
Positive Security Model for

Web Applications, Challenges

and Promise

Ofer Shezaf

OWASP IL Chapter leader

CTO, Breach Security

Introduction
Breach Security, Inc.

Breach Security is the market

leader in web application security

with global headquarters in

Carlsbad, California.

With web application security

expertise for over six years and

led by experienced security

executives, Breach Security is

trusted by large enterprise

customers.

Breach Security provides next-generation web application security solutions for

protecting business-critical web applications transmitting privileged information,

resolving security challenges such as identity theft, information leakage,

regulatory compliance, and insecurely coded applications.

Introduction
Ofer Shezaf

• Community Participation:

 ModSecurity Core Rule Set
Project Leader

 OWASP Israeli chapter leader

 Web Application Security
Consortium (WASC) Board
Member

 WASC Web Hacking Incidents
Database Project Leader

• Day Job:

 CTO, Breach Security

 In charge of security research,
rules and signatures.

Product Portfolio

Web Application Protection

WebDefend™

A next-generation web application firewall featuring unique out-of-line

blocking capabilities and continuous application profile learning.

ModSecurity™

An entry level, low-cost web application firewall. Based on the open

source version , it the most widely deployed web application firewall in

the world with over 10,000 deployments.

SSL Encrypted Traffic Viewer

BreachView SSL

A plug-in or security appliance which passively decrypts SSL traffic so

that hidden threats can be detected by the IDS/IPS system.

Web Application Security

Traditional Network Security

Web

Client

Database

Server
Application

Application

Firewall

Port 80, 443

Web

Server

HTTP Traffic

 Firewalls block

ALL inbound

traffic to the

web servers

EXCEPT traffic

over ports 80 &

443.

 The web

application

becomes the weak

point, leaving

responsibility

for security in

the hands of

developers.

The Web Application Security Problem

• Web applications:

 Are unique, each one exposing its own vulnerabilities.

 Changes frequently, requiring constant tuning of
application security.

 Became complex and feature rich with the advent of AJAX,
Web Services and Web 2.0, requiring developers to
prioritize features and schedule before security.

• Consequently:

 Signature-based, deterministic, traditional “Network
Security” can not protect custom & dynamic Web
applications.

 Web applications reviews only provide visibility at the time
it was performed.

What Are Web Application

Firewalls?

Multiple Deployment Modes

`

Web

Server

Firewall

`

Web

Server

Firewall

In-Line mode

Embedded mode

`

Web

Server

Firewall

Out of line mode

Three Protection Strategies for WAFs

1. Positive security model

 An independent input validation envelope.

 Rules must be adjusted to the application.

 Automated and continuous learning (to adjust for changes) is the key.

2. Negative security model

 Looking for bad stuff,

 Mostly signatures based.

 Generic but requires some tweaking for each application.

3. Limited Positive Security: External patching

 Also known as "just-in-time patching" or "virtual patching".

IPS?

Negative Security for Web Applications

An IPS, but:

 Deep understanding of HTTP and HTML

 Breaking up to individual fields: headers, parameters, uploaded files.

 Validation of field attributes such as content, length or count

 Correct breakup and matching of transactions and sessions.

 Compensation for protocol caveats and anomalies, for example cookies.

 Robust parsing:

 Unique parameters syntax

 XML requests (SOAP, Web Services)

 Anti Evasion features:

 Decoding

 Path canonizations

 Thorough understanding of application layer issues: Apache request line
delimiters, PHP parameter names anomalies.

 Rules instead of signatures:

 Sessions & state management, Logical operators, Control structures.

IDPS signatures vs. WAF Rules

Signatures:

 Simple text strings or regular

expression patterns matched

against input data.

 Usually detect attack vectors for

known vulnerabilities, while web

applications are usually custom

made.

 Variations on attack vectors are

very easy to create

Rules:

 Multiple operators and logical

expressions: Is password field

length > 8?

 Selectable anti-evasion
transformation functions.

 Control structures such as IF:

 Apply different rules based on
transactions.

 Variables, Session & state
management:

 Aggregate events over a
sessions.

 Detect brute force & denial of
service.

 Audit user name for each
transaction

Some Complex Rules:

Monitoring:

Capturing the user name

Login failures

14

SecAction phase:1,nolog,pass,initcol:ip=%{REMOTE_ADDR}_%{HTTP_USER-AGENT}

SecRule IP:SCORE "@ge 20" "phase:1,pass,log,setvar:ip.blocked=1,expirevar:ip.blocked=600"

SecRule IP:BLOCKED "@eq 1" "phase:1,deny,log,status:302,redirect:http://www.site.com/"

SecRule REQUEST_FILENAME "login\.jsp$"

"phase:1,pass,nolog,setvar:ip.score=+1,expirevar:ip.score=600"

Protection

Brute force detection

Scanners and automation

detection

Misdemeanor scoring

Comparison

Operator

Anti

Evasion??

State

Collection

Rate

control

Positive Security Model

Virtual Patching

 Testing reveals that the login field is vulnerable to SQL

injection.

 Login names cannot include characters beside

alphanumerical characters.

 The following rule will help:

<LocationMatch "^/app/login.asp$">

SecRule ARGS:username "!^\w+$" "deny,log"

>/LocationMatch>

Positive Security Model

 The same but for every field in the application.

 Can also validate:

 Links, Cookies, headers.

 Output - sign each page to ensure correct page is sent

<LocationMatch "^/exchweb/bin/auth/owaauth.dll$">

SecDefaultAction "log,deny,t:lowercase"

 SecRule REQUEST_METHOD !POST

SecRule ARGS:destination " URL" "t:urlDecode"

SecRule ARGS:flags “![0-9]{1,2}"

SecRule ARGS:username "[0-9a-zA-Z].{256,}"

SecRule ARGS:password ".{256,}"

SecRule ARGS:SubmitCreds "!Log.On"

SecRule ARGS:trusted "!(0|4)"

</LocationMatch>

Learning

 Great security, but requires practically re-writing the

application.

 Some auto policy generation is required:

 Monitoring outbound traffic (dynamic policy)

 Crawling

 Monitoring inbound traffic (normal behavior):

Outbound Based Dynamic Policy

 The Original Application Firewalls Technology.

 How Does it Work:
 WAF Analyzes output pages for: Input fields, hidden fields, combo

boxes, links.

 Build rules to validate field lengths, list of values, valid links

 Validate incoming page according to rules

 Inherent problems:
 No type validation information

 Entry pages issue

 JavaScript

 Does not fit modern, asymmetric, Web technologies:
 Web 2.0 and AJAX

 Web Services/SOAP

Crawler based learning

 How Does it Work:

 Crawler crawls the site and builds the same rules as the dynamic
policy, just before hand.

 Client side can emulate JavaScript to overcome some of the
limitations presented above.

 But:

 A crawler cannot fully cover a site, especially a form based one

 Type information and entry pages still an issue.

 Changes are a problem.

 Scanner based learning

 Using application security scanners to generate virtual patching
rules.

 A minimal approach utilizing the best in this approach.

Behavioral Based Learning

 How does it work:

 Monitor inbound traffic and generate a normal behavior profile.

 Profile includes different models over any aspect of the request

or reply.

 Validate requests (and replies) according to profile.

 Overcomes other learning methods shortcomings, but:

 Learning period.

 Filtering noise and attacks.

 Change management.

 Is what abnormal also an attack?

 Seldom used pages.

A sample profile

Site

Site Map

Site Status

URLs

Parameters

Parameter

Types

Behavioral Models

For each attribute, the following models can apply:

 Length

 Character set:
 Probability of a character or group in field

 Anonymous character distribution

 Token finder
 Heuristic: learn specific lists.

 Fixed maximum number of elements

 By rate of new values

 Type:
 Heuristic: learn specific types

 Structural Inference

 Existence of attributes, order of attributes.

Based in part on work by Christopher Kruegel, Giovanni Vigna’s et al.

Anomalies vs. Attacks

 Signatures and other detection engines help prevent

malicious traffic from being learned.

 Model should eliminate highly abnormal values and

predict unseen values:

 Easier for length, harder for token finder

 Use of anomaly scoring for intermediate results.

Anomaly scoring

 Each test produce continuous result and not a binary one.

 Result of tests are compound to detect attacks:

 In the same request/reply

 Over time

 None behavioral tests are also quantified:

 Parser and RFC compliance issues

 Signature matching

Advanced Behavioral Learning

 Learning if outbound based dynamic policy is valid:

 Are hidden fields changes by JavaScript?

 Is a combo box limited to the values in the HTML form?

 Continuous learning:

 Detect change by monitoring level of alerts

 Continuously modify the profile using time windows.

 Detect change by comparing learning results for different time

windows.

 Per user learning:

 Enables fraud detection.

Thank You!

Ofer Shezaf

ofers@breach.com

