Machine Learning meets Networks

Jure Leskovec (@jure) Stanford University

ML & Networks

- **Machine Learning has rich history and methods for analyzing …**
	- **… tabular data**
	- **… textual data**
	- **… time series & streams**
	- **… market baskets**

Bag of features

What about relations and dependencies?

Network: A First Class Citizen

Tabular data: Node / edge attributes

Time series: Evolving network

Networks allow for modeling dependencies between parts!

Networks …are a general modeling language for complex data

Networks: Social

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Jure Leskovec (@jure) Stanford University, MLSS 2014 5

Networks: Communication

Graph of the Internet (Autonomous Systems) Power-law degrees [Faloutsos-Faloutsos-Faloutsos, 1999] Robustness [Doyle-Willinger, 2005]

Jure Leskovec (@jure) Stanford University, MLSS 2014

Networks: Media

Connections between political blogs Polarization of the network [Adamic -Glance, 2005]

Jure Leskovec (@jure) Stanford University, MLSS 2014

Networks: Infrastructure

Infrastructure and technological networks

Networks: Information

Jure Leskovec (@jure) Stanford University, MLSS 2014

Networks: Knowledge

Understand how humans navigate Wikipedia

Get an idea of how people connect concepts

[West-Leskovec, 2012]

Jure Leskovec (@jure) Stanford University, MLSS 2014

Networks: Organizations

Jure Leskovec (@jure) Stanford University, MLSS 2014 11 11 12 16 17 18 19 18 19 19 19 19 19 19 19 10 11 11 11

Networks: Economy

Bio-tech companies [Powell-White-Koput, 2002]

Jure Leskovec (@jure) Stanford University, MLSS 2014 12

Networks: Brain

Human brain has between 10 -100 billion neurons

[Sporns, 2011]

Jure Leskovec (@jure) Stanford University, MLSS 2014 13

Networks: Biology

DEHYDRO DROXY ACID DEHYDRO GLYOXYLATE NH, 1 ATE 2-OXO-MALATE
DEHYDROGENASE **GLU1** COOH L-GLUT-
AMATE VADH+H⁺ SOCITRATE
DEHYDRO-
GENASE
(NADP) ċн, **ISOCITRATE LYASE** CEPTOR-H. OXALO-2-HYDROXYGLUTAR CINATE.
DSPHOENOL-◎ A-3.5-MP **UVATE** threo-Ds $(Note 25)$ **ISOCITRATE ISOCITRATE NADP** 2-OXO-**COO** GLUTARAMATE **GLI ITAMAT** COOH 10-C-H **OCITRATE** NAD⁺ COOH DROGENASE co, OXALO-CETATI Citrate L-AMINO ACID (AMP at low
CITRATE) (ADP cycle GLUTAMINE-OXOACID **GLUTAMATE SYNTHASE** 2-OXOACID (NADPH)

Protein-Protein Interaction Networks:

Nodes: Proteins Edges: 'physical' interactions

Metabolic networks: Nodes: Metabolites and enzymes Edges: Chemical reactions

But Jure, why should I care about networks?

Networks: Why Now?

Transformation of Humanity

Online friendships [Ugander-Karrer-Backstrom-Marlow, '11]

Corporate e-mail communication [Adamic-Adar, '05]

Web: a Social and a Technological network Profound transformation of humanity:

- **How knowledge is produced and shared**
- **How people interact and communicate**

The Internet/Web turned CS into a natural science

The first computational artifact that was never designed, and hence must be approached by the *scientific method:*

- **Measurements**
- **Experiments**
- **Falsifiable theories**
- **Specialized applied mathematics**

… and a social science

The Internet/Web cannot be studied in isolation from the complex social system it enables and serves

Web is an ideal test bed for sociological analysis and experimentation

Networks: Impact

Google

Market cap: \$366 billion (1y ago it was 250b)

Cisco

Market cap: \$130 billion (1y ago it was 100b)

 Facebook Market cap: \$165 billion (1y ago it was 50b)

Networks: Impact

Intelligence and fighting (cyber) terrorism

Networks: Impact

Predicting epidemics

Real Predicted

Why Networks? Why Now?

- **Universal language for describing data**
	- **Networks** from science, nature, and technology are more similar than one would expect
- **Shared vocabulary between fields**
	- Computer Science, Social science, Physics, Economics, Statistics, Biology

Data availability (/computational challenges)

■ Web/mobile, bio, health, and medical

Impact!

Social networking, Social media, Drug design

Network!

Jure Leskovec (@jure) Stanford University, MLSS 2014 24

Network!

Jure Leskovec (@jure) Stanford University, MLSS 2014 25

Working Network Data

- **Network data brings several core machine learning methodologies into play**
	- **Working with network data is messy**
		- **Not just "wiring diagrams" but also dynamics** and (meta)-data (features, attributes)
	- **E** Computational challenges
		- **Large scale network data**
	- **Algorithmic models as vocabulary for expressing complex scientific questions**
		- **Social science, physics, biology**

Tools for Networks

- **S**tanford **N**etwork **A**nalysis **P**latform (**SNAP**) is a general purpose, high-performance system for analysis and manipulation of large networks
	- http://snap.stanford.edu
	- **Scales to massive networks with hundreds of** millions of nodes and billions of edges

SNAP software

- Snap.py for Python, SNAP C++
- Tutorial on how to use SNAP: <http://snap.stanford.edu/proj/snap-icwsm>

Snap.py Resources

- **Prebuilt packages** [for Mac OS X, Windows, Linux](http://snap.stanford.edu/snappy/index.html)
<http://snap.stanford.edu/snappy/index.html>
- **Snap.py documentation**:

<http://snap.stanford.edu/snappy/doc/index.html>

- Quick Introduction, Tutorial, Reference Manual
- **SNAP user mailing list**

<http://groups.google.com/group/snap-discuss>

Developer resources

- Software available as open source under BSD license
- GitHub repository

<https://github.com/snap-stanford/snap-python>

SNAP C++ Resources

- **Prebuilt packages [for Mac OS X, Windows, Li](http://snap.stanford.edu/snap/download.html)nux**
<http://snap.stanford.edu/snap/download.html>
-

SNAP documentation <http://snap.stanford.edu/snap/doc.html>

- Quick Introduction, User Reference Manual
- **SNAP user mailing list**

<http://groups.google.com/group/snap-discuss>

Developer resources

- **Software available as open source under BSD license**
- GitHub repository

<https://github.com/snap-stanford/snap>

■ SNAP C++ Programming Guide

Network Data

F Stanford Large Network Dataset Collection

<http://snap.stanford.edu/data>

- **Over 70 different networks and communities**
	- **Social networks:** online social networks, edges represent interactions between people
	- **Twitter and Memetracker:** Memetracker phrases, links and 467 million Tweets
	- **Citation networks:** nodes represent papers, edges represent citations
	- **Collaboration networks:** nodes represent scientists, edges represent collaborations
	- **Amazon networks :** nodes represent products and edges link commonly co-purchased products

Books & Courses

Want to learn more about networks?

F Social and Information Networks lectures:

http://cs224w.stanford.edu

• Mining Massive Datasets lectures:

http://cs246.stanford.edu

Books (fee PDFs):

Mining Massive Datasets

- [http://infolab.stanford.edu/~ullman/mmds.html](http://infolab.stanford.edu/%7Eullman/mmds.html)
- **Networks, Crowds and Markets**
	- <http://www.cs.cornell.edu/home/kleinber/networks-book>

Networks: 3 problems 1) Community detection 2) Link & Attribute prediction 3) Social media

Identifying Structure

Jure Leskovec (@jure) Stanford University, MLSS 2014

NCAA Football Network

Facebook Network

Facebook Network

Protein-Protein Interactions

Protein-Protein Interactions

Community Detection

Input:

A network

Output:

Community memberships of nodes

Cluster nodes based on network connectivity with the hope to identify sets of objects with common function, role or property.

Why is it important?

- **Community detection is a fundamental problem in network analysis allowing for:**
	- **Discovering unknown roles of proteins** [Krogan et al. '06]
	- **Identifying module boundaries** [Ahn et al. '11]
	- **Detecting missing links** [Kim, L. '12]
	- **Observing political factions in the blogosphere** [Adamic, Glance '05]
	- **Identifying functional modules** [Palla et al. '05]

Why is it hard?

- **Modeling:** Communities form **complex structures**: Non-overlapping, overlapping, hierarchically nested
- **Example Computation:** Many formulations lead to **intractable problems**
	- **For 100k node networks many methods take** days to run
- **Evaluation: Lack of ground-truth**
	- **Research relies on anecdotal manual** inspection

Non-overlapping Communities

Non-overlapping Communities

Network Adjacency matrix

Methods for non-overlapping communities…

Spectral clustering [Shi&Malik '00], Modularity [Newman '06], Block models [Holland '83], …

…define communities as well-separable clusters

What if communities overlap?

Overlapping Community Detection

Many methods for overlapping communities:

- **Mixed membership stochastic block models** [Airoldi, Blei, Feinberg, Xing, '08]
- **Link clustering** [Ahn et al. '10] [Evans et al. '09]
- **Clique percolation** [Palla et al. '05]

Jure Leskovec (@jure) Stanford University, MLSS 2014

- **Clique expansion** [Lee et al. '10]
- **Bayesian matrix factorization** [Psorakis et al. '11]

What do these methods assume about community overlaps?

Overlapping Communities

Existing methods assume that edge probability decreases with the number of shared communities

Overlapping Communities

Existing methods assume that edge probability decreases with the number of shared communities

Community Overlaps

 More communities U and V share the more likely they are linked ⇒ Community overlaps are denser

Jure Leskovec (@jure) Stanford University, MLSS 2014 48

Community Overlaps

 More communities U and V share the more likely they are linked ⇒ Community overlaps are denser

New paradigm: Communities as "tiles"

From Networks to Communities

What we have:

Community-Affiliation Graph

- **Generative model: How is a network generated from community affiliations?**
	- Later, we detect communities by fitting the model
- **Model parameters B**(*V, C, M***, {***pc***}**) **:**
	- Nodes **V**, Communities **C**, Memberships **M**
	- **Each community c has a single probability p.**

AGM: Generative Process

AGM generates the network:

 \blacksquare Nodes in community c connect to each other with probability p_{c} :

$$
P(u, v) = 1 - \prod_{c \in M_u \cap M_v} (1 - p_c)
$$

Provably generates power-law degree distributions and other real-world network patterns [Lattanzi, Sivakumar, '09] Jure Leskovec (@jure) Stanford University, MLSS 2014

AGM Generates Networks

AGM: Modeling Flexibility

 AGM can express a variety of community structures: Non-overlapping, Overlapping, Nested

Detecting Communities

Detecting communities with AGM:

 Given a graph *G***, find the model** *B* **by maximizing the model likelihood:**

$$
\arg \max_{B} P(G; B) = \prod_{(i,j)\in E} P(i, j) \prod_{(i,j)\notin E} (1 - P(i, j))
$$

Model B has 3 parts:

- **1)** Affiliation graph *M*
- **2)** Number of communities **C**
- **3)** Parameters $p_{c_{\text{Jure Leskovec (@jure) Stanford University, MLSS 2014}}}$

 $P(i, j) = 1 - \prod_{c \in M_j \cap M_j} (1 - p_c)$ $c \in M$ *i* $\cap M$ *i*

"Relaxing" AGM

"Relax" the AGM: Memberships have strengths

 $\mathbf{F}_{\mathbf{u}}$: The membership strength of node \mathbf{u} to community $A(F_{\nu A} = 0:$ no membership)

BigCLAM Model

- **Prob. of nodes linking is proportional to the strengths of shared memberships:** $P(u, v) = 1 - \exp(-F_u \cdot F_v^T)$ **Now, given a network, we estimate F** $l(F) = \sum \log(1 - \exp(-F_u F_v^T)) - \sum F_u F_v^T$ $(u,v) \in E$ $(u,v) \notin E$
	- **E** Non-negative matrix factorization:
		- Update $F_{\mu C}$ for node μ while fixing the memberships of all other nodes
		- **Updating takes linear time in the degree of** \boldsymbol{u}

[wsdm '13]

BigCLAM Model

 \boldsymbol{v}

Apply block coordinate gradient ascent
 $\nabla l(F_u) = \sum_{v \in \mathcal{N}(u)} F_v \frac{\exp(-F_u F_v^T)}{1 - \exp(-F_u F_v^T)} - \sum_{v \notin \mathcal{N}(u)} F_v$

Step size: backtracking line search

Project F_{ν} **, back to a non-negative vector**

Pure gradient ascent is slow! **However:**

$$
\sum_{\emptyset \mathcal{N}(u)} F_v = (\sum_v F_v - F_u - \sum_{v \in \mathcal{N}(u)} F_v)
$$

By caching F_p a gradient step takes **linear time** in the degree of \boldsymbol{u}

BigClam: Scalability

 BigCLAM takes 5min for 300k node networks Other methods take 10 days Can process networks with 100M edges!

Results on a Facebook Network

Stochastic Block Model (MMSB)

Jure Leskovec (@jure) Stanford University, MLSS 2014 60

Clique Percolation

BigClam: Does it work?

94% accuracy

Extensions: Beyond Clusters

Cohesive

Undirected

Predator-prey Communities

Extension: Organizing Friends

Node Features

Model of Social Circles

- **Circles arise due to a specific reason**
- **For a set of circles** *c* **model edge prob.:** $p(x, y) \propto \exp(\sum_i \theta_{ci} \cdot \phi_i(x, y))$
	- $\psi(x, y)$... edge feature vector describing (x, y)
	- θ _c... circle specific weight vector
	- **Example:**

$$
\phi(x,y) = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{matrix} \text{Works at MSR} \\ \text{Studied at CMU} \\ \text{From UK} \\ \text{D} \\ \text{Is catholic} \\ \text{Likes SciFi} \\ \text{Likes SciFi} \\ \text{A.1} \end{matrix} \qquad \theta_c = \begin{bmatrix} 1.4 \\ 0.5 \\ 0 \\ 0 \\ 0 \\ 0.3 \\ 1.1 \end{bmatrix}_{\text{so}}
$$

 $\boldsymbol{\theta}_{c} =$ **1.4** 0.5 $\boldsymbol{0}$ $\boldsymbol{0}$ $\boldsymbol{0}$ **0.3**

[TKDD '14]

[TKDD '14] **Extensions: Social Circles**

How well do we recover human circles? Social circles of a particular person:

Further Questions

Interesting research directions:

- Community detection in **dynamic networks**
	- **Communities merge, split, are born, and die**
- **Detecting communities of different structural types**
	- Cohesive vs. bipartite communities
- **Robustness/significance of communities**
	- Which communities in a network are "significant"?
- **Scaling to massive networks**

Networks: 3 problems 1) Community detection 2) Link & Attribute prediction 3) Social media

Finding Friends

What links will occur next?[LibenNowell, Kleinberg '03]

 Networks + many other features: Location, School, Job, Hobbies, Interests, etc.

Modeling Links in Networks

Nodes in networks have rich *attributes:*

GOAL: Develop a *model* of links in a network that considers *node attributes*

How do the node attributes form a network?

[Internet Math. '12]

Approach: Node attributes

Each node has a set of categorical attributes

- Gender: Male, Female
- **Home country: US, Canada, Russia, etc.**
- **How do node attributes influence link formation?**
	- **Example: MSN Instant Messenger**

Jure Leskovec (@jure) Stanford University, MLSS 2014 72
Link-Affinity Matrix

- **Let the values of the** *i-th attribute* for node u and v be $a_i(u)$ and $a_i(v)$
- $a_i(u)$ and $a_i(v)$ can take values $\{0, \dots, d_i-1\}$ **E** Question: How can we capture the **influence of the attributes on link formation?**
	- **Insight: Attribute link-affinity matrix 0**

 $a_i(u) = 0$ | $\Theta[0, 0]$ | $\Theta[0, 1]$ \vert Θ [1,0] \vert Θ [1,1] $a_i(v) = 0$ $a_i(v) = 1$ $a_i(u) = 1$

 $P(u, v) = \Theta[a_i(u), a_i(v)]$

■ Each entry captures the *affinity of a link* between two nodes associated with the attributes of them

Attribute Interactions

MAG modeling flexibility:

- *Homophily* : love of the *same* e.g., political views, hobbies
- *Heterophily* : love of the *opposite* e.g., genders
- *Core-periphery* : love of the *core* e.g. extrovert personalities

0.2 0.9

0.9 0.1

[Internet Math. '12]

From Attributes to Links

- *How do we combine the effects of multiple attributes?*
	- **We multiply the probabilities** from all attributes

[Internet Math. '12] **Multiplicative Attribute Graph**

- **The MAG model** $M(n, l, A, \Theta)$ A network contains *n* nodes
	- **Each node has** *l* **categorical attributes**
	- $A = [a_i(u)]$ represents the *i*-th attribute of node \boldsymbol{u}
	- **Each attribute can take** d_i **different values**
	- **Each attribute has a** $d_i \times d_i$ **link-affinity matrix** $\boldsymbol{\varTheta_i}$
	- **Edge probability between nodes u and v**

$$
P(u,v) = \prod_{i=1}^{l} \Theta_i[a_i(u), a_i(v)]
$$

Fitting the MAG model

Find model parameters from the data

Given:

Links of the network

Estimate:

- **Latent** node attributes
- **-Link-affinity matrices**

Formulate as a

maximum likelihood problem

EXECUTE: Solve it using variational EM

[UAI. '11]

Fitting MAG to Data

 $[U$ Al. '11]

[UAI. '11]

Fitting the MAG model

Edge probability:

- $\mathbf{P}(u, v) = \prod_{i=1}^{l} \Theta_i[a_i(u), a_i(v)]$
- **Network likelihood:**

$$
P(G|A, \Theta) = \prod_{G_{uv}=1} P(u, v) \cdot \prod_{G_{uv}=0} 1 - P(u, v)
$$

G ... graph adjacency matrix

- A … matrix of node attributes
- Θ… link-affinity matrices

Want to solve:

arg max $A,Θ$ $P(G|A, \Theta)$

Variational EM

Predictive Tasks in Networks

Predictive tasks:

Predict missing links

Predict future friends

Predicting node feature values

Infer user profile features

Node classification

Predict users from China

Nodes ? ?

Features

Beyond Static Attributes

Dynamic network attributes: Location and social networks

Examples:

- **Location-based online social networks**
	- **Foursquare, Yelp, Brightkite, Gowalla**
- **E** Cell phones

Modeling Mobility

- **Goal:** Model and predict human mobility patterns
- **Observation:**

Low location entropy at night/morning

ocation Entropy

- **Higher entropy over the weekend**
- **3 ingredients of the model:**
	- **Spatial, Temporal, Social**

Modeling Mobility

Spatial model: Home vs. Work Location

Temporal model: Mobility Home vs. Work

Example User

Weekend Mobility

- **Example 1 Social network plays particularly important role on weekends**
- **Include social network into the model**
	- \blacksquare Prob. that user visits location *X* depends on:
		- Distance(*X*, *F*)
		- **Time since a friend** was at location *F*
			- **F** = Friend's last known location **Mobility similarity**

Mobility: Results

Cellphones: Whenever user receives or makes a call predict her location

Networks: 3 problems 1) Community detection 2) Link & Attribute prediction 3) Social media

Diffusion in Networks

Information Flows through Links

the links of the network

Diffusion in Online Media

- **Since August 2008 we have been collecting 30M articles/day:** 6B articles, 20TB of data
- **Challenge:**

How to track information as it spreads?

Meme-tracking

Goal: Trace textual phrases that spread through many news articles

Challenge 1: Phrases mutate!

Finding Mutational Variants

Goal: Find mutational variants of a phrase **Objective:**

In a DAG of approx. phrase inclusion, **delete min total edge weight**

such that **each component has a single "sink"**

Memes over Time

Visualization of 1 month of data from October 2012

 Browse all 4 years of data at <http://snap.stanford.edu/nifty>

^[KDD'10] Inferring Diffusion Networks

- **Challenge 3: Information network is hidden**
- **Goal: Infer the information diffusion network**
	- **There is a hidden** network, and
	- We only see **times** when nodes get "infected"

Yellow info: (a, 1), (c, 2), (b, 3), (e, 4) **Blue** info: (c,1), (a,4), (b,5), (d,6)

[KDD '10]

Inferring Networks

Can we infer the underlying network?

Yes, convex optimization problem! [Gomez-Rodriguez, L., Krause, '10, Myers, L., '10]

Jure Leskovec (@jure) Stanford University, MLSS 2014 97 (1998) 97

News Diffusion Network

[KDD '10]

News Diffusion Network

[KDD '10]

Information in Networks

[KDD '12]

[KDD '12] **Exposures and Adoptions**

- **Exposure:** When a node sees a contagion, whether from a neighbor's adoption or elsewhere
- **Adoption:** The node posts the contagion for her neighbors to see

Network & External Exposures

Two sources of exposures:

- **Exposures from the network**
- **External exposures**

Why is it important?

- **Why separating network effects from the external influence?**
	- **Detecting external events**

- **Estimating information virality**
- Building better models of diffusion
- **Better targeting and influence maximization**

Why is it hard?

Why is modeling external influence hard?

- **External sources are unobservable**
- **Amount of external influence varies over time**
- **External influence can be confused with** network influence

Towards the Model

[KDD '12]

Adoption Curves

- **From exposures** to **adoptions**
	- **Exposure:** Node is exposed to information
	- **Adoption:** The node acts on the information
- **Adoption curve:** $\eta(x) = \frac{\rho_1}{\rho_2} \cdot x \cdot \exp\left(1 \frac{x}{\rho_2}\right)$

[KDD '12]

Modeling External Influence

 Assume an external source generating exposures uniformly across the network

- **Event profile**
	- $\lambda_{ext}(t) = P \begin{bmatrix} \text{any user receiving an} \\ \text{external exposure at tin} \end{bmatrix}$ external exposure at time t For each t_i we have a separate parameter $\lambda_{ext}(t_i)$

[KDD '12]

Infected Neighbors

Internal Exposures

Exposure Curve

 $\eta(x)$

Exposures

P(Infection)

Putting it all together

- **User receives external exposures** by the event profile
- **Each neighbor** External Exposures that posts the contagion also creates an exposure
- **Infection** With each exposure, the **adoption curve** is sampled: Does the user adopt the contagion?

External Influence

Event Profile

 $\lambda_{ext}^{(t)}$

Time

P(Exposure)
Objective Function

Prob. that user i adopted contagion

 $F^{(i)}(t) = P(i$ has adopted contagion by t)

$$
= \sum_{n=1}^{\infty} P(\text{ }i\text{ has }n\text{ exposures at }t) \times \left[1 - \prod_{k=1}^{n} \left[1 - \eta(k)\right]\right]
$$

At least one exposure lead to adoption

Total internal **Where:** exposures exposuresTotal external $\times\left(1-\frac{\Lambda_{int}^{(i)}(t)+\Lambda_{ext}(t)}{t}\cdot dt\right)^{t/dt-n}$

Model Inference Task

Given:

- Network *G*
- **Node adoption** times (i, t) of a contagion

Goal: Infer

(1) External event profile

(2) Adoption curve

such that observed adoption times fit best

Results: Different Topics

Complete data from Jan 2011: 3 billion tweets

More details: S. Myers, C. Zhu, J. Leskovec: Information diffusion and external influence in networks, *KDD* 2012.

[KDD '12]

How about Interactions between cascades?

Contagion Interactions

■ So far we considered contagions as **independently** propagating

How do contagions interact?

Does being exposed to **blue** change the probability of talking about **red** contagion?

[ICDM '12]

Modeling Interactions

- **Goal: Model interaction between many contagions spreading over the network simultaneously**
	- **Some contagions may help each other in adoption**
	- **Others may compete for attention**

 IICDM '12]

Modeling Interactions

User is reading posts on Twitter:

- **User examines posts one by one**
- **Currently she is examining post X**
- \blacksquare How does the probability of reposting X depend on what she has seen in the past?

[ICDM '12]

What's the goal?

Given:

- **Goal:** Infer tweet **topic memberships** and **topic interactions**
	- \blacksquare reinforces \blacksquare
	- **But Suppresses**

The Model

- **Goal:** Model P(post X | exp. X, Y_1 , Y_2 , Y_3) **Assume exposures are independent:**
 $P(X | \{Y_k\}_{k=1}^K) = \frac{P(X) \cdot P\left(\{Y_k\}_{k=1}^K | X\right)}{P\left(\{Y_k\}_{k=1}^K\right)}$ $=\frac{1}{P(X)^{K-1}}\prod_{k=1}^{K}P(X|Y_k)$
- **How many parameters?** $K \cdot w^2$!!!
	- $\blacksquare K$... history size
	- \blacksquare w ... number of posts

The Model

Goal: Model $P(post X | exp. X, Y_1, Y_2, Y_3)$ **First, assume:**

$$
P(X = u_j | Y_k = u_i) \approx \underbrace{P(X = u_j)}_{\text{Prior infection}} + \underbrace{\Delta_{cont.}^{(k)}(u_i, u_j)}_{\text{Interaction term}}
$$

prob. (still has w² entries!)

Next, assume "topics":

$$
\Delta_{cont.}^{(k)}(u_i, u_j) = \sum_t \sum_s \mathbf{M}_{j,t} \cdot \Delta_{clust}^{(k)}(c_t, c_s) \cdot \mathbf{M}_{i,s}
$$

- **Each contagion** u_i **has a vector** M_i
	- **Entry** M_{i_s} **models how much** u_i **belongs to topic s**
- $\Delta_{clust}^{(k)}(s,t)$... change in infection prob. given that u_i is on topic *s* and exposure *k*-steps ago was on topic *t*

The Model

Goal: Model P(post X | exp. X, Y₁, Y₂, Y₃) **First, assume:**

$$
P(X = u_j | Y_k = u_i) \approx \underbrace{P(X = u_j)}_{\text{Prior infection}} + \underbrace{\Delta^{(k)}_{cont.}(u_i, u_j)}_{\text{Interaction term}}
$$

prob. (still has w² entries!)

Next, assume "topics":

$$
\Delta_{cont.}^{(k)}(u_i, u_j) = \sum_{t} \sum_{s} \mathbf{M}_{j,t} \cdot \Delta_{clust}^{(k)}(c_t, c_s) \cdot \mathbf{M}_{i,s}
$$
\n
$$
\Delta_{cont.}^{(k)}
$$
\n
$$
\Delta_{cont.}^{(k)}
$$
\n
$$
\mathbf{M}_{j,t} = \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \times \left[\mathbf{\Delta}_{clust}^{(k)} \right] \times \left[\mathbf{M}^T \right]
$$

The Model

So we arrive to the full model: $P(X = u_i | Y_k = u_i) = P(X = u_i)$ $\mathbf{1} + \sum \sum \mathbf{M}_{i,t} \cdot \Delta_{t,s}^{(k)} \cdot \mathbf{M}_{j,s}$

And then the adoption probability is: $P(X | {Y_k}_{k=1}^K) = \frac{1}{P(X)^{K-1}} \prod_{k=1}^K P(X|Y_k)$

Inferring the Model

Model parameters:

- Δ^k ... topic interaction matrix
- $M_{i,t}$... topic membership vector
- $P(X)$... Prior infection prob.

Maximize data likelihood:

$$
\arg \max_{P(x),M,\Delta} \prod_{X \in R} P(X|X,Y_1 \dots Y_K) \prod_{X \notin R} 1 - P(X|X,Y_1 \dots Y_K)
$$

- \blacksquare R ... posts X that resulted in retweets
- **Solve using stochastic coordinate ascent:**
	- Alternate between optimizing Δ and M

Dataset: Twitter

Data from Twitter

- *Complete* data from Jan 2011: 3 billion tweets
- **All URLs tweeted by at least 50 users: 191k**

Task:

Predict whether a user will post URL X

- **Train on 90% of the data, test on 10%**
- **Baselines:** $P(X = u_i | Y_k = u_j) =$
	- **Infection Probability (IP):** $= P(X = u_i)$
	- **IP + Node bias** (**NB**): $= P(X = u_i) + \gamma_n$
	- **Exposure curve (EC):** $= P(X \mid \# \text{ times exposed to } X)$

Predicting Retweets

Task: Predict a retweet given the context

How do Tweets Interact?

How *P(post X| exposed Y)* **changes if …**

■ *X* and *Y* are similar/different in content?

is highly viral (Prob. reshare is high)?

Jure Leskovec (@jure) Stanford University, MLSS 2014

How do Tweets Interact?

How *P(post X| exposed Y)* **changes if …**

■ *X* and *Y* are similar/different in content?

is highly viral (Prob. reshare is high)?

Y is not viral: P(X)>P(Y) Y is viral: $P(X) < P(Y)$ Y is viral, Low text sim Y is viral, High text sim Y is not viral, Low text sim Y is not viral, High text sim

Further Questions

- **Today: Messages arriving through networks from real-time sources requires new ways of thinking about information dynamics and consumption**
- **Predictive models of information diffusion**
	- Where is the information going to spread?
	- What will go viral?
- **User personalization**
	- **New models of how users consume information**
- **Connections to mutation of information:**
	- How does **attitude** and **sentiment change** in different parts of the network?
	- How does **information change** in different parts of the network?

What's beyond?

Networks are a natural language for reasoning about problems spanning society, technology and information

Conclusion & Reflections

- **Only recently has large scale network data become available**
	- **Opportunity for large scale analyses**
	- **Benefits of working with massive data**
		- Observe "invisible" patterns
- **Lots of interesting networks questions both in CS as well as in general science**
	- **Need scalable algorithms & models**

Network Data & Code

- **Research on networks is both algorithmic and empirical**
- **Need to network data:**
	- **Examelerize Stanford Large Network Dataset Collection**
		- Over 60 large online networks with metadata
		- <http://snap.stanford.edu/data>
	- **F SNAP: Stanford Network Analysis Platform**
		- **A** general purpose, high performance system for dynamic network manipulation and analysis
		- **Can process 1B nodes, 10B edges**
		- **http://snap.stanford.edu**

Networks — implicit for millenia are finally becoming visible

Models based on algorithmic ideas will be crucial in understanding these developments

Eve Online: Exodus developer CCP publisher CCP

a film

Jure Leskovec (@jure) Stanford University, MLSS 2014 132

فالمحاد

Tools for Networks

- **Example 3** Stanford **Network Analysis Platform (SNAP)** is a general purpose, high-performance system for analysis and manipulation of large networks
	- http://snap.stanford.edu
	- **Scales to massive networks with hundreds of** millions of nodes and billions of edges

SNAP software

- Snap.py for Python, SNAP C++
- Tutorial on how to use SNAP: <http://snap.stanford.edu/proj/snap-icwsm>

Snap.py Resources

- **Prebuilt packages** [for Mac OS X, Windows, Linux](http://snap.stanford.edu/snappy/index.html)
<http://snap.stanford.edu/snappy/index.html>
- **Snap.py documentation**:

<http://snap.stanford.edu/snappy/doc/index.html>

- Quick Introduction, Tutorial, Reference Manual
- **SNAP user mailing list**

<http://groups.google.com/group/snap-discuss>

Developer resources

- Software available as open source under BSD license
- GitHub repository

<https://github.com/snap-stanford/snap-python>

SNAP C++ Resources

- **Prebuilt packages [for Mac OS X, Windows, Li](http://snap.stanford.edu/snap/download.html)nux**
<http://snap.stanford.edu/snap/download.html>
-

SNAP documentation <http://snap.stanford.edu/snap/doc.html>

- Quick Introduction, User Reference Manual
- **SNAP user mailing list**

<http://groups.google.com/group/snap-discuss>

Developer resources

- **Software available as open source under BSD license**
- GitHub repository

<https://github.com/snap-stanford/snap>

■ SNAP C++ Programming Guide

Network Data

F Stanford Large Network Dataset Collection

<http://snap.stanford.edu/data>

- **Over 70 different networks and communities**
	- **Social networks:** online social networks, edges represent interactions between people
	- **Twitter and Memetracker:** Memetracker phrases, links and 467 million Tweets
	- **Citation networks:** nodes represent papers, edges represent citations
	- **Collaboration networks:** nodes represent scientists, edges represent collaborations
	- **Amazon networks :** nodes represent products and edges link commonly co-purchased products

Books & Courses

Want to learn more about networks?

F Social and Information Networks lectures:

http://cs224w.stanford.edu

Mining Massive Datasets lectures:

http://cs246.stanford.edu

Books (fee PDFs):

Mining Massive Datasets

- [http://infolab.stanford.edu/~ullman/mmds.html](http://infolab.stanford.edu/%7Eullman/mmds.html)
- **Networks, Crowds and Markets**
	- <http://www.cs.cornell.edu/home/kleinber/networks-book>

References

Community detection

- [Community detection in graphs](http://arxiv.org/abs/0906.0612) by S. Fortunato. *Physics Reports* 2010.
- **EXECOMMUNITY-Affiliation Graph Model for Overlapping Community Detection by** J. Yang, J. Leskovec.*IEEE Intl. Conference On Data Mining (ICDM)*, 2012.
- **[Defining and Evaluating Network Communities based on Ground-truth](http://cs.stanford.edu/people/jure/pubs/comscore-icdm12.pdf) by J.** Yang, J. Leskovec. *IEEE Intl. Conference On Data Mining (ICDM)*, 2012.
- **Diverlapping Community Detection at Scale: A Nonnegative Matrix** [Factorization Approach](http://cs.stanford.edu/people/jure/pubs/bigclam-wsdm13.pdf) by J. Yang, J. Leskovec. *ACM International Conference on Web Search and Data Mining (WSDM)*, 2013.
- [Discovering Social Circles in Ego Networks](http://cs.stanford.edu/people/jure/pubs/circles-tkdd14.pdf) by J. McAuley, J. Leskovec. *ACM Transactions on Knowledge Discovery from Data (TKDD)*, 2014.
- **EXPEDENTIFY [Community Detection in Networks with Node Attributes](http://cs.stanford.edu/people/jure/pubs/cesna-icdm13.pdf) by J. Yang, J. McAuley,** J. Leskovec. *IEEE Intl. Conference On Data Mining (ICDM)*, 2013.
- **Detecting Cohesive and 2-mode Communities in Directed and Undirected** [Networks](http://cs.stanford.edu/people/jure/pubs/coda-wsdm14.pdf) by J. Yang, J. McAuley, J. Leskovec. *ACM Web Search and Data Mining (WSDM)*, 2014.

References

Link prediction

- [Link Prediction in Complex Networks: A Survey](http://arxiv.org/abs/1010.0725) by L. Lu, T. Zhou. Arxiv 2010.
- **[Multiplicative Attribute Graph Model of Real-World Networks](http://cs.stanford.edu/people/jure/pubs/mag-im12.pdf) by M. Kim, J.** Leskovec. *Internet Mathematics 8(1-2) 113--160* , 2012.
- **Example 12 [Latent Multi-group Membership Graph Model](http://cs.stanford.edu/people/jure/pubs/lmmg-icml12.pdf) by M. Kim, J.** Leskovec. *International Conference on Machine Learning (ICML)*, 2012.
- **[Nonparametric Multi-group Membership Model for Dynamic Networks](http://cs.stanford.edu/people/jure/pubs/dynamic-nips13.pdf) by M.** Kim, J. Leskovec. *Neural Information Processing Systems (NIPS)*, 2013.
- [Supervised Random Walks: Predicting and Recommending Links in Social](http://cs.stanford.edu/people/jure/pubs/linkpred-wsdm11.pdf) [Networks](http://cs.stanford.edu/people/jure/pubs/linkpred-wsdm11.pdf) by L. Backstrom, J. Leskovec. *ACM Web Search and Data Mining (WSDM)*, 2011.
- **Firm 20 Friendship and Mobility: User Movement In Location-Based Social** [Networks](http://cs.stanford.edu/people/jure/pubs/mobile-kdd11.pdf) by E. Cho, S. A. Myers, J. Leskovec. *ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)*, 2011.
- **[Predicting Positive and Negative Links in Online Social Networks](http://cs.stanford.edu/people/jure/pubs/signs-www10.pdf) by J.** Leskovec, D. Huttenlocher, J. Kleinberg. *ACM World Wide Web (WWW)*, 2010.

References

Social Media

- [Meme-tracking and the Dynamics of the News Cycle](http://cs.stanford.edu/people/jure/pubs/quotes-kdd09.pdf) by J. Leskovec, L. Backstrom, J. Kleinberg. *ACM SIGKDD International [C](http://cs.stanford.edu/people/jure/pubs/netinf-kdd10.pdf)onference on Knowledge Discovery and Data Mining (KDD)*, 2009.
- **[Inferring Networks of Diffusion and Influence](http://cs.stanford.edu/people/jure/pubs/netinf-kdd10.pdf) by M. Gomez-Rodriguez, J.** Leskovec, A. Krause. *ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)*, 2010.
- **Dia the Convexity of Latent Social Network Inference by S. A. [My](http://cs.stanford.edu/people/jure/pubs/infopath-wsdm13.pdf)ers, J.** Leskovec. *Neural Information Processing Systems (NIPS)*, 2010.
- **EXTERGHEE [Structure and Dynamics of Information Pathways in Online Media](http://cs.stanford.edu/people/jure/pubs/infopath-wsdm13.pdf) by M.** Gomez-Rodriguez, J. Leskovec, B. Schoelkopf. *ACM International Conference on Web Search and Data Mining (WSDM)*, 2013.
- **[Modeling Information Diffusion in Implicit Networks](http://cs.stanford.edu/people/jure/pubs/lim-icdm10.pdf) by J. Yang, J.** Leskovec. *IEEE International Conference On Data Mining (ICDM)*, 2010.
- **[Information Diffusion and External Influence in Networks](http://cs.stanford.edu/people/jure/pubs/ext-kdd12.pdf) by S. Myers, C.** Zhu, J. Leskovec. *ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)*, 2012.
- [Clash of the Contagions: Cooperation and Competition in Information](http://cs.stanford.edu/people/jure/pubs/topicmix-icdm12.pdf) [Diffusion](http://cs.stanford.edu/people/jure/pubs/topicmix-icdm12.pdf) by S. Myers, J. Leskovec. *IEEE International Conference On Data Mining (ICDM)*, 2012.