
Copyright © 2007 - The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document under the 
terms of the Creative Commons Attribution-ShareAlike 2.5 License. To view this 
license, visit http://creativecommons.org/licenses/by-sa/2.5/

The OWASP Foundation

6th OWASP
AppSec 

Conference
Milan - May 2007

http://www.owasp.org/

Protecting Web Applications
from Universal PDF XSS:
A discussion of how weird the web
application security world has become

Ivan Ristic

Chief Evangelist
Breach Security

ivanr@modsecurity.org



6th OWASP AppSec Conference – Milan – May 2007 2

Table of Contents

1. Introducing the PDF XSS 
vulnerability.

2. Fixing the problem.

3. Experimenting with content 
injection.

4. Conclusions, lessons learned,
etc.



6th OWASP AppSec Conference – Milan – May 2007 3

About Ivan Ristic

Software developer/technical
architect/security analyst/whatever.

Web application security and web
application firewall specialist.

Author of Apache Security.

Author of ModSecurity.

Employed by Breach Security
to work on ModSecurity.



6th OWASP AppSec Conference – Milan – May 2007 4

Introduction



6th OWASP AppSec Conference – Milan – May 2007 5

DOM-based Cross-Site Scripting (1)

It all started back in 2005 when Amit Klein
published DOM Based Cross Site Scripting 
or XSS of the Third Kind.

Amit observed that XSS does not necessarily 
need a vulnerable server-side program to 
manifest itself. Everything can take place in the 
browser itself.

He also observed how the # character can be 
used to, very conveniently, avoid sending attack 
payload to the server.



6th OWASP AppSec Conference – Milan – May 2007 6

DOM-based Cross-Site Scripting (2)

DOM-based XSS typically uses JavaScript.
Example (taken from Amit’s paper):
<HTML><TITLE>Welcome!</TITLE>

Hi <SCRIPT>

var pos = document.URL.indexOf("name=") + 5; 

document.write(document.URL.substring(pos,document.URL.length));

</SCRIPT>

</HTML>

Normally invoked with:
http://www.example.com/welcome.html?name=Joe

Does not work equally well when invoked with:
http://www.example.com/welcome.html?name=

<script>alert(document.cookie)</script>



6th OWASP AppSec Conference – Milan – May 2007 7

Enter Acrobat Reader

Universal PDF XSS (1)

In December 2006 Stefano Di Paola and 
friends speak about the universal XSS flaw in the 
Acrobat Reader plug-in on Windows.

The world found out when the advisory went 
out on January 3rd, 2007. (The flaw was already 
fixed in Reader v8 in early December 2006.)

The word spread like fire among security 
bloggers (pdp) and on the mailing lists.

RSnake discovered the attack can be used 
against PDF files hosted on the local filesystem.



6th OWASP AppSec Conference – Milan – May 2007 8

Enter Acrobat Reader 

Universal PDF XSS (2)

For many people this was the 

last straw. They acknowledged 

that the end of the World is near.



6th OWASP AppSec Conference – Milan – May 2007 9

So What Was the Problem?

It turns out the Reader plug-in loved JavaScript 
so much it would execute it when a link in the 
following format is encountered:

http://www.example.com/file.pdf#a=

javascript:alert('Alert')

Uh-oh

Notice the # character!



6th OWASP AppSec Conference – Milan – May 2007 10

Threat Assessment (1)

Discoverability - 10

Reproducibility - 10

Exploitability - 7

Attack code not trivial but not very difficult to write.

Victim must click a link (email) or visit a malicious 
web site. Both attack vectors are examples of CSRF.

Affected users - 10

PDF is a standard for printable documentation.

Most computers have Adobe Reader installed.

Most sites carry PDF files.



6th OWASP AppSec Conference – Milan – May 2007 11

Threat Assessment (2)

Damage potential - 8

After a successful attack the code is executed in the 
context of the site that hosts the PDF file.

The attacker is in full control of the victim’s browser 
(think session hijacking, request forgery, etc.).

Individual users are fully compromised.

System compromise is possible through escalation.

When a locally-hosted PDF file is targeted attackers 
can gain access to the workstation (requires further 
tricks to be used, e.g. the QTL hack, but doable).

Damage potential depends on site content.



6th OWASP AppSec Conference – Milan – May 2007 12

Threat Assessment (3)

The potential for damage is there, all right, but 
where are the exploits?
Many have expected doom and gloom.

But no major scale attacks reported.

Why?

Where do we stand today?
The excitement is gone.

Security-aware people have fixed the problems.

But how many vulnerable people and sites remain?

This problem is as dangerous as it was a few 
months ago.



6th OWASP AppSec Conference – Milan – May 2007 13

Fixing

Universal

PDF XSS



6th OWASP AppSec Conference – Milan – May 2007 14

Fixing The Problem - Users

In many ways this is a simple problem to solve. 
Just upgrade the client-side software:

Adobe Reader 8 not vulnerable.

Internet Explorer 7 not vulnerable.

Other PDF viewers (e.g. Foxit Reader) not vulnerable.

Alternatively, you can
configure the browser not
to open PDF files at all.

But we know many users
will not upgrade.



6th OWASP AppSec Conference – Milan – May 2007 15

Fixing The Problem – Sites (1)

Not possible to detect attack on the server.

Therefore our only option is to “protect” all PDF files no 
matter if they are being attacked or not.

Proposed mitigation revolves around three ideas:

Moving PDF files to some other domain name.

Preventing browsers from recognising PDF files. (Some are very 
stubborn in this regard.)

Forcing browsers to download PDF files.

This can be done via header modification in web server 
configuration (all files) or application (dynamic files 
only).



6th OWASP AppSec Conference – Milan – May 2007 16

Fixing The Problem – Sites (2)

Key headers:

Content-Type: application/octet-stream

Content-Disposition: attachment; filename=x.pdf

Apache fix:

AddType application/octet-stream .pdf 

<FileMatch "\.pdf$">

Header set Content-Disposition \

"attachment; filename=document.pdf“

</FileMatch>

Detailed instructions available from Adobe: 
http://www.adobe.com/support/security/advisories/apsa07-02.html

http://www.adobe.com/support/security/advisories/apsa07-02.html
http://www.adobe.com/support/security/advisories/apsa07-02.html
http://www.adobe.com/support/security/advisories/apsa07-02.html
http://www.adobe.com/support/security/advisories/apsa07-02.html
http://www.adobe.com/support/security/advisories/apsa07-02.html


6th OWASP AppSec Conference – Milan – May 2007 17

Analysis of the Solution So Far

Advantages:

The web server configuration-based
approach is very easy to implement.

 But it may not possible to use this approach with all 
environments.

Weaknesses:

Changing application code can be time consuming.

Forcing downloads of PDF files is not very user 
friendly (many users will get confused).

Dynamically-generated PDF
files are easy to forget (and thus miss).



6th OWASP AppSec Conference – Milan – May 2007 18

Sidebar: Approaches That Do Not Work

Trying to detect attack from the server.

Not possible to see the attack from the server.

Relying on the Referer request header.

It’s not always there.

Can be forged.

Changing Content-Type only.

IE will sniff the content to determine the C-T.

URI Encryption & Requiring sessions:

Defied using session fixation.

Not usable on public sites anyway.



6th OWASP AppSec Conference – Milan – May 2007 19

Using Redirection (1)

Amit Klein proposed a defence mechanism, which was 
subsequently discussed and refined on the mailing lists:
http://www.webappsec.org/lists/websecurity/archive/2007-

01/msg00058.html

While searching for a better solution many people 
noticed that it is possible to overwrite the attack payload
using redirection and a harmless fragment 
identifier.

 If we get:
http://example.com/test.pdf#x=ATTACK

We redirect to:
http://example.com/test.pdf#neutralise

http://www.webappsec.org/lists/websecurity/archive/2007-01/msg00058.html
http://www.webappsec.org/lists/websecurity/archive/2007-01/msg00058.html
http://www.webappsec.org/lists/websecurity/archive/2007-01/msg00058.html
http://www.webappsec.org/lists/websecurity/archive/2007-01/msg00058.html
http://www.webappsec.org/lists/websecurity/archive/2007-01/msg00058.html
http://www.webappsec.org/lists/websecurity/archive/2007-01/msg00058.html
http://www.webappsec.org/lists/websecurity/archive/2007-01/msg00058.html


6th OWASP AppSec Conference – Milan – May 2007 20

Using Redirection (2): 

Preventing Loops

But how do we tell we’ve already redirected the 
user?

If we don’t we’ll just end up with an endless loop.

We can use one-time tokens as flags.

So this:
http://example.com/test.pdf#x=ATTACK

Is now redirected to:
http://example.com/test.pdf?

TOKEN=XXXXXXX#neutralise



6th OWASP AppSec Conference – Milan – May 2007 21

Using Redirection (3):

Token Generation

If we generate a completely random token then 
we’d have to start keeping state on the server 
(i.e. token repository, garbage collection of 
expired tokens).

It’s a fine approach.

But it can have non-negligible impact on the 
performance and maintenance of non-trivial sites.

It can also affect cacheability.

Alternatively, we can store state on the client.

Use cryptography to validate tokens.

Embed the expiry time.



6th OWASP AppSec Conference – Milan – May 2007 22

Using Redirection (4):

Token Hijacking?

Unfortunately, our solution is not foolproof yet.

The attacker can simply generate a number of 
tokens to use against his victims.
We have to associate tokens with clients somehow.

It would be nice to use the application session 
but not all sites have them.
Exploitation possible through session fixation.

Thus we have no choice but use the IP address.

But what happens if the IP address changes 
(user behind a proxy)?
We fall back to forced download.



6th OWASP AppSec Conference – Milan – May 2007 23

Using Redirection (5):

It’s Not Foolproof!

There are still holes in our solution!

If the attacker shares the same IP address as 
the victim (proxy, NAT) he will be able to obtain 
tokens to use in attacks.

The timeout feature does not help much.

If the attacker can get the victim to browse a 
malicious web site he can:

 Generate responses dynamically while…

 …obtaining valid tokens behind the scenes.

At best, we can prevent mass-exploitation.

Focused attacks remain an issue.



6th OWASP AppSec Conference – Milan – May 2007 24

A Foolproof Protection 
Mechanism Would…

A foolproof protection mechanism would:

Associate tokens with client SSL certificates. (Or to 
session IDs where sessions have already been 
associated with client SSL certificates.)

This would prevent session fixation.

And it would only work on:

Sites that have sessions and

We would have to know where the session ID 
resides.

Not usable as a general purpose protection 
method.



6th OWASP AppSec Conference – Milan – May 2007 25

Implementation Details

Most protection mechanisms rely on detecting 
the PDF extension in the request URI.

Let’s have a look at some request types:
GET /innocent.pdf

GET /download.php/innocent.pdf

GET /download.php?file=innocent.pdf

GET /download.php?fileid=619

POST /generateReport.php

(with a bunch of parameters in the request body)

To catch the last three cases we have to inspect 
the outgoing headers:

Content-Type: application/pdf



6th OWASP AppSec Conference – Milan – May 2007 26

Potential Performance Issue

There is a potential performance issue if we 
redirect a GET request based on what we see in 
the response headers.

The PDF is going to have to be generated twice.

Think long-running reports… not good.

There is a way to solve this but it’s a bit of a 
stretch:

Store the response (PDF) into a temporary file.

Redirect request, serving the PDF (from the 
temporary file, without invoking the backend) when 
we see the corresponding token again.



6th OWASP AppSec Conference – Milan – May 2007 27

Can we deal with POST requests?

No; all redirections are to a GET.

We lose POST parameters.

Well, strictly speaking, there is a way:

We could respond with a page that contains a self-
submitting form with original parameters.

Or, as we did on the previous slide, store the 
response and issue a GET with a token to fetch it.

But that’s would be bit too much.

It could break applications in subtle ways.

It’s probably “cheaper” to simply force PDF download 
in such cases.



6th OWASP AppSec Conference – Milan – May 2007 28

Redirection Defence Implementations

ModSecurity implements it as of 2.2.0-dev1:
http://www.modsecurity.org

Java Servlet filter:
http://www.owasp.org/index.php/PDF_Attack_Filter_for_Java_EE

.Net filter:
http://www.techplay.net/pdfxssfilter.zip

Using mod_rewrite:
http://www.owasp.org/index.php/PDF_Attack_Filter_for_Apache_m
od_rewrite

F5 Solution using iRules:
http://devcentral.f5.com

There may be others...
Let me know if you find any.

http://www.modsecurity.org/
http://www.owasp.org/index.php/PDF_Attack_Filter_for_Java_EE
http://www.techplay.net/pdfxssfilter.zip
http://www.owasp.org/index.php/PDF_Attack_Filter_for_Apache_mod_rewrite
http://www.owasp.org/index.php/PDF_Attack_Filter_for_Apache_mod_rewrite
http://devcentral.f5.com/
http://devcentral.f5.com/
http://devcentral.f5.com/


6th OWASP AppSec Conference – Milan – May 2007 29

Universal PDF XSS Defence Conclusion

There is no perfect solution - only a trade-off 
between security, usability, and performance.

Isn't everything?

Flaws to be aware of:

Does not protect from attackers sharing
IP address with you.

Must fall back to forced download for
dynamic requests.

In general:

Carefully examine your chosen defence method
to understand exactly when you are protected!



6th OWASP AppSec Conference – Milan – May 2007 30

Experimenting with 

Content Injection



6th OWASP AppSec Conference – Milan – May 2007 31

Client-side Defence Using 
Content Injection

Why don’t we inject a JavaScript fragment at the 
top of all outgoing HTML pages?

The JavaScript fragment will run in the browser.

It can get to the fragment identifier.

It can talk back to the server if anything suspicious is 
detected.

 But it’s trivial for someone (i.e. adversaries) to willingly 
produce too many to cause false positives.

– Come to think of it, the same goes for any attack type.

Even prevention might work!



6th OWASP AppSec Conference – Milan – May 2007 32

Content Injection Example

Starting with 2.2.0-dev1 ModSecurity supports content 
injection (prepend & append features).

We are likely add features to inject content at arbitrary places in 
HTML at a later date. 

Example code:

SecRule RESPONSE_CONTENT_TYPE ^text/html \

"phase:3,nolog,pass,prepend:'PAGE_HEADER<hr>'"

With JavaScript:

SecRule RESPONSE_CONTENT_TYPE ^text/html \

"phase:3,nolog,pass,prepend:\

'<script>document.write(\'Hello World\')</script>'



6th OWASP AppSec Conference – Milan – May 2007 33

Content Injection Use Cases

Possible uses of content injection:

Detect & prevent DOM-based Cross-Site Scripting 
attacks.

Detect anomalies (attacks) in DOM.

Perform DOM hardening at run-time.

Install code to intercept JavaScript events.

Perform implicit authentication to use to prevent 
session hijacking.

Even non-HTML responses can be replaced with an 
intermediate self-refreshing HTML page.



6th OWASP AppSec Conference – Milan – May 2007 34

Conclusions,

lessons, etc...



6th OWASP AppSec Conference – Milan – May 2007 35

Conclusions

The PDF XSS issue goes to the checklist of 
security professionals as a new problem all web 
applications must deal with.

It's practically impossible to design and deploy a 
web application securely.

It's possible to get very close in a small number of 
cases – but at what cost?

There is no hope for the current web application 
security model.

And we are sick from having to deal with it!



6th OWASP AppSec Conference – Milan – May 2007 36

Collaborative Security Research

Individually we are not smart enough to deal 
with the web application security issues.
Too many environments and moving parts.

Takes too long.

Exciting things happen when a discussion is 
sparked in the community.

Collaborative security research as the only viable 
option.
But it needs formalising – lacks structure.

Each issue needs a comprehensive summary.

We also need to address bad advice (in 
documentation).



6th OWASP AppSec Conference – Milan – May 2007 37

Links and Resources

Vulnerability information:
 http://www.wisec.it/vulns.php?page=9#

 http://events.ccc.de/congress/2006/Fahrplan/attachments/1158-
Subverting_Ajax.pdf

 http://www.adobe.com/support/security/bulletins/apsb07-01.html

Blogs:
 http://www.gnucitizen.org/blog/danger-danger-danger/

 http://ha.ckers.org/blog/20070103/universal-xss-in-pdfs/

 http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-
know-about-uxss-in.html

 http://www.gnucitizen.org/blog/universal-pdf-xss-after-party/

Mailing lists:
 http://www.webappsec.org/lists/websecurity/archive/2007-

01/msg00005.html

http://www.wisec.it/vulns.php?page=9
http://www.wisec.it/vulns.php?page=9
http://www.wisec.it/vulns.php?page=9
http://events.ccc.de/congress/2006/Fahrplan/attachments/1158-Subverting_Ajax.pdf
http://events.ccc.de/congress/2006/Fahrplan/attachments/1158-Subverting_Ajax.pdf
http://events.ccc.de/congress/2006/Fahrplan/attachments/1158-Subverting_Ajax.pdf
http://events.ccc.de/congress/2006/Fahrplan/attachments/1158-Subverting_Ajax.pdf
http://events.ccc.de/congress/2006/Fahrplan/attachments/1158-Subverting_Ajax.pdf
http://events.ccc.de/congress/2006/Fahrplan/attachments/1158-Subverting_Ajax.pdf
http://www.adobe.com/support/security/bulletins/apsb07-01.html
http://www.adobe.com/support/security/bulletins/apsb07-01.html
http://www.adobe.com/support/security/bulletins/apsb07-01.html
http://www.adobe.com/support/security/bulletins/apsb07-01.html
http://www.adobe.com/support/security/bulletins/apsb07-01.html
http://www.gnucitizen.org/blog/danger-danger-danger/
http://www.gnucitizen.org/blog/danger-danger-danger/
http://www.gnucitizen.org/blog/danger-danger-danger/
http://www.gnucitizen.org/blog/danger-danger-danger/
http://www.gnucitizen.org/blog/danger-danger-danger/
http://ha.ckers.org/blog/20070103/universal-xss-in-pdfs/
http://ha.ckers.org/blog/20070103/universal-xss-in-pdfs/
http://ha.ckers.org/blog/20070103/universal-xss-in-pdfs/
http://ha.ckers.org/blog/20070103/universal-xss-in-pdfs/
http://ha.ckers.org/blog/20070103/universal-xss-in-pdfs/
http://ha.ckers.org/blog/20070103/universal-xss-in-pdfs/
http://ha.ckers.org/blog/20070103/universal-xss-in-pdfs/
http://ha.ckers.org/blog/20070103/universal-xss-in-pdfs/
http://ha.ckers.org/blog/20070103/universal-xss-in-pdfs/
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
http://www.gnucitizen.org/blog/universal-pdf-xss-after-party/
http://www.gnucitizen.org/blog/universal-pdf-xss-after-party/
http://www.gnucitizen.org/blog/universal-pdf-xss-after-party/
http://www.gnucitizen.org/blog/universal-pdf-xss-after-party/
http://www.gnucitizen.org/blog/universal-pdf-xss-after-party/
http://www.gnucitizen.org/blog/universal-pdf-xss-after-party/
http://www.gnucitizen.org/blog/universal-pdf-xss-after-party/
http://www.gnucitizen.org/blog/universal-pdf-xss-after-party/
http://www.gnucitizen.org/blog/universal-pdf-xss-after-party/
http://www.webappsec.org/lists/websecurity/archive/2007-01/msg00005.html
http://www.webappsec.org/lists/websecurity/archive/2007-01/msg00005.html
http://www.webappsec.org/lists/websecurity/archive/2007-01/msg00005.html
http://www.webappsec.org/lists/websecurity/archive/2007-01/msg00005.html
http://www.webappsec.org/lists/websecurity/archive/2007-01/msg00005.html
http://www.webappsec.org/lists/websecurity/archive/2007-01/msg00005.html
http://www.webappsec.org/lists/websecurity/archive/2007-01/msg00005.html


6th OWASP AppSec Conference – Milan – May 2007 38

The End!

Do you have any questions?

Credits (in chronological order):

...and others from the community.

 You know who you are!

Amit Klein
Stefano Di Paola
Giorgio Fedon
Elia Florio
Petko D. Petkov (pdp)
Robert Hansen (RSnake)
James Landis

Anonymous Slashdot user
Robert Auger
Martin O'Neal
Tom Spector
Ofer Shezaf
Ivan Ristic


