ModSecurity

The Open Source Web
Application Firewall

lvan Ristic
Chief Evangelist
Breach Security

e
BREACH

1/44

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Introduction
lvan Ristic

* Web application security and
web application firewall specialist. |

= Author of Apache Security.
= Author of ModSecurity.
* OWASP London Chapter leader.

= Officer of the Web Application
Security Consortium.

= Employed by Breach Security.

modsecurity BREACH

2/44

IIIIIIII

*)

Part 1
What are Web Application Firewalls?

3/44

Problems with web applications

How did it all start?

= HTTP and browsers designed for document
exchange.

= Web applications built using a number of loosely
integrated technologies.

= No one thought about security at the time.

Where are we today?

* Most web applications suffer from one type of
problem or another. It is very difficult to develop
a reasonably secure web application.

* Not possible to achieve 100% security.

4/44
111

How can we improve the situation?

Education & good development practices.

= We have been working hard on
this since 2000.

= Much better than it used to be, but still
not good enough.

= Secure web programming too difficult and time consuming
for your average programmer.

Design & code reviews.

= Slow and expensive.

Scanning & penetration testing.
= Not conclusive.
= Slow and expensive.

5/44

Why use web application firewalls?

It's a cost-effective technology that works.

It can be deployed straight away.

Gives instant visibility of the systems it protects.
Can provide instant protection.

In some of its forms (reverse proxies) it is actually
an essential building block of HTTP
networks.

Good example of defence-in-depth.

6/44

Network firewalls do not work

Web
Client

HTTP Traffic

7/44

e

Application
1 Database
Server

Application

Ports 80 & 443

Neither do IDS/IPS
solutions.

WAF identity problem: Naming

There is a long-standing WAF identity problem.

With the name, first of all:

8/44

Adaptive Firewall

Adaptive Proxy

Adaptive Gateway

Application Firewall
Application-level Firewall
Application-layer Firewall
Application-level Security Gateway
Application Level Gateway
Application Security Device
Application Security Gateway
Stateful Multilayer Inspection Firewall

Web Adaptive Firewall
Web Application Controller

Web Application Security Device
Web Application Proxy

Web Application Shield

Web Shield

Web Security Firewall

Web Security Gateway

Web Security Proxy

Web Intrusion Detection System
Web Intrusion Prevention System

WAF identity problem: Purpose

There are four main aspects to consider:

1. Auditing/monitoring device
= Attacks and client activity
= Passive defect/vulnerability discovery

2. Access control device
3. Layer 7 router/switch (reverse proxy)
4. Web application hardening tool

The name (WAF) is overloaded. How about:
= Web Intrusion Detection System?
= HTTP Security Monitoring?

9/44
Jelal

WAFEC

Short for Web Application Firewall
Evaluation Criteria.

Project of the Web Application Security
Consortium (webappsec.org).

3 Web Application

Security Consortium

It's an open project.

Virtually all WAF vendors on board
(not enough users though).

WAFEC v1.0 released in 2006.

10/44

||||||||||||||||||||||||||||

IIIIIIIIIIIIIIIIIII

http://webappsec.org/

Part 2
ModSecurity

What is ModSecurity?

It is an open source web application firewall.

* Most widely deployed web application
firewall according to Forrester Research.

That's not surprising because it is:

modsecurity

12/44

History of ModSecurity

" Project started in 2002:

- “Wouldn’t it be nice if | had something to
monitor what’s going on in my applications?”

= Commercial support through
Thinking Stone since 2004.

* Acquired by EBreach Security in 2006.

* Breach Security pledges to support the open
source nature of the project; adds resources.

- Still going strong.

13/44

Deployment architectures

into your existing web servers.

= Deploy as a combining
Apache working as reverse proxy with
ModSecurity.

14/44

ModSecurity philosophy

= Empower the users to do what they need.
* Don't do anything implicitly.

> Everything is in the configuration.
* Be passive (if you can).

> Errors raise flags, which need to be
handled in the rules.

= Offer no surprises.

» Document everything and tell it like it is.

15/44

IIIIIIIIIIIIIII

Request lifecycle (I)

* Run phase 1 as early as possible
(REQUEST HEADERS).

> Reuse information available from Apache.

> Perform additional parsing as necessary.

= Buffer and parse the request body (optional).

> Look for protocol-level evasion.
* Run phase 2 (REQUEST BODY).

= Allow the request to be processed.

16/44

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Request lifecycle (Il)

* Run phase 3 before headers are sent
(RESPONSE HEADERS).

= Buffer response body (optional).

> Depending on the response MIME type
and custom instructions.

* Run phase 4 (RESPONSE BODY).
* Run phase 5 (LOGGING).

* | og transaction (optional).

17144

|||||||||||||

Transaction logging

* ModSecurity will log complete transaction data on
demand. Using the rules you can:

» Choose whether to log a transaction.

» Choose which parts to log.

" Transactions are recorded in two formats:
> Serial — single file; convenient but limited.

> Concurrent — file per transaction; scalable
but not suitable for manual handling.

picks up transactions as they are recorded
and sends them to the central logging server.

> It's fast, secure (SSL), reliable, and uses buffering.
18/44

ModSecurity Rule Language

" |It's a simple event-based programming
language, which lives within the Apache
configuration syntax.

> ook at any part of the transaction.

» Transform data to counter evasion.

> Perform various actions.

» Combine rules to form complex logic.

* Common tasks are easy, complex tasks
are possible.

19/44

Rules

Generic syntax:
SecRule TARGETS OPERATOR [ACTIONS]

For example:

SecRule ARGS|REQUEST HEADERS '"<script" \
"id:1001,msg: 'XSS Attack', \
severity:ERROR,deny,status:404"

With rule chaining:

SecRule ARGS:username "@streq admin" \
chain,deny
SecRule REMOTE ADDR "!'(@streq 192.168.1.1"

20/44

Target Variables

= Using variables you tell ModSecurity
where to look.

» There are 78 variables in the latest version.

" For example:
» ARGS
» ARGS COMBINED SIZE
» ARGS NAMES
» ARGS GET
» ARGS POST

» ..
21/44

IIIIIIIIIIIIIII

Operators

= Operators tell ModSecurity how to process
request data.

> There are 22 operators in the latest version.

" For example:

> Strings (rx, pm, beginsWith, contains,
endsWith, streq, within).

> Numerical (eq, ge, gt, le, It).
» XML (validateDTD, validateSchema).
> Other (rbl, geoLookup, inspectFile, verifyCC).

22/44

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Actions

= Actions tell ModSecurity what fo do when a
match occurs.

» There are 42 actions in the latest version.

* Possible use of actions:
> Block transaction (block, drop, deny, proxy).
> Influence logging (log, auditlog, sanitiseArg).
> Set/changel/delete variables (setvar, setenv).

> Access persistent storage (initcol).

> LI]

23/44

IIIIIIIIIIIIIIII

Part 3

Real-life Examples

24/44

Ignore static content

In most cases you don't want to waste CPU cycles
analysing requests for static resources.

<Location /g/>
SecRuleEngine Off
</Location>

You can also do this (works best in
embedded mode):
SecRule REQUEST METHOD "“ (GET|HEAD)$" \

chain,allow,nolog
SecRule REQUEST BASENAME "\. (jpglgif|png)$" chain

SecRule &ARGS "(@eq 0"

25/44

Virtual patching example

Virtual patching example using
the positive security approach:

<Location /apps/script.php>
SecRule &ARGS "!Qeq 1"
SecRule ARGS NAMES "!“statid$"
SecRule ARGS:statID "!'~\d{1,3}s$"
</Location>

26/44

White-list IP address or IP range

A frequent request is to create an exception to not
process requests coming from an |IP address:

SecRule REMOTE ADDR "@streq 192.168.254.1" \
allow,phase:1,nolog

SecRule REMOTE ADDR "@beginsWith 192.168.254." \
allow,phase:1,nolog

SecRule REMOTE ADDR "@rx ~192\.168\.254\.(1]2]5)8" \
allow,phase:1,nolog

In a future version we will probably introduce a
new operator, @ipMatch, to make working with
network segments easier.

27/44

IIIIIIIIIIIIIII

Track activity per |IP address

Initialise IP address collection:

SecAction \
phase:1,initcol:ip=%{REMOTE ADDR} , nolog,pass

Deny IP addresses whose scores
are too high:

SecRule IP:score "(@gt 20" phase:1,log,deny

Increment score on rule match:

SecRule ARGS pattern phase:2,pass,setvar:ip.score=+1

28/44

IIIIIIIIIIIIIII

Associate session with request

ModSecurity has support for sessions, but you
need to help it by extracting the session ID from
request:

SecRule REQUEST COOKIES:PHPSESSID 1~s \
"chain,phase:2,nolog,pass, \
setsid:% {REQUEST_COOKIES .PHPSESSID}"

Collection SESSION will be available from this moment on to
store per-session data, persistent across requests.

Transaction will be tagged with the session ID in the
transaction log.

29/44

IIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIII

Sanitise data before logging

If you know the sensitive
parameter names in advance:

SecAction "phase:5,nolog,pass, \
sanitiseArg:password, \
sanitiseArg:password again, \
sanitiseArg:oldPassword"

For any parameter name that sounds like a password:

SecAction ARGS NAMES password \
phase:5,nolog,pass,sanitiseMatched

Or based on content:

SecRule ARGS "@verifyCC CCREGEX" \
phase:5,nolog,pass,sanitiseMatched

30/44

Dealing with evasion

Writing rules to deal with all possible combinations
of evasion methods is not only time consuming, it's
impossible. A few evasion examples:

drop table
dRoP\ntaBle
DROP TABLE

ModSecurity uses a concept of transformation
functions to deal with this problem:

SecRule ARGS '"drop table" \
t:lowercase, t:replaceComments, \
t:compressWhitespace"

31/44

|||||||||||||

Decisions based on client location

You can take the geographic location of the client
iInto account when making decisions.

First you configure the GeolP database (download
free from maxmind.com):

SecGeoLookupDb /path/to/geo.db

Then look the IP address up:

SecRule REMOTE ADDR (@geoLookup \

"phase:1,chain,drop,msg: 'Non-UK IP address'"
SecRule GEO:COUNTRY CODE "!@streq UK"

32/44

||||||||||||||||||||||||||||

IIIIIIIIIIIIIIIIIII

Capture and transform data

Sometimes you need to transform input data before
you can look at it.

The HTTP Basic authentication, for example:

Authorization: Basic bm9ib2R50nR1c3Q=

The following rules would do the trick:

SecRule REQUEST HEADERS:Authorization \
"ABasic ([a-zA-Z0-9]+=*)S$" \

phase:1,capture,chain
SecRule TX:1 ~(\w+): t:base64Decode,capture,chain
SecRule TX:1 *(admin|root|backup)$ logdata:%{TX.1l}

33/44

llllllllllllll

IIIIIIIIIIIII

Write rule in Lua (experimental)

As of 2.5 you can write rules in Lua:

SecRuleScript /path/to/file.lua

And the script:

function main|()
m.log(l, "Hello world!");

local varl = m.getvar ("REMOTE ADDR") ;

local var2 = m.getvar ("REQUEST URI",
"normalisePath") ;

local var3 = m.getvar ("ARGS.p", { "lowercase",
"compressWhitespace" });

return "Variable ARGS:p looks suspicious!";

end
34/44

Part 4
Roadmap (2008)

Portability

* Limited by being too close to Apache:

> Need to reload configuration without
affecting the web server.

> Need freedom to expand rule syntax.

= Work embedded in any web server.
> Port to IIS and ISA.

> Help the community port to other web servers.

* Other deployment modes:

» Passive/sniffer.

» Command line / batch processing.
36/44

Learning

= Better support for positive security.

> We have good support for virtual patching
but writing complex positive security rules
is difficult.

= Create positive security models automatically
using traffic profiling.

= Make it easier to interact with the contextual
iInformation.

> Customise policy based on the target
system.

37144

llllllllllllll

IIIIIIIIIIIII

Modularity

* Formal component boundaries to allow for a
mix-and-match deployment of modules. For
example:

> Deploy with a different
persistence backend.

* Formats for data exchange.

* Handle complex requirements better:
> Write rules in C.

> Write rules in Lua (already in 2.5).

38/44

llllllllll

Part 5

Related Projects

39/44

ModSecurity Core Rules

Coherent set of rules designed to detect
generic web application security attacks.

* Bundled with ModSecurity, but
with a separate release cycle.

" Lead by

Design goals:
= Performance. Automated updates
supported since

= Quality. ModSecurity 2.5.
= Stability.
" Plug and Play.

40/44

ModSecurity Community Console

Self-contained application designed
for alert aggregation, monitoring and

reporting.

Ble Edt

" Thinking

Stone

Home Alerts s Reports tration About
Sensor Overview Activity Today
Console: Today

Active Alerts Highest Severity

Activity This Week

ime Source
Console: This beek

Administrative Events Activity This Month

DatefTime Message Console: This Month

authentication failed

41/44

REMO

A project to build a graphical rule editor for
ModSecurity with a positive / whitelist
approach.

Distributed Open Proxy Honeypots

A network of open proxy sensors, each

deployed with ModSecurity configured to log
to the central server.

Goals:

= Observe what the bad guys are doing.
" Fine tune detection rules.

= WASC project (webappsec.org),
run by

43/44

http://www.webappsec.org/

Questions?

Thank you!

Ivan Ristic

ivanr@webkreator.com

44/44

