e O ——
BREACH

Positive Security Model for

Web Applications, Challenges
and Promise

Ofer Shezaf

OWASP IL Chapter leader BREACH
CTO, Breach Security

Introduction

Breach Security, Inc.

Breach Security is the market
leader in web application security
with global headquarters in
Carlsbad, California.

With web application security
expertise for over six years and
led by experienced security
executives, Breach Security is
trusted by large enterprise
customers.

Breach Security provides next-generation web application security solutions for
protecting business-critical web applications transmitting privileged information,
resolving security challenges such as identity theft, information leakage,
regulatory compliance, and insecurely coded applications.

e
BREACH

-

e E
a4+t
E=SE

=
|
b4t

11
EIOdY
| BNIE

1

| § !
g
| §

Introduction
Ofer Shezaf

Community Participation:

= ModSecurity Core Rule Set
Project Leader

= OWASP lIsraeli chapter leader

= Web Application Security
Consortium (WASC) Board

Member

= WASC Web Hacking Incidents
Database Project Leader

Day Job:
= CTO, Breach Security

= In charge of security research,
rules and signatures.

BREACH

e
BREACH

Product Portfolio

Web Application Protection

WebDefend™
A next-generation web application firewall featuring unique out-of-line
blocking capabilities and continuous application profile learning.

ModSecurity™

An entry level, low-cost web application firewall. Based on the open
source version , it the most widely deployed web application firewall in
the world with over 10,000 deployments.

SSL Encrypted Traffic Viewer

BreachView SSL
A plug-in or security appliance which passively decrypts SSL traffic so
that hidden threats can be detected by the IDS/IPS system.

e —
BREACH

e O ——
BREACH

Web Application Security

BREACH

Traditional Network Security

" Firewalls block
ALL inbound
traffic to the
web servers
EXCEPT traffic
over ports 80 &
443 .

= The web
application
becomes the weak
point, leaving
responsibility
for security in
the hands of
developers.
BREACH

Application Database
} Server

Server Application

Port 80, 443

The Web Application Security Problem

Web applications:

= Are unique, each one exposing its own vulnerabilities.

= Changes frequently, requiring constant tuning of
application security.

= Became complex and feature rich with the advent of AJAX,
Web Services and Web 2.0, requiring developers to
prioritize features and schedule before security.

Consequently:

= Signature-based, deterministic, traditional “Network
Security” can not protect custom & dynamic Web
applications.

= Web applications reviews only provide visibility at the time
It was performed.

e —
BREACH

e O ——
BREACH

What Are Web Application

BREACH

Firewalls?

e —
BREACH

Multiple Deployment Modes

In-Line mode

Embedded mode

Out of line mode

i —
BREACH

Three Protection Strategies for WAFs

1. Positive security model
B Anindependentinput validation envelope.
B Rules must be adjusted to the application.
B Automated and continuous learning (to adjust for changes) is the key.
2. Negative security model
B Looking for bad stuff,
B Mostly signatures based.

B Generic but requires some tweaking for each application.

3. Limited Positive Security: External patching
B Also known as "just-in-time patching" or "virtual patching".

e
BREACH

i —
BREACH

Negative Security for Web Applications

An IPS, but:

Deep understanding of HTTP and HTML
= Breaking up to individual fields: headers, parameters, uploaded files.
= Validation of field attributes such as content, length or count
= Correct breakup and matching of transactions and sessions.
= Compensation for protocol caveats and anomalies, for example cookies.
Robust parsing:
= Unique parameters syntax
= XML requests (SOAP, Web Services)
= Anti Evasion features:
= Decoding
= Path canonizations

= Thorough understanding of application layer issues: Apache request line
delimiters, PHP parameter names anomalies.

» Rules instead of signatures:

= Sessions & state management, Logical operators, Control structures. ———
BREACH

e —.
BREACH

IDPS signatures vs. WAF Rules

Signhatures: Rules:
= Simple text strings or regular = Multiple operators and logical
expression patterns matched expressions: Is password field
against input data. length > 87
= Usually detect attack vectors for = Selectable anti-evasion
known vulnerabilities, while web transformation functions.
applications are usually custom = Control structures such as IF:
made. = Apply different rules based on
= Variations on attack vectors are transactions.
very easy to create = Variables, Session & state
management:
= Aggregate events over a
SessIions.
= Detect brute force & denial of
service.
= Audit user name for each
transaction ———

BREACH

A

BREACH
Some Complex Rules: —
Monitoring: Protection
» Capturing the user name) Brute force detection
» Login failures » Scanners and automation
detection

» Misdemeanor scoring
Anti
Evasion??

SecAction phase:1,nolod¥pass,initcolYp=AREMOTE_ADDR} %{HTTP_USER-AGENT}
SecRule IP:SCORE "@ge 20" "phase:1#ass,log,setvar:ip.blocked=1,expirevar:ip.blocked=600"
SecRule IP:BLOCKED "@eq 1" "phag#.1,deny,log,status:302,redirect:http://www.site.com/"
SecRule REQUEST_ FILENAME "login\.jsp$"
“phase:1,pass,nolog,setvar:ip.score=+1,expire

State
Collection

Comparison
Operator

Rate
control

B
BREACH,

e O ——
BREACH

Positive Security Model

BREACH

i —_
BREACH"

Virtual Patching

» Testing reveals that the login field is vulnerable to SQL
Injection.

* Login names cannot include characters beside
alphanumerical characters.

» The following rule will help:

<LocationMatch "“*/app/login.asp$">
SecRule ARGS:username "!“\w+$" "deny,log"
</LocationMatch>

——
BREACH

BREACH

Positive Security Model

* The same but for every field in the application.

» Can also validate:
= Links, Cookies, headers.
= Qutput - sign each page to ensure correct page is sent

<LocationMatch "~/exchweb/bin/auth/owaauth.dl11$">
SecDefaultAction "log,deny, t:lowercase"
SecRule REQUEST METHOD !POST
SecRule ARGS:destination "URL" "t:urlDecode"
SecRule ARGS:flags “!'[0-9]{1,2}"
SecRule ARGS:username "[0-9a-zA-Z].{256,}"
SecRule ARGS:password ".{256,}"
SecRule ARGS:SubmitCreds "!'Log.On"
SecRule ARGS:trusted "!'(0]|4)"

</LocationMatch>

BREAC

[] (AP PSP RV RTR TP TRTIRIRdRIR R TRIaRIRIdIRlal IRTO]]!
HINIE RN NI FR RN P NN NI RN N PN P EFE ENENER ERENE NN
m BEEERPEEEREREENEER BN E ERE ENE EE BN B EE EN R E R ER R E R BN B E R EEEE R EERERE

i —
BREACH

Learning '

= Great security, but requires practically re-writing the
application.

= Some auto policy generation is required:
= Monitoring outbound traffic (dynamic policy)
= Crawling
= Monitoring inbound traffic (normal behavior):

e
BREACH

i —
BREACH

Outbound Based Dynamic Policy

* The Original Application Firewalls Technology.

= How Does it Work:

= WAF Analyzes output pages for: Input fields, hidden fields, combo
boxes, links.

= Build rules to validate field lengths, list of values, valid links
= Validate incoming page according to rules

* Inherent problems:
= No type validation information
= Entry pages issue
= JavaScript

= Does not fit modern, asymmetric, Web technologies:

= Web 2.0 and AJAX
= \Web Services/SOAP

e
BREACH

i —
BREACH

Crawler based learning

= How Does it Work:

= Crawler crawls the site and builds the same rules as the dynamic
policy, just before hand.

= Client side can emulate JavaScript to overcome some of the
limitations presented above.

= But:
= A crawler cannot fully cover a site, especially a form based one
= Type information and entry pages still an issue.
= Changes are a problem.

= Scanner based learning

= Using application security scanners to generate virtual patching
rules.

= A minimal approach utilizing the best in this approach.

e
BREACH

i —
BREACH

Behavioral Based Learning

= How does it work:
= Monitor inbound traffic and generate a normal behavior profile.

= Profile includes different models over any aspect of the request
or reply.
= Validate requests (and replies) according to profile.
= Overcomes other learning methods shortcomings, but:
* |Learning period.
= Filtering noise and attacks.
= Change management.
* |s what abnormal also an attack?
= Seldom used pages.

e
BREACH

i —
BREACH

A sample profile

% BreachGate WebDefend Console - [Site Manager] i =]

! Console Wiew Actions Tools Help

':‘E~<i Event Viewer]’L’J Paolicy Managt;r/, C‘J Site Manager]

: s = 2 | Site: WWW.BREACH.COM:80
BElE idn BB X2 ES
. — —— . 0 Events _A_]
" nag iy]
SI te \ \7 BreachGate-WebDefend OEvents
i1 WWW.BREACH.COM:80 Site: i ACH.COM:
3 5 Wi BREACH.COM:80 JEva .
| <Root> URL: /contact_breach.asp e — S | te Stat us
+1-] about_breach_security T

-] application_security Protected: Yes
B ty: %
[#-¢[_J customer_support Sample Quality: 100 0 OEvarts

=] flash Access Counter: 431
{3 sbi_no_Flash.gif Last Accessed: Thu Aug 18 22:18:37 2005
. - gifs % Last 24 hours
Slte Map —— # (] ids_enhancements " PastWeek
' " Total
-] news_web_security
i) partners Parameters 10
g iontact_breach. o [\ Parameter | Variant Sel... | Sample Qu... |Access Cou...|User Def...| Location | Ty~ 8
/ﬁ contact_thanks.asp L);submitted High - Content Logical .
U R L S T L firstname High - Contert Bound Paramete
‘ lastname High - Content Bound Paramete o 4
| |email High - Content E-mail Address 2
‘7 phone High - Content Bound Paramete o e
title v High - Content List
| company v High - Cortert List ‘\\ Parameter
10 iaddress1 High - Cortert Empty Value | -

Types

|L|

Sample Quality {(weighted)

Yariants

Parameters

| # | title company | city Protected | Sample Quality | Access Counte

o[v 100% 2

B Low quality (0.5%)

Medium quality (0.0%) .
- (v |l i3 B High quality (39.5%) 'R E A C H

Ready Connected 4

i —
BREACH

Behavioral Models

For each attribute, the following models can apply:
* Length
= Character set:
= Probability of a character or group in field
= Anonymous character distribution
= Token finder
= Heuristic: learn specific lists.
= Fixed maximum number of elements
= By rate of new values
= Type:
» Heuristic: learn specific types
= Structural Inference

= Existence of attributes, order of attributes.

/,——*——.__\
Based in part on work by Christopher Kruegel, Giovanni Vigna’s et al. BREACH

A

BREACH

Anomalies vs. Attacks '

= Signatures and other detection engines help prevent
malicious traffic from being learned.

* Model should eliminate highly abnormal values and
predict unseen values:

= Easier for length, harder for token finder

» Use of anomaly scoring for intermediate results.

e
BREACH

A

BREACH

Anomaly scoring

» Each test produce continuous result and not a binary one.

» Result of tests are compound to detect attacks:
* |n the same request/reply
= Qver time

= None behavioral tests are also quantified:

» Parser and RFC compliance issues
= Signature matching

O'Brien is Irish, O’Select is not

’,-—*——.__\

BREACH

i —
BREACH

Advanced Behavioral Learning

» _earning if outbound based dynamic policy is valid:

= Are hidden fields changes by JavaScript?
* |s acombo box limited to the values in the HTML form?

= Continuous learning:
= Detect change by monitoring level of alerts
= Continuously modify the profile using time windows.

= Detect change by comparing learning results for different time
windows.

» Per user learning:
= Enables fraud detection.

e
BREACH

e O ——
BREACH

Thank You!

Ofer Shezaf
ofers@breach.com

BREACH

rrrrrrrrrrrrr

IIIIIIIIIIII
IIIIIIIIIIIIIIIII

