
THE HISTORY OF STANDARD ML

 IDEAS, PRINCIPLES, CULTURE

David MacQueen
University of Chicago (Emeritus)

ML Family Workshop
September 3, 2015

Let us start by looking back a bit further at some of the people
who founded the British community of programming
language research.

For instance, Turing, Strachey, Landin, etc.

Max
Newman

Alan
Turing Christopher

Strachey

Peter
Landin

Rod
Burstall

Mervyn
Pragnell the catalyst!

British PL Research

Peter Landin

I used to go out to a cafe just around
the corner from this reference library …
and one day I was having my coffee in
Fields cafe, and a voice came booming
across the crosswise tables, and this
voice said "I say didn't I see you
reading Principia Mathematica in the
reference library this morning?" And
that's how I got to know the legendary
Mervyn Pragnell who immediately tried
to recruit me to his reading group.

Peter Landin talk at the Science Museum.
5 June 2001, available on Vimeo

Rod Burstall

’Rod Burstall … recalls that, while
looking for a logic text in a
London bookshop, he asked a
man whether the shop had a
copy. "I'm not a shop assistant,"
the man responded, and "stalked
away," only to return to invite him
to join the informal seminar
where he would meet Peter
Landin and, subsequently,
Christopher Strachey.’

”The sessions were held illicitly after-hours at Birkbeck College,
University of London, without the knowledge or permission of
the college authorities.[8] Pragnell knew a lab technician with a
key that would let them in, and it was during these late night
sessions that many famous computer scientists cut their
theoretical teeth. This also appears to be the place Landin
would first meet Strachey, and it marks the beginning of an
important intellectual relationship between these two men.”

Along with Strachey, Landin, and Burstall, Robin Milner admitted
attending “once or twice”.

Mervyn Pragnell’s Underground Study Group

Christopher Strachey (1916 - 1975)

Friend of Turing (at Cambridge & Manchester)
First checker playing program

Playing songs on Manchester Mark I

Combined Programming Language (CPL)

L-values
“functions as first-class citizens”

Time-sharing (1958)

Parametric polymorphism

Denotational Semantics
 with Dana Scott from 1969

Coined “currying” CPL => BCPL => B => C => C++

“Fundamental Concepts in Programming Languages” (1967)

Continuations
 with Wadsworth

Employed Landin, 1960-64

Wadsworth on Strachey

Strachey had an acute sense of when something was “right” —
generally when it was simple enough and elegant enough that it could
be seen intuitively to be right — and he abhorred overelaboration or
contrived methods that “sort of worked”. A favorite motto of his …
was “You can push a pea up a mountain with your nose if you really
want to, but that does not mean that it is a good way of getting it
there”. For me, this was a kind of “Strachey test”.

Burstall on Strachey

His elegance of manor was accompanied by an elegance of thought
and language which was a continual inspiration.

Peter Landin

The mechanical evaluation of expressions, 1964

A correspondence between ALGOL 60 and
Church’s Lambda-notation: Part I; Part II, 1965

A generalization of Jumps and Labels, 1965

The next 700 programming languages, 1966

Programs and their Proofs: An Algebraic Approach
 (with Burstall), 1969

PAL: an implementation of ISWIM at MIT (Evans)

SECD

streams

continuation
precursor

ISWIM

foreshadows algebraic data types

More Background for Strachey and Landin

Special Issue on Strachey
Higher-Order and Symbolic Computation
Volume 13, Issues 1-2, April 2000

Special Issue on Landin
Higher-Order and Symbolic Computation
Volume 22, Issue 4, December 2009

Landin’s Jumps and Labels paper
Higher-Order and Symbolic Computation
Volume 11, Issue 2, December 1998

Robin Milner
King’s College Cambridge, 1957
School teacher
Ferranti - programmer
City University, London
Swansea
Stanford 1971 - 72
Edinburgh 1973 - 95
Cambridge 1995 - 2010
Turing Award 1991

Principles they lived by

Strachey, Landin, Burstall, Milner (and others like Tony Hoare)
established a British tradition of programming language
research characterized by:

1. Realizing the importance of foundations and semantics in
the study of computation and programming.

2. Seeking clarity, rigor and elegance through the use
of mathematical ideas and techniques, particularly from logic
and algebra.

These principles were strongly embedded in the Edinburgh
community.

The Situation (Edinburgh, Late 70s)

13

Edinburgh LCF completed 1978-9, with ML as its metalanguage

Luca Cardelli arrives in Edinburgh as a grad student, Fall 1978

Rod Burstall and Dave MacQueen are working on HOPE in 1978

Milner and Burstall sub-communities unified at King’s Buildings
in 1979

Community that will form the nucleus of the Laboratory for
Foundations of Computer Science (LFCS) comes together, though
LFCS will not be formally created until Jan. 1986

Milner
Burstall Plotkin

L Morris Newey
Gordon Wadsworth

Harper

Sannella
MacQueen

Goguen

Tofte

Paulson

V Pratt

Constable

Reynolds

Kahn

Huet

Levy

Berry

Cousineau

J Scott
K Mitchell

Mycroft

Edinburgh Connections

INRIA

LCF/ML aka DEC10 ML

15

• Embedded within the LCF system as its MetaLanguage

• Supported PPLAMBDA object language (Scott’s LCF logic)

• terms, formulas, theorems

• theorems an abstract type whose values can only be
produced through inference rules of the LCF logic

• Quotation/antiquotation of object language syntax

• Proof tactics and higher-order tacticals for combining tactics

Main Features of LCF/ML

16

• Based on Landin’s ISWIM

• Type inference -- Milner's let-polymorphism, principal types

• Abstract types (abstype declarations)

• Simple binary product and sum types: t1 # t2, t1 + t2

• Mutable variables declared with “letref”

• Nested tuple and list binding patterns (“varstructs”)

• Looping conditionals
 {if … then|loop … }* else|loop …

• Failures and failure trapping passing strings (tokens)

DEC10 ML Implementation

17

• Implemented in Stanford (later Rutgers) Lisp

• ML translated to Lisp code

• Lisp code interpreted (hence slow!)

• Parser based on Vaughan Pratt’s precedence parser
(POPL 1973) — hence , ; ;; as separators

VAX ML (aka Cardelli ML)

18

• 1980: Luca starts work on his own dialect of ML and a
compiler implementing it.

• Working compiler (including garbage collection) being
distributed by the end of 1981.

• Early version, 1980 — 1982
 described briefly in mlchanges.doc

VAX ML: Language Innovations

19

• Labeled records and variants — structural!
partly inspired by Plotkin’s lectures on domain theory

• Declaration combinators (next slide)

• ref type operator with interface: ref, !, :=

• Stream I/O, with bidirectional streams

• Basic modules (with separate compilation, serialization)

Declaration Combinators

20

• and — simultaneous

• enc — sequential (enclosing) ==> d1; d2

• ins — local (inside) ==> local d1 in d2 end

• rec — recursive

• with — special for forming abstract types
 (with t <=> ty type declarations)

VAX ML compiler (Edinburgh, 1980 - 1982)

21

• Runs under VAX/VMS

• Written entirely in Pascal, including runtime system

• Functional Abstract Machine (FAM) as intermediate language

• Generates native VAX machine code from FAM code

• Serialization/pickling of modules for export/import

Distributed to users starting in 1981

Role of VAX ML

22

• Demonstrates viability of ML as general purpose language
with an efficient implementation

• Creates incentive to control proliferation of dialects (B. Sufrin)
leading to Milner's proposal for "Standard" ML (April 83)

• An immediate precursor of Standard ML

• A testbed for early experiments with Standard ML design

Standard ML Design

23

• Design Meetings: April1983, June 1984, May 1985
- Proposal drafts (Core, Modules, I/O)
- Comments, correspondence, meeting records

• Formal definition, 1986-89
- The Definition of Standard ML (Milner, Tofte, Harper)

“SML 90”
- Some formal foundations provided by Tofte’s thesis

April 1983 - First Meeting

24

Prompted by Bernard Sufrin, Robin writes a first draft of a new
language proposal incorporating ideas from LCF/ML, VAX ML, and
Hope.

A group fortuitously assembles in Edinburgh in early April to
discuss Robin’s proposal, meeting in Robin’s living room.

Rod Burstall
Luca Cardelli
Guy Cousineau
Mike Gordon
David MacQueen
Robin Milner
Kevin Mitchell

Alan Mycroft
Larry Paulson
David Rydeheard
Don Sannella
John Scott
Brian Monahan
Stefan Sokolowski

Gerard Huet
Peter Mosses
David Schmidt

physical participants virtual participants

First draft code example

First Draft features

a form of data type declaration; data constructors in patterns

no records or variants (from VAX ML)

clausal function expressions: fun v1. e1 | … | vn. en

monomorphic references and equality

“local” declaration instead of Cardelli’s “ins” operator

escape with token and a single trap form
 e1 trap v1. e1 | … | vn. en

Further drafts (for Core SML)

4/83: Changes to proposal for Standard ML, Milner

6/83: A Proposal for Standard ML (second draft), Milner (49 pages)

11/83: A Proposal for Standard ML, Milner (27 pages) [“final”]

6/84: Record of the Standard ML Meeting, Edinburgh, 6-8 June 1984
 MacQueen and Milner

7/84: Standard ML - The Core Language, Milner [changes summary]

7/84: The Standard ML Core Language, Milner [LFP 84 draft?]

10/84: The Standard ML Core Language, Milner

6/85: Report on the Standard ML Meeting, Edinburgh, May 23-25, 1985, Harper

9/85: The Standard ML Core Language (Revised), Robin Milner

Other Design Drafts - I/O and Modules

Stream I/O:

12/83: Stream Input/Output, Cardelli [Polymorphism 3,1]

2/85: Proposal for I/O in Standard ML, K. Mitchell and Milner

6/85: Standard ML Input/Output, Harper [ML Workshop 85]

Modules:

8/83: Modules for Standard ML, MacQueen [preliminary, incomplete draft]

8/84: Modules for Standard ML, MacQueen [LFP 84, Polymorphism]

10/85: Modules for Standard ML, MacQueen [final draft before Definition]

The Definition of Standard ML (SML ’90)

Work on the formal definition started sometime in 1986. Three drafts of
the formal definition of the entire language appeared as Edinburgh LFCS
Tech Reports written by Milner, Harper, and Mads Tofte (Robin’s student).

8/87: The Semantics of Standard ML, Version I

8/88: The Definition of Standard ML, Version 2

5/89: The Definition of Standard ML, Version 3

The Definition was eventually published in 1990 by MIT Press.

The exn type and exception constructors

While work on the Definition was proceeding, there was one more
significant change to the Core language.

The exn type was introduced with declarations for exception constructors
and pattern matching over exception patterns in exception handlers.

7/87: Exceptions as Constructors, Appel and MacQueen

5/88: Unifying Exceptions With Constructors in Standard ML,
 Appel, MacQueen, Milner, Tofte

Three Early Implementations

32

• Cardelli’s VAX ML => “subStandard ML”

Early Standard ML features added in 1983-84

• Edinburgh ML => Edinburgh SML

Kevin Mitchell, Alan Mycroft, John Scott and Bob Harper

• PolyML by Dave Matthews at Cambridge

Standard ML front end built for his Poly compiler

Later Implementations

33

• Standard ML of New Jersey

• MLKit (with Regions)

• Moscow ML

• MLton

Big Ideas in Standard ML ‘90

Let-polymorphism, type inference, principal types
 Newman (1943!), Curry (1969), Hindley (1969), Milner

Algebraic data types, with clausal functions, case analysis
via pattern-matching [from Hope]

Modules with signatures, functors, sharing specifications,
and generative structures (“strong structure sharing”)

Exceptions as an extensible data type

Support for ref types using “imperative type variables”

The Evolution of Algebraic Data Types

The history design of algebraic datatypes goes back to Landin.

1. The informal data descriptions used with ISWIM.

2. The formal development in Landin and Burstall’s paper
“Programs and Their Proofs: An Algebraic Approach”.

3. Burstall’s toy language NPL from 1977.

4. The Hope language (1980).

datatype AE = ID of identifier
 | LAMBDA of {bv: identifier,
 body : AE}
 | COMB of {rator : AE, rand : AE}

meta-ISWIM

Mistakes in the Design Process

1. Freezing the formal definition in the form of a published
book: If a programming language is implemented and used,
its definition will need to be “maintained”, and even allowed
to evolve (with extreme care). The definition should have
been an open but carefully managed document. [sml-family.org
is finally doing something about this.]

2. The SML ’90 “Basis” environment specified in Appendix C
of the Definition was totally inadequate (only 43 items), leading
to incompatible basic libraries for different implementation.
This wasn’t fully corrected until the publication of the “Standard
ML Basis Library” (Gansner and Reppy) several years after
SML ’97.

http://sml-family.org

Further Developments: The 1990s

• SML ’97: The Definition of Standard ML (Revised)

• The ML2000 program

SML ‘97

In 1995, the Newton Institute program on Semantics of Computation
brought Milner, Harper, Tofte and MacQueen together in Cambridge,
where we started working on a revision of the Definition of Standard
ML. The notable changes are:

Type abbreviations in signatures (SML/NJ 0.93; Harper, Leroy POPL 94).

Opaque signature matching.

Weak structure sharing (structure sharing implies only type sharing).

Value polymorphism (elimination of imperative type variables).

Replication of datatypes.

ML 2000

A series of meetings from 1993 through about 2000 devoted
to the effort to define a “next generation” of ML. Consensus
was not achieved, mainly because of disagreement over the
idea of adding object-oriented features to the language.

The Moby language of Fisher and Reppy could be considered
one byproduct of the program, demonstrating a possible
combination of ML and objects. OCaml may be another
example of a hybrid language.

A summary paper:

Principles and Preliminary Design for ML2000

An Advertisement

A new web-site: sml-family.org

Online copies of the SML ’90 and SML’97 Definitions

Alternate type-theoretic definition from CMU

Successor ML definition, a work in progress

Revision, extension of the SML Basis libraries

A history site providing documentation of the
history of Standard ML.

Final Thoughts

Trying to recover the history of a 30 year-old design can
be difficult, but it is also fascinating.

There are hundreds of documents, but there are also gaps
and fading memories, and in some cases memories that are
lost forever.

But is worth trying to understand where ideas came from,
and how they developed over time, and and why various
alternatives were eliminated, if only to avoid remaking old
mistakes!

