampling

- ► Draw $X \sim P(X)$
- \blacktriangleright Throw away X if it doesn't match the evidence X_E

1. Sample $B \sim \text{Ber}(0.001)$: $r \sim U(0, 1)$. If $(r < 0.001)$ then $B = 1$ else $B = 0$

- 1. Sample $B \sim \text{Ber}(0.001)$: $r \sim U(0, 1)$. If $(r < 0.001)$ then $B = 1$ else $B = 0$
- 2. Sample $E \sim \text{Ber}(0.002)$

- 1. Sample $B \sim \text{Ber}(0.001)$: $r \sim U(0, 1)$. If $(r < 0.001)$ then $B = 1$ else $B = 0$
- 2. Sample $E \sim \text{Ber}(0.002)$
- 3. If $B = 1$ and $E = 1$, sample $A \sim \text{Ber}(0.95)$, and so on

- 1. Sample $B \sim \text{Ber}(0.001)$: $r \sim U(0, 1)$. If $(r < 0.001)$ then $B = 1$ else $B = 0$
- 2. Sample $E \sim \text{Ber}(0.002)$
- 3. If $B = 1$ and $E = 1$, sample $A \sim \text{Ber}(0.95)$, and so on
- 4. If $A = 1$ sample $J \sim \text{Ber}(0.9)$ else $J \sim \text{Ber}(0.05)$

- 1. Sample $B \sim \text{Ber}(0.001)$: $r \sim U(0, 1)$. If $(r < 0.001)$ then $B = 1$ else $B = 0$
- 2. Sample $E \sim \text{Ber}(0.002)$
- 3. If $B = 1$ and $E = 1$, sample $A \sim \text{Ber}(0.95)$, and so on
- 4. If $A = 1$ sample $J \sim \text{Ber}(0.9)$ else $J \sim \text{Ber}(0.05)$
- 5. If $A = 1$ sample $M \sim \text{Ber}(0.7)$ else $M \sim \text{Ber}(0.01)$

Say the inference task is $P(B = 1 | E = 1, M = 1)$

- Say the inference task is $P(B = 1 | E = 1, M = 1)$
- \blacktriangleright Throw away all samples except those with $(E = 1, M = 1)$

$$
p(B=1 \mid E=1, M=1) \approx \frac{1}{m} \sum_{i=1}^{m} 1_{(B^{(i)}=1)}
$$

where m is the number of surviving samples

- Say the inference task is $P(B = 1 \mid E = 1, M = 1)$
- \blacktriangleright Throw away all samples except those with $(E = 1, M = 1)$

$$
p(B=1 \mid E=1, M=1) \approx \frac{1}{m} \sum_{i=1}^{m} 1_{(B^{(i)}=1)}
$$

where m is the number of surviving samples Gan be highly inefficient (note $P(E = 1)$ tiny)

- Say the inference task is $P(B = 1 | E = 1, M = 1)$
- \blacktriangleright Throw away all samples except those with $(E = 1, M = 1)$

$$
p(B=1 \mid E=1, M=1) \approx \frac{1}{m} \sum_{i=1}^{m} 1_{(B^{(i)}=1)}
$$

where m is the number of surviving samples

- **Can be highly inefficient (note** $P(E = 1)$ tiny)
- ▶ Does not work for Markov Random Fields (can't sample from $P(X)$

 \triangleright Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.

- \triangleright Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.
- \blacktriangleright Directly sample from $p(x_O \mid X_E)$

- \triangleright Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.
- \blacktriangleright Directly sample from $p(x_Q | X_E)$
- \triangleright Works for both graphical models

- \triangleright Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.
- \blacktriangleright Directly sample from $p(x_Q | X_E)$
- \triangleright Works for both graphical models
- \blacktriangleright Initialization:

- \triangleright Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.
- \blacktriangleright Directly sample from $p(x_Q | X_E)$
- \triangleright Works for both graphical models
- \blacktriangleright Initialization:
	- \blacktriangleright Fix evidence; randomly set other variables

- \triangleright Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.
- \blacktriangleright Directly sample from $p(x_Q | X_E)$
- \triangleright Works for both graphical models
- \blacktriangleright Initialization:
	- \blacktriangleright Fix evidence; randomly set other variables

• e.g.
$$
X^{(0)} = (B = 0, E = 1, A = 0, J = 0, M = 1)
$$

► For each non-evidence variable x_i , fixing all other nodes X_{-i} , resample its value $x_i \sim P(x_i \mid X_{-i})$

- ► For each non-evidence variable x_i , fixing all other nodes X_{-i} , resample its value $x_i \sim P(x_i \mid X_{-i})$
- ► This is equivalent to $x_i \sim P(x_i \mid \mathsf{MarkovBlanket}(x_i))$

- ► For each non-evidence variable x_i , fixing all other nodes X_{-i} , resample its value $x_i \sim P(x_i \mid X_{-i})$
- ► This is equivalent to $x_i \sim P(x_i \mid \mathsf{MarkovBlanket}(x_i))$
- \blacktriangleright For a Bayesian network MarkovBlanket (x_i) includes x_i 's parents, spouses, and children

$$
P(x_i \mid \text{MarkovBlanket}(x_i)) \propto P(x_i \mid Pa(x_i)) \prod_{y \in C(x_i)} P(y \mid Pa(y))
$$

where $Pa(x)$ are the parents of x, and $C(x)$ the children of x.

- ► For each non-evidence variable x_i , fixing all other nodes X_{-i} , resample its value $x_i \sim P(x_i \mid X_{-i})$
- ► This is equivalent to $x_i \sim P(x_i \mid \mathsf{MarkovBlanket}(x_i))$
- \blacktriangleright For a Bayesian network MarkovBlanket (x_i) includes x_i 's parents, spouses, and children

$$
P(x_i \mid \text{MarkovBlanket}(x_i)) \propto P(x_i \mid Pa(x_i)) \prod_{y \in C(x_i)} P(y \mid Pa(y))
$$

where $Pa(x)$ are the parents of x, and $C(x)$ the children of x.

 \triangleright For many graphical models the Markov Blanket is small.

- ► For each non-evidence variable x_i , fixing all other nodes X_{-i} , resample its value $x_i \sim P(x_i \mid X_{-i})$
- ► This is equivalent to $x_i \sim P(x_i \mid \mathsf{MarkovBlanket}(x_i))$
- \blacktriangleright For a Bayesian network MarkovBlanket (x_i) includes x_i 's parents, spouses, and children

$$
P(x_i \mid \text{MarkovBlanket}(x_i)) \propto P(x_i \mid Pa(x_i)) \prod_{y \in C(x_i)} P(y \mid Pa(y))
$$

where $Pa(x)$ are the parents of x, and $C(x)$ the children of x.

- \triangleright For many graphical models the Markov Blanket is small.
- \blacktriangleright For example,

 $B \sim P(B \mid E = 1, A = 0) \propto P(B)P(A = 0 \mid B, E = 1)$

$$
\text{Supp} \quad \text{Say we sampled } B = 1. \text{ Then} \\ X^{(1)} = (B = 1, E = 1, A = 0, J = 0, M = 1)
$$

- \blacktriangleright Say we sampled $B = 1$. Then $X^{(1)} = (B = 1, E = 1, A = 0, J = 0, M = 1)$
- Starting from $X^{(1)}$, sample $A \sim P(A \mid B = 1, E = 1, J = 0, M = 1)$ to get $X^{(2)}$

Gibbs Sampling

- \blacktriangleright Say we sampled $B = 1$. Then $X^{(1)} = (B = 1, E = 1, A = 0, J = 0, M = 1)$
- Starting from $X^{(1)}$, sample $A \sim P(A \mid B = 1, E = 1, J = 0, M = 1)$ to get $X^{(2)}$
- \blacktriangleright Move on to J, then repeat $B, A, J, B, A, J \dots$

Gibbs Sampling

- \blacktriangleright Say we sampled $B = 1$. Then $X^{(1)} = (B = 1, E = 1, A = 0, J = 0, M = 1)$
- Starting from $X^{(1)}$, sample $A \sim P(A \mid B = 1, E = 1, J = 0, M = 1)$ to get $X^{(2)}$
- \blacktriangleright Move on to J, then repeat $B, A, J, B, A, J \dots$
- Exempt Neep all samples after burn in. $P(B = 1 | E = 1, M = 1)$ is the fraction of samples with $B = 1$.

Gibbs Sampling Example 2: The Ising Model

This is an undirected model with $x \in \{0,1\}$.

$$
p_{\theta}(x) = \frac{1}{Z} \exp \left(\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t \right)
$$

Gibbs Example 2: The Ising Model

 \blacktriangleright The Markov blanket of x_s is A, B, C, D

Gibbs Example 2: The Ising Model

- \blacktriangleright The Markov blanket of x_s is A, B, C, D
- \blacktriangleright In general for undirected graphical models

$$
p(x_s \mid x_{-s}) = p(x_s \mid x_{N(s)})
$$

 $N(s)$ is the neighbors of s.

Gibbs Example 2: The Ising Model

- \blacktriangleright The Markov blanket of x_s is A, B, C, D
- \blacktriangleright In general for undirected graphical models

$$
p(x_s \mid x_{-s}) = p(x_s \mid x_{N(s)})
$$

 $N(s)$ is the neighbors of s.

 \blacktriangleright The Gibbs update is

$$
p(x_s = 1 | x_{N(s)}) = \frac{1}{\exp(-(\theta_s + \sum_{t \in N(s)} \theta_{st} x_t)) + 1}
$$

A Markov chain is defined by a transition matrix $T(X' | X)$

- A Markov chain is defined by a transition matrix $T(X' | X)$
- **F** Certain Markov chains have a stationary distribution π such that $\pi = T\pi$

- A Markov chain is defined by a transition matrix $T(X' | X)$
- **F** Certain Markov chains have a stationary distribution π such that $\pi = T\pi$
- \triangleright Gibbs sampler is such a Markov chain with $T_i((X_{-i}, x'_i) \mid (X_{-i}, x_i)) = p(x'_i \mid X_{-i})$, and stationary distribution $p(x_O | X_F)$

- A Markov chain is defined by a transition matrix $T(X' | X)$
- **F** Certain Markov chains have a stationary distribution π such that $\pi = T\pi$
- \triangleright Gibbs sampler is such a Markov chain with $T_i((X_{-i}, x'_i) \mid (X_{-i}, x_i)) = p(x'_i \mid X_{-i})$, and stationary distribution $p(x_Q | X_E)$
- \triangleright But it takes time for the chain to reach stationary distribution (mix)

- A Markov chain is defined by a transition matrix $T(X' | X)$
- **F** Certain Markov chains have a stationary distribution π such that $\pi = T\pi$
- \triangleright Gibbs sampler is such a Markov chain with $T_i((X_{-i}, x'_i) \mid (X_{-i}, x_i)) = p(x'_i \mid X_{-i})$, and stationary distribution $p(x_Q | X_E)$
- \triangleright But it takes time for the chain to reach stationary distribution (mix)
	- \triangleright Can be difficult to assert mixing

- A Markov chain is defined by a transition matrix $T(X' | X)$
- **F** Certain Markov chains have a stationary distribution π such that $\pi = T\pi$
- \triangleright Gibbs sampler is such a Markov chain with $T_i((X_{-i}, x'_i) \mid (X_{-i}, x_i)) = p(x'_i \mid X_{-i})$, and stationary distribution $p(x_O | X_E)$
- \triangleright But it takes time for the chain to reach stationary distribution (mix)
	- \triangleright Can be difficult to assert mixing
	- In practice "burn in": discard $X^{(0)}, \ldots, X^{(T)}$

- A Markov chain is defined by a transition matrix $T(X' | X)$
- **F** Certain Markov chains have a stationary distribution π such that $\pi = T\pi$
- \triangleright Gibbs sampler is such a Markov chain with $T_i((X_{-i}, x'_i) \mid (X_{-i}, x_i)) = p(x'_i \mid X_{-i})$, and stationary distribution $p(x_O | X_E)$
- \triangleright But it takes time for the chain to reach stationary distribution (mix)
	- \triangleright Can be difficult to assert mixing
	- In practice "burn in": discard $X^{(0)}, \ldots, X^{(T)}$
	- \blacktriangleright Use all of $X^{(T+1)},\dots$ for inference (they are correlated); Do not thin

 \blacktriangleright In general, $\mathbb{E}_p[f(X)] \approx \frac{1}{n}$ $\frac{1}{m}\sum_{i=1}^m f(X^{(i)})$ for $X^{(i)} \sim p$

- \blacktriangleright In general, $\mathbb{E}_p[f(X)] \approx \frac{1}{n}$ $\frac{1}{m}\sum_{i=1}^m f(X^{(i)})$ for $X^{(i)} \sim p$
- Sometimes $X = (Y, Z)$ where $\mathbb{E}_{Z|Y}$ has a closed-form

- \blacktriangleright In general, $\mathbb{E}_p[f(X)] \approx \frac{1}{n}$ $\frac{1}{m}\sum_{i=1}^m f(X^{(i)})$ for $X^{(i)} \sim p$
- Sometimes $X = (Y, Z)$ where $\mathbb{E}_{Z|Y}$ has a closed-form \blacktriangleright If so,

$$
\mathbb{E}_p[f(X)] = \mathbb{E}_{p(Y)} \mathbb{E}_{p(Z|Y)}[f(Y,Z)]
$$

$$
\approx \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{p(Z|Y^{(i)})}[f(Y^{(i)}, Z)]
$$

for $Y^{(i)} \sim p(Y)$

- \blacktriangleright In general, $\mathbb{E}_p[f(X)] \approx \frac{1}{n}$ $\frac{1}{m}\sum_{i=1}^m f(X^{(i)})$ for $X^{(i)} \sim p$
- Sometimes $X = (Y, Z)$ where $\mathbb{E}_{Z|Y}$ has a closed-form \blacktriangleright If so,

$$
\mathbb{E}_p[f(X)] = \mathbb{E}_{p(Y)} \mathbb{E}_{p(Z|Y)}[f(Y, Z)]
$$

$$
\approx \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{p(Z|Y^{(i)})}[f(Y^{(i)}, Z)]
$$

for $Y^{(i)} \sim p(Y)$

 \triangleright No need to sample Z: it is collapsed

- \blacktriangleright In general, $\mathbb{E}_p[f(X)] \approx \frac{1}{n}$ $\frac{1}{m}\sum_{i=1}^m f(X^{(i)})$ for $X^{(i)} \sim p$
- Sometimes $X = (Y, Z)$ where $\mathbb{E}_{Z|Y}$ has a closed-form \blacktriangleright If so,

$$
\mathbb{E}_p[f(X)] = \mathbb{E}_{p(Y)} \mathbb{E}_{p(Z|Y)}[f(Y,Z)]
$$

$$
\approx \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{p(Z|Y^{(i)})}[f(Y^{(i)}, Z)]
$$

for $Y^{(i)} \sim p(Y)$

- \triangleright No need to sample Z: it is collapsed
- ► Collapsed Gibbs sampler $T_i((Y_{-i}, y'_i) | (Y_{-i}, y_i)) = p(y'_i | Y_{-i})$

- \blacktriangleright In general, $\mathbb{E}_p[f(X)] \approx \frac{1}{n}$ $\frac{1}{m}\sum_{i=1}^m f(X^{(i)})$ for $X^{(i)} \sim p$
- Sometimes $X = (Y, Z)$ where $\mathbb{E}_{Z|Y}$ has a closed-form \blacktriangleright If so,

$$
\mathbb{E}_p[f(X)] = \mathbb{E}_{p(Y)} \mathbb{E}_{p(Z|Y)}[f(Y,Z)]
$$

$$
\approx \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{p(Z|Y^{(i)})}[f(Y^{(i)}, Z)]
$$

for $Y^{(i)} \sim p(Y)$

- \triangleright No need to sample Z: it is collapsed
- ► Collapsed Gibbs sampler $T_i((Y_{-i}, y'_i) | (Y_{-i}, y_i)) = p(y'_i | Y_{-i})$
- ► Note $p(y'_i \mid Y_{-i}) = \int p(y'_i, Z \mid Y_{-i}) dZ$

Collapse θ , ϕ , Gibbs update:

$$
P(z_i = j \mid \mathbf{z}_{-i}, \mathbf{w}) \propto \frac{n_{-i,j}^{(w_i)} + \beta n_{-i,j}^{(d_i)} + \alpha}{n_{-i,j}^{(\cdot)} + W\beta n_{-i,\cdot}^{(d_i)} + T\alpha}
$$

 \blacktriangleright $n_{-i,j}^{(w_i)}$: number of times word w_i has been assigned to topic $j,$ excluding the current position

Collapse θ , ϕ , Gibbs update:

$$
P(z_i = j \mid \mathbf{z}_{-i}, \mathbf{w}) \propto \frac{n_{-i,j}^{(w_i)} + \beta n_{-i,j}^{(d_i)} + \alpha}{n_{-i,j}^{(\cdot)} + W \beta n_{-i,\cdot}^{(d_i)} + T \alpha}
$$

- \blacktriangleright $n_{-i,j}^{(w_i)}$: number of times word w_i has been assigned to topic $j,$ excluding the current position
- \blacktriangleright $n_{-i,j}^{(d_i)}$: number of times a word from document d_i has been assigned to topic j , excluding the current position

Collapse θ , ϕ , Gibbs update:

$$
P(z_i = j \mid \mathbf{z}_{-i}, \mathbf{w}) \propto \frac{n_{-i,j}^{(w_i)} + \beta n_{-i,j}^{(d_i)} + \alpha}{n_{-i,j}^{(\cdot)} + W \beta n_{-i,\cdot}^{(d_i)} + T \alpha}
$$

- \blacktriangleright $n_{-i,j}^{(w_i)}$: number of times word w_i has been assigned to topic $j,$ excluding the current position
- \blacktriangleright $n_{-i,j}^{(d_i)}$: number of times a word from document d_i has been assigned to topic j , excluding the current position
- \blacktriangleright $n_{-i,j}^{(\cdot)}:$ number of times any word has been assigned to topic $j,$ excluding the current position

Collapse θ , ϕ , Gibbs update:

$$
P(z_i = j \mid \mathbf{z}_{-i}, \mathbf{w}) \propto \frac{n_{-i,j}^{(w_i)} + \beta n_{-i,j}^{(d_i)} + \alpha}{n_{-i,j}^{(\cdot)} + W \beta n_{-i,\cdot}^{(d_i)} + T \alpha}
$$

- \blacktriangleright $n_{-i,j}^{(w_i)}$: number of times word w_i has been assigned to topic $j,$ excluding the current position
- \blacktriangleright $n_{-i,j}^{(d_i)}$: number of times a word from document d_i has been assigned to topic i , excluding the current position
- \blacktriangleright $n_{-i,j}^{(\cdot)}:$ number of times any word has been assigned to topic $j,$ excluding the current position
- $\blacktriangleright n_{-i}^{(d_i)}$ $\frac{(a_i)}{-i}$: length of document d_i , excluding the current position

Belief Propagation

Factor Graph

 \triangleright For both directed and undirected graphical models

Factor Graph

- \triangleright For both directed and undirected graphical models
- \triangleright Bipartite: edges between a variable node and a factor node

Factor Graph

- \triangleright For both directed and undirected graphical models
- \triangleright Bipartite: edges between a variable node and a factor node
- \blacktriangleright Factors represent computation

 \blacktriangleright Also known as belief propagation (BP)

- \triangleright Also known as belief propagation (BP)
- Exact if the graph is a tree; otherwise known as "loopy BP ", approximate

- \triangleright Also known as belief propagation (BP)
- Exact if the graph is a tree; otherwise known as "loopy BP ", approximate
- \triangleright The algorithm involves passing *messages* on the factor graph

- \triangleright Also known as belief propagation (BP)
- Exact if the graph is a tree; otherwise known as "loopy BP ", approximate
- \triangleright The algorithm involves passing *messages* on the factor graph
- \triangleright Alternative view: variational approximation (more later)

Example: A Simple HMM

 \triangleright The Hidden Markov Model template (not a graphical model)

Example: A Simple HMM

 \blacktriangleright Observing $x_1 = R, x_2 = G$, the directed graphical model

Example: A Simple HMM

 \blacktriangleright Observing $x_1 = R, x_2 = G$, the directed graphical model

A message is a vector of length K , where K is the number of values x takes.

Messages

- A message is a vector of length K , where K is the number of values x takes.
- \blacktriangleright There are two types of messages:
Messages

- A message is a vector of length K, where K is the number of values x takes.
- \blacktriangleright There are two types of messages:
	- 1. $\mu_{f\rightarrow x}$: message from a factor node f to a variable node x $\mu_{f\rightarrow x}(i)$ is the *i*th element, $i = 1...K$.

Messages

- A message is a vector of length K, where K is the number of values x takes.
- \blacktriangleright There are two types of messages:
	- 1. $\mu_{f\rightarrow x}$: message from a factor node f to a variable node x $\mu_{f\rightarrow x}(i)$ is the *i*th element, $i = 1...K$.
	- 2. $\mu_{x\to f}$: message from a variable node x to a factor node f

Assume tree factor graph. Pick an arbitrary root, say z_2

 $\pi_1 = \pi_2 = 1/2$

- Assume tree factor graph. Pick an arbitrary root, say z_2
- \triangleright Start messages at leaves.

 $\pi_1 = \pi_2 = 1/2$

- Assume tree factor graph. Pick an arbitrary root, say z_2
- \blacktriangleright Start messages at leaves.
- If a leaf is a factor node f, $\mu_{f\rightarrow x}(x) = f(x)$

$$
\mu_{f_1 \to z_1}(z_1 = 1) = P(z_1 = 1)P(R|z_1 = 1) = 1/2 \cdot 1/2 = 1/4
$$

$$
\mu_{f_1 \to z_1}(z_1 = 2) = P(z_1 = 2)P(R|z_1 = 2) = 1/2 \cdot 1/4 = 1/8
$$

 $\pi_1 = \pi_2 = 1/2$

- Assume tree factor graph. Pick an arbitrary root, say z_2
- \blacktriangleright Start messages at leaves.
- If a leaf is a factor node f, $\mu_{f\rightarrow x}(x) = f(x)$

$$
\mu_{f_1 \to z_1}(z_1 = 1) = P(z_1 = 1)P(R|z_1 = 1) = 1/2 \cdot 1/2 = 1/4
$$

$$
\mu_{f_1 \to z_1}(z_1 = 2) = P(z_1 = 2)P(R|z_1 = 2) = 1/2 \cdot 1/4 = 1/8
$$

If a leaf is a variable node x , $\mu_{x\to f}(x) = 1$

 $\pi_1 = \pi_2 = 1/2$

Message from Variable to Factor

 \triangleright A node (factor or variable) can send out a message if all other incoming messages have arrived

Message from Variable to Factor

- \triangleright A node (factor or variable) can send out a message if all other incoming messages have arrived
- In Let x be in factor f_s . $ne(x)\f_s$ are factors connected to x excluding f_s .

$$
\mu_{x \to f_s}(x) = \prod_{f \in ne(x) \setminus f_s} \mu_{f \to x}(x)
$$

$$
\mu_{z_1 \to f_2}(z_1 = 1) = 1/4
$$

$$
\mu_{z_1 \to f_2}(z_1 = 2) = 1/8
$$

Message from Factor to Variable

In Let x be in factor f_s . Let the other variables in f_s be $x_{1:M}$.

$$
\mu_{f_s \to x}(x) = \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m=1}^M \mu_{x_m \to f_s}(x_m)
$$

 $P(z_1)P(x_1 | z_1)$ $P(z_2 | z_1)P(x_2 | z_2)$

Message from Factor to Variable

In Let x be in factor f_s . Let the other variables in f_s be $x_{1:M}$.

$$
\mu_{f_s \to x}(x) = \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m=1}^M \mu_{x_m \to f_s}(x_m)
$$

M

 \blacktriangleright In this example

$$
\mu_{f_2 \to z_2}(s) = \sum_{s'=1}^{2} \mu_{z_1 \to f_2}(s') f_2(z_1 = s', z_2 = s)
$$

= $1/4P(z_2 = s | z_1 = 1)P(x_2 = G | z_2 = s)$
+ $1/8P(z_2 = s | z_1 = 2)P(x_2 = G | z_2 = s)$

 $P(z_i)P(x_i|z_i)$ $P(z_i|z_i)P(x_i|z_i)$

Message from Factor to Variable

In Let x be in factor f_s . Let the other variables in f_s be $x_{1:M}$.

$$
\mu_{f_s \to x}(x) = \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m=1}^M \mu_{x_m \to f_s}(x_m)
$$

M

 \blacktriangleright In this example

$$
\mu_{f_2 \to z_2}(s) = \sum_{s'=1}^{2} \mu_{z_1 \to f_2}(s') f_2(z_1 = s', z_2 = s)
$$

= $1/4P(z_2 = s|z_1 = 1)P(x_2 = G|z_2 = s)$
+ $1/8P(z_2 = s|z_1 = 2)P(x_2 = G|z_2 = s)$

• We get
$$
\mu_{f_2 \to z_2}(z_2 = 1) = 1/32
$$
, $\mu_{f_2 \to z_2}(z_2 = 2) = 1/8$

 $P(z_i)P(x_i|z_i)$ $P(z_2|z_i)P(x_2|z_2)$

Up to Root, Back Down

 \blacktriangleright The message has reached the root, pass it back down

$$
\mu_{z_2 \to f_2}(z_2 = 1) = 1
$$

$$
\mu_{z_2 \to f_2}(z_2 = 2) = 1
$$

 $\pi_1 = \pi_2 = 1/2$

Keep Passing Down

$$
\begin{aligned} \n\blacktriangleright \ \mu_{f_2 \to z_1}(s) &= \sum_{s'=1}^2 \mu_{z_2 \to f_2}(s') f_2(z_1 = s, z_2 = s') \\ \n&= 1P(z_2 = 1|z_1 = s)P(x_2 = G|z_2 = 1) \\ \n&+ 1P(z_2 = 2|z_1 = s)P(x_2 = G|z_2 = 2). \n\end{aligned}
$$

Keep Passing Down

$$
\begin{aligned} \n\blacktriangleright \ \mu_{f_2 \to z_1}(s) &= \sum_{s'=1}^2 \mu_{z_2 \to f_2}(s') f_2(z_1 = s, z_2 = s') \\ \n&= 1P(z_2 = 1|z_1 = s)P(x_2 = G|z_2 = 1) \\ \n&+ 1P(z_2 = 2|z_1 = s)P(x_2 = G|z_2 = 2). \n\end{aligned}
$$

$$
\blacktriangleright
$$
 We get

$$
\mu_{f_2 \to z_1}(z_1 = 1) = 7/16
$$

$$
\mu_{f_2 \to z_1}(z_1 = 2) = 3/8
$$

From Messages to Marginals

 \triangleright Once a variable receives all incoming messages, we compute its marginal as

$$
p(x) \propto \prod_{f \in ne(x)} \mu_{f \to x}(x)
$$

From Messages to Marginals

 \triangleright Once a variable receives all incoming messages, we compute its marginal as

$$
p(x) \propto \prod_{f \in ne(x)} \mu_{f \to x}(x)
$$

 \blacktriangleright In this example $P(z_1|x_1, x_2) \propto \mu_{f_1 \to z_1} \cdot \mu_{f_2 \to z_1} = \begin{pmatrix} 1/4 \\ 1/8 \end{pmatrix} \cdot \begin{pmatrix} 7/16 \\ 3/8 \end{pmatrix} = \begin{pmatrix} 7/64 \\ 3/64 \end{pmatrix} \Rightarrow$ $\binom{0.7}{0.3}$ $P(z_2|x_1, x_2) \propto \mu_{f_2 \to z_2} = \begin{pmatrix} 1/32 \\ 1/8 \end{pmatrix} \Rightarrow \begin{pmatrix} 0.2 \\ 0.8 \end{pmatrix}$

From Messages to Marginals

 \triangleright Once a variable receives all incoming messages, we compute its marginal as

$$
p(x) \propto \prod_{f \in ne(x)} \mu_{f \to x}(x)
$$

- \blacktriangleright In this example $P(z_1|x_1, x_2) \propto \mu_{f_1 \to z_1} \cdot \mu_{f_2 \to z_1} = \begin{pmatrix} 1/4 \\ 1/8 \end{pmatrix} \cdot \begin{pmatrix} 7/16 \\ 3/8 \end{pmatrix} = \begin{pmatrix} 7/64 \\ 3/64 \end{pmatrix} \Rightarrow$ $\binom{0.7}{0.3}$ $P(z_2|x_1, x_2) \propto \mu_{f_2 \to z_2} = \begin{pmatrix} 1/32 \\ 1/8 \end{pmatrix} \Rightarrow \begin{pmatrix} 0.2 \\ 0.8 \end{pmatrix}$
- \triangleright One can also compute the marginal of the set of variables x_s involved in a factor f_s

$$
p(x_s) \propto f_s(x_s) \prod_{x \in ne(f)} \mu_{x \to f}(x)
$$

 \triangleright Observing $x = v$,

- \triangleright Observing $x = v$,
	- \triangleright we can absorb it in the factor (as we did); or

 \triangleright Observing $x = v$,

- \triangleright we can absorb it in the factor (as we did); or
- Set messages $\mu_{x \to f}(x) = 0$ for all $x \neq v$

- \triangleright Observing $x = v$,
	- \triangleright we can absorb it in the factor (as we did); or
	- ► set messages $\mu_{x \to f}(x) = 0$ for all $x \neq v$

 \blacktriangleright Observing X_E ,

 \triangleright Observing $x = v$,

- \triangleright we can absorb it in the factor (as we did); or
- ► set messages $\mu_{x \to f}(x) = 0$ for all $x \neq v$
- \triangleright Observing X_E ,
	- ► multiplying the incoming messages to $x \notin X_E$ gives the *joint* (not $p(x|X_E)$):

$$
p(x, X_E) \propto \prod_{f \in ne(x)} \mu_{f \to x}(x)
$$

 \triangleright Observing $x = v$,

- \triangleright we can absorb it in the factor (as we did); or
- ► set messages $\mu_{x \to f}(x) = 0$ for all $x \neq v$
- \triangleright Observing X_E ,
	- ► multiplying the incoming messages to $x \notin X_E$ gives the *joint* (not $p(x|X_E)$):

$$
p(x, X_E) \propto \prod_{f \in ne(x)} \mu_{f \to x}(x)
$$

 \blacktriangleright The conditional is easily obtained by normalization

$$
p(x|X_E) = \frac{p(x, X_E)}{\sum_{x'} p(x', X_E)}
$$

Loopy Belief Propagation

Loopy Belief Propagation

- \triangleright So far, we assumed a tree graph
- \triangleright When the factor graph contains loops, pass messages indefinitely until convergence

Loopy Belief Propagation

- \triangleright So far, we assumed a tree graph
- \triangleright When the factor graph contains loops, pass messages indefinitely until convergence
- ▶ Loopy BP may not convergence, but "works" in many cases

Outline

[Graphical Models](#page-2-0)

[Probabilistic Inference](#page-3-0) [Directed vs. Undirected Graphical Models](#page-37-0) [Inference](#page-103-0)

[Parameter Estimation](#page-206-0)

[Kernel Methods](#page-238-0)

[Support Vector Machines](#page-250-0) [Kernel PCA](#page-302-0) [Reproducing Kernel Hilbert Spaces](#page-341-0)

 \blacktriangleright Assume the graph structure is given

- \triangleright Assume the graph structure is given
- \blacktriangleright Parameters:

- \blacktriangleright Assume the graph structure is given
- \blacktriangleright Parameters:
	- \blacktriangleright θ_i in CPDs $p(x_i \mid pa(x_i), \theta_i)$ in directed graphical models

$$
p(X) = \prod_{i} p(x_i \mid Pa(x_i), \theta_i)
$$

- \blacktriangleright Assume the graph structure is given
- \blacktriangleright Parameters:
	- \blacktriangleright θ_i in CPDs $p(x_i \mid pa(x_i), \theta_i)$ in directed graphical models

$$
p(X) = \prod_{i} p(x_i \mid Pa(x_i), \theta_i)
$$

 \blacktriangleright Weights w_i in undirected graphical model

$$
p(X) = \frac{1}{Z} \exp\left(\sum_{i=1}^{k} w_i f_i(X)\right)
$$

- \triangleright Assume the graph structure is given
- \blacktriangleright Parameters:
	- \blacktriangleright θ_i in CPDs $p(x_i \mid pa(x_i), \theta_i)$ in directed graphical models

$$
p(X) = \prod_{i} p(x_i \mid Pa(x_i), \theta_i)
$$

 \blacktriangleright Weights w_i in undirected graphical model

$$
p(X) = \frac{1}{Z} \exp\left(\sum_{i=1}^{k} w_i f_i(X)\right)
$$

 \blacktriangleright Principle: maximum likelihood estimate

In fully observed: all dimensions of X are observed

In fully observed: all dimensions of X are observed

 \blacktriangleright given X^1,\ldots,X^n , the MLE is

$$
\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log p(X^i \mid \theta)
$$

In fully observed: all dimensions of X are observed

 \blacktriangleright given X^1,\ldots,X^n , the MLE is

$$
\hat{\theta} = \operatorname*{argmax}_{\theta} \sum_{i=1}^{n} \log p(X^i \mid \theta)
$$

 \triangleright log likelihood factorizes for directed models (easy)

In fully observed: all dimensions of X are observed

 \blacktriangleright given X^1,\ldots,X^n , the MLE is

$$
\hat{\theta} = \operatorname*{argmax}_{\theta} \sum_{i=1}^{n} \log p(X^i \mid \theta)
$$

- \triangleright log likelihood factorizes for directed models (easy)
- \blacktriangleright gradient method for undirected models
In fully observed: all dimensions of X are observed

 \blacktriangleright given X^1,\ldots,X^n , the MLE is

$$
\hat{\theta} = \operatorname*{argmax}_{\theta} \sum_{i=1}^{n} \log p(X^i \mid \theta)
$$

- \triangleright log likelihood factorizes for directed models (easy)
- \blacktriangleright gradient method for undirected models

partially observed: $X = (X_o, X_h)$ where X_h unobserved

In fully observed: all dimensions of X are observed

 \blacktriangleright given X^1,\ldots,X^n , the MLE is

$$
\hat{\theta} = \operatornamewithlimits{argmax}_{\theta} \sum_{i=1}^n \log p(X^i \mid \theta)
$$

- \triangleright log likelihood factorizes for directed models (easy)
- \blacktriangleright gradient method for undirected models

partially observed: $X = (X_o, X_h)$ where X_h unobserved

 \blacktriangleright given X_o^1,\ldots,X_o^n , the MLE is

$$
\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log \left(\sum_{X_h} p(X_o^i, X_h \mid \theta) \right)
$$

In fully observed: all dimensions of X are observed

 \blacktriangleright given X^1,\ldots,X^n , the MLE is

$$
\hat{\theta} = \operatornamewithlimits{argmax}_{\theta} \sum_{i=1}^n \log p(X^i \mid \theta)
$$

- \triangleright log likelihood factorizes for directed models (easy)
- \triangleright gradient method for undirected models

partially observed: $X = (X_o, X_h)$ where X_h unobserved

 \blacktriangleright given X_o^1,\ldots,X_o^n , the MLE is

$$
\hat{\theta} = \underset{\theta}{\text{argmax}} \sum_{i=1}^{n} \log \left(\sum_{X_h} p(X_o^i, X_h \mid \theta) \right)
$$

 \blacktriangleright log likelihood does not factorize

In fully observed: all dimensions of X are observed

 \blacktriangleright given X^1,\ldots,X^n , the MLE is

$$
\hat{\theta} = \operatornamewithlimits{argmax}_{\theta} \sum_{i=1}^n \log p(X^i \mid \theta)
$$

- \triangleright log likelihood factorizes for directed models (easy)
- \triangleright gradient method for undirected models
- partially observed: $X = (X_o, X_h)$ where X_h unobserved
	- \blacktriangleright given X_o^1,\ldots,X_o^n , the MLE is

$$
\hat{\theta} = \underset{\theta}{\text{argmax}} \sum_{i=1}^{n} \log \left(\sum_{X_h} p(X_o^i, X_h \mid \theta) \right)
$$

- \blacktriangleright log likelihood does not factorize
- \triangleright The EM algorithm finds a local maximum

 \blacktriangleright Let M be all allowed candidate features

- \blacktriangleright Let M be all allowed candidate features
- ► Let $M \subseteq M$ be the "active subset"

$$
P(X \mid M, \theta) = \frac{1}{Z} \exp\left(\sum_{i \in M} \theta_i f_i(X)\right)
$$

- \blacktriangleright Let M be all allowed candidate features
- ► Let $M \subseteq M$ be the "active subset"

$$
P(X \mid M, \theta) = \frac{1}{Z} \exp\left(\sum_{i \in M} \theta_i f_i(X)\right)
$$

▶
$$
score(M) = max_{\theta} ln P(\text{Data} | M, \theta)
$$

- \blacktriangleright Let M be all allowed candidate features
- ► Let $M \subseteq \mathcal{M}$ be the "active subset"

$$
P(X \mid M, \theta) = \frac{1}{Z} \exp\left(\sum_{i \in M} \theta_i f_i(X)\right)
$$

▶
$$
score(M) = max_{\theta} ln P(Data | M, \theta)
$$

 \blacktriangleright The score is always better for larger M – needs regularization or Bayesian treatment

- \blacktriangleright Let M be all allowed candidate features
- ► Let $M \subseteq \mathcal{M}$ be the "active subset"

$$
P(X \mid M, \theta) = \frac{1}{Z} \exp\left(\sum_{i \in M} \theta_i f_i(X)\right)
$$

- \triangleright score(M) = max $_{\theta}$ ln P(Data | M, θ)
- \blacktriangleright The score is always better for larger M needs regularization or Bayesian treatment
- $\blacktriangleright M$ and θ treated separately; combinatorial search over M

► Consider a d-dimensional multivariate Gaussian $N(\mu, \Sigma)$

- ► Consider a d-dimensional multivariate Gaussian $N(\mu, \Sigma)$
- \blacktriangleright The graphical model has p nodes x_1, \ldots, x_d

- ► Consider a d-dimensional multivariate Gaussian $N(\mu, \Sigma)$
- \blacktriangleright The graphical model has p nodes x_1, \ldots, x_d
- ► The edge between x_i, x_j is absent if and only if $\Omega_{ij} = 0$, where $\Omega = \Sigma^{-1}$

- ► Consider a d-dimensional multivariate Gaussian $N(\mu, \Sigma)$
- \blacktriangleright The graphical model has p nodes x_1, \ldots, x_d
- ► The edge between x_i, x_j is absent if and only if $\Omega_{ij} = 0$, where $\Omega = \Sigma^{-1}$
- Equivalently, x_i, x_j are conditionally independent given other variables

Example

• If we know
$$
\Sigma = \begin{pmatrix} 14 & -16 & 4 & -2 \\ -16 & 32 & -8 & 4 \\ 4 & -8 & 8 & -4 \\ -2 & 4 & -4 & 5 \end{pmatrix}
$$

Example

► If we know
$$
\Sigma = \begin{pmatrix} 14 & -16 & 4 & -2 \\ -16 & 32 & -8 & 4 \\ 4 & -8 & 8 & -4 \\ -2 & 4 & -4 & 5 \end{pmatrix}
$$

\n► Then $\Omega = \Sigma^{-1} = \begin{pmatrix} 0.1667 & 0.0833 & 0.0000 & 0 \\ 0.0833 & 0.0833 & 0.0417 & 0 \\ 0.0000 & 0.0417 & 0.2500 & 0.1667 \\ 0 & 0 & 0.1667 & 0.3333 \end{pmatrix}$

Example

► If we know
$$
\Sigma = \begin{pmatrix} 14 & -16 & 4 & -2 \\ -16 & 32 & -8 & 4 \\ 4 & -8 & 8 & -4 \\ -2 & 4 & -4 & 5 \end{pmatrix}
$$

\n► Then $\Omega = \Sigma^{-1} = \begin{pmatrix} 0.1667 & 0.0833 & 0.0000 & 0 \\ 0.0833 & 0.0833 & 0.0417 & 0 \\ 0.0000 & 0.0417 & 0.2500 & 0.1667 \\ 0 & 0 & 0.1667 & 0.3333 \end{pmatrix}$

 \blacktriangleright The corresponding graphical model structure is

► Let data be $X^{(1)}, \ldots, X^{(n)} \sim N(\mu, \Sigma)$

- ► Let data be $X^{(1)}, \ldots, X^{(n)} \sim N(\mu, \Sigma)$
- \blacktriangleright The log likelihood is $\overline{\mathfrak{n}}$ $\frac{n}{2} \log |\Omega| - \frac{1}{2} \sum_{i=1}^{n} (X^{(i)} - \mu)^{\top} \Omega (X^{(i)} - \mu)$

$$
\blacktriangleright \text{ Let data be } X^{(1)}, \ldots, X^{(n)} \sim N(\mu, \Sigma)
$$

- \blacktriangleright The log likelihood is $\overline{\mathfrak{n}}$ $\frac{n}{2} \log |\Omega| - \frac{1}{2} \sum_{i=1}^{n} (X^{(i)} - \mu)^{\top} \Omega (X^{(i)} - \mu)$
- \blacktriangleright The maximum likelihood estimate of Σ is the sample covariance

$$
S = \frac{1}{n} \sum_{i} (X^{(i)} - \bar{X})^{\top} (X^{(i)} - \bar{X})
$$

where \bar{X} is the sample mean

$$
\blacktriangleright \text{ Let data be } X^{(1)}, \ldots, X^{(n)} \sim N(\mu, \Sigma)
$$

- \blacktriangleright The log likelihood is $\overline{\mathfrak{n}}$ $\frac{n}{2} \log |\Omega| - \frac{1}{2} \sum_{i=1}^{n} (X^{(i)} - \mu)^{\top} \Omega (X^{(i)} - \mu)$
- \blacktriangleright The maximum likelihood estimate of Σ is the sample covariance

$$
S = \frac{1}{n} \sum_{i} (X^{(i)} - \bar{X})^{\top} (X^{(i)} - \bar{X})
$$

where \bar{X} is the sample mean

► S^{-1} is not a good estimate of Ω when n is small

 \triangleright For centered data, minimize a regularized problem instead:

$$
-\log |\Omega| + \frac{1}{n}\sum_{i=1}^{n} {\boldsymbol{X}^{(i)}}^{\top} {\boldsymbol{\Omega}} {\boldsymbol{X}^{(i)}} + \lambda \sum_{i \neq j} |\Omega_{ij}|
$$

 \triangleright For centered data, minimize a regularized problem instead:

$$
-\log|\Omega| + \frac{1}{n}\sum_{i=1}^{n} {\boldsymbol{X}^{(i)}}^{\top} \boldsymbol{\Omega} {\boldsymbol{X}^{(i)}} + \lambda \sum_{i \neq j} |\Omega_{ij}|
$$

 \blacktriangleright Known as GLASSO

Outline

[Graphical Models](#page-2-0)

[Probabilistic Inference](#page-3-0) [Directed vs. Undirected Graphical Models](#page-37-0) [Inference](#page-103-0) [Parameter Estimation](#page-206-0)

[Kernel Methods](#page-238-0)

[Support Vector Machines](#page-250-0) [Kernel PCA](#page-302-0) [Reproducing Kernel Hilbert Spaces](#page-341-0)

 \blacktriangleright Traditionally, an item x is a feature vector in \mathbb{R}^d

 \blacktriangleright Traditionally, an item x is a feature vector in \mathbb{R}^d

 \blacktriangleright Feature engineering decides what the features are

 \blacktriangleright Traditionally, an item x is a feature vector in \mathbb{R}^d

- \blacktriangleright Feature engineering decides what the features are
- \blacktriangleright Learning algorithms work on $x_1,\ldots,x_n\in\mathbb{R}^d$ directly

- \blacktriangleright Traditionally, an item x is a feature vector in \mathbb{R}^d
	- \blacktriangleright Feature engineering decides what the features are
	- \blacktriangleright Learning algorithms work on $x_1,\ldots,x_n\in\mathbb{R}^d$ directly
- \blacktriangleright Many algorithms actually only use inner products $x_i^\top x_j$

- \blacktriangleright Traditionally, an item x is a feature vector in \mathbb{R}^d
	- \blacktriangleright Feature engineering decides what the features are
	- \blacktriangleright Learning algorithms work on $x_1,\ldots,x_n\in\mathbb{R}^d$ directly
- \blacktriangleright Many algorithms actually only use inner products $x_i^\top x_j$
	- \blacktriangleright Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^\top x_j$

- \blacktriangleright Traditionally, an item x is a feature vector in \mathbb{R}^d
	- \blacktriangleright Feature engineering decides what the features are
	- \blacktriangleright Learning algorithms work on $x_1,\ldots,x_n\in\mathbb{R}^d$ directly
- \blacktriangleright Many algorithms actually only use inner products $x_i^\top x_j$
	- \blacktriangleright Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^\top x_j$
	- \triangleright We can just give K to these algorithms

- \blacktriangleright Traditionally, an item x is a feature vector in \mathbb{R}^d
	- \blacktriangleright Feature engineering decides what the features are
	- \blacktriangleright Learning algorithms work on $x_1,\ldots,x_n\in\mathbb{R}^d$ directly
- \blacktriangleright Many algorithms actually only use inner products $x_i^\top x_j$
	- \blacktriangleright Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^\top x_j$
	- \triangleright We can just give K to these algorithms
- \blacktriangleright What if we give any matrix K' to these algorithms?

- \blacktriangleright Traditionally, an item x is a feature vector in \mathbb{R}^d
	- \blacktriangleright Feature engineering decides what the features are
	- \blacktriangleright Learning algorithms work on $x_1,\ldots,x_n\in\mathbb{R}^d$ directly
- \blacktriangleright Many algorithms actually only use inner products $x_i^\top x_j$
	- \blacktriangleright Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^\top x_j$
	- \triangleright We can just give K to these algorithms
- \blacktriangleright What if we give any matrix K' to these algorithms?
	- They work if K' is positive semi-definition (kernel matrix)

- \blacktriangleright Traditionally, an item x is a feature vector in \mathbb{R}^d
	- \blacktriangleright Feature engineering decides what the features are
	- \blacktriangleright Learning algorithms work on $x_1,\ldots,x_n\in\mathbb{R}^d$ directly
- \blacktriangleright Many algorithms actually only use inner products $x_i^\top x_j$
	- \blacktriangleright Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^\top x_j$
	- \triangleright We can just give K to these algorithms
- \blacktriangleright What if we give any matrix K' to these algorithms?
	- They work if K' is positive semi-definition (kernel matrix)
	- ► There are feature vectors $\phi(x) \in \mathbb{R}^D$ such that $K'_{ij} = \phi(x_i)^\top \phi(x_j)$

- \blacktriangleright Traditionally, an item x is a feature vector in \mathbb{R}^d
	- \blacktriangleright Feature engineering decides what the features are
	- \blacktriangleright Learning algorithms work on $x_1,\ldots,x_n\in\mathbb{R}^d$ directly
- \blacktriangleright Many algorithms actually only use inner products $x_i^\top x_j$
	- \blacktriangleright Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^\top x_j$
	- \triangleright We can just give K to these algorithms
- \blacktriangleright What if we give any matrix K' to these algorithms?
	- They work if K' is positive semi-definition (kernel matrix)
	- ► There are feature vectors $\phi(x) \in \mathbb{R}^D$ such that
		- $K'_{ij} = \phi(x_i)^\top \phi(x_j)$
	- \blacktriangleright $\phi(x)$ implicit feature engineering

- \blacktriangleright Traditionally, an item x is a feature vector in \mathbb{R}^d
	- \blacktriangleright Feature engineering decides what the features are
	- \blacktriangleright Learning algorithms work on $x_1,\ldots,x_n\in\mathbb{R}^d$ directly
- \blacktriangleright Many algorithms actually only use inner products $x_i^\top x_j$
	- \blacktriangleright Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^\top x_j$
	- \triangleright We can just give K to these algorithms
- \blacktriangleright What if we give any matrix K' to these algorithms?
	- They work if K' is positive semi-definition (kernel matrix)
	- ► There are feature vectors $\phi(x) \in \mathbb{R}^D$ such that
		- $K'_{ij} = \phi(x_i)^\top \phi(x_j)$
	- \blacktriangleright $\phi(x)$ implicit feature engineering

Precise definition: Reproducing Kernel Hilbert Space (RKHS)

Outline

[Graphical Models](#page-2-0)

[Probabilistic Inference](#page-3-0) [Directed vs. Undirected Graphical Models](#page-37-0) [Inference](#page-103-0) [Parameter Estimation](#page-206-0)

[Kernel Methods](#page-238-0)

[Support Vector Machines](#page-250-0)

[Kernel PCA](#page-302-0) [Reproducing Kernel Hilbert Spaces](#page-341-0)

The Linearly Separable Case

$$
\blacktriangleright \ x \in R^d, \ y \in \{-1, 1\}
$$
- $\blacktriangleright x \in R^d, y \in \{-1, 1\}$
- A discriminant function $f(x) = w^{\top}x + b$

- $\blacktriangleright x \in R^d, y \in \{-1, 1\}$
- A discriminant function $f(x) = w^{\top}x + b$
- lassification rule sign($f(x)$)

- $\blacktriangleright x \in R^d, y \in \{-1, 1\}$
- A discriminant function $f(x) = w^{\top}x + b$
- lassification rule sign($f(x)$)
- ► linear decision boundary $\{x \in \mathbb{R}^d \mid f(x) = 0\}$ orthogonal to w

 \blacktriangleright Distance between a correctly classified x and the decision boundary:

$$
\frac{yf(x)}{\|w\|}
$$

 \blacktriangleright Training task: given $\{(x, y)_{1:n}\}$, find a decision boundary w, b to maximize the distance to the closest point

$$
\max_{w,b} \min_{i=1}^n \frac{y_i(w^\top x_i + b)}{\|w\|}
$$

$$
\max_{w,b} \qquad \frac{1}{\|w\|}
$$

s.t. $y_i(w^\top x_i + b) \ge 1$ $i = 1...n$

 \blacktriangleright Equivalently,

$$
\min_{w,b} \qquad \frac{1}{2} ||w||^2
$$

s.t. $y_i(w^\top x_i + b) \ge 1$ $i = 1...n$

 \blacktriangleright Equivalently,

$$
\min_{w,b} \qquad \frac{1}{2} ||w||^2
$$

s.t. $y_i(w^\top x_i + b) \ge 1$ $i = 1...n$

► Primal problem, uses feature vectors $x_i \in \mathbb{R}^d$

 \blacktriangleright Equivalently,

$$
\min_{w,b} \qquad \frac{1}{2} ||w||^2
$$

s.t. $y_i(w^\top x_i + b) \ge 1$ $i = 1...n$

- ► Primal problem, uses feature vectors $x_i \in \mathbb{R}^d$
- \triangleright The equivalent dual problem will involve only inner products $x_i^\top x_j$

$$
\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j + \sum_{i=1}^{n} \alpha_i
$$
\n*s.t.*\n
$$
\alpha_i \geq 0 \quad i = 1 \dots n
$$
\n
$$
\sum_{i=1}^{n} \alpha_i y_i = 0
$$

 \blacktriangleright The dual problem

$$
\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j + \sum_{i=1}^{n} \alpha_i
$$
\n*s.t.*\n
$$
\alpha_i \geq 0 \quad i = 1 \dots n
$$
\n
$$
\sum_{i=1}^{n} \alpha_i y_i = 0
$$

 $\blacktriangleright d + 1$ primal variables w, b

 \blacktriangleright The dual problem

$$
\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j + \sum_{i=1}^{n} \alpha_i
$$
\n
$$
s.t. \quad \alpha_i \ge 0 \quad i = 1 \dots n
$$
\n
$$
\sum_{i=1}^{n} \alpha_i y_i = 0
$$

 $\blacktriangleright d+1$ primal variables w, b

ightharpoonup n dual variables α (interesting when $d \gg n$)

To classify a test point x

 \blacktriangleright primal discriminant function $f(x) = w^{\top}x + b$

To classify a test point x

- \blacktriangleright primal discriminant function $f(x) = w^{\top}x + b$
- \blacktriangleright dual discriminant function $f(x) = \sum_{i=1}^n \alpha_i y_i x_i^{\top} x + b$

To classify a test point x

- \blacktriangleright primal discriminant function $f(x) = w^{\top}x + b$
- \blacktriangleright dual discriminant function $f(x) = \sum_{i=1}^n \alpha_i y_i x_i^{\top} x + b$
- \blacktriangleright another inner-product

Support vectors

 \blacktriangleright The Karush-Kuhn-Tucker complementarity condition: $\alpha_i(y_i(w^{\top} x_i + b) - 1) = 0, i = 1...n$

Support vectors

- \blacktriangleright The Karush-Kuhn-Tucker complementarity condition: $\alpha_i(y_i(w^{\top} x_i + b) - 1) = 0, i = 1...n$
- $\blacktriangleright \; y_i(w^\top x_i + b) 1 > 0 \;(x_i \text{ outside the margin}) \Rightarrow \alpha_i = 0 \;(x_i)$ not support vector)

Support vectors

- \blacktriangleright The Karush-Kuhn-Tucker complementarity condition: $\alpha_i(y_i(w^{\top} x_i + b) - 1) = 0, i = 1...n$
- $\blacktriangleright \; y_i(w^\top x_i + b) 1 > 0 \;(x_i \text{ outside the margin}) \Rightarrow \alpha_i = 0 \;(x_i)$ not support vector)
- $\blacktriangleright \alpha_i \neq 0$ $(x_i$ is support vector) $\Rightarrow y_i(w^\top x_i + b) = 1$ $(x_i$ on the margin)

 \blacktriangleright Relax margin constraints

$$
y_i(w^\top x_i + b) \ge 1 - \xi_i
$$

 \blacktriangleright Relax margin constraints

$$
y_i(w^\top x_i + b) \ge 1 - \xi_i
$$

Slack variables $\xi_i \geq 0$

 \blacktriangleright Relax margin constraints

$$
y_i(w^\top x_i + b) \ge 1 - \xi_i
$$

- ► Slack variables $\xi_i \geq 0$
- **If** Large enough ξ_i allows x_i on the wrong side of the decision boundary

$$
\min_{w,b,\xi} \qquad \frac{1}{2}||w||^2 + C\sum_{i=1}^n \xi_i
$$
\n
$$
s.t. \quad y_i(w^\top x_i + b) \ge 1 - \xi_i \quad i = 1 \dots n
$$
\n
$$
\xi_i \ge 0
$$

$$
\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j + \sum_{i=1}^{n} \alpha_i
$$
\n
$$
s.t. \quad 0 \le \alpha_i \le C \quad i = 1 \dots n
$$
\n
$$
\sum_{i=1}^{n} \alpha_i y_i = 0
$$

\blacktriangleright Dual problem

$$
\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j + \sum_{i=1}^{n} \alpha_i
$$
\n
$$
s.t. \quad 0 \le \alpha_i \le C \quad i = 1 \dots n
$$
\n
$$
\sum_{i=1}^{n} \alpha_i y_i = 0
$$

 \triangleright Again, data enter optimization as inner products

$$
\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j + \sum_{i=1}^{n} \alpha_i
$$
\n
$$
s.t. \quad 0 \le \alpha_i \le C \quad i = 1 \dots n
$$
\n
$$
\sum_{i=1}^{n} \alpha_i y_i = 0
$$

- \triangleright Again, data enter optimization as inner products
- \blacktriangleright Support vectors:

$$
\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j + \sum_{i=1}^{n} \alpha_i
$$
\n
$$
s.t. \quad 0 \le \alpha_i \le C \quad i = 1 \dots n
$$
\n
$$
\sum_{i=1}^{n} \alpha_i y_i = 0
$$

- \triangleright Again, data enter optimization as inner products
- \blacktriangleright Support vectors:
	- $\bullet \ \alpha_i = 0 \Rightarrow x_i$ not a support vector

$$
\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j + \sum_{i=1}^{n} \alpha_i
$$
\n
$$
s.t. \quad 0 \le \alpha_i \le C \quad i = 1 \dots n
$$
\n
$$
\sum_{i=1}^{n} \alpha_i y_i = 0
$$

- \triangleright Again, data enter optimization as inner products
- \blacktriangleright Support vectors:
	- $\bullet \ \alpha_i = 0 \Rightarrow x_i$ not a support vector
	- $0 < \alpha_i < C \Rightarrow \xi = 0$, support vector x_i on the margin

$$
\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j + \sum_{i=1}^{n} \alpha_i
$$
\n
$$
s.t. \quad 0 \le \alpha_i \le C \quad i = 1 \dots n
$$
\n
$$
\sum_{i=1}^{n} \alpha_i y_i = 0
$$

- \triangleright Again, data enter optimization as inner products
- \blacktriangleright Support vectors:
	- \triangleright $\alpha_i = 0 \Rightarrow x_i$ not a support vector
	- $0 < \alpha_i < C \Rightarrow \xi = 0$, support vector x_i on the margin
	- $\blacktriangleright \ \alpha = C \Rightarrow x_i$ inside the margin if $\xi \leq 1,$ or on the wrong side of the decision boundary if $\xi > 1$

\blacktriangleright The discriminant function is

$$
f(x) = \sum_{i=1}^{n} \alpha_i y_i x_i^{\top} x + b
$$

\blacktriangleright The discriminant function is

$$
f(x) = \sum_{i=1}^{n} \alpha_i y_i x_i^{\top} x + b
$$

 \blacktriangleright Inner product again

 \blacktriangleright SVM dual problem only involves inner products $x_i^\top x_j$

 \blacktriangleright SVM dual problem only involves inner products $x_i^\top x_j$

$$
\blacktriangleright \text{ Let } K(x_i, x_j) = x_i^\top x_j
$$

 \blacktriangleright SVM dual problem only involves inner products $x_i^\top x_j$

$$
\blacktriangleright \text{ Let } K(x_i, x_j) = x_i^\top x_j
$$

 \blacktriangleright Replace $x_i^\top x_j$ with $K(x_i,x_j)$ everywhere

- \blacktriangleright SVM dual problem only involves inner products $x_i^\top x_j$
- In Let $K(x_i, x_j) = x_i^\top x_j$
- \blacktriangleright Replace $x_i^\top x_j$ with $K(x_i,x_j)$ everywhere
- \blacktriangleright Tautology

 \blacktriangleright Instead of $K(x_i, x_j) = x_i^\top x_j$, let K be any positive definite function

- \blacktriangleright Instead of $K(x_i, x_j) = x_i^\top x_j$, let K be any positive definite function
- ► K p.d. if $\forall n, \forall x_1 \dots x_n$ the matrix

$$
K_n = \begin{bmatrix} K(x_1, x_1) & \dots & K(x_1, x_n) \\ \vdots & \vdots \\ K(x_n, x_1) & \dots & K(x_n, x_n) \end{bmatrix}
$$

is positive semi-definite.
- \blacktriangleright Instead of $K(x_i, x_j) = x_i^\top x_j$, let K be any positive definite function
- ► K p.d. if $\forall n, \forall x_1 \dots x_n$ the matrix

$$
K_n = \begin{bmatrix} K(x_1, x_1) & \dots & K(x_1, x_n) \\ \vdots & \vdots \\ K(x_n, x_1) & \dots & K(x_n, x_n) \end{bmatrix}
$$

is positive semi-definite.

► K_n positive semi-definite if $\forall \mathbf{z} = (z_1, \dots, z_n)^\top \in \mathbb{R}^n$,

$$
\mathbf{z}^\top K_n \mathbf{z} \ge 0
$$

P.d. K examples:

 \blacktriangleright Linear kernel

$$
k(x_i, x_j) = x_i^{\top} x_j
$$

- P.d. K examples:
	- \blacktriangleright Linear kernel

$$
k(x_i, x_j) = x_i^{\top} x_j
$$

 \blacktriangleright Polynomial kernel

$$
k(x_i, x_j) = (1 + x_i^\top x_j)^p
$$

- P.d. K examples:
	- \blacktriangleright Linear kernel

$$
k(x_i, x_j) = x_i^{\top} x_j
$$

 \blacktriangleright Polynomial kernel

$$
k(x_i, x_j) = (1 + x_i^\top x_j)^p
$$

▶ Radial Basis Function (RBF) kernel

$$
k(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)
$$

 \triangleright SVM dual problem can use any p.d. K (kernelize)

- \triangleright SVM dual problem can use any p.d. K (kernelize)
- **Fig.** There exists a feature mapping $\phi()$ such that $K(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$

- SVM dual problem can use any p.d. K (kernelize)
- **Figure 1** There exists a feature mapping $\phi()$ such that $K(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$
	- \blacktriangleright ϕ () may not be finite dimensional

- SVM dual problem can use any p.d. K (kernelize)
- **Fig.** There exists a feature mapping $\phi()$ such that $K(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$
	- \blacktriangleright ϕ () may not be finite dimensional
	- \blacktriangleright ϕ () may not be unique

- SVM dual problem can use any p.d. K (kernelize)
- **Fig.** There exists a feature mapping $\phi()$ such that $K(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$
	- \blacktriangleright ϕ () may not be finite dimensional
	- \blacktriangleright ϕ () may not be unique
- \triangleright What does the kernel trick buy us?

$$
\bullet \ x_1 = -1(+), x_2 = 0(-), x_3 = 1(+)
$$

$$
\blacktriangleright x_1 = -1(+), x_2 = 0(-), x_3 = 1(+)
$$

 \blacktriangleright Not a linearly separable dataset

$$
\blacktriangleright x_1 = -1(+), x_2 = 0(-), x_3 = 1(+)
$$

- \triangleright Not a linearly separable dataset
- \blacktriangleright But we can map x to \mathbb{R}^3

$$
\phi(x) = (1, \sqrt{2}x, x^2)^\top
$$

and separate them with a hyperplane

$$
\blacktriangleright x_1 = -1(+), x_2 = 0(-), x_3 = 1(+)
$$

- \triangleright Not a linearly separable dataset
- \blacktriangleright But we can map x to \mathbb{R}^3

$$
\phi(x) = (1, \sqrt{2}x, x^2)^\top
$$

and separate them with a hyperplane

 \triangleright Non-linear decision boundary in the original space

$$
\blacktriangleright x_1 = -1(+), x_2 = 0(-), x_3 = 1(+)
$$

- \triangleright Not a linearly separable dataset
- \blacktriangleright But we can map x to \mathbb{R}^3

$$
\phi(x) = (1, \sqrt{2}x, x^2)^\top
$$

and separate them with a hyperplane

- \triangleright Non-linear decision boundary in the original space
- \blacktriangleright Equivalently, we used a kernel

$$
K(x_i, x_j) = \phi(x_i)^{\top} \phi(x_j) = (1 + x_i x_j)^2
$$

in linear SVM without slack variables.

Outline

[Graphical Models](#page-2-0)

[Probabilistic Inference](#page-3-0) [Directed vs. Undirected Graphical Models](#page-37-0) [Inference](#page-103-0) [Parameter Estimation](#page-206-0)

[Kernel Methods](#page-238-0)

[Support Vector Machines](#page-250-0) [Kernel PCA](#page-302-0) [Reproducing Kernel Hilbert Spaces](#page-341-0)

Summary of the kernel trick:

 \blacktriangleright data as inner products

- \blacktriangleright data as inner products
- \blacktriangleright p.d. K kernel

- \blacktriangleright data as inner products
- \blacktriangleright p.d. K kernel
- \blacktriangleright induced feature map $\phi()$ such that $K(x_i,x_j) = \phi(x_i)^\top \phi(x_j)$

- \blacktriangleright data as inner products
- \blacktriangleright p.d. K kernel
- \blacktriangleright induced feature map $\phi()$ such that $K(x_i,x_j) = \phi(x_i)^\top \phi(x_j)$
- \triangleright choosing the kernel K equivalent to feature engineering

- \blacktriangleright data as inner products
- \blacktriangleright p.d. K kernel
- \blacktriangleright induced feature map $\phi()$ such that $K(x_i,x_j) = \phi(x_i)^\top \phi(x_j)$
- \blacktriangleright choosing the kernel K equivalent to feature engineering
- \blacktriangleright many algorithms can be kernelized

 \blacktriangleright Unsupervised learning

- \blacktriangleright Unsupervised learning
- ► Given $x_1 \dots x_n \in \mathbb{R}^d$, finds directions of maximum spread

- \blacktriangleright Unsupervised learning
- ► Given $x_1 \dots x_n \in \mathbb{R}^d$, finds directions of maximum spread

 \blacktriangleright Centering data:

$$
x_i \leftarrow x_i - \bar{x}
$$

where $\bar{x} = \frac{1}{n}$ $\frac{1}{n} \sum_j x_j$

- \blacktriangleright Unsupervised learning
- ► Given $x_1 \dots x_n \in \mathbb{R}^d$, finds directions of maximum spread
- \blacktriangleright Centering data:

$$
x_i \leftarrow x_i - \bar{x}
$$

where $\bar{x} = \frac{1}{n}$ $\frac{1}{n} \sum_j x_j$

 $\blacktriangleright d \times d$ sample covariance matrix

$$
C = \frac{1}{n} \sum_i x_i x_i^\top
$$

 \blacktriangleright Eigendecomposition

$$
C = U \Lambda U^{\top} = \sum_{j=1}^d \lambda_j u_j u_j^{\top}
$$

\blacktriangleright Eigendecomposition

$$
C = U \Lambda U^{\top} = \sum_{j=1}^{d} \lambda_j u_j u_j^{\top}
$$

Eigenvalues $\lambda_1 \geq \ldots \geq \lambda_d \geq 0$ the variances

\blacktriangleright Eigendecomposition

$$
C = U \Lambda U^\top = \sum_{j=1}^d \lambda_j u_j u_j^\top
$$

- ► Eigenvalues $\lambda_1 \geq \ldots \geq \lambda_d \geq 0$ the variances
- Eigenvectors $u_1 \ldots u_d$ the principal components with decreasing importance

$$
Cu_j = \lambda_j u_j, \quad j = 1 \dots d
$$

\blacktriangleright Eigendecomposition

$$
C = U \Lambda U^\top = \sum_{j=1}^d \lambda_j u_j u_j^\top
$$

- ► Eigenvalues $\lambda_1 \geq \ldots \geq \lambda_d \geq 0$ the variances
- Eigenvectors $u_1 \ldots u_d$ the principal components with decreasing importance

$$
Cu_j = \lambda_j u_j, \quad j = 1 \dots d
$$

 $\blacktriangleright\ u_1 \ldots u_d$ orthonormal basis of \mathbb{R}^d , rotated axes

Dimension reduction: project to the top $k \leq d$ directions

- ▶ Dimension reduction: project to the top $k \le d$ directions
- If Uk the first k columns of $U = [u_1 | u_2 | \dots | u_d]$

- ▶ Dimension reduction: project to the top $k \le d$ directions
- If U_k the first k columns of $U = [u_1 | u_2 | \dots | u_d]$
- $\blacktriangleright\ x\in\mathbb{R}^d$ projected to \mathbb{R}^k by

$$
U_k^\top x = \begin{bmatrix} u_1^\top x \\ \vdots \\ u_k^\top x \end{bmatrix}
$$

- ▶ Dimension reduction: project to the top $k \le d$ directions
- If U_k the first k columns of $U = [u_1 | u_2 | \dots | u_d]$
- $\blacktriangleright\ x\in\mathbb{R}^d$ projected to \mathbb{R}^k by

$$
U_k^\top x = \begin{bmatrix} u_1^\top x \\ \vdots \\ u_k^\top x \end{bmatrix}
$$

 $\blacktriangleright U_k$ minimizes training set ℓ_2 -error among rank-k projections

$$
\sum_{i=1}^{n} \|x_i - U_k^{\top} x_i\|_2^2
$$

- ▶ Dimension reduction: project to the top $k \le d$ directions
- If U_k the first k columns of $U = [u_1 | u_2 | \dots | u_d]$
- $\blacktriangleright\ x\in\mathbb{R}^d$ projected to \mathbb{R}^k by

$$
U_k^\top x = \begin{bmatrix} u_1^\top x \\ \vdots \\ u_k^\top x \end{bmatrix}
$$

 $\blacktriangleright U_k$ minimizes training set ℓ_2 -error among rank-k projections

$$
\sum_{i=1}^{n} \|x_i - U_k^{\top} x_i\|_2^2
$$

 \blacktriangleright So far PCA with feature vectors in \mathbb{R}^d . Next: PCA with inner products

PCA with inner products

$$
\blacktriangleright \text{ For } j = 1 \dots d
$$

$$
Cu_j = \lambda_j u_j
$$

$$
\frac{1}{n} \sum_{i=1}^n x_i x_i^\top u_j = \lambda_j u_j
$$

$$
\sum_{i=1}^n \frac{(x_i^\top u_j)}{n \lambda_j} x_i = u_j
$$

PCA with inner products

For
$$
j = 1...d
$$

$$
Cu_j = \lambda_j u_j
$$

$$
\frac{1}{n} \sum_{i=1}^n x_i x_i^\top u_j = \lambda_j u_j
$$

$$
\sum_{i=1}^n \frac{(x_i^\top u_j)}{n \lambda_j} x_i = u_j
$$

Any u_j can be written in the form

$$
u_j = \sum_{i=1}^n \alpha_{ji} x_i
$$

PCA with inner products

For
$$
j = 1...d
$$

$$
Cu_j = \lambda_j u_j
$$

$$
\frac{1}{n} \sum_{i=1}^n x_i x_i^\top u_j = \lambda_j u_j
$$

$$
\sum_{i=1}^n \frac{(x_i^\top u_j)}{n \lambda_j} x_i = u_j
$$

Any u_i can be written in the form

$$
u_j = \sum_{i=1}^n \alpha_{ji} x_i
$$

 \blacktriangleright $\alpha_{ji} \in \mathbb{R}$, value not obvious (involving u_j)
$\blacktriangleright\ n\times n$ matrix K with $K_{ij} = x_i^\top x_j$

 $\blacktriangleright\ n\times n$ matrix K with $K_{ij} = x_i^\top x_j$

 $\blacktriangleright~\alpha_j=(\alpha_{j1},\ldots,\alpha_{jn})^\top$ satisfy the eigenvalue equation

$$
K\alpha_j = n\lambda_j \alpha_j
$$

Why?

$$
C u_j = \lambda_j u_j
$$

\n
$$
x_i^\top C u_j = x_i^\top \lambda_j u_j, \quad i = 1 \dots n
$$

\n
$$
x_i^\top \left(\frac{1}{n} \sum_{k=1}^n x_k x_k^\top\right) \left(\sum_{m=1}^n \alpha_{jm} x_m\right) = x_i^\top \lambda_j \sum_{m=1}^n \alpha_{jm} x_m
$$

\n
$$
\frac{1}{n} \sum_{k=1}^n \sum_{m=1}^n \alpha_{jm} x_i^\top x_k x_k^\top x_m = \sum_{m=1}^n \lambda_j \alpha_{jm} x_i^\top x_m
$$

\n
$$
\frac{1}{n} \sum_{k=1}^n \sum_{m=1}^n \alpha_{jm} K_{ik} K_{km} = \sum_{m=1}^n \lambda_j \alpha_{jm} K_{im}
$$

\n
$$
\frac{1}{n} K_i K \alpha_j = \lambda_j K_i \alpha_j
$$

\n
$$
K \alpha_j = \lambda_j K \alpha_j
$$

\n
$$
K \alpha_j = n \lambda_j \alpha_j
$$

assuming $n \le d$ and K invertible 101/123

$$
\bullet \ \alpha_j = (\alpha_{j1}, \dots, \alpha_{jn})^\top \text{ satisfy the eigenvalue equation}
$$

 $K\alpha_j = n\lambda_j\alpha_j$

- \blacktriangleright $\alpha_j = (\alpha_{j1}, \ldots, \alpha_{jn})^\top$ satisfy the eigenvalue equation $K\alpha_j = n\lambda_j\alpha_j$
- \blacktriangleright Norm of α_i is also fixed:

$$
||u_j|| = 1
$$

\n
$$
u_j^{\top} u_j = 1
$$

\n
$$
\sum_{k,m=1}^n \alpha_{jk} x_k^{\top} x_m \alpha_{jm} = 1
$$

\n
$$
\sum_{k,m=1}^n \alpha_{jk} K_{km} \alpha_{jm} = 1
$$

\n
$$
\alpha_j^{\top} K \alpha_j = 1
$$

\n
$$
\alpha_j^{\top} n \lambda_j \alpha_j = 1
$$

\n
$$
||\alpha_j|| = \sqrt{\frac{1}{n \lambda_j}}
$$

Compute $\alpha_1, \ldots, \alpha_k$ by solving the eigenvalue equation (k largest eigenvalues)

- **Compute** $\alpha_1, \ldots, \alpha_k$ by solving the eigenvalue equation (k largest eigenvalues)
- Project (new) point x to top $k \leq n$ directions

$$
\begin{bmatrix} u_1^\top x \\ \vdots \\ u_k^\top x \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n \alpha_{1i} x_i^\top x \\ \vdots \\ \sum_{i=1}^n \alpha_{ki} x_i^\top x \end{bmatrix} = \begin{bmatrix} \alpha_1^\top K_x \\ \vdots \\ \alpha_k^\top K_x \end{bmatrix}
$$

where $K_x = (K(x_1, x), \ldots, K(x_n, x))^{\top}$ and $K(x_i, x) = x_i^{\top} x$

Kernel PCA

Perhaps replacing $K_{ij} = x_i^\top x_j$ with any kernel $K(x_i, x_j)$?

Equivalently, we are doing standard PCA in $\phi(x)$ space

Kernel PCA

Perhaps replacing $K_{ij} = x_i^\top x_j$ with any kernel $K(x_i, x_j)$?

- Equivalently, we are doing standard PCA in $\phi(x)$ space
- But... is the training set centered $\sum_{i=1}^{n} \phi(x_i) = 0$?

Kernel PCA

Perhaps replacing $K_{ij} = x_i^\top x_j$ with any kernel $K(x_i, x_j)$?

- Equivalently, we are doing standard PCA in $\phi(x)$ space
- But... is the training set centered $\sum_{i=1}^{n} \phi(x_i) = 0$?
- \blacktriangleright Need to center K

Centering the kernel for training

$$
\phi'(x_i) = \phi(x_i) - \frac{1}{n} \sum_{k=1}^n \phi(x_k)
$$

$$
\phi'(x_i)^\top \phi'(x_j) = \left(\phi(x_i) - \frac{1}{n} \sum_{k=1}^n \phi(x_k) \right)^\top \left(\phi(x_j) - \frac{1}{n} \sum_{k=1}^n \phi(x_k) \right)
$$

$$
K'_{ij} = K_{ij} - \frac{1}{n} \sum_{k=1}^n K_{jk} - \frac{1}{n} \sum_{k=1}^n K_{ik} + \frac{1}{n^2} \sum_{k,m=1}^n K_{km}
$$

Finding α_i by solving the eigenvalue problem

$$
K'\alpha_j = n\lambda_j\alpha_j
$$

► New point x needs to be centered $\phi'(x) = \phi(x) - \sum_{i=1}^{n} \phi(x_i)$

- ► New point x needs to be centered $\phi'(x) = \phi(x) \sum_{i=1}^{n} \phi(x_i)$
- \blacktriangleright Note x not involved in computing the training set mean

- ► New point x needs to be centered $\phi'(x) = \phi(x) \sum_{i=1}^{n} \phi(x_i)$
- \triangleright Note x not involved in computing the training set mean
- \blacktriangleright Recall j -th projection is $\alpha_j^\top K'_x$

- ► New point x needs to be centered $\phi'(x) = \phi(x) \sum_{i=1}^{n} \phi(x_i)$
- \triangleright Note x not involved in computing the training set mean
- \blacktriangleright Recall j -th projection is $\alpha_j^\top K'_x$

$$
\blacktriangleright K'_x = (K'(x_1, x), \dots, K'(x_n, x))^\top
$$

- ► New point x needs to be centered $\phi'(x) = \phi(x) \sum_{i=1}^{n} \phi(x_i)$
- \triangleright Note x not involved in computing the training set mean
- \blacktriangleright Recall j -th projection is $\alpha_j^\top K'_x$

$$
\blacktriangleright K'_x = (K'(x_1, x), \dots, K'(x_n, x))^\top
$$

- ► New point x needs to be centered $\phi'(x) = \phi(x) \sum_{i=1}^{n} \phi(x_i)$
- \triangleright Note x not involved in computing the training set mean
- \blacktriangleright Recall j -th projection is $\alpha_j^\top K'_x$
- $K'_x = (K'(x_1, x), \ldots, K'(x_n, x))^\top$

$$
K'(x_i, x) = K(x_i, x) - \frac{1}{n} \sum_{k=1}^{n} K(x_k, x) - \frac{1}{n} \sum_{k=1}^{n} K_{ik} + \frac{1}{n^2} \sum_{k,m=1}^{n} K_{km}
$$

Outline

[Graphical Models](#page-2-0)

[Probabilistic Inference](#page-3-0) [Directed vs. Undirected Graphical Models](#page-37-0) [Inference](#page-103-0) [Parameter Estimation](#page-206-0)

[Kernel Methods](#page-238-0)

[Support Vector Machines](#page-250-0) [Kernel PCA](#page-302-0) [Reproducing Kernel Hilbert Spaces](#page-341-0) Let F be a vector space over R. A function $\|\cdot\|_{\mathcal{F}} : \mathcal{F} \mapsto \mathbb{R}_{\geq 0}$ is a norm if

$$
\blacktriangleright \|f\|_{\mathcal{F}} = 0 \text{ iff } f = 0 \text{ (separation)}
$$

Let F be a vector space over R. A function $\|\cdot\|_{\mathcal{F}} : \mathcal{F} \mapsto \mathbb{R}_{\geq 0}$ is a norm if

$$
\blacktriangleright \|f\|_{\mathcal{F}} = 0 \text{ iff } f = 0 \text{ (separation)}
$$

$$
\blacktriangleright \|af\|_{\mathcal{F}} = |a| \|f\|_{\mathcal{F}} \text{ (positive homogeneity)}
$$

Let F be a vector space over R. A function $\|\cdot\|_{\mathcal{F}} : \mathcal{F} \mapsto \mathbb{R}_{\geq 0}$ is a norm if

$$
\blacktriangleright \|f\|_{\mathcal{F}} = 0 \text{ iff } f = 0 \text{ (separation)}
$$

$$
\blacktriangleright \|af\|_{\mathcal{F}} = |a| \|f\|_{\mathcal{F}} \text{ (positive homogeneity)}
$$

$$
\blacktriangleright \|f+g\|_{\mathcal{F}} \le \|f\|_{\mathcal{F}} + \|g\|_{\mathcal{F}} \text{ (triangle inequality)}
$$

Example

 \blacktriangleright Let μ be a positive measure on $\mathcal{X} \subset \mathbb{R}^d$ and $p \geq 1$

Example

- \blacktriangleright Let μ be a positive measure on $\mathcal{X} \subset \mathbb{R}^d$ and $p \geq 1$
- \blacktriangleright Let $L_p(\mathcal{X}, \mu) = \big\{ f: \mathcal{X} \mapsto \mathbb{R} \text{ measurable } | \int_{\mathcal{X}} |f(x)|^p d\mu < \infty \big\}$

Example

- \blacktriangleright Let μ be a positive measure on $\mathcal{X} \subset \mathbb{R}^d$ and $p \geq 1$
- \blacktriangleright Let $L_p(\mathcal{X}, \mu) = \big\{ f: \mathcal{X} \mapsto \mathbb{R} \text{ measurable } | \int_{\mathcal{X}} |f(x)|^p d\mu < \infty \big\}$

$$
\blacktriangleright \; \|f\|_p = \left(\int_{\mathcal{X}} |f(x)|^p d\mu\right)^{\frac{1}{p}} \text{ is a norm}
$$

Cauchy sequence

A sequence $\{f_n\}_{n=1}^\infty$ of elements of a normed vector space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ is a Cauchy sequence if:

$$
\blacktriangleright \; \forall \epsilon > 0, \exists N
$$

Cauchy sequence

A sequence $\{f_n\}_{n=1}^\infty$ of elements of a normed vector space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ is a Cauchy sequence if:

$$
\blacktriangleright \; \forall \epsilon > 0, \exists N
$$

$$
\blacktriangleright \forall n, m \ge N, \|f_n - f_m\|_{\mathcal{F}} < \epsilon
$$

Convergent sequence

A sequence $\{f_n\}_{n=1}^\infty$ of elements of a normed vector space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ converges to $f \in \mathcal{F}$ if: $\blacktriangleright \forall \epsilon > 0, \exists N$

Convergent sequence

A sequence $\{f_n\}_{n=1}^\infty$ of elements of a normed vector space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ converges to $f \in \mathcal{F}$ if:

$$
\blacktriangleright \; \forall \epsilon > 0, \exists N
$$

$$
\blacktriangleright \forall n \ge N, \|f_n - f\|_{\mathcal{F}} < \epsilon
$$

A sequence $\{f_n\}_{n=1}^\infty$ of elements of a normed vector space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ converges to $f \in \mathcal{F}$ if:

- $\blacktriangleright \forall \epsilon > 0, \exists N$
- $\blacktriangleright \forall n \geq N, ||f_n f||_{\mathcal{F}} < \epsilon$
- If must be in F

 \triangleright Convergent \Rightarrow Cauchy

- \triangleright Convergent \Rightarrow Cauchy
- \blacktriangleright Cauchy may not converge (in \mathcal{F})

- \triangleright Convergent \Rightarrow Cauchy
- **Cauchy may not converge (in F)**
- Example: $C[0, 1]$ bounded continuous functions on $[0, 1]$

- \triangleright Convergent \Rightarrow Cauchy
- \blacktriangleright Cauchy may not converge (in \mathcal{F})
- Example: $C[0, 1]$ bounded continuous functions on $[0, 1]$

$$
\blacktriangleright \ \|f\| = \sqrt{\int_0^1 f(x)^2 dx}
$$

- \triangleright Convergent \Rightarrow Cauchy
- **Cauchy may not converge (in F)**
- Example: $C[0, 1]$ bounded continuous functions on $[0, 1]$

$$
\blacktriangleright \ \|f\| = \sqrt{\int_0^1 f(x)^2 dx}
$$

 \blacktriangleright $f_n(x) = 0$ for $x \in [0, \frac{1}{2} - \frac{1}{n}]$ $\frac{1}{n}$], 1 otherwise

- \triangleright Convergent \Rightarrow Cauchy
- \blacktriangleright Cauchy may not converge (in F)
- Example: $C[0, 1]$ bounded continuous functions on $[0, 1]$

$$
\blacktriangleright \ \|f\| = \sqrt{\int_0^1 f(x)^2 dx}
$$

- \blacktriangleright $f_n(x) = 0$ for $x \in [0, \frac{1}{2} \frac{1}{n}]$ $\frac{1}{n}$], 1 otherwise
- ► ${f_n(x)}$ is Cauchy, but not convergent (limit $\notin C[0, 1]$)

Banach space

 \triangleright One may complete the vector space by adding the limits of all Cauchy sequences
Banach space

- \triangleright One may complete the vector space by adding the limits of all Cauchy sequences
- \triangleright A Banach space is a complete normed space

Banach space

- \triangleright One may complete the vector space by adding the limits of all Cauchy sequences
- \triangleright A Banach space is a complete normed space

\blacktriangleright Example:

 $L_p(\mathcal{X}, \mu) = \left\{ f : \mathcal{X} \mapsto \mathbb{R} \text{ measurable } | \int_{\mathcal{X}} |f(x)|^p d\mu < \infty \right\}$ with norm $\|f\|_p = \left(\int_{\mathcal{X}} |f(x)|^p d\mu\right)^{\frac{1}{p}}$ is a Banach space

In Let F be a vector space over $\mathbb R$. A function $\langle \cdot, \cdot \rangle_{\mathcal{F}} : \mathcal{F} \times \mathcal{F} \mapsto \mathbb{R}$ is an inner product if

- In Let F be a vector space over $\mathbb R$. A function $\langle \cdot, \cdot \rangle_{\mathcal{F}} : \mathcal{F} \times \mathcal{F} \mapsto \mathbb{R}$ is an inner product if
	- \bullet $\langle af_1 + bf_2, g \rangle_{\mathcal{F}} = a \langle f_1, g \rangle_{\mathcal{F}} + b \langle f_2, g \rangle_{\mathcal{F}}$

In Let F be a vector space over $\mathbb R$. A function $\langle \cdot, \cdot \rangle_{\mathcal{F}} : \mathcal{F} \times \mathcal{F} \mapsto \mathbb{R}$ is an inner product if \bullet $\langle af_1 + bf_2, g \rangle_{\mathcal{F}} = a \langle f_1, g \rangle_{\mathcal{F}} + b \langle f_2, g \rangle_{\mathcal{F}}$

$$
\langle f, g \rangle_{\mathcal{F}} = \langle g, f \rangle_{\mathcal{F}}
$$

\n- Let
$$
\mathcal F
$$
 be a vector space over $\mathbb R$. A function $\langle \cdot, \cdot \rangle_{\mathcal F} : \mathcal F \times \mathcal F \mapsto \mathbb R$ is an inner product if
\n- $\langle af_1 + bf_2, g \rangle_{\mathcal F} = a \langle f_1, g \rangle_{\mathcal F} + b \langle f_2, g \rangle_{\mathcal F}$
\n

$$
\blacktriangleright \langle f, g \rangle_{\mathcal{F}} = \langle g, f \rangle_{\mathcal{F}}
$$

$$
\blacktriangleright \langle f, f \rangle_{\mathcal{F}} \ge 0 \text{ with 0 iff } f = 0
$$

In Let F be a vector space over $\mathbb R$. A function $\langle \cdot, \cdot \rangle_{\mathcal{F}} : \mathcal{F} \times \mathcal{F} \mapsto \mathbb{R}$ is an inner product if

$$
\blacktriangleright \langle af_1 + bf_2, g \rangle_{\mathcal{F}} = a \langle f_1, g \rangle_{\mathcal{F}} + b \langle f_2, g \rangle_{\mathcal{F}}
$$

$$
\blacktriangleright \langle f, g \rangle_{\mathcal{F}} = \langle g, f \rangle_{\mathcal{F}}
$$

$$
\blacktriangleright \langle f, f \rangle_{\mathcal{F}} \ge 0 \text{ with } 0 \text{ iff } f = 0
$$

 \blacktriangleright An inner product space is a normed space with $\|f\|=\sqrt{\langle f,f\rangle}$

 \triangleright A Hilbert space is a complete inner product space, i.e. a Banach space with an inner product

Hilbert space

- \triangleright A Hilbert space is a complete inner product space, i.e. a Banach space with an inner product
- Example: $L_2(\mathcal{X}, \mu)$ is a Hilbert space with inner product

$$
\langle f, g \rangle = \int_{\mathcal{X}} f(x)g(x) d\mu
$$

In Let F, G be normed vector spaces over $\mathbb R$

- In Let F, G be normed vector spaces over $\mathbb R$
- A function $A : \mathcal{F} \mapsto \mathcal{G}$ is a linear operator iff

- In Let F, G be normed vector spaces over $\mathbb R$
- A function $A : \mathcal{F} \mapsto \mathcal{G}$ is a linear operator iff

$$
\blacktriangleright A(af) = aA(f), \ \forall a \in R, f \in \mathcal{F}
$$

- In Let F, G be normed vector spaces over $\mathbb R$
- A function $A: \mathcal{F} \mapsto \mathcal{G}$ is a linear operator iff

$$
\blacktriangleright A(af) = aA(f), \ \forall a \in R, f \in \mathcal{F}
$$

 $A(f_1 + f_2) = A(f_1) + A(f_2), \ \forall f_1, f_2 \in \mathcal{F}$

- Exect F, G be normed vector spaces over $\mathbb R$
- A function $A: \mathcal{F} \mapsto \mathcal{G}$ is a linear operator iff

$$
\blacktriangleright A(af) = aA(f), \ \forall a \in R, f \in \mathcal{F}
$$

- $A(f_1 + f_2) = A(f_1) + A(f_2), \forall f_1, f_2 \in \mathcal{F}$
- \triangleright When $\mathcal{G} = \mathbb{R}$, A is a linear functional

- Exect F, G be normed vector spaces over $\mathbb R$
- A function $A : \mathcal{F} \mapsto \mathcal{G}$ is a linear operator iff

$$
\blacktriangleright A(af) = aA(f), \ \forall a \in R, f \in \mathcal{F}
$$

- $A(f_1 + f_2) = A(f_1) + A(f_2), \forall f_1, f_2 \in \mathcal{F}$
- \triangleright When $\mathcal{G} = \mathbb{R}$, A is a linear functional

$$
\blacktriangleright \text{ Example: For a fixed } h \in \mathcal{F},
$$

$$
A_h(f) = \langle f, h \rangle_{\mathcal{F}}
$$

is a linear functional

Continuity

\blacktriangleright $A : \mathcal{F} \mapsto \mathcal{G}$ is continuous at $f_0 \in \mathcal{F}$, if for every $\epsilon > 0$, $\exists \delta$ s.t. $||f - f_0||_{\mathcal{F}} < \delta \Rightarrow ||Af - Af_0||_{\mathcal{G}} < \epsilon$

Continuity

- \blacktriangleright $A : \mathcal{F} \mapsto \mathcal{G}$ is continuous at $f_0 \in \mathcal{F}$, if for every $\epsilon > 0$, $\exists \delta$ s.t. $||f - f_0||_{\mathcal{F}} < \delta \Rightarrow ||Af - Af_0||_{\mathcal{G}} < \epsilon$
- A is continuous on F if it is continuous at all $f \in F$

In a Hilbert space F , all continuous linear functionals are of the form $\langle \cdot, g \rangle_{\mathcal{F}}$, for some $g \in \mathcal{F}$.

In Let X be a non-empty set

- lacktriangleright Let $\mathcal X$ be a non-empty set
- In Let H be a Hilbert space of functions $f: \mathcal{X} \mapsto \mathbb{R}$

- lacktriangleright Let $\mathcal X$ be a non-empty set
- ► Let H be a Hilbert space of functions $f: \mathcal{X} \mapsto \mathbb{R}$
- ► For a fixed $x \in \mathcal{X}$ the functional $\delta_x : \mathcal{H} \mapsto \mathbb{R}$ defined as

$$
\delta_x(f) = f(x)
$$

is the Dirac evaluation functional at x

- lacktriangleright Let $\mathcal X$ be a non-empty set
- In Let H be a Hilbert space of functions $f: \mathcal{X} \mapsto \mathbb{R}$
- ► For a fixed $x \in \mathcal{X}$ the functional $\delta_x : \mathcal{H} \mapsto \mathbb{R}$ defined as

$$
\delta_x(f) = f(x)
$$

is the Dirac evaluation functional at x

 \blacktriangleright δ_x is linear:

$$
\delta_x(af+bg) = (af+bg)(x) = af(x)+bg(x) = a\delta_x(f) + b\delta_x(g)
$$

- lacktriangleright Let $\mathcal X$ be a non-empty set
- In Let H be a Hilbert space of functions $f: \mathcal{X} \mapsto \mathbb{R}$
- ► For a fixed $x \in \mathcal{X}$ the functional $\delta_x : \mathcal{H} \mapsto \mathbb{R}$ defined as

$$
\delta_x(f) = f(x)
$$

is the Dirac evaluation functional at x

 \blacktriangleright δ_x is linear:

$$
\delta_x(af+bg) = (af+bg)(x) = af(x)+bg(x) = a\delta_x(f) + b\delta_x(g)
$$

If δ_x continuous?

- lacktriangleright Let $\mathcal X$ be a non-empty set
- In Let H be a Hilbert space of functions $f: \mathcal{X} \mapsto \mathbb{R}$
- ► For a fixed $x \in \mathcal{X}$ the functional $\delta_x : \mathcal{H} \mapsto \mathbb{R}$ defined as

$$
\delta_x(f) = f(x)
$$

is the Dirac evaluation functional at x

 \blacktriangleright δ_x is linear:

$$
\delta_x(af+bg) = (af+bg)(x) = af(x)+bg(x) = a\delta_x(f) + b\delta_x(g)
$$

- If δ_x continuous?
- \blacktriangleright . . Not necessarily

A Hilbert space H of functions $f: \mathcal{X} \mapsto \mathbb{R}$ defined on a non-empty set X is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all $x \in \mathcal{X}$

- A Hilbert space H of functions $f: \mathcal{X} \mapsto \mathbb{R}$ defined on a non-empty set $\mathcal X$ is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all $x \in \mathcal{X}$
- ► The reproducing kernel of H is a function $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ if it satisfies

- A Hilbert space H of functions $f: \mathcal{X} \mapsto \mathbb{R}$ defined on a non-empty set $\mathcal X$ is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all $x \in \mathcal{X}$
- ▶ The reproducing kernel of H is a function $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ if it satisfies
	- $\blacktriangleright k(\cdot, x) \in \mathcal{H}, \forall x \in \mathcal{X}$

- A Hilbert space H of functions $f: \mathcal{X} \mapsto \mathbb{R}$ defined on a non-empty set $\mathcal X$ is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all $x \in \mathcal{X}$
- ▶ The reproducing kernel of H is a function $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ if it satisfies

$$
\blacktriangleright \ k(\cdot, x) \in \mathcal{H}, \forall x \in \mathcal{X}
$$

 \blacktriangleright $\langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x), \forall f \in \mathcal{H}, x \in \mathcal{X}$ (reproducing)

- A Hilbert space H of functions $f: \mathcal{X} \mapsto \mathbb{R}$ defined on a non-empty set $\mathcal X$ is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all $x \in \mathcal{X}$
- ► The reproducing kernel of H is a function $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ if it satisfies

$$
\blacktriangleright \ k(\cdot, x) \in \mathcal{H}, \forall x \in \mathcal{X}
$$

$$
\quad \blacktriangleright \ \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x), \forall f \in \mathcal{H}, x \in \mathcal{X} \ \text{(reproducing)}
$$

 \triangleright Obviously,

$$
\langle k(\cdot,y),k(\cdot,x)\rangle_{\mathcal{H}}=k(x,y)
$$

- A Hilbert space H of functions $f: \mathcal{X} \mapsto \mathbb{R}$ defined on a non-empty set $\mathcal X$ is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all $x \in \mathcal{X}$
- ▶ The reproducing kernel of H is a function $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ if it satisfies

$$
\blacktriangleright k(\cdot, x) \in \mathcal{H}, \forall x \in \mathcal{X}
$$

$$
\quad \blacktriangleright \ \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x), \forall f \in \mathcal{H}, x \in \mathcal{X} \ \text{(reproducing)}
$$

 \triangleright Obviously,

$$
\langle k(\cdot,y),k(\cdot,x)\rangle_{\mathcal{H}}=k(x,y)
$$

 \triangleright H is an RKHS (i.e. its evaluation functionals δ_x are continuous) iff H has a reproducing kernel

Positive definiteness

A symmetric function $h: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive definite if $\forall n, \forall a \in \mathbb{R}^n, \forall x_1 \dots x_n \in \mathcal{X},$

$$
a^\top H a \ge 0
$$

where H is the $n\times n$ matrix with $H_{ij}=h(x_i,x_j)$

Positive definiteness

A symmetric function $h: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive definite if $\forall n, \forall a \in \mathbb{R}^n, \forall x_1 \dots x_n \in \mathcal{X},$

$$
a^\top H a \ge 0
$$

where H is the $n\times n$ matrix with $H_{ij}=h(x_i,x_j)$

 \blacktriangleright Reproducing kernels are positive definite

Positive definiteness

A symmetric function $h: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive definite if $\forall n, \forall a \in \mathbb{R}^n, \forall x_1 \dots x_n \in \mathcal{X},$

$$
a^\top H a \ge 0
$$

where H is the $n\times n$ matrix with $H_{ij}=h(x_i,x_j)$

- \blacktriangleright Reproducing kernels are positive definite
- In Let $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ be positive definite. There is a unique RKHS $\mathcal{H} = \{f : \mathcal{X} \mapsto \mathbb{R}\}\$ with reproducing kernel k [Moore-Aronszajn]

Representer Theorem

 \blacktriangleright Let X be a non-empty set

Representer Theorem

- Exect X be a non-empty set
- Exect k be a positive definite kernel on $\mathcal{X} \times \mathcal{X}$

Representer Theorem

- lacktriangleright Let $\mathcal X$ be a non-empty set
- Exect k be a positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- Exected \mathcal{H}_k be the corresponding RKHS
- lacktriangleright Let $\mathcal X$ be a non-empty set
- In Let k be a positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- Exected H_k be the corresponding RKHS
- ► Let training data be $(x_1, y_1) \dots (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$

- lacktriangleright Let $\mathcal X$ be a non-empty set
- In Let k be a positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- Exected H_k be the corresponding RKHS
- ► Let training data be $(x_1, y_1) \dots (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$
- ► Let the regularizer function $\Omega : \mathbb{R}_{\geq 0} \mapsto \mathbb{R}$ be strictly monotonically increasing

- lacktriangleright Let $\mathcal X$ be a non-empty set
- In Let k be a positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- In Let \mathcal{H}_k be the corresponding RKHS
- ► Let training data be $(x_1, y_1) \dots (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$
- ► Let the regularizer function $\Omega : \mathbb{R}_{\geq 0} \mapsto \mathbb{R}$ be strictly monotonically increasing
- \blacktriangleright Let the empirical risk function \hat{R} be arbitrary

- lacktriangleright Let $\mathcal X$ be a non-empty set
- In Let k be a positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- In Let \mathcal{H}_k be the corresponding RKHS
- ► Let training data be $(x_1, y_1) \dots (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$
- ► Let the regularizer function $\Omega : \mathbb{R}_{\geq 0} \mapsto \mathbb{R}$ be strictly monotonically increasing
- \blacktriangleright Let the empirical risk function \hat{R} be arbitrary
- \blacktriangleright Any minimizer

 $\argmin \hat{R}((x_1, y_1, f(x_1)), \ldots, (x_n, y_n, f(x_n))) + \Omega(||f||)$ $f \in \mathcal{H}_k$

admits the form

$$
\sum_{i=1}^n \alpha_i k(\cdot, x_i)
$$

Graphical Models

▶ Koller & Friedman, Probabilistic Graphical Models. MIT 2009

Graphical Models

- ▶ Koller & Friedman, Probabilistic Graphical Models. MIT 2009
- ▶ Wainwright & Jordan, Graphical Models, Exponential Families, and Variational Inference. FTML 2008

Graphical Models

- ▶ Koller & Friedman, Probabilistic Graphical Models. MIT 2009
- ▶ Wainwright & Jordan, Graphical Models, Exponential Families, and Variational Inference. FTML 2008
- \triangleright Bishop, Pattern Recognition and Machine Learning. Springer 2006.

Graphical Models

- ▶ Koller & Friedman, Probabilistic Graphical Models. MIT 2009
- ▶ Wainwright & Jordan, Graphical Models, Exponential Families, and Variational Inference. FTML 2008
- \triangleright Bishop, Pattern Recognition and Machine Learning. Springer 2006.
- Kernel Methods
	- ▶ Schölkopf & Smola, Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT 2001

Graphical Models

- ▶ Koller & Friedman, Probabilistic Graphical Models. MIT 2009
- ▶ Wainwright & Jordan, Graphical Models, Exponential Families, and Variational Inference. FTML 2008
- \triangleright Bishop, Pattern Recognition and Machine Learning. Springer 2006.

- ▶ Schölkopf & Smola, Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT 2001
- ▶ Shawe-Taylor & Cristianini, Kernel Methods for Pattern Analysis. Cambridge 2004

Graphical Models

- ▶ Koller & Friedman, Probabilistic Graphical Models. MIT 2009
- ▶ Wainwright & Jordan, Graphical Models, Exponential Families, and Variational Inference. FTML 2008
- \triangleright Bishop, Pattern Recognition and Machine Learning. Springer 2006.

- ▶ Schölkopf & Smola, Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT 2001
- ▶ Shawe-Taylor & Cristianini, Kernel Methods for Pattern Analysis. Cambridge 2004
- ▶ Dino Sejdinovic, Arthur Gretton, What is an RKHS? Online notes 2014