

Threat Modelling for
Web Application

Deployment
Ivan Ristic

ivanr@webkreator.com
(Thinking Stone)

Talk Overview

1. Introducing Threat Modelling
2. Real-world Example
3. Questions

Who Am I?

• Developer / architect / administrator, spent a
great deal of time looking at web security
issues from different points of view.

• Author of ModSecurity, an open source web
application firewall/IDS.

• Author of Apache Security (O'Reilly)
• Founder of Thinking Stone, a web security

company.

State of Web Security
• It is a difficult job – web deployments consist

of many different systems.
• Most decisions are made ad-hoc.
• Assumptions under which defence is

designed are rarely challenged.
• Consequently, many systems are not

adequately protected.
• We are in need of methodology that will help

us design secure systems.
• Threat Modelling can do this.

Threat Modelling

1. Introduction To
Threat Modelling

Threat Modelling

• Threat modelling is a semi-formal
technique that is used to understand
threats against your system.

• It is a hot, fashionable, buzzword!
• But it is genuinely useful and does not

have to be difficult.
• Not rocket science.

Key Questions

• Where does your system live?
• What do you have to protect?
• Who are your users?
• Who are your adversaries?
• What are your weak points?
• What can you do to mitigate the

threats?

Threat Modelling Advantage

Thinking like the adversary!

(What is wrong in this system
and how can I exploit it?)

Who Should Practice It?

• Everyone!
– Developers.
– System Administrators.
– System Architects.
– Consultants.

What Is It Good For?

• Planning.
• Testing (especially penetration testing).
• Training – my favourite.
• Security improvement.

– It is never too late to start using it. Do try to
use it as early as possible – it is much
safer and cheaper that way.

Scope
• Full title of this talk: A lightweight threat

modelling methodology for web
application deployment.

• Includes a mixture of the following: network
security, host security, web security,
application security.

• Practical: 20% effort – 80% gain. (The
remaining 80% of effort is mostly in details of
web application security.)

• At this level we treat web applications as
black boxes.

Methodology Overview

1. Information Gathering
2. Analysis
3. Mitigation

Methodology Overview

1. Information Gathering
• Look at existing documents.
• Interview stakeholders.
• Inspect system.
• Understand system.

2. Analysis
3. Mitigation

Methodology Overview

1. Information Gathering
2. Analysis

• User roles and usage scenarios.
• Components and trust boundaries.
• Assets and attacker motivation.
• Entry points, exit points, data flow.
• Weaknesses and threats.

3. Mitigation

Methodology Overview

1. Information Gathering
2. Analysis
3. Mitigation

• Establish budget.
• Rank treats (fuzzy) - use a model that

works for you.
• Decide what to do with the threats.

Analysis: Stepping Stones

• Algorithm:
1. Pretend you are the adversary.
2. Look at the exposed parts.
3. Find ways to subvert them.
4. Find ways to use the resources available to

you to get to the inner layers.
5. Repeat until you grab the asset!

• Also known as Attack Trees.

Mitigation: Choices

• Ignore risk. (Popular choice!)
• Mitigate risk.

– Intrusions are expensive
– Security is expensive
– What can you afford?

• Accept risk.

Mitigation: Strategies

• Remove entry points (attack vectors).
• Reduce attack surface.
• Compartmentalise.
• Practice the principle of least privilege.
• Fail safely.

Tips & Tricks

• Do not attempt to do too much - you might get
lost. Branch out sub-models to cope with
complexity, or work in iterations.

• Most web applications are similar - develop a
library of reusable threat models.

• Start from scratch and assume nothing;
mitigating the most obvious threats will result
in foolproof operational procedures.

Threat Modelling

2. Real-world
Example

Overview

• E-commerce operation:
– Web site (CMS-powered)
– Online store

• Two servers:
– Application server
– Database server

Physical Security

• Servers are collocated with a hosting
company:
– Restricted physical access
– Biometrics at the entrance
– Equipment in own locked cage

• Good, physical security is out of the
scope of this talk anyway.

System Users (1)

• Customers (public).
• Store administration staff.
• Marketing department.
• Developers.
• System administrators.

System Users (2)

Developers

System administrators

Customers

Store administration

Marketing department

?

?

?

?

Services

System Users (3)

Developers (manage application, maintain and backup database): 2

System administrators (manage servers): 2

SSH (22)

SSH (22), FTP (20, 21), MYSQL (3306)

Public (browse web site, buy stuff): 1 BILLION

Store administration (manage store): 4

Marketing department (manage web site): 1

Apache (80)

SSH

FTP

MYSQL

APACHE

Services

System Users (4)

• Threat: possible password and data
compromise through the use of plain-
text communication protocols.

• Mitigation: Disallow plain-text protocols:
– Shopping in the store
– Administrative interfaces (Store, CMS)
– Database access

System Users (5)

Developers (manage application, maintain and backup database): 2

System administrators (manage servers): 2

SSH (22)

SSH (22), SFTP (115), MYSQL+SSL (3306)

Public (browse web site, buy stuff): 1 BILLION

Store administration (manage store): 4

Marketing department (manage web site): 1

Apache (80), Apache+SSL (443)

SSH

SFTP

MYSQL

APACHE

Services

Entry Points (1)

• On the network level, each service
represents one entry point.

• Implement firewall restrictions to allow
only what is absolutely necessary:
– External firewall (hosting company).
– Host firewalls (iptables on Linux).
– Leave no trust between two internal

servers either, only let port 3306 through.

Entry Points (2)

• Threat: possible compromise through
vulnerabilities in Apache, SFTPD,
SSHD, and MySQL.

• Mitigation: Prevent access to non-
essential services (SFTPD, SSHD,
MySQL).

• Option: buy an expensive hardware
firewall.

What the Public Now Sees (1)

Public (browse web site, buy stuff): 1 BILLION

Apache (80), Apache+SSL (443)

APACHE

Store

Store
Admin

CMS
Admin

Web
Site

Two of four services are not
needed to be accessed by the
public. But the firewall cannot

do any better than this.

Web
Site

Attack Surface Reduction (1)

Public (browse web site, buy stuff): 1 BILLION

Apache (80), Apache+SSL (443)

APACHE

Store

Store
Admin

CMS
AdminUsing Apache access control

to allow access only to a
small subset of IP addresses

Attack Surface Reduction (2)

APACHE1

Store

Web
Site

APACHE2

Store
Admin

CMS
Admin

APACHE

Store

Store
Admin

CMS
Admin

Web
Site

192.168.0.1

192.168.0.2192.168.0.1

Services split to two IP
addresses. We can
now use the firewall

again.

Attack surface
reduction

Public (browse web site, buy stuff): 1 BILLION

Apache (80), Apache+SSL (443)

APACHE1

Store

Web
Site

What the Public Now Sees (2)

Entry Points (4)

• Threat: possible compromise through
vulnerabilities in Apache.

• Mitigation: Keep Apache up-to-date:
– Automated patching (use binary Apache)
– Manual patching (build Apache from source)

Entry Points (5)

• Threat: possible compromise through
Apache misconfiguration.

• Mitigation: Configuration management.
• Mitigation: Regular independent

configuration assessments.

Entry Points (6)

• Threat: possible compromise through
unmitigated Apache problems.

• Mitigation: Put Apache in jail.
• Mitigation: Implement integrity validation.
• Mitigation: Implement kernel patches

(e.g. grsecurity).

Remaining Assets (1)

• Threat: Adversary accesses the credit
card database.

• Mitigation: Do not store credit cards
online, or store them using public-key
encryption. (We lowered the value of
the asset.)

• Mitigation: Document policy on the web
site.

Remaining Assets (2)

• Threat: Source code stolen.
• Mitigation: Do not keep the source code

online, compile PHP pages before
uploading. (Again, we lowered the value
of the asset.)

Threat That Remains…

• Threat: Compromise through a
vulnerability of the application.

• This opens a door to a new threat
modelling sub-model: web application
security.

• Mitigate from the outside. Treat the
application as a black box, and look
where action gets out.

Web Application Model

Web
Client

Web
Server

Application
Database

Server

File system

SQL
Injection

Cross-site
Scripting

Input
Validation

Error

File
Disclosure

Command
Execution

R W X

Privilege
Escalation

Security Categories

• Data validation and transformation
• Authentication and authorisation
• Sensitive data transport and storage
• Session management
• Fault management
• Auditing and logging

Fix Filesystem Permissions

• Do not allow read access – prevents file
disclosure.

• Do not allow write access – prevents
privilege escalation.

• Do not have binaries or a compiler
around – prevents command execution.

Screen System Boundaries

• If you can’t fix the application focus on
libraries that interact with external
systems.

• Screen database queries.
• Screen external command execution.
• Screen file system operations.

Examine Attack Paths

Customers Apache
1

Database
Server

Apache
2

Web site

CMS Admin

Store Admin

Staff

Store

All paths lead to the
database, which is used
by all four applications!

Two web servers are
isolated from each other

to contain intrusion.

Central Database Mitigation

• Have four database accounts, each
with different access level.

• Or, deploy a separate database
engine for the CMS application (web
site).

Final Mitigation Activities…

• Know when you are compromised
– Activity monitoring
– Integrity Validation
– Intrusion Detection

• Have off-site backups and disaster
recovery procedures!

Where To Go From Here
• Chapter 3 of “Improving Web Application

Security: Threats and Countermeasures”
(free download).

• Chapter 4 of “Writing Secure Code”.
• If you are a programmer, read “Threat

Modeling”.
• Use the free threat modelling tool from

Microsoft.
• More here: http://www.modsecurity.org/blog/

archives/2006/01/threat_modellin.html

Questions?

Thank you!
Download this presentation from

http://www.thinkingstone.com/talks/

