
Christian Posta & Burr Sutter 

Build and Deploy Resilient, Fault-Tolerant 
Cloud-Native Applications

Introducing Istio 
Service Mesh for 
Microservices

Introducing Istio 
Service Mesh for 
Microservices

Compliments of



MORE ON .NET 
ON LINUX 
Build and run cross-platform .NET applications on the world’s 
number one Enterprise-ready Linux distribution, Red Hat 
Enterprise Linux. Join Red Hat Developers and download your 
$0 Developer Edition of Red Hat Enterprise Linux.

Get access to products, content and experts with Red Hat 
Developers Program. 

Sign up at 
https://developers.redhat.com/ 



978-1-491-98874-9

[LSI]

Introducing Istio Service Mesh for Microservices
by Christian Posta and Burr Sutter

Copyright © 2018 Red Hat, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online edi‐
tions are also available for most titles (http://oreilly.com/safari). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Brian Foster and Alicia Young
Production Editor: Colleen Cole
Copyeditor: Octal Publishing, Inc.
Interior Designer: David Futato

Cover Designer: Randy Comer
Illustrator: Rebecca Demarest
Technical Reviewer: Lee Calcote

April 2018:  First Edition

Revision History for the First Edition
2018-04-05: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Introducing Istio Service Mesh for
Microservices, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsi‐
bility for errors or omissions, including without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or describes is subject
to open source licenses or the intellectual property rights of others, it is your responsibility to ensure
that your use thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Red Hat, Inc. See our statement of editorial
independence.

http://oreilly.com/safari
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html


Table of Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
The Challenge of Going Faster                                                                                 1
Meet Istio                                                                                                                     3
Understanding Istio Components                                                                            4

2. Installation and Getting Started. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
Command-Line Tools Installation                                                                           9
Kubernetes/OpenShift Installation                                                                        10
Istio Installation                                                                                                        11
Example Java Microservices Installation                                                              12

3. Traffic Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
Smarter Canaries                                                                                                      19
Dark Launch                                                                                                              26
Egress                                                                                                                         27

4. Service Resiliency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
Load Balancing                                                                                                         32
Timeout                                                                                                                      34
Retry                                                                                                                           36
Circuit Breaker                                                                                                          37
Pool Ejection                                                                                                             43
Combination: Circuit-Breaker + Pool Ejection + Retry                                     46

5. Chaos Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49
HTTP Errors                                                                                                             49
Delays                                                                                                                         50

iii



6. Observability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53
Tracing                                                                                                                       53
Metrics                                                                                                                       54

7. Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
Blacklist                                                                                                                      57
Whitelist                                                                                                                    58
Conclusion                                                                                                                59

iv | Table of Contents



CHAPTER 1

Introduction

If you are looking for an introduction into the world of Istio, the service mesh
platform, with detailed examples, this is the book for you. This book is for the
hands-on application architect and development team lead focused on cloud-
native applications based on the microservices architectural style. This book
assumes that you have had hands-on experience with Docker, and while Istio will
be available on multiple Linux container orchestration solutions, the focus of this
book is specifically targeted at Istio on Kubernetes/OpenShift. Throughout this
book, we will use the terms Kubernetes and OpenShift interchangeably. (Open‐
Shift is Red Hat’s supported distribution of Kubernetes.)

If you need an introduction to Java microservices covering Spring Boot, WildFly
Swarm, and Dropwizard, check out Microservices for Java Developers (O’Reilly).

Also, if you are interested in Reactive microservices, an excellent place to start is
Building Reactive Microservices in Java (O’Reilly) because it is focused on Vert.x, a
reactive toolkit for the Java Virtual Machine.

In addition, this book assumes that you have a comfort level with Kubernetes/
OpenShift; if that is not the case, OpenShift for Developers (O’Reilly) is an excel‐
lent free ebook on that very topic. We will be deploying, interacting, and config‐
uring Istio through the lens of OpenShift, however, the commands we use are
portable to vanilla Kubernetes as well.

To begin, we discuss the challenges that Istio can help developers solve and
describe Istio’s primary components.

The Challenge of Going Faster
As a software development community, in the era of digital transformation, you
have embarked on a relentless pursuit of better serving customers and users.

1

http://bit.ly/microservices-for-java-dev
http://bit.ly/reactivemicroservices
http://bit.ly/openshift-for-dev


Today’s digital creators, the application programmer, have not only evolved into
faster development cycles based on Agile principles, you are also in pursuit of
vastly faster deployment times. Although the monolithic code base and resulting
application might be deployable at the rapid clip of once a month or even once a
week, it is possible to achieve even greater “to production” velocity by breaking
up the application into smaller units with smaller team sizes, each with its inde‐
pendent workflow, governance model, and deployment pipeline. The industry
has defined this approach as microservices architecture.

Much has been written about the various challenges associated with microservi‐
ces as it introduces many teams, for the first time, to the fallacies of distributed
computing. The number one fallacy is that the “network is reliable.” Microservi‐
ces communicate significantly over the network—the connection between your
microservices. This is a fundamental change to how most enterprise software has
been crafted over the past few decades. When you add a network dependency to
your application logic, you have invited in a whole host of potential hazards that
grow proportionally if not exponentially with the number of connections you
make.

Furthermore, the fact that you now have moved from a single deployment every
few months to potentially dozens of software deployments happening every
week, if not every day, brings with it many new challenges. One simple example
is how do you manage to create a more frictionless deployment model that allows
code being checked into a source code manager (e.g., Git) to more easily flow
through the various stages of your workflow, from dev to code review, to QA, to
security audit/review, to a staging environment and finally into production.

Some of the big web companies had to put frameworks and libraries into place to
help alleviate some of the challenges of an unreliable network and many code
deployments per day. For example, companies like Netflix created projects like
Netflix OSS Ribbon, Hystrix, and Eureka to solve these types of problems. Others
such as Twitter and Google ended up doing similar things. These frameworks
that they created were very language and platform specific and, in some cases,
made it very difficult to bring in new services written in programming languages
that didn’t have support from these resilience frameworks they created. When‐
ever these resilience frameworks were updated, the applications also needed to be
updated to stay in lock step. Finally, even if they created an implementation of
these resiliency frameworks for every possible permutation of language or frame‐
work, they’d have massive overhead in trying to maintain this and apply the func‐
tionality consistently. Getting these resiliency frameworks right is tough when
trying to implement in multiple frameworks and languages. Doing so means
redundancy of effort, mistakes, and non-uniform set of behaviors. At least in the
Netflix example, these libraries were created in a time when the virtual machine
(VM) was the main deployable unit and they were able to standardize on a single

2 | Chapter 1: Introduction



cloud platform and a single programming language. Most companies cannot and
will not do this.

The advent of the Linux container (e.g., Docker) and Kubernetes/OpenShift have
been fundamental enablers for DevOps teams to achieve vastly higher velocities
by focusing on the immutable image that flows quickly through each stage of a
well-automated pipeline. How development teams manage their pipeline is now
independent of language or framework that runs inside the container. OpenShift
has enabled us to provide better elasticity and overall management of a complex
set of distributed, polyglot workloads. OpenShift ensures that developers can
easily deploy and manage hundreds, if not thousands, of individual services.
Those services are packaged as containers running in Kubernetes pods complete
with their respective language runtime (e.g., Java Virtual Machine, CPython, and
V8) and all their necessary dependencies, typically in the form of language-
specific frameworks (e.g., Spring and Express) and libraries (e.g., jars and npms).
However, OpenShift does not get involved with how each of the application com‐
ponents, running in their individual pods, interacts with one another. This is the
crossroads where architects and developers find ourselves. The tooling and infra‐
structure to quickly deploy and manage polyglot services is becoming mature,
but we’re missing similar capabilities when we talk about how those services
interact. This is where the capabilities of a service mesh such as Istio allow you,
the application developer, to build better software and deliver it faster than ever
before.

Meet Istio
Istio is an implementation of a service mesh. A service mesh is the connective tis‐
sue between your services that adds additional capabilities like traffic control,
service discovery, load balancing, resilience, observability, security, and so on. A
service mesh allows applications to offload these capabilities from application-
level libraries and allow developers to focus on differentiating business logic. Istio
has been designed from the ground up to work across deployment platforms, but
it has first-class integration and support for Kubernetes.

Like many complimentary open source projects within the Kubernetes ecosys‐
tem, “Istio” is a Greek nautical term that means sail—much like “Kubernetes”
itself is the Greek term for helmsman or a ship’s pilot. With Istio, there has been
an explosion of interest in the concept of the service mesh, where Kubernetes/
OpenShift has left off is where Istio begins. Istio provides developers and archi‐
tects with vastly richer and declarative service discovery and routing capabilities.
Where Kubernetes/OpenShift itself gives you default round-robin load balancing
behind its service construct, Istio allows you to introduce unique and finely
grained routing rules among all services within the mesh. Istio also provides us
with greater observability, that ability to drill-down deeper into the network top‐

Meet Istio | 3



ology of various distributed microservices, understanding the flows (tracing)
between them and being able to see key metrics immediately.

If the network is in fact not always reliable, that critical link between and among
our microservices needs to be subjected to not only greater scrutiny but also
applied with greater rigor. Istio provides us with network-level resiliency capabil‐
ities such as retry, timeout, and implementing various circuit-breaker capabili‐
ties.

Istio also gives developers and architects the foundation to delve into a basic
explanation of chaos engineering. In Chapter 5, we describe Istio’s ability to drive
chaos injection so that you can see how resilient and robust your overall applica‐
tion and its potentially dozens of interdependent microservices actually is.

Before we begin that discussion, we want to ensure that you have a basic under‐
standing of Istio. The following section will provide you with an overview of
Istio’s essential components.

Understanding Istio Components
The Istio service mesh is primarily composed of two major areas: the data plane
and the control plane, which is depicted in Figure 1-1.

Figure 1-1. Data plane versus control plane

Data Plane
The data plane is implemented in such a way that it intercepts all inbound
(ingress) and outbound (egress) network traffic. Your business logic, your app,

4 | Chapter 1: Introduction



your microservice is blissfully unaware of this fact. Your microservice can use
simple framework capabilities to invoke a remote HTTP endpoint (e.g., Spring’s
RestTemplate and JAX-RS client) across the network and mostly remain ignorant
of the fact that a lot of interesting cross-cutting concerns are now being applied
automatically. Figure 1-2 describes your typical microservice before the advent of
Istio.

Figure 1-2. Before Istio

The data plane for Istio service mesh is made up of two simple concepts: service
proxy and sidecar container, as shown in Figure 1-3.

Figure 1-3. With Envoy sidecar (istio-proxy)

Let’s explore each concept.

Understanding Istio Components | 5



Service proxy
A service proxy is a proxy on which an application service relies for additional
capabilities. The service calls through the service proxy any time it needs to com‐
municate with the outside world (i.e., over the network). The proxy acts as an
intermediary or interceptor that can add capabilities like automatic retries, time‐
outs, circuit breaker, service discovery, security, and more. The default service
proxy for Istio is based on Envoy Proxy.

Envoy Proxy is a Layer 7 proxy (see the OSI model on Wikipedia) developed by
Lyft, the ridesharing company, which currently uses it in production to handle
millions of requests per second (among many others). Written in C++, it is a bat‐
tle tested, highly performant, and lightweight. It provides features like load bal‐
ancing for HTTP1.1, HTTP2, gRPC, the ability to collect request-level metrics,
tracing spans, active and passive health checking, service discovery, and many
more. You might notice that some of the capabilities of Istio overlap with Envoy.
This fact is simply explained as Istio uses Envoy for its implementation of these
capabilities.

But how does Istio deploy Envoy as a service proxy? A service proxy could be
deployed like other popular proxies in which many services’ requests get serviced
by a single proxy. Istio brings the service-proxy capabilities as close as possible to
the application code through a deployment technique known as the sidecar.

Sidecar
When Kubernetes/OpenShift were born, they did not refer to a Linux container
as the runnable/deployable unit as you might expect. Instead, the name pod was
born and it is the primary thing you manage in a Kubernetes/OpenShift world.
Why pod? Some think it was some reference to the 1956 film Invasion of the Body
Snatchers, but it is actually based on the concept of a family or group of whales.
The whale being the early image associated with the Docker open source project
—the most popular Linux container solution of its era. So, a pod can be a group
of Linux containers. The sidecar is yet another Linux container that lives directly
alongside your business logic application or microservice container. Unlike the
real-world sidecar that bolts on to the side of a motorcycle and is essentially a
simple add-on feature, this sidecar can take over the handlebars and throttle.

With Istio, a second Linux container called “istio-proxy” (aka the Envoy service
proxy), is manually or automatically injected alongside your primary business
logic container. This sidecar is responsible for intercepting all inbound (ingress)
and outbound (egress) network traffic from your business logic container, which
means new policies can be applied that reroute the traffic (in or out), apply poli‐
cies such as access control lists (ACLs) or rate limits, also snatch monitoring and
tracing data (Mixer) and even introduce a little chaos such as network delays or
HTTP error responses.

6 | Chapter 1: Introduction

https://en.wikipedia.org/wiki/OSI_model


Control Plane
The control plane is responsible for being the authoritative source for configura‐
tion and policy and making the data plane usable in a cluster potentially consist‐
ing of hundreds of pods scattered across a number of nodes. Istio’s control plane
comprises three primary Istio services: Pilot, Mixer, and Auth.

Pilot
The Pilot is responsible for managing the overall fleet and all of your microservi‐
ces running across your Kubernetes/OpenShift cluster. The Istio Pilot is responsi‐
ble for ensuring that each of the independent and distributed microservices,
wrapped as Linux containers and inside their pods, has the current view of the
overall topology and an up-to-date “routing table.” Pilot provides capabilities like
service discovery as well as support for RouteRule and DestinationPolicy. The
RouteRule is what gives you that finely grained request distribution. We cover
this in more detail in Chapter 3. The DestinationPolicy helps you to address resil‐
iency with timeouts, retries, circuit breaker, and so on. We discuss Destination‐
Policy in Chapter 4.

Mixer
As the name implies, Mixer is the Istio service that brings things together. Each
of the distributed istio-proxies delivers its telemetry back to Mixer. Furthermore,
Mixer maintains the canonical model of the usage and access policies for the
overall suite of microservices or pods. With Mixer, you can create ACLs (white‐
list and blacklist), you can apply rate-limiting rules, and even capture custom
metrics. Mixer has a pluggable backend architecture that is rapidly evolving with
new plug-ins and partners that will be extending Mixer’s default capabilities in
many new and interesting ways. Many of the capabilities of Mixer fall beyond the
scope of this book, but we do address observability in Chapter 6, and security in
Chapter 7.

If you would like to explore Mixer further, refer to the upstream project docu‐
mentation as well as the Istio Tutorial for Java Microservices maintained by the
Red Hat team.

Auth
The Istio Auth component, also known as Istio CA, is responsible for certificate
signing, certificate issuance and revocation/rotation. Istio issues x509 certificates
to all your microservices, allowing for mutual Transport Layer Security (mTLS)
between those services, encrypting all their traffic transparently. It uses identity
built into the underlying deployment platform and builds that into the certifi‐
cates. This identity allows you to enforce policy.

Understanding Istio Components | 7

https://istio.io/
https://istio.io/
http://bit.ly/istio-tutorial




CHAPTER 2

Installation and Getting Started

Command-Line Tools Installation
In this section, we show you how to get started with Istio on Kubernetes. Istio is
not tied to Kubernetes in anyway, and in fact, it’s intended to be agnostic of any
deployment infrastructure. Kubernetes is a great place to run Istio with its native
support of the sidecar-deployment concept. Feel free to use any distribution of
Kubernetes you wish, but here we use minishift, which is a developer flavor of an
enterprise distribution of Kubernetes named OpenShift.

As a developer, you might already have some of these tools, but for completeness,
here are the tools you will need:

• minishift
• Docker for Mac/Windows
• kubectl
• oc client tools for your OS (note: “minishift oc-env” will output the path to

the oc client binary)
• mvn
• stern for easily viewing logs
• siege for load testing
• istioctl (will be installed via the steps that follow momentarily)
• curl, tar part of your bash/cli shell
• Git

9

http://minishift.io/
https://github.com/minishift/minishift/releases
https://www.docker.com/docker-mac
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://github.com/openshift/origin/releases
https://archive.apache.org/dist/maven/maven-3/3.3.9/binaries/
https://github.com/wercker/stern
https://github.com/JoeDog/siege
https://git-scm.com/downloads


Kubernetes/OpenShift Installation
When you bootstrap minishift, you’ll need to keep in mind that you’ll be creating
a lot of services. You’ll be installing the Istio control plane, some supporting met‐
rics and visualization applications, and your sample services. To accomplish this,
the virtual machine (VM) that you use to run Kubernetes will need to have
enough resources. Although we recommend 8 GB of RAM and 3 CPUs for the
VM, we have seen the examples contained in this book run successfully on 4 GB
of RAM and 2 CPUs. (One thing to remember: on minishift, the default pod limit
is set to 10 times the number of CPUs.)

After you’ve installed minishift, you can bootstrap the environment by using this
script:

#!/bin/bash

# add the location of minishift executable to PATH
# I also keep other handy tools like kubectl and kubetail.sh
# in that directory

export MINISHIFT_HOME=~/minishift_1.12.0
export PATH=$MINISHIFT_HOME:$PATH

minishift profile set tutorial
minishift config set memory 8GB
minishift config set cpus 3
minishift config set vm-driver virtualbox
minishift config set image-caching true
minishift addon enable admin-user
minishift config set openshift-version v3.7.0

minishift start

When things have launched correctly, you should be able set up your environ‐
ment to have access to minishift’s included Docker daemon and also log in to the
Kubernetes cluster:

eval $(minishift oc-env)
eval $(minishift docker-env)
oc login $(minishift ip):8443 -u admin -p admin

If everything is successful up to this point, you should be able to run the follow‐
ing command:

$ oc get node
NAME        STATUS    AGE       VERSION
localhost   Ready     1d       v1.7.6+a08f5eeb62

If you have errors along the way, review the current steps of the istio-tutorial and
potentially file a GitHub issue.

10 | Chapter 2: Installation and Getting Started

http://bit.ly/istio-tutorial


Istio Installation
Istio distributions come bundled with the necessary binary command-line inter‐
face (CLI) tools, installation resources, and sample applications. You should
download the Istio 0.5.1 release:

curl -L https://github.com/istio/istio/releases/download/0.5.1/istio-0.5.1 \
 -osx.tar.gz | tar xz
cd istio-0.5.1

Now you need to prepare your OpenShift/Kubernetes environment. OpenShift
has a series of features targeted toward safe, multitenant runtimes and therefore
has tight security restrictions. To install Istio, for the moment you can relax those
OpenShift security constraints. The Istio community is working hard to make
Istio more secure and fit better within the expectations of a modern enterprise’s
security requirements, striving for “secure by default” with no developer pain.

For now, and for the purposes of understanding Istio and running these samples
on OpenShift, let’s relax these security constraints. Using the oc command-line
tool, run the following:

oc adm policy add-scc-to-user anyuid -z istio-ingress-service-account \
 -n istio-system
oc adm policy add-scc-to-user anyuid -z default -n istio-system
oc adm policy add-scc-to-user anyuid -z prometheus -n istio-system

Now you can install Istio. From the Istio distribution’s root folder run the follow‐
ing:

oc create -f install/kubernetes/istio.yaml
oc project istio-system

This will install all of the necessary Istio control-plane components including
Istio Pilot, Mixer, and Auth. You should also install some companion services
that are useful for metrics collection, distributed tracing, and overall visualization
of our services. Run the following from the root folder of the Istio distribution:

oc apply -f install/kubernetes/addons/prometheus.yaml
oc apply -f install/kubernetes/addons/grafana.yaml
oc apply -f install/kubernetes/addons/servicegraph.yaml
oc process -f  https://raw.githubusercontent.com/jaegertracing/jaeger- \
 openshift/master/all-in-one/jaeger-all-in-one-template.yml | oc create -f -

This installs Prometheus for metric collection, Grafana for metrics dashboard,
Servicegraph for simple visualization of services and Jaeger for distributed-
tracing support.

Finally, because we’re on OpenShift, you can expose these services directly
through the OpenShift Router. This way you don’t need to mess around with
node ports:

Istio Installation | 11



oc expose svc servicegraph
oc expose svc grafana
oc expose svc prometheus
oc expose svc istio-ingress

At this point, all of the Istio control-plane components and companion services
should be up and running. You can verify this by running the following:

oc get pods
NAME                             READY     STATUS    RESTARTS   AGE
grafana-3617079618-4qs2b         1/1       Running   0          4m
istio-ca-1363003450-tfnjp        1/1       Running   0          4m
istio-ingress-1005666339-vrjln   1/1       Running   0          4m
istio-mixer-465004155-zn78n      3/3       Running   0          5m
istio-pilot-1861292947-25hnm     2/2       Running   0          4m
jaeger-210917857-2w24f           1/1       Running   0          4m
prometheus-168775884-dr5dm       1/1       Running   0          4m
servicegraph-1100735962-tdh78    1/1       Running   0          4m

Installing Istio Command-Line Tooling
The last thing that you need to do is make istioctl available on the command
line. istioctl is the Istio command-line tool that you can use to manually inject
the istio-proxy sidecar as well as create, update, and delete Istio resources files.
When you unzip the Istio distribution, you’ll have a folder named /bin that has
the istioctl binary. You can add that to your path like this:

export ISTIO_HOME=~/istio-0.5.1
export PATH=$ISTIO_HOME/bin:$PATH

Now, from your command line you should be able to type the following and see a
valid response:

istioctl version
Version: 0.5.1
GitRevision: c9debceacb63a14a9ae24df433e2ec3ce1f16fc7
User: root@211b132eb7f1
Hub: docker.io/istio
GolangVersion: go1.9
BuildStatus: Clean

At this point, you’re ready to move on to installing the sample services.

Example Java Microservices Installation
To effectively demonstrate the capabilities of Istio, you’ll need to use a set of serv‐
ices that interact and communicate with one another. The services we have you
work with in this section are a fictitious and simplistic re-creation of a customer
portal for a website (think retail, finance, insurance, and so forth). In these sce‐
narios, a customer service would allow customers to set preferences for certain
aspects of the website. Those preferences will have the opportunity to take rec‐

12 | Chapter 2: Installation and Getting Started



ommendations from a recommendation engine that offers up suggestions. The
flow of communication looks like this:

Customer > Preference > Recommendation

From this point forward, it would be best for you to have the source code that
accompanies the book. You can checkout the source code from https://
github.com/redhat-developer-demos/istio-tutorial and switch to the branch book,
as demonstrated here:

git clone https://github.com/redhat-developer-demos/istio-tutorial.git
cd istio-tutorial
git checkout book

Navigating the Code Base
If you navigate into the istio-tutorial subfolder that you just cloned, you should
see a handful of folders. You should see the customer, preference, and recommen‐
dation folders. These folders each hold the source code the respective services
we’ll use to demonstrate Istio capabilities.

The customer and preference services are both Java Spring Boot implementations.
Have a look at the source code. You should see fairly straightforward implemen‐
tations of REST services. For example, here’s the endpoint for the customer ser‐
vice:

@RequestMapping("/")
public ResponseEntity<String> getCustomer() {
  try {
    String response = restTemplate.getForObject(remoteURL,
         String.class);
    return ResponseEntity.ok(String.format(RESPONSE_STRING_FORMAT,
         response.trim()));
  } catch (HttpStatusCodeException ex) { ....  }
}

We’ve left out the exception handling for a moment. You can see that this HTTP
endpoint simply calls out to the preference service and returns the response from
preference prepended with a fixed string of customer => %s. Note that there are
no additional libraries that we use beyond Spring’s RestTemplate. We do not wrap
these calls in circuit breaking, retry, client-side load balancing libraries, and so
on. We’re not adding any special request-tracking or request-mirroring function‐
ality. This is a crucial point. We want you to write code that allows you to build
powerful business logic without having to comingle application-networking con‐
cerns into your code base and dependency trees.

In the preceding example, we’ve left out the exception handling for brevity, but
the exception handling is also an important part of the code. Most languages pro‐
vide some mechanism for detecting and handling runtime failures. When you try
to call methods in your code that you know could fail, you should take care to

Example Java Microservices Installation | 13

https://github.com/redhat-developer-demos/istio-tutorial
https://github.com/redhat-developer-demos/istio-tutorial


catch those exceptional behaviors and deal with them appropriately. In the case
of the customer HTTP endpoint, you are trying to make a call over the network
to the preferences service. This call could fail, and you need to wrap it with some
exception handling. You could do interesting things in this exception handler like
reach into a cache or call a different service. For instance, we can envision devel‐
opers doing business-logic type things when they cannot get a preference like
returning a list of canned preferences, and so on. This type of alternative path
processing is sometimes termed fallback in the face of negative path behavior.
You don’t need special libraries to do this for you.

If you peruse the code base for the customer service a bit more, you might stum‐
ble upon two classes named HttpHeaderForwarderHandlerInterceptor and
HttpHeaderForwarderClientHttpRequestInterceptor. These classes work
together to intercept any incoming headers used for tracing and propagates them
for further downstream requests. These headers are the OpenTracing headers
and are defined in this immutable variable:

    private static final Set<String> FORWARDED_HEADER_NAMES =
         ImmutableSet.of(
            "x-request-id",
            "x-b3-traceid",
            "x-b3-spanid",
            "x-b3-parentspanid",
            "x-b3-sampled",
            "x-b3-flags",
            "x-ot-span-context",
            "user-agent"
    );

These headers are used to correlate requests together, submit spans to tracing
systems, and can be used for request/response timing analysis, diagnostics, and
debugging. Although our little helper interceptor is responsible for shuffling the
x-b3-* headers along it does not communicate with the tracing system directly.
In fact, you don’t need to include any tracing libraries in your application code or
dependency tree. When you propagate these headers, Istio is smart enough to
recognize them and submit the proper spans to your tracing backend. Through‐
out the examples and use cases in this book, we use the Jaeger Tracing project
from the Cloud Native Computing Foundation (CNCF). You can learn more
about Jaeger Tracing at http://jaegertracing.io/. You installed Jaeger as part of the
Istio installation in the previous section.

Now that you’ve had a moment to peruse the code base, let’s build these applica‐
tions and run them in containers on our Kubernetes/Openshift deployment sys‐
tem.

Before you deploy your services, make sure that you create the target namespace/
project and apply the correct security permissions:

14 | Chapter 2: Installation and Getting Started

http://jaegertracing.io/


oc new-project tutorial
oc adm policy add-scc-to-user privileged -z default -n tutorial

Building and Deploying the Customer Service
Now, let’s build and deploy the customer service. Make sure you’re logged in to
minishift which you installed earlier, in the section Istio Installation. You can ver‐
ify your status by using the following command:

oc status

Navigate to the customer directory and build the source just as you would any
Maven Java project:

cd customer
mvn clean package

Now you have built your project. Next, you will package your application as a
Docker image so that you can run it on Kubernetes:

docker build -t example/customer .

This will build your customer service into a docker image. You can see the results
of the Docker build command by using the following:

docker images | grep example

In the customer/src/main/kubernetes directory, there are two Kubernetes resource
files named Deployment.yml and Service.yml. Deploy the service and also deploy
your application with the Istio sidecar proxy injected into it. Try running the fol‐
lowing command to see what the injected sidecar looks like with your deploy‐
ment:

istioctl kube-inject -f src/main/kubernetes/Deployment.yml

Examine this output and compare it to the unchanged Deployment.yml. You
should see the sidecar that has been injected that looks like this:

      - args:
        - proxy
        - sidecar
        - --configPath
        - /etc/istio/proxy
        - --binaryPath
        - /usr/local/bin/envoy
        - --serviceCluster
        - customer
        - --drainDuration
        - 2s
        - --parentShutdownDuration
        - 3s
        - --discoveryAddress
        - istio-pilot.istio-system:15003
        - --discoveryRefreshDelay

Example Java Microservices Installation | 15



        - 1s
        - --zipkinAddress
        - zipkin.istio-system:9411
        - --connectTimeout
        - 1s
        - --statsdUdpAddress
        - istio-mixer.istio-system:9125
        - --proxyAdminPort
        - "15000"
        - --controlPlaneAuthPolicy
        - NONE
        env:
        - name: POD_NAME
          valueFrom:
            fieldRef:
              fieldPath: metadata.name
        - name: POD_NAMESPACE
          valueFrom:
            fieldRef:
              fieldPath: metadata.namespace
        - name: INSTANCE_IP
          valueFrom:
            fieldRef:
              fieldPath: status.podIP
        image: docker.io/istio/proxy:0.5.1
        imagePullPolicy: IfNotPresent
        name: istio-proxy
        resources: {}
        securityContext:
          privileged: false
          readOnlyRootFilesystem: true
          runAsUser: 1337
        volumeMounts:
        - mountPath: /etc/istio/proxy
          name: istio-envoy
        - mountPath: /etc/certs/
          name: istio-certs
          readOnly: true

You will see a second container injected into your deployment with configura‐
tions for finding the Istio control plane, volume mounts which mount in any
additional secrets, and you should see the name of this container is istio-proxy.

Now you can create the Kubernetes service and inject the sidecar into your
deployment:

oc apply -f <(istioctl kube-inject -f \
src/main/kubernetes/Deployment.yml)  -n tutorial

oc create -f src/main/kubernetes/Service.yml -n tutorial

Because customer is the forwardmost microservice (customer > preference > rec‐
ommendation), you should add an OpenShift Route that exposes that endpoint:

16 | Chapter 2: Installation and Getting Started



oc expose service customer
curl customer-tutorial.$(minishift ip).nip.io

Note we’re using the nip.io service which is basically a wildcard DNS system that
returns the IP address that you specify in the URL.

You should see the following error because preference and recommendation are
not yet deployed:

customer => I/O error on GET request for "http://preference:8080":
preference; nested exception is java.net.UnknownHostException: preference

Now you can deploy the rest of the services in this example.

Building and Deploying the Preference Service
Just like you did for the customer service, in this section you will build, package,
and deploy your preference service:

cd preference

mvn clean package

docker build -t example/preference .

You can also inject the Istio sidecar proxy into your deployment for the preference
service as you did previously for the customer service:

oc apply -f <(istioctl kube-inject -f \
src/main/kubernetes/Deployment.yml) -n tutorial

oc create -f src/main/kubernetes/Service.yml

Finally, try to curl your customer service once more:

curl customer-tutorial.$(minishift ip).nip.io

The response still fails, but a little bit differently this time:

customer => 503 preference => I/O error on GET request for
"http://recommendation:8080": recommendation; nested exception is
java.net.UnknownHostException: recommendation

This time the failure is because the preference service cannot reach the recom‐
mendation service. As such, you will build and deploy the recommendation ser‐
vice next.

Building and Deploying the Recommendation Service
The last step to get the full cooperation of our services working nicely is to
deploy the recommendation service. Just like in the previous services, you will
build, package, and deploy onto Kubernetes by using a couple of steps:

Example Java Microservices Installation | 17



cd recommendation

mvn clean package

docker build -t example/recommendation:v1 .

oc apply -f <(istioctl kube-inject -f \
src/main/kubernetes/Deployment.yml) -n tutorial

oc create -f src/main/kubernetes/Service.yml

oc get pods -w

Look for “2/2” under the Ready column. Ctrl-C to break out of the wait, and now
when you do the curl, you should see a better response:

curl customer-tutorial.$(minishift ip).nip.io

customer => preference => recommendation v1 from '99634814-sf4cl': 1

Success! The chain of calls between the three services works as expected. Now
that you have your services calling one another, we move on to discussing some
of the core capabilities of Istio and the power it brings for solving the problems
that arise between services.

Building and Deploying to Kubernetes
Kubernetes deploys and manages applications that have been built as Docker
containers. In the preceding examples, you built and packaged the applications
into Docker containers at each step. There are alternatives to the fully manual
deployment process of docker build and oc create -f someyaml.yml. These
alternatives include oc new-app and a capability known as source-to-image (S2I).
S2I is an OpenShift-only feature that is not compatible with vanilla Kubernetes.
There is also the fabric8-maven-plugin, which is a maven plug-in for Java appli‐
cations. fabric8-maven-plugin allows you to live comfortably in your existing
Java tooling and still build Docker images and interact with Kubernetes without
having to know about Dockerfiles or Kubernetes resource files. The maven plug-
in automatically builds the Kubernetes resource files and you can also use it to
quickly deploy, undeploy, and debug your Java application running in Kuber‐
netes.

18 | Chapter 2: Installation and Getting Started

https://maven.fabric8.io/


CHAPTER 3

Traffic Control

As we’ve seen in previous chapters, Istio consists of a control plane and a data
plane. The data plane is made up of proxies that live in the application architec‐
ture. We’ve been looking at a proxy-deployment pattern known as the sidecar,
which means each application instance has its own dedicated proxy through
which all network traffic travels before it gets to the application. These sidecar
proxies can be individually configured to route, filter, and augment network traf‐
fic as needed. In this chapter, we take a look at a handful of traffic-control pat‐
terns that you can take advantage of via Istio. You might recognize these patterns
as some of those practiced by the big internet companies like Netflix, Amazon, or
Facebook.

Smarter Canaries
The concept of the canary deployment has become fairly popular in the last few
years. The name “canary deployment” comes from the “canary in the coal mine”
concept. Miners used to take a canary in a cage into the mines to detect whether
there were any dangerous gases present because the canaries are more susceptible
to poisonous gases than humans. The canary would not only provide nice musi‐
cal songs to entertain the miners, but if at any point it collapsed off its perch, the
miners knew to get out of the coal mine rapidly.

The canary deployment has similar semantics. With a canary deployment, you
deploy a new version of your code to production, but you allow only a subset of
traffic to reach it. Perhaps only beta customers, perhaps only internal employees
of your organization, perhaps only iOS users, and so on. After the canary is out
there, you can monitor it for exceptions, bad behavior, changes in Service-Level
Agreement (SLA), and so forth. If it exhibits no bad behavior, you can begin to
slowly deploy more instances of the new version of code. If it exhibits bad behav‐

19



ior, you can pull it from production. The canary deployment allows you to
deploy faster but with minimal disruption should a “bad” code change be made.

By default, Kubernetes offers out-of-the-box round-robin load balancing of all
the pods behind a service. If you want only 10% of all end-user traffic to hit your
newest immutable container, you must have at least a 10 to 1 ratio of old pods to
the new pod. With Istio, you can be much more fine-grained. You can specify
that only 2% of traffic, across only three pods be routed to the latest version. Istio
will also let you gradually increase the overall traffic to the new version until all
end-users have been migrated over and the older versions of the app logic/code
can be removed from the production environment.

Traffic Routing
As we touched on previously, Istio allows much more fine-grained canary
deployments. With Istio, you can specify routing rules that control the traffic to a
deployment. Specifically, Istio uses a RouteRule resource to specify these rules.
Let’s take a look at an example RouteRule:

apiVersion: config.istio.io/v1alpha2
kind: RouteRule
metadata:
  name: recommendation-default
spec:
  destination:
    namespace: tutorial
    name: recommendation
  precedence: 1
  route:
  - labels:
      version: v1
    weight: 100

This RouteRule definition allows you to configure a percentage of traffic and
direct it to a specific version of the recommendation service. In this case, 100% of
traffic for the recommendation service will always go to pods matching the labels
version: v1. The selection of pods here is very similar to the Kubernetes selec‐
tor model for matching based on labels. So, any service within the service mesh
that tries to communicate with the recommendation service will always be routed
to v1 of the recommendation service.

The routing behavior described above is not just for ingress traffic; that is, traffic
coming into the mesh. This is for all interservice communication within the
mesh. As we’ve illustrated in the example, these routing rules apply to services
potentially deep within a service call graph. If you have a service deployed to
Kubernetes that’s not part of the service mesh, it will not see these rules and will
adhere to the default Kubernetes load-balancing rules (as just mentioned).

20 | Chapter 3: Traffic Control



Routing to Specific Versions of a Deployment
To illustrate more complex routing, and ultimately what a canary rollout would
look like, let’s deploy v2 of our recommendation service. First, you need to make
some changes to the source code for the recommendation service. Change the
RESPONSE_STRING_FORMAT String in the com.redhat.developer.demos.recom
mendation.RecommendationVerticle to be something like this:

private static final String RESPONSE_STRING_FORMAT =
  "recommendation v2 from '%s': %d\n";

Now do a build and package of this code as v2:

cd recommendation

mvn clean package

docker build -t example/recommendation:v2 .

Finally, inject the Istio sidecar proxy and deploy this into Kubernetes:

oc apply -f <(istioctl kube-inject -f \
src/main/kubernetes/Deployment-v2.yml) -n tutorial

You can run oc get pods -w to watch the pods and wait until they all come up.
You should see something like this when all of the pods are running successfully:

NAME                                 READY   STATUS    RESTARTS   AGE
customer-3600192384-fpljb            2/2     Running   0          17m
preference-243057078-8c5hz           2/2     Running   0          15m
recommendation-v1-60483540-9snd9     2/2     Running   0          12m
recommendation-v2-2815683430-vpx4p   2/2     Running   0          15s

At this point, if you curl the customer endpoint, you should see traffic load bal‐
anced across both versions of the recommendation service. You should see some‐
thing like this:

#!/bin/bash
while true
do curl customer-tutorial.$(minishift ip).nip.io
sleep .1
done

customer => preference => recommendation v1 from '2819441432-qsp25': 29
customer => preference => recommendation v2 from '99634814-sf4cl': 37
customer => preference => recommendation v1 from '2819441432-qsp25': 30
customer => preference => recommendation v2 from '99634814-sf4cl': 38
customer => preference => recommendation v1 from '2819441432-qsp25': 31
customer => preference => recommendation v2 from '99634814-sf4cl': 39

Now you can create your first RouteRule and route all traffic to only v1 of the
recommendation service. You should navigate to the root of the source code you
cloned from the istio-tutorial directory, and run the following command:

Smarter Canaries | 21



istioctl create -f istiofiles/route-rule-recommendation-v1.yml \
 -n tutorial

Now if you try to query the customer service, you should see all traffic routed to
v1 of the service:

#!/bin/bash
while true
do curl customer-tutorial.$(minishift ip).nip.io
sleep .1
Done

customer => preference => recommendation v1 from '1543936415': 1
customer => preference => recommendation v1 from '1543936415': 2
customer => preference => recommendation v1 from '1543936415': 3
customer => preference => recommendation v1 from '1543936415': 4
customer => preference => recommendation v1 from '1543936415': 5
customer => preference => recommendation v1 from '1543936415': 6

Canary release of recommendation v2
Now that all traffic is going to v1 of your recommendation service, you can ini‐
tiate a canary release using Istio. The canary release should take 90% of the
incoming live traffic. To do this, you need to specify a weighted routing rule in
new RouteRule that looks like this:

apiVersion: config.istio.io/v1alpha2
kind: RouteRule
metadata:
  name: recommendation-v1-v2
spec:
  destination:
    namespace: tutorial
    name: recommendation
  precedence: 5
  route:
  - labels:
      version: v1
    weight: 90
  - labels:
      version: v2
    weight: 10

As you can see, you’re sending 90% of the traffic to v1 and 10% of the traffic to v2
with this RouteRule. An important thing to notice about this RouteRule is the
precedence value. In the preceding example, we set this to 5 for this route rule,
which means it has higher precedence than the earlier rule that routes all traffic to
v1. Try creating it and see what happens when you put load on the service:

istioctl create -f istiofiles/route-rule-recommendation-v1_and_v2.yml \
-n tutorial

22 | Chapter 3: Traffic Control



If you start sending load against the customer service like in the previous steps,
you should see that only a fraction of traffic actually makes it to v2. This is a can‐
ary release. You should monitor your logs, metrics, and tracing systems to see
whether this new release has introduced any negative unintended or unexpected
behaviors into your system.

Continue rollout of recommendation v2
At this point, if no bad behaviors have surfaced, you should have a bit more con‐
fidence in the v2 of our recommendation service. You might then want to increase
the traffic to v2. You can do that with another RouteRule that looks like this:

apiVersion: config.istio.io/v1alpha2
kind: RouteRule
metadata:
  name: recommendation-v1-v2
spec:
  destination:
    namespace: tutorial
    name: recommendation
  precedence: 5
  route:
  - labels:
      version: v1
    weight: 50
  - labels:
      version: v2
    weight: 50

With this RouteRule we’re going to open the traffic up to 50% to v1, and 50% to
v2. Notice the precedence is still the same value (it’s 5, just like the canary release)
and that the route rule’s name is the same as the canary release
(recommendation-v1-v2). When you create this route rule using istioctl, you
should use the replace command:

istioctl replace -f \
istiofiles/route-rule-recommendation-v1_and_v2_50_50.yml -n tutorial

Now you should see traffic behavior change in real time. You should see approxi‐
mately half the traffic go to v1 of the recommendation service and half go to v2.
You should see something like the following:

customer => preference => recommendation v1 from '1543936415': 192
customer => preference => recommendation v2 from '3116548731': 37
customer => preference => recommendation v2 from '3116548731': 38
customer => preference => recommendation v1 from '1543936415': 193
customer => preference => recommendation v2 from '3116548731': 39
customer => preference => recommendation v2 from '3116548731': 40
customer => preference => recommendation v2 from '3116548731': 41
customer => preference => recommendation v1 from '1543936415': 194
customer => preference => recommendation v2 from '3116548731': 42

Smarter Canaries | 23



Finally, if everything continues to look good with this release, you can switch all
of the traffic to go to v2 of recommendation service. You need to install the Rou
teRule that routes all traffic to v2:

apiVersion: config.istio.io/v1alpha2
kind: RouteRule
metadata:
  name: recommendation-default
spec:
  destination:
    namespace: tutorial
    name: recommendation
  precedence: 1
  route:
  - labels:
      version: v2
    weight: 100

You can replace the v1 route rule like this:

istioctl replace -n tutorial -f \
istiofiles/route-rule-recommendation-v2.yml

Note that the precedence for this route rule is set to 1. This means the traffic-
control RouteRules you used in the previous steps, which had their precedence
values set to 5 would still have higher precedence. That’s true. You need to next
delete the canary/rollout route rules so that all traffic matches the v2 routerule:

istioctl delete routerule -n tutorial recommendation-v1-v2

Now you should see all traffic going to v2 of the recommendation service:

customer => preference => recommendation v2 from '3116548731': 308
customer => preference => recommendation v2 from '3116548731': 309
customer => preference => recommendation v2 from '3116548731': 310
customer => preference => recommendation v2 from '3116548731': 311
customer => preference => recommendation v2 from '3116548731': 312
customer => preference => recommendation v2 from '3116548731': 313
customer => preference => recommendation v2 from '3116548731': 314
customer => preference => recommendation v2 from '3116548731': 315

Restore route rules to v1
To clean up this section, replace the route rules to direct traffic back to v1 of the
recommendation service:

istioctl replace -n tutorial -f \
istiofiles/route-rule-recommendation-v1.yml

Routing Based on Headers
You’ve seen how you can use Istio to do fine-grained routing based on service
metadata. You also can use Istio to do routing based on request-level metadata.

24 | Chapter 3: Traffic Control



For example, you can use matching predicates to set up specific route rules based
on requests that match a specified set of criteria. For example, you might want to
split traffic to a particular service based on geography, mobile device, or browser.
Let’s see how to do that with Istio.

With Istio, you can use a match clause in the RouteRule to specify a predicate.
For example, take a look at the following RouteRule:

apiVersion: config.istio.io/v1alpha2
kind: RouteRule
metadata:
  name: recommendation-safari
spec:
  destination:
    namespace: tutorial
    name: recommendation
  precedence: 2
  match:
    request:
      headers:
        user-agent:
          regex: ".*Safari.*"
  route:
  - labels:
      version: v2

This rule uses a request header–based matching clause that will match only if the
request includes “Safari” as part of the user-agent header. If the request matches
the predicate, it will be routed to v2 of the recommendation service. Note that this
also has a precedence that’s higher than the default route rule (recall, the default
route rule routes every request to v1 and has a precedence of 1).

Install the rule:

$  istioctl create -f \
istiofiles/route-rule-safari-recommendation-v2.yml -n tutorial

And let’s try it out:

$  curl customer-tutorial.$(minishift ip).nip.io

customer => preference => recommendation v1 from '1543936415': 465

And if you pass in a user-agent header of Safari, you should be routed to v2:

$ curl -H 'user-agent: Safari' \
customer-tutorial.$(minishift ip).nip.io

customer => preference => recommendation v2 from '3116548731': 318

Smarter Canaries | 25



Cleaning up route rules
After getting to this section, you can clean up all of the route rules you’ve
installed. First, you should list the route rules you have using istioctl get:

$  istioctl get routerule -n tutorial

NAME                    KIND                                NAMESPACE
recommendation-default  RouteRule.v1alpha2.config.istio.io  tutorial
recommendation-safari   RouteRule.v1alpha2.config.istio.io  tutorial

Now you can delete them:

istioctl delete routerule recommendation-safari -n tutorial
istioctl delete routerule recommendation-default -n tutorial

Dark Launch
Dark launch can mean different things to different people. In essence, a dark
launch is a deployment to production that goes unnoticed to customer traffic.
You might choose to release to a subset of customers (like internal or nonpaying
customers) but the broader user base does not see the release. Another option is
to duplicate or mirror production traffic into a cluster that has a new deployment
and see how it behaves compared to the live traffic. This way you’re able to put
production quality requests into your new service without affecting any live traf‐
fic.

For example, you could say recommendation v1 takes the live traffic and recom‐
mendation v2 will be your new deployment. You can use Istio to mirror traffic
that goes to v1 into the v2 cluster. When Istio mirrors traffic, it does so in a fire-
and-forget manner. In other words, Istio will do the mirroring asynchronously
from the critical path of the live traffic, send the mirrored request to the test clus‐
ter, and not worry about or care about a response. Let’s try this out.

The first thing you should do is make sure that there are no route rules currently
being used:

istioctl get routerules -n tutorial

Let’s take a look at a RouteRule that configures mirroring:

apiVersion: config.istio.io/v1alpha2
kind: RouteRule
metadata:
  name: recommendation-mirror
spec:
  destination:
    namespace: tutorial
    name: recommendation
  precedence: 2
  route:
  - labels:

26 | Chapter 3: Traffic Control



      version: v1
    weight: 100
  - labels:
      version: v2
    weight: 0
  mirror:
    namespace: tutorial
    name: recommendation
    labels:
      version: v2

You can see that this directs all traffic to v1 of recommendation and no traffic to
v2. In the mirror clause, you specify which cluster to receive the mirrored traffic.

Next, verify you’re in the root directory of the source files you gleaned from the
istio-tutorial and run the following command:

istioctl create -f istiofiles/route-rule-recommendation-v1-mirror-v2.yml\
 -n tutorial

Now, in one terminal, tail the logs for the recommendation v2 service:

oc logs -f `oc get pods|grep recommendation-v2|awk '{ print $1 }'` \
 -c recommendation

In another window, you can send in a request:

$  curl customer-tutorial.$(minishift ip).nip.io
customer => preference => recommendation v1 from '1543936415': 466

You can see from the response that we’re hitting v1 of the recommendation service
as expected. If you observe in your tailing of the v2 logs, you’ll also see new
entries as it’s processing the mirrored traffic.

You can use mirrored traffic to do powerful prerelease testing, but it does not
come without its own challenges. For example, a new version of a service might
still need to communicate with a database or other collaborator services. For
dealing with data in a microservices world, take a look at Edson Yanaga’s book
Migrating to Microservices Databases. For a more detailed treatment on advanced
mirroring techniques, you can take a look at Christian’s blog post “Advanced
Traffic-shadowing Patterns for Microservices With Istio Service Mesh”.

Egress
By default, Istio directs all traffic originating in a service through the Istio proxy
that’s deployed alongside the service. This proxy evaluates its routing rules and
decides how best to deliver the request. One nice thing about the Istio service
mesh is that by default it blocks all outbound (outside of the cluster) traffic unless
you specifically and explicitly create routing rules to allow traffic out. From a
security standpoint, this is crucial. You can use Istio in both zero-trust network‐
ing architectures as well as traditional perimeter-based security. In both cases,

Egress | 27

http://bit.ly/istio-tutorial
http://bit.ly/mono2microdb
http://bit.ly/openshift-for-dev
http://bit.ly/openshift-for-dev


Istio helps protect against a nefarious agent gaining access to a single service and
calling back out to a command-and-control system thus allowing an attacker full
access to the network. By blocking any outgoing access by default and allowing
routing rules to control not only internal traffic but any and all outgoing traffic,
you can make your security posture more resilient to outside attacks irrespective
of where they originate.

To demonstrate, we will have you create a service that makes a call out to an
external website, namely, httpbin.org, and see how it behaves in the service mesh.

From the root of the companion source code you’ve cloned earlier, go to the
egress/egresshttpbin folder. This is another Spring Boot Java application that does
the following salient functionality:

    @RequestMapping
    public String headers() {
        RestTemplate restTemplate = new RestTemplate();
        String url = "http://httpbin.org/headers";

        HttpHeaders httpHeaders = new HttpHeaders();
        HttpEntity<String> httpEntity =
            new HttpEntity<>("", httpHeaders);

        String responseBody;
        try {
            ResponseEntity<String> response
            = restTemplate.exchange(url, HttpMethod.GET,
                httpEntity,
                String.class);
            responseBody = response.getBody();
        } catch (Exception e) {
            responseBody = e.getMessage();
        }
            return responseBody + "\n";
    }

This HTTP endpoint, when called, will make a call out to httpbin.org/headers,
which is a service residing on the public internet that returns a list of headers that
were sent to the HTTP GET /headers endpoint.

Now you can build, package, and deploy and expose this service:

$  cd egress/egresshttpbin

$  mvn clean package

$  docker build -t example/egresshttpbin:v1 .

$  oc apply -f <(istioctl kube-inject -f \
src/main/kubernetes/Deployment.yml)

28 | Chapter 3: Traffic Control



$  oc create -f src/main/kubernetes/Service.yml
$  oc expose service egresshttpbin

You should not be able to query the service like this:

$  curl http://egresshttpbin-tutorial.$(minishift ip).nip.io

You should see a response like this:

404 Not Found

Dang! This service cannot communicate with services in the public internet that
live outside of our cluster!

Let’s go back to the root of your source code and create an egress rule that looks
like this:

apiVersion: config.istio.io/v1alpha2
kind: EgressRule
metadata:
  name: httpbin-egress-rule
spec:
  destination:
    service: httpbin.org
  ports:
    - port: 80
      protocol: http

This EgressRule allows your traffic to reach the outside internet but only for the
httpbin.org website. Here, you can create the rule and try querying your service
again:

istioctl create -f istiofiles/egress_httpbin.yml -n tutorial

You can list the egress rules like this:

$  istioctl get egressrule
NAME                    KIND                                 NAMESPACE
httpbin-egress-rule     EgressRule.v1alpha2.config.istio.io  tutorial

Now you can try to curl the service again:

curl http://egresshttpbin-tutorial.$(minishift ip).nip.io

Yay! It should have worked this time! Istio EgressRules allowed your service to
reach the outside internet for this specific service. If you had a failure at this step,
you can file a GitHub issue for the istio-tutorial.

Egress | 29

http://bit.ly/istio-tutorial




CHAPTER 4

Service Resiliency

Remember that your services and applications will be communicating over unre‐
liable networks. In the past, developers have often tried to use frameworks (EJBs,
CORBA, RMI, etc.) to simply make network calls appear like local method invo‐
cations. This gave developers a false peace of mind. Without ensuring the appli‐
cation actively guarded against network failures, the entire system was
susceptible to cascading failures. Therefore, you should never assume that a
remote dependency that your application or microservice is accessing across a
network is guaranteed to respond with a valid payload nor within a particular
timeframe (or, at all. As Douglas Adams, author of The Hitchhiker’s Guide to the
Galaxy, once said, “A common mistake that people make when trying to design
something completely foolproof is to underestimate the ingenuity of complete
fools”). You do not want the misbehavior of a single service to become a cata‐
strophic failure that hamstrings your business objectives.

Istio comes with many capabilities for implementing resilience within applica‐
tions, but just as we noted earlier, the actual enforcement of these capabilities
happens in the sidecar. This means that the resilience features listed here are not
targeted toward any specific runtime; they’re applicable regardless of library or
framework you choose to write your service:

Client-side load balancing
Istio augments Kubernetes out-of-the-box load balancing.

Timeout
Wait only N seconds for a response and then give up.

Retry
If one pod returns an error (e.g., 503), retry for another pod.

31



Simple circuit breaker
Instead of overwhelming the degraded service, open the circuit and reject
further requests.

Pool ejection
This provides autoremoval of error-prone pods from the load-balancing
pool.

Let’s take a look at each capability with an example. Here, we use the same set of
services from the previous examples.

Load Balancing
A core capability for increasing throughput and lowering latency is load balanc‐
ing. A straightforward way to implement this is to have a centralized load bal‐
ancer with which all clients communicates and knows how to distribute load to
any backend systems. This is a great approach, but it can become both a bottle‐
neck as well as a single point of failure. Load balancing capabilities can be dis‐
tributed to clients with client-side load balancers. These client load balancers can
use sophisticated, cluster-specific, load-balancing algorithms to increase availa‐
bility, lower latency, and increase overall throughput. The Istio proxy has the
capabilities to provide client-side load balancing through the following configu‐
rable algorithms:

ROUND_ROBIN
This algorithm evenly distributes the load, in order, across the endpoints in
the load-balancing pool

RANDOM
This evenly distributes the load across the endpoints in the load-balancing
pool but without any order.

LEAST_CONN
This algorithm picks two random hosts from the load-balancing pool and
determines which host has fewer outstanding requests (of the two) and sends
to that endpoint. This is an implementation of weighted least request load
balancing.

In the previous chapters on routing, you saw the use of RouteRules to control
how traffic is routed to specific clusters. In this chapter, we show you how to con‐
trol the behavior of communicating with a particular cluster using Destination
Policy rules. To begin, we discuss how to configure load balancing with Istio
DestinationPolicy rules.

32 | Chapter 4: Service Resiliency



First, make sure there are no RouteRules that might interfere with how traffic is
load balanced across v1 and v2 of our recommendation service. You can delete all
RouteRules like this:

istioctl delete routerule --all

Next, you can scale up the recommendation service replicas to 3:

oc scale deployment recommendation-v2 --replicas=3 -n tutorial

Wait a moment for all containers to become healthy and ready for traffic. Now,
send traffic to your cluster using the same script you used earlier:

#!/bin/bash
while true
do curl customer-tutorial.$(minishift ip).nip.io
sleep .1
done

You should see a round-robin-style distribution of load based on the outputs:

customer => preference => recommendation v1 from '99634814': 1145
customer => preference => recommendation v2 from '2819441432': 1
customer => preference => recommendation v2 from '2819441432': 2
customer => preference => recommendation v2 from '2819441432': 181
customer => preference => recommendation v1 from '99634814': 1146
customer => preference => recommendation v2 from '2819441432': 3
customer => preference => recommendation v2 from '2819441432': 4
customer => preference => recommendation v2 from '2819441432': 182

Now, change the load-balancing algorithm to RANDOM. Here’s what the Istio
DestinationPolicy would look like for that:

apiVersion: config.istio.io/v1alpha2
kind: DestinationPolicy
metadata:
  name: recommendation-loadbalancer
  namespace: tutorial
spec:
  source:
    name: preference
  destination:
    name: recommendation
  loadBalancing:
    name: RANDOM

This destination policy configures traffic from the preference service to the recom‐
mendation service to be sent using a random load-balancing algorithm.

Let’s create this destination policy:

istioctl create -f istiofiles/recommendation_lb_policy_app.yml -n tutorial

Load Balancing | 33



You should now see a more random distribution when you call your service:

customer => preference => recommendation v2 from '2819441432': 10
customer => preference => recommendation v2 from '2819441432': 3
customer => preference => recommendation v2 from '2819441432': 11
customer => preference => recommendation v1 from '99634814': 1153
customer => preference => recommendation v1 from '99634814': 1154
customer => preference => recommendation v1 from '99634814': 1155
customer => preference => recommendation v2 from '2819441432': 12
customer => preference => recommendation v2 from '2819441432': 4
customer => preference => recommendation v2 from '2819441432': 5
customer => preference => recommendation v2 from '2819441432': 13
customer => preference => recommendation v2 from '2819441432': 14

Because you’ll be creating more destination policies throughout the remainder of
this chapter, now is a good time to clean up:

istioctl delete -f istiofiles/recommendation_lb_policy_app.yml \
-n tutorial

Timeout
Timeouts are a crucial component to making systems resilient and available.
Calls to services over a network can result in lots of unpredictable behavior, but
the worst behavior is latency. Did the service fail? Is it just slow? Is it not even
available? Unbounded latency means any of those things could have happened.
But what does your service do? Just sit around and wait? Waiting is not a good
solution if there is a customer on the other end of the request. Waiting also uses
resources, causes other systems to potentially wait, and is usually a contributor to
cascading failures. Your network traffic should always have timeouts in place,
and you can use Istio service mesh to do this.

If you take a look at your recommendation service, find the RecommendationVer
ticle.java class and uncomment the line that introduces a delay in the service.
You should save your changes before continuing:

@Override
public void start() throws Exception {
  Router router = Router.router(vertx);
//router.get("/").handler(this::timeout);
  router.get("/").handler(this::logging);
  router.get("/").handler(this::getRecommendations);
  router.get("/misbehave").handler(this::misbehave);
  router.get("/behave").handler(this::behave);

  HealthCheckHandler hc = HealthCheckHandler.create(vertx);
  hc.register("dummy-health-check", future ->
         future.complete(Status.OK()));
  router.get("/health").handler(hc);

34 | Chapter 4: Service Resiliency



  vertx.createHttpServer().requestHandler(router::accept).listen(8080);
}

You can now build the service and deploy it:

cd recommendation
mvn clean package
docker build -t example/recommendation:v2 .
oc delete pod -l app=recommendation,version=v2 -n tutorial

The last step here is to restart the v2 pod with the latest Docker image of your
recommendation service. Now, if you call your customer service endpoint, you
should experience the delay when the call hits the registration v2 service:

$  time curl customer-tutorial.$(minishift ip).nip.io

customer => preference => recommendation v2 from '751265691-qdznv': 2

real    0m3.054s
user    0m0.003s
sys     0m0.003s

Note that you might need to make the call a few times for it to route to the v2
service. The v1 version of recommendation does not have the delay.

Let’s take a look at your RouteRule that introduces a rule that imposes a timeout
when making calls to recommendation service:

apiVersion: config.istio.io/v1alpha2
kind: RouteRule
metadata:
  name: recommendation-timeout
spec:
  destination:
    namespace: tutorial
    name: recommendation
  precedence: 1
  route:
  - labels:
      app: recommendation
  httpReqTimeout:
    simpleTimeout:
      timeout: 1s

You can now create this route rule:

istioctl create -f istiofiles/route-rule-recommendation-timeout.yml \
-n tutorial

Now when you send traffic to your customer service, you should see either a suc‐
cessful request (if it was routed to v1 of recommendation) or a 504 upstream
request timeout error if routed to v2:

Timeout | 35



$  time curl customer-tutorial.$(minishift ip).nip.io

customer => 503 preference => 504 upstream request timeout

real    0m1.151s
user    0m0.003s
sys     0m0.003s

You can clean up by deleting this route rule:

istioctl delete routerule recommendation-timeout -n tutorial

Retry
Because you know the network is not reliable you might experience transient,
intermittent errors. This can be even more pronounced with distributed micro‐
services rapidly deploying several times a week or even a day. The service or pod
might have gone down only briefly. With Istio’s retry capability, you can make a
few more attempts before having to truly deal with the error, potentially falling
back to default logic. Here, we show you how to configure Istio to do this.

The first thing you need to do is simulate transient network errors. You could do
this in your Java code, but you’re going to use Istio, instead. You’re going to inject
transient HTTP 503 errors into your call to recommendation service. We cover
fault injection in more detail in Chapter 5, but for the moment, trust that instal‐
ling the following route rule will introduce HTTP 503 errors:

istioctl create -f istiofiles/route-rule-recommendation-v2_503.yml \
-n tutorial

Now when you send traffic to the customer service, you should see intermittent
503 errors:

#!/bin/bash
while true
do
curl customer-tutorial.$(minishift ip).nip.io
sleep .1
done

customer => preference => recommendation v2 from '2036617847': 190
customer => preference => recommendation v2 from '2036617847': 191
customer => preference => recommendation v2 from '2036617847': 192
customer => 503 preference => 503 fault filter abort
customer => preference => recommendation v2 from '2036617847': 193
customer => 503 preference => 503 fault filter abort
customer => preference => recommendation v2 from '2036617847': 194
customer => 503 preference => 503 fault filter abort
customer => preference => recommendation v2 from '2036617847': 195
customer => 503 preference => 503 fault filter abort

36 | Chapter 4: Service Resiliency



Let’s take a look at a RouteRule that specifies your retry configuration:

apiVersion: config.istio.io/v1alpha2
kind: RouteRule
metadata:
  name: recommendation-v2-retry
spec:
  destination:
    namespace: tutorial
    name: recommendation
  precedence: 3
  route:
  - labels:
      version: v2
  httpReqRetries:
    simpleRetry:
      perTryTimeout: 2s
      attempts: 3

This rule sets your retry attempts to 3 and will use a 2s timeout for each retry.
The cumulative timeout is therefore six seconds plus the timeout of the original
call. (To specify an overall timeout, see the previous section on timeouts.)

Let’s create your retry rule and try the traffic again:

istioctl create -f istiofiles/route-rule-recommendation-v2_retry.yml \
-n tutorial

Now when you send traffic, you shouldn’t see any errors. This means that even
through you are experiencing 503s, Istio is automatically retrying to request for
you, as shown here:

customer => preference => recommendation v2 from '751265691-n65j9': 35
customer => preference => recommendation v2 from '751265691-n65j9': 36
customer => preference => recommendation v2 from '751265691-n65j9': 37
customer => preference => recommendation v2 from '751265691-n65j9': 38
customer => preference => recommendation v2 from '751265691-n65j9': 39
customer => preference => recommendation v2 from '751265691-n65j9': 40
customer => preference => recommendation v2 from '751265691-n65j9': 41
customer => preference => recommendation v2 from '751265691-n65j9': 42
customer => preference => recommendation v2 from '751265691-n65j9': 43

Now you can clean up all of the route rules you’ve installed:

oc delete routerule --all

Circuit Breaker
Much like the electrical safety mechanism in the modern home (we used to have
fuse boxes, and “blew a fuse” is still part of our vernacular), the circuit breaker
insures that any specific appliance does not overdraw electrical current through a
particular outlet. If you ever lived with someone who plugged in their radio, hair
dryer, and perhaps a portable heater into the same circuit, you have likely seen

Circuit Breaker | 37



this in action. The overdraw of current creates a dangerous situation because you
can overheat the wire, which can result in a fire. The circuit breaker opens and
disconnects the electrical current flow.

The concepts of the circuit breaker and bulkhead for software systems
were first proposed in the book by Michael Nygard titled Release It. The
book was first published in 2007, long before the term microservices
was even coined. A second edition of the book was just released in 2018.

The patterns of circuit breaker and bulkhead were popularized with the release of
Netflix’s Hystrix library in 2012. The Netflix libraries such as Eureka (Service
Discovery), Ribbon (load balancing) and Hystrix (circuit breaker and bulkhead)
rapidly became very popular as many folks in the industry also began to focus on
microservices and cloud-native architecture. Netflix OSS was built before there
was a Kubernetes/OpenShift, and it does have some downsides: one, it is Java-
only, and two it requires the application developer to use the embed library cor‐
rectly. Figure 4-1 provides a timeline, from when the software industry attempted
to break up monolithic application development teams and massive multimonth
waterfall workflows, to the birth of Netflix OSS and the coining of the term
“microservices.”

Figure 4-1. Microservices timeline

38 | Chapter 4: Service Resiliency

https://pragprog.com/book/mnee2/release-it-second-edition


Istio puts more of the resilience implementation into the infrastructure so that
you can focus more of their valuable time and energy on code that differentiates
their business from the ever-growing competitive field.

Istio implements circuit breaking at the connection pool level and at the load-
balancing host level. We’ll show you examples of both.

To explore the connection-pool circuit breaking, prepare by ensuring recommen‐
dation v2 service has the 3s timeout enabled (from the previous section). The
RecommendationVerticle.java file should look similar to this:

    Router router = Router.router(vertx);
    router.get("/").handler(this::logging);
    router.get("/").handler(this::timeout);
    router.get("/").handler(this::getRecommendations);
    router.get("/misbehave").handler(this::misbehave);
    router.get("/behave").handler(this::behave);

You will route traffic to both v1 and v2 of recommendation using this Istio RouteR
ule:

istioctl create -f \
istiofiles/route-rule-recommendation-v1_and_v2_50_50.yml -n tutorial

From the initial installation instructions, we recommended you install the seige
command-line tool. You can use this for load testing with a simple command-
line interface (CLI).

We will use 20 clients sending two requests each (concurrently). Use the follow‐
ing command to do so:

siege -r 2 -c 20 -v customer-tutorial.$(minishift ip).nip.io

You should see output similar to this:

Circuit Breaker | 39



All of the requests to your system were successful, but it took some time to run
the test because the v2 instance or pod was a slow performer. Note that for each
call to v2, it took three seconds or more to complete (this is from the delay func‐
tionality you enabled).

40 | Chapter 4: Service Resiliency



But suppose that in a production system this three-second delay was caused by
too many concurrent requests to the same instance or pod. You don’t want multi‐
ple requests getting queued or making that instance or pod even slower. So, we’ll
add a circuit breaker that will open whenever you have more than one request
being handled by any instance or pod.

To create circuit breaker functionality for our services, we use an Istio Destina
tionPolicy that looks like this:

apiVersion: config.istio.io/v1alpha2
kind: DestinationPolicy
metadata:
  name: recommendation-circuitbreaker
spec:
  destination:
    namespace: tutorial
    name: recommendation
    labels:
      version: v2
  circuitBreaker:
    simpleCb:
      maxConnections: 1
      httpMaxPendingRequests: 1
      sleepWindow: 2m
      httpDetectionInterval: 1s
      httpMaxEjectionPercent: 100
      httpConsecutiveErrors: 1
      httpMaxRequestsPerConnection: 1

Here, you’re configuring the circuit breaker for any client calling into v2 of the
recommendation service. Remember in the previous RouteRule that you are split‐
ting (50%) traffic between both v1 and v2, so this DestinationPolicy should be
in effect for half the traffic. You are limiting the number of connections and
number of pending requests to one. (We discuss the other settings in the next
section, in which we look at outlier detection.) Let’s create this circuit breaker
policy:

istioctl create -f istiofiles/recommendation_cb_policy_version_v2.yml \
-n tutorial

Now try the seige load generator one more time:

siege -r 2 -c 20 -v customer-tutorial.$(minishift ip).nip.io

Circuit Breaker | 41



You can now see that almost all calls completed in less than a second with either a
success or a failure. You can try this a few times to see that this behavior is consis‐
tent. The circuit breaker will short circuit any pending requests or connections
that exceed the specified threshold (in this case, an artificially low number, 1, to
demonstrate these capabilities).

42 | Chapter 4: Service Resiliency



You can clean up these destination policies and route rules like this:

istioctl delete routerule recommendation-v1-v2 -n tutorial
istioctl delete -f istiofiles/recommendation_cb_policy_version_v2.yml

Pool Ejection
The last of the resilience capabilities that we discuss has to do with identifying
badly behaving cluster hosts and not sending any more traffic to them for a cool-
off period. Because the Istio proxy is based on Envoy and Envoy calls this imple‐
mentation outlier detection, we’ll use the same terminology for discussing Istio.

Pool ejection or outlier detection is a resilience strategy that takes place whenever
you have a pool of instances or pods to serve a client request. If the request is
forwarded to a certain instance and it fails (e.g., returns a 50x error code), Istio
will eject this instance from the pool for a certain sleep window. In our example,
the sleep window is configured to be 15s. This increases the overall availability by
making sure that only healthy pods participate in the pool of instances.

First, you need to ensure that you have a RouteRule in place. Let’s use a 50/50
split of traffic:

oc create -f istiofiles/route-rule-recommendation-v1_and_v2_50_50.yml \
-n tutorial

Next, you can scale the number of pods for the v2 deployment of recommenda‐
tion so that you have some hosts in the load balancing pool with which to work:

oc scale deployment recommendation-v2 --replicas=2 -n tutorial

Wait a moment for all of the pods to get to the ready state. You can watch their
progress with the following:

oc get pods -w

Now, let’s generate some simple load against the customer service:

#!/bin/bash
while true
do curl customer-tutorial.$(minishift ip).nip.io
sleep .1
done

You will see the load balancing 50/50 between the two different versions of the
recommendation service. And within version v2, you will also see that some
requests are handled by one pod and some requests are handled by the other
pod:

customer => preference => recommendation v1 from '2039379827': 447
customer => preference => recommendation v2 from '2036617847': 26
customer => preference => recommendation v1 from '2039379827': 448
customer => preference => recommendation v2 from '2036617847': 27

Pool Ejection | 43



customer => preference => recommendation v1 from '2039379827': 449
customer => preference => recommendation v1 from '2039379827': 450
customer => preference => recommendation v2 from '2036617847': 28
customer => preference => recommendation v1 from '2039379827': 451
customer => preference => recommendation v1 from '2039379827': 452
customer => preference => recommendation v2 from '2036617847': 29
customer => preference => recommendation v2 from '2036617847': 30
customer => preference => recommendation v2 from '2036617847': 216

To test outlier detection, you’ll want one of the pods to misbehave. Find one of
them and login to it and instruct it to misbehave:

oc get pods -l app=recommendation,version=v2

You should see something like this:

recommendation-v2-2036617847         2/2       Running   0          1h
recommendation-v2-2036617847-spdrb   2/2       Running   0          7m

Now you can get into one the pods and add some erratic behavior on it. Get one
of the pod names from your system and replace on the following command
accordingly:

oc exec -it recommendation-v2-2036617847-spdrb -c recommendation /bin/bash

You will be inside the application container of your pod recommendation-
v2-2036617847-spdrb. Now execute:

curl localhost:8080/misbehave
exit

This is a special endpoint that will make our application return only 503s.

#!/bin/bash
while true
do curl customer-tutorial.$(minishift ip).nip.io
sleep .1
done

You’ll see that whenever the pod recommendation-v2-2036617847-spdrb

receives a request, you get a 503 error:

customer => preference => recommendation v1 from '2039379827': 495
customer => preference => recommendation v2 from '2036617847': 248
customer => preference => recommendation v1 from '2039379827': 496
customer => preference => recommendation v1 from '2039379827': 497
customer => 503 preference => 503 recommendation misbehavior from
'2036617847-spdrb'
customer => preference => recommendation v2 from '2036617847': 249
customer => preference => recommendation v1 from '2039379827': 498
customer => 503 preference => 503 recommendation misbehavior from
'2036617847-spdrb'

44 | Chapter 4: Service Resiliency



Now let’s see what happens when you configure Istio to eject misbehaving hosts.
Take a look at the DestinationPolicy in the following:

istiofiles/recommendation_cb_policy_pool_ejection.yml

apiVersion: config.istio.io/v1alpha2
kind: DestinationPolicy
metadata:
  name: recommendation-poolejector-v2
  namespace: tutorial
spec:
  destination:
    namespace: tutorial
    name: recommendation
    labels:
      version: v2
  loadBalancing:
    name: RANDOM
  circuitBreaker:
    simpleCb:
      httpConsecutiveErrors: 1
      sleepWindow: 15s
      httpDetectionInterval: 5s
      httpMaxEjectionPercent: 100

In this DestinationPolicy, you’re configuring Istio to check every five seconds
for misbehaving hosts and to remove hosts from the load balancing pool after
one consecutive error (artificially low for this example). You are willing to eject
up to 100% of the hosts (effectively temporarily suspending any traffic to the
cluster).

istioctl create -f istiofiles/recommendation_cb_policy_pool_ejection.yml \
-n tutorial

Let’s put some load on the service now and see its behavior:

#!/bin/bash
while true
do curl customer-tutorial.$(minishift ip).nip.io
sleep .1
Done

You will see that whenever you get a failing request with 503 from the pod
recommendation-v2-2036617847-spdrb, it is ejected from the pool and it doesn’t
receive any more requests until the sleep window expires—which takes at least 15
seconds.

customer => preference => recommendation v1 from '2039379827': 509
customer => 503 preference => 503 recommendation misbehavior from
'2036617847'
customer => preference => recommendation v1 from '2039379827': 510
customer => preference => recommendation v1 from '2039379827': 511
customer => preference => recommendation v1 from '2039379827': 512

Pool Ejection | 45



customer => preference => recommendation v1 from '2039379827': 513
customer => preference => recommendation v1 from '2039379827': 514
customer => preference => recommendation v2 from '2036617847': 256
customer => preference => recommendation v2 from '2036617847': 257
customer => preference => recommendation v1 from '2039379827': 515
customer => preference => recommendation v2 from '2036617847': 258
customer => preference => recommendation v2 from '2036617847': 259
customer => preference => recommendation v2 from '2036617847': 260
customer => preference => recommendation v1 from '2039379827': 516
customer => preference => recommendation v1 from '2039379827': 517
customer => preference => recommendation v1 from '2039379827': 518
customer => 503 preference => 503 recommendation misbehavior from
'2036617847'
customer => preference => recommendation v1 from '2039379827': 519
customer => preference => recommendation v1 from '2039379827': 520
customer => preference => recommendation v1 from '2039379827': 521
customer => preference => recommendation v2 from '2036617847': 261
customer => preference => recommendation v2 from '2036617847': 262
customer => preference => recommendation v2 from '2036617847': 263
customer => preference => recommendation v1 from '2039379827': 522
customer => preference => recommendation v1 from '2039379827': 523
customer => preference => recommendation v2 from '2036617847': 264
customer => preference => recommendation v1 from '2039379827': 524
customer => preference => recommendation v1 from '2039379827': 525
customer => preference => recommendation v1 from '2039379827': 526
customer => preference => recommendation v1 from '2039379827': 527
customer => preference => recommendation v2 from '2036617847': 265
customer => preference => recommendation v2 from '2036617847': 266
customer => preference => recommendation v1 from '2039379827': 528
customer => preference => recommendation v2 from '2036617847': 267
customer => preference => recommendation v2 from '2036617847': 268
customer => preference => recommendation v2 from '2036617847': 269
customer => 503 preference => 503 recommendation misbehavior
from '2036617847'
customer => preference => recommendation v1 from '2039379827': 529
customer => preference => recommendation v2 from '2036617847': 270

Combination: Circuit-Breaker + Pool Ejection + Retry
Even with pool ejection your application doesn’t look that resilient. That’s proba‐
bly because you’re still letting some errors to be propagated to your clients. But
you can improve this. If you have enough instances or versions of a specific ser‐
vice running into your system, you can combine multiple Istio capabilities to
achieve the ultimate backend resilience:

• Circuit Breaker to avoid multiple concurrent requests to an instance
• Pool Ejection to remove failing instances from the pool of responding

instances

46 | Chapter 4: Service Resiliency



• Retries to forward the request to another instance just in case you get an
open circuit breaker or pool ejection

By simply adding a retry configuration to our current RouteRule, we are able to
completely get rid of our 503s requests. This means that whenever you receive a
failed request from an ejected instance, Istio will forward the request to another
supposedly healthy instance:

istioctl replace -f istiofiles/route-rule-recommendation-v1_and_v2_retry.yml

Throw some requests at the customer endpoint:

#!/bin/bash
while true
do curl customer-tutorial.$(minishift ip).nip.io
sleep .1
done

You will no longer receive 503s, but the requests from recommendation v2 are
still taking more time to get a response:

customer => preference => recommendation v1 from '2039379827': 538
customer => preference => recommendation v1 from '2039379827': 539
customer => preference => recommendation v1 from '2039379827': 540
customer => preference => recommendation v2 from '2036617847': 281
customer => preference => recommendation v1 from '2039379827': 541
customer => preference => recommendation v2 from '2036617847': 282
customer => preference => recommendation v1 from '2039379827': 542
customer => preference => recommendation v1 from '2039379827': 543
customer => preference => recommendation v1 from '2039379827': 544
customer => preference => recommendation v2 from '2036617847': 283
customer => preference => recommendation v2 from '2036617847': 284
customer => preference => recommendation v1 from '2039379827': 545
customer => preference => recommendation v1 from '2039379827': 546
customer => preference => recommendation v1 from '2039379827': 547
customer => preference => recommendation v2 from '2036617847': 285
customer => preference => recommendation v2 from '2036617847': 286
customer => preference => recommendation v1 from '2039379827': 548
customer => preference => recommendation v2 from '2036617847': 287
customer => preference => recommendation v2 from '2036617847': 288
customer => preference => recommendation v1 from '2039379827': 549
customer => preference => recommendation v2 from '2036617847': 289
customer => preference => recommendation v2 from '2036617847': 290
customer => preference => recommendation v2 from '2036617847': 291
customer => preference => recommendation v2 from '2036617847': 292
customer => preference => recommendation v1 from '2039379827': 550
customer => preference => recommendation v1 from '2039379827': 551
customer => preference => recommendation v1 from '2039379827': 552
customer => preference => recommendation v1 from '2039379827': 553
customer => preference => recommendation v2 from '2036617847': 293
customer => preference => recommendation v2 from '2036617847': 294
customer => preference => recommendation v1 from '2039379827': 554

Combination: Circuit-Breaker + Pool Ejection + Retry | 47



Your misbehaving pod recommendation-v2-2036617847-spdrb never shows up
in the console, thanks to pool ejection and retry.

Clean up (note, we’ll leave the route rules in place as those will be used in the
next chapter):

oc scale deployment recommendation-v2 --replicas=1 -n tutorial
oc delete pod -l app=recommendation,version=v2
oc delete routerule recommendation-v1-v2 -n tutorial
istioctl delete -f istiofiles/recommendation_cb_policy_pool_ejection.yml
-n tutorial

48 | Chapter 4: Service Resiliency



CHAPTER 5

Chaos Testing

A relatively famous OSS project called Chaos Monkey came from the developer
team at Netflix, and its unveiling to the IT world was quite disruptive. The con‐
cept that Netflix had built code that random kills various services in their pro‐
duction environment blew people’s minds. When many teams struggle
maintaining their uptime requirements, promoting self-sabotage and attacking
oneself seemed absolutely crazy. Yet from the moment Chaos Monkey was born,
a new movement arose: chaos engineering.

According to the Principles of Chaos Engineering website, “Chaos Engineering is
the discipline of experimenting on a distributed system in order to build confi‐
dence in the system’s capability to withstand turbulent conditions in production.”
(You can read more at http://principlesofchaos.org/).

In complex systems (software systems or ecological systems), things do and will
fail, but the ultimate goal is stop catastrophic failure of the overall system. So how
do you verify that your overall system–your network of microservices–is in fact
resilient? You inject a little chaos. With Istio, this is a relatively simple matter
because the istio-proxy is intercepting all network traffic, therefore, it can alter
the responses including the time it takes to respond. Two interesting faults that
Istio makes easy to inject are HTTP error codes and network delays.

HTTP Errors
This simple concept allows you to explore your overall system’s behavior when
random faults pop up within the system. Throwing in some HTTP errors is
actually very simple when using Istio’s RouteRule construct. Based on previous
exercises earlier in this book, recommendation v1 and v2 are both deployed and
being randomly load balanced because that is the default behavior in Kubernetes/
OpenShift. Make sure to comment out the “timeout” line if that was used in a

49

http://principlesofchaos.org/


previous exercise. Now, you will be injecting errors and timeouts via Istio instead
of using Java code:

oc get pods -l app=recommendation -n tutorial
NAME                                 READY   STATUS   RESTARTS   AGE
recommendation-v1-3719512284-7mlzw   2/2     Running  6         18h
recommendation-v2-2815683430-vn77w   2/2     Running  0         3h

We use the Istio RouteRule to inject a percentage of faults, in this case, returning
50% HTTP 503’s:

apiVersion: config.istio.io/v1alpha2
kind: RouteRule
metadata:
  name: recommendation-503
spec:
  destination:
    namespace: tutorial
    name: recommendation
  precedence: 2
  route:
  - labels:
      app: recommendation
  httpFault:
    abort:
      percent: 50
      httpStatus: 503

And you apply the RouteRule with the istioctl command-line tool:

istioctl create -f istiofiles/route-rule-recommendation-503.yml -n tutorial

Testing the change is as simple as issuing a few curl commands at the customer
end point. Make sure to test it a few times, looking for the resulting 503 approxi‐
mately 50% of the time.

curl customer-tutorial.$(minishift ip).nip.io
customer => preference => recommendation v1 from '99634814-sf4cl': 88

curl customer-tutorial.$(minishift ip).nip.io
customer => 503 preference => 503 fault filter abort

Clean up:

istioctl delete -f istiofiles/route-rule-recommendation-503.yml -n tutorial

Delays
The most insidious of possible distributed computing faults is not a “dead” ser‐
vice but a service that is responding slowly, potentially causing a cascading failure
in your network of services. More important, if your service has a specific
Service-Level Agreement (SLA) it must meet, how do you verify that slowness in
your dependencies do not cause you to fail in delivery to your awaiting cus‐

50 | Chapter 5: Chaos Testing



tomer? Injecting network delays allows you to see how the system behaves when
a critical service or three simply adds notable extra time to a percentage of
responses.

Much like the HTTP Fault injection, network delays use the RouteRule kind, as
well. The following YAML injects seven seconds of delay into 50% of the respon‐
ses from recommendation service:

apiVersion: config.istio.io/v1alpha2
kind: RouteRule
metadata:
  name: recommendation-delay
spec:
  destination:
    namespace: tutorial
    name: recommendation
  precedence: 2
  route:
  - labels:
      app: recommendation
  httpFault:
    delay:
      percent: 50
      fixedDelay: 7s

Use the istioctl create command to apply the new RouteRule:

istioctl create -f istiofiles/route-rule-recommendation-delay.yml \
-n tutorial

Then, send a few requests at the customer endpoint and notice the “time” com‐
mand at the front. This command will output the elapsed time for each response
to the curl command, allowing you to see that seven-second delay.

#!/bin/bash
while true
do
time curl customer-tutorial.$(minishift ip).nip.io
sleep .1
done

Notice that many requests to the customer end point now have a delay. If you are
monitoring the logs for recommendation v1 and v2, you will also see the delay
happens before the recommendation service is actually called. The delay is in the
Istio proxy (Envoy), not in the actual endpoint.

stern recommendation -n tutorial

Clean up:

istioctl delete -f istiofiles/route-rule-recommendation-delay.yml \
-n tutorial

Delays | 51





CHAPTER 6

Observability

One of the greatest challenges with the management of a microservices architec‐
ture is simply trying to understand the relationships between individual compo‐
nents of the overall system. A single end-user transaction might flow through
several, perhaps a dozen or more independently deployed microservices or pods,
and discovering where performance bottlenecks have occurred provides valuable
information.

Tracing
Often the first thing to understand about your microservices architecture is
specifically which microservices are involved in an end-user transaction. If many
teams are deploying their dozens of microservices, all independently of one
another, it is often challenging to understand the dependencies across that
“mesh” of services. Istio’s Mixer comes “out of the box” with the ability to pull
tracing spans from your distributed microservices. This means that tracing is
programming-language agnostic so that you can use this capability in a polyglot
world where different teams, each with its own microservice, can be using differ‐
ent programming languages and frameworks.

Although Istio supports both Zipkin and Jaeger, for our purposes we focus on
Jaeger, which implements OpenTracing, a vendor neutral tracing API. Jaeger was
original open sourced by the Uber Technologies team and is a distributed tracing
system specifically focused on microservices architecture.

One important term to understand is span, and Jaeger defines span as “a logical
unit of work in the system that has an operation name, the start time of the oper‐
ation, and the duration. Spans can be nested and ordered to model causal rela‐
tionships. An RPC call is an example of a span.”

53

http://opentracing.io/
https://jaeger.readthedocs.io/en/latest/architecture


Another important term to understand is trace, and Jaeger defines trace as “a
data/execution path through the system, and can be thought of as a directed acy‐
clic graph of spans.”

You open the Jaeger console by using the following command:

minishift openshift service jaeger-query --in-browser

You can then select Customer from the drop-down list box and explore the traces
found, as illustrated in Figure 6-1.

Figure 6-1. Jaeger’s view of the customer-preference-recommendation trace

One aspect that is important to remember is that your programming logic must
forward the OpenTracing headers with every outbound call:

x-request-id
x-b3-traceid
x-b3-spanid
x-b3-parentspanid
x-b3-sampled
x-b3-flags
x-ot-span-context

You can see an example of this concept in the customer class called HttpHeader
ForwarderHandlerInterceptor in the accompanying sample code.

Metrics
By default, Istio’s default configuration will gather telemetry data across the ser‐
vice mesh. Simply installing Prometheus and Grafana is enough to get started
with this important service, however do keep in mind many other backend met‐
rics/telemetry-collection services are supported. In Chapter Chapter 2, you saw
the following four commands to install and expose the metrics system:

oc apply -f install/kubernetes/addons/prometheus.yaml
oc apply -f install/kubernetes/addons/grafana.yaml

54 | Chapter 6: Observability



oc expose svc grafana
oc expose svc prometheus

You can then launch the Grafana console using the minishift service command:

open "$(minishift openshift service grafana -u)/dashboard/db/istio-
dashboard?var-source=All"

Make sure to select Istio Dashboard in the upper left of the Grafana dashboard,
as demonstrated in Figure 6-2.

Figure 6-2. The Grafana dashboard—selecting Istio dashboard

As of this writing, you do need to append ?var-source=All to the Grafana dash‐
board URL. This is likely to change in the future, watch the istio-tutorial for
changes.

Here’s an example URL:

http://grafana-istio-system.192.168.99.101.nip.io/dashboard/db/istio-dashboard?
var-source=All

Figure 6-3 shows the dashboard. You can also visit the Prometheus dashboard
directly at the following (note, this will open the URL in a browser for you; you
could use --url instead of --in-browser to get just the URL):

minishift openshift service prometheus --in-browser

Metrics | 55

http://bit.ly/istio-tutorial


Figure 6-3. Grafana graph

56 | Chapter 6: Observability



CHAPTER 7

Security

Istio’s security capabilities are evolving quickly, and as of this writing, the Access
Control List (ACL) is one of the primary tools to inject security constructs into
the application with zero impact to the actual programming logic. In this chapter,
we explore the concepts of Blacklist and Whitelist.

Blacklist
Let’s begin with the concept of the blacklist, conditionally denying requests using
Mixer selectors. The blacklist is explicit denials of particular invocation paths. In
the example that follows, we want to explicitly close the route from customer to
preference. In this case, any requests from the customer to preference would return
the HTTP error 403 Forbidden. Establishing this requires the use of three differ‐
ent kinds of Istio-mixer configurations: denier, checknothing, and rule:

apiVersion: "config.istio.io/v1alpha2"
kind: denier
metadata:
  name: denycustomerhandler
spec:
  status:
    code: 7
    message: Not allowed
---
apiVersion: "config.istio.io/v1alpha2"
kind: checknothing
metadata:
  name: denycustomerrequests
spec:
---
apiVersion: "config.istio.io/v1alpha2"
kind: rule
metadata:

57



  name: denycustomer
spec:
  match: destination.labels["app"] == "preference" &&
   source.labels["app"]=="customer"
  actions:
  - handler: denycustomerhandler.denier
    instances: [ denycustomerrequests.checknothing ]

You use istioctl to establish the denier-checknothing-rule:

istioctl create -f istiofiles/acl-blacklist.yml -n tutorial

Next, attempt to curl the customer endpoint:

curl customer-tutorial.$(minishift ip).nip.io

The result will be a 403 from the preference microservice customer => 403 PER‐
MISSION_DENIED:denycustomerhandler.denier.tutorial:Not allowed

Clean up:

istioctl delete -f istiofiles/acl-blacklist.yml -n tutorial

Whitelist
The whitelist is a deny everything rule, except for approved invocation paths. In
this example, we are approving only the route of recommendations > preferences
which means the customer who normally talks to preference can no longer even
see it. The whitelist configuration uses the Mixer kinds of: listchecker, listen
try, rule.

apiVersion: "config.istio.io/v1alpha2"
kind: listchecker
metadata:
  name: preferencewhitelist
spec:
  overrides: ["recommendation"]
  blacklist: false
---
apiVersion: "config.istio.io/v1alpha2"
kind: listentry
metadata:
  name: preferencesource
spec:
  value: source.labels["app"]
---
apiVersion: "config.istio.io/v1alpha2"
kind: rule
metadata:
  name: checkfromcustomer
spec:
  match: destination.labels["app"] == "preference"
  actions:
  - handler: preferencewhitelist.listchecker

58 | Chapter 7: Security



    instances:
    - preferencesource.listentry

Using the istioctl tool, create the blacklist components:

istioctl create -f istiofiles/acl-whitelist.yml -n tutorial

Then, hit the customer end point using the curl command:

curl customer-tutorial.$(minishift ip).nip.io

Which results in the following:

customer => 404 NOT_FOUND:preferencewhitelist.listchecker.tutorial:
customer is not whitelisted

Clean up:

istioctl delete -f istiofiles/acl-whitelist.yml -n tutorial

The Red Hat team will be exploring more interesting and advanced security use
cases at the istio-tutorial as the Istio open source project matures.

Conclusion
You have now taken a tour through some of the capabilities of Istio service mesh.
You saw how this service mesh can solve distributed-systems problems in cloud-
native environments, whether developing microservices architectures or mono‐
liths or anything in between. You have seen how Istio concepts like observability,
resiliency and chaos injection can be immediately beneficial to your current
application. Although we focused on services running on Kubernetes/OpenShift
and deployed in containers, Istio is not tied to any of these environments and can
be used on bare metal, VM, and other deployment platforms.

Moreover, Istio has capabilities beyond those we discussed in this report. If you’re
interested, we suggest that you explore more on the following topics:

• End-user authentication
• Policy enforcement
• Mesh expansion
• Hybrid deployments
• Phasing in Istio to an existing environment
• Gateway/Advanced ingress
• Latest evolution of RouteRules/resources

Istio is also evolving at a rapid rate. To keep up with the latest developments, we
suggest that you keep an eye on the upstream community project as well as Red
Hat’s evolving istio-tutorial.

Conclusion | 59

http://bit.ly/istio-tutorial
http://istio.io
http://bit.ly/istio-tutorial


About the Authors
Christian Posta (@christianposta) is a chief architect of cloud applications at Red
Hat and well known in the community for being an author (Microservices for Java
Developers, O’Reilly, 2016), frequent blogger, speaker, open source enthusiast, and
committer on various open source projects, including Istio, Apache ActiveMQ,
Fabric8, and others. Christian has spent time at web-scale companies and now
helps organizations create and deploy large-scale, resilient, distributed architec‐
tures—many of what we now call microservices. He enjoys mentoring, training,
and leading teams to be successful with distributed systems concepts, microservi‐
ces, DevOps, and cloud-native application design.

Burr Sutter is a lifelong developer advocate, community organizer, technology
evangelist, and featured speaker at technology events around the globe—from
Bangalore to Brussels and Berlin to Beijing (and most parts in between). He is
currently Red Hat’s director of developer experience. A Java Champion since
2005 and former president of the Atlanta Java User Group, Burr founded the
DevNexus conference, now the second largest Java event in the United States.
When spending time away from the computer, he enjoys going off-grid in the
jungles of Mexico and bush of Kenya. You can find Burr on Twitter @burrsutter
and via the web at burrsutter.com.

https://twitter.com/christianposta
http://burrsutter.com

	Cover
	Red Hat Developer Program
	Copyright
	Table of Contents
	Chapter 1. Introduction
	The Challenge of Going Faster
	Meet Istio
	Understanding Istio Components
	Data Plane
	Control Plane


	Chapter 2. Installation and Getting Started
	Command-Line Tools Installation
	Kubernetes/OpenShift Installation
	Istio Installation
	Installing Istio Command-Line Tooling

	Example Java Microservices Installation
	Navigating the Code Base
	Building and Deploying the Customer Service
	Building and Deploying the Preference Service
	Building and Deploying the Recommendation Service
	Building and Deploying to Kubernetes


	Chapter 3. Traffic Control
	Smarter Canaries
	Traffic Routing
	Routing to Specific Versions of a Deployment
	Routing Based on Headers

	Dark Launch
	Egress

	Chapter 4. Service Resiliency
	Load Balancing
	Timeout
	Retry
	Circuit Breaker
	Pool Ejection
	Combination: Circuit-Breaker + Pool Ejection + Retry

	Chapter 5. Chaos Testing
	HTTP Errors
	Delays

	Chapter 6. Observability
	Tracing
	Metrics

	Chapter 7. Security
	Blacklist
	Whitelist
	Conclusion

	About the Authors



