
MongoDB Documentation
Release 2.4.2

MongoDB Documentation Project

April 18, 2013

Contents

I Install MongoDB 1

1 Installation Guides 3
1.1 Install MongoDB on Red Hat Enterprise, CentOS, or Fedora Linux 3
1.2 Install MongoDB on Ubuntu . 6
1.3 Install MongoDB on Debian . 9
1.4 Install MongoDB on Linux . 12
1.5 Install MongoDB on OS X . 13
1.6 Install MongoDB on Windows . 16
1.7 Install MongoDB Enterprise . 20
1.8 Getting Started with MongoDB . 21

2 Release Notes 29

II Administration 31

3 Run-time Database Configuration 35
3.1 Configure the Database . 35
3.2 Security Considerations . 36
3.3 Replication and Sharding Configuration . 37
3.4 Run Multiple Database Instances on the Same System . 38
3.5 Diagnostic Configurations . 38

4 Backup and Recovery Operations for MongoDB 41
4.1 Backup Strategies for MongoDB Systems . 41
4.2 Backup and Recovery Procedures . 43
4.3 Backup and Restore Sharded Clusters . 55

5 Data Center Awareness 61
5.1 Operational Segregation in MongoDB Operations and Deployments 61
5.2 Tag Aware Sharding . 62
5.3 Administer and Manage Shard Tags . 63
5.4 Deploy a Geographically Distributed Replica Set . 64

i

6 Journaling 71
6.1 Procedures . 71
6.2 Journaling Internals . 73

7 Connect to MongoDB with SSL 77
7.1 Configure mongod and mongos for SSL . 77
7.2 SSL Configuration for Clients . 80

8 Monitor MongoDB with SNMP 83
8.1 Prerequisites . 83
8.2 Configure SNMP . 84
8.3 Troubleshooting . 85

9 Monitoring for MongoDB 87
9.1 Monitoring Tools . 87
9.2 Process Logging . 90
9.3 Diagnosing Performance Issues . 90
9.4 Replication and Monitoring . 93
9.5 Sharding and Monitoring . 93

10 Analyze Performance of Database Operations 95
10.1 Profiling Levels . 95
10.2 Enable Database Profiling and Set the Profiling Level . 96
10.3 View Profiler Data . 97
10.4 Profiler Overhead . 98

11 Import and Export MongoDB Data 101
11.1 Data Type Fidelity . 101
11.2 Data Import and Export and Backups Operations . 102
11.3 Human Intelligible Import/Export Formats . 103

12 Linux ulimit Settings 105
12.1 Resource Utilization . 105
12.2 Review and Set Resource Limits . 106
12.3 Recommended Settings . 108

13 Production Notes 109
13.1 Backups . 109
13.2 Networking . 109
13.3 MongoDB on Linux . 109
13.4 Readahead . 110
13.5 MongoDB on Virtual Environments . 110
13.6 Disk and Storage Systems . 110
13.7 Hardware Requirements and Limitations . 111
13.8 Performance Monitoring . 112
13.9 Production Checklist . 112

14 MongoDB Tutorials 117
14.1 Getting Started . 117
14.2 Administration . 117
14.3 Development Patterns . 119
14.4 Application Development . 119
14.5 Text Search Patterns . 120
14.6 Data Modeling Patterns . 120
14.7 MongoDB Use Case Studies . 120

ii

III Security 121

15 Strategies and Practices 125
15.1 Security Practices and Management . 125

16 Tutorials 131
16.1 Configure Linux iptables Firewall for MongoDB . 131
16.2 Configure Windows netsh Firewall for MongoDB . 135
16.3 Access Control in MongoDB . 138
16.4 Deploy MongoDB with Kerberos Authentication . 141
16.5 Create a Vulnerability Report . 146

17 Reference 149
17.1 User Privilege Roles in MongoDB . 149
17.2 system.users Privilege Documents . 153

IV Core MongoDB Operations (CRUD) 157

18 Read and Write Operations in MongoDB 161
18.1 Read Operations . 161
18.2 Write Operations . 173

19 Fundamental Concepts for Document Databases 181
19.1 BSON Documents . 181
19.2 ObjectId . 188
19.3 GridFS . 190
19.4 Database References . 191

20 CRUD Operations for MongoDB 195
20.1 Create . 195
20.2 Read . 203
20.3 Update . 213
20.4 Delete . 219

V Data Modeling 223

21 Background 227
21.1 Data Modeling Considerations for MongoDB Applications . 227

22 Data Modeling Patterns 233
22.1 Model Embedded One-to-One Relationships Between Documents 233
22.2 Model Embedded One-to-Many Relationships Between Documents 234
22.3 Model Referenced One-to-Many Relationships Between Documents 235
22.4 Model Data for Atomic Operations . 237
22.5 Model Tree Structures with Parent References . 238
22.6 Model Tree Structures with Child References . 238
22.7 Model Tree Structures with an Array of Ancestors . 239
22.8 Model Tree Structures with Materialized Paths . 240
22.9 Model Tree Structures with Nested Sets . 241
22.10 Model Data to Support Keyword Search . 241

iii

VI Aggregation 245

23 Aggregation Framework 249
23.1 Overview . 249
23.2 Framework Components . 249
23.3 Use . 250
23.4 Optimizing Performance . 251
23.5 Sharded Operation . 253
23.6 Limitations . 254

24 Aggregation Framework Examples 255
24.1 Requirements . 255
24.2 Aggregations using the Zip Code Data Set . 255
24.3 Aggregation with User Preference Data . 259

25 Aggregation Framework Reference 265
25.1 Pipeline . 266
25.2 Expressions . 275

26 SQL to Aggregation Framework Mapping Chart 281
26.1 Examples . 281

27 Map-Reduce 285
27.1 Examples . 285
27.2 Temporary Collection . 290
27.3 Concurrency . 290
27.4 Sharded Cluster . 290
27.5 Troubleshooting Map-Reduce Operations . 291

28 Simple Aggregation Methods and Commands 297
28.1 Count . 297
28.2 Distinct . 297
28.3 Group . 297

VII Indexes 299

29 Index Concepts 303
29.1 Indexing Overview . 303

30 Indexing Strategies for Applications 315
30.1 Indexing Strategies . 315

31 Index Tutorials 321
31.1 Indexing Operations . 321

32 Geospatial Indexing 333
32.1 Geospatial Indexes and Queries . 333

33 Text Indexing 349
33.1 Text Search . 349

VIII Replication 363

34 Replica Set Use and Operation 367

iv

34.1 Replica Set Fundamental Concepts . 367
34.2 Replica Set Architectures and Deployment Patterns . 375
34.3 Replica Set Considerations and Behaviors for Applications and Development 378
34.4 Replica Set Internals and Behaviors . 387
34.5 Master Slave Replication . 391

35 Replica Set Tutorials and Procedures 397
35.1 Replica Set Administration . 397

36 Replica Set Reference Material 441
36.1 Replica Set Configuration . 441
36.2 Replica Set Status Reference . 446
36.3 Replication Info Reference . 448
36.4 Replica Set Commands . 449
36.5 Replica Set Features and Version Compatibility . 457

IX Sharding 459

37 Sharding Concepts 463
37.1 Sharded Cluster Overview . 463
37.2 Sharded Cluster Architectures . 465
37.3 Query Routing in Sharded Clusters . 468
37.4 Security Practices for Sharded Clusters . 470
37.5 Sharded Cluster Internals . 471

38 Administration 481
38.1 Sharded Cluster Administration . 481

39 Reference 515
39.1 Sharding Commands . 515

X Application Development 525

40 Development Considerations 529
40.1 MongoDB Drivers and Client Libraries . 529
40.2 Optimization Strategies for MongoDB . 529
40.3 Capped Collections . 532
40.4 Server-side JavaScript . 534
40.5 Store a JavaScript Function on the Server . 535

41 Application Design Patterns for MongoDB 537
41.1 Perform Two Phase Commits . 537
41.2 Create Tailable Cursor . 543
41.3 Isolate Sequence of Operations . 545
41.4 Create an Auto-Incrementing Sequence Field . 546
41.5 Limit Number of Elements in an Array after an Update . 550
41.6 Expire Data from Collections by Setting TTL . 551

XI The mongo Shell 553

42 Getting Started with the mongo Shell 557
42.1 Start the mongo Shell . 557
42.2 Executing Queries . 558

v

42.3 Print . 559
42.4 Use a Custom Prompt . 559
42.5 Use an External Editor in the mongo Shell . 560
42.6 Exit the Shell . 560

43 Data Types in the mongo Shell 561
43.1 Date . 561
43.2 ObjectId . 562
43.3 NumberLong . 562

44 Access the mongo Shell Help Information 565
44.1 Command Line Help . 565
44.2 Shell Help . 565
44.3 Database Help . 565
44.4 Collection Help . 566
44.5 Cursor Help . 566
44.6 Type Help . 567

45 Write Scripts for the mongo Shell 569
45.1 Opening New Connections . 569
45.2 Scripting . 570

46 mongo Shell Quick Reference 571
46.1 mongo Shell Command History . 571
46.2 Command Line Options . 571
46.3 Command Helpers . 571
46.4 Basic Shell JavaScript Operations . 572
46.5 Keyboard Shortcuts . 573
46.6 Queries . 574
46.7 Error Checking Methods . 577
46.8 Administrative Command Helpers . 577
46.9 Opening Additional Connections . 577
46.10 Miscellaneous . 578
46.11 Additional Resources . 578

XII Use Cases 579

47 Operational Intelligence 583
47.1 Storing Log Data . 583
47.2 Pre-Aggregated Reports . 593
47.3 Hierarchical Aggregation . 602

48 Product Data Management 611
48.1 Product Catalog . 611
48.2 Inventory Management . 619
48.3 Category Hierarchy . 625

49 Content Management Systems 633
49.1 Metadata and Asset Management . 633
49.2 Storing Comments . 640

50 Python Application Development 651
50.1 Write a Tumblelog Application with Django MongoDB Engine . 651
50.2 Write a Tumblelog Application with Flask and MongoEngine . 663

vi

XIII Frequently Asked Questions 681

51 FAQ: MongoDB Fundamentals 683
51.1 What kind of database is MongoDB? . 683
51.2 Do MongoDB databases have tables? . 684
51.3 Do MongoDB databases have schemas? . 684
51.4 What languages can I use to work with the MongoDB? . 684
51.5 Does MongoDB support SQL? . 684
51.6 What are typical uses for MongoDB? . 684
51.7 Does MongoDB support transactions? . 685
51.8 Does MongoDB require a lot of RAM? . 685
51.9 How do I configure the cache size? . 685
51.10 Does MongoDB require a separate caching layer for application-level caching? 685
51.11 Does MongoDB handle caching? . 686
51.12 Are writes written to disk immediately, or lazily? . 686
51.13 What language is MongoDB written in? . 686
51.14 What are the limitations of 32-bit versions of MongoDB? . 686

52 FAQ: MongoDB for Application Developers 687
52.1 What is a namespace in MongoDB? . 688
52.2 How do you copy all objects from one collection to another? . 688
52.3 If you remove a document, does MongoDB remove it from disk? 688
52.4 When does MongoDB write updates to disk? . 688
52.5 How do I do transactions and locking in MongoDB? . 689
52.6 How do you aggregate data with MongoDB? . 689
52.7 Why does MongoDB log so many “Connection Accepted” events? 689
52.8 Does MongoDB run on Amazon EBS? . 689
52.9 Why are MongoDB’s data files so large? . 689
52.10 How do I optimize storage use for small documents? . 690
52.11 When should I use GridFS? . 690
52.12 How does MongoDB address SQL or Query injection? . 691
52.13 How does MongoDB provide concurrency? . 692
52.14 What is the compare order for BSON types? . 693
52.15 How do I query for fields that have null values? . 694
52.16 Are there any restrictions on the names of Collections? . 694
52.17 How do I isolate cursors from intervening write operations? . 695
52.18 When should I embed documents within other documents? . 695
52.19 Can I manually pad documents to prevent moves during updates? 696

53 FAQ: The mongo Shell 697
53.1 How can I enter multi-line operations in the mongo shell? . 697
53.2 How can I access to different databases temporarily? . 697
53.3 Does the mongo shell support tab completion and other keyboard shortcuts? 698
53.4 How can I customize the mongo shell prompt? . 698
53.5 Can I edit long shell operations with an external text editor? . 699

54 FAQ: Concurrency 701
54.1 What type of locking does MongoDB use? . 701
54.2 How granular are locks in MongoDB? . 702
54.3 How do I see the status of locks on my mongod instances? . 702
54.4 Does a read or write operation ever yield the lock? . 702
54.5 Which operations lock the database? . 702
54.6 Which administrative commands lock the database? . 703
54.7 Does a MongoDB operation ever lock more than one database? . 704
54.8 How does sharding affect concurrency? . 704

vii

54.9 How does concurrency affect a replica set primary? . 704
54.10 How does concurrency affect secondaries? . 704
54.11 What kind of concurrency does MongoDB provide for JavaScript operations? 704

55 FAQ: Sharding with MongoDB 705
55.1 Is sharding appropriate for a new deployment? . 706
55.2 How does sharding work with replication? . 706
55.3 Can I change the shard key after sharding a collection? . 706
55.4 What happens to unsharded collections in sharded databases? . 706
55.5 How does MongoDB distribute data across shards? . 706
55.6 What happens if a client updates a document in a chunk during a migration? 707
55.7 What happens to queries if a shard is inaccessible or slow? . 707
55.8 How does MongoDB distribute queries among shards? . 707
55.9 How does MongoDB sort queries in sharded environments? . 707
55.10 How does MongoDB ensure unique _id field values when using a shard key other than _id? 707
55.11 I’ve enabled sharding and added a second shard, but all the data is still on one server. Why? 708
55.12 Is it safe to remove old files in the moveChunk directory? . 708
55.13 How does mongos use connections? . 708
55.14 Why does mongos hold connections open? . 708
55.15 Where does MongoDB report on connections used by mongos? . 708
55.16 What does writebacklisten in the log mean? . 709
55.17 How should administrators deal with failed migrations? . 709
55.18 What is the process for moving, renaming, or changing the number of config servers? 709
55.19 When do the mongos servers detect config server changes? . 709
55.20 Is it possible to quickly update mongos servers after updating a replica set configuration? 709
55.21 What does the maxConns setting on mongos do? . 709
55.22 How do indexes impact queries in sharded systems? . 710
55.23 Can shard keys be randomly generated? . 710
55.24 Can shard keys have a non-uniform distribution of values? . 710
55.25 Can you shard on the _id field? . 710
55.26 Can shard key be in ascending order, like dates or timestamps? . 710
55.27 What do moveChunk commit failed errors mean? . 711
55.28 How does draining a shard affect the balancing of uneven chunk distribution? 711

56 FAQ: Replica Sets and Replication in MongoDB 713
56.1 What kinds of replication does MongoDB support? . 713
56.2 What do the terms “primary” and “master” mean? . 714
56.3 What do the terms “secondary” and “slave” mean? . 714
56.4 How long does replica set failover take? . 714
56.5 Does replication work over the Internet and WAN connections? . 714
56.6 Can MongoDB replicate over a “noisy” connection? . 714
56.7 What is the preferred replication method: master/slave or replica sets? 715
56.8 What is the preferred replication method: replica sets or replica pairs? 715
56.9 Why use journaling if replication already provides data redundancy? 715
56.10 Are write operations durable if write concern does not acknowledge writes? 715
56.11 How many arbiters do replica sets need? . 716
56.12 What information do arbiters exchange with the rest of the replica set? 716
56.13 Which members of a replica set vote in elections? . 716
56.14 Do hidden members vote in replica set elections? . 717
56.15 Is it normal for replica set members to use different amounts of disk space? 717

57 FAQ: MongoDB Storage 719
57.1 What are memory mapped files? . 719
57.2 How do memory mapped files work? . 719

viii

57.3 How does MongoDB work with memory mapped files? . 720
57.4 What are page faults? . 720
57.5 What is the difference between soft and hard page faults? . 720
57.6 What tools can I use to investigate storage use in MongoDB? . 720
57.7 What is the working set? . 720
57.8 Why are the files in my data directory larger than the data in my database? 721
57.9 How can I check the size of a collection? . 722
57.10 How can I check the size of indexes? . 722
57.11 How do I know when the server runs out of disk space? . 722

58 FAQ: Indexes 725
58.1 Should you run ensureIndex() after every insert? . 725
58.2 How do you know what indexes exist in a collection? . 726
58.3 How do you determine the size of an index? . 726
58.4 What happens if an index does not fit into RAM? . 726
58.5 How do you know what index a query used? . 726
58.6 How do you determine what fields to index? . 726
58.7 How do write operations affect indexes? . 726
58.8 Will building a large index affect database performance? . 726
58.9 Can I use index keys to constrain query matches? . 727
58.10 Using $ne and $nin in a query is slow. Why? . 727
58.11 Can I use a multi-key index to support a query for a whole array? 727
58.12 How can I effectively use indexes strategy for attribute lookups? . 727

59 FAQ: MongoDB Diagnostics 729
59.1 Where can I find information about a mongod process that stopped running unexpectedly? 729
59.2 Does TCP keepalive time affect sharded clusters and replica sets? 730
59.3 Memory Diagnostics . 730
59.4 Sharded Cluster Diagnostics . 731

XIV Reference 735

60 MongoDB Interface 737
60.1 Reference . 737

61 Architecture and Components 971
61.1 MongoDB Package Components . 971
61.2 Configuration and Use . 1026

62 Status and Reporting 1047
62.1 Server Status Output Index . 1047
62.2 Server Status Reference . 1052
62.3 Database Statistics Reference . 1070
62.4 Collection Statistics Reference . 1072
62.5 Collection Validation Data . 1074
62.6 Connection Pool Statistics Reference . 1076
62.7 Current Operation Reporting . 1078
62.8 Database Profiler Output . 1083
62.9 Explain Output . 1086
62.10 Exit Codes and Statuses . 1090

63 Internal Metadata 1093
63.1 Config Database Contents . 1093
63.2 The local Database . 1099

ix

63.3 System Collections . 1101
63.4 GridFS Reference . 1101

64 General Reference 1105
64.1 MongoDB Limits and Thresholds . 1105
64.2 Connection String URI Format . 1108
64.3 MongoDB Extended JSON . 1113
64.4 Database References . 1115
64.5 Glossary . 1117

XV Release Notes 1129

65 Current Stable Release 1133
65.1 Release Notes for MongoDB 2.4 . 1133

66 Previous Stable Releases 1155
66.1 Release Notes for MongoDB 2.2 . 1155
66.2 Release Notes for MongoDB 2.0 . 1165
66.3 Release Notes for MongoDB 1.8 . 1171
66.4 Release Notes for MongoDB 1.6 . 1176
66.5 Release Notes for MongoDB 1.4 . 1178
66.6 Release Notes for MongoDB 1.2.x . 1180

67 Other MongoDB Release Notes 1183
67.1 Default Write Concern Change . 1183

68 Version Numbers 1185

XVI About MongoDB Documentation 1187

69 License 1191

70 Editions 1193

71 Version and Revisions 1195

72 Report an Issue or Make a Change Request 1197

73 Contribute to the Documentation 1199
73.1 MongoDB Manual Translation . 1199
73.2 About the Documentation Process . 1200

x

Part I

Install MongoDB

1

CHAPTER 1

Installation Guides

MongoDB runs on most platforms, and supports 32-bit and 64-bit architectures. 10gen, the MongoDB makers, pro-
vides both binaries and packages. Choose your platform below:

1.1 Install MongoDB on Red Hat Enterprise, CentOS, or Fedora Linux

1.1.1 Synopsis

This tutorial outlines the basic installation process for deploying MongoDB on Red Hat Enterprise Linux, CentOS
Linux, Fedora Linux and related systems. This procedure uses .rpm packages as the basis of the installation. 10gen
publishes packages of the MongoDB releases as .rpm packages for easy installation and management for users of
CentOS, Fedora and Red Hat Enterprise Linux systems. While some of these distributions include their own MongoDB
packages, the 10gen packages are generally more up to date.

This tutorial includes: an overview of the available packages, instructions for configuring the package manager, the
process install packages from the 10gen repository, and preliminary MongoDB configuration and operation.

See Also:

Additional installation tutorials:

• http://docs.mongodb.org/manual/tutorial/install-mongodb-on-debian-or-ubuntu-linux

• Install MongoDB on Debian (page 9)

• Install MongoDB on Ubuntu (page 6)

• Install MongoDB on Linux (page 12)

• Install MongoDB on OS X (page 13)

• Install MongoDB on Windows (page 16)

1.1.2 Package Options

The 10gen repository contains two packages:

• mongo-10gen-server

3

http://www.10gen.com

MongoDB Documentation, Release 2.4.2

This package contains the mongod (page 971) and mongos (page 981) daemons from the latest stable release
and associated configuration and init scripts. Additionally, you can use this package to install daemons from a
previous release (page 4) of MongoDB.

• mongo-10gen

This package contains all MongoDB tools from the latest stable release. Additionally, you can use this package
to install tools from a previous release (page 4) of MongoDB. Install this package on all production MongoDB
hosts and optionally on other systems from which you may need to administer MongoDB systems.

1.1.3 Install MongoDB

Configure Package Management System (YUM)

Create a http://docs.mongodb.org/manual/etc/yum.repos.d/10gen.repo file to hold informa-
tion about your repository. If you are running a 64-bit system (recommended,) place the following configuration in
http://docs.mongodb.org/manual/etc/yum.repos.d/10gen.repo file:

[10gen]
name=10gen Repository
baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/x86_64
gpgcheck=0
enabled=1

If you are running a 32-bit system, which isn’t recommended for production deployments, place the following config-
uration in http://docs.mongodb.org/manual/etc/yum.repos.d/10gen.repo file:

[10gen]
name=10gen Repository
baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/i686
gpgcheck=0
enabled=1

Install Packages

Issue the following command (as root or with sudo) to install the latest stable version of MongoDB and the associ-
ated tools:

yum install mongo-10gen mongo-10gen-server

When this command completes, you have successfully installed MongoDB!

Manage Installed Versions

You can use the mongo-10gen and mongo-10gen-server packages to install previous releases of MongoDB.
To install a specific release, append the version number, as in the following example:

yum install mongo-10gen-2.2.3 mongo-10gen-server-2.2.3

This installs the mongo-10gen and mongo-10gen-server packages with the 2.2.3 release. You can specify
any available version of MongoDB; however yum will upgrade the mongo-10gen and mongo-10gen-server
packages when a newer version becomes available. Use the following pinning procedure to prevent unintended up-
grades.

To pin a package, add the following line to your http://docs.mongodb.org/manual/etc/yum.conf file:

4 Chapter 1. Installation Guides

MongoDB Documentation, Release 2.4.2

exclude=mongo-10gen,mongo-10gen-server

1.1.4 Configure MongoDB

These packages configure MongoDB using the http://docs.mongodb.org/manual/etc/mongod.conf
file in conjunction with the control script. You can find the init script at
http://docs.mongodb.org/manual/etc/rc.d/init.d/mongod.

This MongoDB instance will store its data files in the http://docs.mongodb.org/manual/var/lib/mongo
and its log files in http://docs.mongodb.org/manual/var/log/mongo, and run using the mongod user
account.

Note: If you change the user that runs the MongoDB process, you will need to modify
the access control rights to the http://docs.mongodb.org/manual/var/lib/mongo and
http://docs.mongodb.org/manual/var/log/mongo directories.

1.1.5 Control MongoDB

Warning: With the introduction of systemd in Fedora 15, the control scripts included in the packages available
in the 10gen repository are not compatible with Fedora systems. A correction is forthcoming, see SERVER-7285
for more information, and in the mean time use your own control scripts or install using the procedure outlined in
Install MongoDB on Linux (page 12).

Start MongoDB

Start the mongod (page 971) process by issuing the following command (as root, or with sudo):

service mongod start

You can verify that the mongod (page 971) process has started successfully by checking the contents of the log file at
http://docs.mongodb.org/manual/var/log/mongo/mongod.log.

You may optionally, ensure that MongoDB will start following a system reboot, by issuing the following command
(with root privileges:)

chkconfig mongod on

Stop MongoDB

Stop the mongod (page 971) process by issuing the following command (as root, or with sudo):

service mongod stop

Restart MongoDB

You can restart the mongod (page 971) process by issuing the following command (as root, or with sudo):

service mongod restart

1.1. Install MongoDB on Red Hat Enterprise, CentOS, or Fedora Linux 5

https://jira.mongodb.org/browse/SERVER-7285

MongoDB Documentation, Release 2.4.2

Follow the state of this process by watching the output in the http://docs.mongodb.org/manual/var/log/mongo/mongod.log
file to watch for errors or important messages from the server.

Control mongos

As of the current release, there are no control scripts for mongos (page 981). mongos (page 981) is only used in
sharding deployments and typically do not run on the same systems where mongod (page 971) runs. You can use the
mongodb script referenced above to derive your own mongos (page 981) control script.

SELinux Considerations

You must SELinux to allow MongoDB to start on Fedora systems. Administrators have two options:

• enable access to the relevant ports (e.g. 27017) for SELinux. See Interfaces and Port Numbers (page 126) for
more information on MongoDB’s default ports.

• disable SELinux entirely. This requires a system reboot and may have larger implications for your deployment.

1.1.6 Using MongoDB

Among the tools included in the mongo-10gen package, is the mongo (page 984) shell. You can connect to your
MongoDB instance by issuing the following command at the system prompt:

mongo

This will connect to the database running on the localhost interface by default. At the mongo (page 984) prompt, issue
the following two commands to insert a record in the “test” collection of the (default) “test” database and then retrieve
that document.

> db.test.save({ a: 1 })
> db.test.find()

See Also:

“mongo (page 984)” and “mongo Shell JavaScript Quick Reference (page 881)“

1.2 Install MongoDB on Ubuntu

1.2.1 Synopsis

This tutorial outlines the basic installation process for installing MongoDB on Ubuntu Linux systems. This tutorial
uses .deb packages as the basis of the installation. 10gen publishes packages of the MongoDB releases as .deb
packages for easy installation and management for users of Ubuntu systems. Although Ubuntu does include MongoDB
packages, the 10gen packages are generally more up to date.

This tutorial includes: an overview of the available packages, instructions for configuring the package manager, the
process for installing packages from the 10gen repository, and preliminary MongoDB configuration and operation.

Note: If you use an older Ubuntu that does not use Upstart, (i.e. any version before 9.10 “Karmic”) please follow the
instructions on the Install MongoDB on Debian (page 9) tutorial.

See Also:

6 Chapter 1. Installation Guides

MongoDB Documentation, Release 2.4.2

Additional installation tutorials:

• Install MongoDB on Red Hat Enterprise, CentOS, or Fedora Linux (page 3)

• Install MongoDB on Debian (page 9)

• Install MongoDB on Linux (page 12)

• Install MongoDB on OS X (page 13)

• Install MongoDB on Windows (page 16)

1.2.2 Package Options

The 10gen repository provides the mongodb-10gen package, which contains the latest stable release. Additionally
you can install previous releases (page 7) of MongoDB.

You cannot install this package concurrently with the mongodb, mongodb-server, or mongodb-clients pack-
ages provided by Ubuntu.

1.2.3 Install MongoDB

Configure Package Management System (APT)

The Ubuntu package management tool (i.e. dpkg and apt) ensure package consistency and authenticity by requiring
that distributors sign packages with GPG keys. Issue the following command to import the 10gen public GPG Key:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv 7F0CEB10

Create a http://docs.mongodb.org/manual/etc/apt/sources.list.d/10gen.list file and in-
clude the following line for the 10gen repository.

deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist 10gen

Now issue the following command to reload your repository:

sudo apt-get update

Manage Installed Versions

You can use the mongodb-10gen package to install previous versions of MongoDB. To install a specific release,
append the version number to the package name, as in the following example:

apt-get install mongodb-10gen=2.2.3

This will install the 2.2.3 release of MongoDB. You can specify any available version of MongoDB; however
apt-get will upgrade the mongodb-10gen package when a newer version becomes available. Use the following
pinning procedure to prevent unintended upgrades.

To pin a package, issue the following command at the system prompt to pin the version of MongoDB at the currently
installed version:

echo "mongodb-10gen hold" | dpkg --set-selections

1.2. Install MongoDB on Ubuntu 7

http://docs.mongodb.org/10gen-gpg-key.asc

MongoDB Documentation, Release 2.4.2

Install Packages

Issue the following command to install the latest stable version of MongoDB:

sudo apt-get install mongodb-10gen

When this command completes, you have successfully installed MongoDB! Continue for configuration and start-up
suggestions.

1.2.4 Configure MongoDB

These packages configure MongoDB using the http://docs.mongodb.org/manual/etc/mongodb.conf
file in conjunction with the control script. You will find the control script is at
http://docs.mongodb.org/manual/etc/init.d/mongodb.

This MongoDB instance will store its data files in the http://docs.mongodb.org/manual/var/lib/mongodb
and its log files in http://docs.mongodb.org/manual/var/log/mongodb, and run using the mongodb
user account.

Note: If you change the user that runs the MongoDB process, you will need to modify the
access control rights to the http://docs.mongodb.org/manual/var/lib/mongodb and
http://docs.mongodb.org/manual/var/log/mongodb directories.

1.2.5 Controlling MongoDB

Starting MongoDB

You can start the mongod (page 971) process by issuing the following command:

sudo service mongodb start

You can verify that mongod (page 971) has started successfully by checking the contents of the log file at
http://docs.mongodb.org/manual/var/log/mongodb/mongodb.log.

Stopping MongoDB

As needed, you may stop the mongod (page 971) process by issuing the following command:

sudo service mongodb stop

Restarting MongoDB

You may restart the mongod (page 971) process by issuing the following command:

sudo service mongodb restart

Controlling mongos

As of the current release, there are no control scripts for mongos (page 981). mongos (page 981) is only used in
sharding deployments and typically do not run on the same systems where mongod (page 971) runs. You can use the
mongodb script referenced above to derive your own mongos (page 981) control script.

8 Chapter 1. Installation Guides

MongoDB Documentation, Release 2.4.2

1.2.6 Using MongoDB

Among the tools included with the MongoDB package, is the mongo (page 984) shell. You can connect to your
MongoDB instance by issuing the following command at the system prompt:

mongo

This will connect to the database running on the localhost interface by default. At the mongo (page 984) prompt, issue
the following two commands to insert a record in the “test” collection of the (default) “test” database.

> db.test.save({ a: 1 })
> db.test.find()

See Also:

“mongo (page 984)” and “mongo Shell JavaScript Quick Reference (page 881)“

1.3 Install MongoDB on Debian

1.3.1 Synopsis

This tutorial outlines the basic installation process for installing MongoDB on Debian systems. This tutorial uses
.deb packages as the basis of the installation. 10gen publishes packages of the MongoDB releases as .deb packages
for easy installation and management for users of Debian systems. While some of these distributions include their
own MongoDB packages, the 10gen packages are generally more up to date.

This tutorial includes: an overview of the available packages, instructions for configuring the package manager, the
process for installing packages from the 10gen repository, and preliminary MongoDB configuration and operation.

Note: This tutorial applies to both Debian systems and versions of Ubuntu Linux prior to 9.10 “Karmic” which do
not use Upstart. Other Ubuntu users will want to follow the Install MongoDB on Ubuntu (page 6) tutorial.

See Also:

Additional installation tutorials:

• Install MongoDB on Red Hat Enterprise, CentOS, or Fedora Linux (page 3)

• Install MongoDB on Ubuntu (page 6)

• Install MongoDB on Linux (page 12)

• Install MongoDB on OS X (page 13)

• Install MongoDB on Windows (page 16)

1.3.2 Package Options

The 10gen repository provides the mongodb-10gen package, which contains the latest stable release. Additionally
you can install previous releases (page 10) of MongoDB.

You cannot install this package concurrently with the mongodb, mongodb-server, or mongodb-clients pack-
ages that your release of Debian may include.

1.3. Install MongoDB on Debian 9

MongoDB Documentation, Release 2.4.2

1.3.3 Install MongoDB

Configure Package Management System (APT)

The Debian package management tool (i.e. dpkg and apt) ensure package consistency and authenticity by requiring
that distributors sign packages with GPG keys. Issue the following command to import the 10gen public GPG Key:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv 7F0CEB10

Create a the http://docs.mongodb.org/manual/etc/apt/sources.list.d/10gen.list file and
include the following line for the 10gen repository.

deb http://downloads-distro.mongodb.org/repo/debian-sysvinit dist 10gen

Now issue the following command to reload your repository:

sudo apt-get update

Install Packages

Issue the following command to install the latest stable version of MongoDB:

sudo apt-get install mongodb-10gen

When this command completes, you have successfully installed MongoDB!

Manage Installed Versions

You can use the mongodb-10gen package to install previous versions of MongoDB. To install a specific release,
append the version number to the package name, as in the following example:

apt-get install mongodb-10gen=2.2.3

This will install the 2.2.3 release of MongoDB. You can specify any available version of MongoDB; however
apt-get will upgrade the mongodb-10gen package when a newer version becomes available. Use the following
pinning procedure to prevent unintended upgrades.

To pin a package, issue the following command at the system prompt to pin the version of MongoDB at the currently
installed version:

echo "mongodb-10gen hold" | dpkg --set-selections

1.3.4 Configure MongoDB

These packages configure MongoDB using the http://docs.mongodb.org/manual/etc/mongodb.conf
file in conjunction with the control script. You can find the control script at
http://docs.mongodb.org/manual/etc/init.d/mongodb.

This MongoDB instance will store its data files in the http://docs.mongodb.org/manual/var/lib/mongodb
and its log files in http://docs.mongodb.org/manual/var/log/mongodb, and run using the mongodb
user account.

Note: If you change the user that runs the MongoDB process, you will need to modify the
access control rights to the http://docs.mongodb.org/manual/var/lib/mongodb and
http://docs.mongodb.org/manual/var/log/mongodb directories.

10 Chapter 1. Installation Guides

http://docs.mongodb.org/10gen-gpg-key.asc

MongoDB Documentation, Release 2.4.2

1.3.5 Controlling MongoDB

Starting MongoDB

Issue the following command to start mongod (page 971):

sudo /etc/init.d/mongodb start

You can verify that mongod (page 971) has started successfully by checking the contents of the log file at
http://docs.mongodb.org/manual/var/log/mongodb/mongodb.log.

Stopping MongoDB

Issue the following command to stop mongod (page 971):

sudo /etc/init.d/mongodb stop

Restarting MongoDB

Issue the following command to restart mongod (page 971):

sudo /etc/init.d/mongodb restart

Controlling mongos

As of the current release, there are no control scripts for mongos (page 981). mongos (page 981) is only used in
sharding deployments and typically do not run on the same systems where mongod (page 971) runs. You can use the
mongodb script referenced above to derive your own mongos (page 981) control script.

1.3.6 Using MongoDB

Among the tools included with the MongoDB package, is the mongo (page 984) shell. You can connect to your
MongoDB instance by issuing the following command at the system prompt:

mongo

This will connect to the database running on the localhost interface by default. At the mongo (page 984) prompt, issue
the following two commands to insert a record in the “test” collection of the (default) “test” database.

> db.test.save({ a: 1 })
> db.test.find()

See Also:

“mongo (page 984)” and “mongo Shell JavaScript Quick Reference (page 881)“

1.3. Install MongoDB on Debian 11

MongoDB Documentation, Release 2.4.2

1.4 Install MongoDB on Linux

1.4.1 Synopsis

10gen provides compiled versions of MongoDB for use on Linux that provides a simple option for users who cannot
use packages. This tutorial outlines the basic installation of MongoDB using these compiled versions and an initial
usage guide.

See Also:

Additional installation tutorials:

• Install MongoDB on Red Hat Enterprise, CentOS, or Fedora Linux (page 3)

• Install MongoDB on Ubuntu (page 6)

• Install MongoDB on Debian (page 9)

• Install MongoDB on OS X (page 13)

• Install MongoDB on Windows (page 16)

1.4.2 Download MongoDB

Note: You should place the MongoDB binaries in a central location on the file system
that is easy to access and control. Consider http://docs.mongodb.org/manual/opt or
http://docs.mongodb.org/manual/usr/local/bin.

In a terminal session, begin by downloading the latest release. In most cases you will want to download the 64-bit
version of MongoDB.

curl http://downloads.mongodb.org/linux/mongodb-linux-x86_64-2.4.2.tgz > mongodb.tgz

If you need to run the 32-bit version, use the following command.

curl http://downloads.mongodb.org/linux/mongodb-linux-i686-2.4.2.tgz > mongodb.tgz

Once you’ve downloaded the release, issue the following command to extract the files from the archive:

tar -zxvf mongodb.tgz

Optional

You may use the following command to copy the extracted folder into a more generic location.

cp -R -n mongodb-linux-????-??-??/ mongodb

You can find the mongod (page 971) binary, and the binaries all of the associated MongoDB utilities, in the bin/
directory within the extracted directory.

Using MongoDB

Before you start mongod (page 971) for the first time, you will need to create the data directory. By default, mongod
(page 971) writes data to the http://docs.mongodb.org/manual/data/db/ directory. To create this di-
rectory, use the following command:

12 Chapter 1. Installation Guides

MongoDB Documentation, Release 2.4.2

mkdir -p /data/db

Note: Ensure that the system account that will run the mongod (page 971) process has read and write permissions to
this directory. If mongod (page 971) runs under the mongo user account, issue the following command to change the
owner of this folder:

chown mongo /data/db

If you use an alternate location for your data directory, ensure that this user can write to your chosen data path.

You can specify, and create, an alternate path using the --dbpath (page 973) option to mongod (page 971) and the
above command.

The 10gen builds of MongoDB contain no control scripts or method to control the mongod (page 971)
process. You may wish to create control scripts, modify your path, and/or create symbolic links
to the MongoDB programs in your http://docs.mongodb.org/manual/usr/local/bin or
http://docs.mongodb.org/manual/usr/bin directory for easier use.

For testing purposes, you can start a mongod (page 971) directly in the terminal without creating a control script:

mongod --config /etc/mongod.conf

Note: The above command assumes that the mongod (page 971) binary is accessible via
your system’s search path, and that you have created a default configuration file located at
http://docs.mongodb.org/manual/etc/mongod.conf.

Among the tools included with this MongoDB distribution, is the mongo (page 984) shell. You can use this shell to
connect to your MongoDB instance by issuing the following command at the system prompt:

./bin/mongo

Note: The ./bin/mongo command assumes that the mongo (page 984) binary is in the bin/ sub-directory of the
current directory. This is the directory into which you extracted the .tgz file.

This will connect to the database running on the localhost interface by default. At the mongo (page 984) prompt, issue
the following two commands to insert a record in the “test” collection of the (default) “test” database and then retrieve
that record:

> db.test.save({ a: 1 })
> db.test.find()

See Also:

“mongo (page 984)” and “mongo Shell JavaScript Quick Reference (page 881)“

1.5 Install MongoDB on OS X

Platform Support

MongoDB only supports OS X versions 10.6 (Snow Leopard) and later. Changed in version 2.4.

1.5. Install MongoDB on OS X 13

MongoDB Documentation, Release 2.4.2

1.5.1 Synopsis

This tutorial outlines the basic installation process for deploying MongoDB on Macintosh OS X systems. This tutorial
provides two main methods of installing the MongoDB server (i.e. “mongod (page 971)”) and associated tools: first
using the community package management tools, and second using builds of MongoDB provided by 10gen.

See Also:

Additional installation tutorials:

• Install MongoDB on Red Hat Enterprise, CentOS, or Fedora Linux (page 3)

• Install MongoDB on Ubuntu (page 6)

• Install MongoDB on Debian (page 9)

• Install MongoDB on Linux (page 12)

• Install MongoDB on Windows (page 16)

1.5.2 Install with Package Management

Both community package management tools: Homebrew and MacPorts require some initial setup and configuration.
This configuration is beyond the scope of this document. You only need to use one of these tools.

If you want to use package management, and do not already have a system installed, Homebrew is typically easier and
simpler to use.

Homebrew

Homebrew installs binary packages based on published “formula.” Issue the following command at the system shell
to update the brew package manager:

brew update

Use the following command to install the MongoDB package into your Homebrew system.

brew install mongodb

Later, if you need to upgrade MongoDB, you can issue the following sequence of commands to update the MongoDB
installation on your system:

brew update
brew upgrade mongodb

MacPorts

MacPorts distributes build scripts that allow you to easily build packages and their dependencies on your own system.
The compilation process can take significant period of time depending on your system’s capabilities and existing
dependencies. Issue the following command in the system shell:

port install mongodb

14 Chapter 1. Installation Guides

http://mxcl.github.com/homebrew/
http://www.macports.org/

MongoDB Documentation, Release 2.4.2

Using MongoDB from Homebrew and MacPorts

The packages installed with Homebrew and MacPorts contain no control scripts or interaction with the system’s
process manager.

If you have configured Homebrew and MacPorts correctly, including setting your PATH, the MongoDB applications
and utilities will be accessible from the system shell. Start the mongod (page 971) process in a terminal (for testing
or development) or using a process management tool.

mongod

Then open the mongo (page 984) shell by issuing the following command at the system prompt:

mongo

This will connect to the database running on the localhost interface by default. At the mongo (page 984) prompt, issue
the following two commands to insert a record in the “test” collection of the (default) “test” database and then retrieve
that record.

> db.test.save({ a: 1 })
> db.test.find()

See Also:

“mongo (page 984)” and “mongo Shell JavaScript Quick Reference (page 881)“

1.5.3 Install from 10gen Builds

10gen provides compiled binaries of all MongoDB software compiled for OS X, which may provide a more straight-
forward installation process.

Download MongoDB

In a terminal session, begin by downloading the latest release. Use the following command at the system prompt:

curl http://downloads.mongodb.org/osx/mongodb-osx-x86_64-2.4.2.tgz > mongodb.tgz

Note: The mongod (page 971) process will not run on older Macintosh computers with PowerPC (i.e. non-Intel)
processors.

Once you’ve downloaded the release, issue the following command to extract the files from the archive:

tar -zxvf mongodb.tgz

Optional

You may use the following command to move the extracted folder into a more generic location.

mv -n mongodb-osx-[platform]-[version]/ /path/to/new/location/

Replace [platform] with i386 or x86_64 depending on your system and the version you downloaded, and
[version] with 2.4 or the version of MongoDB that you are installing.

You can find the mongod (page 971) binary, and the binaries all of the associated MongoDB utilities, in the bin/
directory within the archive.

1.5. Install MongoDB on OS X 15

MongoDB Documentation, Release 2.4.2

Using MongoDB from 10gen Builds

Before you start mongod (page 971) for the first time, you will need to create the data directory. By default, mongod
(page 971) writes data to the http://docs.mongodb.org/manual/data/db/ directory. To create this di-
rectory, and set the appropriate permissions use the following commands:

sudo mkdir -p /data/db
sudo chown ‘id -u‘ /data/db

You can specify an alternate path for data files using the --dbpath (page 973) option to mongod (page 971).

The 10gen builds of MongoDB contain no control scripts or method to control the mongod (page 971) process. You
may wish to create control scripts, modify your path, and/or create symbolic links to the MongoDB programs in your
http://docs.mongodb.org/manual/usr/local/bin directory for easier use.

For testing purposes, you can start a mongod (page 971) directly in the terminal without creating a control script:

mongod --config /etc/mongod.conf

Note: This command assumes that the mongod (page 971) binary is accessible via
your system’s search path, and that you have created a default configuration file located at
http://docs.mongodb.org/manual/etc/mongod.conf.

Among the tools included with this MongoDB distribution, is the mongo (page 984) shell. You can use this shell
to connect to your MongoDB instance by issuing the following command at the system prompt from inside of the
directory where you extracted mongo (page 984):

./bin/mongo

Note: The ./bin/mongo command assumes that the mongo (page 984) binary is in the bin/ sub-directory of the
current directory. This is the directory into which you extracted the .tgz file.

This will connect to the database running on the localhost interface by default. At the mongo (page 984) prompt, issue
the following two commands to insert a record in the “test” collection of the (default) “test” database and then retrieve
that record:

> db.test.save({ a: 1 })
> db.test.find()

See Also:

“mongo (page 984)” and “mongo Shell JavaScript Quick Reference (page 881)“

1.6 Install MongoDB on Windows

1.6.1 Synopsis

This tutorial provides a method for installing and running the MongoDB server (i.e. “mongod.exe (page 989)”) on
the Microsoft Windows platform through the Command Prompt and outlines the process for setting up MongoDB as
a Windows Service.

Operating MongoDB with Windows is similar to MongoDB on other platforms. Most components share the same
operational patterns.

16 Chapter 1. Installation Guides

MongoDB Documentation, Release 2.4.2

1.6.2 Procedure

Download MongoDB for Windows

Download the latest production release of MongoDB from the MongoDB downloads page.

There are three builds of MongoDB for Windows:

• MongoDB for Windows Server 2008 R2 edition (i.e. 2008R2) only runs on Windows Server 2008 R2, Windows
7 64-bit, and newer versions of Windows. This build takes advantage of recent enhancements to the Windows
Platform and cannot operate on older versions of Windows.

• MongoDB for Windows 64-bit runs on any 64-bit version of Windows newer than Windows XP, including
Windows Server 2008 R2 and Windows 7 64-bit.

• MongoDB for Windows 32-bit runs on any 32-bit version of Windows newer than Windows XP. 32-bit versions
of MongoDB are only intended for older systems and for use in testing and development systems.

Changed in version 2.2: MongoDB does not support Windows XP. Please use a more recent version of Windows to
use more recent releases of MongoDB.

Note: Always download the correct version of MongoDB for your Windows system. The 64-bit versions of Mon-
goDB will not work with 32-bit Windows.

32-bit versions of MongoDB are suitable only for testing and evaluation purposes and only support databases smaller
than 2GB.

You can find the architecture of your version of Windows platform using the following command in the Command
Prompt:

wmic os get osarchitecture

In Windows Explorer, find the MongoDB download file, typically in the default Downloads directory. Extract the
archive to C:\ by right clicking on the archive and selecting Extract All and browsing to C:\.

Note: The folder name will be either:

C:\mongodb-win32-i386-[version]

Or:

C:\mongodb-win32-x86_64-[version]

In both examples, replace [version] with the version of MongoDB downloaded.

Set up the Environment

Start the Command Prompt by selecting the Start Menu, then All Programs, then Accessories, then right click Com-
mand Prompt, and select Run as Administrator from the popup menu. In the Command Prompt, issue the following
commands:

cd \
move C:\mongodb-win32-* C:\mongodb

Note: MongoDB is self-contained and does not have any other system dependencies. You can run MongoDB from
any folder you choose. You may install MongoDB in any directory (e.g. D:\test\mongodb)

1.6. Install MongoDB on Windows 17

http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.4.2

MongoDB requires a data folder to store its files. The default location for the MongoDB data directory is
C:\data\db. Create this folder using the Command Prompt. Issue the following command sequence:

md data
md data\db

Note: You may specify an alternate path for \data\db with the dbpath (page 1029) setting for mongod.exe
(page 989), as in the following example:

C:\mongodb\bin\mongod.exe --dbpath d:\test\mongodb\data

If your path includes spaces, enclose the entire path in double quotations, for example:

C:\mongodb\bin\mongod.exe --dbpath "d:\test\mongo db data"

Start MongoDB

To start MongoDB, execute from the Command Prompt:

C:\mongodb\bin\mongod.exe

This will start the main MongoDB database process. The waiting for connections message in the console
output indicates that the mongod.exe process is running successfully.

Note: Depending on the security level of your system, Windows will issue a Security Alert dialog box about blocking
“some features” of C:\\mongodb\bin\mongod.exe from communicating on networks. All users should select
Private Networks, such as my home or work network and click Allow access. For additional
information on security and MongoDB, please read the Security Practices and Management (page 125) page.

Warning: Do not allow mongod.exe (page 989) to be accessible to public networks without running in “Secure
Mode” (i.e. auth (page 1029).) MongoDB is designed to be run in “trusted environments” and the database does
not enable authentication or “Secure Mode” by default.

Connect to MongoDB using the mongo.exe (page 984) shell. Open another Command Prompt and issue the follow-
ing command:

C:\mongodb\bin\mongo.exe

Note: Executing the command start C:\mongodb\bin\mongo.exewill automatically start the mongo.exe
shell in a separate Command Prompt window.

The mongo.exe (page 984) shell will connect to mongod.exe (page 989) running on the localhost interface and
port 27017 by default. At the mongo.exe (page 984) prompt, issue the following two commands to insert a record
in the test collection of the default test database and then retrieve that record:

> db.test.save({ a: 1 })
> db.test.find()

See Also:

“mongo (page 984)” and “mongo Shell JavaScript Quick Reference (page 881).” If you want to develop applications
using .NET, see the documentation of C# and MongoDB for more information.

18 Chapter 1. Installation Guides

http://docs.mongodb.org/ecosystem/drivers/csharp

MongoDB Documentation, Release 2.4.2

1.6.3 MongoDB as a Windows Service

New in version 2.0. Setup MongoDB as a Windows Service, so that the database will start automatically following
each reboot cycle.

Note: mongod.exe (page 989) added support for running as a Windows service in version 2.0, and mongos.exe
(page 991) added support for running as a Windows Service in version 2.1.1.

Configure the System

You should specify two options when running MongoDB as a Windows Service: a path for the log output (i.e.
logpath (page 1028)) and a configuration file (page 1026).

1. Create a specific directory for MongoDB log files:

md C:\mongodb\log

2. Create a configuration file for the logpath (page 1028) option for MongoDB in the Command Prompt by
issuing this command:

echo logpath=C:\mongodb\log\mongo.log > C:\mongodb\mongod.cfg

While these optional steps are optional, creating a specific location for log files and using the configuration file are
good practice.

Note: Consider setting the logappend (page 1028) option. If you do not, mongod.exe (page 989) will delete
the contents of the existing log file when starting. Changed in version 2.2: The default logpath (page 1028) and
logappend (page 1028) behavior changed in the 2.2 release.

Install and Run the MongoDB Service

Run all of the following commands in Command Prompt with “Administrative Privileges:”

1. To install the MongoDB service:

C:\mongodb\bin\mongod.exe --config C:\mongodb\mongod.cfg --install

Modify the path to the mongod.cfg file as needed. For the --install (page 989) option to succeed, you
must specify a logpath (page 1028) setting or the --logpath (page 972) run-time option.

2. To run the MongoDB service:

net start MongoDB

Note: If you wish to use an alternate path for your dbpath (page 1029) specify it in the config file (e.g.
C:\mongodb\mongod.cfg) on that you specified in the --install (page 989) operation. You may also specify
--dbpath (page 973) on the command line; however, always prefer the configuration file.

If the dbpath (page 1029) directory does not exist, mongod.exe (page 989) will not be able to start. The default
value for dbpath (page 1029) is \data\db.

1.6. Install MongoDB on Windows 19

MongoDB Documentation, Release 2.4.2

Stop or Remove the MongoDB Service

• To stop the MongoDB service:

net stop MongoDB

• To remove the MongoDB service:

C:\mongodb\bin\mongod.exe --remove

1.7 Install MongoDB Enterprise

New in version 2.2. MongoDB Enterprise is available on four platforms and contains support for several features
related to security and monitoring.

1.7.1 Required Packages

Changed in version 2.4: MongoDB Enterprise requires libgsasl. To use MongoDB Enterprise, you must install
several prerequisites. The names of the packages vary by distribution and are as follows:

• Ubuntu 12.04 and 11.04 require libssl0.9.8, libgsasl, snmp, and snmpd. Issue a command such as
the following to install these packages:

sudo apt-get install libssl0.9.8 libgsasl7 snmp snmpd

• Red Hat Enterprise Linux 6.x series and Amazon Linux AMI require libssl, libgsasl7, net-snmp,
net-snmp-libs, and net-snmp-utils. To download libgsasl you must enable the EPEL repository
by issuing the following sequence of commands to add and update the system repositories:

sudo rpm -ivh http://download.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm

sudo yum update -y

When you have installed and updated the EPEL repositories, issue the following install these packages:

sudo yum install libssl net-snmp net-snmp-libs net-snmp-utils libgsasl

• SUSE Enterprise Linux requires libopenssl0_9_8, libsnmp15, slessp1-libsnmp15, and
snmp-mibs. Issue a command such as the following to install these packages:

sudo zypper install libopenssl0_9_8 libsnmp15 slessp1-libsnmp15 snmp-mibs

Note: For the 2.4 release, the MongoDB Enterprise for SUSE requires libgsasl which is not available in the
default repositories for SUSE.

1.7.2 Install MongoDB Enterprise Binaries

When you have installed the required packages, and downloaded the Enterprise packages you can install the packages
using the same procedure as a standard installation of MongoDB on Linux Systems (page 12).

After you have installed MongoDB, consider the following documents as you begin to learn about MongoDB:

20 Chapter 1. Installation Guides

http://www.10gen.com/products/mongodb-enterprise
http://www.gnu.org/software/gsasl/
http://www.10gen.com/products/mongodb-enterprise

MongoDB Documentation, Release 2.4.2

1.8 Getting Started with MongoDB

This tutorial provides an introduction to basic database operations using the mongo (page 984) shell. mongo
(page 984) is a part of the standard MongoDB distribution and provides a full JavaScript environment with a complete
access to the JavaScript language and all standard functions as well as a full database interface for MongoDB. See the
mongo JavaScript API documentation and the mongo (page 984) shell JavaScript Method Reference (page 881).

The tutorial assumes that you’re running MongoDB on a Linux or OS X operating system and that you have a running
database server; MongoDB does support Windows and provides a Windows distribution with identical operation. For
instructions on installing MongoDB and starting the database server see the appropriate installation (page 3) document.

This tutorial addresses the following aspects of MongoDB use:

• Connect to a Database (page 21)
– Connect to a mongod (page 971) (page 21)
– Select a Database (page 21)
– Display mongo Help (page 22)

• Create a Collection and Insert Documents (page 22)
– Insert Individual Documents (page 22)
– Insert Multiple Documents Using a For Loop (page 23)

• Working with the Cursor (page 24)
– Iterate over the Cursor with a Loop (page 24)
– Use Array Operations with the Cursor (page 25)
– Query for Specific Documents (page 25)
– Return a Single Document from a Collection (page 26)
– Limit the Number of Documents in the Result Set (page 27)

• Next Steps with MongoDB (page 27)

1.8.1 Connect to a Database

In this section you connect to the database server, which runs as mongod (page 971), and begin using the mongo
(page 984) shell to select a logical database within the database instance and access the help text in the mongo
(page 984) shell.

Connect to a mongod

From a system prompt, start mongo (page 984) by issuing the mongo (page 984) command, as follows:

mongo

By default, mongo (page 984) looks for a database server listening on port 27017 on the localhost interface. To
connect to a server on a different port or interface, use the --port (page 985) and --host (page 985) options.

Select a Database

After starting the mongo (page 984) shell your session will use the test database for context, by default. At any
time issue the following operation at the mongo (page 984) to report the current database:

db

db returns the name of the current database.

1.8. Getting Started with MongoDB 21

http://api.mongodb.org/js

MongoDB Documentation, Release 2.4.2

1. From the mongo (page 984) shell, display the list of databases with the following operation:

show dbs

2. Switch to a new database named mydb with the following operation:

use mydb

3. Confirm that your session has the mydb database as context, using the db operation, which returns the name of
the current database as follows:

db

At this point, if you issue the show dbs operation again, it will not include mydb, because MongoDB will not create
a database until you insert data into that database. The Create a Collection and Insert Documents (page 22) section
describes the process for inserting data. New in version 2.4: show databases also returns a list of databases.

Display mongo Help

At any point you can access help for the mongo (page 984) shell using the following operation:

help

Furthermore, you can append the .help() method to some JavaScript methods, any cursor object, as well as the db
and db.collection objects to return additional help information.

1.8.2 Create a Collection and Insert Documents

In this section, you insert documents into a new collection named things within the new database named mydb.

MongoDB will create collections and databases implicitly upon their first use: you do not need to create the database
or collection before inserting data. Furthermore, because MongoDB uses dynamic schemas (page 684), you do not
need to specify the structure of your documents before inserting them into the collection.

Insert Individual Documents

1. From the mongo (page 984) shell, confirm that the current context is the mydb database with the following
operation:

db

2. If mongo (page 984) does not return mydb for the previous operation, set the context to the mydb database
with the following operation:

use mydb

3. Create two documents, named j and k, with the following sequence of JavaScript operations:

j = { name : "mongo" }
k = { x : 3 }

4. Insert the j and k documents into the collection things with the following sequence of operations:

db.things.insert(j)
db.things.insert(k)

When you insert the first document, the mongod (page 971) will create both the mydb database and the things
collection.

22 Chapter 1. Installation Guides

MongoDB Documentation, Release 2.4.2

5. Confirm that the collection named things exists using the following operation:

show collections

The mongo (page 984) shell will return the list of the collections in the current (i.e. mydb) database. At
this point, the only collection is things. All mongod (page 971) databases also have a system.indexes
(page 1101) collection.

6. Confirm that the documents exist in the collection things by issuing query on the things collection. Using
the find() (page 910) method in an operation that resembles the following:

db.things.find()

This operation returns the following results. The ObjectId (page 188) values will be unique:

{ "_id" : ObjectId("4c2209f9f3924d31102bd84a"), "name" : "mongo" }
{ "_id" : ObjectId("4c2209fef3924d31102bd84b"), "x" : 3 }

All MongoDB documents must have an _id field with a unique value. These operations do not explicitly
specify a value for the _id field, so mongo (page 984) creates a unique ObjectId (page 188) value for the field
before inserting it into the collection.

Insert Multiple Documents Using a For Loop

1. From the mongo (page 984) shell, add more documents to the things collection using the following for
loop:

for (var i = 1; i <= 20; i++) db.things.insert({ x : 4 , j : i })

2. Query the collection by issuing the following command:

db.things.find()

The mongo (page 984) shell displays the first 20 documents in the collection. Your ObjectId (page 188) values
will be different:

{ "_id" : ObjectId("4c2209f9f3924d31102bd84a"), "name" : "mongo" }
{ "_id" : ObjectId("4c2209fef3924d31102bd84b"), "x" : 3 }
{ "_id" : ObjectId("4c220a42f3924d31102bd856"), "x" : 4, "j" : 1 }
{ "_id" : ObjectId("4c220a42f3924d31102bd857"), "x" : 4, "j" : 2 }
{ "_id" : ObjectId("4c220a42f3924d31102bd858"), "x" : 4, "j" : 3 }
{ "_id" : ObjectId("4c220a42f3924d31102bd859"), "x" : 4, "j" : 4 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85a"), "x" : 4, "j" : 5 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85b"), "x" : 4, "j" : 6 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85c"), "x" : 4, "j" : 7 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85d"), "x" : 4, "j" : 8 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85e"), "x" : 4, "j" : 9 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85f"), "x" : 4, "j" : 10 }
{ "_id" : ObjectId("4c220a42f3924d31102bd860"), "x" : 4, "j" : 11 }
{ "_id" : ObjectId("4c220a42f3924d31102bd861"), "x" : 4, "j" : 12 }
{ "_id" : ObjectId("4c220a42f3924d31102bd862"), "x" : 4, "j" : 13 }
{ "_id" : ObjectId("4c220a42f3924d31102bd863"), "x" : 4, "j" : 14 }
{ "_id" : ObjectId("4c220a42f3924d31102bd864"), "x" : 4, "j" : 15 }
{ "_id" : ObjectId("4c220a42f3924d31102bd865"), "x" : 4, "j" : 16 }
{ "_id" : ObjectId("4c220a42f3924d31102bd866"), "x" : 4, "j" : 17 }
{ "_id" : ObjectId("4c220a42f3924d31102bd867"), "x" : 4, "j" : 18 }

1. The find() (page 910) returns a cursor. To iterate the cursor and return more documents use the it operation
in the mongo (page 984) shell. The mongo (page 984) shell will exhaust the cursor, and return the following
documents:

1.8. Getting Started with MongoDB 23

MongoDB Documentation, Release 2.4.2

{ "_id" : ObjectId("4c220a42f3924d31102bd868"), "x" : 4, "j" : 19 }
{ "_id" : ObjectId("4c220a42f3924d31102bd869"), "x" : 4, "j" : 20 }

For more information on inserting new documents, see the insert() (page 196) documentation.

1.8.3 Working with the Cursor

When you query a collection, MongoDB returns a “cursor” object that contains the results of the query. The mongo
(page 984) shell then iterates over the cursor to display the results. Rather than returning all results at once, the shell
iterates over the cursor 20 times to display the first 20 results and then waits for a request to iterate over the remaining
results. This prevents mongo (page 984) from displaying thousands or millions of results at once.

The it operation allows you to iterate over the next 20 results in the shell. In the previous procedure (page 23), the
cursor only contained two more documents, and so only two more documents displayed.

The procedures in this section show other ways to work with a cursor. For comprehensive documentation on cursors,
see Iterate the Returned Cursor (page 209).

Iterate over the Cursor with a Loop

1. In the MongoDB JavaScript shell, query the things collection and assign the resulting cursor object to the c
variable:

var c = db.things.find()

2. Print the full result set by using a while loop to iterate over the c variable:

while (c.hasNext()) printjson(c.next())

The hasNext() function returns true if the cursor has documents. The next() method returns the next
document. The printjson() method renders the document in a JSON-like format.

The result of this operation follows, although if the ObjectId (page 188) values will be unique:

{ "_id" : ObjectId("4c2209f9f3924d31102bd84a"), "name" : "mongo" }
{ "_id" : ObjectId("4c2209fef3924d31102bd84b"), "x" : 3 }
{ "_id" : ObjectId("4c220a42f3924d31102bd856"), "x" : 4, "j" : 1 }
{ "_id" : ObjectId("4c220a42f3924d31102bd857"), "x" : 4, "j" : 2 }
{ "_id" : ObjectId("4c220a42f3924d31102bd858"), "x" : 4, "j" : 3 }
{ "_id" : ObjectId("4c220a42f3924d31102bd859"), "x" : 4, "j" : 4 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85a"), "x" : 4, "j" : 5 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85b"), "x" : 4, "j" : 6 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85c"), "x" : 4, "j" : 7 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85d"), "x" : 4, "j" : 8 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85e"), "x" : 4, "j" : 9 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85f"), "x" : 4, "j" : 10 }
{ "_id" : ObjectId("4c220a42f3924d31102bd860"), "x" : 4, "j" : 11 }
{ "_id" : ObjectId("4c220a42f3924d31102bd861"), "x" : 4, "j" : 12 }
{ "_id" : ObjectId("4c220a42f3924d31102bd862"), "x" : 4, "j" : 13 }
{ "_id" : ObjectId("4c220a42f3924d31102bd863"), "x" : 4, "j" : 14 }
{ "_id" : ObjectId("4c220a42f3924d31102bd864"), "x" : 4, "j" : 15 }
{ "_id" : ObjectId("4c220a42f3924d31102bd865"), "x" : 4, "j" : 16 }
{ "_id" : ObjectId("4c220a42f3924d31102bd866"), "x" : 4, "j" : 17 }
{ "_id" : ObjectId("4c220a42f3924d31102bd867"), "x" : 4, "j" : 18 }
{ "_id" : ObjectId("4c220a42f3924d31102bd868"), "x" : 4, "j" : 19 }
{ "_id" : ObjectId("4c220a42f3924d31102bd869"), "x" : 4, "j" : 20 }

24 Chapter 1. Installation Guides

MongoDB Documentation, Release 2.4.2

Use Array Operations with the Cursor

You can manipulate a cursor object as if it were an array. Consider the following procedure:

1. In the mongo (page 984) shell, query the things collection and assign the resulting cursor object to the c
variable:

var c = db.things.find()

2. To find the document at the array index 4, use the following operation:

printjson(c [4])

MongoDB returns the following:

{ "_id" : ObjectId("4c220a42f3924d31102bd858"), "x" : 4, "j" : 3 }

When you access documents in a cursor using the array index notation, mongo (page 984) first calls the
cursor.toArray() method and loads into RAM all documents returned by the cursor. The index is then
applied to the resulting array. This operation iterates the cursor completely and exhausts the cursor.

For very large result sets, mongo (page 984) may run out of available memory.

For more information on the cursor, see Iterate the Returned Cursor (page 209).

Query for Specific Documents

MongoDB has a rich query system that allows you to select and filter the documents in a collection along specific
fields and values. See Query Document (page 162) and Read (page 203) for a full account of queries in MongoDB.

In this procedure, you query for specific documents in the things collection by passing a “query document” as a
parameter to the find() (page 910) method. A query document specifies the criteria the query must match to return
a document.

To query for specific documents, do the following:

1. In the mongo (page 984) shell, query for all documents where the name field has a value of mongo by passing
the { name : "mongo" } query document as a parameter to the find() (page 910) method:

db.things.find({ name : "mongo" })

MongoDB returns one document that fits this criteria. The ObjectId (page 188) value will be different:

{ "_id" : ObjectId("4c2209f9f3924d31102bd84a"), "name" : "mongo" }

2. Query for all documents where x has a value of 4 by passing the { x : 4 } query document as a parameter
to find() (page 910):

db.things.find({ x : 4 })

MongoDB returns the following result set:

{ "_id" : ObjectId("4c220a42f3924d31102bd856"), "x" : 4, "j" : 1 }
{ "_id" : ObjectId("4c220a42f3924d31102bd857"), "x" : 4, "j" : 2 }
{ "_id" : ObjectId("4c220a42f3924d31102bd858"), "x" : 4, "j" : 3 }
{ "_id" : ObjectId("4c220a42f3924d31102bd859"), "x" : 4, "j" : 4 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85a"), "x" : 4, "j" : 5 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85b"), "x" : 4, "j" : 6 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85c"), "x" : 4, "j" : 7 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85d"), "x" : 4, "j" : 8 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85e"), "x" : 4, "j" : 9 }

1.8. Getting Started with MongoDB 25

MongoDB Documentation, Release 2.4.2

{ "_id" : ObjectId("4c220a42f3924d31102bd85f"), "x" : 4, "j" : 10 }
{ "_id" : ObjectId("4c220a42f3924d31102bd860"), "x" : 4, "j" : 11 }
{ "_id" : ObjectId("4c220a42f3924d31102bd861"), "x" : 4, "j" : 12 }
{ "_id" : ObjectId("4c220a42f3924d31102bd862"), "x" : 4, "j" : 13 }
{ "_id" : ObjectId("4c220a42f3924d31102bd863"), "x" : 4, "j" : 14 }
{ "_id" : ObjectId("4c220a42f3924d31102bd864"), "x" : 4, "j" : 15 }
{ "_id" : ObjectId("4c220a42f3924d31102bd865"), "x" : 4, "j" : 16 }
{ "_id" : ObjectId("4c220a42f3924d31102bd866"), "x" : 4, "j" : 17 }
{ "_id" : ObjectId("4c220a42f3924d31102bd867"), "x" : 4, "j" : 18 }
{ "_id" : ObjectId("4c220a42f3924d31102bd868"), "x" : 4, "j" : 19 }
{ "_id" : ObjectId("4c220a42f3924d31102bd869"), "x" : 4, "j" : 20 }

ObjectId (page 188) values are always unique.

3. Query for all documents where x has a value of 4, as in the previous query, but only return only the value of
j. MongoDB will also return the _id field, unless explicitly excluded. To do this, you add the { j : 1 }
document as the projection in the second parameter to find() (page 910). This operation would resemble the
following:

db.things.find({ x : 4 } , { j : 1 })

MongoDB returns the following results:

{ "_id" : ObjectId("4c220a42f3924d31102bd856"), "j" : 1 }
{ "_id" : ObjectId("4c220a42f3924d31102bd857"), "j" : 2 }
{ "_id" : ObjectId("4c220a42f3924d31102bd858"), "j" : 3 }
{ "_id" : ObjectId("4c220a42f3924d31102bd859"), "j" : 4 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85a"), "j" : 5 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85b"), "j" : 6 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85c"), "j" : 7 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85d"), "j" : 8 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85e"), "j" : 9 }
{ "_id" : ObjectId("4c220a42f3924d31102bd85f"), "j" : 10 }
{ "_id" : ObjectId("4c220a42f3924d31102bd860"), "j" : 11 }
{ "_id" : ObjectId("4c220a42f3924d31102bd861"), "j" : 12 }
{ "_id" : ObjectId("4c220a42f3924d31102bd862"), "j" : 13 }
{ "_id" : ObjectId("4c220a42f3924d31102bd863"), "j" : 14 }
{ "_id" : ObjectId("4c220a42f3924d31102bd864"), "j" : 15 }
{ "_id" : ObjectId("4c220a42f3924d31102bd865"), "j" : 16 }
{ "_id" : ObjectId("4c220a42f3924d31102bd866"), "j" : 17 }
{ "_id" : ObjectId("4c220a42f3924d31102bd867"), "j" : 18 }
{ "_id" : ObjectId("4c220a42f3924d31102bd868"), "j" : 19 }
{ "_id" : ObjectId("4c220a42f3924d31102bd869"), "j" : 20 }

Return a Single Document from a Collection

With the db.collection.findOne() (page 914) method you can return a single document from a MongoDB
collection. The findOne() (page 914) method takes the same parameters as find() (page 910), but returns a
document rather than a cursor.

To retrieve one document from the things collection, issue the following command:

db.things.findOne()

For more information on querying for documents, see the Read (page 203) and Read Operations (page 161) documen-
tation.

26 Chapter 1. Installation Guides

MongoDB Documentation, Release 2.4.2

Limit the Number of Documents in the Result Set

You can constrain the size of the result set to increase performance by limiting the amount of data your application
must receive over the network.

To specify the maximum number of documents in the result set, call the limit() (page 894) method on a cursor, as
in the following command:

db.things.find().limit(3)

MongoDB will return the following result, with different ObjectId (page 188) values:

{ "_id" : ObjectId("4c2209f9f3924d31102bd84a"), "name" : "mongo" }
{ "_id" : ObjectId("4c2209fef3924d31102bd84b"), "x" : 3 }
{ "_id" : ObjectId("4c220a42f3924d31102bd856"), "x" : 4, "j" : 1 }

1.8.4 Next Steps with MongoDB

For more information on manipulating the documents in a database as you continue to learn MongoDB, consider the
following resources:

• CRUD Operations for MongoDB (page 195)

• SQL to MongoDB Mapping Chart (page 965)

• MongoDB Drivers and Client Libraries (page 529)

• Getting Started with MongoDB (page 21)

• Create (page 195)

• Read (page 203)

• Update (page 213)

• Delete (page 219)

1.8. Getting Started with MongoDB 27

MongoDB Documentation, Release 2.4.2

28 Chapter 1. Installation Guides

CHAPTER 2

Release Notes

You should always install the latest, stable version of MongoDB. Stable versions have an even-numbered minor version
number. For example: v2.4 is stable, v2.2, and v2.0 were previously the stable, while v2.1 and v2.3 are a development
versions.

• Current Stable Release:

– Release Notes for MongoDB 2.4 (page 1133)

• Previous Stable Releases:

– Release Notes for MongoDB 2.2 (page 1155)

– Release Notes for MongoDB 2.0 (page 1165)

– Release Notes for MongoDB 1.8 (page 1171)

29

MongoDB Documentation, Release 2.4.2

30 Chapter 2. Release Notes

Part II

Administration

31

MongoDB Documentation, Release 2.4.2

The documentation in this section outlines core administrative tasks and practices that operators of MongoDB will
want to consider.

33

MongoDB Documentation, Release 2.4.2

34

CHAPTER 3

Run-time Database Configuration

The command line (page 971) and configuration file (page 1026) interfaces provide MongoDB administrators with a
large number of options and settings for controlling the operation of the database system. This document provides an
overview of common configurations and examples of best-practice configurations for common use cases.

While both interfaces provide access to the same collection of options and settings, this docu-
ment primarily uses the configuration file interface. If you run MongoDB using a control script
or installed from a package for your operating system, you likely already have a configuration
file located at http://docs.mongodb.org/manual/etc/mongodb.conf. Confirm this by
checking the content of the http://docs.mongodb.org/manual/etc/init.d/mongod or
http://docs.mongodb.org/manual/etc/rc.d/mongod script to insure that the control scripts start the
mongod (page 971) with the appropriate configuration file (see below.)

To start MongoDB instance using this configuration issue a command in the following form:

mongod --config /etc/mongodb.conf
mongod -f /etc/mongodb.conf

Modify the values in the http://docs.mongodb.org/manual/etc/mongodb.conf file on your system to
control the configuration of your database instance.

3.1 Configure the Database

Consider the following basic configuration:

fork = true
bind_ip = 127.0.0.1
port = 27017
quiet = true
dbpath = /srv/mongodb
logpath = /var/log/mongodb/mongod.log
logappend = true
journal = true

For most standalone servers, this is a sufficient base configuration. It makes several assumptions, but consider the
following explanation:

• fork (page 1029) is true, which enables a daemon mode for mongod (page 971), which detaches (i.e.
“forks”) the MongoDB from the current session and allows you to run the database as a conventional server.

35

MongoDB Documentation, Release 2.4.2

• bind_ip (page 1027) is 127.0.0.1, which forces the server to only listen for requests on the localhost IP.
Only bind to secure interfaces that the application-level systems can access with access control provided by
system network filtering (i.e. “firewall”).

• port (page 1027) is 27017, which is the default MongoDB port for database instances. MongoDB can bind
to any port. You can also filter access based on port using network filtering tools.

Note: UNIX-like systems require superuser privileges to attach processes to ports lower than 1024.

• quiet (page 1033) is true. This disables all but the most critical entries in output/log file. In normal operation
this is the preferable operation to avoid log noise. In diagnostic or testing situations, set this value to false.
Use setParameter (page 869) to modify this setting during run time.

• dbpath (page 1029) is http://docs.mongodb.org/manual/srv/mongodb, which specifies where
MongoDB will store its data files. http://docs.mongodb.org/manual/srv/mongodb and
http://docs.mongodb.org/manual/var/lib/mongodb are popular locations. The user account
that mongod (page 971) runs under will need read and write access to this directory.

• logpath (page 1028) is http://docs.mongodb.org/manual/var/log/mongodb/mongod.log
which is where mongod (page 971) will write its output. If you do not set this value, mongod (page 971) writes
all output to standard output (e.g. stdout.)

• logappend (page 1028) is true, which ensures that mongod (page 971) does not overwrite an existing log
file following the server start operation.

• journal (page 1030) is true, which enables journaling. Journaling ensures single instance write-durability.
64-bit builds of mongod (page 971) enable journaling by default. Thus, this setting may be redundant.

Given the default configuration, some of these values may be redundant. However, in many situations explicitly stating
the configuration increases overall system intelligibility.

3.2 Security Considerations

The following collection of configuration options are useful for limiting access to a mongod (page 971) instance.
Consider the following:

bind_ip = 127.0.0.1,10.8.0.10,192.168.4.24
nounixsocket = true
auth = true

Consider the following explanation for these configuration decisions:

• “bind_ip (page 1027)” has three values: 127.0.0.1, the localhost interface; 10.8.0.10, a private IP
address typically used for local networks and VPN interfaces; and 192.168.4.24, a private network interface
typically used for local networks.

Because production MongoDB instances need to be accessible from multiple database servers, it is important
to bind MongoDB to multiple interfaces that are accessible from your application servers. At the same time it’s
important to limit these interfaces to interfaces controlled and protected at the network layer.

• “nounixsocket (page 1028)” to true disables the UNIX Socket, which is otherwise enabled by default.
This limits access on the local system. This is desirable when running MongoDB on systems with shared
access, but in most situations has minimal impact.

• “auth (page 1029)” is true enables the authentication system within MongoDB. If enabled you will need to
log in by connecting over the localhost interface for the first time to create user credentials.

36 Chapter 3. Run-time Database Configuration

MongoDB Documentation, Release 2.4.2

See Also:

Security Practices and Management (page 125)

3.3 Replication and Sharding Configuration

3.3.1 Replication Configuration

Replica set configuration is straightforward, and only requires that the replSet (page 1034) have a value that is
consistent among all members of the set. Consider the following:

replSet = set0

Use descriptive names for sets. Once configured use the mongo (page 984) shell to add hosts to the replica set.

See Also:

Replica set reconfiguration (page 445).

To enable authentication for the replica set, add the following option:

keyFile = /srv/mongodb/keyfile

New in version 1.8: for replica sets, and 1.9.1 for sharded replica sets. Setting keyFile (page 1028) enables authen-
tication and specifies a key file for the replica set member use to when authenticating to each other. The content of
the key file is arbitrary, but must be the same on all members of the replica set and mongos (page 981) instances that
connect to the set. The keyfile must be less than one kilobyte in size and may only contain characters in the base64 set
and the file must not have group or “world” permissions on UNIX systems.

See Also:

The “Replica set Reconfiguration (page 445)” section for information regarding the process for changing replica set
during operation.

Additionally, consider the “Replica Set Security (page 373)” section for information on configuring authentication
with replica sets.

Finally, see the “Replication (page 365)” index and the “Replica Set Fundamental Concepts (page 367)” document for
more information on replication in MongoDB and replica set configuration in general.

3.3.2 Sharding Configuration

Sharding requires a number of mongod (page 971) instances with different configurations. The config servers store
the cluster’s metadata, while the cluster distributes data among one or more shard servers.

Note: Config servers are not replica sets.

To set up one or three “config server” instances as normal (page 35) mongod (page 971) instances, and then add the
following configuration option:

configsvr = true

bind_ip = 10.8.0.12
port = 27001

3.3. Replication and Sharding Configuration 37

MongoDB Documentation, Release 2.4.2

This creates a config server running on the private IP address 10.8.0.12 on port 27001. Make sure that there
are no port conflicts, and that your config server is accessible from all of your “mongos (page 981)” and “mongod
(page 971)” instances.

To set up shards, configure two or more mongod (page 971) instance using your base configuration (page 35), adding
the shardsvr (page 1036) setting:

shardsvr = true

Finally, to establish the cluster, configure at least one mongos (page 981) process with the following settings:

configdb = 10.8.0.12:27001
chunkSize = 64

You can specify multiple configdb (page 1036) instances by specifying hostnames and ports in the form of a comma
separated list. In general, avoid modifying the chunkSize (page 1036) from the default value of 64, 1 and should
ensure this setting is consistent among all mongos (page 981) instances.

See Also:

The “Sharding (page 461)” section of the manual for more information on sharding and cluster configuration.

3.4 Run Multiple Database Instances on the Same System

In many cases running multiple instances of mongod (page 971) on a single system is not recommended. On some
types of deployments 2 and for testing purposes you may need to run more than one mongod (page 971) on a single
system.

In these cases, use a base configuration (page 35) for each instance, but consider the following configuration values:

dbpath = /srv/mongodb/db0/
pidfilepath = /srv/mongodb/db0.pid

The dbpath (page 1029) value controls the location of the mongod (page 971) instance’s data directory. Ensure that
each database has a distinct and well labeled data directory. The pidfilepath (page 1028) controls where mongod
(page 971) process places it’s process id file. As this tracks the specific mongod (page 971) file, it is crucial that file
be unique and well labeled to make it easy to start and stop these processes.

Create additional control scripts and/or adjust your existing MongoDB configuration and control script as needed to
control these processes.

3.5 Diagnostic Configurations

The following configuration options control various mongod (page 971) behaviors for diagnostic purposes. The
following settings have default values that tuned for general production purposes:

slowms = 50
profile = 3
verbose = true
diaglog = 3
objcheck = true
cpu = true

1 Chunk size is 64 megabytes by default, which provides the ideal balance between the most even distribution of data, for which smaller chunk
sizes are best, and minimizing chunk migration, for which larger chunk sizes are optimal.

2 Single-tenant systems with SSD or other high performance disks may provide acceptable performance levels for multiple mongod (page 971)
instances. Additionally, you may find that multiple databases with small working sets may function acceptably on a single system.

38 Chapter 3. Run-time Database Configuration

MongoDB Documentation, Release 2.4.2

Use the base configuration (page 35) and add these options if you are experiencing some unknown issue or perfor-
mance problem as needed:

• slowms (page 1032) configures the threshold for the database profiler to consider a query “slow.” The de-
fault value is 100 milliseconds. Set a lower value if the database profiler does not return useful results. See
Optimization Strategies for MongoDB (page 529) for more information on optimizing operations in MongoDB.

• profile (page 1031) sets the database profiler level. The profiler is not active by default because of the
possible impact on the profiler itself on performance. Unless this setting has a value, queries are not profiled.

• verbose (page 1026) enables a verbose logging mode that modifies mongod (page 971) output and increases
logging to include a greater number of events. Only use this option if you are experiencing an issue that is not
reflected in the normal logging level. If you require additional verbosity, consider the following options:

v = true
vv = true
vvv = true
vvvv = true
vvvvv = true

Each additional level v adds additional verbosity to the logging. The verbose option is equal to v = true.

• diaglog (page 1029) enables diagnostic logging. Level 3 logs all read and write options.

• objcheck (page 1027) forces mongod (page 971) to validate all requests from clients upon receipt. Use this
option to ensure that invalid requests are not causing errors, particularly when running a database with untrusted
clients. This option may affect database performance.

• cpu (page 1029) forces mongod (page 971) to report the percentage of the last interval spent in write-lock.
The interval is typically 4 seconds, and each output line in the log includes both the actual interval since the last
report and the percentage of time spent in write lock.

3.5. Diagnostic Configurations 39

MongoDB Documentation, Release 2.4.2

40 Chapter 3. Run-time Database Configuration

CHAPTER 4

Backup and Recovery Operations for
MongoDB

4.1 Backup Strategies for MongoDB Systems

Backups are an important part of any operational disaster recovery plan. A good backup plan must be able to capture
data in a consistent and usable state, and operators must be able to automate both the backup and the recovery opera-
tions. Also test all components of the backup system to ensure that you can recover backed up data as needed. If you
cannot effectively restore your database from the backup, then your backups are useless. This document addresses
higher level backup strategies, for more information on specific backup procedures consider the following documents:

• Use Filesystem Snapshots to Backup and Restore MongoDB Databases (page 46).

• Use mongodump and mongorestore to Backup and Restore MongoDB Databases (page 43).

• Backup a Small Sharded Cluster with mongodump (page 55)

• Create Backup of a Sharded Cluster with Filesystem Snapshots (page 55)

• Create Backup of a Sharded Cluster with Database Dumps (page 57)

• Schedule Backup Window for Sharded Clusters (page 59)

• Restore a Single Shard (page 58)

• Restore Sharded Clusters (page 59)

4.1.1 Backup Considerations

As you develop a backup strategy for your MongoDB deployment consider the following factors:

• Geography. Ensure that you move some backups away from the your primary database infrastructure.

• System errors. Ensure that your backups can survive situations where hardware failures or disk errors impact
the integrity or availability of your backups.

• Production constraints. Backup operations themselves sometimes require substantial system resources. It is
important to consider the time of the backup schedule relative to peak usage and maintenance windows.

• System capabilities. Some of the block-level snapshot tools require special support on the operating-system or
infrastructure level.

41

MongoDB Documentation, Release 2.4.2

• Database configuration. Replication and sharding can affect the process and impact of the backup implementa-
tion. See Sharded Cluster Backup Considerations (page 42) and Replica Set Backup Considerations (page 43).

• Actual requirements. You may be able to save time, effort, and space by including only crucial data in the most
frequent backups and backing up less crucial data less frequently.

4.1.2 Approaches to Backing Up MongoDB Systems

There are two main methodologies for backing up MongoDB instances. Creating binary “dumps” of the database
using mongodump (page 992) or creating filesystem level snapshots. Both methodologies have advantages and dis-
advantages:

• binary database dumps are comparatively small, because they don’t include index content or pre-allocated free
space, and record padding (page 177). However, it’s impossible to capture a copy of a running system that
reflects a single moment in time using a binary dump.

• filesystem snapshots, sometimes called block level backups, produce larger backup sizes, but complete quickly
and can reflect a single moment in time on a running system. However, snapshot systems require filesystem and
operating system support and tools.

The best option depends on the requirements of your deployment and disaster recovery needs. Typically, filesystem
snapshots are because of their accuracy and simplicity; however, mongodump (page 992) is a viable option used often
to generate backups of MongoDB systems.

The following topics provide details and procedures on the two approaches:

• Use Filesystem Snapshots to Backup and Restore MongoDB Databases (page 46).

• Use mongodump and mongorestore to Backup and Restore MongoDB Databases (page 43).

In some cases, taking backups is difficult or impossible because of large data volumes, distributed architectures, and
data transmission speeds. In these situations, increase the number of members in your replica set or sets.

4.1.3 Backup Strategies for MongoDB Deployments

Sharded Cluster Backup Considerations

Important: To capture a point-in-time backup from a sharded cluster you must stop all writes to the cluster. On a
running production system, you can only capture an approximation of point-in-time snapshot.

Sharded clusters complicate backup operations, as distributed systems. True point-in-time backups are only possible
when stopping all write activity from the application. To create a precise moment-in-time snapshot of a cluster, stop
all application write activity to the database, capture a backup, and allow only write operations to the database after
the backup is complete.

However, you can capture a backup of a cluster that approximates a point-in-time backup by capturing a backup from
a secondary member of the replica sets that provide the shards in the cluster at roughly the same moment. If you
decide to use an approximate-point-in-time backup method, ensure that your application can operate using a copy of
the data that does not reflect a single moment in time.

The following documents describe sharded cluster related backup procedures:

• Backup a Small Sharded Cluster with mongodump (page 55)

• Create Backup of a Sharded Cluster with Filesystem Snapshots (page 55)

• Create Backup of a Sharded Cluster with Database Dumps (page 57)

42 Chapter 4. Backup and Recovery Operations for MongoDB

MongoDB Documentation, Release 2.4.2

• Schedule Backup Window for Sharded Clusters (page 59)

• Restore a Single Shard (page 58)

• Restore Sharded Clusters (page 59)

Replica Set Backup Considerations

In most cases, backing up data stored in a replica set is similar to backing up data stored in a single instance. It
is possible to lock a single secondary database and then create a backup from that instance. When you unlock the
database, the secondary will catch up with the primary. You may also choose to deploy a dedicated hidden member
for backup purposes.

If you have a sharded cluster where each shard is itself a replica set, you can use this method to create a backup of
the entire cluster without disrupting the operation of the node. In these situations you should still turn off the balancer
when you create backups.

For any cluster, using a non-primary node to create backups is particularly advantageous in that the backup operation
does not affect the performance of the primary. Replication itself provides some measure of redundancy. Nevertheless,
keeping point-in time backups of your cluster to provide for disaster recovery and as an additional layer of protection
is crucial.

For an overview of backup strategies and considerations for all MongoDB deployments, consider, Backup Strategies
for MongoDB Systems (page 41). For practical instructions and example backup procedures consider the following
documents:

4.2 Backup and Recovery Procedures

4.2.1 Use mongodump and mongorestore to Backup and Restore MongoDB
Databases

This document describes the process for writing the entire contents of your MongoDB instance to a file in a binary
format. If disk-level snapshots are not available, this approach provides the best option for full system database
backups. If your system has disk level snapshot capabilities, consider the backup methods described in Use Filesystem
Snapshots to Backup and Restore MongoDB Databases (page 46).

See Also:

• Backup Strategies for MongoDB Systems (page 41)

• mongodump (page 992)

• mongorestore (page 995)

Backup a Database with mongodump

Basic mongodump Operations

The mongodump (page 992) utility can back up data by either:

• connecting to a running mongod (page 971) or mongos (page 981) instance, or

• accessing data files without an active instance.

4.2. Backup and Recovery Procedures 43

MongoDB Documentation, Release 2.4.2

The utility can create a backup for an entire server, database or collection, or can use a query to backup just part of a
collection.

When you run mongodump (page 992) without any arguments, the command connects to the local database instance
(e.g. 127.0.0.1 or localhost) on port 27017 and creates a database backup named dump/ in the current
directory.

To backup data from a mongod (page 971) or mongos (page 981) instance running on the same machine and on the
default port of 27017 use the following command:

mongodump

Note: The format of data created by mongodump (page 992) tool from the 2.2 distribution or later is different and
incompatible with earlier versions of mongod (page 971).

To limit the amount of data included in the database dump, you can specify --db (page 994) and --collection
(page 994) as options to the mongodump (page 992) command. For example:

mongodump --dbpath /data/db/ --out /data/backup/

mongodump --host mongodb.example.net --port 27017

mongodump (page 992) will write BSON files that hold a copy of data accessible via the mongod (page 971) listening
on port 27017 of the mongodb.example.net host.

mongodump --collection collection --db test

This command creates a dump of the collection named collection from the database test in a dump/ subdirec-
tory of the current working directory.

Point in Time Operation Using Oplogs

Use the --oplog (page 994) option with mongodump (page 992) to collect the oplog entries to build a point-in-
time snapshot of a database within a replica set. With --oplog (page 994), mongodump (page 992) copies all the
data from the source database as well as all of the oplog entries from the beginning of the backup procedure to until
the backup procedure completes. This backup procedure, in conjunction with mongorestore --oplogReplay
(page 998), allows you to restore a backup that reflects a consistent and specific moment in time.

Create Backups Without a Running mongod Instance

If your MongoDB instance is not running, you can use the --dbpath (page 993) option to specify the location to your
MongoDB instance’s database files. mongodump (page 992) reads from the data files directly with this operation.
This locks the data directory to prevent conflicting writes. The mongod (page 971) process must not be running
or attached to these data files when you run mongodump (page 992) in this configuration. Consider the following
example:

mongodump --dbpath /srv/mongodb

Create Backups from Non-Local mongod Instances

The --host (page 992) and --port (page 992) options for mongodump (page 992) allow you to connect to and
backup from a remote host. Consider the following example:

44 Chapter 4. Backup and Recovery Operations for MongoDB

MongoDB Documentation, Release 2.4.2

mongodump --host mongodb1.example.net --port 3017 --username user --password pass --out /opt/backup/mongodump-2012-10-24

On any mongodump (page 992) command you may, as above, specify username and password credentials to specify
database authentication.

Restore a Database with mongorestore

The mongorestore (page 996) utility restores a binary backup created by mongodump (page 992). By default,
mongorestore (page 996) looks for a database backup in the dump/ directory.

The mongorestore (page 996) utility can restore data either by:

• connecting to a running mongod (page 971) or mongos (page 981) directly, or

• writing to a local database path without use of a running mongod (page 971).

The mongorestore (page 996) utility can restore either an entire database backup or a subset of the backup.

A mongorestore (page 996) command that connects to an active mongod (page 971) or mongos (page 981) has
the following prototype form:

mongorestore --port <port number> <path to the backup>

A mongorestore (page 996) command that writes to data files without using a running mongod (page 971) has
the following prototype form:

mongorestore --dbpath <local database path> <path to the backup>

Consider the following example:

mongorestore dump-2012-10-25/

Here, mongorestore (page 996) imports the database backup in the dump-2012-10-25 directory to the mongod
(page 971) instance running on the localhost interface.

Restore Point in Time Oplog Backup

If you created your database dump using the --oplog (page 994) option to ensure a point-in-time snapshot, call
mongorestore (page 996) with the --oplogReplay (page 998) option, as in the following example:

mongorestore --oplogReplay

You may also consider using the mongorestore --objcheck (page 998) option to check the integrity of objects
while inserting them into the database, or you may consider the mongorestore --drop (page 998) option to drop
each collection from the database before restoring from backups.

Restore a Subset of data from a Binary Database Dump

mongorestore (page 996) also includes the ability to a filter to all input before inserting it into the new database.
Consider the following example:

mongorestore --filter ’{"field": 1}’

Here, mongorestore (page 996) only adds documents to the database from the dump located in the dump/ folder
if the documents have a field name field that holds a value of 1. Enclose the filter in single quotes (e.g. ’) to
prevent the filter from interacting with your shell environment.

4.2. Backup and Recovery Procedures 45

MongoDB Documentation, Release 2.4.2

Restore without a Running mongod

mongorestore (page 996) can write data to MongoDB data files without needing to connect to a mongod
(page 971) directly.

mongorestore --dbpath /srv/mongodb --journal

Here, mongorestore (page 996) restores the database dump located in dump/ folder into the data files located
at http://docs.mongodb.org/manual/srv/mongodb. Additionally, the --journal (page 997) option
ensures that mongorestore (page 996) records all operation in the durability journal. The journal prevents data file
corruption if anything (e.g. power failure, disk failure, etc.) interrupts the restore operation.

See Also:

mongodump (page 992) and mongorestore (page 995).

Restore Backups to Non-Local mongod Instances

By default, mongorestore (page 996) connects to a MongoDB instance running on the localhost interface (e.g.
127.0.0.1) and on the default port (27017). If you want to restore to a different host or port, use the --host
(page 996) and --port (page 996) options.

Consider the following example:

mongorestore --host mongodb1.example.net --port 3017 --username user --password pass /opt/backup/mongodump-2012-10-24

As above, you may specify username and password connections if your mongod (page 971) requires authentication.

4.2.2 Use Filesystem Snapshots to Backup and Restore MongoDB Databases

This document describes a procedure for creating backups of MongoDB systems using system-level tools, such as
LVM or storage appliance, as well as the corresponding restoration strategies.

These filesystem snapshots, or “block-level” backup methods use system level tools to create copies of the device that
holds MongoDB’s data files. These methods complete quickly and work reliably, but require more system configura-
tion outside of MongoDB.

See Also:

Backup Strategies for MongoDB Systems (page 41) and Use mongodump and mongorestore to Backup and Restore
MongoDB Databases (page 43).

Snapshots Overview

Snapshots work by creating pointers between the live data and a special snapshot volume. These pointers are the-
oretically equivalent to “hard links.” As the working data diverges from the snapshot, the snapshot process uses a
copy-on-write strategy. As a result the snapshot only stores modified data.

After making the snapshot, you mount the snapshot image on your file system and copy data from the snapshot. The
resulting backup contains a full copy of all data.

Snapshots have the following limitations:

• The database must be in a consistent or recoverable state when the snapshot takes place. This means that all
writes accepted by the database need to be fully written to disk: either to the journal or to data files.

46 Chapter 4. Backup and Recovery Operations for MongoDB

MongoDB Documentation, Release 2.4.2

If all writes are not on disk when the backup occurs, the backup will not reflect these changes. If writes are in
progress when the backup occurs, the data files will reflect an inconsistent state. With journaling all data-file
states resulting from in-progress writes are recoverable; without journaling you must flush all pending writes
to disk before running the backup operation and must ensure that no writes occur during the entire backup
procedure.

If you do use journaling, the journal must reside on the same volume as the data.

• Snapshots create an image of an entire disk image. Unless you need to back up your entire system, consider
isolating your MongoDB data files, journal (if applicable), and configuration on one logical disk that doesn’t
contain any other data.

Alternately, store all MongoDB data files on a dedicated device so that you can make backups without duplicat-
ing extraneous data.

• Ensure that you copy data from snapshots and onto other systems to ensure that data is safe from site failures.

• Although different snapshots methods provide different capability, the LVM method outlined below does not
provide any capacity for capturing incremental backups.

Snapshots With Journaling

If your mongod (page 971) instance has journaling enabled, then you can use any kind of file system or volume/block
level snapshot tool to create backups.

If you manage your own infrastructure on a Linux-based system, configure your system with LVM to provide your disk
packages and provide snapshot capability. You can also use LVM-based setups within a cloud/virtualized environment.

Note: Running LVM provides additional flexibility and enables the possibility of using snapshots to back up Mon-
goDB.

Snapshots with Amazon EBS in a RAID 10 Configuration

If your deployment depends on Amazon’s Elastic Block Storage (EBS) with RAID configured within your instance, it
is impossible to get a consistent state across all disks using the platform’s snapshot tool. As an alternative, you can do
one of the following:

• Flush all writes to disk and create a write lock to ensure consistent state during the backup process.

If you choose this option see Create Backups on Instances that do not have Journaling Enabled (page 49).

• Configure LVM to run and hold your MongoDB data files on top of the RAID within your system.

If you choose this option, perform the LVM backup operation described in Create a Snapshot (page 48).

Backup and Restore Using LVM on a Linux System

This section provides an overview of a simple backup process using LVM on a Linux system. While the tools, com-
mands, and paths may be (slightly) different on your system the following steps provide a high level overview of the
backup operation.

Note: Only use the following procedure as a guideline for a backup system and infrastructure. Production backup
systems must consider a number of application specific requirements and factors unique to specific environments.

4.2. Backup and Recovery Procedures 47

MongoDB Documentation, Release 2.4.2

Create a Snapshot

To create a snapshot with LVM, issue a command as root in the following format:

lvcreate --size 100M --snapshot --name mdb-snap01 /dev/vg0/mongodb

This command creates an LVM snapshot (with the --snapshot option) named mdb-snap01 of the mongodb
volume in the vg0 volume group.

This example creates a snapshot named mdb-snap01 located at http://docs.mongodb.org/manual/dev/vg0/mdb-snap01.
The location and paths to your systems volume groups and devices may vary slightly depending on your operating
system’s LVM configuration.

The snapshot has a cap of at 100 megabytes, because of the parameter --size 100M. This size does not
reflect the total amount of the data on the disk, but rather the quantity of differences between the current
state of http://docs.mongodb.org/manual/dev/vg0/mongodb and the creation of the snapshot (i.e.
http://docs.mongodb.org/manual/dev/vg0/mdb-snap01.)

Warning: Ensure that you create snapshots with enough space to account for data growth, particularly for the
period of time that it takes to copy data out of the system or to a temporary image.
If your snapshot runs out of space, the snapshot image becomes unusable. Discard this logical volume and create
another.

The snapshot will exist when the command returns. You can restore directly from the snapshot at any time or by
creating a new logical volume and restoring from this snapshot to the alternate image.

While snapshots are great for creating high quality backups very quickly, they are not ideal as a format for storing
backup data. Snapshots typically depend and reside on the same storage infrastructure as the original disk images.
Therefore, it’s crucial that you archive these snapshots and store them elsewhere.

Archive a Snapshot

After creating a snapshot, mount the snapshot and move the data to separate storage. Your system might try to compress
the backup images as you move the offline. The following procedure fully archives the data from the snapshot:

umount /dev/vg0/mdb-snap01
dd if=/dev/vg0/mdb-snap01 | gzip > mdb-snap01.gz

The above command sequence does the following:

• Ensures that the http://docs.mongodb.org/manual/dev/vg0/mdb-snap01 device is not
mounted.

• Performs a block level copy of the entire snapshot image using the dd command and compresses the result in a
gzipped file in the current working directory.

Warning: This command will create a large gz file in your current working directory. Make sure that you
run this command in a file system that has enough free space.

Restore a Snapshot

To restore a snapshot created with the above method, issue the following sequence of commands:

48 Chapter 4. Backup and Recovery Operations for MongoDB

MongoDB Documentation, Release 2.4.2

lvcreate --size 1G --name mdb-new vg0
gzip -d -c mdb-snap01.gz | dd of=/dev/vg0/mdb-new
mount /dev/vg0/mdb-new /srv/mongodb

The above sequence does the following:

• Creates a new logical volume named mdb-new, in the http://docs.mongodb.org/manual/dev/vg0
volume group. The path to the new device will be http://docs.mongodb.org/manual/dev/vg0/mdb-new.

Warning: This volume will have a maximum size of 1 gigabyte. The original file system must have had a
total size of 1 gigabyte or smaller, or else the restoration will fail.
Change 1G to your desired volume size.

• Uncompresses and unarchives the mdb-snap01.gz into the mdb-new disk image.

• Mounts the mdb-new disk image to the http://docs.mongodb.org/manual/srv/mongodb direc-
tory. Modify the mount point to correspond to your MongoDB data file location, or other location as needed.

Note: The restored snapshot will have a stale mongod.lock file. If you do not remove this file from the snap-
shot, and MongoDB may assume that the stale lock file indicates an unclean shutdown. If you’re running with
journal (page 1030) enabled, and you do not use db.fsyncLock() (page 938), you do not need to remove
the mongod.lock file. If you use db.fsyncLock() (page 938) you will need to remove the lock.

Restore Directly from a Snapshot

To restore a backup without writing to a compressed gz file, use the following sequence of commands:

umount /dev/vg0/mdb-snap01
lvcreate --size 1G --name mdb-new vg0
dd if=/dev/vg0/mdb-snap01 of=/dev/vg0/mdb-new
mount /dev/vg0/mdb-new /srv/mongodb

Remote Backup Storage

You can implement off-system backups using the combined process (page 49) and SSH.

This sequence is identical to procedures explained above, except that it archives and compresses the backup on a
remote system using SSH.

Consider the following procedure:

umount /dev/vg0/mdb-snap01
dd if=/dev/vg0/mdb-snap01 | ssh username@example.com gzip > /opt/backup/mdb-snap01.gz
lvcreate --size 1G --name mdb-new vg0
ssh username@example.com gzip -d -c /opt/backup/mdb-snap01.gz | dd of=/dev/vg0/mdb-new
mount /dev/vg0/mdb-new /srv/mongodb

Create Backups on Instances that do not have Journaling Enabled

If your mongod (page 971) instance does not run with journaling enabled, or if your journal is on a separate volume,
obtaining a functional backup of a consistent state is more complicated. As described in this section, you must flush all
writes to disk and lock the database to prevent writes during the backup process. If you have a replica set configuration,
then for your backup use a secondary which is not receiving reads (i.e. hidden member).

4.2. Backup and Recovery Procedures 49

MongoDB Documentation, Release 2.4.2

1. To flush writes to disk and to “lock” the database (to prevent further writes), issue the db.fsyncLock()
(page 938) method in the mongo (page 984) shell:

db.fsyncLock();

2. Perform the backup operation described in Create a Snapshot (page 48).

3. To unlock the database after the snapshot has completed, use the following command in the mongo (page 984)
shell:

db.fsyncUnlock();

Note: Changed in version 2.0: MongoDB 2.0 added db.fsyncLock() (page 938) and
db.fsyncUnlock() (page 938) helpers to the mongo (page 984) shell. Prior to this version, use the
fsync (page 834) command with the lock option, as follows:

db.runCommand({ fsync: 1, lock: true });
db.runCommand({ fsync: 1, lock: false });

Note: The database cannot be locked with db.fsyncLock() (page 938) while profiling is enabled. You
must disable profiling before locking the database with db.fsyncLock() (page 938). Disable profiling using
db.setProfilingLevel() (page 945) as follows in the mongo (page 984) shell:

db.setProfilingLevel(0)

Warning: Changed in version 2.2: When used in combination with fsync (page 834) or
db.fsyncLock() (page 938), mongod (page 971) may block some reads, including those from
mongodump (page 992), when queued write operation waits behind the fsync (page 834) lock.

4.2.3 Copy Databases Between Instances

Synopsis

MongoDB provides the copydb (page 820) and clone (page 812) database commands to support migrations of
entire logical databases between mongod (page 971) instances. With these commands you can copy data between in-
stances with a simple interface without the need for an intermediate stage. The db.cloneDatabase() (page 903)
and db.copyDatabase() (page 934) provide helpers for these operations in the mongo (page 984) shell.

Data migrations that require an intermediate stage or that involve more than one database instance are beyond the
scope of this tutorial. copydb (page 820) and clone (page 812) are more ideal for use cases that resemble the
following use cases:

• data migrations,

• data warehousing, and

• seeding test environments.

Also consider the Backup Strategies for MongoDB Systems (page 41) and Import and Export MongoDB Data
(page 101) documentation for more related information.

Note: copydb (page 820) and clone (page 812) do not produce point-in-time snapshots of the source database.
Write traffic to the source or destination database during the copy process will result divergent data sets.

50 Chapter 4. Backup and Recovery Operations for MongoDB

MongoDB Documentation, Release 2.4.2

Considerations

• You must run copydb (page 820) or clone (page 812) on the destination server.

• You cannot use copydb (page 820) or clone (page 812) with databases that have a sharded collection in a
sharded cluster, or any database via a mongos (page 981).

• You can use copydb (page 820) or clone (page 812) with databases that do not have sharded collections in a
cluster when you’re connected directly to the mongod (page 971) instance.

• You can run copydb (page 820) or clone (page 812) commands on a secondary member of a replica set, with
properly configured read preference.

• Each destination mongod (page 971) instance must have enough free disk space on the destination server for
the database you are copying. Use the db.stats() (page 946) operation to check the size of the database on
the source mongod (page 971) instance. For more information on the output of db.stats() (page 946) see
Database Statistics Reference (page 1070) document.

Processes

Copy and Rename a Database

To copy a database from one MongoDB instance to another and rename the database in the process, use the copydb
(page 820) command, or the db.copyDatabase() (page 934) helper in the mongo (page 984) shell.

Use the following procedure to copy the database named test on server db0.example.net to the server named
db1.example.net and rename it to records in the process:

• Verify that the database, test exists on the source mongod (page 971) instance running on the
db0.example.net host.

• Connect to the destination server, running on the db1.example.net host, using the mongo (page 984) shell.

• Model your operation on the following command:

db.copyDatabase("test", "records", db0.example.net)

Rename a Database

You can also use copydb (page 820) or the db.copyDatabase() (page 934) helper to:

• rename a database within a single MongoDB instance or

• create a duplicate database for testing purposes.

Use the following procedure to rename the test database records on a single mongod (page 971) instance:

• Connect to the mongod (page 971) using the mongo (page 984) shell.

• Model your operation on the following command:

db.copyDatabase("test", "records")

Copy a Database with Authentication

To copy a database from a source MongoDB instance that has authentication enabled, you can specify authentication
credentials to the copydb (page 820) command or the db.copyDatabase() (page 934) helper in the mongo
(page 984) shell.

4.2. Backup and Recovery Procedures 51

MongoDB Documentation, Release 2.4.2

In the following operation, you will copy the test database from the mongod (page 971) running on
db0.example.net to the records database on the local instance (e.g. db1.example.net.) Because the
mongod (page 971) instance running on db0.example.net requires authentication for all connections, you will
need to pass db.copyDatabase() (page 934) authentication credentials, as in the following procedure:

• Connect to the destination mongod (page 971) instance running on the db1.example.net host using the
mongo (page 984) shell.

• Issue the following command:

db.copyDatabase("test", "records", db0.example.net, "<username>", "<password>")

Replace <username> and <password> with your authentication credentials.

Clone a Database

The clone (page 812) command copies a database between mongod (page 971) instances like copydb (page 820);
however, clone (page 812) preserves the database name from the source instance on the destination mongod
(page 971).

For many operations, clone (page 812) is functionally equivalent to copydb (page 820), but it has a more simple
syntax and a more narrow use. The mongo (page 984) shell provides the db.cloneDatabase() (page 903) helper
as a wrapper around clone (page 812).

You can use the following procedure to clone a database from the mongod (page 971) instance running on
db0.example.net to the mongod (page 971) running on db1.example.net:

• Connect to the destination mongod (page 971) instance running on the db1.example.net host using the
mongo (page 984) shell.

• Issue the following command to specify the name of the database you want to copy:

use records

• Use the following operation to initiate the clone (page 812) operation:

db.cloneDatabase("db0.example.net")

4.2.4 Recover MongoDB Data following Unexpected Shutdown

If MongoDB does not shutdown cleanly 1 the on-disk representation of the data files will likely reflect an inconsistent
state which could lead to data corruption. 2

To prevent data inconsistency and corruption, always shut down the database cleanly and use the durability journaling
(page 1030). The journal writes data to disk every 100 milliseconds by default and ensures that MongoDB can recover
to a consistent state even in the case of an unclean shutdown due to power loss or other system failure.

If you are not running as part of a replica set and do not have journaling enabled, use the following procedure to
recover data that may be in an inconsistent state. If you are running as part of a replica set, you should always restore
from a backup or restart the mongod (page 971) instance with an empty dbpath (page 1029) and allow MongoDB
to perform an initial sync to restore the data.

See Also:
1 To ensure a clean shut down, use the mongod --shutdown (page 977) option, your control script, “Control-C” (when running mongod

(page 971) in interactive mode,) or kill $(pidof mongod) or kill -2 $(pidof mongod).
2 You can also use the db.collection.validate() (page 934) method to test the integrity of a single collection. However, this process

is time consuming, and without journaling you can safely assume that the data is in an invalid state and you should either run the repair operation
or resync from an intact member of the replica set.

52 Chapter 4. Backup and Recovery Operations for MongoDB

MongoDB Documentation, Release 2.4.2

The Administration (page 33) documents, including Replica Set Syncing (page 389), and the documentation on the
repair (page 1032), repairpath (page 1032), and journal (page 1030) settings.

Process

Indications

When you are aware of a mongod (page 971) instance running without journaling that stops unexpectedly and you’re
not running with replication, you should always run the repair operation before starting MongoDB again. If you’re
using replication, then restore from a backup and allow replication to perform an initial sync (page 389) to restore data.

If the mongod.lock file in the data directory specified by dbpath (page 1029),
http://docs.mongodb.org/manual/data/db by default, is not a zero-byte file, then mongod (page 971)
will refuse to start, and you will find a message that contains the following line in your MongoDB log our output:

Unclean shutdown detected.

This indicates that you need to remove the lockfile and run repair. If you run repair when the mongodb.lock file
exists without the mongod --repairpath (page 976) option, you will see a message that contains the following
line:

old lock file: /data/db/mongod.lock. probably means unclean shutdown

You must remove the lockfile and run the repair operation before starting the database normally using the following
procedure:

Overview

Warning: Recovering a member of a replica set.
Do not use this procedure to recover a member of a replica set. Instead you should either restore from a backup
(page 41) or perform an initial sync using data from an intact member of the set, as described in Resync a Member
of a Replica Set (page 406).

There are two processes to repair data files that result from an unexpected shutdown:

1. Use the --repair (page 975) option in conjunction with the --repairpath (page 976) option. mongod
(page 971) will read the existing data files, and write the existing data to new data files. This does not modify or
alter the existing data files.

You do not need to remove the mongod.lock file before using this procedure.

2. Use the --repair (page 975) option. mongod (page 971) will read the existing data files, write the existing
data to new files and replace the existing, possibly corrupt, files with new files.

You must remove the mongod.lock file before using this procedure.

Note: --repair (page 975) functionality is also available in the shell with the db.repairDatabase()
(page 944) helper for the repairDatabase (page 863) command.

Procedures

To repair your data files using the --repairpath (page 976) option to preserve the original data files unmodified:

4.2. Backup and Recovery Procedures 53

MongoDB Documentation, Release 2.4.2

1. Start mongod (page 971) using --repair (page 975) to read the existing data files.

mongod --dbpath /data/db --repair --repairpath /data/db0

When this completes, the new repaired data files will be in the
http://docs.mongodb.org/manual/data/db0 directory.

2. Start mongod (page 971) using the following invocation to point the dbpath (page 1029) at
http://docs.mongodb.org/manual/data/db0:

mongod --dbpath /data/db0

Once you confirm that the data files are operational you may delete or archive the data files in the
http://docs.mongodb.org/manual/data/db directory.

To repair your data files without preserving the original files, do not use the --repairpath (page 976) option, as
in the following procedure:

1. Remove the stale lock file:

rm /data/db/mongod.lock

Replace http://docs.mongodb.org/manual/data/db with your dbpath (page 1029) where your
MongoDB instance’s data files reside.

Warning: After you remove the mongod.lock file you must run the --repair (page 975) process
before using your database.

2. Start mongod (page 971) using --repair (page 975) to read the existing data files.

mongod --dbpath /data/db --repair

When this completes, the repaired data files will replace the original data files in the
http://docs.mongodb.org/manual/data/db directory.

3. Start mongod (page 971) using the following invocation to point the dbpath (page 1029) at
http://docs.mongodb.org/manual/data/db:

mongod --dbpath /data/db

mongod.lock

In normal operation, you should never remove the mongod.lock file and start mongod (page 971). Instead consider
the one of the above methods to recover the database and remove the lock files. In dire situations you can remove the
lockfile, and start the database using the possibly corrupt files, and attempt to recover data from the database; however,
it’s impossible to predict the state of the database in these situations.

If you are not running with journaling, and your database shuts down unexpectedly for any reason, you should always
proceed as if your database is in an inconsistent and likely corrupt state. If at all possible restore from backup (page 41)
or, if running as a replica set, restore by performing an initial sync using data from an intact member of the set, as
described in Resync a Member of a Replica Set (page 406).

54 Chapter 4. Backup and Recovery Operations for MongoDB

MongoDB Documentation, Release 2.4.2

4.3 Backup and Restore Sharded Clusters

4.3.1 Backup a Small Sharded Cluster with mongodump

Overview

If your sharded cluster holds a small data set, you can connect to a mongos (page 981) using mongodump (page 992).
You can create backups of your MongoDB cluster, if your backup infrastructure can capture the entire backup in a
reasonable amount of time and if you have a storage system that can hold the complete MongoDB data set.

Read Sharded Cluster Backup Considerations (page 42) for a high-level overview of important considerations as well
as a list of alternate backup tutorials.

Important: By default mongodump (page 992) issue its queries to the non-primary nodes.

Procedure

Capture Data

Note: If you use mongodump (page 992) without specifying the a database or collection, mongodump (page 992)
will capture collection data and the cluster meta-data from the config servers (page 478).

You cannot use the --oplog (page 994) option for mongodump (page 992) when capturing data from mongos
(page 981). This option is only available when running directly against a replica set member.

You can perform a backup of a sharded cluster by connecting mongodump (page 992) to a mongos (page 981). Use
the following operation at your system’s prompt:

mongodump --host mongos3.example.net --port 27017

mongodump (page 992) will write BSON files that hold a copy of data stored in the sharded cluster accessible via the
mongos (page 981) listening on port 27017 of the mongos3.example.net host.

Restore Data

Backups created with mongodump (page 992) do not reflect the chunks or the distribution of data in the sharded
collection or collections. Like all mongodump (page 992) output, these backups contain separate directories for each
database and BSON files for each collection in that database.

You can restore mongodump (page 992) output to any MongoDB instance, including a standalone, a replica set, or a
new sharded cluster. When restoring data to sharded cluster, you must deploy and configure sharding before restoring
data from the backup. See Deploy a Sharded Cluster (page 481) for more information.

4.3.2 Create Backup of a Sharded Cluster with Filesystem Snapshots

Overview

This document describes a procedure for taking a backup of all components of a sharded cluster. This procedure
uses file system snapshots to capture a copy of the mongod (page 971) instance. An alternate procedure that uses

4.3. Backup and Restore Sharded Clusters 55

MongoDB Documentation, Release 2.4.2

mongodump (page 992) to create binary database dumps when file-system snapshots are not available. See Create
Backup of a Sharded Cluster with Database Dumps (page 57) for the alternate procedure.

See Sharded Cluster Backup Considerations (page 42) for a full higher level overview backing up a sharded cluster as
well as links to other tutorials that provide alternate procedures.

Important: To capture a point-in-time backup from a sharded cluster you must stop all writes to the cluster. On a
running production system, you can only capture an approximation of point-in-time snapshot.

Procedure

In this procedure, you will stop the cluster balancer and take a backup up of the config database, and then take backups
of each shard in the cluster using a file-system snapshot tool. If you need an exact moment-in-time snapshot of the
system, you will need to stop all application writes before taking the filesystem snapshots; otherwise the snapshot will
only approximate a moment in time.

For approximate point-in-time snapshots, you can improve the quality of the backup while minimizing impact on the
cluster by taking the backup from a secondary member of the replica set that provides each shard.

1. Disable the balancer process that equalizes the distribution of data among the shards. To disable the balancer,
use the sh.stopBalancer() (page 963) method in the mongo (page 984) shell, and see the Disable the
Balancer (page 507) procedure.

Warning: It is essential that you stop the balancer before creating backups. If the balancer remains active,
your resulting backups could have duplicate data or miss some data, as chunks may migrate while recording
backups.

2. Lock one member of each replica set in each shard so that your backups reflect the state of your database at
the nearest possible approximation of a single moment in time. Lock these mongod (page 971) instances in as
short of an interval as possible.

To lock or freeze a sharded cluster, you must:

• use the db.fsyncLock() (page 938) method in the mongo (page 984) shell connected to a single
secondary member of the replica set that provides shard mongod (page 971) instance.

• Shutdown one of the config servers (page 478), to prevent all metadata changes during the backup process.

3. Use mongodump (page 992) to backup one of the config servers (page 478). This backs up the cluster’s
metadata. You only need to back up one config server, as they all hold the same data.

Issue this command against one of the config mongod (page 971) instances or via the mongos (page 981):

mongodump --db config

4. Back up the replica set members of the shards that you locked. You may back up the shards in parallel. For each
shard, create a snapshot. Use the procedures in Use Filesystem Snapshots to Backup and Restore MongoDB
Databases (page 46).

5. Unlock all locked replica set members of each shard using the db.fsyncUnlock() (page 938) method in
the mongo (page 984) shell.

6. Restore the balancer with the sh.startBalancer() (page 962) method according to the Disable the Bal-
ancer (page 507) procedure.

Use the following command sequence when connected to the mongos (page 981) with the mongo (page 984)
shell:

56 Chapter 4. Backup and Recovery Operations for MongoDB

MongoDB Documentation, Release 2.4.2

use config
sh.startBalancer()

4.3.3 Create Backup of a Sharded Cluster with Database Dumps

Overview

This document describes a procedure for taking a backup of all components of a sharded cluster. This procedure uses
mongodump (page 992) to create dumps of the mongod (page 971) instance. An alternate procedure uses file system
snapshots to capture the backup data, and may be more efficient in some situations if your system configuration allows
file system backups. See Create Backup of a Sharded Cluster with Filesystem Snapshots (page 55).

See Sharded Cluster Backup Considerations (page 42) for a full higher level overview of backing up a sharded cluster
as well as links to other tutorials that provide alternate procedures.

Important: To capture a point-in-time backup from a sharded cluster you must stop all writes to the cluster. On a
running production system, you can only capture an approximation of point-in-time snapshot.

Procedure

In this procedure, you will stop the cluster balancer and take a backup up of the config database, and then take backups
of each shard in the cluster using mongodump (page 992) to capture the backup data. If you need an exact moment-
in-time snapshot of the system, you will need to stop all application writes before taking the filesystem snapshots;
otherwise the snapshot will only approximate a moment of time.

For approximate point-in-time snapshots, you can improve the quality of the backup while minimizing impact on the
cluster by taking the backup from a secondary member of the replica set that provides each shard.

1. Disable the balancer process that equalizes the distribution of data among the shards. To disable the balancer,
use the sh.stopBalancer() (page 963) method in the mongo (page 984) shell, and see the Disable the
Balancer (page 507) procedure.

Warning: It is essential that you stop the balancer before creating backups. If the balancer remains active,
your resulting backups could have duplicate data or miss some data, as chunks migrate while recording
backups.

2. Lock one member of each replica set in each shard so that your backups reflect the state of your database at
the nearest possible approximation of a single moment in time. Lock these mongod (page 971) instances in as
short of an interval as possible.

To lock or freeze a sharded cluster, you must:

• Shutdown one member of each replica set.

Ensure that the oplog has sufficient capacity to allow these secondaries to catch up to the state of the
primaries after finishing the backup procedure. See Oplog (page 372) for more information.

• Shutdown one of the config servers (page 478), to prevent all metadata changes during the backup process.

3. Use mongodump (page 992) to backup one of the config servers (page 478). This backs up the cluster’s
metadata. You only need to back up one config server, as they all hold the same data.

Issue this command against one of the config mongod (page 971) instances or via the mongos (page 981):

4.3. Backup and Restore Sharded Clusters 57

MongoDB Documentation, Release 2.4.2

mongodump --journal --db config

4. Back up the replica set members of the shards that shut down using mongodump (page 992) and specifying the
--dbpath (page 993) option. You may back up the shards in parallel. Consider the following invocation:

mongodump --journal --dbpath /data/db/ --out /data/backup/

You must run this command on the system where the mongod (page 971) ran. This operation will
use journaling and create a dump of the entire mongod (page 971) instance with data files stored in
http://docs.mongodb.org/manual/data/db/. mongodump (page 992) will write the output of
this dump to the http://docs.mongodb.org/manual/data/backup/ directory.

5. Restart all stopped replica set members of each shard as normal and allow them to catch up with the state of the
primary.

6. Restore the balancer with the sh.startBalancer() (page 962) method according to the Disable the Bal-
ancer (page 507) procedure.

Use the following command sequence when connected to the mongos (page 981) with the mongo (page 984)
shell:

use config
sh.startBalancer()

4.3.4 Restore a Single Shard

Overview

Restoring a single shard from backup with other unaffected shards requires a number of special considerations and
practices. This document outlines the additional tasks you must perform when restoring a single shard.

Consider the following resources on backups in general as well as backup and restoration of sharded clusters specifi-
cally:

• Sharded Cluster Backup Considerations (page 42)

• Restore Sharded Clusters (page 59)

• Backup Strategies for MongoDB Systems (page 41)

Procedure

Always restore sharded clusters as a whole. When you restore a single shard, keep in mind that the balancer process
might have moved chunks to or from this shard since the last backup. If that’s the case, you must manually move those
chunks, as described in this procedure.

1. Restore the shard as you would any other mongod (page 971) instance. See Backup Strategies for MongoDB
Systems (page 41) for overviews of these procedures.

2. For all chunks that migrate away from this shard, you do not need to do anything at this time. You do not
need to delete these documents from the shard because the chunks are automatically filtered out from queries by
mongos (page 981). You can remove these documents from the shard, if you like, at your leisure.

3. For chunks that migrate to this shard after the most recent backup, you must manually recover the chunks using
backups of other shards, or some other source. To determine what chunks have moved, view the changelog
collection in the Config Database Contents (page 1093).

58 Chapter 4. Backup and Recovery Operations for MongoDB

MongoDB Documentation, Release 2.4.2

4.3.5 Restore Sharded Clusters

Overview

The procedure outlined in this document addresses how to restore an entire sharded cluster. For information on related
backup procedures consider the following tutorials which describe backup procedures in greater detail:

• Create Backup of a Sharded Cluster with Filesystem Snapshots (page 55)

• Create Backup of a Sharded Cluster with Database Dumps (page 57)

The exact procedure used to restore a database depends on the method used to capture the backup. See the Backup
Strategies for MongoDB Systems (page 41) document for an overview of backups with MongoDB, as well as Sharded
Cluster Backup Considerations (page 42) which provides an overview of the high level concepts important for backing
up sharded clusters.

Procedure

1. Stop all mongod (page 971) and mongos (page 981) processes.

2. If shard hostnames have changed, you must manually update the shards collection in the Config Database
Contents (page 1093) to use the new hostnames. Do the following:

(a) Start the three config servers (page 478) by issuing commands similar to the following, using values
appropriate to your configuration:

mongod --configsvr --dbpath /data/configdb --port 27019

(b) Restore the Config Database Contents (page 1093) on each config server.

(c) Start one mongos (page 981) instance.

(d) Update the Config Database Contents (page 1093) collection named shards to reflect the new hostnames.

3. Restore the following:

• Data files for each server in each shard. Because replica sets provide each production shard, restore all the
members of the replica set or use the other standard approaches for restoring a replica set from backup.
See the Restore a Snapshot (page 48) and Restore a Database with mongorestore (page 45) sections for
details on these procedures.

• Data files for each config server (page 478), if you have not already done so in the previous step.

4. Restart all the mongos (page 981) instances.

5. Restart all the mongod (page 971) instances.

6. Connect to a mongos (page 981) instance from a mongo (page 984) shell and use the
db.printShardingStatus() (page 943) method to ensure that the cluster is operational, as fol-
lows:

db.printShardingStatus()
show collections

4.3.6 Schedule Backup Window for Sharded Clusters

Overview

In a sharded cluster, the balancer process is responsible for distributing sharded data around the cluster, so that each
shard has roughly the same amount of data.

4.3. Backup and Restore Sharded Clusters 59

MongoDB Documentation, Release 2.4.2

However, when creating backups from a sharded cluster it is important that you disable the balancer while taking
backups to ensure that no chunk migrations affect the content of the backup captured by the backup procedure. Using
the procedure outlined in the section Disable the Balancer (page 507) you can manually stop the balancer process
temporarily. As an alternative you can use this procedure to define a balancing window so that the balancer is always
disabled during your automated backup operation.

Procedure

If you have an automated backup schedule, you can disable all balancing operations for a period of time. For instance,
consider the following command:

use config
db.settings.update({ _id : "balancer" }, { $set : { activeWindow : { start : "6:00", stop : "23:00" } } }, true)

This operation configures the balancer to run between 6:00am and 11:00pm, server time. Schedule your backup
operation to run and complete outside of this time. Ensure that the backup can complete outside the window when
the balancer is running and that the balancer can effectively balance the collection among the shards in the window
allotted to each.

60 Chapter 4. Backup and Recovery Operations for MongoDB

CHAPTER 5

Data Center Awareness

MongoDB provides a number of features that allow application developers and database administrators to customize
the behavior of a sharded cluster or replica set deployment so that MongoDB may be more “data center aware,” or
allow operational and location-based separation.

MongoDB also supports segregation based on functional parameters, to ensure that certain mongod (page 971) in-
stances are only used for reporting workloads or that certain high-frequency portions of a sharded collection only exist
on specific shards.

Consider the following documents:

5.1 Operational Segregation in MongoDB Operations and Deploy-
ments

5.1.1 Operational Overview

MongoDB includes a cluster of features that allow database administrators and developers to segregate application
operations to MongoDB deployments by functional or geographical groupings.

This capability provides “data center awareness,” which allows applications to target MongoDB deployments with
consideration of the physical location of mongod (page 971) instances. MongoDB supports segmentation of oper-
ations across different dimensions, which may include multiple data centers and geographical regions in multi-data
center deployments or racks, networks, or power circuits in single data center deployments.

MongoDB also supports segregation of database operations based on functional or operational parameters, to ensure
that certain mongod (page 971) instances are only used for reporting workloads or that certain high-frequency portions
of a sharded collection only exist on specific shards.

Specifically, with MongoDB, you can:

• ensure write operations propagate to specific members of a replica set, or to specific members of replica sets.

• ensure that specific members of a replica set respond to queries.

• ensure that specific ranges of your shard key balance onto and reside on specific shards.

• combine the above features in a single distributed deployment, on a per-operation (for read and write operations)
and collection (for chunk distribution in sharded clusters distribution) basis.

For full documentation of these features, see the following documentation in the MongoDB Manual:

61

MongoDB Documentation, Release 2.4.2

• Read Preferences (page 381), which controls how drivers help applications target read operations to members
of a replica set.

• Write Concerns (page 378), which controls how MongoDB ensures that write operations propagate to members
of a replica set.

• Replica Set Tags (page 433), which control how applications create and interact with custom groupings of replica
set members to create custom application-specific read preferences and write concerns.

• Tag Aware Sharding (page 510), which allows MongoDB administrators to define an application-specific bal-
ancing policy, to control how documents belonging to specific ranges of a shard key distribute to shards in the
sharded cluster.

See Also:

Before adding operational segregation features to your application and MongoDB deployment, become familiar with
all documentation of replication (page 365) and sharding (page 461), particularly Replica Set Fundamental Concepts
(page 367) and Sharded Cluster Overview (page 463).

5.2 Tag Aware Sharding

For sharded clusters, MongoDB makes it possible to associate specific ranges of a shard key with a specific shard or
subset of shards. This association dictates the policy of the cluster balancer process as it balances the chunks around
the cluster. This capability enables the following deployment patterns:

• isolating a specific subset of data on specific set of shards.

• controlling the balancing policy so that in a geographically distributed cluster the most relevant portions of the
data set reside on the shards with greatest proximity to the application servers.

This document describes the behavior, operation, and use of tag aware sharding in MongoDB deployments.

Note: Shard key range tags are entirely distinct from replica set member tags (page 383).

Hash-based sharding does not support tag-aware sharding.

5.2.1 Behavior and Operations

Tags in a sharded cluster are pieces of metadata that dictate the policy and behavior of the cluster balancer. Using
tags, you may associate individual shards in a cluster with one or more tags. Then, you can assign this tag string to
a range of shard key values for a sharded collection. When migrating a chunk, the balancer will select a destination
shard based on the configured tag ranges.

The balancer migrates chunks in tagged ranges to shards with those tags, if tagged shards are not balanced. 1

Note: Because a single chunk may span different tagged shard key ranges, the balancer may migrate chunks to tagged
shards that contain values that exceed the upper bound of the selected tag range.

Example

Given a sharded collection with two configured tag ranges, such that:

• Shard key values between 100 and 200 have tags to direct corresponding chunks to shards tagged NYC.
1 To migrate chunks in a tagged environment, the balancer selects a target shard with a tag range that has an upper bound that is greater than the

migrating chunk’s lower bound. If a shard with a matching tagged range exists, the balancer will migrate the chunk to that shard.

62 Chapter 5. Data Center Awareness

MongoDB Documentation, Release 2.4.2

• Shard Key values between 200 and 300 have tags to direct corresponding chunks to shards tagged SFO.

In this cluster, the balancer will migrate a chunk with shard key values ranging between 150 and 220 to a shard
tagged NYC, since 150 is closer to 200 than 300.

After configuring tags on shards and ranges of the shard key, the cluster may take some time to reach the proper
distribution of data, depending on the division of chunks (i.e. splits) and the current distribution of data in the cluster.
Once configured, the balancer will respect tag ranges during future balancing rounds (page 475).

See Also:

Administer and Manage Shard Tags (page 495)

5.3 Administer and Manage Shard Tags

In a sharded cluster, you can use tags to associate specific ranges of a shard key with a specific shard or subset of
shards.

5.3.1 Tag a Shard

Associate tags with a particular shard using the sh.addShardTag() (page 956) method when connected to a
mongos (page 981) instance. A single shard may have multiple tags, and multiple shards may also have the same tag.

Example

The following example adds the tag NYC to two shards, and the tags SFO and NRT to a third shard:

sh.addShardTag("shard0000", "NYC")
sh.addShardTag("shard0001", "NYC")
sh.addShardTag("shard0002", "SFO")
sh.addShardTag("shard0002", "NRT")

You may remove tags from a particular shard using the sh.removeShardTag() (page 960) method when con-
nected to a mongos (page 981) instance, as in the following example, which removes the NRT tag from a shard:

sh.removeShardTag("shard0002", "NRT")

5.3.2 Tag a Shard Key Range

To assign a tag to a range of shard keys use the sh.addTagRange() (page 956) method when connected to a
mongos (page 981) instance. Any given shard key range may only have one assigned tag. You cannot overlap defined
ranges, or tag the same range more than once.

Example

Given a collection named users in the records database, sharded by the zipcode field. The following operations
assign:

• two ranges of zip codes in Manhattan and Brooklyn the NYC tag

• one range of zip codes in San Francisco the SFO tag

5.3. Administer and Manage Shard Tags 63

MongoDB Documentation, Release 2.4.2

sh.addTagRange("records.users", { zipcode: "10001" }, { zipcode: "10281" }, "NYC")
sh.addTagRange("records.users", { zipcode: "11201" }, { zipcode: "11240" }, "NYC")
sh.addTagRange("records.users", { zipcode: "94102" }, { zipcode: "94135" }, "SFO")

Note: Shard ranges are always inclusive of the lower value and exclusive of the upper boundary.

5.3.3 Remove a Tag From a Shard Key Range

The mongod (page 971) does not provide a helper for removing a tag range. You may delete tag assignment from
a shard key range by removing the corresponding document from the tags (page 1098) collection of the config
database.

Each document in the tags (page 1098) holds the namespace of the sharded collection and a minimum shard key
value.

Example

The following example removes the NYC tag assignment for the range of zip codes within Manhattan:

use config
db.tags.remove({ _id: { ns: "records.users", min: { zipcode: "10001" }}, tag: "NYC" })

5.3.4 View Existing Shard Tags

The output from sh.status() (page 962) lists tags associated with a shard, if any, for each shard. A shard’s tags
exist in the shard’s document in the shards (page 1097) collection of the config database. To return all shards with
a specific tag, use a sequence of operations that resemble the following, which will return only those shards tagged
with NYC:

use config
db.shards.find({ tags: "NYC" })

You can find tag ranges for all namespaces in the tags (page 1098) collection of the config database. The output of
sh.status() (page 962) displays all tag ranges. To return all shard key ranges tagged with NYC, use the following
sequence of operations:

use config
db.tags.find({ tags: "NYC" })

5.4 Deploy a Geographically Distributed Replica Set

This tutorial outlines the process for deploying a replica set with members in multiple locations. The tutorial addresses
three-member sets, four-member sets, and sets with more than four members.

For appropriate background, see Replica Set Fundamental Concepts (page 367) and Replica Set Architectures and
Deployment Patterns (page 375). For related tutorials, see Deploy a Replica Set (page 397) and Add Members to a
Replica Set (page 402).

64 Chapter 5. Data Center Awareness

MongoDB Documentation, Release 2.4.2

5.4.1 Overview

While replica sets provide basic protection against single-instance failure, when all of the members of a replica set
reside in a single facility, the replica set is still susceptible to some classes of errors in that facility including power
outages, networking distortions, and natural disasters. To protect against these classes of failures, deploy a replica set
with one or more members in a geographically distinct facility or data center.

5.4.2 Requirements

For a three-member replica set you need two instances in a primary facility (hereafter, “Site A”) and one member in
a secondary facility (hereafter, “Site B”.) Site A should be the same facility or very close to your primary application
infrastructure (i.e. application servers, caching layer, users, etc.)

For a four-member replica set you need two members in Site A, two members in Site B (or one member in Site B and
one member in Site C,) and a single arbiter in Site A.

For replica sets with additional members in the secondary facility or with multiple secondary facilities, the require-
ments are the same as above but with the following notes:

• Ensure that a majority of the voting members (page 369) are within Site A. This includes secondary-only mem-
bers (page 368) and arbiters (page 368) For more information on the need to keep the voting majority on one
site, see Elections (page 369).

• If you deploy a replica set with an uneven number of members, deploy an arbiter (page 368) on Site A. The
arbiter must be on site A to keep the majority there.

For all configurations in this tutorial, deploy each replica set member on a separate system. Although you may deploy
more than one replica set member on a single system, doing so reduces the redundancy and capacity of the replica set.
Such deployments are typically for testing purposes and beyond the scope of this tutorial.

5.4.3 Procedures

Deploy a Distributed Three-Member Replica Set

A geographically distributed three-member deployment has the following features:

• Each member of the replica set resides on its own machine, and the MongoDB processes all bind to port 27017,
which is the standard MongoDB port.

• Each member of the replica set must be accessible by way of resolvable DNS or hostnames in the following
scheme:

– mongodb0.example.net

– mongodb1.example.net

– mongodb2.example.net

Configure DNS names appropriately, or set up your systems’ http://docs.mongodb.org/manual/etc/hosts
file to reflect this configuration. Ensure that one system (e.g. mongodb2.example.net) resides in Site B.
Host all other systems in Site A.

• Ensure that network traffic can pass between all members in the network securely and efficiently. Consider the
following:

– Establish a virtual private network between the systems in Site A and Site B to encrypt all traffic between
the sites and remains private. Ensure that your network topology routes all traffic between members within
a single site over the local area network.

5.4. Deploy a Geographically Distributed Replica Set 65

MongoDB Documentation, Release 2.4.2

– Configure authentication using auth (page 1029) and keyFile (page 1028), so that only servers and
process with authentication can connect to the replica set.

– Configure networking and firewall rules so that only traffic (incoming and outgoing packets) on the default
MongoDB port (e.g. 27017) from within your deployment.

See Also:

For more information on security and firewalls, see Security (page 373).

• Specify run-time configuration on each system in a configuration file (page 1026) stored in
http://docs.mongodb.org/manual/etc/mongodb.conf or in a related location. Do not specify
run-time configuration through command line options.

For each MongoDB instance, use the following configuration, with values set appropriate to your systems:

port = 27017

bind_ip = 10.8.0.10

dbpath = /srv/mongodb/

fork = true

replSet = rs0/mongodb0.example.net,mongodb1.example.net,mongodb2.example.net

Modify bind_ip (page 1027) to reflect a secure interface on your system that is able to access all other
members of the set and that is accessible to all other members of the replica set. The DNS or host names need to
point and resolve to this IP address. Configure network rules or a virtual private network (i.e. “VPN”) to permit
this access.

Note: The portion of the replSet (page 1034) following the http://docs.mongodb.org/manual/
provides a “seed list” of known members of the replica set. mongod (page 971) uses this list to fetch configura-
tion changes following restarts. It is acceptable to omit this section entirely, and have the replSet (page 1034)
option resemble:

replSet = rs0

For more documentation on the above run time configurations, as well as additional configuration options, see
Configuration File Options (page 1026).

To deploy a geographically distributed three-member set:

1. On each system start the mongod (page 971) process by issuing a command similar to following:

mongod --config /etc/mongodb.conf

Note: In production deployments you likely want to use and configure a control script to manage this process
based on this command. Control scripts are beyond the scope of this document.

2. Open a mongo (page 984) shell connected to one of the mongod (page 971) instances:

mongo

3. Use the rs.initiate() (page 951) method on one member to initiate a replica set consisting of the current
member and using the default configuration:

rs.initiate()

66 Chapter 5. Data Center Awareness

MongoDB Documentation, Release 2.4.2

4. Display the current replica configuration (page 441):

rs.conf()

5. Add the remaining members to the replica set by issuing a sequence of commands similar to the following. The
example commands assume the current primary is mongodb0.example.net:

rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")

6. Make sure that you have configured the member located in Site B (i.e. mongodb2.example.net) as a
secondary-only member (page 368):

(a) Issue the following command to determine the _id (page 441) value for mongodb2.example.net:

rs.conf()

(b) In the members (page 441) array, save the _id (page 441) value. The example in the next step assumes
this value is 2.

(c) In the mongo (page 984) shell connected to the replica set’s primary, issue a command sequence similar
to the following:

cfg = rs.conf()
cfg.members[2].priority = 0
rs.reconfig(cfg)

Note: In some situations, the rs.reconfig() (page 951) shell method can force the current primary
to step down and causes an election. When the primary steps down, all clients will disconnect. This is
the intended behavior. While, this typically takes 10-20 seconds, attempt to make these changes during
scheduled maintenance periods.

After these commands return you have a geographically distributed three-member replica set.

7. To check the status of your replica set, issue rs.status() (page 953).

See Also:

The documentation of the following shell functions for more information:

• rs.initiate() (page 951)

• rs.conf() (page 950)

• rs.reconfig() (page 951)

• rs.add() (page 949)

Deploy a Distributed Four-Member Replica Set

A geographically distributed four-member deployment has the following features:

• Each member of the replica set, except for the arbiter (see below), resides on its own machine, and the MongoDB
processes all bind to port 27017, which is the standard MongoDB port.

• Each member of the replica set must be accessible by way of resolvable DNS or hostnames in the following
scheme:

– mongodb0.example.net

– mongodb1.example.net

5.4. Deploy a Geographically Distributed Replica Set 67

MongoDB Documentation, Release 2.4.2

– mongodb2.example.net

– mongodb3.example.net

Configure DNS names appropriately, or set up your systems’ http://docs.mongodb.org/manual/etc/host
file to reflect this configuration. Ensure that one system (e.g. mongodb2.example.net) resides in Site B.
Host all other systems in Site A.

• One host (e.g. mongodb3.example.net) will be an arbiter and can run on a system that is also used for an
application server or some other shared purpose.

• There are three possible architectures for this replica set:

– Two members in Site A, two secondary-only members (page 368) in Site B, and an arbiter in Site A.

– Three members in Site A and one secondary-only member in Site B.

– Two members in Site A, one secondary-only member in Site B, one secondary-only member in Site C, and
an arbiter in site A.

In most cases the first architecture is preferable because it is the least complex.

• Ensure that network traffic can pass between all members in the network securely and efficiently. Consider the
following:

– Establish a virtual private network between the systems in Site A and Site B (and Site C if it exists) to
encrypt all traffic between the sites and remains private. Ensure that your network topology routes all
traffic between members within a single site over the local area network.

– Configure authentication using auth (page 1029) and keyFile (page 1028), so that only servers and
process with authentication can connect to the replica set.

– Configure networking and firewall rules so that only traffic (incoming and outgoing packets) on the default
MongoDB port (e.g. 27017) from within your deployment.

See Also:

For more information on security and firewalls, see Security (page 373).

• Specify run-time configuration on each system in a configuration file (page 1026) stored in
http://docs.mongodb.org/manual/etc/mongodb.conf or in a related location. Do not specify
run-time configuration through command line options.

For each MongoDB instance, use the following configuration, with values set appropriate to your systems:

port = 27017

bind_ip = 10.8.0.10

dbpath = /srv/mongodb/

fork = true

replSet = rs0/mongodb0.example.net,mongodb1.example.net,mongodb2.example.net,mongodb3.example.net

Modify bind_ip (page 1027) to reflect a secure interface on your system that is able to access all other
members of the set and that is accessible to all other members of the replica set. The DNS or host names need to
point and resolve to this IP address. Configure network rules or a virtual private network (i.e. “VPN”) to permit
this access.

Note: The portion of the replSet (page 1034) following the http://docs.mongodb.org/manual/
provides a “seed list” of known members of the replica set. mongod (page 971) uses this list to fetch configura-

68 Chapter 5. Data Center Awareness

MongoDB Documentation, Release 2.4.2

tion changes following restarts. It is acceptable to omit this section entirely, and have the replSet (page 1034)
option resemble:

replSet = rs0

For more documentation on the above run time configurations, as well as additional configuration options, see
doc:/reference/configuration-options.

To deploy a geographically distributed four-member set:

1. On each system start the mongod (page 971) process by issuing a command similar to following:

mongod --config /etc/mongodb.conf

Note: In production deployments you likely want to use and configure a control script to manage this process
based on this command. Control scripts are beyond the scope of this document.

2. Open a mongo (page 984) shell connected to this host:

mongo

3. Use rs.initiate() (page 951) to initiate a replica set consisting of the current member and using the default
configuration:

rs.initiate()

4. Display the current replica configuration (page 441):

rs.conf()

5. Add the remaining members to the replica set by issuing a sequence of commands similar to the following. The
example commands assume the current primary is mongodb0.example.net:

rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")
rs.add("mongodb3.example.net")

6. In the same shell session, issue the following command to add the arbiter (e.g. mongodb4.example.net):

rs.addArb("mongodb4.example.net")

7. Make sure that you have configured each member located in Site B (e.g. mongodb3.example.net) as a
secondary-only member (page 368):

(a) Issue the following command to determine the _id (page 441) value for the member:

rs.conf()

(b) In the members (page 441) array, save the _id (page 441) value. The example in the next step assumes
this value is 2.

(c) In the mongo (page 984) shell connected to the replica set’s primary, issue a command sequence similar
to the following:

cfg = rs.conf()
cfg.members[2].priority = 0
rs.reconfig(cfg)

5.4. Deploy a Geographically Distributed Replica Set 69

MongoDB Documentation, Release 2.4.2

Note: In some situations, the rs.reconfig() (page 951) shell method can force the current primary
to step down and causes an election. When the primary steps down, all clients will disconnect. This is
the intended behavior. While, this typically takes 10-20 seconds, attempt to make these changes during
scheduled maintenance periods.

After these commands return you have a geographically distributed four-member replica set.

8. To check the status of your replica set, issue rs.status() (page 953).

See Also:

The documentation of the following shell functions for more information:

• rs.initiate() (page 951)

• rs.conf() (page 950)

• rs.reconfig() (page 951)

• rs.add() (page 949)

Deploy a Distributed Set with More than Four Members

The procedure for deploying a geographically distributed set with more than four members is similar to the above
procedures, with the following differences:

• Never deploy more than seven voting members.

• Use the procedure for a four-member set if you have an even number of members (see Deploy a Distributed
Four-Member Replica Set (page 410)). Ensure that Site A always has a majority of the members by deploying
the arbiter within Site A. For six member sets, deploy at least three voting members in addition to the arbiter in
Site A, the remaining members in alternate sites.

• Use the procedure for a three-member set if you have an odd number of members (see Deploy a Distributed
Three-Member Replica Set (page 408)). Ensure that Site A always has a majority of the members of the set. For
example, if a set has five members, deploy three members within the primary facility and two members in other
facilities.

• If you have a majority of the members of the set outside of Site A and the network partitions to prevent com-
munication between sites, the current primary in Site A will step down, even if none of the members outside of
Site A are eligible to become primary.

Additionally, consider the Write Concern (page 378) and Read Preference (page 381) documents, which addresses
capabilities related to data center awareness.

70 Chapter 5. Data Center Awareness

CHAPTER 6

Journaling

MongoDB uses write ahead logging to an on-disk journal to guarantee write operation (page 173) durability and to
provide crash resiliency. Before applying a change to the data files, MongoDB writes the change operation to the
journal. If MongoDB should terminate or encounter an error before it can write the changes from the journal to the
data files, MongoDB can re-apply the write operation and maintain a consistent state.

Without a journal, if mongod (page 971) exits unexpectedly, you must assume your data is in an inconsistent state,
and you must run either repair (page 52) or, preferably, resync (page 406) from a clean member of the replica set.

With journaling enabled, if mongod (page 971) stops unexpectedly, the program can recover everything written to the
journal, and the data remains in a consistent state. By default, the greatest extent of lost writes, i.e., those not made to
the journal, is no more than the last 100 milliseconds.

With journaling, if you want a data set to reside entirely in RAM, you need enough RAM to hold the dataset plus
the “write working set.” The “write working set” is the amount of unique data you expect to see written between
re-mappings of the private view. For information on views, see Storage Views used in Journaling (page 74).

Important: Changed in version 2.0: For 64-bit builds of mongod (page 971), journaling is enabled by default. For
other platforms, see journal (page 1030).

6.1 Procedures

6.1.1 Enable Journaling

Changed in version 2.0: For 64-bit builds of mongod (page 971), journaling is enabled by default. To enable journal-
ing, start mongod (page 971) with the --journal (page 974) command line option.

If no journal files exist, when mongod (page 971) starts, it must preallocate new journal files. During this operation,
the mongod (page 971) is not listening for connections until preallocation completes: for some systems this may take
a several minutes. During this period your applications and the mongo (page 984) shell are not available.

71

MongoDB Documentation, Release 2.4.2

6.1.2 Disable Journaling

Warning: Do not disable journaling on production systems. If your mongod (page 971) instance stops without
shutting down cleanly unexpectedly for any reason, (e.g. power failure) and you are not running with journaling,
then you must recover from an unaffected replica set member or backup, as described in repair (page 52).

To disable journaling, start mongod (page 971) with the --nojournal (page 975) command line option.

6.1.3 Get Commit Acknowledgment

You can get commit acknowledgment with the getLastError (page 837) command and the j option. For details,
see Internal Operation of Write Concern (page 175).

6.1.4 Avoid Preallocation Lag

To avoid preallocation lag (page 73), you can preallocate files in the journal directory by copying them from another
instance of mongod (page 971).

Preallocated files do not contain data. It is safe to later remove them. But if you restart mongod (page 971) with
journaling, mongod (page 971) will create them again.

Example

The following sequence preallocates journal files for an instance of mongod (page 971) running on port 27017 with
a database path of http://docs.mongodb.org/manual/data/db.

For demonstration purposes, the sequence starts by creating a set of journal files in the usual way.

1. Create a temporary directory into which to create a set of journal files:

mkdir ~/tmpDbpath

2. Create a set of journal files by staring a mongod (page 971) instance that uses the temporary directory:

mongod --port 10000 --dbpath ~/tmpDbpath --journal

3. When you see the following log output, indicating mongod (page 971) has the files, press CONTROL+C to
stop the mongod (page 971) instance:

web admin interface listening on port 11000

4. Preallocate journal files for the new instance of mongod (page 971) by moving the journal files from the data
directory of the existing instance to the data directory of the new instance:

mv ~/tmpDbpath/journal /data/db/

5. Start the new mongod (page 971) instance:

mongod --port 27017 --dbpath /data/db --journal

6.1.5 Monitor Journal Status

Use the following commands and methods to monitor journal status:

72 Chapter 6. Journaling

MongoDB Documentation, Release 2.4.2

• serverStatus (page 869)

The serverStatus (page 869) command returns database status information that is useful for assessing
performance.

• journalLatencyTest (page 849)

Use journalLatencyTest (page 849) to measure how long it takes on your volume to write to the disk in
an append-only fashion. You can run this command on an idle system to get a baseline sync time for journaling.
You can also run this command on a busy system to see the sync time on a busy system, which may be higher if
the journal directory is on the same volume as the data files.

The journalLatencyTest (page 849) command also provides a way to check if your disk drive is buffering
writes in its local cache. If the number is very low (i.e., less than 2 milliseconds) and the drive is non-SSD, the
drive is probably buffering writes. In that case, enable cache write-through for the device in your operating
system, unless you have a disk controller card with battery backed RAM.

6.1.6 Change the Group Commit Interval

Changed in version 2.0. You can set the group commit interval using the --journalCommitInterval (page 974)
command line option. The allowed range is 2 to 300 milliseconds.

Lower values increase the durability of the journal at the expense of disk performance.

6.1.7 Recover Data After Unexpected Shutdown

On a restart after a crash, MongoDB replays all journal files in the journal directory before the server becomes avail-
able. If MongoDB must replay journal files, mongod (page 971) notes these events in the log output.

There is no reason to run repairDatabase (page 863) in these situations.

6.2 Journaling Internals

When running with journaling, MongoDB stores and applies write operations (page 173) in memory and in the journal
before the changes are in the data files.

6.2.1 Journal Files

With journaling enabled, MongoDB creates a journal directory within the directory defined by dbpath (page 1029),
which is http://docs.mongodb.org/manual/data/db by default. The journal directory holds journal files,
which contain write-ahead redo logs. The directory also holds a last-sequence-number file. A clean shutdown removes
all the files in the journal directory.

Journal files are append-only files and have file names prefixed with j._. When a journal file holds 1 gigabyte of data,
MongoDB creates a new journal file. Once MongoDB applies all the write operations in the journal files, it deletes
these files. Unless you write many bytes of data per-second, the journal directory should contain only two or three
journal files.

To limit the size of each journal file to 128 megabytes, use the smallfiles (page 1032) run time option when
starting mongod (page 971).

To speed the frequent sequential writes that occur to the current journal file, you can ensure that the journal directory
is on a different system.

6.2. Journaling Internals 73

MongoDB Documentation, Release 2.4.2

Important: If you place the journal on a different filesystem from your data files you cannot use a filesystem snapshot
to capture consistent backups of a dbpath (page 1029) directory.

Note: Depending on your file system, you might experience a preallocation lag the first time you start a mongod
(page 971) instance with journaling enabled. MongoDB preallocates journal files if it is faster on your file system
to create files of a pre-defined. The amount of time required to pre-allocate lag might last several minutes, during
which you will not be able to connect to the database. This is a one-time preallocation and does not occur with future
invocations.

To avoid preallocation lag, see Avoid Preallocation Lag (page 72).

6.2.2 Storage Views used in Journaling

Journaling adds three storage views to MongoDB.

The shared view stores modified data for upload to the MongoDB data files. The shared view is the only view
with direct access to the MongoDB data files. When running with journaling, mongod (page 971) asks the operating
system to map your existing on-disk data files to the shared view memory view. The operating system maps the
files but does not load them. MongoDB later loads data files to shared view as needed.

The private view stores data for use in read operations (page 161). MongoDB maps private view to the
shared view and is the first place MongoDB applies new write operations (page 173).

The journal is an on-disk view that stores new write operations after MongoDB applies the operation to the private
cache but before applying them to the data files. The journal provides durability. If the mongod (page 971) instance
were to crash without having applied the writes to the data files, the journal could replay the writes to the shared
view for eventual upload to the data files.

6.2.3 How Journaling Records Write Operations

MongoDB copies the write operations to the journal in batches called group commits. By default, MongoDB performs
a group commit every 100 milliseconds: as a result MongoDB commits all operations within a 100 millisecond window
in a single batch. These “group commits” help minimize the performance impact of journaling.

Journaling stores raw operations that allow MongoDB to reconstruct the following:

• document insertion/updates

• index modifications

• changes to the namespace files

As write operations (page 173) occur, MongoDB writes the data to the private view in RAM and then copies the
write operations in batches to the journal. The journal stores the operations on disk to ensure durability. MongoDB
adds the operations as entries on the journal’s forward pointer. Each entry describes which bytes the write operation
changed in the data files.

MongoDB next applies the journal’s write operations to the shared view. At this point, the shared view
becomes inconsistent with the data files.

At default intervals of 60 seconds, MongoDB asks the operating system to flush the shared view to disk. This
brings the data files up-to-date with the latest write operations.

When MongoDB flushes write operations to the data files, MongoDB removes the write operations from the journal’s
behind pointer. The behind pointer is always far back from advanced pointer.

74 Chapter 6. Journaling

MongoDB Documentation, Release 2.4.2

As part of journaling, MongoDB routinely asks the operating system to remap the shared view to the private
view, for consistency.

Note: The interaction between the shared view and the on-disk data files is similar to how MongoDB works
without journaling, which is that MongoDB asks the operating system to flush in-memory changes back to the data
files every 60 seconds.

6.2. Journaling Internals 75

MongoDB Documentation, Release 2.4.2

76 Chapter 6. Journaling

CHAPTER 7

Connect to MongoDB with SSL

This document outlines the use and operation of MongoDB’s SSL support. SSL allows MongoDB clients to support
encrypted connections to mongod (page 971) instances.

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL, you must either build
MongoDB locally passing the “--ssl” option to scons or use MongoDB Enterprise.

These instructions outline the process for getting started with SSL and assume that you have already installed a build
of MongoDB that includes SSL support and that your client driver supports SSL.

7.1 Configure mongod and mongos for SSL

7.1.1 Combine SSL Certificate and Key File

Before you can use SSL, you must have a .pem file that contains the public key certificate and private key. MongoDB
can use any valid SSL certificate. To generate a self-signed certificate and private key, use a command that resembles
the following:

cd /etc/ssl/
openssl req -new -x509 -days 365 -nodes -out mongodb-cert.crt -keyout mongodb-cert.key

This operation generates a new, self-signed certificate with no passphrase that is valid for 365 days. Once you have
the certificate, concatenate the certificate and private key to a .pem file, as in the following example:

cat mongodb-cert.key mongodb-cert.crt > mongodb.pem

7.1.2 Set Up mongod and mongos with SSL Certificate and Key

To use SSL in your MongoDB deployment, include the following run-time options with mongod (page 971) and
mongos (page 981):

• sslOnNormalPorts (page 1037)

• sslPEMKeyFile (page 1037) with the .pem file that contains the SSL certificate and key.

Consider the following syntax for mongod (page 971):

77

http://www.mongodb.org/downloads
http://www.10gen.com/products/mongodb-enterprise

MongoDB Documentation, Release 2.4.2

mongod --sslOnNormalPorts --sslPEMKeyFile <pem>

For example, given an SSL certificate located at http://docs.mongodb.org/manual/etc/ssl/mongodb.pem,
configure mongod (page 971) to use SSL encryption for all connections with the following command:

mongod --sslOnNormalPorts --sslPEMKeyFile /etc/ssl/mongodb.pem

Note:

• Specify <pem> with the full path name to the certificate.

• If the private key portion of the <pem> is encrypted, specify the encryption password with the
sslPEMKeyPassword (page 1037) option.

• You may also specify these options in the configuration file (page 1026), as in the following example:

sslOnNormalPorts = true
sslPEMKeyFile = /etc/ssl/mongodb.pem

To connect, to mongod (page 971) and mongos (page 981) instances using SSL, the mongo (page 984) shell and
MongoDB tools must include the --ssl option. See SSL Configuration for Clients (page 80) for more information
on connecting to mongod (page 971) and mongos (page 981) running with SSL.

7.1.3 Set Up mongod and mongos with Certificate Validation

To set up mongod (page 971) or mongos (page 981) for SSL encryption using an SSL certificate signed by a certifi-
cate authority, include the following run-time options during startup:

• sslOnNormalPorts (page 1037)

• sslPEMKeyFile (page 1037) with the name of the .pem file that contains the signed SSL certificate and key.

• sslCAFile (page 1038) with the name of the .pem file that contains the root certificate chain from the
Certificate Authority.

Consider the following syntax for mongod (page 971):

mongod --sslOnNormalPorts --sslPEMKeyFile <pem> --sslCAFile <ca>

For example, given a signed SSL certificate located at http://docs.mongodb.org/manual/etc/ssl/mongodb.pem
and the certificate authority file at http://docs.mongodb.org/manual/etc/ssl/ca.pem, you can con-
figure mongod (page 971) for SSL encryption as follows:

mongod --sslOnNormalPorts --sslPEMKeyFile /etc/ssl/mongodb.pem --sslCAFile /etc/ssl/ca.pem

Note:

• Specify the <pem> file and the <ca> file with either the full path name or the relative path name.

• If the <pem> is encrypted, specify the encryption password with the sslPEMKeyPassword (page 1037)
option.

• You may also specify these options in the configuration file (page 1026), as in the following example:

sslOnNormalPorts = true
sslPEMKeyFile = /etc/ssl/mongodb.pem
sslCAFile = /etc/ssl/ca.pem

78 Chapter 7. Connect to MongoDB with SSL

MongoDB Documentation, Release 2.4.2

To connect, to mongod (page 971) and mongos (page 981) instances using SSL, the mongo (page 984) tools must
include the both the --ssl (page 985) and --sslPEMKeyFile (page 986) option. See SSL Configuration for
Clients (page 80) for more information on connecting to mongod (page 971) and mongos (page 981) running with
SSL.

Block Revoked Certificates for Clients

To prevent clients with revoked certificates from connecting, include the sslCRLFile (page 1038) to specify a .pem
file that contains revoked certificates.

For example, the following mongod (page 971) with SSL configuration includes the sslCRLFile (page 1038)
setting:

mongod --sslOnNormalPorts --sslCRLFile /etc/ssl/ca-crl.pem --sslPEMKeyFile /etc/ssl/mongodb.pem --sslCAFile /etc/ssl/ca.pem

Clients with revoked certificates in the http://docs.mongodb.org/manual/etc/ssl/ca-crl.pem will
not be able to connect to this mongod (page 971) instance.

Validate Only if a Client Presents a Certificate

In most cases it is important to ensure that clients present valid certificates. However, if you have clients that cannot
present a client certificate, or are transitioning to using a certificate authority you may only want to validate certificates
from clients that present a certificate.

If you want to bypass validation for clients that don’t present certificates, include the
sslWeakCertificateValidation (page 1038) run-time option with mongod (page 971) and mongos
(page 981). If the client does not present a certificate, no validation occurs. These connections, though not validated,
are still encrypted using SSL.

For example, consider the following mongod (page 971) with an SSL configuration that includes the
sslWeakCertificateValidation (page 1038) setting:

mongod --sslOnNormalPorts --sslWeakCertificateValidation --sslPEMKeyFile /etc/ssl/mongodb.pem --sslCAFile /etc/ssl/ca.pem

Then, clients can connect either with the option --ssl (page 985) and no certificate or with the option --ssl
(page 985) and a valid certificate. See SSL Configuration for Clients (page 80) for more information on SSL connec-
tions for clients.

Note: If the client presents a certificate, the certificate must be a valid certificate.

All connections, including those that have not presented certificates are encrypted using SSL.

7.1.4 Run in FIPS Mode

If your mongod (page 971) or mongos (page 981) is running on a system with an OpenSSL library configured
with the FIPS 140-2 module, you can run mongod (page 971) or mongos (page 981) in FIPS mode, with the
sslFIPSMode (page 1038) setting.

7.1. Configure mongod and mongos for SSL 79

MongoDB Documentation, Release 2.4.2

7.2 SSL Configuration for Clients

Clients must have support for SSL to work with a mongod (page 971) or a mongos (page 981) instance that has SSL
support enabled. The current versions of the Python, Java, Ruby, Node.js, .NET, and C++ drivers have support for
SSL, with full support coming in future releases of other drivers.

7.2.1 mongo SSL Configuration

For SSL connections, you must use the mongo (page 984) shell built with SSL support or distributed with MongoDB
Enterprise. To support SSL, mongo (page 984) has the following settings:

• --ssl (page 985)

• --sslPEMKeyFile (page 1037) with the name of the .pem file that contains the SSL certificate and key.

• --sslCAFile (page 1038) with the name of the .pem file that contains the certificate from the Certificate
Authority.

• --sslPEMKeyPassword (page 1037) option if the client certificate-key file is encrypted.

Connect to MongoDB Instance with SSL Encryption

To connect to a mongod (page 971) or mongos (page 981) instance that requires only a SSL encryption mode
(page 77), start mongo (page 984) shell with --ssl (page 985), as in the following:

mongo --ssl

Connect to MongoDB Instance that Requires Client Certificates

To connect to a mongod (page 971) or mongos (page 981) that requires CA-signed client certificates (page 78), start
the mongo (page 984) shell with --ssl (page 985) and the --sslPEMKeyFile (page 1037) option to specify the
signed certificate-key file, as in the following:

mongo --ssl --sslPEMKeyFile /etc/ssl/client.pem

Connect to MongoDB Instance that Validates when Presented with a Certificate

To connect to a mongod (page 971) or mongos (page 981) instance that only requires valid certificates when the
client presents a certificate (page 79), start mongo (page 984) shell either with the --ssl (page 985) ssl and no
certificate or with the --ssl (page 985) ssl and a valid signed certificate.

For example, if mongod (page 971) is running with weak certificate validation, both of the following mongo
(page 984) shell clients can connect to that mongod (page 971):

mongo --ssl
mongo --ssl --sslPEMKeyFile /etc/ssl/client.pem

Important: If the client presents a certificate, the certificate must be valid.

80 Chapter 7. Connect to MongoDB with SSL

MongoDB Documentation, Release 2.4.2

7.2.2 MMS

The MMS agent will also have to connect via SSL in order to gather its stats. Because the agent already utilizes SSL
for its communications to the MMS servers, this is just a matter of enabling SSL support in MMS itself on a per host
basis.

Use the “Edit” host button (i.e. the pencil) on the Hosts page in the MMS console and is currently enabled on a group
by group basis by 10gen.

Please see the MMS Manual for more information about MMS configuration.

7.2.3 PyMongo

Add the “ssl=True” parameter to a PyMongo MongoClient to create a MongoDB connection to an SSL Mon-
goDB instance:

from pymongo import MongoClient
c = MongoClient(host="mongodb.example.net", port=27017, ssl=True)

To connect to a replica set, use the following operation:

from pymongo import MongoReplicaSetClient
c = MongoReplicaSetClient("mongodb.example.net:27017",

replicaSet="mysetname", ssl=True)

PyMongo also supports an “ssl=true” option for the MongoDB URI:

mongodb://mongodb.example.net:27017/?ssl=true

7.2.4 Java

Consider the following example “SSLApp.java” class file:

import com.mongodb.*;
import javax.net.ssl.SSLSocketFactory;

public class SSLApp {

public static void main(String args[]) throws Exception {

MongoClientOptions o = new MongoClientOptions.Builder()
.socketFactory(SSLSocketFactory.getDefault())
.build();

MongoClient m = new MongoClient("localhost", o);

DB db = m.getDB("test");
DBCollection c = db.getCollection("foo");

System.out.println(c.findOne());
}

}

7.2. SSL Configuration for Clients 81

http://mms.10gen.com/help
http://api.mongodb.org/python/current/api/pymongo/mongo_client.html#pymongo.mongo_client.MongoClient

MongoDB Documentation, Release 2.4.2

7.2.5 Ruby

The recent versions of the Ruby driver have support for connections to SSL servers. Install the latest version of the
driver with the following command:

gem install mongo

Then connect to a standalone instance, using the following form:

require ’rubygems’
require ’mongo’

connection = MongoClient.new(’localhost’, 27017, :ssl => true)

Replace connection with the following if you’re connecting to a replica set:

connection = MongoReplicaSetClient.new([’localhost:27017’],
[’localhost:27018’],
:ssl => true)

Here, mongod (page 971) instance run on “localhost:27017” and “localhost:27018”.

7.2.6 Node.JS (node-mongodb-native)

In the node-mongodb-native driver, use the following invocation to connect to a mongod (page 971) or mongos
(page 981) instance via SSL:

var db1 = new Db(MONGODB, new Server("127.0.0.1", 27017,
{ auto_reconnect: false, poolSize:4, ssl:ssl });

To connect to a replica set via SSL, use the following form:

var replSet = new ReplSetServers([
new Server(RS.host, RS.ports[1], { auto_reconnect: true }),
new Server(RS.host, RS.ports[0], { auto_reconnect: true }),
],

{rs_name:RS.name, ssl:ssl}
);

7.2.7 .NET

As of release 1.6, the .NET driver supports SSL connections with mongod (page 971) and mongos (page 981)
instances. To connect using SSL, you must add an option to the connection string, specifying ssl=true as follows:

var connectionString = "mongodb://localhost/?ssl=true";
var server = MongoServer.Create(connectionString);

The .NET driver will validate the certificate against the local trusted certificate store, in addition to providing en-
cryption of the server. This behavior may produce issues during testing if the server uses a self-signed certificate. If
you encounter this issue, add the sslverifycertificate=false option to the connection string to prevent the
.NET driver from validating the certificate, as follows:

var connectionString = "mongodb://localhost/?ssl=true&sslverifycertificate=false";
var server = MongoServer.Create(connectionString);

82 Chapter 7. Connect to MongoDB with SSL

https://github.com/mongodb/node-mongodb-native

CHAPTER 8

Monitor MongoDB with SNMP

New in version 2.2.

Enterprise Feature

This feature is only available in MongoDB Enterprise.

This document outlines the use and operation of MongoDB’s SNMP extension, which is only available in MongoDB
Enterprise.

8.1 Prerequisites

8.1.1 Install MongoDB Enterprise

MongoDB Enterprise

8.1.2 Included Files

The Enterprise packages contain the following files:

• MONGO-MIB.txt:

The MIB file that describes the data (i.e. schema) for MongoDB’s SNMP output

• mongod.conf:

The SNMP configuration file for reading the SNMP output of MongoDB. The SNMP configures the community
names, permissions, access controls, etc.

8.1.3 Required Packages

To use SNMP, you must install several prerequisites. The names of the packages vary by distribution and are as
follows:

• Ubuntu 11.04 requires libssl0.9.8, snmp-mibs-downloader, snmp, and snmpd. Issue a command
such as the following to install these packages:

83

http://www.10gen.com/products/mongodb-enterprise
http://www.10gen.com/products/mongodb-enterprise

MongoDB Documentation, Release 2.4.2

sudo apt-get install libssl0.9.8 snmp snmpd snmp-mibs-downloader

• Red Hat Enterprise Linux 6.x series and Amazon Linux AMI require libssl, net-snmp,
net-snmp-libs, and net-snmp-utils. Issue a command such as the following to install these pack-
ages:

sudo yum install libssl net-snmp net-snmp-libs net-snmp-utils

• SUSE Enterprise Linux requires libopenssl0_9_8, libsnmp15, slessp1-libsnmp15, and
snmp-mibs. Issue a command such as the following to install these packages:

sudo zypper install libopenssl0_9_8 libsnmp15 slessp1-libsnmp15 snmp-mibs

8.2 Configure SNMP

8.2.1 Install MIB Configuration Files

Ensure that the MIB directory http://docs.mongodb.org/manual/usr/share/snmp/mibs exists. If
not, issue the following command:

sudo mkdir -p /usr/share/snmp/mibs

Use the following command to create a symbolic link:

sudo ln -s [/path/to/mongodb/distribution/]MONGO-MIB.txt /usr/share/snmp/mibs/

Replace [/path/to/mongodb/distribution/] with the path to your MONGO-MIB.txt configuration file.

Copy the mongod.conf file into the http://docs.mongodb.org/manual/etc/snmp directory with the
following command:

cp mongod.conf /etc/snmp/mongod.conf

8.2.2 Start Up

You can control MongoDB Enterprise using default or custom control scripts, just as with any other mongod:

Use the following command to view all SNMP options available in your MongoDB:

mongod --help | grep snmp

The above command should return the following output:

Module snmp options:
--snmp-subagent run snmp subagent
--snmp-master run snmp as master

Ensure that the following directories exist:

• http://docs.mongodb.org/manual/data/db/ (This is the path where MongoDB stores the data
files.)

• http://docs.mongodb.org/manual/var/log/mongodb/ (This is the path where MongoDB writes
the log output.)

If they do not, issue the following command:

84 Chapter 8. Monitor MongoDB with SNMP

MongoDB Documentation, Release 2.4.2

mkdir -p /var/log/mongodb/ /data/db/

Start the mongod instance with the following command:

mongod --snmp-master --port 3001 --fork --dbpath /data/db/ --logpath /var/log/mongodb/1.log

Optionally, you can set these options in a configuration file (page 1026).

To check if mongod is running with SNMP support, issue the following command:

ps -ef | grep ’mongod --snmp’

The command should return output that includes the following line. This indicates that the proper mongod instance is
running:

systemuser 31415 10260 0 Jul13 pts/16 00:00:00 mongod --snmp-master --port 3001 # [...]

8.2.3 Test SNMP

Check for the snmp agent process listening on port 1161 with the following command:

sudo lsof -i :1161

which return the following output:

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
mongod 9238 sysadmin 10u IPv4 96469 0t0 UDP localhost:health-polling

Similarly, this command:

netstat -an | grep 1161

should return the following output:

udp 0 0 127.0.0.1:1161 0.0.0.0:*

8.2.4 Run snmpwalk Locally

snmpwalk provides tools for retrieving and parsing the SNMP data according to the MIB. If you installed all of the
required packages above, your system will have snmpwalk.

Issue the following command to collect data from mongod using SNMP:

snmpwalk -m MONGO-MIB -v 2c -c mongodb 127.0.0.1:1161 1.3.6.1.4.1.37601

You may also choose to specify a the path to the MIB file:

snmpwalk -m /usr/share/snmp/mibs/MONGO-MIB -v 2c -c mongodb 127.0.0.1:1161 1.3.6.1.4.1.37601

Use this command only to ensure that you can retrieve and validate SNMP data from MongoDB.

8.3 Troubleshooting

Always check the logs for errors if something does not run as expected; see the log at
http://docs.mongodb.org/manual/var/log/mongodb/1.log. The presence of the following line in-

8.3. Troubleshooting 85

MongoDB Documentation, Release 2.4.2

dicates that the mongod cannot read the http://docs.mongodb.org/manual/etc/snmp/mongod.conf
file:

[SNMPAgent] warning: error starting SNMPAgent as master err:1

86 Chapter 8. Monitor MongoDB with SNMP

CHAPTER 9

Monitoring for MongoDB

Monitoring is a critical component of all database administration. A firm grasp of MongoDB’s reporting will allow you
to assess the state of your database and maintain your deployment without crisis. Additionally, a sense of MongoDB’s
normal operational parameters will allow you to diagnose issues as you encounter them, rather than waiting for a crisis
or failure.

This document provides an overview of the available tools and data provided by MongoDB as well as an introduction
to diagnostic strategies, and suggestions for monitoring instances in MongoDB’s replica sets and sharded clusters.

Note: 10gen provides a hosted monitoring service which collects and aggregates these data to provide insight into the
performance and operation of MongoDB deployments. See the MongoDB Monitoring Service (MMS) and the MMS
documentation for more information.

9.1 Monitoring Tools

There are two primary methods for collecting data regarding the state of a running MongoDB instance. First, there
are a set of tools distributed with MongoDB that provide real-time reporting of activity on the database. Second,
several database commands (page 803) return statistics regarding the current database state with greater fidelity. Both
methods allow you to collect data that answers a different set of questions, and are useful in different contexts.

This section provides an overview of these utilities and statistics, along with an example of the kinds of questions that
each method is most suited to help you address.

9.1.1 Utilities

The MongoDB distribution includes a number of utilities that return statistics about instances’ performance and activity
quickly. These are typically most useful for diagnosing issues and assessing normal operation.

mongotop

mongotop (page 1016) tracks and reports the current read and write activity of a MongoDB instance. mongotop
(page 1016) provides per-collection visibility into use. Use mongotop (page 1016) to verify that activity and use
match expectations. See the mongotop manual (page 1015) for details.

87

http://10gen.com/
http://mms.10gen.com/
http://mms.10gen.com/help/
http://mms.10gen.com/help/

MongoDB Documentation, Release 2.4.2

mongostat

mongostat (page 1011) captures and returns counters of database operations. mongostat (page 1011) reports
operations on a per-type (e.g. insert, query, update, delete, etc.) basis. This format makes it easy to understand the
distribution of load on the server. Use mongostat (page 1011) to understand the distribution of operation types and
to inform capacity planning. See the mongostat manual (page 1011) for details.

REST Interface

MongoDB provides a REST interface that exposes a diagnostic and monitoring information in a simple web page.
Enable this by setting rest (page 1032) to true, and access this page via the local host interface using the port
numbered 1000 more than that the database port. In default configurations the REST interface is accessible on 28017.
For example, to access the REST interface on a locally running mongod instance: http://localhost:28017

9.1.2 Statistics

MongoDB provides a number of commands that return statistics about the state of the MongoDB instance. These data
may provide finer granularity regarding the state of the MongoDB instance than the tools above. Consider using their
output in scripts and programs to develop custom alerts, or to modify the behavior of your application in response to
the activity of your instance.

serverStatus

Access serverStatus data (page 1052) by way of the serverStatus (page 869) command. This document contains
a general overview of the state of the database, including disk usage, memory use, connection, journaling, index
accesses. The command returns quickly and does not impact MongoDB performance.

While this output contains a (nearly) complete account of the state of a MongoDB instance, in most cases you
will not run this command directly. Nevertheless, all administrators should be familiar with the data provided by
serverStatus (page 869).

See Also:

db.serverStatus() (page 945) and serverStatus data (page 1052).

replSetGetStatus

View the replSetGetStatus data (page 446) with the replSetGetStatus (page 865) command (rs.status()
(page 953) from the shell). The document returned by this command reflects the state and configuration of the replica
set. Use this data to ensure that replication is properly configured, and to check the connections between the current
host and the members of the replica set.

dbStats

The dbStats data (page 1070) is accessible by way of the dbStats (page 823) command (db.stats() (page 946)
from the shell). This command returns a document that contains data that reflects the amount of storage used and
data contained in the database, as well as object, collection, and index counters. Use this data to check and track the
state and storage of a specific database. This output also allows you to compare utilization between databases and to
determine average document size in a database.

88 Chapter 9. Monitoring for MongoDB

http://localhost:28017

MongoDB Documentation, Release 2.4.2

collStats

The collStats data (page 1072) is accessible using the collStats (page 815) command
(db.printCollectionStats() (page 942) from the shell). It provides statistics that resemble dbStats
(page 823) on the collection level: this includes a count of the objects in the collection, the size of the collection, the
amount of disk space used by the collection, and information about the indexes.

9.1.3 Introspection Tools

In addition to status reporting, MongoDB provides a number of introspection tools that you can use to diagnose and
analyze performance and operational conditions. Consider the following documentation:

• diagLogging (page 824)

• Analyze Performance of Database Operations (page 95)

• Database Profiler Output (page 1083)

• Current Operation Reporting (page 1078)

9.1.4 Third Party Tools

A number of third party monitoring tools have support for MongoDB, either directly, or through their own plugins.

Self Hosted Monitoring Tools

These are monitoring tools that you must install, configure and maintain on your own servers, usually open source.

Tool Plugin Description
Gan-
glia

mongodb-ganglia Python script to report operations per second, memory usage, btree statistics,
master/slave status and current connections.

Gan-
glia

gmond_python_modulesParses output from the serverStatus (page 869) and replSetGetStatus
(page 865) commands.

Mo-
top

None Realtime monitoring tool for several MongoDB servers. Shows current operations
ordered by durations every second.

mtop None A top like tool.
Munin mongo-munin Retrieves server statistics.
Munin mongomon Retrieves collection statistics (sizes, index sizes, and each (configured) collection

count for one DB).
Munin munin-plugins

Ubuntu PPA
Some additional munin plugins not in the main distribution.

Na-
gios

nagios-plugin-
mongodb

A simple Nagios check script, written in Python.

Zab-
bix

mikoomi-
mongodb

Monitors availability, resource utilization, health, performance and other important
metrics.

Also consider dex, an index and query analyzing tool for MongoDB that compares MongoDB log files and indexes to
make indexing recommendations.

Hosted (SaaS) Monitoring Tools

These are monitoring tools provided as a hosted service, usually on a subscription billing basis.

9.1. Monitoring Tools 89

http://sourceforge.net/apps/trac/ganglia/wiki
http://sourceforge.net/apps/trac/ganglia/wiki
https://github.com/quiiver/mongodb-ganglia
https://github.com/ganglia/gmond_python_modules
https://github.com/tart/motop
https://github.com/tart/motop
https://github.com/beaufour/mtop
http://munin-monitoring.org/
https://github.com/erh/mongo-munin
https://github.com/pcdummy/mongomon
https://launchpad.net/~chris-lea/+archive/munin-plugins
https://launchpad.net/~chris-lea/+archive/munin-plugins
http://www.nagios.org/
http://www.nagios.org/
https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/mzupan/nagios-plugin-mongodb
http://www.zabbix.com/
http://www.zabbix.com/
https://code.google.com/p/mikoomi/wiki/03
https://code.google.com/p/mikoomi/wiki/03
https://github.com/mongolab/dex

MongoDB Documentation, Release 2.4.2

Name Notes
Scout Several plugins including: MongoDB Monitoring, MongoDB Slow Queries and MongoDB

Replica Set Monitoring.
Server
Density

Dashboard for MongoDB, MongoDB specific alerts, replication failover timeline and iPhone, iPad
and Android mobile apps.

9.2 Process Logging

During normal operation, mongod (page 971) and mongos (page 981) instances report information that reflect current
operation to standard output, or a log file. The following runtime settings control these options.

• quiet (page 1033). Limits the amount of information written to the log or output.

• verbose (page 1026). Increases the amount of information written to the log or output.

You can also specify this as v (as in -v.) Set multiple v, as in vvvv = True for higher levels of verbosity.
You can also change the verbosity of a running mongod (page 971) or mongos (page 981) instance with the
setParameter (page 869) command.

• logpath (page 1028). Enables logging to a file, rather than standard output. Specify the full path to the log
file to this setting..

• logappend (page 1028). Adds information to a log file instead of overwriting the file.

Note: You can specify these configuration operations as the command line arguments to mongod (page 971) or
mongos (page 981)

Additionally, the following database commands affect logging:

• getLog (page 838). Displays recent messages from the mongod (page 971) process log.

• logRotate (page 850). Rotates the log files for mongod (page 971) processes only. See Rotate Log Files
(page 1044).

9.3 Diagnosing Performance Issues

Degraded performance in MongoDB can be the result of an array of causes, and is typically a function of the relation-
ship among the quantity of data stored in the database, the amount of system RAM, the number of connections to the
database, and the amount of time the database spends in a lock state.

In some cases performance issues may be transient and related to traffic load, data access patterns, or the availability
of hardware on the host system for virtualized environments. Some users also experience performance limitations as a
result of inadequate or inappropriate indexing strategies, or as a consequence of poor schema design patterns. In other
situations, performance issues may indicate that the database may be operating at capacity and that it is time to add
additional capacity to the database.

9.3.1 Locks

MongoDB uses a locking system to ensure consistency. However, if certain operations are long-running, or a queue
forms, performance slows as requests and operations wait for the lock. Because lock related slow downs can be
intermittent, look to the data in the globalLock (page 1055) section of the serverStatus (page 869) response to
assess if the lock has been a challenge to your performance. If globalLock.currentQueue.total (page 1056)

90 Chapter 9. Monitoring for MongoDB

http://scoutapp.com
https://scoutapp.com/plugin_urls/391-mongodb-monitoring
http://scoutapp.com/plugin_urls/291-mongodb-slow-queries
http://scoutapp.com/plugin_urls/2251-mongodb-replica-set-monitoring
http://scoutapp.com/plugin_urls/2251-mongodb-replica-set-monitoring
http://www.serverdensity.com
http://www.serverdensity.com
http://www.serverdensity.com/mongodb-monitoring/

MongoDB Documentation, Release 2.4.2

is consistently high, then there is a chance that a large number of requests are waiting for a lock. This indicates a
possible concurrency issue that might affect performance.

If globalLock.totalTime (page 1056) is high in context of uptime (page 1053) then the database has existed
in a lock state for a significant amount of time. If globalLock.ratio (page 1056) is also high, MongoDB has
likely been processing a large number of long running queries. Long queries are often the result of a number of factors:
ineffective use of indexes, non-optimal schema design, poor query structure, system architecture issues, or insufficient
RAM resulting in page faults (page 91) and disk reads.

9.3.2 Memory Usage

Because MongoDB uses memory mapped files to store data, given a data set of sufficient size, the MongoDB process
will allocate all memory available on the system for its use. Because of the way operating systems function, the
amount of allocated RAM is not a useful reflection of MongoDB’s state.

While this is part of the design, and affords MongoDB superior performance, the memory mapped files make it difficult
to determine if the amount of RAM is sufficient for the data set. Consider memory usage statuses (page 1057) to better
understand MongoDB’s memory utilization. Check the resident memory use (i.e. mem.resident (page 1057):) if
this exceeds the amount of system memory and there’s a significant amount of data on disk that isn’t in RAM, you
may have exceeded the capacity of your system.

Also check the amount of mapped memory (i.e. mem.mapped (page 1057).) If this value is greater than the amount of
system memory, some operations will require disk access page faults to read data from virtual memory with deleterious
effects on performance.

9.3.3 Page Faults

Page faults represent the number of times that MongoDB requires data not located in physical memory, and must
read from virtual memory. To check for page faults, see the extra_info.page_faults (page 1058) value in the
serverStatus (page 869) command. This data is only available on Linux systems.

Alone, page faults are minor and complete quickly; however, in aggregate, large numbers of page fault typically
indicate that MongoDB is reading too much data from disk and can indicate a number of underlying causes and
recommendations. In many situations, MongoDB’s read locks will “yield” after a page fault to allow other processes
to read and avoid blocking while waiting for the next page to read into memory. This approach improves concurrency,
and in high volume systems this also improves overall throughput.

If possible, increasing the amount of RAM accessible to MongoDB may help reduce the number of page faults. If
this is not possible, you may want to consider deploying a sharded cluster and/or adding one or more shards to your
deployment to distribute load among mongod (page 971) instances.

9.3.4 Number of Connections

In some cases, the number of connections between the application layer (i.e. clients) and the database can overwhelm
the ability of the server to handle requests which can produce performance irregularities. Check the following fields
in the serverStatus (page 1052) document:

• globalLock.activeClients (page 1056) contains a counter of the total number of clients with active
operations in progress or queued.

• connections (page 1057) is a container for the following two fields:

– current (page 1058) the total number of current clients that connect to the database instance.

– available (page 1058) the total number of unused collections available for new clients.

9.3. Diagnosing Performance Issues 91

MongoDB Documentation, Release 2.4.2

Note: Unless limited by system-wide limits MongoDB has a hard connection limit of 20 thousand
connections. You can modify system limits using the ulimit command, or by editing your system’s
http://docs.mongodb.org/manual/etc/sysctl file.

If requests are high because there are many concurrent application requests, the database may have trouble keeping
up with demand. If this is the case, then you will need to increase the capacity of your deployment. For read-
heavy applications increase the size of your replica set and distribute read operations to secondary members. For
write heavy applications, deploy sharding and add one or more shards to a sharded cluster to distribute load among
mongod (page 971) instances.

Spikes in the number of connections can also be the result of application or driver errors. All of the MongoDB drivers
supported by 10gen implement connection pooling, which allows clients to use and reuse connections more efficiently.
Extremely high numbers of connections, particularly without corresponding workload is often indicative of a driver or
other configuration error.

9.3.5 Database Profiling

MongoDB contains a database profiling system that can help identify inefficient queries and operations. Enable the
profiler by setting the profile (page 860) value using the following command in the mongo (page 984) shell:

db.setProfilingLevel(1)

See Also:

The documentation of db.setProfilingLevel() (page 945) for more information about this command.

Note: Because the database profiler can have an impact on the performance, only enable profiling for strategic
intervals and as minimally as possible on production systems.

You may enable profiling on a per-mongod (page 971) basis. This setting will not propagate across a replica set or
sharded cluster.

The following profiling levels are available:

Level Setting
0 Off. No profiling.
1 On. Only includes slow operations.
2 On. Includes all operations.

See the output of the profiler in the system.profile collection of your database. You can specify the
slowms (page 1032) setting to set a threshold above which the profiler considers operations “slow” and thus in-
cluded in the level 1 profiling data. You may configure slowms (page 1032) at runtime, as an argument to the
db.setProfilingLevel() (page 945) operation.

Additionally, mongod (page 971) records all “slow” queries to its log (page 1028), as defined by slowms
(page 1032). The data in system.profile does not persist between mongod (page 971) restarts.

You can view the profiler’s output by issuing the show profile command in the mongo (page 984) shell, with the
following operation.

db.system.profile.find({ millis : { $gt : 100 } })

This returns all operations that lasted longer than 100 milliseconds. Ensure that the value specified here (i.e. 100) is
above the slowms (page 1032) threshold.

See Also:

92 Chapter 9. Monitoring for MongoDB

MongoDB Documentation, Release 2.4.2

Optimization Strategies for MongoDB (page 529) addresses strategies that may improve the performance of your
database queries and operations.

9.4 Replication and Monitoring

The primary administrative concern that requires monitoring with replica sets, beyond the requirements for any Mon-
goDB instance, is “replication lag.” This refers to the amount of time that it takes a write operation on the primary
to replicate to a secondary. Some very small delay period may be acceptable; however, as replication lag grows, two
significant problems emerge:

• First, operations that have occurred in the period of lag are not replicated to one or more secondaries. If you’re
using replication to ensure data persistence, exceptionally long delays may impact the integrity of your data set.

• Second, if the replication lag exceeds the length of the operation log (oplog) then MongoDB will have to perform
an initial sync on the secondary, copying all data from the primary and rebuilding all indexes. In normal
circumstances this is uncommon given the typical size of the oplog, but it’s an issue to be aware of.

For causes of replication lag, see Replication Lag (page 422).

Replication issues are most often the result of network connectivity issues between members or the result of a primary
that does not have the resources to support application and replication traffic. To check the status of a replica, use the
replSetGetStatus (page 865) or the following helper in the shell:

rs.status()

See the Replica Set Status Reference (page 446) document for a more in depth overview view of this output. In general
watch the value of optimeDate (page 448). Pay particular attention to the difference in time between the primary
and the secondary members.

The size of the operation log is only configurable during the first run using the --oplogSize (page 977) argument
to the mongod (page 971) command, or preferably the oplogSize (page 1034) in the MongoDB configuration file.
If you do not specify this on the command line before running with the --replSet (page 977) option, mongod
(page 971) will create an default sized oplog.

By default the oplog is 5% of total available disk space on 64-bit systems.

See Also:

Change the Size of the Oplog (page 413)

9.5 Sharding and Monitoring

In most cases the components of sharded clusters benefit from the same monitoring and analysis as all other MongoDB
instances. Additionally, clusters require monitoring to ensure that data is effectively distributed among nodes and that
sharding operations are functioning appropriately.

See Also:

See the Sharding (page 461) page for more information.

9.5.1 Config Servers

The config database provides a map of documents to shards. The cluster updates this map as chunks move between
shards. When a configuration server becomes inaccessible, some sharding operations like moving chunks and start-
ing mongos (page 981) instances become unavailable. However, clusters remain accessible from already-running
mongos (page 981) instances.

9.4. Replication and Monitoring 93

MongoDB Documentation, Release 2.4.2

Because inaccessible configuration servers can have a serious impact on the availability of a sharded cluster, you
should monitor the configuration servers to ensure that the cluster remains well balanced and that mongos (page 981)
instances can restart.

9.5.2 Balancing and Chunk Distribution

The most effective sharded cluster deployments require that chunks are evenly balanced among the shards. MongoDB
has a background balancer process that distributes data such that chunks are always optimally distributed among
the shards. Issue the db.printShardingStatus() (page 943) or sh.status() (page 962) command to the
mongos (page 981) by way of the mongo (page 984) shell. This returns an overview of the entire cluster including
the database name, and a list of the chunks.

9.5.3 Stale Locks

In nearly every case, all locks used by the balancer are automatically released when they become stale. However,
because any long lasting lock can block future balancing, it’s important to insure that all locks are legitimate. To check
the lock status of the database, connect to a mongos (page 981) instance using the mongo (page 984) shell. Issue
the following command sequence to switch to the config database and display all outstanding locks on the shard
database:

use config
db.locks.find()

For active deployments, the above query might return a useful result set. The balancing process, which originates on
a randomly selected mongos (page 981), takes a special “balancer” lock that prevents other balancing activity from
transpiring. Use the following command, also to the config database, to check the status of the “balancer” lock.

db.locks.find({ _id : "balancer" })

If this lock exists, make sure that the balancer process is actively using this lock.

94 Chapter 9. Monitoring for MongoDB

CHAPTER 10

Analyze Performance of Database
Operations

The database profiler collects fine grained data about MongoDB write operations, cursors, database commands on a
running mongod (page 971) instance. You can enable profiling on a per-database or per-instance basis. The profiling
level (page 95) is also configurable when enabling profiling.

The database profiler writes all the data it collects to the system.profile (page 1101) collection, which is a capped
collection (page 532). See Database Profiler Output (page 1083) for overview of the data in the system.profile
(page 1101) documents created by the profiler.

This document outlines a number of key administration options for the database profiler. For additional related infor-
mation, consider the following resources:

• Database Profiler Output (page 1083)

• Profile Command (page 860)

• Current Operation Reporting (page 1078)

10.1 Profiling Levels

The following profiling levels are available:

• 0 - the profiler is off, does not collect any data.

• 1 - collects profiling data for slow operations only. By default slow operations are those slower than 100
milliseconds.

You can modify the threshold for “slow” operations with the slowms (page 1032) runtime option or the
setParameter (page 869) command. See the Specify the Threshold for Slow Operations (page 96) section
for more information.

• 2 - collects profiling data for all database operations.

95

MongoDB Documentation, Release 2.4.2

10.2 Enable Database Profiling and Set the Profiling Level

You can enable database profiling from the mongo (page 984) shell or through a driver using the profile (page 860)
command. This section will describe how to do so from the mongo (page 984) shell. See your driver documentation
(page 529) if you want to control the profiler from within your application.

When you enable profiling, you also set the profiling level (page 95). The profiler records data in the
system.profile (page 1101) collection. MongoDB creates the system.profile (page 1101) collection in
a database after you enable profiling for that database.

To enable profiling and set the profiling level, issue use the db.setProfilingLevel() (page 945) helper in the
mongo (page 984) shell, passing the profiling level as a parameter. For example, to enable profiling for all database
operations, consider the following operation in the mongo (page 984) shell:

db.setProfilingLevel(2)

The shell returns a document showing the previous level of profiling. The "ok" : 1 key-value pair indicates the
operation succeeded:

{ "was" : 0, "slowms" : 100, "ok" : 1 }

To verify the new setting, see the Check Profiling Level (page 96) section.

10.2.1 Specify the Threshold for Slow Operations

The threshold for slow operations applies to the entire mongod (page 971) instance. When you change the threshold,
you change it for all databases on the instance.

Important: Changing the slow operation threshold for the database profiler also affects the profiling subsystem’s
slow operation threshold for the entire mongod (page 971) instance. Always set the threshold to the highest useful
value.

By default the slow operation threshold is 100 milliseconds. Databases with a profiling level of 1 will log operations
slower than 100 milliseconds.

To change the threshold, pass two parameters to the db.setProfilingLevel() (page 945) helper in the mongo
(page 984) shell. The first parameter sets the profiling level for the current database, and the second sets the default
slow operation threshold for the entire mongod (page 971) instance.

For example, the following command sets the profiling level for the current database to 0, which disables profiling,
and sets the slow-operation threshold for the mongod (page 971) instance to 20 milliseconds. Any database on the
instance with a profiling level of 1 will use this threshold:

db.setProfilingLevel(0,20)

10.2.2 Check Profiling Level

To view the profiling level (page 95), issue the following from the mongo (page 984) shell:

db.getProfilingStatus()

The shell returns a document similar to the following:

{ "was" : 0, "slowms" : 100 }

96 Chapter 10. Analyze Performance of Database Operations

MongoDB Documentation, Release 2.4.2

The was field indicates the current level of profiling.

The slowms field indicates how long an operation must exist in milliseconds for an operation to pass the “slow”
threshold. MongoDB will log operations that take longer than the threshold if the profiling level is 1. This document
returns the profiling level in the was field. For an explanation of profiling levels, see Profiling Levels (page 95).

To return only the profiling level, use the db.getProfilingLevel() (page 940) helper in the mongo (page 984)
as in the following:

db.getProfilingLevel()

10.2.3 Disable Profiling

To disable profiling, use the following helper in the mongo (page 984) shell:

db.setProfilingLevel(0)

10.2.4 Enable Profiling for an Entire mongod Instance

For development purposes in testing environments, you can enable database profiling for an entire mongod (page 971)
instance. The profiling level applies to all databases provided by the mongod (page 971) instance.

To enable profiling for a mongod (page 971) instance, pass the following parameters to mongod (page 971) at startup
or within the configuration file (page 1026):

mongod --profile=1 --slowms=15

This sets the profiling level to 1, which collects profiling data for slow operations only, and defines slow operations as
those that last longer than 15 milliseconds.

See Also:

profile (page 1031) and slowms (page 1032).

10.2.5 Database Profiling and Sharding

You cannot enable profiling on a mongos (page 981) instance. To enable profiling in a shard cluster, you must enable
profiling for each mongod (page 971) instance in the cluster.

10.3 View Profiler Data

The database profiler logs information about database operations in the system.profile (page 1101) collection.

To view profiling information, query the system.profile (page 1101) collection. To view example queries, see
Profiler Overhead (page 98)

For an explanation of the output data, see Database Profiler Output (page 1083).

10.3.1 Example Profiler Data Queries

This section displays example queries to the system.profile (page 1101) collection. For an explanation of the
query output, see Database Profiler Output (page 1083).

10.3. View Profiler Data 97

MongoDB Documentation, Release 2.4.2

To return the most recent 10 log entries in the system.profile (page 1101) collection, run a query similar to the
following:

db.system.profile.find().limit(10).sort({ ts : -1 }).pretty()

To return all operations except command operations ($cmd), run a query similar to the following:

db.system.profile.find({ op: { $ne : ’command’ } }).pretty()

To return operations for a particular collection, run a query similar to the following. This example returns operations
in the mydb database’s test collection:

db.system.profile.find({ ns : ’mydb.test’ }).pretty()

To return operations slower than 5 milliseconds, run a query similar to the following:

db.system.profile.find({ millis : { $gt : 5 } }).pretty()

To return information from a certain time range, run a query similar to the following:

db.system.profile.find(
{
ts : {

$gt : new ISODate("2012-12-09T03:00:00Z") ,
$lt : new ISODate("2012-12-09T03:40:00Z")

}
}

).pretty()

The following example looks at the time range, suppresses the user field from the output to make it easier to read,
and sorts the results by how long each operation took to run:

db.system.profile.find(
{
ts : {

$gt : new ISODate("2011-07-12T03:00:00Z") ,
$lt : new ISODate("2011-07-12T03:40:00Z")
}

},
{ user : 0 }

).sort({ millis : -1 })

10.3.2 Show the Five Most Recent Events

On a database that has profiling enabled, the show profile helper in the mongo (page 984) shell displays the 5
most recent operations that took at least 1 millisecond to execute. Issue show profile from the mongo (page 984)
shell, as follows:

show profile

10.4 Profiler Overhead

When enabled, profiling has a minor effect on performance. The system.profile (page 1101) collection is a
capped collection with a default size of 1 megabyte. A collection of this size can typically store store several thousand
profile documents, but some application may use more or less profiling data per operation.

To change the size of the system.profile (page 1101) collection, you must:

98 Chapter 10. Analyze Performance of Database Operations

MongoDB Documentation, Release 2.4.2

1. Disable profiling.

2. Drop the system.profile (page 1101) collection.

3. Create a new system.profile (page 1101) collection.

4. Re-enable profiling.

For example, to create a new system.profile (page 1101) collections that’s 4000000 bytes, use the following
sequence of operations in the mongo (page 984) shell:

db.setProfilingLevel(0)

db.system.profile.drop()

db.createCollection("system.profile", { capped: true, size:4000000 })

db.setProfilingLevel(1)

10.4. Profiler Overhead 99

MongoDB Documentation, Release 2.4.2

100 Chapter 10. Analyze Performance of Database Operations

CHAPTER 11

Import and Export MongoDB Data

This document provides an overview of the import and export programs included in the MongoDB distribution. These
tools are useful when you want to backup or export a portion of your data without capturing the state of the entire
database, or for simple data ingestion cases. For more complex data migration tasks, you may want to write your own
import and export scripts using a client driver to interact with the database itself. For disaster recovery protection and
routine database backup operation, use full database instance backups (page 41).

Warning: Because these tools primarily operate by interacting with a running mongod (page 971) instance, they
can impact the performance of your running database.
Not only do these processes create traffic for a running database instance, they also force the database to read all
data through memory. When MongoDB reads infrequently used data, it can supplant more frequently accessed
data, causing a deterioration in performance for the database’s regular workload.
mongoimport (page 1004) and mongoexport (page 1007) do not reliably preserve all rich BSON data types,
because BSON is a superset of JSON. Thus, mongoimport (page 1004) and mongoexport (page 1007) cannot
represent BSON data accurately in JSON. As a result data exported or imported with these tools may lose some
measure of fidelity. See MongoDB Extended JSON (page 1113) for more information about MongoDB Extended
JSON.

See Also:

See the “Backup Strategies for MongoDB Systems (page 41)” document for more information on backing up MongoDB
instances. Additionally, consider the following references for commands addressed in this document:

• mongoexport (page 1007)

• mongorestore (page 995)

• mongodump (page 992)

If you want to transform and process data once you’ve imported it in MongoDB consider the topics in Aggregation
(page 247), including:

• Map-Reduce (page 285) and

• Aggregation Framework (page 249).

11.1 Data Type Fidelity

JSON does not have the following data types that exist in BSON documents: data_binary, data_date,

101

MongoDB Documentation, Release 2.4.2

data_timestamp, data_regex, data_oid and data_ref. As a result using any tool that decodes BSON
documents into JSON will suffer some loss of fidelity.

If maintaining type fidelity is important, consider writing a data import and export system that does not force BSON
documents into JSON form as part of the process. The following list of types contain examples for how MongoDB
will represent how BSON documents render in JSON.

• data_binary

{ "$binary" : "<bindata>", "$type" : "<t>" }

<bindata> is the base64 representation of a binary string. <t> is the hexadecimal representation of a single
byte indicating the data type.

• data_date

Date(<date>)

<date> is the JSON representation of a 64-bit signed integer for milliseconds since epoch.

• data_timestamp

Timestamp(<t>, <i>)

<t> is the JSON representation of a 32-bit unsigned integer for milliseconds since epoch. <i> is a 32-bit
unsigned integer for the increment.

• data_regex

/<jRegex>/<jOptions>

<jRegex> is a string that may contain valid JSON characters and unescaped double quote (i.e. ") characters,
but may not contain unescaped forward slash (i.e. http://docs.mongodb.org/manual/) characters.
<jOptions> is a string that may contain only the characters g, i, m, and s.

• data_oid

ObjectId("<id>")

<id> is a 24 character hexadecimal string. These representations require that data_oid values have an
associated field named “_id.”

• data_ref

DBRef("<name>", "<id>")

<name> is a string of valid JSON characters. <id> is a 24 character hexadecimal string.

See Also:

MongoDB Extended JSON (page 1113)

11.2 Data Import and Export and Backups Operations

For resilient and non-disruptive backups, use a file system or block-level disk snapshot function, such as the methods
described in the “Backup Strategies for MongoDB Systems (page 41)” document. The tools and operations discussed
provide functionality that’s useful in the context of providing some kinds of backups.

By contrast, use import and export tools to backup a small subset of your data or to move data to or from a 3rd party
system. These backups may capture a small crucial set of data or a frequently modified section of data, for extra

102 Chapter 11. Import and Export MongoDB Data

MongoDB Documentation, Release 2.4.2

insurance, or for ease of access. No matter how you decide to import or export your data, consider the following
guidelines:

• Label files so that you can identify what point in time the export or backup reflects.

• Labeling should describe the contents of the backup, and reflect the subset of the data corpus, captured in the
backup or export.

• Do not create or apply exports if the backup process itself will have an adverse effect on a production system.

• Make sure that they reflect a consistent data state. Export or backup processes can impact data integrity (i.e.
type fidelity) and consistency if updates continue during the backup process.

• Test backups and exports by restoring and importing to ensure that the backups are useful.

11.3 Human Intelligible Import/Export Formats

This section describes a process to import/export your database, or a portion thereof, to a file in a JSON or CSV format.

See Also:

The mongoimport (page 1004) and mongoexport (page 1007) documents contain complete documentation of these
tools. If you have questions about the function and parameters of these tools not covered here, please refer to these
documents.

If you want to simply copy a database or collection from one instance to another, consider using the copydb
(page 820), clone (page 812), or cloneCollection (page 813) commands, which may be more suited to this
task. The mongo (page 984) shell provides the db.copyDatabase() (page 934) method.

These tools may also be useful for importing data into a MongoDB database from third party applications.

11.3.1 Collection Export with mongoexport

With the mongoexport (page 1007) utility you can create a backup file. In the most simple invocation, the command
takes the following form:

mongoexport --collection collection --out collection.json

This will export all documents in the collection named collection into the file collection.json. Without the
output specification (i.e. “--out collection.json (page 1010)”,) mongoexport (page 1007) writes output
to standard output (i.e. “stdout.”) You can further narrow the results by supplying a query filter using the “--query
(page 1009)” and limit results to a single database using the “--db (page 1009)” option. For instance:

mongoexport --db sales --collection contacts --query ’{"field": 1}’

This command returns all documents in the sales database’s contacts collection, with a field named field with
a value of 1. Enclose the query in single quotes (e.g. ’) to ensure that it does not interact with your shell environment.
The resulting documents will return on standard output.

By default, mongoexport (page 1007) returns one JSON document per MongoDB document. Specify the
“--jsonArray (page 1009)” argument to return the export as a single JSON array. Use the “--csv (page 1009)”
file to return the result in CSV (comma separated values) format.

If your mongod (page 971) instance is not running, you can use the “--dbpath (page 1009)” option to specify the
location to your MongoDB instance’s database files. See the following example:

mongoexport --db sales --collection contacts --dbpath /srv/MongoDB/

11.3. Human Intelligible Import/Export Formats 103

MongoDB Documentation, Release 2.4.2

This reads the data files directly. This locks the data directory to prevent conflicting writes. The mongod (page 971)
process must not be running or attached to these data files when you run mongoexport (page 1007) in this configu-
ration.

The “--host (page 1008)” and “--port (page 1008)” options allow you to specify a non-local host to connect to
capture the export. Consider the following example:

mongoexport --host mongodb1.example.net --port 37017 --username user --password pass --collection contacts --file mdb1-examplenet.json

On any mongoexport (page 1007) command you may, as above specify username and password credentials as
above.

11.3.2 Collection Import with mongoimport

To restore a backup taken with mongoexport (page 1007). Most of the arguments to mongoexport (page 1007)
also exist for mongoimport (page 1004). Consider the following command:

mongoimport --collection collection --file collection.json

This imports the contents of the file collection.json into the collection named collection. If you do not
specify a file with the “--file (page 1006)” option, mongoimport (page 1004) accepts input over standard input
(e.g. “stdin.”)

If you specify the “--upsert (page 1006)” option, all of mongoimport (page 1004) operations will attempt to
update existing documents in the database and insert other documents. This option will cause some performance
impact depending on your configuration.

You can specify the database option --db (page 1005) to import these documents to a particular database. If your
MongoDB instance is not running, use the “--dbpath (page 1005)” option to specify the location of your Mon-
goDB instance’s database files. Consider using the “--journal (page 1005)” option to ensure that mongoimport
(page 1004) records its operations in the journal. The mongod process must not be running or attached to these data
files when you run mongoimport (page 1004) in this configuration.

Use the “--ignoreBlanks (page 1006)” option to ignore blank fields. For CSV and TSV imports, this option
provides the desired functionality in most cases: it avoids inserting blank fields in MongoDB documents.

104 Chapter 11. Import and Export MongoDB Data

CHAPTER 12

Linux ulimit Settings

The Linux kernel provides a system to limit and control the number of threads, connections, and open files on a per-
process and per-user basis. These limits prevent single users from using too many system resources. Sometimes, these
limits, as configured by the distribution developers, are too low for MongoDB and can cause a number of issues in the
course of normal MongoDB operation. Generally, MongoDB should be the only user process on a system, to prevent
resource contention.

12.1 Resource Utilization

mongod (page 971) and mongos (page 981) each use threads and file descriptors to track connections and manage
internal operations. This section outlines the general resource utilization patterns for MongoDB. Use these figures in
combination with the actual information about your deployment and its use to determine ideal ulimit settings.

Generally, all mongod (page 971) and mongos (page 981) instances, like other processes:

• track each incoming connection with a file descriptor and a thread.

• track each internal thread or pthread as a system process.

12.1.1 mongod

• 1 file descriptor for each data file in use by the mongod (page 971) instance.

• 1 file descriptor for each journal file used by the mongod (page 971) instance when journal (page 1030) is
true.

• In replica sets, each mongod (page 971) maintains a connection to all other members of the set.

mongod (page 971) uses background threads for a number of internal processes, including TTL collections (page 551),
replication, and replica set health checks, which may require a small number of additional resources.

12.1.2 mongos

In addition to the threads and file descriptors for client connections, mongos (page 981) must maintain connects to
all config servers and all shards, which includes all members of all replica sets.

For mongos (page 981), consider the following behaviors:

105

MongoDB Documentation, Release 2.4.2

• mongos (page 981) instances maintain a connection pool to each shard so that the mongos (page 981) can
reuse connections and quickly fulfill requests without needing to create new connections.

• You can limit the number of incoming connections using the maxConns (page 1027) run-time option.

By restricting the number of incoming connections you can prevent a cascade effect where the mongos
(page 981) creates too many connections on the mongod (page 971) instances.

Note: You cannot set maxConns (page 1027) to a value higher than 20000.

12.2 Review and Set Resource Limits

12.2.1 ulimit

You can use the ulimit command at the system prompt to check system limits, as in the following example:

$ ulimit -a
-t: cpu time (seconds) unlimited
-f: file size (blocks) unlimited
-d: data seg size (kbytes) unlimited
-s: stack size (kbytes) 8192
-c: core file size (blocks) 0
-m: resident set size (kbytes) unlimited
-u: processes 192276
-n: file descriptors 21000
-l: locked-in-memory size (kb) 40000
-v: address space (kb) unlimited
-x: file locks unlimited
-i: pending signals 192276
-q: bytes in POSIX msg queues 819200
-e: max nice 30
-r: max rt priority 65
-N 15: unlimited

ulimit refers to the per-user limitations for various resources. Therefore, if your mongod (page 971) instance
executes as a user that is also running multiple processes, or multiple mongod (page 971) processes, you might see
contention for these resources. Also, be aware that the processes value (i.e. -u) refers to the combined number of
distinct processes and sub-process threads.

You can change ulimit settings by issuing a command in the following form:

ulimit -n <value>

For many distributions of Linux you can change values by substituting the -n option for any possible value in the
output of ulimit -a. See your operating system documentation for the precise procedure for changing system
limits on running systems.

Note: After changing the ulimit settings, you must restart the process to take advantage of the modified settings.
You can use the http://docs.mongodb.org/manual/proc file system to see the current limitations on a
running process.

Depending on your system’s configuration, and default settings, any change to system limits made using ulimit
may revert following system a system restart. Check your distribution and operating system documentation for more
information.

106 Chapter 12. Linux ulimit Settings

MongoDB Documentation, Release 2.4.2

12.2.2 /proc File System

Note: This section applies only to Linux operating systems.

The http://docs.mongodb.org/manual/proc file-system stores the per-process limits in the file system ob-
ject located at http://docs.mongodb.org/manual/proc/<pid>/limits, where <pid> is the process’s
PID or process identifier. You can use the following bash function to return the content of the limits object for a
process or processes with a given name:

return-limits(){

for process in $@; do
process_pids=‘ps -C $process -o pid --no-headers | cut -d " " -f 2‘

if [-z $@]; then
echo "[no $process running]"

else
for pid in $process_pids; do

echo "[$process #$pid -- limits]"
cat /proc/$pid/limits

done
fi

done

}

You can copy and paste this function into a current shell session or load it as part of a script. Call the function with
one the following invocations:

return-limits mongod
return-limits mongos
return-limits mongod mongos

The output of the first command may resemble the following:

[mongod #6809 -- limits]
Limit Soft Limit Hard Limit Units
Max cpu time unlimited unlimited seconds
Max file size unlimited unlimited bytes
Max data size unlimited unlimited bytes
Max stack size 8720000 unlimited bytes
Max core file size 0 unlimited bytes
Max resident set unlimited unlimited bytes
Max processes 192276 192276 processes
Max open files 1024 4096 files
Max locked memory 40960000 40960000 bytes
Max address space unlimited unlimited bytes
Max file locks unlimited unlimited locks
Max pending signals 192276 192276 signals
Max msgqueue size 819200 819200 bytes
Max nice priority 30 30
Max realtime priority 65 65
Max realtime timeout unlimited unlimited us

12.2. Review and Set Resource Limits 107

MongoDB Documentation, Release 2.4.2

12.3 Recommended Settings

Every deployment may have unique requirements and settings; however, the following thresholds and settings are
particularly important for mongod (page 971) and mongos (page 981) deployments:

• -f (file size): unlimited

• -t (cpu time): unlimited

• -v (virtual memory): unlimited

• -n (open files): 64000

• -m (memory size): unlimited 1

• -u (processes/threads): 32000

Always remember to restart your mongod (page 971) and mongos (page 981) instances after changing the ulimit
settings to make sure that the settings change takes effect.

1 If you limit the resident memory size on a system running MongoDB you risk allowing the operating system to terminate the mongod
(page 971) process under normal situations. Do not set this value. If the operating system (i.e. Linux) kills your mongod (page 971), with the
OOM killer, check the output of serverStatus (page 869) and ensure MongoDB is not leaking memory.

108 Chapter 12. Linux ulimit Settings

CHAPTER 13

Production Notes

This page details system configurations that affect MongoDB, especially in production.

13.1 Backups

To make backups of your MongoDB database, please refer to Backup Strategies for MongoDB Systems (page 41).

13.2 Networking

Always run MongoDB in a trusted environment, with network rules that prevent access from all unknown machines,
systems, or networks. As with any sensitive system dependent on network access, your MongoDB deployment should
only be accessible to specific systems that require access: application servers, monitoring services, and other Mon-
goDB components.

See documents in the Security (page 123) section for additional information, specifically:

• Interfaces and Port Numbers (page 126)

• Firewalls (page 127)

• Configure Linux iptables Firewall for MongoDB (page 131)

• Configure Windows netsh Firewall for MongoDB (page 135)

13.3 MongoDB on Linux

If you use the Linux kernel, the MongoDB user community has recommended Linux kernel 2.6.36 or later for running
MongoDB in production.

Because MongoDB preallocates its database files before using them and because MongoDB uses very large files on
average, you should use the Ext4 and XFS file systems if using the Linux kernel:

• If you use the Ext4 file system, use at least version 2.6.23 of the Linux Kernel.

• If you use the XFS file system, use at least version 2.6.25 of the Linux Kernel.

• If you are using a Red Hat derived distribution, use at least version 2.6.245.el5 of the Linux Kernel.

109

MongoDB Documentation, Release 2.4.2

For MongoDB on Linux use the following recommended configurations:

• Turn off atime for the storage volume with the database files.

• Set the file descriptor limit and the user process limit above 20,000, according to the suggestions in Linux ulimit
Settings (page 105). A low ulimit will affect MongoDB when under heavy use and will produce weird errors.

• Do not use hugepages virtual memory pages, MongoDB performs better with normal virtual memory pages.

• Disable NUMA in your BIOS. If that is not possible see NUMA (page 111).

• Ensure that readahead settings for the block devices that store the database files are acceptable. See the Reada-
head (page 110) section

• Use NTP to synchronize time among your hosts. This is especially important in sharded clusters.

13.4 Readahead

For random access use patterns set readahead values low, for example setting readahead to a small value such as 32
(16KB) often works well.

13.5 MongoDB on Virtual Environments

The section describes considerations when running MongoDB in some of the more common virtual environments.

13.5.1 EC2

MongoDB is compatible with EC2 and requires no configuration changes specific to the environment.

13.5.2 VMWare

MongoDB is compatible with VMWare. Some in the MongoDB community have run into issues with VMWare’s
memory overcommit feature and suggest disabling the feature.

You can clone a virtual machine running MongoDB. You might use this to spin up a new virtual host that will be added
as a member of a replica set. If journaling is enabled, the clone snapshot will be consistent. If not using journaling,
stop mongod (page 971), clone, and then restart.

13.5.3 OpenVZ

The MongoDB community has encountered issues running MongoDB on OpenVZ.

13.6 Disk and Storage Systems

13.6.1 Swap

Configure swap space for your systems. Having swap can prevent issues with memory contention and can prevent
the OOM Killer on Linux systems from killing mongod (page 971). Because of the way mongod (page 971) maps
memory files to memory, the operating system will never store MongoDB data in swap.

110 Chapter 13. Production Notes

MongoDB Documentation, Release 2.4.2

13.6.2 RAID

Most MongoDB deployments should use disks backed by RAID-10.

RAID-5 and RAID-6 do not typically provide sufficient performance to support a MongoDB deployment.

RAID-0 provides good write performance but provides limited availability, and reduced performance on read opera-
tions, particularly using Amazon’s EBS volumes: as a result, avoid RAID-0 with MongoDB deployments.

13.6.3 Remote Filesystems

Some versions of NFS perform very poorly with MongoDB and NFS is not recommended for use with MongoDB.
Performance problems arise when both the data files and the journal files are both hosted on NFS: you may experience
better performance if you place the journal on local or iscsi volumes. If you must use NFS, add the following NFS
options to your http://docs.mongodb.org/manual/etc/fstab file: bg, nolock, and noatime.

Many MongoDB deployments work successfully with Amazon’s Elastic Block Store (EBS) volumes. There are certain
intrinsic performance characteristics, with EBS volumes that users should consider.

13.7 Hardware Requirements and Limitations

MongoDB is designed specifically with commodity hardware in mind and has few hardware requirements or limita-
tions. MongoDB core components runs on little-endian hardware primarily x86/x86_64 processors. Client libraries
(i.e. drivers) can run on big or little endian systems.

When installing hardware for MongoDB, consider the following:

• As with all software, more RAM and a faster CPU clock speed are important to productivity.

• Because databases do not perform high amounts of computation, increasing the number cores helps but does not
provide a high level of marginal return.

• MongoDB has good results and good price/performance with SATA SSD (Solid State Disk) and with PCI (Pe-
ripheral Component Interconnect).

• Commodity (SATA) spinning drives are often a good option as the speed increase for random I/O for more
expensive drives is not that dramatic (only on the order of 2x), spending that money on SSDs or RAM may be
more effective.

13.7.1 MongoDB on NUMA Hardware

MongoDB and NUMA, Non-Uniform Access Memory, do not work well together. When running MongoDB on
NUMA hardware, disable NUMA for MongoDB and run with an interleave memory policy. NUMA can cause a
number of operational problems with MongoDB, including slow performance for periods of time or high system
processor usage.

Note: On Linux, MongoDB version 2.0 and greater checks these settings on start up and prints a warning if the
system is NUMA-based.

To disable NUMA for MongoDB, use the numactl command and start mongod (page 971) in the following manner:

numactl --interleave=all /usr/bin/local/mongod

Adjust the proc settings using the following command:

13.7. Hardware Requirements and Limitations 111

MongoDB Documentation, Release 2.4.2

echo 0 > /proc/sys/vm/zone_reclaim_mode

To fully disable NUMA you must perform both operations. However, you can change zone_reclaim_mode
without restarting mongod. For more information, see documentation on Proc/sys/vm.

See the The MySQL “swap insanity” problem and the effects of NUMA post, which describes the effects of NUMA on
databases. This blog post addresses the impact of NUMA for MySQL; however, the issues for MongoDB are similar.
The post introduces NUMA its goals, and illustrates how these goals are not compatible with production databases.

13.8 Performance Monitoring

13.8.1 iostat

On Linux, use the iostat command to check if disk I/O is a bottleneck for your database. Specify a number of seconds
when running iostat to avoid displaying stats covering the time since server boot.

For example:

iostat -xm 2

Use the mount command to see what device your data directory (page 1029) resides on.

Key fields from iostat:

• %util: this is the most useful field for a quick check, it indicates what percent of the time the device/drive is
in use.

• avgrq-sz: average request size. Smaller number for this value reflect more random IO operations.

13.8.2 bwm-ng

bwm-ng is a command-line tool for monitoring network use. If you suspect a network-based bottleneck, you may use
bwm-ng to begin your diagnostic process.

13.9 Production Checklist

13.9.1 64-bit Builds for Production

Always use 64-bit Builds for Production. MongoDB uses memory mapped files. See the 32-bit limitations (page 686)
for more information.

32-bit builds exist to support use on development machines and also for other miscellaneous things such as replica set
arbiters.

13.9.2 BSON Document Size Limit

There is a BSON Document Size (page 1105) – at the time of this writing 16MB per document. If you have large
objects, use GridFS (page 190) instead.

112 Chapter 13. Production Notes

http://www.kernel.org/doc/Documentation/sysctl/vm.txt
http://jcole.us/blog/archives/2010/09/28/mysql-swap-insanity-and-the-numa-architecture/
http://www.gropp.org/?id=projects&sub=bwm-ng

MongoDB Documentation, Release 2.4.2

13.9.3 Set Appropriate Write Concern for Write Operations

See Write Concern (page 378) for more information.

13.9.4 Dynamic Schema

Data in MongoDB has a dynamic schema. Collections do not enforce document structure. This facilitates iterative
development and polymorphism. However, collections often hold documents with highly homogeneous structures.
See Data Modeling Considerations for MongoDB Applications (page 227) for more information.

Some operational considerations include:

• the exact set of collections to be used

• the indexes to be used, which are created explicitly except for the _id index

• shard key declarations, which are explicit and quite important as it is hard to change shard keys later

One very simple rule-of-thumb is not to import data from a relational database unmodified: you will generally want to
“roll up” certain data into richer documents that use some embedding of nested documents and arrays (and/or arrays
of subdocuments).

13.9.5 Updates by Default Affect Only one Document

Set the multi parameter to true to update (page 932) multiple documents that meet the query criteria. The
mongo (page 984) shell syntax is:

db.my_collection_name.update(my_query, my_update_expression, bool_upsert, bool_multi)

Set bool_multi to true when updating many documents. Otherwise only the first matched will update.

13.9.6 Case Sensitive Strings

MongoDB strings are case sensitive. So a search for "joe" will not find "Joe".

Consider:

• storing data in a normalized case format, or

• using regular expressions ending with http://docs.mongodb.org/manual/i

• and/or using $toLower (page 801) or $toUpper (page 801) in the aggregation framework (page 249)

13.9.7 Type Sensitive Fields

MongoDB data – which is JSON-style, specifically, BSON format – have several data types.

Consider the following document which has a field x with the string value "123":

{ x : "123" }

Then the following query which looks for a number value 123 will not return that document:

db.mycollection.find({ x : 123 })

13.9. Production Checklist 113

http://docs.mongodb.org/meta-driver/latest/legacy/bson/

MongoDB Documentation, Release 2.4.2

13.9.8 Locking

Older versions of MongoDB used a “global lock”; use MongoDB v2.2+ for better results. See the Concurrency
(page 701) page for more information.

13.9.9 Packages

Be sure you have the latest stable release if you are using a package manager. You can see what is current on the
Downloads page, even if you then choose to install via a package manager.

13.9.10 Use Odd Number of Replica Set Members

Replica sets (page 365) perform consensus elections. Use either an odd number of members (e.g., three) or else use
an arbiter to get up to an odd number of votes.

13.9.11 Don’t disable journaling

See Journaling (page 71) for more information.

13.9.12 Keep Replica Set Members Up-to-Date

This is important as MongoDB replica sets support automatic failover. Thus you want your secondaries to be up-to-
date. You have a few options here:

1. Monitoring and alerts for any lagging can be done via various means. MMS shows a graph of replica set lag

2. Using getLastError (page 378) with w:’majority’, you will get a timeout or no return if a majority of the
set is lagging. This is thus another way to guard against lag and get some reporting back of its occurrence.

3. Or, if you want to fail over manually, you can set your secondaries to priority:0 in their configuration.
Then manual action would be required for a failover. This is practical for a small cluster; for a large cluster you
will want automation.

Additionally, see information on replica set rollbacks (page 370).

13.9.13 Additional Deployment Considerations

• Pick your shard keys carefully! There is no way to modify a shard key on a collection that is already sharded.

• You cannot shard an existing collection over 256 gigabytes. To shard large amounts of data, create a new empty
sharded collection, and ingest the data from the source collection using an application level import operation.

• Unique indexes are not enforced across shards except for the shard key itself. See Enforce Unique Keys for
Sharded Collections (page 511).

• Consider pre-splitting (page 481) a sharded collection before a massive bulk import. Usually this isn’t necessary
but on a bulk import of size it is helpful.

• Use security/auth (page 125) mode if you need it. By default auth (page 1029) is not enabled and mongod
(page 971) assumes a trusted environment.

• You do not have fully generalized transactions (page 545). Create rich documents and read the preceding link
and consider the use case – often there is a good fit.

114 Chapter 13. Production Notes

MongoDB Documentation, Release 2.4.2

• Disable NUMA for best results. If you have NUMA enabled, mongod (page 971) will print a warning when it
starts.

• Avoid excessive prefetch/readahead on the filesystem. Check your prefetch settings. Note on linux the parameter
is in sectors, not bytes. 32KBytes (a setting of 64 sectors) is pretty reasonable.

• Check ulimits (page 105) settings.

• Use SSD if available and economical. Spinning disks can work well but SSDs capacity for random I/O oper-
ations work well with the update model of mongod (page 971). See Remote Filesystems (page 111) for more
info.

• Ensure that clients keep reasonable pool sizes to avoid overloading the connection tracking capacity of a single
mongod (page 971) or mongos (page 981) instance.

13.9. Production Checklist 115

MongoDB Documentation, Release 2.4.2

116 Chapter 13. Production Notes

CHAPTER 14

MongoDB Tutorials

This page lists the tutorials available as part of the MongoDB Manual (page 1). In addition to these documents, you
can refer to the introductory MongoDB Tutorial (page 21). If there is a process or pattern that you would like to see
included here, please open a Jira Case.

14.1 Getting Started

• Install MongoDB on Linux (page 12)

• Install MongoDB on Red Hat Enterprise, CentOS, or Fedora Linux (page 3)

• Install MongoDB on Debian (page 9)

• Install MongoDB on Ubuntu (page 6)

• Install MongoDB on OS X (page 13)

• Install MongoDB on Windows (page 16)

• Getting Started with MongoDB (page 21)

14.2 Administration

14.2.1 Replica Sets

• Deploy a Replica Set (page 397)

• Convert a Standalone to a Replica Set (page 401)

• Add Members to a Replica Set (page 402)

• Remove Members from Replica Set (page 405)

• Replace a Replica Set Member (page 405)

• Adjust Priority for Replica Set Member (page 406)

• Resync a Member of a Replica Set (page 406)

• Deploy a Geographically Distributed Replica Set (page 407)

117

https://jira.mongodb.org/browse/DOCS

MongoDB Documentation, Release 2.4.2

• Change the Size of the Oplog (page 413)

• Force a Member to Become Primary (page 415)

• Change Hostnames in a Replica Set (page 418)

• Add an Arbiter to Replica Set (page 426)

• Convert a Secondary to an Arbiter (page 427)

• Configure a Secondary’s Sync Target (page 432)

• Configure a Delayed Replica Set Member (page 429)

• Configure a Replica Set Member as Hidden (page 430)

• Configure a Non-Voting Replica Set Member (page 430)

• Prevent Replica Set Member from Becoming Primary (page 431)

• Configure Replica Set Tag Sets (page 433)

• Manage Chained Replication (page 417)

• Reconfigure a Replica Set with Unavailable Members (page 436)

• Recover MongoDB Data following Unexpected Shutdown (page 52)

• Troubleshoot Replica Sets (page 422)

14.2.2 Sharding

• Deploy a Sharded Cluster (page 481)

• Convert a Replica Set to a Replicated Sharded Cluster (page 489)

• Add Shards to a Cluster (page 488)

• Remove Shards from an Existing Sharded Cluster (page 508)

• Deploy Three Config Servers for Production Deployments (page 497)

• Migrate Config Servers with the Same Hostname (page 497)

• Migrate Config Servers with Different Hostnames (page 498)

• Replace a Config Server (page 498)

• Backup Cluster Metadata (page 499)

• Backup a Small Sharded Cluster with mongodump (page 55)

• Create Backup of a Sharded Cluster with Filesystem Snapshots (page 55)

• Create Backup of a Sharded Cluster with Database Dumps (page 57)

• Restore a Single Shard (page 58)

• Restore Sharded Clusters (page 59)

• Schedule Backup Window for Sharded Clusters (page 59)

• Administer and Manage Shard Tags (page 495)

118 Chapter 14. MongoDB Tutorials

MongoDB Documentation, Release 2.4.2

14.2.3 Basic Operations

• Use Database Commands (page 803)

• Recover MongoDB Data following Unexpected Shutdown (page 52)

• Copy Databases Between Instances (page 50)

• Expire Data from Collections by Setting TTL (page 551)

• Analyze Performance of Database Operations (page 95)

• Rotate Log Files (page 1044)

• Build Old Style Indexes (page 330)

• Manage mongod Processes (page 1042)

• Use mongodump and mongorestore to Backup and Restore MongoDB Databases (page 43)

• Use Filesystem Snapshots to Backup and Restore MongoDB Databases (page 46)

14.2.4 Security

• Configure Linux iptables Firewall for MongoDB (page 131)

• Configure Windows netsh Firewall for MongoDB (page 135)

• Access Control in MongoDB (page 138)

14.3 Development Patterns

• Perform Two Phase Commits (page 537)

• Isolate Sequence of Operations (page 545)

• Create an Auto-Incrementing Sequence Field (page 546)

• Enforce Unique Keys for Sharded Collections (page 511)

• Aggregation Framework Examples (page 255)

• Model Data to Support Keyword Search (page 241)

• Limit Number of Elements in an Array after an Update (page 550)

• Perform Incremental Map-Reduce (page 287)

• Troubleshoot the Map Function (page 291)

• Troubleshoot the Reduce Function (page 292)

• Store a JavaScript Function on the Server (page 535)

14.4 Application Development

• Write a Tumblelog Application with Django MongoDB Engine (page 651)

• Write a Tumblelog Application with Flask and MongoEngine (page 663)

14.3. Development Patterns 119

MongoDB Documentation, Release 2.4.2

14.5 Text Search Patterns

• Enable Text Search (page 349)

• Search String Content for Text (page 356)

• Create text Index on Multiple Fields (page 351)

• Specify a Language for Text Index (page 351)

• Specify text Index Name to Avoid Name Length Limit (page 351)

• Control Results of Text Search with Weights (page 353)

• Create a text Index on a Multi-language Collection (page 352)

• Return Text Queries Using Only a text Index (page 356)

• Limit the Number of Index Entries Scanned for Text Search (page 354)

14.6 Data Modeling Patterns

• Model Embedded One-to-One Relationships Between Documents (page 233)

• Model Embedded One-to-Many Relationships Between Documents (page 234)

• Model Referenced One-to-Many Relationships Between Documents (page 235)

• Model Data for Atomic Operations (page 237)

• Model Tree Structures with Parent References (page 238)

• Model Tree Structures with Child References (page 238)

• Model Tree Structures with Materialized Paths (page 240)

• Model Tree Structures with Nested Sets (page 241)

14.7 MongoDB Use Case Studies

• Storing Log Data (page 583)

• Pre-Aggregated Reports (page 593)

• Hierarchical Aggregation (page 602)

• Product Catalog (page 611)

• Inventory Management (page 619)

• Category Hierarchy (page 625)

• Metadata and Asset Management (page 633)

• Storing Comments (page 640)

See Also:

• Sharded Cluster Administration (page 481)

• Replica Set Administration (page 397)

• Indexing Operations (page 321)

120 Chapter 14. MongoDB Tutorials

Part III

Security

121

MongoDB Documentation, Release 2.4.2

The documents in this section outline basic security practices and risk management strategies. Additionally, this
section includes MongoDB Tutorials (page 117) that outline basic network filter and firewall rules to configure trusted
environments for MongoDB.

This section also describes the MongoDB role-based access-control model. MongoDB provides user roles that autho-
rize users for different levels of access to databases and database operations. For more information, see the reference
pages listed at the bottom of this page.

If you believe you have discovered a vulnerability in MongoDB, please see Create a Vulnerability Report (page 146).

123

MongoDB Documentation, Release 2.4.2

124

CHAPTER 15

Strategies and Practices

15.1 Security Practices and Management

As with all software running in a networked environment, administrators of MongoDB must consider security and
risk exposures for a MongoDB deployment. There are no magic solutions for risk mitigation, and maintaining a
secure MongoDB deployment is an ongoing process. This document takes a Defense in Depth approach to securing
MongoDB deployments, and addresses a number of different methods for managing risk and reducing risk exposure

The intent of Defense In Depth approaches are to ensure there are no exploitable points of failure in your deployment
that could allow an intruder or un-trusted party to access the data stored in the MongoDB database. The easiest and
most effective way to reduce the risk of exploitation is to run MongoDB in a trusted environment, limit access, follow
a system of least privilege, and follow best development and deployment practices. See the Strategies for Reducing
Risk (page 125) section for more information.

For information on controlling user access through MongoDB user privileges, see the Authorization (page 129) section
in this document. See User Privilege Roles in MongoDB (page 149) and system.users Privilege Documents (page 153)
for more information.

To use Kerberos authentication, which is available in MongoDB Enterprise
<http://www.10gen.com/products/mongodb-enterprise>, see Deploy MongoDB with Kerberos Authentication
(page 141).

15.1.1 Strategies for Reducing Risk

The most effective way to reduce risk for MongoDB deployments is to run your entire MongoDB deployment, includ-
ing all MongoDB components (i.e. mongod (page 971), mongos (page 981) and application instances) in a trusted
environment. Trusted environments use the following strategies to control access:

• network filter (e.g. firewall) rules that block all connections from unknown systems to MongoDB components.

• bind mongod (page 971) and mongos (page 981) instances to specific IP addresses to limit accessibility.

• limit MongoDB programs to non-public local networks, and virtual private networks.

You may further reduce risk by:

• requiring authentication for access to MongoDB instances.

• requiring strong, complex, single purpose authentication credentials. This should be part of your internal secu-
rity policy but is not currently configurable in MongoDB.

125

MongoDB Documentation, Release 2.4.2

• deploying a model of least privilege, where all users have only the amount of access they need to accomplish
required tasks, and no more.

• following the best application development and deployment practices, which includes: validating all inputs,
managing sessions, and application-level access control.

Continue reading this document for more information on specific strategies and configurations to help reduce the risk
exposure of your application.

15.1.2 Vulnerability Notification

10gen takes the security of MongoDB and associated products very seriously. If you discover a vulnerability in
MongoDB or another 10gen product, or would like to know more about our vulnerability reporting and response
process, see the Create a Vulnerability Report (page 146) document.

15.1.3 Networking Risk Exposure

Interfaces and Port Numbers

The following list includes all default ports used by MongoDB:

27017 This is the default port for mongod (page 971) and mongos (page 981) instances. You can change this port
with port (page 1027) or --port (page 972).

27018 This is the default port when running with --shardsvr (page 979) runtime operation or shardsvr
(page 1036) setting.

27019 This is the default port when running with --configsvr (page 978) runtime operation or configsvr
(page 1035) setting.

28017 This is the default port for the web status page. This is always accessible at a port that is 1000 greater than
the port determined by port (page 1027).

By default MongoDB programs (i.e. mongos (page 981) and mongod (page 971)) will bind to all available network
interfaces (i.e. IP addresses) on a system. The next section outlines various runtime options that allow you to limit
access to MongoDB programs.

Network Interface Limitation

You can limit the network exposure with the following configuration options:

• the nohttpinterface (page 1030) setting for mongod (page 971) and mongos (page 981) instances.

Disables the “home” status page, which would run on port 28017 by default. The status interface is read-
only by default. You may also specify this option on the command line as mongod --nohttpinterface
(page 975) or mongos --nohttpinterface (page 983). Authentication does not control or affect access
to this interface.

Important: Disable this option for production deployments. If you do leave this interface enabled, you should
only allow trusted clients to access this port. See Firewalls (page 127).

• the port (page 1027) setting for mongod (page 971) and mongos (page 981) instances.

Changes the main port on which the mongod (page 971) or mongos (page 981) instance listens for connections.
Changing the port does not meaningfully reduce risk or limit exposure.

126 Chapter 15. Strategies and Practices

MongoDB Documentation, Release 2.4.2

You may also specify this option on the command line as mongod --port (page 972) or mongos --port
(page 981).

Whatever port you attach mongod (page 971) and mongos (page 981) instances to, you should only allow
trusted clients to connect to this port. See Firewalls (page 127).

• the rest (page 1032) setting for mongod (page 971).

Enables a fully interactive administrative REST interface, which is disabled by default. The status interface,
which is enabled by default, is read-only. This configuration makes that interface fully interactive. The REST
interface does not support any authentication and you should always restrict access to this interface to only allow
trusted clients to connect to this port.

You may also enable this interface on the command line as mongod --rest (page 975).

Important: Disable this option for production deployments. If do you leave this interface enabled, you should
only allow trusted clients to access this port.

• the bind_ip (page 1027) setting for mongod (page 971) and mongos (page 981) instances.

Limits the network interfaces on which MongoDB programs will listen for incoming connections. You can also
specify a number of interfaces by passing bind_ip (page 1027) a comma separated list of IP addresses. You
can use the mongod --bind_ip (page 972) and mongos --bind_ip (page 981) option on the command
line at run time to limit the network accessibility of a MongoDB program.

Important: Make sure that your mongod (page 971) and mongos (page 981) instances are only accessible on
trusted networks. If your system has more than one network interface, bind MongoDB programs to the private
or internal network interface.

Firewalls

Firewalls allow administrators to filter and control access to a system by providing granular control over what network
communications. For administrators of MongoDB, the following capabilities are important:

• limiting incoming traffic on a specific port to specific systems.

• limiting incoming traffic from untrusted hosts.

On Linux systems, the iptables interface provides access to the underlying netfilter firewall. On Windows
systems netsh command line interface provides access to the underlying Windows Firewall. For additional informa-
tion about firewall configuration consider the following documents:

• Configure Linux iptables Firewall for MongoDB (page 131)

• Configure Windows netsh Firewall for MongoDB (page 135)

For best results and to minimize overall exposure, ensure that only traffic from trusted sources can reach mongod
(page 971) and mongos (page 981) instances and that the mongod (page 971) and mongos (page 981) instances can
only connect to trusted outputs.

See Also:

For MongoDB deployments on Amazon’s web services, see the Amazon EC2 page, which addresses Amazon’s Secu-
rity Groups and other EC2-specific security features.

15.1. Security Practices and Management 127

http://docs.mongodb.org/ecosystem/platforms/amazon-ec2

MongoDB Documentation, Release 2.4.2

Virtual Private Networks

Virtual private networks, or VPNs, make it possible to link two networks over an encrypted and limited-access trusted
network. Typically MongoDB users who use VPNs use SSL rather than IPSEC VPNs for performance issues.

Depending on configuration and implementation VPNs provide for certificate validation and a choice of encryption
protocols, which requires a rigorous level of authentication and identification of all clients. Furthermore, because
VPNs provide a secure tunnel, using a VPN connection to control access to your MongoDB instance, you can prevent
tampering and “man-in-the-middle” attacks.

15.1.4 Operations

Always run the mongod (page 971) or mongos (page 981) process as a unique user with the minimum required
permissions and access. Never run a MongoDB program as a root or administrative users. The system users that run
the MongoDB processes should have robust authentication credentials that prevent unauthorized or casual access.

To further limit the environment, you can run the mongod (page 971) or mongos (page 981) process in a chroot
environment. Both user-based access restrictions and chroot configuration follow recommended conventions for
administering all daemon processes on Unix-like systems.

You can disable anonymous access to the database by enabling authentication using the auth (page 1029) as detailed
in the Authentication (page 128) section.

15.1.5 Authentication

MongoDB provides basic support for authentication with the auth (page 1029) and keyFile (page 1028) configura-
tion settings. To require authentication on a single-instance deployment, start the mongod (page 971) instance with the
auth (page 1029) setting. For multi-instance deployments (i.e. replica sets and sharded clusters) use the keyFile
(page 1028) setting, which implies auth (page 1029) and allows intra-deployment authentication and operation.

For MongoDB Enterprise installations, MongoDB also supports authentication using a Kerberos service. See Deploy
MongoDB with Kerberos Authentication (page 141).

For basic authentication, be aware of the following behaviors:

• Authentication is disabled by default.

• The system.users collection in each database stores all credentials. If you have the userAdmin role on a
database, you can query authenticated users in that database with the following operation:

db.system.users.find()

• When setting up authentication for the first time you must either:

– add at least one user to the admin database before starting the mongod (page 971) instance with auth
(page 1029).

– add the first user to the admin database when connected to the mongod (page 971) instance from a
localhost connection. 1

To add and maintain users, see Access Control in MongoDB (page 138).

• Support for authentication with sharded clusters. New in version 2.0. Before 2.0 sharded clusters had to run
with trusted applications and a trusted networking configuration.

1 Because of SERVER-6591, you cannot add the first user to a sharded cluster using the localhost connection in 2.2. If you are running a
2.2 sharded cluster, and want to enable authentication, you must deploy the cluster and add the first user to the admin database before restarting
the cluster to run with keyFile (page 1028).

128 Chapter 15. Strategies and Practices

https://jira.mongodb.org/browse/SERVER-6591

MongoDB Documentation, Release 2.4.2

15.1.6 Authorization

Changed in version 2.4. MongoDB provides role-based access to databases and database operations through each
database’s system.users (page 154) collection.

Be aware of the following behaviors:

• MongoDB provisions access on a per-database level. Users exist in the context of a single logical database.

• Roles determine the user’s access to the database. For a list of available roles, see Roles (page 149).

• User documents in the system.users (page 154) collection in one database can grant access to users defined
in another database. See Roles (page 149).

• The admin database provides roles not available in other databases. You can assign admin users roles that
effectively make them MongoDB system superusers. See Database Administration Roles (page 150) and Ad-
ministrative Roles (page 151).

• The system.users collection in each database stores all users and their roles. If you have the userAdmin
role on a database, you can query authorized users in that database with the following operation:

db.system.users.find()

• The system.users collection is protected to prevent privilege escalation attacks by requiring you to have the
userAdmin role.

• You can be logged in as only one user for a given database, including the admin database. If you authenticate to
a database as one user and later authenticate on the same database as a different user, the second authentication
invalidates the first. Logging into a different database, however, does not invalidate authentication on other
databases.

For more information on controlling user access, see the following:

• User Privilege Roles in MongoDB (page 149)

• system.users Privilege Documents (page 153)

15.1.7 Interfaces

Simply limiting access to a mongod (page 971) is not sufficient for totally controlling risk exposure. Consider the
recommendations in the following section, for limiting exposure other interface-related risks.

JavaScript and the Security of the mongo Shell

Be aware of the following capabilities and behaviors of the mongo (page 984) shell:

• mongo (page 984) will evaluate a .js file passed to the mongo --eval (page 985) option. The mongo
(page 984) shell does not validate the input of JavaScript input to --eval (page 985).

• mongo (page 984) will evaluate a .mongorc.js file before starting. You can disable this behavior by passing
the mongo --norc (page 985) option.

On Linux and Unix systems, mongo (page 984) reads the .mongorc.js file from $HOME/.mongorc.js
(i.e. ~/.mongorc.js), and Windows mongo.exe reads the .mongorc.js file from
%HOME%.mongorc.js or %HOMEDRIVE%%HOMEPATH%.mongorc.js.

15.1. Security Practices and Management 129

MongoDB Documentation, Release 2.4.2

HTTP Status Interface

The HTTP status interface provides a web-based interface that includes a variety of operational data, logs, and status
reports regarding the mongod (page 971) or mongos (page 981) instance. The HTTP interface is always available on
the port numbered 1000 greater than the primary mongod (page 971) port. By default this is 28017, but is indirectly
set using the port (page 1027) option which allows you to configure the primary mongod (page 971) port.

Without the rest (page 1032) setting, this interface is entirely read-only, and limited in scope; nevertheless, this
interface may represent an exposure. To disable the HTTP interface, set the nohttpinterface (page 1030) run
time option or the --nohttpinterface (page 975) command line option.

REST API

The REST API to MongoDB provides additional information and write access on top of the HTTP Status interface.
The REST interface is disabled by default, and is not recommended for production use.

While the REST API does not provide any support for insert, update, or remove operations, it does provide adminis-
trative access, and its accessibility represents a vulnerability in a secure environment.

If you must use the REST API, please control and limit access to the REST API. The REST API does not include any
support for authentication, even when running with auth (page 1029) (authorization) enabled.

See the following documents for instructions on restricting access to the REST API interface:

• Configure Linux iptables Firewall for MongoDB (page 131)

• Configure Windows netsh Firewall for MongoDB (page 135)

15.1.8 Data Encryption

To support audit requirements, you may need to encrypt data stored in MongoDB. For best results you can encrypt
this data in the application layer, by encrypting the content of fields that hold secure data.

Additionally, 10gen has a partnership with Gazzang to encrypt and secure sensitive data within MongoDB. The solu-
tion encrypts data in real time and Gazzang provides advanced key management that ensures only authorized processes
and can access this data. The Gazzang software ensures that the cryptographic keys remain safe and ensures compli-
ance with standards including HIPAA, PCI-DSS, and FERPA. For more information consider the following resources:

• Datasheet

• Webinar

130 Chapter 15. Strategies and Practices

http://10gen.com
https://www.10gen.com/partners/technology/gazzang
http://www.gazzang.com/
http://www.gazzang.com/images/datasheet-zNcrypt-for-MongoDB.pdf
http://gazzang.com/resources/videos/partner-videos/item/209-gazzang-zncrypt-on-mongodb

CHAPTER 16

Tutorials

16.1 Configure Linux iptables Firewall for MongoDB

On contemporary Linux systems, the iptables program provides methods for managing the Linux Kernel’s
netfilter or network packet filtering capabilities. These firewall rules make it possible for administrators to
control what hosts can connect to the system, and limit risk exposure by limiting the hosts that can connect to a
system.

This document outlines basic firewall configurations for iptables firewalls on Linux. Use these approaches as a
starting point for your larger networking organization. For a detailed over view of security practices and risk manage-
ment for MongoDB, see Security Practices and Management (page 125).

See Also:

For MongoDB deployments on Amazon’s web services, see the Amazon EC2 page, which addresses Amazon’s Secu-
rity Groups and other EC2-specific security features.

16.1.1 Overview

Rules in iptables configurations fall into chains, which describe the process for filtering and processing specific
streams of traffic. Chains have an order, and packets must pass through earlier rules in a chain to reach later rules.
This document only the following two chains:

INPUT Controls all incoming traffic.

OUTPUT Controls all outgoing traffic.

Given the default ports (page 126) of all MongoDB processes, you must configure networking rules that permit only
required communication between your application and the appropriate mongod (page 971) and mongos (page 981)
instances.

Be aware that, by default, the default policy of iptables is to allow all connections and traffic unless explicitly
disabled. The configuration changes outlined in this document will create rules that explicitly allow traffic from
specific addresses and on specific ports, using a default policy that drops all traffic that is not explicitly allowed. When
you have properly configured your iptables rules to allow only the traffic that you want to permit, you can Change
Default Policy to DROP (page 134).

131

http://docs.mongodb.org/ecosystem/platforms/amazon-ec2

MongoDB Documentation, Release 2.4.2

16.1.2 Patterns

This section contains a number of patterns and examples for configuring iptables for use with MongoDB deploy-
ments. If you have configured different ports using the port (page 1027) configuration setting, you will need to
modify the rules accordingly.

Traffic to and from mongod Instances

This pattern is applicable to all mongod (page 971) instances running as standalone instances or as part of a replica
set.

The goal of this pattern is to explicitly allow traffic to the mongod (page 971) instance from the application server. In
the following examples, replace <ip-address> with the IP address of the application server:

iptables -A INPUT -s <ip-address> -p tcp --destination-port 27017 -m state --state NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -d <ip-address> -p tcp --source-port 27017 -m state --state ESTABLISHED -j ACCEPT

The first rule allows all incoming traffic from <ip-address> on port 27017, which allows the application server
to connect to the mongod (page 971) instance. The second rule, allows outgoing traffic from the mongod (page 971)
to reach the application server.

Optional

If you have only one application server, you can replace <ip-address> with either the IP address itself, such as:
198.51.100.55. You can also express this using CIDR notation as 198.51.100.55/32. If you want to permit
a larger block of possible IP addresses you can allow traffic from a http://docs.mongodb.org/manual/24
using one of the following specifications for the <ip-address>, as follows:

10.10.10.10/24
10.10.10.10/255.255.255.0

Traffic to and from mongos Instances

mongos (page 981) instances provide query routing for sharded clusters. Clients connect to mongos (page 981) in-
stances, which behave from the client’s perspective as mongod (page 971) instances. In turn, the mongos (page 981)
connects to all mongod (page 971) instances that are components of the sharded cluster.

Use the same iptables command to allow traffic to and from these instances as you would from the mongod
(page 971) instances that are members of the replica set. Take the configuration outlined in the Traffic to and from
mongod Instances (page 132) section as an example.

Traffic to and from a MongoDB Config Server

Config servers, host the config database that stores metadata for sharded clusters. Each production cluster has three
config servers, initiated using the mongod --configsvr (page 978) option. 1 Config servers listen for connections
on port 27019. As a result, add the following iptables rules to the config server to allow incoming and outgoing
connection on port 27019, for connection to the other config servers.

iptables -A INPUT -s <ip-address> -p tcp --destination-port 27019 -m state --state NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -d <ip-address> -p tcp --source-port 27019 -m state --state ESTABLISHED -j ACCEPT

1 You can also run a config server by setting the configsvr (page 1035) option in a configuration file.

132 Chapter 16. Tutorials

MongoDB Documentation, Release 2.4.2

Replace <ip-address> with the address or address space of all the mongod (page 971) that provide config servers.

Additionally, config servers need to allow incoming connections from all of the mongos (page 981) instances in the
cluster and all mongod (page 971) instances in the cluster. Add rules that resemble the following:

iptables -A INPUT -s <ip-address> -p tcp --destination-port 27019 -m state --state NEW,ESTABLISHED -j ACCEPT

Replace <ip-address> with the address of the mongos (page 981) instances and the shard mongod (page 971)
instances.

Traffic to and from a MongoDB Shard Server

For shard servers, running as mongod --shardsvr (page 979) 2 Because the default port number when running
with shardsvr (page 1036) is 27018, you must configure the following iptables rules to allow traffic to and
from each shard:

iptables -A INPUT -s <ip-address> -p tcp --destination-port 27018 -m state --state NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -d <ip-address> -p tcp --source-port 27018 -m state --state ESTABLISHED -j ACCEPT

Replace the <ip-address> specification with the IP address of all mongod (page 971). This allows you to permit
incoming and outgoing traffic between all shards including constituent replica set members, to:

• all mongod (page 971) instances in the shard’s replica sets.

• all mongod (page 971) instances in other shards. 3

Furthermore, shards need to be able make outgoing connections to:

• all mongos (page 981) instances.

• all mongod (page 971) instances in the config servers.

Create a rule that resembles the following, and replace the <ip-address> with the address of the config servers
and the mongos (page 981) instances:

iptables -A OUTPUT -d <ip-address> -p tcp --source-port 27018 -m state --state ESTABLISHED -j ACCEPT

Provide Access For Monitoring Systems

1. The mongostat (page 1011) diagnostic tool, when running with the --discover (page 1013) needs to
be able to reach all components of a cluster, including the config servers, the shard servers, and the mongos
(page 981) instances.

2. If your monitoring system needs access the HTTP interface, insert the following rule to the chain:

iptables -A INPUT -s <ip-address> -p tcp --destination-port 28017 -m state --state NEW,ESTABLISHED -j ACCEPT

Replace <ip-address> with the address of the instance that needs access to the HTTP or REST interface.
For all deployments, you should restrict access to this port to only the monitoring instance.

Optional

For shard server mongod (page 971) instances running with shardsvr (page 1036), the rule would resemble
the following:

2 You can also specify the shard server option using the shardsvr (page 1036) setting in the configuration file. Shard members are also often
conventional replica sets using the default port.

3 All shards in a cluster need to be able to communicate with all other shards to facilitate chunk and balancing operations.

16.1. Configure Linux iptables Firewall for MongoDB 133

MongoDB Documentation, Release 2.4.2

iptables -A INPUT -s <ip-address> -p tcp --destination-port 28018 -m state --state NEW,ESTABLISHED -j ACCEPT

For config server mongod (page 971) instances running with configsvr (page 1035), the rule would resemble
the following:

iptables -A INPUT -s <ip-address> -p tcp --destination-port 28019 -m state --state NEW,ESTABLISHED -j ACCEPT

16.1.3 Change Default Policy to DROP

The default policy for iptables chains is to allow all traffic. After completing all iptables configuration changes,
you must change the default policy to DROP so that all traffic that isn’t explicitly allowed as above will not be able to
reach components of the MongoDB deployment. Issue the following commands to change this policy:

iptables -P INPUT DROP

iptables -P OUTPUT DROP

16.1.4 Manage and Maintain iptables Configuration

This section contains a number of basic operations for managing and using iptables. There are various front end
tools that automate some aspects of iptables configuration, but at the core all iptables front ends provide the
same basic functionality:

Make all iptables Rules Persistent

By default all iptables rules are only stored in memory. When your system restarts, your firewall rules will revert
to their defaults. When you have tested a rule set and have guaranteed that it effectively controls traffic you can use
the following operations to you should make the rule set persistent.

On Red Hat Enterprise Linux, Fedora Linux, and related distributions you can issue the following command:

service iptables save

On Debian, Ubuntu, and related distributions, you can use the following command to dump the iptables rules to
the http://docs.mongodb.org/manual/etc/iptables.conf file:

iptables-save > /etc/iptables.conf

Run the following operation to restore the network rules:

iptables-restore < /etc/iptables.conf

Place this command in your rc.local file, or in the http://docs.mongodb.org/manual/etc/network/if-up.d/iptables
file with other similar operations.q

List all iptables Rules

To list all of currently applied iptables rules, use the following operation at the system shell.

iptables --L

134 Chapter 16. Tutorials

MongoDB Documentation, Release 2.4.2

Flush all iptables Rules

If you make a configuration mistake when entering iptables rules or simply need to revert to the default rule set,
you can use the following operation at the system shell to flush all rules:

iptables --F

If you’ve already made your iptables rules persistent, you will need to repeat the appropriate procedure in the
Make all iptables Rules Persistent (page 134) section.

16.2 Configure Windows netsh Firewall for MongoDB

On Windows Server systems, the netsh program provides methods for managing the Windows Firewall. These
firewall rules make it possible for administrators to control what hosts can connect to the system, and limit risk
exposure by limiting the hosts that can connect to a system.

This document outlines basic Windows Firewall configurations. Use these approaches as a starting point for your
larger networking organization. For a detailed over view of security practices and risk management for MongoDB, see
Security Practices and Management (page 125).

See Also:

Windows Firewall documentation from Microsoft.

16.2.1 Overview

Windows Firewall processes rules in an ordered determined by rule type, and parsed in the following order:

1. Windows Service Hardening

2. Connection security rules

3. Authenticated Bypass Rules

4. Block Rules

5. Allow Rules

6. Default Rules

By default, the policy in Windows Firewall allows all outbound connections and blocks all incoming connections.

Given the default ports (page 126) of all MongoDB processes, you must configure networking rules that permit only
required communication between your application and the appropriate mongod.exe (page 989) and mongos.exe
(page 991) instances.

The configuration changes outlined in this document will create rules which explicitly allow traffic from specific
addresses and on specific ports, using a default policy that drops all traffic that is not explicitly allowed.

You can configure the Windows Firewall with using the netsh command line tool or through a windows application.
On Windows Server 2008 this application is Windows Firewall With Advanced Security in Administrative Tools. On
previous versions of Windows Server, access the Windows Firewall application in the System and Security control
panel.

The procedures in this document use the netsh command line tool.

16.2. Configure Windows netsh Firewall for MongoDB 135

http://technet.microsoft.com/en-us/network/bb545423.aspx

MongoDB Documentation, Release 2.4.2

16.2.2 Patterns

This section contains a number of patterns and examples for configuring Windows Firewall for use with MongoDB
deployments. If you have configured different ports using the port (page 1027) configuration setting, you will need
to modify the rules accordingly.

Traffic to and from mongod.exe Instances

This pattern is applicable to all mongod.exe (page 989) instances running as standalone instances or as part of a
replica set. The goal of this pattern is to explicitly allow traffic to the mongod.exe (page 989) instance from the
application server.

netsh advfirewall firewall add rule name="Open mongod port 27017" dir=in action=allow protocol=TCP localport=27017

This rule allows all incoming traffic to port 27017, which allows the application server to connect to the
mongod.exe (page 989) instance.

Windows Firewall also allows enabling network access for an entire application rather than to a specific port, as in the
following example:

netsh advfirewall firewall add rule name="Allowing mongod" dir=in action=allow program=" C:\mongodb\bin\mongod.exe"

You can allow all access for a mongos.exe (page 991) server, with the following invocation:

netsh advfirewall firewall add rule name="Allowing mongos" dir=in action=allow program=" C:\mongodb\bin\mongos.exe"

Traffic to and from mongos.exe Instances

mongos.exe (page 991) instances provide query routing for sharded clusters. Clients connect to mongos.exe
(page 991) instances, which behave from the client’s perspective as mongod.exe (page 989) instances. In turn, the
mongos.exe (page 991) connects to all mongod.exe (page 989) instances that are components of the sharded
cluster.

Use the same Windows Firewall command to allow traffic to and from these instances as you would from the
mongod.exe (page 989) instances that are members of the replica set.

netsh advfirewall firewall add rule name="Open mongod shard port 27018" dir=in action=allow protocol=TCP localport=27018

Traffic to and from a MongoDB Config Server

Configuration servers, host the config database that stores metadata for sharded clusters. Each production cluster has
three configuration servers, initiated using the mongod --configsvr (page 978) option. 4 Configuration servers
listen for connections on port 27019. As a result, add the following Windows Firewall rules to the config server to
allow incoming and outgoing connection on port 27019, for connection to the other config servers.

netsh advfirewall firewall add rule name="Open mongod config svr port 27019" dir=in action=allow protocol=TCP localport=27019

Additionally, config servers need to allow incoming connections from all of the mongos.exe (page 991) instances
in the cluster and all mongod.exe (page 989) instances in the cluster. Add rules that resemble the following:

netsh advfirewall firewall add rule name="Open mongod config svr inbound" dir=in action=allow protocol=TCP remoteip=<ip-address> localport=27019

Replace <ip-address> with the addresses of the mongos.exe (page 991) instances and the shard mongod.exe
(page 989) instances.

4 You can also run a config server by setting the configsvr (page 1035) option in a configuration file.

136 Chapter 16. Tutorials

MongoDB Documentation, Release 2.4.2

Traffic to and from a MongoDB Shard Server

For shard servers, running as mongod --shardsvr (page 979) 5 Because the default port number when running
with shardsvr (page 1036) is 27018, you must configure the following Windows Firewall rules to allow traffic to
and from each shard:

netsh advfirewall firewall add rule name="Open mongod shardsvr inbound" dir=in action=allow protocol=TCP remoteip=<ip-address> localport=27018
netsh advfirewall firewall add rule name="Open mongod shardsvr outbound" dir=out action=allow protocol=TCP remoteip=<ip-address> localport=27018

Replace the <ip-address> specification with the IP address of all mongod.exe (page 989) instances. This allows
you to permit incoming and outgoing traffic between all shards including constituent replica set members to:

• all mongod.exe (page 989) instances in the shard’s replica sets.

• all mongod.exe (page 989) instances in other shards. 6

Furthermore, shards need to be able make outgoing connections to:

• all mongos.exe (page 991) instances.

• all mongod.exe (page 989) instances in the config servers.

Create a rule that resembles the following, and replace the <ip-address> with the address of the config servers
and the mongos.exe (page 991) instances:

netsh advfirewall firewall add rule name="Open mongod config svr outbound" dir=out action=allow protocol=TCP remoteip=<ip-address> localport=27018

Provide Access For Monitoring Systems

1. The mongostat (page 1011) diagnostic tool, when running with the --discover (page 1013) needs to be
able to reach all components of a cluster, including the config servers, the shard servers, and the mongos.exe
(page 991) instances.

2. If your monitoring system needs access the HTTP interface, insert the following rule to the chain:

netsh advfirewall firewall add rule name="Open mongod HTTP monitoring inbound" dir=in action=allow protocol=TCP remoteip=<ip-address> localport=28017

Replace <ip-address> with the address of the instance that needs access to the HTTP or REST interface.
For all deployments, you should restrict access to this port to only the monitoring instance.

Optional

For shard server mongod.exe (page 989) instances running with shardsvr (page 1036), the rule would
resemble the following:

netsh advfirewall firewall add rule name="Open mongos HTTP monitoring inbound" dir=in action=allow protocol=TCP remoteip=<ip-address> localport=28018

For config server mongod.exe (page 989) instances running with configsvr (page 1035), the rule would
resemble the following:

netsh advfirewall firewall add rule name="Open mongod configsvr HTTP monitoring inbound" dir=in action=allow protocol=TCP remoteip=<ip-address> localport=28019

5 You can also specify the shard server option using the shardsvr (page 1036) setting in the configuration file. Shard members are also often
conventional replica sets using the default port.

6 All shards in a cluster need to be able to communicate with all other shards to facilitate chunk and balancing operations.

16.2. Configure Windows netsh Firewall for MongoDB 137

MongoDB Documentation, Release 2.4.2

16.2.3 Manage and Maintain Windows Firewall Configurations

This section contains a number of basic operations for managing and using netsh. While you can use the GUI front
ends to manage the Windows Firewall, all core functionality is accessible is accessible from netsh.

Delete all Windows Firewall Rules

To delete the firewall rule allowing mongod.exe (page 989) traffic:

netsh advfirewall firewall delete rule name="Open mongod port 27017" protocol=tcp localport=27017

netsh advfirewall firewall delete rule name="Open mongod shard port 27018" protocol=tcp localport=27018

List All Windows Firewall Rules

To return a list of all Windows Firewall rules:

netsh advfirewall firewall show rule name=all

Reset Windows Firewall

To reset the Windows Firewall rules:

netsh advfirewall reset

Backup and Restore Windows Firewall Rules

To simplify administration of larger collection of systems, you can export or import firewall systems from different
servers) rules very easily on Windows:

Export all firewall rules with the following command:

netsh advfirewall export "C:\temp\MongoDBfw.wfw"

Replace "C:\temp\MongoDBfw.wfw" with a path of your choosing. You can use a command in the following
form to import a file created using this operation:

netsh advfirewall import "C:\temp\MongoDBfw.wfw"

16.3 Access Control in MongoDB

This document describes how to set up and manage basic authentication and authorization. For information on Ker-
beros authentication, which is available in MongoDB Enterprise, see Kerberos Authentication (page 141).

MongoDB provides a basic access control system that you can enable with the auth (page 1029) and keyFile
(page 1028) configuration settings 7. For an overview, see the Authentication (page 128) section of the Security
Practices and Management (page 125) document. For additional configuration settings that affect security, see the
Security Considerations (page 36) section of the Run-time Database Configuration (page 35) document.

MongoDB also provides role-based privileges through each database’s system.users (page 154) collection. For an
overview, see the Authorization (page 129) section of the Security Practices and Management (page 125) document.

7 Use the --auth (page 973) or --keyFile (page 973) options on the command line.

138 Chapter 16. Tutorials

MongoDB Documentation, Release 2.4.2

16.3.1 Add Users

Changed in version 2.4: The schema of system.users (page 154) changed in 2.4 to accommodate a more sophis-
ticated user privilege model (page 149). When setting up authentication for the first time you must either:

• add at least one user to the admin database before starting the mongod (page 971) instance with auth
(page 1029).

• add the first user to the admin database when connected to the mongod (page 971) instance from a
localhost connection. 8

The first user to a MongoDB deployment should be a user with the userAdminAnyDatabase role in the admin
database.

Add a User with the userAdminAnyDatabase Role

The first user created for a MongoDB deployment should have the userAdminAnyDatabase role, which allows
the user to create other users with any roles. Use this user to create all other users in the system.

The user with the userAdminAnyDatabase role is effectively a super-user, as the user can grant itself any role. In
production deployments, this user should have no other roles and should only administer users and privileges.

As this user can grant itself and any other user full access to anything, the credentials to log in as this user should be
carefully controlled.

1. Connect to the mongod (page 971) or mongos (page 981) on the localhost interface using the mongo
(page 984) shell.

2. Switch to the admin database:

use admin

3. Add the user with the userAdminAnyDatabase role, and only that role, by issuing a command similar to
the following, where <username> is the username and <password> is the password:

db.addUser({ user: "<username>", pwd: "<password>", roles: ["userAdminAnyDatabase"] })

For more information on creating a user, see Add a User to a Database (page 139).

Add a User to a Database

To add a user to a database you must authenticate to that database as a user with the userAdmin role.

To add a user, pass the db.addUser() (page 901) method a well-formed system.users (page 154) document
that contains the user’s credentials and privileges. The db.addUser() (page 901) method adds the document to the
database’s system.users (page 154) collection.

For the structure of user privilege documents, see system.users (page 154). The following are example docu-
ments.

Example

The following creates a user named Alice in the products database and gives her readWrite and dbAdmin
privileges.

8 Because of SERVER-6591, in version 2.2 you cannot add the first user to a sharded cluster using the localhost connection. If you are
running a 2.2 sharded cluster, and want to enable authentication, you must deploy the cluster and add the first user to the admin database before
restarting the cluster to run with keyFile (page 1028).

16.3. Access Control in MongoDB 139

https://jira.mongodb.org/browse/SERVER-6591

MongoDB Documentation, Release 2.4.2

use products
db.addUser({ user: "Alice", pwd: "Moon1234", roles: ["readWrite", "dbAdmin"] })

Example

The following creates a user named Bob in the admin database. The system.users (page 154) document uses
Bob’s credentials from products database and assigns him userAdmin privileges.

use admin
db.addUser({ user: "Bob", userSource: "products", roles: ["userAdmin"] })

Example

The following creates a user named Carlos in the admin database and gives him readWrite access to the
config database, which lets him change certain settings for sharded clusters, such as to disable the balancer.

use admin
db.addUser({ user: "Carlos", pwd: "Moon1234", roles: ["clusterAdmin"], otherDBRoles: { config: ["readWrite"] } })

Only the admin database supports the otherDBRoles (page 155) field.

For more information about user roles, see User Privilege Roles in MongoDB (page 149) and system.users Privilege
Documents (page 153).

16.3.2 Authentication on Localhost

If there are no users for the admin database, you may connect via the localhost interface. That is, if running mongod
(page 971) or mongos (page 981) with auth (page 1029) or keyFile (page 1028), you can connect from a client
running on the same system as the mongod (page 971) or mongos (page 981), and your connection will have full ad-
ministrative access. This bypass exists to support bootstrapping new deployments. To disable the localhost bypass, set
the enableLocalhostAuthBypass (page 1039) parameter using setParameter (page 1033) during startup.

Note: For version of MongoDB 2.2 before 2.2.4, connections on localhost are not correctly granted full access
on sharded systems that run those versions. For those versions, if mongos (page 981) is running with keyFile
(page 1028), then all users connecting over the localhost interface must authenticate, even if there aren’t any users in
the admin database.

MongoDB 2.2.4 resolves this issue.

16.3.3 Password Hashing Insecurity

In version 2.2 and earlier:

• the read-write users of a database all have access to the system.users collection, which contains the user
names and user password hashes. 9

Note: In 2.4, only users with the userAdmin role have access to the system.users collection.

9 Read-only users do not have access to the system.users collection.

140 Chapter 16. Tutorials

MongoDB Documentation, Release 2.4.2

• if a user has the same password for multiple databases, the hash will be the same. A malicious user could exploit
this to gain access on a second database using a different user’s credentials.

As a result, always use unique username and password combinations for each database.

Thanks to Will Urbanski, from Dell SecureWorks, for identifying this issue.

16.3.4 Configuration Considerations for Authentication

The following sections outline practices for enabling and managing authentication with specific MongoDB deploy-
ments:

• Security (page 373)

• Security Practices for Sharded Clusters (page 470)

16.3.5 Generate a Key File

The key file must be less than one kilobyte in size and may only contain characters in the base64 set. The key file must
not have group or world permissions on UNIX systems. Key file permissions are not checked on Windows systems.

Windows Systems

Use the following openssl command at the system shell to generate pseudo-random content for a key file for
deployments with Windows components:

openssl rand -base64 741

Linux and Unix Systems

Use the following openssl command at the system shell to generate pseudo-random content for a key file for systems
that do not have Windows components (i.e. OS X, Unix, or Linux systems):

openssl rand -base64 753

Key File Properties

Be aware that MongoDB strips whitespace characters (e.g. x0d, x09, and x20,) for cross-platform convenience. As
a result, the following operations produce identical keys:

echo -e "my secret key" > key1
echo -e "my secret key\n" > key2
echo -e "my secret key" > key3
echo -e "my\r\nsecret\r\nkey\r\n" > key4

16.4 Deploy MongoDB with Kerberos Authentication

New in version 2.4. MongoDB Enterprise supports authentication using a Kerberos service to manage the authentica-
tion process. Kerberos is an industry standard authentication protocol for large client/server system. With Kerberos
MongoDB and application ecosystems can take advantage of existing authentication infrastructure and processes.

16.4. Deploy MongoDB with Kerberos Authentication 141

MongoDB Documentation, Release 2.4.2

Setting up and configuring a Kerberos deployment is beyond the scope of this document. In order to use MongoDB
with Kerberos, you must have a properly configured Kerberos deployment and the ability to generate a valid keytab
file for each mongod (page 971) instance in your MongoDB deployment.

Note: The following assumes that you have a valid Kerberos keytab file for your realm acces-
sible on your system. The examples below assume that the keytab file is valid and is located at
http://docs.mongodb.org/manual/opt/mongodb/mongod.keytab and is only accessible to the user
that runs the mongod (page 971) process.

16.4.1 Process Overview

To run MongoDB with Kerberos support, you must:

• Configure a Kerberos service principal for each mongod (page 971) and mongos (page 981) instance in your
MongoDB deployment.

• Generate and distribute keytab files for each MongoDB component (i.e. mongod (page 971) and mongos
(page 981))in your deployment. Ensure that you only transmit keytab files over secure channels.

• Optional. Start the mongod (page 971) instance without auth (page 1029) and create users inside of MongoDB
that you can use to bootstrap your deployment.

• Start mongod (page 971) and mongos (page 981) with the KRB5_KTNAME environment variable as well as a
number of required run time options.

• If you did not create Kerberos user accounts, you can use the localhost exception (page 140) to create users at
this point until you create the first user on the admin database.

• Authenticate clients, including the mongo (page 984) shell using Kerberos.

16.4.2 Operations

Create Users and Privilege Documents

For every user that you want to be able to authenticate using Kerberos, you must create corresponding privilege docu-
ments in the system.users (page 154) collection to provision access to users. Consider the following document:

{
user: "application/reporting@EXAMPLE.NET",
roles: ["read"],
userSource: "$external"

}

This grants the Kerberos user principal application/reporting@EXAMPLE.NET read only access to a
database. The userSource (page 155) $external reference allows mongod (page 971) to consult an external
source (i.e. Kerberos) to authenticate this user.

In the mongo (page 984) shell you can pass the db.addUser() (page 901) a user privilege document to provision
access to users, as in the following operation:

db = db.getSiblingDB("records")
db.addUser({

"user": "application/reporting@EXAMPLE.NET",
"roles": ["read"],
"userSource": "$external"

})

142 Chapter 16. Tutorials

MongoDB Documentation, Release 2.4.2

These operations grants the Kerberos user application/reporting@EXAMPLE.NET access to the records
database.

To remove access to a user, use the remove() (page 928) method, as in the following example:

db.system.users.remove({ user: "application/reporting@EXAMPLE.NET" })

To modify a user document, use update (page 213) operations on documents in the system.users (page 154)
collection.

See Also:

system.users Privilege Documents (page 153) and User Privilege Roles in MongoDB (page 149).

Start mongod with Kerberos Support

Once you have provisioned privileges to users in the mongod (page 971), and obtained a valid keytab file, you must
start mongod (page 971) using a command in the following form:

env KRB5_KTNAME=<path to keytab file> <mongod invocation>

For successful operation with mongod (page 971) use the following run time options in addition to your normal
default configuration options:

• --setParameter (page 976) with the authenticationMechanisms=GSSAPI argument to enable
support for Kerberos.

• --auth (page 973) to enable authentication.

• --keyFile (page 973) to allow components of a single MongoDB deployment to communicate with each
other, if needed to support replica set and sharded cluster operations. keyFile (page 1028) implies auth
(page 1029).

For example, consider the following invocation:

env KRB5_KTNAME=/opt/mongodb/mongod.keytab \
/opt/mongodb/bin/mongod --dbpath /opt/mongodb/data \
--fork --logpath /opt/mongodb/log/mongod.log \
--auth --setParameter authenticationMechanisms=GSSAPI

You can also specify these options using the configuration file. As in the following:

/opt/mongodb/mongod.conf, Example configuration file.

fork = true
auth = true

dbpath = /opt/mongodb/data
logpath = /opt/mongodb/log/mongod.log
setParameter = authenticationMechanisms=GSSAPI

To use this configuration file, start mongod (page 971) as in the following:

env KRB5_KTNAME=/opt/mongodb/mongod.keytab \
/opt/mongodb/bin/mongod --config /opt/mongodb/mongod.conf

To start a mongos (page 981) instance using Kerberos, you must create a Kerberos service principal and deploy a
keytab file for this instance, and then start the mongos (page 981) with the following invocation:

16.4. Deploy MongoDB with Kerberos Authentication 143

MongoDB Documentation, Release 2.4.2

env KRB5_KTNAME=/opt/mongodb/mongos.keytab \
/opt/mongodb/bin/mongos
--configdb shard0.example.net,shard1.example.net,shard2.example.net \
--setParameter authenticationMechanisms=GSSAPI \
--keyFile /opt/mongodb/mongos.keyfile

If you encounter problems when trying to start mongod (page 971) or mongos (page 981), please see the trou-
bleshooting section (page 144) for more information.

Important: Before users can authenticate to MongoDB using Kerberos you must create users (page 142) and grant
them privileges within MongoDB. If you have not created users when you start MongoDB with Kerberos you can
use the localhost authentication exception (page 140) to add users. See the Create Users and Privilege Documents
(page 142) section and the User Privilege Roles in MongoDB (page 149) document for more information.

Authenticate mongo Shell with Kerberos

To connect to a mongod (page 971) instance using the mongo (page 984) shell you must begin by using the kinit
program to initialize and authenticate a Kerberos session. Then, start a mongo (page 984) instance, and use the
db.auth() (page 902) method, to authenticate against the special $external database, as in the following oper-
ation:

use $external
db.auth({ mechanism: "GSSAPI", user: "application/reporting@EXAMPLE.NET" })

Alternately, you can authenticate using command line options to mongo (page 984), as in the following equivalent
example:

mongo --authenticationMechanism=GSSAPI
--authenticationDatabase=’$external’ \
--username application/reporting@EXAMPLE.NET

These operations authenticates the Kerberos principal name application/reporting@EXAMPLE.NET to the
connected mongod (page 971), and will automatically acquire all available privileges as needed.

Use MongoDB Drivers to Authenticate with Kerberos

At the time of release, the C++, Java, and C# drivers all provide support for Kerberos authentication to MongoDB.
Consider the following tutorials for more information:

• Java

• C#

• C++

16.4.3 Troubleshooting

Kerberos Configuration Checklist

If you’re having trouble getting mongod (page 971) to start with Kerberos, there are a number of Kerberos-specific
issues that can prevent successful authentication. As you begin troubleshooting your Kerberos deployment, ensure
that:

• The mongod (page 971) is from MongoDB Enterprise.

144 Chapter 16. Tutorials

http://docs.mongodb.org/ecosystem/tutorial/authenticate-with-java-driver/
http://docs.mongodb.org/ecosystem/tutorial/authenticate-with-csharp-driver/
http://docs.mongodb.org/ecosystem/tutorial/authenticate-with-cpp-driver/

MongoDB Documentation, Release 2.4.2

• You have a valid keytab file specified in the environment running the mongod (page 971). For the
mongod (page 971) instance running on the db0.example.net host, the service principal should be
mongodb/db0.example.net.

• DNS allows the mongod (page 971) to resolve the components of the Kerberos infrastructure. You should
have both A and PTR records (i.e. forward and reverse DNS) for the system that runs the mongod (page 971)
instance.

• The canonical system hostname of the system that runs the mongod (page 971) instance is the resolvable fully
qualified domain for this host. Test system hostname resolution with the hostname -f command at the
system prompt.

• Both the Kerberos KDC and the system running mongod (page 971) instance must be able to resolve each other
using DNS 10

• The time systems of the systems running the mongod (page 971) instances and the Kerberos infrastructure are
synchronized. Time differences greater than 5 minutes will prevent successful authentication.

If you still encounter problems with Kerberos, you can start both mongod (page 971) and mongo (page 984) (or
another client) with the environment variable KRB5_TRACE set to different files to produce more verbose logging of
the Kerberos process to help further troubleshooting, as in the following example:

env KRB5_KTNAME=/opt/mongodb/mongod.keytab \
KRB5_TRACE=/opt/mongodb/log/mongodb-kerberos.log \
/opt/mongodb/bin/mongod --dbpath /opt/mongodb/data \
--fork --logpath /opt/mongodb/log/mongod.log \
--auth --setParameter authenticationMechanisms=GSSAPI

Common Error Messages

In some situations, MongoDB will return error messages from the GSSAPI interface if there is a problem with the
Kerberos service.

GSSAPI error in client while negotiating security context.

This error occurs on the client and reflects insufficient credentials or a malicious attempt to authenticate.

If you receive this error ensure that you’re using the correct credentials and the correct fully qualified
domain name when connecting to the host.

GSSAPI error acquiring credentials.

This error only occurs when attempting to start the mongod (page 971) or mongos (page 981) and
reflects improper configuration of system hostname or a missing or incorrectly configured keytab file. If
you encounter this problem, consider all the items in the Kerberos Configuration Checklist (page 144), in
particular:

• examine the keytab file, with the following command:

klist -k <keytab>

Replace <keytab> with the path to your keytab file.

• check the configured hostname for your system, with the following command:

hostname -f

Ensure that this name matches the name in the keytab file, or use the saslHostName (page 1040)
to pass MongoDB the correct hostname.

10 By default, Kerberos attempts to resolve hosts using the content of the http://docs.mongodb.org/manual/etc/kerb5.conf
before using DNS to resolve hosts.

16.4. Deploy MongoDB with Kerberos Authentication 145

MongoDB Documentation, Release 2.4.2

Enable the Traditional MongoDB Authentication Mechanism

For testing and development purposes you can enable both the Kerberos (i.e. GSSAPI) authentication mechanism in
combination with the traditional MongoDB challenge/response authentication mechanism (i.e. MONGODB-CR), using
the following setParameter (page 1033) run-time option:

mongod --setParameter authenticationMechanisms=GSSAPI,MONGODB-CR

Warning: All keyFile (page 1028) internal authentication between members of a replica set or sharded
cluster still uses the MONGODB-CR authentication mechanism, even if MONGODB-CR is not enabled. All client
authentication will still use Kerberos.

16.5 Create a Vulnerability Report

If you believe you have discovered a vulnerability in MongoDB or a related product or have experienced a security
incident related to MongoDB, please report the issue so that 10gen can respond appropriately and work to prevent
additional issues in the future.

To report an issue, use either jira.mongodb.org (preferred) or email. 10gen responds to vulnerability notifications
within 48 hours.

16.5.1 Information to Provide

All vulnerability reports should contain as much information as possible so 10gen can move quickly to resolve the
issue. In particular, please include the following:

• The name of the product.

• Common Vulnerability information, if applicable, including:

– CVSS (Common Vulnerability Scoring System) Score.

– CVE (Common Vulnerability and Exposures) Identifier.

• Contact information, including an email address and/or phone number, if applicable.

16.5.2 Create the Report in Jira

10gen prefers jira.mongodb.org for all communication regarding MongoDB and related products.

Submit a ticket in the Core Server Security project at: https://jira.mongodb.org/browse/SECURITY/. The ticket num-
ber will become the reference identification for the issue for the lifetime of the issue. You can use this identifier for
tracking purposes.

16.5.3 Send the Report via Email

While Jira is preferred, you may also report vulnerabilities via email to security@10gen.com.

You may encrypt email using the 10gen public key at http://docs.mongodb.org/10gen-gpg-key.asc.

10gen responds to vulnerability reports sent via email with a response email that contains a reference number for a
Jira ticket posted to the SECURITY project.

146 Chapter 16. Tutorials

http://www.10gen.com/
https://jira.mongodb.org
https://jira.mongodb.org
https://jira.mongodb.org/browse/SECURITY
https://jira.mongodb.org/browse/SECURITY/
mailto:security@10gen.com
http://docs.mongodb.org/10gen-gpg-key.asc
https://jira.mongodb.org/browse/SECURITY

MongoDB Documentation, Release 2.4.2

16.5.4 Evaluation of a Vulnerability Report

10gen validates all submitted vulnerabilities and uses Jira to track all communications regarding a vulnerability, in-
cluding requests for clarification or additional information. If needed, 10gen representatives set up a conference call
to exchange information regarding the vulnerability.

16.5.5 Disclosure

10gen requests that you do not publicly disclose any information regarding the vulnerability or exploit the issue until
10gen has had the opportunity to analyze the vulnerability, to respond to the notification, and to notify key users,
customers, and partners.

The amount of time required to validate a reported vulnerability depends on the complexity and severity of the issue.
10gen takes all required vulnerabilities very seriously and will always ensure that there is a clear and open channel of
communication with the reporter.

After validating an issue, 10gen coordinates public disclosure of the issue with the reporter in a mutually agreed
timeframe and format. If required or requested, the reporter of a vulnerability will receive credit in the published
security bulletin.

16.5. Create a Vulnerability Report 147

MongoDB Documentation, Release 2.4.2

148 Chapter 16. Tutorials

CHAPTER 17

Reference

17.1 User Privilege Roles in MongoDB

New in version 2.4. In version 2.4, MongoDB adds support for the following user roles:

17.1.1 Roles

Changed in version 2.4. Roles in MongoDB provide users with a set of specific privileges, on specific logi-
cal databases. Users may have multiple roles, and have different roles on different logical database. Roles only
grant privileges and never limit access: read (page 149) permissions on the records database database and the
readWriteAnyDatabase (page 153) permission, that user will be able to write data to the records database.

Note: By default, MongoDB 2.4 is backwards-compatible with the MongoDB 2.2 access con-
trol roles. You can, however, explicitly disable this backwards-compatibility by setting the
supportCompatibilityFormPrivilegeDocuments (page 1040) option to 0 during startup, as in the
following command-line invocation of MongoDB:

mongod --setParameter supportCompatibilityFormPrivilegeDocuments=0

In general, you should set this option if your deployment does not need to support legacy user documents. Typically
legacy user documents are only useful during the upgrade process and while you migrate applications to the updated
privilege document form.

See system.users Privilege Documents (page 153) and Delegated Credentials for MongoDB Authentication (page 155)
for more information about permissions and authentication in MongoDB.

Database User Roles

read
Provides users with the ability to read data from any collection within a specific logical database. This includes
find() (page 910) and the following database commands:

•aggregate (page 809)

•checkShardingIndex (page 812)

149

MongoDB Documentation, Release 2.4.2

•cloneCollectionAsCapped (page 813)

•collStats (page 815)

•count (page 821)

•dataSize (page 823)

•dbHash (page 823)

•dbStats (page 823)

•distinct (page 824)

•filemd5 (page 829)

•geoNear (page 836)

•geoSearch (page 836)

•geoWalk (page 837)

•group (page 840)

•mapReduce (page 851) (inline output only.)

•text (page 875) (beta feature.)

readWrite
Provides users with the ability to read from or write to any collection within a specific logical database. Users
with readWrite (page 150) have access to all of the operations available to read (page 149) users, as
well as the following basic write operations: insert() (page 920), remove() (page 928), and update()
(page 932).

Additionally, users with the readWrite (page 150) have access to the following database commands:

•cloneCollection (page 813) (as the target database.)

•convertToCapped (page 819)

•create (page 822) (and to create collections implicitly.)

•drop() (page 906)

•dropIndexes (page 825)

•emptycapped (page 826)

•ensureIndex() (page 907)

•findAndModify (page 829)

•mapReduce (page 851) (output to a collection.)

•renameCollection (page 862) (within the same database.)

Database Administration Roles

dbAdmin
Provides the ability to perform the following set of administrative operations within the scope of this logical
database.

•clean (page 812)

•collMod (page 814)

•collStats (page 815)

150 Chapter 17. Reference

MongoDB Documentation, Release 2.4.2

•compact (page 816)

•convertToCapped (page 819)

•create (page 822)

•db.createCollection() (page 935)

•dbStats (page 823)

•drop() (page 906)

•dropIndexes (page 825)

•db.collection.ensureIndex() (page 907)

•profile (page 860)

•reIndex (page 860)

•renameCollection (page 862) (within a single database.)

•validate (page 879)

Furthermore only dbAdmin (page 150) has the ability to read the system.profile (page 1101) collection.

userAdmin
Allows users to read and write data to the system.users (page 154) collection. of any database. Users with
this role will be able to modify permissions for existing users, and create new users. userAdmin (page 151)
does not restrict the permissions that a user can grant, and an userAdmin (page 151) user can grant privileges
to themselves or other users in excess of the userAdmin (page 151) users’ current privileges.

userAdmin (page 151) is effectively the superuser role for a specific database. Users with userAdmin
(page 151) can grant themselves all privileges.

17.1.2 Administrative Roles

clusterAdmin
clusterAdmin (page 151) grants access to several administration operations that affect or present information
about the whole system, rather than just a single database. These privileges include, but are not limited to replica
set and sharded cluster administrative functions.

clusterAdmin (page 151) is only applicable on the admin database.

Specifically, users with the clusterAdmin (page 151) role have access to the following operations:

•addShard (page 807)

•closeAllDatabases (page 814)

•connPoolStats (page 819)

•connPoolSync (page 819)

•_cpuProfilerStart

•_cpuProfilerStop

•cursorInfo (page 823)

•diagLogging (page 824)

•dropDatabase (page 825)

•enableSharding (page 826)

•flushRouterConfig (page 834)

17.1. User Privilege Roles in MongoDB 151

MongoDB Documentation, Release 2.4.2

•fsync (page 834)

•db.fsyncUnlock() (page 938)

•getCmdLineOpts (page 837)

•getLog (page 838)

•getParameter (page 839)

•getShardMap (page 839)

•getShardVersion (page 839)

•hostInfo (page 845)

•db.currentOp() (page 936)

•db.killOp() (page 941)

•listDatabases (page 849)

•listShards (page 849)

•logRotate (page 850)

•moveChunk (page 858)

•movePrimary (page 859)

•netstat (page 859)

•removeShard (page 861)

•repairDatabase (page 863)

•replSetFreeze (page 864)

•replSetGetStatus (page 865)

•replSetInitiate (page 865)

•replSetMaintenance (page 866)

•replSetReconfig (page 866)

•replSetStepDown (page 867)

•replSetSyncFrom (page 867)

•resync (page 868)

•serverStatus (page 869)

•setParameter (page 869)

•setShardVersion (page 870)

•shardCollection (page 870)

•shardingState (page 870)

•shutdown (page 871)

•splitChunk (page 874)

•splitVector (page 875)

•split (page 872)

•top (page 878)

152 Chapter 17. Reference

MongoDB Documentation, Release 2.4.2

•touch (page 878)

•unsetSharding (page 879)

17.1.3 Any Database Roles

Note: You must specify the following “any” database roles on the admin databases. These roles apply to all
databases in a mongod (page 971) instance, and are roughly equivalent to their single-database equivalents.

If you add any of these roles to a user privilege document (page 153) outside of the admin database, the privilege will
have no effect.

readAnyDatabase
readAnyDatabase (page 153) provides users with the same read-only permissions as read (page 149),
except it applies to all logical databases in the MongoDB environment.

readWriteAnyDatabase
readWriteAnyDatabase (page 153) provides users with the same read and write permissions as
readWrite (page 150), except it applies to all logical databases in the MongoDB environment.

userAdminAnyDatabase
userAdminAnyDatabase (page 153) provides users with the same access to user administration operations
as userAdmin (page 151), except it applies to all logical databases in the MongoDB environment.

Warning: Because users with userAdminAnyDatabase (page 153) and userAdmin (page 151) have
the ability to create and modify permissions in addition to their own level of access, this role is effectively
the MongoDB system superuser.

dbAdminAnyDatabase
dbAdminAnyDatabase (page 153) provides users with the same access to database administration operations
as dbAdmin (page 150), except it applies to all logical databases in the MongoDB environment.

17.1.4 Combined Access

Some operations are only available to users that have multiple roles. Consider the following:

sh.status() (page 962) Requires clusterAdmin (page 151) and read (page 149) access to the config
(page 1093) database.

applyOps (page 809), eval (page 826) 1 Requires readWriteAnyDatabase (page 153),
userAdminAnyDatabase (page 153), dbAdminAnyDatabase (page 153) and clusterAdmin
(page 151) (on the admin database.)

17.2 system.users Privilege Documents

Changed in version 2.4.

17.2.1 Overview

The documents in the <database>.system.users (page 154) collection store credentials and user privilege
information used by the authentication system to provision access to users in the MongoDB system. See User Privilege

17.2. system.users Privilege Documents 153

MongoDB Documentation, Release 2.4.2

Roles in MongoDB (page 149) for more information about access roles, and Security (page 123) for an overview
security in MongoDB.

17.2.2 Data Model

<database>.system.users
Changed in version 2.4. Documents in the <database>.system.users (page 154) collection stores cre-
dentials and user roles (page 149) for users who have access to the database. Consider the following prototypes
of user privilege documents:

{
user: "<username>",
pwd: "<hash>",
roles: []

}

{
user: "<username>",
userSource: "<database>",
roles: []

}

Note: The pwd (page 154) and userSource (page 155) fields are mutually exclusive. A single document
cannot contain both.

The following privilege document with the otherDBRoles (page 155) field is only supported on the admin
database:

{
user: "<username>",
userSource: "<database>",
otherDBRoles: {

<database0> : [],
<database1> : []

},
roles: []

}

Consider the content of the following fields in the system.users (page 154) documents:

<database>.system.users.user
user (page 154) is a string that identifies each user. Users exist in the context of a single logical database;
however, users from one database may obtain access in another database by way of the otherDBRoles
(page 155) field on the admin database, the userSource (page 155) field, or the Any Database Roles
(page 153).

<database>.system.users.pwd
pwd (page 154) holds a hashed shared secret used to authenticate the user (page 154). pwd (page 154)
field is mutually exclusive with the userSource (page 155) field.

<database>.system.users.roles
roles (page 154) holds an array of user roles. The available roles are:

•read (page 149)

•readWrite (page 150)

•dbAdmin (page 150)

154 Chapter 17. Reference

MongoDB Documentation, Release 2.4.2

•userAdmin (page 151)

•clusterAdmin (page 151)

•readAnyDatabase (page 153)

•readWriteAnyDatabase (page 153)

•userAdminAnyDatabase (page 153)

•dbAdminAnyDatabase (page 153)

See Roles (page 149) for full documentation of all available user roles.

<database>.system.users.userSource
A string that holds the name of the database that contains the credentials for the user. If userSource
(page 155) is $external, then MongoDB will use an external resource, such as Kerberos, for authenti-
cation credentials.

Note: In the current release, the only external authentication source is Kerberos, which is only available
in MongoDB Enterprise.

Use userSource (page 155) to ensure that a single user’s authentication credentials are only stored in a
single location in a mongod (page 971) instance’s data.

A userSource (page 155) and user (page 154) pair identifies a unique user in a MongoDB system.

admin.system.users.otherDBRoles
A document that holds one or more fields with a name that is the name of a database in the MongoDB
instance with a value that holds a list of roles this user has on other databases. Consider the following
example:

{
user: "admin",
userSource: "$external",
roles: ["clusterAdmin"],
otherDBRoles:
{
config: ["read"],
records: ["dbadmin"]

}
}

This user has the following privileges:

•clusterAdmin (page 151) on the admin database,

•read (page 149) on the config (page 1093) database, and

•dbAdmin (page 150) on the records database.

17.2.3 Delegated Credentials for MongoDB Authentication

New in version 2.4. With a new document format in the system.users (page 154) collection, MongoDB now sup-
ports the ability to delegate authentication credentials to other sources and databases. The userSource (page 155)
field in these documents forces MongoDB to use another source for credentials.

Consider the following document in a system.users (page 154) collection in a database named accounts:

17.2. system.users Privilege Documents 155

MongoDB Documentation, Release 2.4.2

{
user: "application0",
pwd: "YvuolxMtaycghk2GMrzmImkG4073jzAw2AliMRul",
roles: []

}

Then for every database that the application0 user requires access, add documents to the system.users
(page 154) collection that resemble the following:

{
user: "application0",
roles: [’readWrite’],
userSource: "accounts"

}

To gain privileges to databases where the application0 has access, you must first authenticate to the accounts
database.

17.2.4 Disable Legacy Privilege Documents

By default MongoDB 2.4 includes support for both new, role-based privilege documents style as well 2.2 and earlier
privilege documents. MongoDB assumes any privilege document without a roles (page 154) field is a 2.2 or earlier
document.

To ensure that mongod (page 971) instances will only provide access to users defined with the new role-based privilege
documents, use the following setParameter (page 1033) run-time option:

mongod --setParameter supportCompatibilityFormPrivilegeDocuments=0

156 Chapter 17. Reference

Part IV

Core MongoDB Operations (CRUD)

157

MongoDB Documentation, Release 2.4.2

CRUD stands for create, read, update, and delete, which are the four core database operations used in database driven
application development. The CRUD Operations for MongoDB (page 195) section provides introduction to each class
of operation along with complete examples of each operation. The documents in the Read and Write Operations in
MongoDB (page 161) section provide a higher level overview of the behavior and available functionality of these
operations.

159

MongoDB Documentation, Release 2.4.2

160

CHAPTER 18

Read and Write Operations in
MongoDB

The Read Operations (page 161) and Write Operations (page 173) documents provide higher level introductions
and description of the behavior and operations of read and write operations for MongoDB deployments. The BSON
Documents (page 181) provides an overview of documents and document-orientation in MongoDB.

18.1 Read Operations

Read operations include all operations that return a cursor in response to application request data (i.e. queries,) and
also include a number of aggregation (page 247) operations that do not return a cursor but have similar properties as
queries. These commands include aggregate (page 809), count (page 821), and distinct (page 824).

This document describes the syntax and structure of the queries applications use to request data from MongoDB and
how different factors affect the efficiency of reads.

Note: All of the examples in this document use the mongo (page 984) shell interface. All of these operations are
available in an idiomatic interface for each language by way of the MongoDB Driver (page 529). See your driver
documentation for full API documentation.

18.1.1 Queries in MongoDB

In the mongo (page 984) shell, the find() (page 910) and findOne() (page 914) methods perform read opera-
tions. The find() (page 910) method has the following syntax: 1

db.collection.find(<query>, <projection>)

• The db.collection object specifies the database and collection to query. All queries in MongoDB address
a single collection.

You can enter db in the mongo (page 984) shell to return the name of the current database. Use the show
collections operation in the mongo (page 984) shell to list the current collections in the database.

1 db.collection.find() (page 910) is a wrapper for the more formal query structure with the $query (page 766) operator.

161

http://api.mongodb.org/
http://api.mongodb.org/

MongoDB Documentation, Release 2.4.2

• Queries in MongoDB are BSON objects that use a set of query operators (page 737) to describe query parame-
ters.

The <query> argument of the find() (page 910) method holds this query document. A read operation
without a query document will return all documents in the collection.

• The <projection> argument describes the result set in the form of a document. Projections specify or limit
the fields to return.

Without a projection, the operation will return all fields of the documents. Specify a projection if your documents
are larger, or when your application only needs a subset of available fields.

• The order of documents returned by a query is not defined and is not necessarily consistent unless you specify a
sort (sort() (page 900)).

For example, the following operation on the inventory collection selects all documents where the type field
equals ’food’ and the price field has a value less than 9.95. The projection limits the response to the item and
qty, and _id field:

db.inventory.find({ type: ’food’, price: { $lt: 9.95 } },
{ item: 1, qty: 1 })

The findOne() (page 914) method is similar to the find() (page 910) method except the findOne() (page 914)
method returns a single document from a collection rather than a cursor. The method has the syntax:

db.collection.findOne(<query>, <projection>)

For additional documentation and examples of the main MongoDB read operators, refer to the Read (page 203) page
of the Core MongoDB Operations (CRUD) (page 159) section.

Query Document

This section provides an overview of the query document for MongoDB queries. See the preceding section for more
information on queries in MongoDB (page 161).

The following examples demonstrate the key properties of the query document in MongoDB queries, using the
find() (page 910) method from the mongo (page 984) shell, and a collection of documents named inventory:

• An empty query document ({}) selects all documents in the collection:

db.inventory.find({})

Not specifying a query document to the find() (page 910) is equivalent to specifying an empty query docu-
ment. Therefore the following operation is equivalent to the previous operation:

db.inventory.find()

• A single-clause query selects all documents in a collection where a field has a certain value. These are simple
“equality” queries.

In the following example, the query selects all documents in the collection where the type field has the value
snacks:

db.inventory.find({ type: "snacks" })

• A single-clause query document can also select all documents in a collection given a condition or set of condi-
tions for one field in the collection’s documents. Use the query operators (page 737) to specify conditions in a
MongoDB query.

In the following example, the query selects all documents in the collection where the value of the type field is
either ’food’ or ’snacks’:

162 Chapter 18. Read and Write Operations in MongoDB

MongoDB Documentation, Release 2.4.2

db.inventory.find({ type: { $in: [’food’, ’snacks’] } })

Note: Although you can express this query using the $or (page 760) operator, choose the $in (page 750)
operator rather than the $or (page 760) operator when performing equality checks on the same field.

• A compound query can specify conditions for more than one field in the collection’s documents. Implicitly, a
logical AND conjunction connects the clauses of a compound query so that the query selects the documents in
the collection that match all the conditions.

In the following example, the query document specifies an equality match on a single field, followed by a range
of values for a second field using a comparison operator (page 737):

db.inventory.find({ type: ’food’, price: { $lt: 9.95 } })

This query selects all documents where the type field has the value ’food’ and the value of the price field
is less than ($lt (page 752)) 9.95.

• Using the $or (page 760) operator, you can specify a compound query that joins each clause with a logical OR
conjunction so that the query selects the documents in the collection that match at least one condition.

In the following example, the query document selects all documents in the collection where the field qty has a
value greater than ($gt (page 749)) 100 or the value of the price field is less than ($lt (page 752)) 9.95:

db.inventory.find({ $or: [{ qty: { $gt: 100 } },
{ price: { $lt: 9.95 } }]

})

• With additional clauses, you can specify precise conditions for matching documents. In the following example,
the compound query document selects all documents in the collection where the value of the type field is
’food’ and either the qty has a value greater than ($gt (page 749)) 100 or the value of the price field is
less than ($lt (page 752)) 9.95:

db.inventory.find({ type: ’food’, $or: [{ qty: { $gt: 100 } },
{ price: { $lt: 9.95 } }]

})

Subdocuments

When the field holds an embedded document (i.e. subdocument), you can either specify the entire subdocument as
the value of a field, or “reach into” the subdocument using dot notation, to specify values for individual fields in the
subdocument:

• Equality matches within subdocuments select documents if the subdocument matches exactly the specified sub-
document, including the field order.

In the following example, the query matches all documents where the value of the field producer is a subdoc-
ument that contains only the field company with the value ’ABC123’ and the field address with the value
’123 Street’, in the exact order:

db.inventory.find({
producer: {

company: ’ABC123’,
address: ’123 Street’

}
}

)

18.1. Read Operations 163

MongoDB Documentation, Release 2.4.2

• Equality matches for specific fields within subdocuments select documents when the field in the subdocument
contains a field that matches the specified value.

In the following example, the query uses the dot notation to match all documents where the value of the field
producer is a subdocument that contains a field company with the value ’ABC123’ and may contain other
fields:

db.inventory.find({ ’producer.company’: ’ABC123’ })

Arrays

When the field holds an array, you can query for values in the array, and if the array holds sub-documents, you query
for specific fields within the sub-documents using dot notation:

• Equality matches can specify an entire array, to select an array that matches exactly. In the following exam-
ple, the query matches all documents where the value of the field tags is an array and holds three elements,
’fruit’, ’food’, and ’citrus’, in this order:

db.inventory.find({ tags: [’fruit’, ’food’, ’citrus’] })

• Equality matches can specify a single element in the array. If the array contains at least one element with the
specified value, as in the following example: the query matches all documents where the value of the field tags
is an array that contains, as one of its elements, the element ’fruit’:

db.inventory.find({ tags: ’fruit’ })

Equality matches can also select documents by values in an array using the array index (i.e. position) of the
element in the array, as in the following example: the query uses the dot notation to match all documents where
the value of the tags field is an array whose first element equals ’fruit’:

db.inventory.find({ ’tags.0’ : ’fruit’ })

In the following examples, consider an array that contains subdocuments:

• If you know the array index of the subdocument, you can specify the document using the subdocument’s posi-
tion.

The following example selects all documents where the memos contains an array whose first element (i.e. index
is 0) is a subdocument with the field by with the value ’shipping’:

db.inventory.find({ ’memos.0.by’: ’shipping’ })

• If you do not know the index position of the subdocument, concatenate the name of the field that contains the
array, with a dot (.) and the name of the field in the subdocument.

The following example selects all documents where the memos field contains an array that contains at least one
subdocument with the field by with the value ’shipping’:

db.inventory.find({ ’memos.by’: ’shipping’ })

• To match by multiple fields in the subdocument, you can use either dot notation or the $elemMatch (page 745)
operator:

The following example uses dot notation to query for documents where the value of the memos field is an array
that has at least one subdocument that contains the field memo equal to ’on time’ and the field by equal to
’shipping’:

db.inventory.find(
{

164 Chapter 18. Read and Write Operations in MongoDB

MongoDB Documentation, Release 2.4.2

’memos.memo’: ’on time’,
’memos.by’: ’shipping’

}
)

The following example uses $elemMatch (page 745) to query for documents where the value of the memos
field is an array that has at least one subdocument that contains the field memo equal to ’on time’ and the
field by equal to ’shipping’:

db.inventory.find({ memos: {
$elemMatch: {

memo : ’on time’,
by: ’shipping’

}
}

}
)

Refer to the Query, Update, Projection, and Aggregation Operators (page 737) document for the complete list of query
operators.

Result Projections

The projection specification limits the fields to return for all matching documents. Restricting the fields to return can
minimize network transit costs and the costs of deserializing documents in the application layer.

The second argument to the find() (page 910) method is a projection, and it takes the form of a document with a list
of fields for inclusion or exclusion from the result set. You can either specify the fields to include (e.g. { field:
1 }) or specify the fields to exclude (e.g. { field: 0 }). The _id field is, by default, included in the result set.
To exclude the _id field from the result set, you need to specify in the projection document the exclusion of the _id
field (i.e. { _id: 0 }).

Note: You cannot combine inclusion and exclusion semantics in a single projection with the exception of the _id
field.

Consider the following projection specifications in find() (page 910) operations:

• If you specify no projection, the find() (page 910) method returns all fields of all documents that match the
query.

db.inventory.find({ type: ’food’ })

This operation will return all documents in the inventory collection where the value of the type field is
’food’.

• A projection can explicitly include several fields. In the following operation, find() (page 910) method
returns all documents that match the query as well as item and qty fields. The results also include the _id
field:

db.inventory.find({ type: ’food’ }, { item: 1, qty: 1 })

• You can remove the _id field from the results by specifying its exclusion in the projection, as in the following
example:

db.inventory.find({ type: ’food’ }, { item: 1, qty: 1, _id:0 })

18.1. Read Operations 165

MongoDB Documentation, Release 2.4.2

This operation returns all documents that match the query, and only includes the item and qty fields in the
result set.

• To exclude a single field or group of fields you can use a projection in the following form:

db.inventory.find({ type: ’food’ }, { type:0 })

This operation returns all documents where the value of the type field is food, but does not include the type
field in the output.

With the exception of the _id field you cannot combine inclusion and exclusion statements in projection docu-
ments.

The $elemMatch (page 778) and $slice (page 782) projection operators provide more control when projecting
only a portion of an array.

18.1.2 Indexes

Indexes improve the efficiency of read operations by reducing the amount of data that query operations need to process
and thereby simplifying the work associated with fulfilling queries within MongoDB. The indexes themselves are a
special data structure that MongoDB maintains when inserting or modifying documents, and any given index can:
support and optimize specific queries, sort operations, and allow for more efficient storage utilization. For more
information about indexes in MongoDB see: Indexes (page 301) and Indexing Overview (page 303).

You can create indexes using the db.collection.ensureIndex() (page 907) method in the mongo (page 984)
shell, as in the following prototype operation:

db.collection.ensureIndex({ <field1>: <order>, <field2>: <order>, ... })

• The field specifies the field to index. The field may be a field from a subdocument, using dot notation to
specify subdocument fields.

You can create an index on a single field or a compound index (page 305) that includes multiple fields in the
index.

• The order option is specifies either ascending (1) or descending (-1).

MongoDB can read the index in either direction. In most cases, you only need to specify indexing order
(page 306) to support sort operations in compound queries.

Covering a Query

An index covers (page 316) a query, a covered query, when:

• all the fields in the query (page 162) are part of that index, and

• all the fields returned in the documents that match the query are in the same index.

For these queries, MongoDB does not need to inspect at documents outside of the index, which is often more efficient
than inspecting entire documents.

Example

Given a collection inventory with the following index on the type and item fields:

{ type: 1, item: 1 }

This index will cover the following query on the type and item fields, which returns only the item field:

166 Chapter 18. Read and Write Operations in MongoDB

MongoDB Documentation, Release 2.4.2

db.inventory.find({ type: "food", item:/^c/ },
{ item: 1, _id: 0 })

However, this index will not cover the following query, which returns the item field and the _id field:

db.inventory.find({ type: "food", item:/^c/ },
{ item: 1 })

See Create Indexes that Support Covered Queries (page 316) for more information on the behavior and use of covered
queries.

Measuring Index Use

The explain() (page 892) cursor method allows you to inspect the operation of the query system, and is useful
for analyzing the efficiency of queries, and for determining how the query uses the index. Call the explain()
(page 892) method on a cursor returned by find() (page 910), as in the following example:

db.inventory.find({ type: ’food’ }).explain()

Note: Only use explain() (page 892) to test the query operation, and not the timing of query performance.
Because explain() (page 892) attempts multiple query plans, it does not reflect accurate query performance.

If the above operation could not use an index, the output of explain() (page 892) would resemble the following:

{
"cursor" : "BasicCursor",
"isMultiKey" : false,
"n" : 5,
"nscannedObjects" : 4000006,
"nscanned" : 4000006,
"nscannedObjectsAllPlans" : 4000006,
"nscannedAllPlans" : 4000006,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : 2,
"nChunkSkips" : 0,
"millis" : 1591,
"indexBounds" : { },
"server" : "mongodb0.example.net:27017"

}

The BasicCursor value in the cursor (page 1088) field confirms that this query does not use an index. The
explain.nscannedObjects (page 1088) value shows that MongoDB must scan 4,000,006 documents to return
only 5 documents. To increase the efficiency of the query, create an index on the type field, as in the following
example:

db.inventory.ensureIndex({ type: 1 })

Run the explain() (page 892) operation, as follows, to test the use of the index:

db.inventory.find({ type: ’food’ }).explain()

Consider the results:

{
"cursor" : "BtreeCursor type_1",

18.1. Read Operations 167

MongoDB Documentation, Release 2.4.2

"isMultiKey" : false,
"n" : 5,
"nscannedObjects" : 5,
"nscanned" : 5,
"nscannedObjectsAllPlans" : 5,
"nscannedAllPlans" : 5,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : 0,
"nChunkSkips" : 0,
"millis" : 0,
"indexBounds" : { "type" : [

["food",
"food"]

] },
"server" : "mongodbo0.example.net:27017" }

The BtreeCursor value of the cursor (page 1088) field indicates that the query used an index. This query:

• returned 5 documents, as indicated by the n (page 1088) field;

• scanned 5 documents from the index, as indicated by the nscanned (page 1088) field;

• then read 5 full documents from the collection, as indicated by the nscannedObjects (page 1088) field.

Although the query uses an index to find the matching documents, if indexOnly (page 1088) is false then an
index could not cover (page 166) the query: MongoDB could not both match the query conditions (page 162)
and return the results using only this index. See Create Indexes that Support Covered Queries (page 316) for
more information.

Query Optimization

The MongoDB query optimizer processes queries and chooses the most efficient query plan for a query given the avail-
able indexes. The query system then uses this query plan each time the query runs. The query optimizer occasionally
reevaluates query plans as the content of the collection changes to ensure optimal query plans.

To create a new query plan, the query optimizer:

1. runs the query against several candidate indexes in parallel.

2. records the matches in a common results buffer or buffers.

• If the candidate plans include only ordered query plans, there is a single common results buffer.

• If the candidate plans include only unordered query plans, there is a single common results buffer.

• If the candidate plans include both ordered query plans and unordered query plans, there are two common
results buffers, one for the ordered plans and the other for the unordered plans.

If an index returns a result already returned by another index, the optimizer skips the duplicate match. In the
case of the two buffers, both buffers are de-duped.

3. stops the testing of candidate plans and selects an index when one of the following events occur:

• An unordered query plan has returned all the matching results; or

• An ordered query plan has returned all the matching results; or

• An ordered query plan has returned a threshold number of matching results:

– Version 2.0: Threshold is the query batch size. The default batch size is 101.

– Version 2.2: Threshold is 101.

168 Chapter 18. Read and Write Operations in MongoDB

MongoDB Documentation, Release 2.4.2

The selected index becomes the index specified in the query plan; future iterations of this query or queries with the
same query pattern will use this index. Query pattern refers to query select conditions that differ only in the values, as
in the following two queries with the same query pattern:

db.inventory.find({ type: ’food’ })
db.inventory.find({ type: ’utensil’ })

To manually compare the performance of a query using more than one index, you can use the hint() (page 894) and
explain() (page 892) methods in conjunction, as in the following prototype:

db.collection.find().hint().explain()

The following operations each run the same query but will reflect the use of the different indexes:

db.inventory.find({ type: ’food’ }).hint({ type: 1 }).explain()
db.inventory.find({ type: ’food’ }).hint({ type: 1, name: 1 }).explain()

This returns the statistics regarding the execution of the query. For more information on the output of explain()
(page 892), see the Explain Output (page 1086).

Note: If you run explain() (page 892) without including hint() (page 894), the query optimizer reevaluates
the query and runs against multiple indexes before returning the query statistics.

As collections change over time, the query optimizer deletes a query plan and reevaluates the after any of the following
events:

• the collection receives 1,000 write operations.

• the reIndex (page 860) rebuilds the index.

• you add or drop an index.

• the mongod (page 971) process restarts.

For more information, see Indexing Strategies (page 315).

Query Operations that Cannot Use Indexes Effectively

Some query operations cannot use indexes effectively or cannot use indexes at all. Consider the following situations:

• The inequality operators $nin (page 758) and $ne (page 756) are not very selective, as they often match a
large portion of the index.

As a result, in most cases, a $nin (page 758) or $ne (page 756) query with an index may perform no better
than a $nin (page 758) or $ne (page 756) query that must scan all documents in a collection.

• Queries that specify regular expressions, with inline JavaScript regular expressions or $regex (page 767)
operator expressions, cannot use an index. However, the regular expression with anchors to the beginning of a
string can use an index.

18.1.3 Cursors

The find() (page 910) method returns a cursor to the results; however, in the mongo (page 984) shell, if the returned
cursor is not assigned to a variable, then the cursor is automatically iterated up to 20 times 2 to print up to the first 20
documents that match the query, as in the following example:

2 You can use the DBQuery.shellBatchSize to change the number of iteration from the default value 20. See Executing Queries
(page 558) for more information.

18.1. Read Operations 169

MongoDB Documentation, Release 2.4.2

db.inventory.find({ type: ’food’ });

When you assign the find() (page 910) to a variable:

• you can call the cursor variable in the shell to iterate up to 20 times 2 and print the matching documents, as in
the following example:

var myCursor = db.inventory.find({ type: ’food’ });

myCursor

• you can use the cursor method next() (page 898) to access the documents, as in the following example:

var myCursor = db.inventory.find({ type: ’food’ });
var myDocument = myCursor.hasNext() ? myCursor.next() : null;

if (myDocument) {
var myItem = myDocument.item;
print(tojson(myItem));

}

As an alternative print operation, consider the printjson() helper method to replace print(tojson()):

if (myDocument) {
var myItem = myDocument.item;
printjson(myItem);

}

• you can use the cursor method forEach() (page 893) to iterate the cursor and access the documents, as in the
following example:

var myCursor = db.inventory.find({ type: ’food’ });

myCursor.forEach(printjson);

See JavaScript cursor methods (page 882) and your driver (page 529) documentation for more information on cursor
methods.

Iterator Index

In the mongo (page 984) shell, you can use the toArray() (page 901) method to iterate the cursor and return the
documents in an array, as in the following:

var myCursor = db.inventory.find({ type: ’food’ });
var documentArray = myCursor.toArray();
var myDocument = documentArray[3];

The toArray() (page 901) method loads into RAM all documents returned by the cursor; the toArray()
(page 901) method exhausts the cursor.

Additionally, some drivers (page 529) provide access to the documents by using an index on the cursor (i.e.
cursor[index]). This is a shortcut for first calling the toArray() (page 901) method and then using an in-
dex on the resulting array.

Consider the following example:

var myCursor = db.inventory.find({ type: ’food’ });
var myDocument = myCursor[3];

170 Chapter 18. Read and Write Operations in MongoDB

MongoDB Documentation, Release 2.4.2

The myCursor[3] is equivalent to the following example:

myCursor.toArray() [3];

Cursor Behaviors

Consider the following behaviors related to cursors:

• By default, the server will automatically close the cursor after 10 minutes of inactivity or if client has exhausted
the cursor. To override this behavior, you can specify the noTimeout wire protocol flag in your query; how-
ever, you should either close the cursor manually or exhaust the cursor. In the mongo (page 984) shell, you can
set the noTimeout flag:

var myCursor = db.inventory.find().addOption(DBQuery.Option.noTimeout);

See your driver (page 529) documentation for information on setting the noTimeout flag. See Cursor Flags
(page 172) for a complete list of available cursor flags.

• Because the cursor is not isolated during its lifetime, intervening write operations may result in a cursor that
returns a single document 3 more than once. To handle this situation, see the information on snapshot mode
(page 695).

• The MongoDB server returns the query results in batches:

– For most queries, the first batch returns 101 documents or just enough documents to exceed 1 megabyte.
Subsequent batch size is 4 megabytes. To override the default size of the batch, see batchSize()
(page 891) and limit() (page 894).

– For queries that include a sort operation without an index, the server must load all the documents in
memory to perform the sort and will return all documents in the first batch.

– Batch size will not exceed the maximum BSON document size (page 1105).

– As you iterate through the cursor and reach the end of the returned batch, if there are more results,
cursor.next() (page 898) will perform a getmore operation (page 1080) to retrieve the next
batch.

To see how many documents remain in the batch as you iterate the cursor, you can use the
objsLeftInBatch() (page 898) method, as in the following example:

var myCursor = db.inventory.find();

var myFirstDocument = myCursor.hasNext() ? myCursor.next() : null;

myCursor.objsLeftInBatch();

• You can use the command cursorInfo (page 823) to retrieve the following information on cursors:

– total number of open cursors

– size of the client cursors in current use

– number of timed out cursors since the last server restart

Consider the following example:

db.runCommand({ cursorInfo: 1 })

The result from the command returns the following documentation:

3 A single document relative to value of the _id field. A cursor cannot return the same document more than once if the document has not
changed.

18.1. Read Operations 171

http://docs.mongodb.org/meta-driver/latest/legacy/mongodb-wire-protocol

MongoDB Documentation, Release 2.4.2

{ "totalOpen" : <number>, "clientCursors_size" : <number>, "timedOut" : <number>, "ok" : 1 }

Cursor Flags

The mongo (page 984) shell provides the following cursor flags:

• DBQuery.Option.tailable

• DBQuery.Option.slaveOk

• DBQuery.Option.oplogReplay

• DBQuery.Option.noTimeout

• DBQuery.Option.awaitData

• DBQuery.Option.exhaust

• DBQuery.Option.partial

Aggregation

Changed in version 2.2. MongoDB can perform some basic data aggregation operations on results before returning
data to the application. These operations are not queries; they use database commands rather than queries, and they
do not return a cursor. However, they still require MongoDB to read data.

Running aggregation operations on the database side can be more efficient than running them in the application layer
and can reduce the amount of data MongoDB needs to send to the application. These aggregation operations include
basic grouping, counting, and even processing data using a map reduce framework. Additionally, in 2.2 MongoDB
provides a complete aggregation framework for more rich aggregation operations.

The aggregation framework provides users with a “pipeline” like framework: documents enter from a collection and
then pass through a series of steps by a sequence of pipeline operators (page 266) that manipulate and transform the
documents until they’re output at the end. The aggregation framework is accessible via the aggregate (page 809)
command or the db.collection.aggregate() (page 903) helper in the mongo (page 984) shell.

For more information on the aggregation framework see Aggregation (page 247).

Additionally, MongoDB provides a number of simple data aggregation operations for more basic data aggregation
operations:

• count (page 821) (count() (page 891))

• distinct (page 824) (db.collection.distinct() (page 905))

• group (page 840) (db.collection.group() (page 917))

• mapReduce (page 851). (Also consider mapReduce() (page 921) and Map-Reduce (page 285).)

18.1.4 Architecture

Read Operations from Sharded Clusters

Sharded clusters allow you to partition a data set among a cluster of mongod (page 971) in a way that is nearly
transparent to the application. See the Sharding (page 461) section of this manual for additional information about
these deployments.

For a sharded cluster, you issue all operations to one of the mongos (page 981) instances associated with the cluster.
mongos (page 981) instances route operations to the mongod (page 971) in the cluster and behave like mongod

172 Chapter 18. Read and Write Operations in MongoDB

MongoDB Documentation, Release 2.4.2

(page 971) instances to the application. Read operations to a sharded collection in a sharded cluster are largely the
same as operations to a replica set or standalone instances. See the section on Read Operations in Sharded Clusters
(page 468) for more information.

In sharded deployments, the mongos (page 981) instance routes the queries from the clients to the mongod (page 971)
instances that hold the data, using the cluster metadata stored in the config database (page 478).

For sharded collections, if queries do not include the shard key (page 463), the mongos (page 981) must direct the
query to all shards in a collection. These scatter gather queries can be inefficient, particularly on larger clusters, and
are unfeasible for routine operations.

For more information on read operations in sharded clusters, consider the following resources:

• An Introduction to Shard Keys (page 463)

• Shard Key Internals and Operations (page 471)

• Querying Sharded Clusters (page 472)

• mongos Operational Overview (page 468)

Read Operations from Replica Sets

Replica sets use read preferences to determine where and how to route read operations to members of the replica set.
By default, MongoDB always reads data from a replica set’s primary. You can modify that behavior by changing the
read preference mode (page 381).

You can configure the read preference mode (page 381) on a per-connection or per-operation basis to allow reads from
secondaries to:

• reduce latency in multi-data-center deployments,

• improve read throughput by distributing high read-volumes (relative to write volume),

• for backup operations, and/or

• to allow reads during failover (page 369) situations.

Read operations from secondary members of replica sets are not guaranteed to reflect the current state of the primary,
and the state of secondaries will trail the primary by some amount of time. Often, applications don’t rely on this kind
of strict consistency, but application developers should always consider the needs of their application before setting
read preference.

For more information on read preference or on the read preference modes, see Read Preference (page 381) and Read
Preference Modes (page 381).

18.2 Write Operations

All operations that create or modify data in the MongoDB instance are write operations. MongoDB represents data as
BSON documents stored in collections. Write operations target one collection and are atomic on the level of a single
document: no single write operation can atomically affect more than one document or more than one collection.

This document introduces the write operators available in MongoDB as well as presents strategies to increase the
efficiency of writes in applications.

18.2.1 Write Operators

For information on write operators and how to write data to a MongoDB database, see the following pages:

18.2. Write Operations 173

MongoDB Documentation, Release 2.4.2

• Create (page 195)

• Update (page 213)

• Delete (page 219)

For information on specific methods used to perform write operations in the mongo (page 984) shell, see the following:

• db.collection.insert() (page 920)

• db.collection.update() (page 932)

• db.collection.save() (page 930)

• db.collection.findAndModify() (page 911)

• db.collection.remove() (page 928)

For information on how to perform write operations from within an application, see the MongoDB Drivers and Client
Libraries (page 529) documentation or the documentation for your client library.

18.2.2 Write Concern

Note: The driver write concern (page 1183) change created a new connection class in all of the MongoDB drivers,
called MongoClient with a different default write concern. See the release notes (page 1183) for this change, and
the release notes for the driver you’re using for more information about your driver’s release.

Operational Considerations and Write Concern

Clients issue write operations with some level of write concern, which describes the level of concern or guarantee the
server will provide in its response to a write operation. Consider the following levels of conceptual write concern:

• errors ignored: Write operations are not acknowledged by MongoDB, and may not succeed in the case of
connection errors that the client is not yet aware of, or if the mongod (page 971) produces an exception (e.g.
a duplicate key exception for unique indexes (page 308).) While this operation is efficient because it does not
require the database to respond to every write operation, it also incurs a significant risk with regards to the
persistence and durability of the data.

Warning: Do not use this option in normal operation.

• unacknowledged: MongoDB does not acknowledge the receipt of write operation as with a write concern level
of ignore; however, the driver will receive and handle network errors, as possible given system networking
configuration.

Before the releases outlined in Default Write Concern Change (page 1183), this was the default write concern.

• receipt acknowledged: The mongod (page 971) will confirm the receipt of the write operation, allowing the
client to catch network, duplicate key, and other exceptions. After the releases outlined in Default Write Concern
Change (page 1183), this is the default write concern. 4

• journaled: The mongod (page 971) will confirm the write operation only after it has written the operation to
the journal. This confirms that the write operation can survive a mongod (page 971) shutdown and ensures that
the write operation is durable.

4 The default write concern is to call getLastError (page 837) with no arguments. For replica sets, you can define the default write concern
settings in the getLastErrorDefaults (page 444) If getLastErrorDefaults (page 444) does not define a default write concern setting,
getLastError (page 837) defaults to basic receipt acknowledgment.

174 Chapter 18. Read and Write Operations in MongoDB

MongoDB Documentation, Release 2.4.2

While receipt acknowledged without journaled provides the fundamental basis for write concern, there is an
up-to 100 millisecond window between journal commits where the write operation is not fully durable. Require
journaled as part of the write concern to provide this durability guarantee.

Replica sets present an additional layer of consideration for write concern. Basic write concern levels affect the write
operation on only one mongod (page 971) instance. The w argument to getLastError (page 837) provides a
replica acknowledged level of write concern. With replica acknowledged you can guarantee that the write operation
has propagated to the members of a replica set. See the Write Concern for Replica Sets (page 378) document for more
information.

Note: Requiring journaled write concern in a replica set only requires a journal commit of the write operation to the
primary of the set regardless of the level of replica acknowledged write concern.

Internal Operation of Write Concern

To provide write concern, drivers (page 529) issue the getLastError (page 837) command after a write operation
and receive a document with information about the last operation. This document’s err field contains either:

• null, which indicates the write operations have completed successfully, or

• a description of the last error encountered.

The definition of a “successful write” depends on the arguments specified to getLastError (page 837), or in replica
sets, the configuration of getLastErrorDefaults (page 444). When deciding the level of write concern for your
application, become familiar with the Operational Considerations and Write Concern (page 174).

The getLastError (page 837) command has the following options to configure write concern requirements:

• j or “journal” option

This option confirms that the mongod (page 971) instance has written the data to the on-disk journal and ensures
data is not lost if the mongod (page 971) instance shuts down unexpectedly. Set to true to enable, as shown
in the following example:

db.runCommand({ getLastError: 1, j: "true" })

If you set journal (page 1030) to true, and the mongod (page 971) does not have journaling enabled, as with
nojournal (page 1031), then getLastError (page 837) will provide basic receipt acknowledgment, and
will include a jnote field in its return document.

• w option

This option provides the ability to disable write concern entirely as well as specifies the write concern operations
for replica sets. See Operational Considerations and Write Concern (page 174) for an introduction to the
fundamental concepts of write concern. By default, the w option is set to 1, which provides basic receipt
acknowledgment on a single mongod (page 971) instance or on the primary in a replica set.

The w option takes the following values:

– -1:

Disables all acknowledgment of write operations, and suppresses all errors, including network and socket
errors.

– 0:

Disables basic acknowledgment of write operations, but returns information about socket exceptions and
networking errors to the application.

18.2. Write Operations 175

MongoDB Documentation, Release 2.4.2

Note: If you disable basic write operation acknowledgment but require journal commit acknowledgment,
the journal commit prevails, and the driver will require that mongod (page 971) will acknowledge the
write operation.

– 1:

Provides acknowledgment of write operations on a standalone mongod (page 971) or the primary in a
replica set.

– A number greater than 1:

Guarantees that write operations have propagated successfully to the specified number of replica set mem-
bers including the primary. If you set w to a number that is greater than the number of set members that
hold data, MongoDB waits for the non-existent members to become available, which means MongoDB
blocks indefinitely.

– majority:

Confirms that write operations have propagated to the majority of configured replica set: nodes must ac-
knowledge the write operation before it succeeds. This ensures that write operation will never be subject
to a rollback in the course of normal operation, and furthermore allows you to prevent hard coding as-
sumptions about the size of your replica set into your application.

– A tag set:

By specifying a tag set (page 433) you can have fine-grained control over which replica set members must
acknowledge a write operation to satisfy the required level of write concern.

getLastError (page 837) also supports a wtimeout setting which allows clients to specify a timeout for the
write concern: if you don’t specify wtimeout and the mongod (page 971) cannot fulfill the write concern the
getLastError (page 837) will block, potentially forever.

For more information on write concern and replica sets, see Write Concern for Replica Sets (page 378) for more
information..

In sharded clusters, mongos (page 981) instances will pass write concern on to the shard mongod (page 971) in-
stances.

18.2.3 Bulk Inserts

In some situations you may need to insert or ingest a large amount of data into a MongoDB database. These bulk
inserts have some special considerations that are different from other write operations.

The insert() (page 920) method, when passed an array of documents, will perform a bulk insert, and inserts each
document atomically. Drivers (page 529) provide their own interface for this kind of operation. New in version 2.2:
insert() (page 920) in the mongo (page 984) shell gained support for bulk inserts in version 2.2. Bulk insert can
significantly increase performance by amortizing write concern (page 174) costs. In the drivers, you can configure
write concern for batches rather than on a per-document level.

Drivers also have a ContinueOnError option in their insert operation, so that the bulk operation will continue to
insert remaining documents in a batch even if an insert fails.

Note: New in version 2.0: Support for ContinueOnError depends on version 2.0 of the core mongod (page 971)
and mongos (page 981) components.

If the bulk insert process generates more than one error in a batch job, the client will only receive the most recent
error. All bulk operations to a sharded collection run with ContinueOnError, which applications cannot disable.

176 Chapter 18. Read and Write Operations in MongoDB

MongoDB Documentation, Release 2.4.2

See Strategies for Bulk Inserts in Sharded Clusters (page 503) section for more information on consideration for bulk
inserts in sharded clusters.

For more information see your driver documentation (page 529) for details on performing bulk inserts in your appli-
cation. Also consider the following resources: Sharded Clusters (page 179), Strategies for Bulk Inserts in Sharded
Clusters (page 503), and Import and Export MongoDB Data (page 101).

18.2.4 Indexing

After every insert, update, or delete operation, MongoDB must update every index associated with the collection in
addition to the data itself. Therefore, every index on a collection adds some amount of overhead for the performance
of write operations. 5

In general, the performance gains that indexes provide for read operations are worth the insertion penalty; however,
when optimizing write performance, be careful when creating new indexes and always evaluate the indexes on the
collection and ensure that your queries are actually using these indexes.

For more information on indexes in MongoDB consider Indexes (page 301) and Indexing Strategies (page 315).

18.2.5 Isolation

When a single write operation modifies multiple documents, the operation as a whole is not atomic, and other opera-
tions may interleave. The modification of a single document, or record, is always atomic, even if the write operation
modifies multiple sub-document within the single record.

No other operations are atomic; however, you can attempt to isolate a write operation that affects multiple documents
using the isolation operator (page 751).

To isolate a sequence of write operations from other read and write operations, see Perform Two Phase Commits
(page 537).

18.2.6 Updates

Each document in a MongoDB collection has allocated record space which includes the entire document and a small
amount of padding. This padding makes it possible for update operations to increase the size of a document slightly
without causing the document to outgrow the allocated record size.

Documents in MongoDB can grow up to the full maximum BSON document size (page 1105). However, when
documents outgrow their allocated record size MongoDB must allocate a new record and move the document to the
new record. Update operations that do not cause a document to grow, (i.e. in-place updates,) are significantly more
efficient than those updates that cause document growth. Use data models (page 227) that minimize the need for
document growth when possible.

For complete examples of update operations, see Update (page 213).

18.2.7 Padding Factor

If an update operation does not cause the document to increase in size, MongoDB can apply the update in-place. Some
updates change the size of the document, for example using the $push (page 765) operator to append a sub-document
to an array can cause the top level document to grow beyond its allocated space.

5 The overhead for sparse indexes (page 308) inserts and updates to un-indexed fields is less than for non-sparse indexes. Also for non-sparse
indexes, updates that don’t change the record size have less indexing overhead.

18.2. Write Operations 177

MongoDB Documentation, Release 2.4.2

When documents grow, MongoDB relocates the document on disk with enough contiguous space to hold the document.
These relocations take longer than in-place updates, particularly if the collection has indexes that MongoDB must
update all index entries. If collection has many indexes, the move will impact write throughput.

To minimize document movements, MongoDB employs padding. MongoDB adaptively learns if documents in a
collection tend to grow, and if they do, adds a paddingFactor (page 1073) so that the documents have room to
grow on subsequent writes. The paddingFactor (page 1073) indicates the padding for new inserts and moves.
New in version 2.2: You can use the collMod (page 814) command with the usePowerOf2Sizes (page 814)
flag so that MongoDB allocates document space in sizes that are powers of 2. This helps ensure that MongoDB can
efficiently reuse the space freed as a result of deletions or document relocations. As with all padding, using document
space allocations with power of 2 sizes minimizes, but does not eliminate, document movements. To check the current
paddingFactor (page 1073) on a collection, you can run the db.collection.stats() (page 931) operation
in the mongo (page 984) shell, as in the following example:

db.myCollection.stats()

Since MongoDB writes each document at a different point in time, the padding for each document will not be the
same. You can calculate the padding size by subtracting 1 from the paddingFactor (page 1073), for example:

padding size = (paddingFactor - 1) * <document size>.

For example, a paddingFactor (page 1073) of 1.0 specifies no padding whereas a paddingFactor of 1.5 specifies
a padding size of 0.5 or 50 percent (50%) of the document size.

Because the paddingFactor (page 1073) is relative to the size of each document, you cannot calculate the exact
amount of padding for a collection based on the average document size and padding factor.

If an update operation causes the document to decrease in size, for instance if you perform an $unset (page 777) or
a $pop (page 763) update, the document remains in place and effectively has more padding. If the document remains
this size, the space is not reclaimed until you perform a compact (page 816) or a repairDatabase (page 863)
operation.

Note: The following operations remove padding:

• compact (page 816),

• repairDatabase (page 863), and

• initial replica sync operations.

However, with the compact (page 816) command, you can run the command with a paddingFactor or a
paddingBytes parameter.

Padding is also removed if you use mongoexport (page 1007) from a collection. If you use mongoimport
(page 1004) into a new collection, mongoimport (page 1004) will not add padding. If you use mongoimport
(page 1004) with an existing collection with padding, mongoimport (page 1004) will not affect the existing padding.

When a database operation removes padding, subsequent update that require changes in record sizes will have re-
duced throughput until the collection’s padding factor grows. Padding does not affect in-place, and after compact
(page 816), repairDatabase (page 863), and replica set initial sync the collection will require less storage.

See Also:

• Can I manually pad documents to prevent moves during updates? (page 696)

• Fast Updates with MongoDB with in-place Updates (blog post)

178 Chapter 18. Read and Write Operations in MongoDB

http://blog.mongodb.org/post/248614779/fast-updates-with-mongodb-update-in-place

MongoDB Documentation, Release 2.4.2

18.2.8 Architecture

Replica Sets

In replica sets, all write operations go to the set’s primary, which applies the write operation then records the oper-
ations on the primary’s operation log or oplog. The oplog is a reproducible sequence of operations to the data set.
Secondary members of the set are continuously replicating the oplog and applying the operations to themselves in an
asynchronous process.

Large volumes of write operations, particularly bulk operations, may create situations where the secondary members
have difficulty applying the replicating operations from the primary at a sufficient rate: this can cause the secondary’s
state to fall behind that of the primary. Secondaries that are significantly behind the primary present problems for
normal operation of the replica set, particularly failover (page 369) in the form of rollbacks (page 370) as well as
general read consistency (page 370).

To help avoid this issue, you can customize the write concern (page 174) to return confirmation of the write operation
to another member 6 of the replica set every 100 or 1,000 operations. This provides an opportunity for secondaries
to catch up with the primary. Write concern can slow the overall progress of write operations but ensure that the
secondaries can maintain a largely current state with respect to the primary.

For more information on replica sets and write operations, see Write Concern for Replica Sets (page 378), Oplog
(page 372), Oplog Internals (page 387), and Change the Size of the Oplog (page 413).

Sharded Clusters

In a sharded cluster, MongoDB directs a given write operation to a shard and then performs the write on a particular
chunk on that shard. Shards and chunks are range-based. Shard keys affect how MongoDB distributes documents
among shards. Choosing the correct shard key can have a great impact on the performance, capability, and functioning
of your database and cluster.

For more information, see Sharded Cluster Administration (page 481) and Bulk Inserts (page 176).

6 Calling getLastError (page 837) intermittently with a w value of 2 or majority will slow the throughput of write traffic; however, this
practice will allow the secondaries to remain current with the state of the primary.

18.2. Write Operations 179

MongoDB Documentation, Release 2.4.2

180 Chapter 18. Read and Write Operations in MongoDB

CHAPTER 19

Fundamental Concepts for Document
Databases

19.1 BSON Documents

MongoDB is a document-based database system, and as a result, all records, or data, in MongoDB are documents.
Documents are the default representation of most user accessible data structures in the database. Documents provide
structure for data in the following MongoDB contexts:

• the records (page 183) stored in collections

• the query selectors (page 184) that determine which records to select for read, update, and delete operations

• the update actions (page 185) that specify the particular field updates to perform during an update operation

• the specification of indexes (page 186) for collection.

• arguments to several MongoDB methods and operators, including:

– sort order (page 186) for the sort() (page 900) method.

– index specification (page 186) for the hint() (page 894) method.

• the output of a number of MongoDB commands and operations, including:

– the output (page 1072) of collStats (page 815) command, and

– the output (page 1052) of the serverStatus (page 869) command.

19.1.1 Structure

The document structure in MongoDB are BSON objects with support for the full range of BSON types; however,
BSON documents are conceptually, similar to JSON objects, and have the following structure:

{
field1: value1,
field2: value2,
field3: value3,
...
fieldN: valueN

}

181

MongoDB Documentation, Release 2.4.2

Having support for the full range of BSON types, MongoDB documents may contain field and value pairs where the
value can be another document, an array, an array of documents as well as the basic types such as Double, String,
and Date. See also BSON Type Considerations (page 186).

Consider the following document that contains values of varying types:

var mydoc = {
_id: ObjectId("5099803df3f4948bd2f98391"),
name: { first: "Alan", last: "Turing" },
birth: new Date(’Jun 23, 1912’),
death: new Date(’Jun 07, 1954’),
contribs: ["Turing machine", "Turing test", "Turingery"],
views : NumberLong(1250000)

}

The document contains the following fields:

• _id that holds an ObjectId.

• name that holds a subdocument that contains the fields first and last.

• birth and death, which both have Date types.

• contribs that holds an array of strings.

• views that holds a value of NumberLong type.

All field names are strings in BSON documents. Be aware that there are some restrictions on field names
(page 1107) for BSON documents: field names cannot contain null characters, dots (.), or dollar signs ($).

Note: BSON documents may have more than one field with the same name; however, most MongoDB Interfaces
(page 529) represent MongoDB with a structure (e.g. a hash table) that does not support duplicate field names. If you
need to manipulate documents that have more than one field with the same name, see your driver’s documentation for
more information.

Some documents created by internal MongoDB processes may have duplicate fields, but no MongoDB process will
ever add duplicate keys to an existing user document.

Type Operators

To determine the type of fields, the mongo (page 984) shell provides the following operators:

• instanceof returns a boolean to test if a value has a specific type.

• typeof returns the type of a field.

Example

Consider the following operations using instanceof and typeof:

• The following operation tests whether the _id field is of type ObjectId:

mydoc._id instanceof ObjectId

The operation returns true.

• The following operation returns the type of the _id field:

typeof mydoc._id

In this case typeof will return the more generic object type rather than ObjectId type.

182 Chapter 19. Fundamental Concepts for Document Databases

MongoDB Documentation, Release 2.4.2

Dot Notation

MongoDB uses the dot notation to access the elements of an array and to access the fields of a subdocument.

To access an element of an array by the zero-based index position, you concatenate the array name with the dot (.)
and zero-based index position:

’<array>.<index>’

To access a field of a subdocument with dot-notation, you concatenate the subdocument name with the dot (.) and the
field name:

’<subdocument>.<field>’

See Also:

• Subdocuments (page 163) for dot notation examples with subdocuments.

• Arrays (page 164) for dot notation examples with arrays.

19.1.2 Document Types in MongoDB

Record Documents

Most documents in MongoDB in collections store data from users’ applications.

These documents have the following attributes:

• The maximum BSON document size is 16 megabytes.

The maximum document size helps ensure that a single document cannot use excessive amount of RAM or, dur-
ing transmission, excessive amount of bandwidth. To store documents larger than the maximum size, MongoDB
provides the GridFS API. See mongofiles (page 1023) and the documentation for your driver (page 529) for
more information about GridFS.

• Documents (page 181) have the following restrictions on field names:

– The field name _id is reserved for use as a primary key; its value must be unique in the collection, is
immutable, and may be of any type other than an array.

– The field names cannot start with the $ character.

– The field names cannot contain the . character.

Note: Most MongoDB driver clients will include the _id field and generate an ObjectId before sending the insert
operation to MongoDB; however, if the client sends a document without an _id field, the mongod (page 971) will
add the _id field and generate the ObjectId.

The following document specifies a record in a collection:

{
_id: 1,
name: { first: ’John’, last: ’Backus’ },
birth: new Date(’Dec 03, 1924’),
death: new Date(’Mar 17, 2007’),
contribs: [’Fortran’, ’ALGOL’, ’Backus-Naur Form’, ’FP’],
awards: [

19.1. BSON Documents 183

MongoDB Documentation, Release 2.4.2

{ award: ’National Medal of Science’,
year: 1975,
by: ’National Science Foundation’ },

{ award: ’Turing Award’,
year: 1977,
by: ’ACM’ }

]
}

The document contains the following fields:

• _id, which must hold a unique value and is immutable.

• name that holds another document. This sub-document contains the fields first and last, which both hold
strings.

• birth and death that both have date types.

• contribs that holds an array of strings.

• awards that holds an array of documents.

Consider the following behavior and constraints of the _id field in MongoDB documents:

• In documents, the _id field is always indexed for regular collections.

• The _id field may contain values of any BSON data type other than an array.

Consider the following options for the value of an _id field:

• Use an ObjectId. See the ObjectId (page 188) documentation.

Although it is common to assign ObjectId values to _id fields, if your objects have a natural unique identifier,
consider using that for the value of _id to save space and to avoid an additional index.

• Generate a sequence number for the documents in your collection in your application and use this value for
the _id value. See the Create an Auto-Incrementing Sequence Field (page 546) tutorial for an implementation
pattern.

• Generate a UUID in your application code. For a more efficient storage of the UUID values in the collection
and in the _id index, store the UUID as a value of the BSON BinData type.

Index keys that are of the BinData type are more efficiently stored in the index if:

– the binary subtype value is in the range of 0-7 or 128-135, and

– the length of the byte array is: 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, or 32.

• Use your driver’s BSON UUID facility to generate UUIDs. Be aware that driver implementations may imple-
ment UUID serialization and deserialization logic differently, which may not be fully compatible with other
drivers. See your driver documentation for information concerning UUID interoperability.

Query Specification Documents

Query documents specify the conditions that determine which records to select for read, update, and delete opera-
tions. You can use <field>:<value> expressions to specify the equality condition and query operator (page 737)
expressions to specify additional conditions.

When passed as an argument to methods such as the find() (page 910) method, the remove() (page 928) method,
or the update() (page 932) method, the query document selects documents for MongoDB to return, remove, or
update, as in the following:

184 Chapter 19. Fundamental Concepts for Document Databases

http://api.mongodb.org/

MongoDB Documentation, Release 2.4.2

db.bios.find({ _id: 1 })
db.bios.remove({ _id: { $gt: 3 } })
db.bios.update({ _id: 1, name: { first: ’John’, last: ’Backus’ } },

<update>,
<options>)

See Also:

• Query Document (page 162) and Read (page 203) for more examples on selecting documents for reads.

• Update (page 213) for more examples on selecting documents for updates.

• Delete (page 219) for more examples on selecting documents for deletes.

Update Specification Documents

Update documents specify the data modifications to perform during an update() (page 932) operation to modify
existing records in a collection. You can use update operators (page 739) to specify the exact actions to perform on
the document fields.

Consider the update document example:

{
$set: { ’name.middle’: ’Warner’ },
$push: { awards: { award: ’IBM Fellow’,

year: ’1963’,
by: ’IBM’ }

}
}

When passed as an argument to the update() (page 932) method, the update actions document:

• Modifies the field name whose value is another document. Specifically, the $set (page 770) operator updates
the middle field in the name subdocument. The document uses dot notation (page 183) to access a field in a
subdocument.

• Adds an element to the field awards whose value is an array. Specifically, the $push (page 765) operator
adds another document as element to the field awards.

db.bios.update(
{ _id: 1 },
{

$set: { ’name.middle’: ’Warner’ },
$push: { awards: {

award: ’IBM Fellow’,
year: ’1963’,
by: ’IBM’

}
}

}
)

See Also:

• update operators (page 739) page for the available update operators and syntax.

• update (page 213) for more examples on update documents.

For additional examples of updates that involve array elements, including where the elements are documents, see the
$ (page 763) positional operator.

19.1. BSON Documents 185

MongoDB Documentation, Release 2.4.2

Index Specification Documents

Index specification documents describe the fields to index on during the index creation (page 907). See indexes
(page 303) for an overview of indexes. 1

Index documents contain field and value pairs, in the following form:

{ field: value }

• field is the field in the documents to index.

• value is either 1 for ascending or -1 for descending.

The following document specifies the multi-key index (page 307) on the _id field and the last field contained in the
subdocument name field. The document uses dot notation (page 183) to access a field in a subdocument:

{ _id: 1, ’name.last’: 1 }

When passed as an argument to the ensureIndex() (page 907) method, the index documents specifies the index
to create:

db.bios.ensureIndex({ _id: 1, ’name.last’: 1 })

Sort Order Specification Documents

Sort order documents specify the order of documents that a query() (page 910) returns. Pass sort order specification
documents as an argument to the sort() (page 900) method. See the sort() (page 900) page for more information
on sorting.

The sort order documents contain field and value pairs, in the following form:

{ field: value }

• field is the field by which to sort documents.

• value is either 1 for ascending or -1 for descending.

The following document specifies the sort order using the fields from a sub-document name first sort by the last
field ascending, then by the first field also ascending:

{ ’name.last’: 1, ’name.first’: 1 }

When passed as an argument to the sort() (page 900) method, the sort order document sorts the results of the
find() (page 910) method:

db.bios.find().sort({ ’name.last’: 1, ’name.first’: 1 })

19.1.3 BSON Type Considerations

The following BSON types require special consideration:

ObjectId

ObjectIds are: small, likely unique, fast to generate, and ordered. These values consists of 12-bytes, where the first
4-bytes is a timestamp that reflects the ObjectId’s creation. Refer to the ObjectId (page 188) documentation for more
information.

1 Indexes optimize a number of key read (page 161) and write (page 173) operations.

186 Chapter 19. Fundamental Concepts for Document Databases

MongoDB Documentation, Release 2.4.2

String

BSON strings are UTF-8. In general, drivers for each programming language convert from the language’s string format
to UTF-8 when serializing and deserializing BSON. This makes it possible to store most international characters in
BSON strings with ease. 2 In addition, MongoDB $regex (page 767) queries support UTF-8 in the regex string.

Timestamps

BSON has a special timestamp type for internal MongoDB use and is not associated with the regular Date (page 187)
type. Timestamp values are a 64 bit value where:

• the first 32 bits are a time_t value (seconds since the Unix epoch)

• the second 32 bits are an incrementing ordinal for operations within a given second.

Within a single mongod (page 971) instance, timestamp values are always unique.

In replication, the oplog has a ts field. The values in this field reflect the operation time, which uses a BSON
timestamp value.

Note: The BSON Timestamp type is for internal MongoDB use. For most cases, in application development, you
will want to use the BSON date type. See Date (page 187) for more information.

If you create a BSON Timestamp using the empty constructor (e.g. new Timestamp()), MongoDB will only
generate a timestamp if you use the constructor in the first field of the document. 3 Otherwise, MongoDB will
generate an empty timestamp value (i.e. Timestamp(0, 0).) Changed in version 2.1: mongo (page 984) shell
displays the Timestamp value with the wrapper:

Timestamp(<time_t>, <ordinal>)

Prior to version 2.1, the mongo (page 984) shell display the Timestamp value as a document:

{ t : <time_t>, i : <ordinal> }

Date

BSON Date is a 64-bit integer that represents the number of milliseconds since the Unix epoch (Jan 1, 1970). The
official BSON specification refers to the BSON Date type as the UTC datetime. Changed in version 2.0: BSON Date
type is signed. 4 Negative values represent dates before 1970. Consider the following examples of BSON Date:

• Construct a Date using the new Date() constructor in the mongo (page 984) shell:

var mydate1 = new Date()

• Construct a Date using the ISODate() constructor in the mongo (page 984) shell:

var mydate2 = ISODate()

• Return the Date value as string:

2 Given strings using UTF-8 character sets, using sort() (page 900) on strings will be reasonably correct; however, because internally sort()
(page 900) uses the C++ strcmp api, the sort order may handle some characters incorrectly.

3 If the first field in the document is _id, then you can generate a timestamp in the second field of a document.
4 Prior to version 2.0, Date values were incorrectly interpreted as unsigned integers, which affected sorts, range queries, and indexes on Date

fields. Because indexes are not recreated when upgrading, please re-index if you created an index on Date values with an earlier version, and dates
before 1970 are relevant to your application.

19.1. BSON Documents 187

http://bsonspec.org/#/specification

MongoDB Documentation, Release 2.4.2

mydate1.toString()

• Return the month portion of the Date value; months are zero-indexed, so that January is month 0:

mydate1.getMonth()

19.2 ObjectId

19.2.1 Overview

ObjectId is a 12-byte BSON type, constructed using:

• a 4-byte value representing the seconds since the Unix epoch,

• a 3-byte machine identifier,

• a 2-byte process id, and

• a 3-byte counter, starting with a random value.

In MongoDB, documents stored in a collection require a unique _id field that acts as a primary key. Because ObjectIds
are small, most likely unique, and fast to generate, MongoDB uses ObjectIds as the default value for the _id field
if the _id field is not specified; i.e., the mongod (page 971) adds the _id field and generates a unique ObjectId to
assign as its value.

Using ObjectIds for the _id field, provides the following additional benefits:

• in the mongo (page 984) shell, you can access the creation time of the ObjectId, using the
getTimestamp() (page 888) method.

• sorting on an _id field that stores ObjectId values is roughly equivalent to sorting by creation time.

Important: The relationship between the order of ObjectId values and generation time is not strict within a
single second. If multiple systems, or multiple processes or threads on a single system generate values, within a
single second; ObjectId values do not represent a strict insertion order. Clock skew between clients can also
result in non-strict ordering even for values, because client drivers generate ObjectId values, not the mongod
(page 971) process.

Also consider the BSON Documents (page 181) section for related information on MongoDB’s document orientation.

19.2.2 ObjectId()

The mongo (page 984) shell provides the ObjectId() wrapper class to generate a new ObjectId, and to provide the
following helper attribute and methods:

• str

The hexadecimal string value of the ObjectId() object.

• getTimestamp() (page 888)

Returns the timestamp portion of the ObjectId() object as a Date.

• toString() (page 888)

188 Chapter 19. Fundamental Concepts for Document Databases

MongoDB Documentation, Release 2.4.2

Returns the string representation of the ObjectId() object. The returned string lit-
eral has the format “ObjectId(...)”. Changed in version 2.2: In previous versions
ObjectId.toString() (page 888) returns the value of the ObjectId as a hexadecimal string.

• valueOf() (page 889)

Returns the value of the ObjectId() object as a hexadecimal string. The returned string is the
str attribute. Changed in version 2.2: In previous versions ObjectId.valueOf() (page 889)
returns the ObjectId() object.

19.2.3 Examples

Consider the following uses ObjectId() class in the mongo (page 984) shell:

• To generate a new ObjectId, use the ObjectId() constructor with no argument:

x = ObjectId()

In this example, the value of x would be:

ObjectId("507f1f77bcf86cd799439011")

• To generate a new ObjectId using the ObjectId() constructor with a unique hexadecimal string:

y = ObjectId("507f191e810c19729de860ea")

In this example, the value of y would be:

ObjectId("507f191e810c19729de860ea")

• To return the timestamp of an ObjectId() object, use the getTimestamp() (page 888) method as follows:

ObjectId("507f191e810c19729de860ea").getTimestamp()

This operation will return the following Date object:

ISODate("2012-10-17T20:46:22Z")

• Access the str attribute of an ObjectId() object, as follows:

ObjectId("507f191e810c19729de860ea").str

This operation will return the following hexadecimal string:

507f191e810c19729de860ea

• To return the string representation of an ObjectId() object, use the toString() (page 888) method as
follows:

ObjectId("507f191e810c19729de860ea").toString()

This operation will return the following output:

ObjectId("507f191e810c19729de860ea")

• To return the value of an ObjectId() object as a hexadecimal string, use the valueOf() (page 889) method
as follows:

ObjectId("507f191e810c19729de860ea").valueOf()

This operation returns the following output:

19.2. ObjectId 189

MongoDB Documentation, Release 2.4.2

507f191e810c19729de860ea

19.3 GridFS

GridFS is a specification for storing and retrieving files that exceed the BSON-document size limit (page 1105) of
16MB.

Instead of storing a file in an single document, GridFS divides a file into parts, or chunks, 5 and stores each of those
chunks as a separate document. By default GridFS limits chunk size to 256k. GridFS uses two collections to store
files. One collection stores the file chunks, and the other stores file metadata.

When you query a GridFS store for a file, the driver or client will reassemble the chunks as needed. You can perform
range queries on files stored through GridFS. You also can access information from arbitrary sections of files, which
allows you to “skip” into the middle of a video or audio file.

GridFS is useful not only for storing files that exceed 16MB but also for storing any files for which you want access
without having to load the entire file into memory. For more information on the indications of GridFS, see When
should I use GridFS? (page 690).

19.3.1 Implement GridFS

To store and retrieve files using GridFS, use either of the following:

• A MongoDB driver. See the drivers (page 529) documentation for information on using GridFS with your
driver.

• The mongofiles (page 1023) command-line tool in the mongo (page 984) shell. See mongofiles (page 1022).

19.3.2 GridFS Collections

GridFS stores files in two collections:

• chunks stores the binary chunks. For details, see The chunks Collection (page 1102).

• files stores the file’s metadata. For details, see The files Collection (page 1102).

GridFS places the collections in a common bucket by prefixing each with the bucket name. By default, GridFS uses
two collections with names prefixed by fs bucket:

• fs.files

• fs.chunks

You can choose a different bucket name than fs, and create multiple buckets in a single database.

Each document in the chunks collection represents a distinct chunk of a file as represented in the GridFS store. Each
chunk is identified by its unique ObjectID stored in its _id field.

For descriptions of all fields in the chunks and files collections, see GridFS Reference (page 1101).

5 The use of the term chunks in the context of GridFS is not related to the use of the term chunks in the context of sharding.

190 Chapter 19. Fundamental Concepts for Document Databases

MongoDB Documentation, Release 2.4.2

19.3.3 GridFS Index

GridFS uses a unique, compound index on the chunks collection for the files_id and n fields. The files_id
field contains the _id of the chunk’s “parent” document. The n field contains the sequence number of the chunk.
GridFS numbers all chunks, starting with 0. For descriptions of the documents and fields in the chunks collection,
see GridFS Reference (page 1101).

The GridFS index allows efficient retrieval of chunks using the files_id and n values, as shown in the following
example:

cursor = db.fs.chunks.find({files_id: myFileID}).sort({n:1});

See the relevant driver (page 529) documentation for the specific behavior of your GridFS application. If your driver
does not create this index, issue the following operation using the mongo (page 984) shell:

db.fs.chunks.ensureIndex({ files_id: 1, n: 1 }, { unique: true });

19.3.4 Example Interface

The following is an example of the GridFS interface in Java. The example is for demonstration purposes only. For
API specifics, see the relevant driver (page 529) documentation.

By default, the interface must support the default GridFS bucket, named fs, as in the following:

GridFS myFS = new GridFS(myDatabase); // returns default GridFS bucket (e.g. "fs" collection)
myFS.storeFile(new File("/tmp/largething.mpg")); // saves the file to "fs" GridFS bucket

Optionally, interfaces may support other additional GridFS buckets as in the following example:

GridFS myContracts = new GridFS(myDatabase, "contracts"); // returns GridFS bucket named "contracts"
myFS.retrieveFile("smithco", new File("/tmp/smithco.pdf")); // retrieve GridFS object "smithco"

19.4 Database References

MongoDB does not support joins. In MongoDB some data is denormalized, or stored with related data in documents to
remove the need for joins. However, in some cases it makes sense to store related information in separate documents,
typically in different collections or databases.

MongoDB applications use one of two methods for relating documents:

1. Manual references (page 1115) where you save the _id field of one document in another document as a refer-
ence. Then your application can run a second query to return the embedded data. These references are simple
and sufficient for most use cases.

2. DBRefs (page 1116) are references from one document to another using the value of the first document’s _id
field collection, and optional database name. To resolve DBRefs, your application must perform additional
queries to return the referenced documents. Many drivers (page 529) have helper methods that form the query
for the DBRef automatically. The drivers 6 do not automatically resolve DBRefs into documents.

Use a DBRef when you need to embed documents from multiple collections in documents from one collection.
DBRefs also provide a common format and type to represent these relationships among documents. The DBRef
format provides common semantics for representing links between documents if your database must interact
with multiple frameworks and tools.

Unless you have a compelling reason for using a DBRef, use manual references.

6 Some community supported drivers may have alternate behavior and may resolve a DBRef into a document automatically.

19.4. Database References 191

MongoDB Documentation, Release 2.4.2

19.4.1 Manual References

Background

Manual references refers to the practice of including one document’s _id field in another document. The application
can then issue a second query to resolve the referenced fields as needed.

Process

Consider the following operation to insert two documents, using the _id field of the first document as a reference in
the second document:

original_id = ObjectId()

db.places.insert({
"_id": original_id
"name": "Broadway Center"
"url": "bc.example.net"

})

db.people.insert({
"name": "Erin"
"places_id": original_id
"url": "bc.example.net/Erin"

})

Then, when a query returns the document from the people collection you can, if needed, make a second query for
the document referenced by the places_id field in the places collection.

Use

For nearly every case where you want to store a relationship between two documents, use manual references
(page 1115). The references are simple to create and your application can resolve references as needed.

The only limitation of manual linking is that these references do not convey the database and collection name. If you
have documents in a single collection that relate to documents in more than one collection, you may need to consider
using DBRefs (page 1116).

19.4.2 DBRefs

Background

DBRefs are a convention for representing a document, rather than a specific reference “type.” They include the name
of the collection, and in some cases the database, in addition to the value from the _id field.

Format

DBRefs have the following fields:

$ref
The $ref field holds the name of the collection where the referenced document resides.

$id
The $id field contains the value of the _id field in the referenced document.

192 Chapter 19. Fundamental Concepts for Document Databases

MongoDB Documentation, Release 2.4.2

$db
Optional.

Contains the name of the database where the referenced document resides.

Only some drivers support $db references.

Example

DBRef document would resemble the following:

{ "$ref" : <value>, "$id" : <value>, "$db" : <value> }

Consider a document from a collection that stored a DBRef in a creator field:

{
"_id" : ObjectId("5126bbf64aed4daf9e2ab771"),
// .. application fields
"creator" : {

"$ref" : "creators",
"$id" : ObjectId("5126bc054aed4daf9e2ab772"),
"$db" : "users"

}
}

The DBRef in this example, points to a document in the creators collection of the users database that has
ObjectId("5126bc054aed4daf9e2ab772") in its _id field.

Note: The order of fields in the DBRef matters, and you must use the above sequence when using a DBRef.

Support

C++ The C++ driver contains no support for DBRefs. You can transverse references manually.

C# The C# driver provides access to DBRef objects with the MongoDBRef Class and supplies the FetchDBRef
Method for accessing these objects.

Java The DBRef class provides supports for DBRefs from Java.

JavaScript The mongo (page 984) shell’s JavaScript (page 881) interface provides a DBRef.

Perl The Perl driver contains no support for DBRefs. You can transverse references manually or use the Mon-
goDBx::AutoDeref CPAN module.

PHP The PHP driver does support DBRefs, including the optional $db reference, through The MongoDBRef class.

Python The Python driver provides the DBRef class, and the dereference method for interacting with DBRefs.

Ruby The Ruby Driver supports DBRefs using the DBRef class and the deference method.

Use

In most cases you should use the manual reference (page 1115) method for connecting two or more related documents.
However, if you need to reference documents from multiple collections, consider a DBRef.

19.4. Database References 193

http://api.mongodb.org/csharp/current/html/46c356d3-ed06-a6f8-42fa-e0909ab64ce2.htm
http://api.mongodb.org/csharp/current/html/1b0b8f48-ba98-1367-0a7d-6e01c8df436f.htm
http://api.mongodb.org/csharp/current/html/1b0b8f48-ba98-1367-0a7d-6e01c8df436f.htm
http://api.mongodb.org/java/current/com/mongodb/DBRef.html
http://search.cpan.org/dist/MongoDBx-AutoDeref/
http://search.cpan.org/dist/MongoDBx-AutoDeref/
http://www.php.net/manual/en/class.mongodbref.php/
http://api.mongodb.org/python/current/api/bson/dbref.html
http://api.mongodb.org//python/current/api/pymongo/database.html#pymongo.database.Database.dereference
http://api.mongodb.org//ruby/current/BSON/DBRef.html
http://api.mongodb.org//ruby/current/Mongo/DB.html#dereference

MongoDB Documentation, Release 2.4.2

194 Chapter 19. Fundamental Concepts for Document Databases

CHAPTER 20

CRUD Operations for MongoDB

These documents provide an overview and examples of common database operations, i.e. CRUD, in MongoDB.

20.1 Create

Of the four basic database operations (i.e. CRUD), create operations are those that add new records or documents to a
collection in MongoDB. For general information about write operations and the factors that affect their performance,
see Write Operations (page 173); for documentation of the other CRUD operations, see the Core MongoDB Operations
(CRUD) (page 159) page.

• Overview (page 195)
• insert() (page 196)

– Insert the First Document in a Collection (page 196)
– Insert a Document without Specifying an _id Field (page 197)
– Bulk Insert Multiple Documents (page 199)
– Insert a Document with save() (page 200)

• update() Operations with the upsert Flag (page 201)
– Insert a Document that Contains field and value Pairs (page 201)
– Insert a Document that Contains Update Operator Expressions (page 202)
– Update operations with with save() (page 203)

20.1.1 Overview

You can create documents in a MongoDB collection using any of the following basic operations:

• insert (page 196)

• updates with the upsert option (page 201)

All insert operations in MongoDB exhibit the following properties:

• If you attempt to insert a document without the _id field, the client library or the mongod (page 971) instance
will add an _id field and populate the field with a unique ObjectId.

• For operations with write concern (page 174), if you specify an _id field, the _id field must be unique within
the collection; otherwise the mongod (page 971) will return a duplicate key exception.

195

MongoDB Documentation, Release 2.4.2

• The maximum BSON document size is 16 megabytes.

The maximum document size helps ensure that a single document cannot use excessive amount of RAM or, dur-
ing transmission, excessive amount of bandwidth. To store documents larger than the maximum size, MongoDB
provides the GridFS API. See mongofiles (page 1023) and the documentation for your driver (page 529) for
more information about GridFS.

• Documents (page 181) have the following restrictions on field names:

– The field name _id is reserved for use as a primary key; its value must be unique in the collection, is
immutable, and may be of any type other than an array.

– The field names cannot start with the $ character.

– The field names cannot contain the . character.

Note: As of these driver versions (page 1183), all write operations will issue a getLastError (page 837) command
to confirm the result of the write operation:

{ getLastError: 1 }

Refer to the documentation on write concern (page 174) in the Write Operations (page 173) document for more
information.

20.1.2 insert()

The insert() (page 920) is the primary method to insert a document or documents into a MongoDB collection, and
has the following syntax:

db.collection.insert(<document>)

Corresponding Operation in SQL

The insert() (page 920) method is analogous to the INSERT statement.

Insert the First Document in a Collection

If the collection does not exist 1, then the insert() (page 920) method creates the collection during the first insert.
Specifically in the example, if the collection bios does not exist , then the insert operation will create this collection:

db.bios.insert(
{

_id: 1,
name: { first: ’John’, last: ’Backus’ },
birth: new Date(’Dec 03, 1924’),
death: new Date(’Mar 17, 2007’),
contribs: [’Fortran’, ’ALGOL’, ’Backus-Naur Form’, ’FP’],
awards: [

{
award: ’W.W. McDowell Award’,
year: 1967,
by: ’IEEE Computer Society’

},
{

1 You can also view a list of the existing collections in the database using the show collections operation in the mongo (page 984) shell.

196 Chapter 20. CRUD Operations for MongoDB

MongoDB Documentation, Release 2.4.2

award: ’National Medal of Science’,
year: 1975,
by: ’National Science Foundation’

},
{
award: ’Turing Award’,
year: 1977,
by: ’ACM’

},
{
award: ’Draper Prize’,
year: 1993,
by: ’National Academy of Engineering’

}
]

}
)

You can confirm the insert by querying (page 203) the bios collection:

db.bios.find()

This operation returns the following document from the bios collection:

{
"_id" : 1,
"name" : { "first" : "John", "last" : "Backus" },
"birth" : ISODate("1924-12-03T05:00:00Z"),
"death" : ISODate("2007-03-17T04:00:00Z"),
"contribs" : ["Fortran", "ALGOL", "Backus-Naur Form", "FP"],
"awards" : [

{
"award" : "W.W. McDowell Award",
"year" : 1967,
"by" : "IEEE Computer Society"

},
{
"award" : "National Medal of Science",
"year" : 1975,
"by" : "National Science Foundation"

},
{
"award" : "Turing Award",
"year" : 1977,
"by" : "ACM"

},
{ "award" : "Draper Prize",
"year" : 1993,
"by" : "National Academy of Engineering"

}
]

}

Insert a Document without Specifying an _id Field

If the new document does not contain an _id field, then the insert() (page 920) method adds the _id field to the
document and generates a unique ObjectId for the value:

20.1. Create 197

MongoDB Documentation, Release 2.4.2

db.bios.insert(
{

name: { first: ’John’, last: ’McCarthy’ },
birth: new Date(’Sep 04, 1927’),
death: new Date(’Dec 24, 2011’),
contribs: [’Lisp’, ’Artificial Intelligence’, ’ALGOL’],
awards: [

{
award: ’Turing Award’,
year: 1971,
by: ’ACM’

},
{
award: ’Kyoto Prize’,
year: 1988,
by: ’Inamori Foundation’

},
{
award: ’National Medal of Science’,
year: 1990,
by: ’National Science Foundation’

}
]

}
)

You can verify the inserted document by the querying the bios collection:

db.bios.find({ name: { first: ’John’, last: ’McCarthy’ } })

The returned document contains an _id field with the generated ObjectId value:

{
"_id" : ObjectId("50a1880488d113a4ae94a94a"),
"name" : { "first" : "John", "last" : "McCarthy" },
"birth" : ISODate("1927-09-04T04:00:00Z"),
"death" : ISODate("2011-12-24T05:00:00Z"),
"contribs" : ["Lisp", "Artificial Intelligence", "ALGOL"],
"awards" : [

{
"award" : "Turing Award",
"year" : 1971,
"by" : "ACM"

},
{
"award" : "Kyoto Prize",
"year" :1988,
"by" : "Inamori Foundation"

},
{
"award" : "National Medal of Science",
"year" : 1990,
"by" : "National Science Foundation"

}
]

}

198 Chapter 20. CRUD Operations for MongoDB

MongoDB Documentation, Release 2.4.2

Bulk Insert Multiple Documents

If you pass an array of documents to the insert() (page 920) method, the insert() (page 920) performs a bulk
insert into a collection.

The following operation inserts three documents into the bios collection. The operation also illustrates the dynamic
schema characteristic of MongoDB. Although the document with _id: 3 contains a field title which does not
appear in the other documents, MongoDB does not require the other documents to contain this field:

db.bios.insert(
[

{
_id: 3,
name: { first: ’Grace’, last: ’Hopper’ },
title: ’Rear Admiral’,
birth: new Date(’Dec 09, 1906’),
death: new Date(’Jan 01, 1992’),
contribs: [’UNIVAC’, ’compiler’, ’FLOW-MATIC’, ’COBOL’],
awards: [

{
award: ’Computer Sciences Man of the Year’,
year: 1969,
by: ’Data Processing Management Association’

},
{
award: ’Distinguished Fellow’,
year: 1973,
by: ’ British Computer Society’

},
{
award: ’W. W. McDowell Award’,
year: 1976,
by: ’IEEE Computer Society’

},
{
award: ’National Medal of Technology’,
year: 1991,
by: ’United States’

}
]

},
{

_id: 4,
name: { first: ’Kristen’, last: ’Nygaard’ },
birth: new Date(’Aug 27, 1926’),
death: new Date(’Aug 10, 2002’),
contribs: [’OOP’, ’Simula’],
awards: [

{
award: ’Rosing Prize’,
year: 1999,
by: ’Norwegian Data Association’

},
{
award: ’Turing Award’,
year: 2001,
by: ’ACM’

},
{

20.1. Create 199

MongoDB Documentation, Release 2.4.2

award: ’IEEE John von Neumann Medal’,
year: 2001,
by: ’IEEE’

}
]

},
{

_id: 5,
name: { first: ’Ole-Johan’, last: ’Dahl’ },
birth: new Date(’Oct 12, 1931’),
death: new Date(’Jun 29, 2002’),
contribs: [’OOP’, ’Simula’],
awards: [

{
award: ’Rosing Prize’,
year: 1999,
by: ’Norwegian Data Association’

},
{
award: ’Turing Award’,
year: 2001,
by: ’ACM’

},
{
award: ’IEEE John von Neumann Medal’,
year: 2001,
by: ’IEEE’

}
]

}
]

)

Insert a Document with save()

The save() (page 930) method performs an insert if the document to save does not contain the _id field.

The following save() (page 930) operation performs an insert into the bios collection since the document does not
contain the _id field:

db.bios.save(
{

name: { first: ’Guido’, last: ’van Rossum’},
birth: new Date(’Jan 31, 1956’),
contribs: [’Python’],
awards: [

{
award: ’Award for the Advancement of Free Software’,
year: 2001,
by: ’Free Software Foundation’

},
{
award: ’NLUUG Award’,
year: 2003,
by: ’NLUUG’

}
]

200 Chapter 20. CRUD Operations for MongoDB

MongoDB Documentation, Release 2.4.2

}
)

20.1.3 update() Operations with the upsert Flag

The update() (page 932) operation in MongoDB accepts an “upsert” flag that modifies the behavior of
update() (page 932) from updating existing documents (page 213), to inserting data.

These update() (page 932) operations with the upsert flag eliminate the need to perform an additional operation
to check for existence of a record before performing either an update or an insert operation. These update operations
have the use <query> argument to determine the write operation:

• If the query matches an existing document(s), the operation is an update (page 213).

• If the query matches no document in the collection, the operation is an insert (page 195).

An upsert operation has the following syntax 2:

db.collection.update(<query>,
<update>,
{ upsert: true })

Insert a Document that Contains field and value Pairs

If no document matches the <query> argument, the upsert performs an insert. If the <update> argument
includes only field and value pairs, the new document contains the fields and values specified in the <update>
argument. If query does not include an _id field, the operation adds the _id field and generates a unique ObjectId
for its value.

The following update inserts a new document into the bios collection 2:

db.bios.update(
{ name: { first: ’Dennis’, last: ’Ritchie’} },
{

name: { first: ’Dennis’, last: ’Ritchie’},
birth: new Date(’Sep 09, 1941’),
death: new Date(’Oct 12, 2011’),
contribs: [’UNIX’, ’C’],
awards: [

{
award: ’Turing Award’,
year: 1983,
by: ’ACM’

},
{
award: ’National Medal of Technology’,
year: 1998,
by: ’United States’

},
{
award: ’Japan Prize’,
year: 2011,
by: ’The Japan Prize Foundation’

}

2 Prior to version 2.2, in the mongo (page 984) shell, you would specify the upsert and the multi options in the update() (page 932)
method as positional boolean options. See update() (page 932) for details.

20.1. Create 201

MongoDB Documentation, Release 2.4.2

]
},
{ upsert: true }

)

Insert a Document that Contains Update Operator Expressions

If no document matches the <query> argument, the update operation inserts a new document. If the <update>
argument includes only update operators (page 739), the new document contains the fields and values from <query>
argument with the operations from the <update> argument applied.

The following operation inserts a new document into the bios collection 2:

db.bios.update(
{

_id: 7,
name: { first: ’Ken’, last: ’Thompson’ }

},
{

$set: {
birth: new Date(’Feb 04, 1943’),
contribs: [’UNIX’, ’C’, ’B’, ’UTF-8’],
awards: [

{
award: ’Turing Award’,
year: 1983,
by: ’ACM’

},
{
award: ’IEEE Richard W. Hamming Medal’,
year: 1990,
by: ’IEEE’

},
{
award: ’National Medal of Technology’,
year: 1998,
by: ’United States’

},
{
award: ’Tsutomu Kanai Award’,
year: 1999,
by: ’IEEE’

},
{
award: ’Japan Prize’,
year: 2011,
by: ’The Japan Prize Foundation’

}
]

}
},
{ upsert: true }

)

202 Chapter 20. CRUD Operations for MongoDB

MongoDB Documentation, Release 2.4.2

Update operations with with save()

The save() (page 930) method is identical to an update operation with the upsert flag (page 201)

performs an upsert if the document to save contains the _id field. To determine whether to perform an insert or an
update, save() (page 930) method queries documents on the _id field.

The following operation performs an upsert that inserts a document into the bios collection since no documents in
the collection contains an _id field with the value 10:

db.bios.save(
{

_id: 10,
name: { first: ’Yukihiro’, aka: ’Matz’, last: ’Matsumoto’},
birth: new Date(’Apr 14, 1965’),
contribs: [’Ruby’],
awards: [

{
award: ’Award for the Advancement of Free Software’,
year: ’2011’,
by: ’Free Software Foundation’

}
]

}
)

20.2 Read

Of the four basic database operations (i.e. CRUD), read operations are those that retrieve records or documents from
a collection in MongoDB. For general information about read operations and the factors that affect their performance,
see Read Operations (page 161); for documentation of the other CRUD operations, see the Core MongoDB Operations
(CRUD) (page 159) page.

20.2. Read 203

MongoDB Documentation, Release 2.4.2

• Overview (page 204)
• find() (page 204)

– Return All Documents in a Collection (page 205)
– Return Documents that Match Query Conditions (page 206)

* Equality Matches (page 206)
* Using Operators (page 206)
* On Arrays (page 206)

· Query an Element (page 206)
· Query Multiple Fields on an Array of Documents (page 206)

* On Subdocuments (page 207)
· Exact Matches (page 207)
· Fields of a Subdocument (page 207)

* Logical Operators (page 207)
· OR Disjunctions (page 207)
· AND Conjunctions (page 208)

– With a Projection (page 208)
* Specify the Fields to Return (page 208)
* Explicitly Exclude the _id Field (page 208)
* Return All but the Excluded Fields (page 209)
* On Arrays and Subdocuments (page 209)

– Iterate the Returned Cursor (page 209)
* With Variable Name (page 210)
* With next() Method (page 210)
* With forEach() Method (page 210)

– Modify the Cursor Behavior (page 210)
* Order Documents in the Result Set (page 211)
* Limit the Number of Documents to Return (page 211)
* Set the Starting Point of the Result Set (page 211)
* Combine Cursor Methods (page 211)

• findOne() (page 211)
– With Empty Query Specification (page 212)
– With a Query Specification (page 212)
– With a Projection (page 212)

* Specify the Fields to Return (page 212)
* Return All but the Excluded Fields (page 212)

– Access the findOne Result (page 213)

20.2.1 Overview

You can retrieve documents from MongoDB using either of the following methods:

• find (page 204)

• findOne (page 211)

20.2.2 find()

The find() (page 910) method is the primary method to select documents from a collection. The find() (page 910)
method returns a cursor that contains a number of documents. Most drivers (page 529) provide application developers
with a native iterable interface for handling cursors and accessing documents. The find() (page 910) method has
the following syntax:

204 Chapter 20. CRUD Operations for MongoDB

MongoDB Documentation, Release 2.4.2

db.collection.find(<query>, <projection>)

Corresponding Operation in SQL

The find() (page 910) method is analogous to the SELECT statement, while:

• the <query> argument corresponds to the WHERE statement, and

• the <projection> argument corresponds to the list of fields to select from the result set.

The examples refer to a collection named bios that contains documents with the following prototype:

{
"_id" : 1,
"name" : {

"first" : "John",
"last" :"Backus"

},
"birth" : ISODate("1924-12-03T05:00:00Z"),
"death" : ISODate("2007-03-17T04:00:00Z"),
"contribs" : ["Fortran", "ALGOL", "Backus-Naur Form", "FP"],
"awards" : [

{
"award" : "W.W. McDowellAward",
"year" : 1967,
"by" : "IEEE Computer Society"

},
{
"award" : "National Medal of Science",
"year" : 1975,
"by" : "National Science Foundation"

},
{
"award" : "Turing Award",
"year" : 1977,
"by" : "ACM"

},
{
"award" : "Draper Prize",
"year" : 1993,
"by" : "National Academy of Engineering"

}
]

}

Note: In the mongo (page 984) shell, you can format the output by adding .pretty() to the find() (page 910)
method call.

Return All Documents in a Collection

If there is no <query> argument, the find() (page 910) method selects all documents from a collection.

The following operation returns all documents (or more precisely, a cursor to all documents) in the bios collection:

db.bios.find()

20.2. Read 205

MongoDB Documentation, Release 2.4.2

Return Documents that Match Query Conditions

If there is a <query> argument, the find() (page 910) method selects all documents from a collection that satisfies
the query specification.

Equality Matches

The following operation returns a cursor to documents in the bios collection where the field _id equals 5:

db.bios.find(
{

_id: 5
}

)

Using Operators

The following operation returns a cursor to all documents in the bios collection where the field _id equals 5 or
ObjectId("507c35dd8fada716c89d0013"):

db.bios.find(
{

_id: { $in: [5, ObjectId("507c35dd8fada716c89d0013")] }
}

)

On Arrays

Query an Element The following operation returns a cursor to all documents in the bios collection where the
array field contribs contains the element ’UNIX’:

db.bios.find(
{

contribs: ’UNIX’
}

)

Query Multiple Fields on an Array of Documents The following operation returns a cursor to all documents in
the bios collection where awards array contains a subdocument element that contains the award field equal to
’Turing Award’ and the year field greater than 1980:

db.bios.find(
{

awards: {
$elemMatch: {

award: ’Turing Award’,
year: { $gt: 1980 }

}
}

}
)

206 Chapter 20. CRUD Operations for MongoDB

MongoDB Documentation, Release 2.4.2

On Subdocuments

Exact Matches The following operation returns a cursor to all documents in the bios collection where the subdoc-
ument name is exactly { first: ’Yukihiro’, last: ’Matsumoto’ }, including the order:

db.bios.find(
{

name: {
first: ’Yukihiro’,
last: ’Matsumoto’

}
}

)

The name field must match the sub-document exactly, including order. For instance, the query would not match
documents with name fields that held either of the following values:

{
first: ’Yukihiro’,
aka: ’Matz’,
last: ’Matsumoto’

}

{
last: ’Matsumoto’,
first: ’Yukihiro’

}

Fields of a Subdocument The following operation returns a cursor to all documents in the bios collection where
the subdocument name contains a field first with the value ’Yukihiro’ and a field last with the value
’Matsumoto’; the query uses dot notation to access fields in a subdocument:

db.bios.find(
{

’name.first’: ’Yukihiro’,
’name.last’: ’Matsumoto’

}
)

The query matches the document where the name field contains a subdocument with the field first with the value
’Yukihiro’ and a field last with the value ’Matsumoto’. For instance, the query would match documents
with name fields that held either of the following values:

{
first: ’Yukihiro’,
aka: ’Matz’,
last: ’Matsumoto’

}

{
last: ’Matsumoto’,
first: ’Yukihiro’

}

Logical Operators

20.2. Read 207

MongoDB Documentation, Release 2.4.2

OR Disjunctions The following operation returns a cursor to all documents in the bios collection where either
the field first in the sub-document name starts with the letter G or where the field birth is less than new
Date(’01/01/1945’):

db.bios.find(
{ $or: [

{ ’name.first’ : /^G/ },
{ birth: { $lt: new Date(’01/01/1945’) } }

]
}

)

AND Conjunctions The following operation returns a cursor to all documents in the bios collection where the field
first in the subdocument name starts with the letter K and the array field contribs contains the element UNIX:

db.bios.find(
{

’name.first’: /^K/,
contribs: ’UNIX’

}
)

In this query, the parameters (i.e. the selections of both fields) combine using an implicit logical AND for criteria on
different fields contribs and name.first. For multiple AND criteria on the same field, use the $and (page 741)
operator.

With a Projection

If there is a <projection> argument, the find() (page 910) method returns only those fields as specified in the
<projection> argument to include or exclude:

Note: The _id field is implicitly included in the <projection> argument. In projections that explicitly include
fields, _id is the only field that you can explicitly exclude. Otherwise, you cannot mix include field and exclude field
specifications.

Specify the Fields to Return

The following operation finds all documents in the bios collection and returns only the name field, the contribs
field, and the _id field:

db.bios.find(
{ },
{ name: 1, contribs: 1 }

)

Explicitly Exclude the _id Field

The following operation finds all documents in the bios collection and returns only the name field and the
contribs field:

208 Chapter 20. CRUD Operations for MongoDB

MongoDB Documentation, Release 2.4.2

db.bios.find(
{ },
{ name: 1, contribs: 1, _id: 0 }

)

Return All but the Excluded Fields

The following operation finds the documents in the bios collection where the contribs field contains the element
’OOP’ and returns all fields except the _id field, the first field in the name subdocument, and the birth field
from the matching documents:

db.bios.find(
{ contribs: ’OOP’ },
{ _id: 0, ’name.first’: 0, birth: 0 }

)

On Arrays and Subdocuments

The following operation finds all documents in the bios collection and returns the last field in the name subdocu-
ment and the first two elements in the contribs array:

db.bios.find(
{ },
{

_id: 0,
’name.last’: 1,
contribs: { $slice: 2 }

}
)

See Also:

• dot notation for information on “reaching into” embedded sub-documents.

• Arrays (page 164) for more examples on accessing arrays.

• Subdocuments (page 163) for more examples on accessing subdocuments.

• $elemMatch (page 745) query operator for more information on matching array elements.

• $elemMatch (page 778) projection operator for additional information on restricting array elements to return.

Iterate the Returned Cursor

The find() (page 910) method returns a cursor to the results; however, in the mongo (page 984) shell, if the returned
cursor is not assigned to a variable, then the cursor is automatically iterated up to 20 times 3 to print up to the first 20
documents that match the query, as in the following example:

db.bios.find({ _id: 1 });

3 You can use the DBQuery.shellBatchSize to change the number of iteration from the default value 20. See Cursor Flags (page 172)
and Cursor Behaviors (page 171) for more information.

20.2. Read 209

MongoDB Documentation, Release 2.4.2

With Variable Name

When you assign the find() (page 910) to a variable, you can type the name of the cursor variable to iterate up to
20 times 1 and print the matching documents, as in the following example:

var myCursor = db.bios.find({ _id: 1 });

myCursor

With next() Method

You can use the cursor method next() (page 898) to access the documents, as in the following example:

var myCursor = db.bios.find({ _id: 1 });

var myDocument = myCursor.hasNext() ? myCursor.next() : null;

if (myDocument) {
var myName = myDocument.name;
print (tojson(myName));

}

To print, you can also use the printjson() method instead of print(tojson()):

if (myDocument) {
var myName = myDocument.name;
printjson(myName);

}

With forEach() Method

You can use the cursor method forEach() (page 893) to iterate the cursor and access the documents, as in the
following example:

var myCursor = db.bios.find({ _id: 1 });

myCursor.forEach(printjson);

For more information on cursor handling, see:

• cursor.hasNext() (page 893)

• cursor.next() (page 898)

• cursor.forEach() (page 893)

• cursors (page 169)

• JavaScript cursor methods (page 882)

Modify the Cursor Behavior

In addition to the <query> and the <projection> arguments, the mongo (page 984) shell and the drivers
(page 529) provide several cursor methods that you can call on the cursor returned by find() (page 910) method to
modify its behavior, such as:

210 Chapter 20. CRUD Operations for MongoDB

MongoDB Documentation, Release 2.4.2

Order Documents in the Result Set

The sort() (page 900) method orders the documents in the result set.

The following operation returns all documents (or more precisely, a cursor to all documents) in the bios collection
ordered by the name field ascending:

db.bios.find().sort({ name: 1 })

sort() (page 900) corresponds to the ORDER BY statement in SQL.

Limit the Number of Documents to Return

The limit() (page 894) method limits the number of documents in the result set.

The following operation returns at most 5 documents (or more precisely, a cursor to at most 5 documents) in the bios
collection:

db.bios.find().limit(5)

limit() (page 894) corresponds to the LIMIT statement in SQL.

Set the Starting Point of the Result Set

The skip() (page 899) method controls the starting point of the results set.

The following operation returns all documents, skipping the first 5 documents in the bios collection:

db.bios.find().skip(5)

Combine Cursor Methods

You can chain these cursor methods, as in the following examples 4:

db.bios.find().sort({ name: 1 }).limit(5)
db.bios.find().limit(5).sort({ name: 1 })

See the JavaScript cursor methods (page 882) reference and your driver (page 529) documentation for additional
references. See Cursors (page 169) for more information regarding cursors.

20.2.3 findOne()

The findOne() (page 914) method selects a single document from a collection and returns that document.
findOne() (page 914) does not return a cursor.

The findOne() (page 914) method has the following syntax:

db.collection.findOne(<query>, <projection>)

Except for the return value, findOne() (page 914) method is quite similar to the find() (page 910) method; in
fact, internally, the findOne() (page 914) method is the find() (page 910) method with a limit of 1.

4 Regardless of the order you chain the limit() (page 894) and the sort() (page 900), the request to the server has the structure that treats
the query and the sort() (page 900) modifier as a single object. Therefore, the limit() (page 894) operation method is always applied after the
sort() (page 900) regardless of the specified order of the operations in the chain. See the meta query operators (page 881) for more information.

20.2. Read 211

MongoDB Documentation, Release 2.4.2

With Empty Query Specification

If there is no <query> argument, the findOne() (page 914) method selects just one document from a collection.

The following operation returns a single document from the bios collection:

db.bios.findOne()

With a Query Specification

If there is a <query> argument, the findOne() (page 914) method selects the first document from a collection that
meets the <query> argument:

The following operation returns the first matching document from the bios collection where either the field first in
the subdocument name starts with the letter G or where the field birth is less than new Date(’01/01/1945’):

db.bios.findOne(
{

$or: [
{ ’name.first’ : /^G/ },
{ birth: { $lt: new Date(’01/01/1945’) } }

]
}

)

With a Projection

You can pass a <projection> argument to findOne() (page 914) to control the fields included in the result set.

Specify the Fields to Return

The following operation finds a document in the bios collection and returns only the name field, the contribs
field, and the _id field:

db.bios.findOne(
{ },
{ name: 1, contribs: 1 }

)

Return All but the Excluded Fields

The following operation returns a document in the bios collection where the contribs field contains the element
OOP and returns all fields except the _id field, the first field in the name subdocument, and the birth field from
the matching documents:

db.bios.findOne(
{ contribs: ’OOP’ },
{ _id: 0, ’name.first’: 0, birth: 0 }

)

212 Chapter 20. CRUD Operations for MongoDB

MongoDB Documentation, Release 2.4.2

Access the findOne Result

Although similar to the find() (page 910) method, because the findOne() (page 914) method returns a document
rather than a cursor, you cannot apply the cursor methods such as limit() (page 894), sort() (page 900), and
skip() (page 899) to the result of the findOne() (page 914) method. However, you can access the document
directly, as in the example:

var myDocument = db.bios.findOne();

if (myDocument) {
var myName = myDocument.name;

print (tojson(myName));
}

20.3 Update

Of the four basic database operations (i.e. CRUD), update operations are those that modify existing records or doc-
uments in a MongoDB collection. For general information about write operations and the factors that affect their
performance, see Write Operations (page 173); for documentation of other CRUD operations, see the Core MongoDB
Operations (CRUD) (page 159) page.

• Overview (page 213)
• Update (page 214)

– Modify with Update Operators (page 214)
* Update a Field in a Document (page 214)
* Add a New Field to a Document (page 215)
* Remove a Field from a Document (page 215)
* Update Arrays (page 215)

· Update an Element by Specifying Its Position (page 215)
· Update an Element without Specifying Its Position (page 215)
· Update a Document Element without Specifying Its Position (page 216)
· Add an Element to an Array (page 216)

* Update Multiple Documents (page 216)
– Replace Existing Document with New Document (page 216)

• update() Operations with the upsert Flag (page 217)
• Save (page 218)

– Behavior (page 218)
– Save Performs an Update (page 218)

• Update Operators (page 219)
– Fields (page 219)
– Array (page 219)
– Bitwise (page 219)
– Isolation (page 219)

20.3.1 Overview

Update operation modifies an existing document or documents in a collection. MongoDB provides the following
methods to perform update operations:

• update (page 214)

20.3. Update 213

MongoDB Documentation, Release 2.4.2

• save (page 218)

Note: Consider the following behaviors of MongoDB’s update operations.

• When performing update operations that increase the document size beyond the allocated space for that docu-
ment, the update operation relocates the document on disk and may reorder the document fields depending on
the type of update.

• As of these driver versions (page 1183), all write operations will issue a getLastError (page 837) command
to confirm the result of the write operation:

{ getLastError: 1 }

Refer to the documentation on write concern (page 174) in the Write Operations (page 173) document for more
information.

20.3.2 Update

The update() (page 932) method is the primary method used to modify documents in a MongoDB collection. By
default, the update() (page 932) method updates a single document, but by using the multi option, update()
(page 932) can update all documents that match the query criteria in the collection. The update() (page 932) method
can either replace the existing document with the new document or update specific fields in the existing document.

The update() (page 932) has the following syntax 5:

db.collection.update(<query>, <update>, <options>)

Corresponding operation in SQL

The update() (page 932) method corresponds to the UPDATE operation in SQL, and:

• the <query> argument corresponds to the WHERE statement, and

• the <update> corresponds to the SET ... statement.

The default behavior of the update() (page 932) method updates a single document and would correspond to
the SQL UPDATE statement with the LIMIT 1. With the multi option, update() (page 932) method would
correspond to the SQL UPDATE statement without the LIMIT clause.

Modify with Update Operators

If the <update> argument contains only update operator (page 219) expressions such as the $set (page 770)
operator expression, the update() (page 932) method updates the corresponding fields in the document. To update
fields in subdocuments, MongoDB uses dot notation.

Update a Field in a Document

Use $set (page 770) to update a value of a field.

The following operation queries the bios collection for the first document that has an _id field equal to 1 and sets
the value of the field middle, in the subdocument name, to Warner:

5 This examples uses the interface added in MongoDB 2.2 to specify the multi and the upsert options in a document form. .. include::
/includes/fact-upsert-multi-options.rst

214 Chapter 20. CRUD Operations for MongoDB

MongoDB Documentation, Release 2.4.2

db.bios.update(
{ _id: 1 },
{

$set: { ’name.middle’: ’Warner’ },
}

)

Add a New Field to a Document

If the <update> argument contains fields not currently in the document, the update() (page 932) method adds the
new fields to the document.

The following operation queries the bios collection for the first document that has an _id field equal to 3 and adds
to that document a new mbranch field and a new aka field in the subdocument name:

db.bios.update(
{ _id: 3 },
{ $set: {

mbranch: ’Navy’,
’name.aka’: ’Amazing Grace’

}
}

)

Remove a Field from a Document

If the <update> argument contains $unset (page 777) operator, the update() (page 932) method removes the
field from the document.

The following operation queries the bios collection for the first document that has an _id field equal to 3 and
removes the birth field from the document:

db.bios.update(
{ _id: 3 },
{ $unset: { birth: 1 } }

)

Update Arrays

Update an Element by Specifying Its Position If the update operation requires an update of an element in an array
field, the update() (page 932) method can perform the update using the position of the element and dot notation.
Arrays in MongoDB are zero-based.

The following operation queries the bios collection for the first document with _id field equal to 1 and updates the
second element in the contribs array:

db.bios.update(
{ _id: 1 },
{ $set: { ’contribs.1’: ’ALGOL 58’ } }

)

Update an Element without Specifying Its Position The update() (page 932) method can perform the update
using the $ (page 763) positional operator if the position is not known. The array field must appear in the query
argument in order to determine which array element to update.

20.3. Update 215

MongoDB Documentation, Release 2.4.2

The following operation queries the bios collection for the first document where the _id field equals 3 and the
contribs array contains an element equal to compiler. If found, the update() (page 932) method updates the
first matching element in the array to A compiler in the document:

db.bios.update(
{ _id: 3, ’contribs’: ’compiler’ },
{ $set: { ’contribs.$’: ’A compiler’ } }

)

Update a Document Element without Specifying Its Position The update() (page 932) method can perform
the update of an array that contains subdocuments by using the positional operator (i.e. $ (page 763)) and the dot
notation.

The following operation queries the bios collection for the first document where the _id field equals 6 and the
awards array contains a subdocument element with the by field equal to ACM. If found, the update() (page 932)
method updates the by field in the first matching subdocument:

db.bios.update(
{ _id: 6, ’awards.by’: ’ACM’ } ,
{ $set: { ’awards.$.by’: ’Association for Computing Machinery’ } }

)

Add an Element to an Array The following operation queries the bios collection for the first document that has
an _id field equal to 1 and adds a new element to the awards field:

db.bios.update(
{ _id: 1 },
{

$push: { awards: { award: ’IBM Fellow’, year: 1963, by: ’IBM’ } }
}

)

Update Multiple Documents

If the <options> argument contains the multi option set to true or 1, the update() (page 932) method updates
all documents that match the query.

The following operation queries the bios collection for all documents where the awards field contains a subdocu-
ment element with the award field equal to Turing and sets the turing field to true in the matching documents
6:

db.bios.update(
{ ’awards.award’: ’Turing’ },
{ $set: { turing: true } },
{ multi: true }

)

Replace Existing Document with New Document

If the <update> argument contains only field and value pairs, the update() (page 932) method replaces the
existing document with the document in the <update> argument, except for the _id field.

6 Prior to version 2.2, in the mongo (page 984) shell, you would specify the upsert and the multi options in the update() (page 932)
method as positional boolean options. See update() (page 932) for details.

216 Chapter 20. CRUD Operations for MongoDB

MongoDB Documentation, Release 2.4.2

The following operation queries the bios collection for the first document that has a name field equal to { first:
’John’, last: ’McCarthy’ } and replaces all but the _id field in the document with the fields in the
<update> argument:

db.bios.update(
{ name: { first: ’John’, last: ’McCarthy’ } },
{ name: { first: ’Ken’, last: ’Iverson’ },

born: new Date(’Dec 17, 1941’),
died: new Date(’Oct 19, 2004’),
contribs: [’APL’, ’J’],
awards: [

{ award: ’Turing Award’,
year: 1979,
by: ’ACM’ },

{ award: ’Harry H. Goode Memorial Award’,
year: 1975,
by: ’IEEE Computer Society’ },

{ award: ’IBM Fellow’,
year: 1970,
by: ’IBM’ }

]
}

)

20.3.3 update() Operations with the upsert Flag

If you set the upsert option in the <options> argument to true or 1 and no existing document match the
<query> argument, the update() (page 932) method can insert a new document into the collection. 7

The following operation queries the bios collection for a document with the _id field equal to 11 and the name
field equal to { first: ’James’, last: ’Gosling’}. If the query selects a document, the operation
performs an update operation. If a document is not found, update() (page 932) inserts a new document containing
the fields and values from <query> argument with the operations from the <update> argument applied. 8

db.bios.update(
{ _id:11, name: { first: ’James’, last: ’Gosling’ } },
{

$set: {
born: new Date(’May 19, 1955’),
contribs: [’Java’],
awards: [

{
award: ’The Economist Innovation Award’,
year: 2002,
by: ’The Economist’

},
{
award: ’Officer of the Order of Canada’,
year: 2007,
by: ’Canada’

}
]

7 Prior to version 2.2, in the mongo (page 984) shell, you would specify the upsert and the multi options in the update() (page 932)
method as positional boolean options. See update() (page 932) for details.

8 If the <update> argument includes only field and value pairs, the new document contains the fields and values specified in the <update>
argument. If the <update> argument includes only update operators (page 219), the new document contains the fields and values from <query>
argument with the operations from the <update> argument applied.

20.3. Update 217

MongoDB Documentation, Release 2.4.2

}
},
{ upsert: true }

)

See also Update Operations with the Upsert Flag (page 201) in the Create (page 195) document.

20.3.4 Save

The save() (page 930) method performs a special type of update() (page 932), depending on the _id field of
the specified document.

The save() (page 930) method has the following syntax:

db.collection.save(<document>)

Behavior

If you specify a document with an _id field, save() (page 930) performs an update() (page 932) with the
upsert option set: if an existing document in the collection has the same _id, save() (page 930) updates that
document, and inserts the document otherwise. If you do not specify a document with an _id field to save()
(page 930), performs an insert() (page 920) operation.

That is, save() (page 930) method is equivalent to the update() (page 932) method with the upsert option and
a <query> argument with an _id field.

Example

Consider the following pseudocode explanation of save() (page 930) as an illustration of its behavior:

function save(doc) {
if(doc["_id"]) {

update({_id: doc["_id"] }, doc, { upsert: true });
}

else {
insert(doc);

}
}

Save Performs an Update

If the <document> argument contains the _id field that exists in the collection, the save() (page 930) method
performs an update that replaces the existing document with the <document> argument.

The following operation queries the bios collection for a document where the _id equals
ObjectId("507c4e138fada716c89d0014") and replaces the document with the <document> argu-
ment:

db.bios.save(
{

_id: ObjectId("507c4e138fada716c89d0014"),
name: { first: ’Martin’, last: ’Odersky’ },
contribs: [’Scala’]

218 Chapter 20. CRUD Operations for MongoDB

MongoDB Documentation, Release 2.4.2

}
)

See Also:

Insert a Document with save() (page 200) and Update operations with with save() (page 203) in the Create (page 195)
section.

20.3.5 Update Operators

Fields

• $inc (page 751)

• $rename (page 768)

• $set (page 770)

• $unset (page 777)

Array

• $ (page 763)

• $addToSet (page 740)

• $pop (page 763)

• $pullAll (page 764)

• $pull (page 764)

• $pushAll (page 766)

• $push (page 765)

– $each (page 744) modifier

– $slice (page 772) modifier

– $sort (page 773) modifier

Bitwise

• $bit (page 742)

Isolation

• $isolated (page 751)

20.4 Delete

Of the four basic database operations (i.e. CRUD), delete operations are those that remove documents from a collection
in MongoDB.

20.4. Delete 219

MongoDB Documentation, Release 2.4.2

For general information about write operations and the factors that affect their performance, see Write Operations
(page 173); for documentation of other CRUD operations, see the Core MongoDB Operations (CRUD) (page 159)
page.

• Overview (page 220)
• Remove All Documents that Match a Condition (page 220)
• Remove a Single Document that Matches a Condition (page 221)
• Remove All Documents from a Collection (page 221)
• Capped Collection (page 221)
• Isolation (page 221)

20.4.1 Overview

The remove() (page 220) method in the mongo (page 984) shell provides this operation, as do corresponding methods
in the drivers (page 529).

Note: As of these driver versions (page 1183), all write operations will issue a getLastError (page 837) command
to confirm the result of the write operation:

{ getLastError: 1 }

Refer to the documentation on write concern (page 174) in the Write Operations (page 173) document for more
information.

Use the remove() (page 928) method to delete documents from a collection. The remove() (page 928) method
has the following syntax:

db.collection.remove(<query>, <justOne>)

Corresponding operation in SQL

The remove() (page 928) method is analogous to the DELETE statement, and:

• the <query> argument corresponds to the WHERE statement, and

• the <justOne> argument takes a Boolean and has the same affect as LIMIT 1.

remove() (page 928) deletes documents from the collection. If you do not specify a query, remove() (page 928)
removes all documents from a collection, but does not remove the indexes. 9

Note: For large deletion operations, it may be more efficient to copy the documents that you want to keep to a new
collection and then use drop() (page 906) on the original collection.

20.4.2 Remove All Documents that Match a Condition

If there is a <query> argument, the remove() (page 928) method deletes from the collection all documents that
match the argument.

9 To remove all documents from a collection, it may be more efficient to use the drop() (page 906) method to drop the entire collection,
including the indexes, and then recreate the collection and rebuild the indexes.

220 Chapter 20. CRUD Operations for MongoDB

MongoDB Documentation, Release 2.4.2

The following operation deletes all documents from the bios collection where the subdocument name contains a
field first whose value starts with G:

db.bios.remove({ ’name.first’ : /^G/ })

20.4.3 Remove a Single Document that Matches a Condition

If there is a <query> argument and you specify the <justOne> argument as true or 1, remove() (page 928)
only deletes a single document from the collection that matches the query.

The following operation deletes a single document from the bios collection where the turing field equals true:

db.bios.remove({ turing: true }, 1)

20.4.4 Remove All Documents from a Collection

If there is no <query> argument, the remove() (page 928) method deletes all documents from a collection. The
following operation deletes all documents from the bios collection:

db.bios.remove()

Note: This operation is not equivalent to the drop() (page 906) method.

20.4.5 Capped Collection

You cannot use the remove() (page 928) method with a capped collection.

20.4.6 Isolation

If the <query> argument to the remove() (page 928) method matches multiple documents in the collection, the
delete operation may interleave with other write operations to that collection. For an unsharded collection, you have
the option to override this behavior with the $isolated (page 751) isolation operator, effectively isolating the delete
operation from other write operations. To isolate the operation, include $isolated: 1 in the <query> parameter
as in the following example:

db.bios.remove({ turing: true, $isolated: 1 })

20.4. Delete 221

MongoDB Documentation, Release 2.4.2

222 Chapter 20. CRUD Operations for MongoDB

Part V

Data Modeling

223

MongoDB Documentation, Release 2.4.2

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Although you may be
able to use different structures for a single data set in MongoDB, different data models may have significant impacts
on MongoDB and applications performance. Consider Data Modeling Considerations for MongoDB Applications
(page 227) for a conceptual overview of data modeling problems in MongoDB, and the Data Modeling Patterns
(page 233) documents for examples of different approaches to data models.

See Also:

Use Cases (page 581) for overviews of application design, including data models, with MongoDB.

225

MongoDB Documentation, Release 2.4.2

226

CHAPTER 21

Background

21.1 Data Modeling Considerations for MongoDB Applications

21.1.1 Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. This means that:

• documents in the same collection do not need to have the same set of fields or structure, and

• common fields in a collection’s documents may hold different types of data.

Each document only needs to contain relevant fields to the entity or object that the document represents. In practice,
most documents in a collection share a similar structure. Schema flexibility means that you can model your documents
in MongoDB so that they can closely resemble and reflect application-level objects.

As in all data modeling, when developing data models (i.e. schema designs) for MongoDB, you must consider the
inherent properties and requirements of the application objects and the relationships between application objects.
MongoDB data models must also reflect:

• how data will grow and change over time, and

• the kinds of queries your application will perform.

These considerations and requirements force developers to make a number of multi-factored decisions when modeling
data, including:

• normalization and de-normalization.

These decisions reflect the degree to which the data model should store related pieces of data in a single doc-
ument. Fully normalized data models describe relationships using references (page 1115) between documents,
while de-normalized models may store redundant information across related models.

• indexing strategy (page 315).

• representation of data in arrays in BSON.

Although a number of data models may be functionally equivalent for a given application, different data models may
have significant impacts on MongoDB and applications performance.

This document provides a high level overview of these data modeling decisions and factors. In addition, consider the
Data Modeling Patterns and Examples (page 231) section which provides more concrete examples of all the discussed
patterns.

227

MongoDB Documentation, Release 2.4.2

21.1.2 Data Modeling Decisions

Data modeling decisions involve determining how to structure the documents to model the data effectively. The
primary decision is whether to embed (page 228) or to use references (page 228).

Embedding

To de-normalize data, store two related pieces of data in a single document.

Operations within a document are less expensive for the server than operations that involve multiple documents.

In general, use embedded data models when:

• you have “contains” relationships between entities. See Model Embedded One-to-One Relationships Between
Documents (page 233).

• you have one-to-many relationships where the “many” objects always appear with or are viewed in the context
of their parent documents. See Model Embedded One-to-Many Relationships Between Documents (page 234).

Embedding provides the following benefits:

• generally better performance for read operations.

• the ability to request and retrieve related data in a single database operation.

Embedding related data in documents, can lead to situations where documents grow after creation. Document growth
can impact write performance and lead to data fragmentation. Furthermore, documents in MongoDB must be smaller
than the maximum BSON document size (page 1105). For larger documents, consider using GridFS (page 190).

For examples in accessing embedded documents, see Subdocuments (page 163).

See Also:

• dot notation for information on “reaching into” embedded sub-documents.

• Arrays (page 164) for more examples on accessing arrays

• Subdocuments (page 163) for more examples on accessing subdocuments

Referencing

To normalize data, store references (page 1115) between two documents to indicate a relationship between the data
represented in each document.

In general, use normalized data models:

• when embedding would result in duplication of data but would not provide sufficient read performance advan-
tages to outweigh the implications of the duplication.

• to represent more complex many-to-many relationships.

• to model large hierarchical data sets. See data-modeling-trees.

Referencing provides more flexibility than embedding; however, to resolve the references, client-side applications
must issue follow-up queries. In other words, using references requires more roundtrips to the server.

See Model Referenced One-to-Many Relationships Between Documents (page 235) for an example of referencing.

228 Chapter 21. Background

MongoDB Documentation, Release 2.4.2

Atomicity

MongoDB only provides atomic operations on the level of a single document. 1 As a result needs for atomic operations
influence decisions to use embedded or referenced relationships when modeling data for MongoDB.

Embed fields that need to be modified together atomically in the same document. See Model Data for Atomic Opera-
tions (page 237) for an example of atomic updates within a single document.

21.1.3 Operational Considerations

In addition to normalization and normalization concerns, a number of other operational factors help shape data mod-
eling decisions in MongoDB. These factors include:

• data lifecycle management,

• number of collections and

• indexing requirements,

• sharding, and

• managing document growth.

These factors implications for database and application performance as well as future maintenance and development
costs.

Data Lifecycle Management

Data modeling decisions should also take data lifecycle management into consideration.

The Time to Live or TTL feature (page 551) of collections expires documents after a period of time. Consider using
the TTL feature if your application requires some data to persist in the database for a limited period of time.

Additionally, if your application only uses recently inserted documents consider Capped Collections (page 532).
Capped collections provide first-in-first-out (FIFO) management of inserted documents and optimized to support op-
erations that insert and read documents based on insertion order.

Large Number of Collections

In certain situations, you might choose to store information in several collections rather than in a single collection.

Consider a sample collection logs that stores log documents for various environment and applications. The logs
collection contains documents of the following form:

{ log: "dev", ts: ..., info: ... }
{ log: "debug", ts: ..., info: ...}

If the total number of documents is low you may group documents into collection by type. For logs, consider main-
taining distinct log collections, such as logs.dev and logs.debug. The logs.dev collection would contain
only the documents related to the dev environment.

Generally, having large number of collections has no significant performance penalty and results in very good perfor-
mance. Distinct collections are very important for high-throughput batch processing.

When using models that have a large number of collections, consider the following behaviors:

• Each collection has a certain minimum overhead of a few kilobytes.
1 Document-level atomic operations include all operations within a single MongoDB document record: operations that affect multiple sub-

documents within that single record are still atomic.

21.1. Data Modeling Considerations for MongoDB Applications 229

MongoDB Documentation, Release 2.4.2

• Each index, including the index on _id, requires at least 8KB of data space.

A single <database>.ns file stores all meta-data for each database. Each index and collection has its own entry
in the namespace file, MongoDB places limits on the size of namespace files. (page 1105).

Because of limits on namespaces (page 1105), you may wish to know the current number of namespaces in
order to determine how many additional namespaces the database can support, as in the following example:

db.system.namespaces.count()

The <database>.ns file defaults to 16 MB. To change the size of the <database>.ns file, pass a new size to
--nssize option <new size MB> (page 975) on server start.

The --nssize (page 975) sets the size for new <database>.ns files. For existing databases, after starting up
the server with --nssize (page 975), run the db.repairDatabase() (page 944) command from the mongo
(page 984) shell.

Indexes

Create indexes to support common queries. Generally, indexes and index use in MongoDB correspond to indexes and
index use in relational database: build indexes on fields that appear often in queries and for all operations that return
sorted results. MongoDB automatically creates a unique index on the _id field.

As you create indexes, consider the following behaviors of indexes:

• Each index requires at least 8KB of data space.

• Adding an index has some negative performance impact for write operations. For collections with high write-
to-read ratio, indexes are expensive as each insert must add keys to each index.

• Collections with high proportion of read operations to write operations often benefit from additional indexes.
Indexes do not affect un-indexed read operations.

See Indexing Strategies (page 315) for more information on determining indexes. Additionally, the MongoDB
database profiler (page 95) may help identify inefficient queries.

Sharding

Sharding allows users to partition a collection within a database to distribute the collection’s documents across a
number of mongod (page 971) instances or shards.

The shard key determines how MongoDB distributes data among shards in a sharded collection. Selecting the proper
shard key (page 463) has significant implications for performance.

See Sharded Cluster Overview (page 463) for more information on sharding and the selection of the shard key
(page 463).

Document Growth

Certain updates to documents can increase the document size, such as pushing elements to an array and adding new
fields. If the document size exceeds the allocated space for that document, MongoDB relocates the document on disk.
This internal relocation can be both time and resource consuming.

Although MongoDB automatically provides padding to minimize the occurrence of relocations, you may still need to
manually handle document growth. Refer to Pre-Aggregated Reports (page 593) for an example of the Pre-allocation
approach to handle document growth.

230 Chapter 21. Background

MongoDB Documentation, Release 2.4.2

21.1.4 Data Modeling Patterns and Examples

The following documents provide overviews of various data modeling patterns and common schema design consider-
ations:

• Model Embedded One-to-One Relationships Between Documents (page 233)

• Model Embedded One-to-Many Relationships Between Documents (page 234)

• Model Referenced One-to-Many Relationships Between Documents (page 235)

• Model Data for Atomic Operations (page 237)

• Model Tree Structures with Parent References (page 238)

• Model Tree Structures with Child References (page 238)

• Model Tree Structures with Materialized Paths (page 240)

• Model Tree Structures with Nested Sets (page 241)

For more information and examples of real-world data modeling, consider the following external resources:

• Schema Design by Example

• Walkthrough MongoDB Data Modeling

• Document Design for MongoDB

• Dynamic Schema Blog Post

• MongoDB Data Modeling and Rails

• Ruby Example of Materialized Paths

• Sean Cribs Blog Post which was the source for much of the data-modeling-trees content.

21.1. Data Modeling Considerations for MongoDB Applications 231

http://www.10gen.com/presentations/mongodb-melbourne-2012/schema-design-example
http://blog.fiesta.cc/post/11319522700/walkthrough-mongodb-data-modeling
http://oreilly.com/catalog/0636920018391
http://dmerr.tumblr.com/post/6633338010/schemaless
http://docs.mongodb.org/ecosystem/tutorial/model-data-for-ruby-on-rails/
http://github.com/banker/newsmonger/blob/master/app/models/comment.rb
http://seancribbs.com/tech/2009/09/28/modeling-a-tree-in-a-document-database

MongoDB Documentation, Release 2.4.2

232 Chapter 21. Background

CHAPTER 22

Data Modeling Patterns

22.1 Model Embedded One-to-One Relationships Between Docu-
ments

22.1.1 Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions that affect how
you model data can affect application performance and database capacity. See Data Modeling Considerations for
MongoDB Applications (page 227) for a full high level overview of data modeling in MongoDB.

This document describes a data model that uses embedded (page 228) documents to describe relationships between
connected data.

22.1.2 Pattern

Consider the following example that maps patron and address relationships. The example illustrates the advantage of
embedding over referencing if you need to view one data entity in context of the other. In this one-to-one relationship
between patron and address data, the address belongs to the patron.

In the normalized data model, the address contains a reference to the parent.

{
_id: "joe",
name: "Joe Bookreader"

}

{
patron_id: "joe",
street: "123 Fake Street",
city: "Faketon",
state: "MA"
zip: 12345

}

If the address data is frequently retrieved with the name information, then with referencing, your application needs
to issue multiple queries to resolve the reference. The better data model would be to embed the address data in the
patron data, as in the following document:

233

MongoDB Documentation, Release 2.4.2

{
_id: "joe",
name: "Joe Bookreader",
address: {

street: "123 Fake Street",
city: "Faketon",
state: "MA"
zip: 12345

}
}

With the embedded data model, your application can retrieve the complete patron information with one query.

22.2 Model Embedded One-to-Many Relationships Between Docu-
ments

22.2.1 Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions that affect how
you model data can affect application performance and database capacity. See Data Modeling Considerations for
MongoDB Applications (page 227) for a full high level overview of data modeling in MongoDB.

This document describes a data model that uses embedded (page 228) documents to describe relationships between
connected data.

22.2.2 Pattern

Consider the following example that maps patron and multiple address relationships. The example illustrates the
advantage of embedding over referencing if you need to view many data entities in context of another. In this one-to-
many relationship between patron and address data, the patron has multiple address entities.

In the normalized data model, the address contains a reference to the parent.

{
_id: "joe",
name: "Joe Bookreader"

}

{
patron_id: "joe",
street: "123 Fake Street",
city: "Faketon",
state: "MA",
zip: 12345

}

{
patron_id: "joe",
street: "1 Some Other Street",
city: "Boston",
state: "MA",
zip: 12345

}

234 Chapter 22. Data Modeling Patterns

MongoDB Documentation, Release 2.4.2

If your application frequently retrieves the address data with the name information, then your application needs
to issue multiple queries to resolve the references. A more optimal schema would be to embed the address data
entities in the patron data, as in the following document:

{
_id: "joe",
name: "Joe Bookreader",
addresses: [

{
street: "123 Fake Street",
city: "Faketon",
state: "MA",
zip: 12345

},
{
street: "1 Some Other Street",
city: "Boston",
state: "MA",
zip: 12345

}
]

}

With the embedded data model, your application can retrieve the complete patron information with one query.

22.3 Model Referenced One-to-Many Relationships Between Docu-
ments

22.3.1 Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions that affect how
you model data can affect application performance and database capacity. See Data Modeling Considerations for
MongoDB Applications (page 227) for a full high level overview of data modeling in MongoDB.

This document describes a data model that uses references (page 228) between documents to describe relationships
between connected data.

22.3.2 Pattern

Consider the following example that maps publisher and book relationships. The example illustrates the advantage of
referencing over embedding to avoid repetition of the publisher information.

Embedding the publisher document inside the book document would lead to repetition of the publisher data, as the
following documents show:

{
title: "MongoDB: The Definitive Guide",
author: ["Kristina Chodorow", "Mike Dirolf"],
published_date: ISODate("2010-09-24"),
pages: 216,
language: "English",
publisher: {

name: "O’Reilly Media",
founded: 1980,
location: "CA"

22.3. Model Referenced One-to-Many Relationships Between Documents 235

MongoDB Documentation, Release 2.4.2

}
}

{
title: "50 Tips and Tricks for MongoDB Developer",
author: "Kristina Chodorow",
published_date: ISODate("2011-05-06"),
pages: 68,
language: "English",
publisher: {

name: "O’Reilly Media",
founded: 1980,
location: "CA"

}
}

To avoid repetition of the publisher data, use references and keep the publisher information in a separate collection
from the book collection.

When using references, the growth of the relationships determine where to store the reference. If the number of books
per publisher is small with limited growth, storing the book reference inside the publisher document may sometimes
be useful. Otherwise, if the number of books per publisher is unbounded, this data model would lead to mutable,
growing arrays, as in the following example:

{
name: "O’Reilly Media",
founded: 1980,
location: "CA",
books: [12346789, 234567890, ...]

}

{
_id: 123456789,
title: "MongoDB: The Definitive Guide",
author: ["Kristina Chodorow", "Mike Dirolf"],
published_date: ISODate("2010-09-24"),
pages: 216,
language: "English"

}

{
_id: 234567890,
title: "50 Tips and Tricks for MongoDB Developer",
author: "Kristina Chodorow",
published_date: ISODate("2011-05-06"),
pages: 68,
language: "English"

}

To avoid mutable, growing arrays, store the publisher reference inside the book document:

{
_id: "oreilly",
name: "O’Reilly Media",
founded: 1980,
location: "CA"

}

{

236 Chapter 22. Data Modeling Patterns

MongoDB Documentation, Release 2.4.2

_id: 123456789,
title: "MongoDB: The Definitive Guide",
author: ["Kristina Chodorow", "Mike Dirolf"],
published_date: ISODate("2010-09-24"),
pages: 216,
language: "English",
publisher_id: "oreilly"

}

{
_id: 234567890,
title: "50 Tips and Tricks for MongoDB Developer",
author: "Kristina Chodorow",
published_date: ISODate("2011-05-06"),
pages: 68,
language: "English",
publisher_id: "oreilly"

}

22.4 Model Data for Atomic Operations

22.4.1 Pattern

Consider the following example that keeps a library book and its checkout information. The example illustrates how
embedding fields related to an atomic update within the same document ensures that the fields are in sync.

Consider the following book document that stores the number of available copies for checkout and the current check-
out information:

book = {
_id: 123456789,
title: "MongoDB: The Definitive Guide",
author: ["Kristina Chodorow", "Mike Dirolf"],
published_date: ISODate("2010-09-24"),
pages: 216,
language: "English",
publisher_id: "oreilly",
available: 3,
checkout: [{ by: "joe", date: ISODate("2012-10-15") }]

}

You can use the db.collection.findAndModify() (page 911) method to atomically determine if a book is
available for checkout and update with the new checkout information. Embedding the available field and the
checkout field within the same document ensures that the updates to these fields are in sync:

db.books.findAndModify ({
query: {

_id: 123456789,
available: { $gt: 0 }

},
update: {

$inc: { available: -1 },
$push: { checkout: { by: "abc", date: new Date() } }

}
})

22.4. Model Data for Atomic Operations 237

MongoDB Documentation, Release 2.4.2

22.5 Model Tree Structures with Parent References

22.5.1 Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions that affect how
you model data can affect application performance and database capacity. See Data Modeling Considerations for
MongoDB Applications (page 227) for a full high level overview of data modeling in MongoDB.

This document describes a data model that describes a tree-like structure in MongoDB documents by storing references
(page 228) to “parent” nodes in children nodes.

22.5.2 Pattern

The Parent References pattern stores each tree node in a document; in addition to the tree node, the document stores
the id of the node’s parent.

Consider the following example that models a tree of categories using Parent References:

db.categories.insert({ _id: "MongoDB", parent: "Databases" })
db.categories.insert({ _id: "Postgres", parent: "Databases" })
db.categories.insert({ _id: "Databases", parent: "Programming" })
db.categories.insert({ _id: "Languages", parent: "Programming" })
db.categories.insert({ _id: "Programming", parent: "Books" })
db.categories.insert({ _id: "Books", parent: null })

• The query to retrieve the parent of a node is fast and straightforward:

db.categories.findOne({ _id: "MongoDB" }).parent

• You can create an index on the field parent to enable fast search by the parent node:

db.categories.ensureIndex({ parent: 1 })

• You can query by the parent field to find its immediate children nodes:

db.categories.find({ parent: "Databases" })

The Parent Links pattern provides a simple solution to tree storage, but requires multiple queries to retrieve subtrees.

22.6 Model Tree Structures with Child References

22.6.1 Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions that affect how
you model data can affect application performance and database capacity. See Data Modeling Considerations for
MongoDB Applications (page 227) for a full high level overview of data modeling in MongoDB.

This document describes a data model that describes a tree-like structure in MongoDB documents by storing references
(page 228) in the parent-nodes to children nodes.

22.6.2 Pattern

The Child References pattern stores each tree node in a document; in addition to the tree node, document stores in an
array the id(s) of the node’s children.

238 Chapter 22. Data Modeling Patterns

MongoDB Documentation, Release 2.4.2

Consider the following example that models a tree of categories using Child References:

db.categories.insert({ _id: "MongoDB", children: [] })
db.categories.insert({ _id: "Postgres", children: [] })
db.categories.insert({ _id: "Databases", children: ["MongoDB", "Postgres"] })
db.categories.insert({ _id: "Languages", children: [] })
db.categories.insert({ _id: "Programming", children: ["Databases", "Languages"] })
db.categories.insert({ _id: "Books", children: ["Programming"] })

• The query to retrieve the immediate children of a node is fast and straightforward:

db.categories.findOne({ _id: "Databases" }).children

• You can create an index on the field children to enable fast search by the child nodes:

db.categories.ensureIndex({ children: 1 })

• You can query for a node in the children field to find its parent node as well as its siblings:

db.categories.find({ children: "MongoDB" })

The Child References pattern provides a suitable solution to tree storage as long as no operations on subtrees are
necessary. This pattern may also provide a suitable solution for storing graphs where a node may have multiple
parents.

22.7 Model Tree Structures with an Array of Ancestors

22.7.1 Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions that affect how
you model data can affect application performance and database capacity. See Data Modeling Considerations for
MongoDB Applications (page 227) for a full high level overview of data modeling in MongoDB.

This document describes a data model that describes a tree-like structure in MongoDB documents using references
(page 228) to parent nodes and an array that stores all ancestors.

22.7.2 Pattern

The Array of Ancestors pattern stores each tree node in a document; in addition to the tree node, document stores in
an array the id(s) of the node’s ancestors or path.

Consider the following example that models a tree of categories using Array of Ancestors:

db.categories.insert({ _id: "MongoDB", ancestors: ["Books", "Programming", "Databases"], parent: "Databases" })
db.categories.insert({ _id: "Postgres", ancestors: ["Books", "Programming", "Databases"], parent: "Databases" })
db.categories.insert({ _id: "Databases", ancestors: ["Books", "Programming"], parent: "Programming" })
db.categories.insert({ _id: "Languages", ancestors: ["Books", "Programming"], parent: "Programming" })
db.categories.insert({ _id: "Programming", ancestors: ["Books"], parent: "Books" })
db.categories.insert({ _id: "Books", ancestors: [], parent: null })

• The query to retrieve the ancestors or path of a node is fast and straightforward:

db.categories.findOne({ _id: "MongoDB" }).ancestors

• You can create an index on the field ancestors to enable fast search by the ancestors nodes:

22.7. Model Tree Structures with an Array of Ancestors 239

MongoDB Documentation, Release 2.4.2

db.categories.ensureIndex({ ancestors: 1 })

• You can query by the ancestors to find all its descendants:

db.categories.find({ ancestors: "Programming" })

The Array of Ancestors pattern provides a fast and efficient solution to find the descendants and the ancestors of a node
by creating an index on the elements of the ancestors field. This makes Array of Ancestors a good choice for working
with subtrees.

The Array of Ancestors pattern is slightly slower than the Materialized Paths pattern but is more straightforward to
use.

22.8 Model Tree Structures with Materialized Paths

22.8.1 Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions that affect how
you model data can affect application performance and database capacity. See Data Modeling Considerations for
MongoDB Applications (page 227) for a full high level overview of data modeling in MongoDB.

This document describes a data model that describes a tree-like structure in MongoDB documents by storing full
relationship paths between documents.

22.8.2 Pattern

The Materialized Paths pattern stores each tree node in a document; in addition to the tree node, document stores as
a string the id(s) of the node’s ancestors or path. Although the Materialized Paths pattern requires additional steps of
working with strings and regular expressions, the pattern also provides more flexibility in working with the path, such
as finding nodes by partial paths.

Consider the following example that models a tree of categories using Materialized Paths ; the path string uses the
comma , as a delimiter:

db.categories.insert({ _id: "Books", path: null })
db.categories.insert({ _id: "Programming", path: ",Books," })
db.categories.insert({ _id: "Databases", path: ",Books,Programming," })
db.categories.insert({ _id: "Languages", path: ",Books,Programming," })
db.categories.insert({ _id: "MongoDB", path: ",Books,Programming,Databases," })
db.categories.insert({ _id: "Postgres", path: ",Books,Programming,Databases," })

• You can query to retrieve the whole tree, sorting by the path:

db.categories.find().sort({ path: 1 })

• You can use regular expressions on the path field to find the descendants of Programming:

db.categories.find({ path: /,Programming,/ })

• You can also retrieve the descendants of Books where the Books is also at the topmost level of the hierarchy:

db.categories.find({ path: /^,Books,/ })

• To create an index on the field path use the following invocation:

240 Chapter 22. Data Modeling Patterns

MongoDB Documentation, Release 2.4.2

db.categories.ensureIndex({ path: 1 })

This index may improve performance, depending on the query:

– For queries of the Books sub-tree (e.g. http://docs.mongodb.org/manual/^,Books,/) an
index on the path field improves the query performance significantly.

– For queries of the Programming sub-tree (e.g. http://docs.mongodb.org/manual/,Programming,/),
or similar queries of sub-tress, where the node might be in the middle of the indexed string, the query
must inspect the entire index.

For these queries an index may provide some performance improvement if the index is significantly smaller
than the entire collection.

22.9 Model Tree Structures with Nested Sets

22.9.1 Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions that affect how
you model data can affect application performance and database capacity. See Data Modeling Considerations for
MongoDB Applications (page 227) for a full high level overview of data modeling in MongoDB.

This document describes a data model that describes a tree like structure that optimizes discovering subtrees at the
expense of tree mutability.

22.9.2 Pattern

The Nested Sets pattern identifies each node in the tree as stops in a round-trip traversal of the tree. The application
visits each node in the tree twice; first during the initial trip, and second during the return trip. The Nested Sets pattern
stores each tree node in a document; in addition to the tree node, document stores the id of node’s parent, the node’s
initial stop in the left field, and its return stop in the right field.

Consider the following example that models a tree of categories using Nested Sets:

db.categories.insert({ _id: "Books", parent: 0, left: 1, right: 12 })
db.categories.insert({ _id: "Programming", parent: "Books", left: 2, right: 11 })
db.categories.insert({ _id: "Languages", parent: "Programming", left: 3, right: 4 })
db.categories.insert({ _id: "Databases", parent: "Programming", left: 5, right: 10 })
db.categories.insert({ _id: "MongoDB", parent: "Databases", left: 6, right: 7 })
db.categories.insert({ _id: "Postgres", parent: "Databases", left: 8, right: 9 })

You can query to retrieve the descendants of a node:

var databaseCategory = db.v.findOne({ _id: "Databases" });
db.categories.find({ left: { $gt: databaseCategory.left }, right: { $lt: databaseCategory.right } });

The Nested Sets pattern provides a fast and efficient solution for finding subtrees but is inefficient for modifying the
tree structure. As such, this pattern is best for static trees that do not change.

22.10 Model Data to Support Keyword Search

Note: Keyword search is not the same as text search or full text search, and does not provide stemming or other
text-processing features. See the Limitations of Keyword Indexes (page 242) section for more information.

22.9. Model Tree Structures with Nested Sets 241

MongoDB Documentation, Release 2.4.2

In 2.4, MongoDB provides a text search feature. See Text Search (page 349) for more information.

If your application needs to perform queries on the content of a field that holds text you can perform exact matches on
the text or use $regex (page 767) to use regular expression pattern matches. However, for many operations on text,
these methods do not satisfy application requirements.

This pattern describes one method for supporting keyword search using MongoDB to support application search
functionality, that uses keywords stored in an array in the same document as the text field. Combined with a multi-key
index (page 307), this pattern can support application’s keyword search operations.

22.10.1 Pattern

To add structures to your document to support keyword-based queries, create an array field in your documents and add
the keywords as strings in the array. You can then create a multi-key index (page 307) on the array and create queries
that select values from the array.

Example

Suppose you have a collection of library volumes that you want to make searchable by topics. For each volume, you
add the array topics, and you add as many keywords as needed for a given volume.

For the Moby-Dick volume you might have the following document:

{ title : "Moby-Dick" ,
author : "Herman Melville" ,
published : 1851 ,
ISBN : 0451526996 ,
topics : ["whaling" , "allegory" , "revenge" , "American" ,
"novel" , "nautical" , "voyage" , "Cape Cod"]

}

You then create a multi-key index on the topics array:

db.volumes.ensureIndex({ topics: 1 })

The multi-key index creates separate index entries for each keyword in the topics array. For example the index
contains one entry for whaling and another for allegory.

You then query based on the keywords. For example:

db.volumes.findOne({ topics : "voyage" }, { title: 1 })

Note: An array with a large number of elements, such as one with several hundreds or thousands of keywords will
incur greater indexing costs on insertion.

22.10.2 Limitations of Keyword Indexes

MongoDB can support keyword searches using specific data models and multi-key indexes (page 307); however, these
keyword indexes are not sufficient or comparable to full-text products in the following respects:

• Stemming. Keyword queries in MongoDB can not parse keywords for root or related words.

• Synonyms. Keyword-based search features must provide support for synonym or related queries in the applica-
tion layer.

242 Chapter 22. Data Modeling Patterns

MongoDB Documentation, Release 2.4.2

• Ranking. The keyword look ups described in this document do not provide a way to weight results.

• Asynchronous Indexing. MongoDB builds indexes synchronously, which means that the indexes used for key-
word indexes are always current and can operate in real-time. However, asynchronous bulk indexes may be
more efficient for some kinds of content and workloads.

22.10. Model Data to Support Keyword Search 243

MongoDB Documentation, Release 2.4.2

244 Chapter 22. Data Modeling Patterns

Part VI

Aggregation

245

MongoDB Documentation, Release 2.4.2

In version 2.2, MongoDB introduced the aggregation framework (page 249) that provides a powerful and flexible set
of tools to use for many data aggregation tasks. If you’re familiar with data aggregation in SQL, consider the SQL
to Aggregation Framework Mapping Chart (page 281) document as an introduction to some of the basic concepts in
the aggregation framework. Consider the full documentation of the aggregation framework and other data aggregation
tools for MongoDB here:

247

MongoDB Documentation, Release 2.4.2

248

CHAPTER 23

Aggregation Framework

New in version 2.1.

23.1 Overview

The MongoDB aggregation framework provides a means to calculate aggregated values without having to use map-
reduce. While map-reduce is powerful, it is often more difficult than necessary for many simple aggregation tasks,
such as totaling or averaging field values.

If you’re familiar with SQL, the aggregation framework provides similar functionality to GROUP BY and related
SQL operators as well as simple forms of “self joins.” Additionally, the aggregation framework provides projection
capabilities to reshape the returned data. Using the projections in the aggregation framework, you can add computed
fields, create new virtual sub-objects, and extract sub-fields into the top-level of results.

See Also:

A presentation from MongoSV 2011: MongoDB’s New Aggregation Framework.

Additionally, consider Aggregation Framework Examples (page 255) and Aggregation Framework Reference
(page 265) for more documentation.

23.2 Framework Components

This section provides an introduction to the two concepts that underpin the aggregation framework: pipelines and
expressions.

23.2.1 Pipelines

Conceptually, documents from a collection pass through an aggregation pipeline, which transforms these objects as
they pass through. For those familiar with UNIX-like shells (e.g. bash,) the concept is analogous to the pipe (i.e. |)
used to string text filters together.

In a shell environment the pipe redirects a stream of characters from the output of one process to the input of the next.
The MongoDB aggregation pipeline streams MongoDB documents from one pipeline operator (page 266) to the next
to process the documents. Pipeline operators can be repeated in the pipe.

249

http://www.10gen.com/presentations/mongosv-2011/mongodbs-new-aggregation-framework

MongoDB Documentation, Release 2.4.2

All pipeline operators process a stream of documents and the pipeline behaves as if the operation scans a collection and
passes all matching documents into the “top” of the pipeline. Each operator in the pipeline transforms each document
as it passes through the pipeline.

Note: Pipeline operators need not produce one output document for every input document: operators may also
generate new documents or filter out documents.

Warning: The pipeline cannot operate on values of the following types: Binary, Symbol, MinKey, MaxKey,
DBRef, Code, and CodeWScope.

See Also:

The “Aggregation Framework Reference (page 265)” includes documentation of the following pipeline operators:

• $project (page 796)

• $match (page 792)

• $limit (page 791)

• $skip (page 798)

• $unwind (page 801)

• $group (page 790)

• $sort (page 798)

• $geoNear (page 788)

23.2.2 Expressions

Expressions (page 275) produce output documents based on calculations performed on input documents. The aggre-
gation framework defines expressions using a document format using prefixes.

Expressions are stateless and are only evaluated when seen by the aggregation process. All aggregation expressions
can only operate on the current document in the pipeline, and cannot integrate data from other documents.

The accumulator expressions used in the $group (page 790) operator maintain that state (e.g. totals, maximums,
minimums, and related data) as documents progress through the pipeline.

See Also:

Aggregation expressions (page 275) for additional examples of the expressions provided by the aggregation framework.

23.3 Use

23.3.1 Invocation

Invoke an aggregation operation with the aggregate() (page 903) wrapper in the mongo (page 984) shell or the
aggregate (page 809) database command. Always call aggregate() (page 903) on a collection object that
determines the input documents of the aggregation pipeline. The arguments to the aggregate() (page 903) method
specify a sequence of pipeline operators (page 266), where each operator may have a number of operands.

First, consider a collection of documents named articles using the following format:

250 Chapter 23. Aggregation Framework

MongoDB Documentation, Release 2.4.2

{
title : "this is my title" ,
author : "bob" ,
posted : new Date () ,
pageViews : 5 ,
tags : ["fun" , "good" , "fun"] ,
comments : [

{ author :"joe" , text : "this is cool" } ,
{ author :"sam" , text : "this is bad" }

],
other : { foo : 5 }

}

The following example aggregation operation pivots data to create a set of author names grouped by tags applied to an
article. Call the aggregation framework by issuing the following command:

db.articles.aggregate(
{ $project : {

author : 1,
tags : 1,

} },
{ $unwind : "$tags" },
{ $group : {

_id : { tags : "$tags" },
authors : { $addToSet : "$author" }

} }
);

The aggregation pipeline begins with the collection articles and selects the author and tags fields using the
$project (page 796) aggregation operator. The $unwind (page 801) operator produces one output document per
tag. Finally, the $group (page 790) operator pivots these fields.

23.3.2 Result

The aggregation operation in the previous section returns a document with two fields:

• result which holds an array of documents returned by the pipeline

• ok which holds the value 1, indicating success.

Changed in version 2.4: If an error occurs, the aggregate() (page 903) helper throws an exception. In previous
versions, the helper returned a document with the error message and code, and ok status field not equal to 1, same as
the aggregate (page 809) command. As a document, the result is subject to the BSON Document size (page 1105)
limit, which is currently 16 megabytes.

23.4 Optimizing Performance

Because you will always call aggregate (page 809) on a collection object, which logically inserts the entire collec-
tion into the aggregation pipeline, you may want to optimize the operation by avoiding scanning the entire collection
whenever possible.

23.4.1 Pipeline Operators and Indexes

Depending on the order in which they appear in the pipeline, aggregation operators can take advantage of indexes.

23.4. Optimizing Performance 251

MongoDB Documentation, Release 2.4.2

The following pipeline operators take advantage of an index when they occur at the beginning of the pipeline:

• $match (page 792)

• $sort (page 798)

• $limit (page 791)

• $skip (page 798).

The above operators can also use an index when placed before the following aggregation operators:

• $project (page 796)

• $unwind (page 801)

• $group (page 790).

New in version 2.4. The $geoNear (page 788) pipeline operator takes advantage of a geospatial index. When using
$geoNear (page 788), the $geoNear (page 788) pipeline operation must appear as the first stage in an aggregation
pipeline.

23.4.2 Early Filtering

If your aggregation operation requires only a subset of the data in a collection, use the $match (page 792) operator
to restrict which items go in to the top of the pipeline, as in a query. When placed early in a pipeline, these $match
(page 792) operations use suitable indexes to scan only the matching documents in a collection.

Placing a $match (page 792) pipeline stage followed by a $sort (page 798) stage at the start of the pipeline is
logically equivalent to a single query with a sort, and can use an index.

In future versions there may be an optimization phase in the pipeline that reorders the operations to increase perfor-
mance without affecting the result. However, at this time place $match (page 792) operators at the beginning of the
pipeline when possible.

23.4.3 Pipeline Sequence Optimization

Changed in version 2.4. Aggregation operations have an optimization phase which attempts to re-arrange the pipeline
for improved performance.

$sort + $skip + $limit Sequence Optimization

When you have sequence of $sort (page 798) followed by a $skip (page 798) followed by a $limit (page 791),
an optimization occurs whereby the $limit (page 791) moves in front of the $skip (page 798). For example, if the
pipeline consists of the following stages:

{ $sort: { age : -1 } },
{ $skip: 10 },
{ $limit: 5 }

During the optimization phase, the optimizer transforms the sequence to the following:

{ $sort: { age : -1 } },
{ $limit: 15 }
{ $skip: 10 }

Note: The $limit (page 791) value has increased to the sum of the initial value and the $skip (page 798) value.

252 Chapter 23. Aggregation Framework

MongoDB Documentation, Release 2.4.2

$limit + $skip + $limit + $skip Sequence Optimization

When you have continuous sequence of $limit (page 791) pipeline stage followed by a $skip (page 798) pipeline
stage, the aggregation will attempt to re-arrange the pipeline stages to combine the limits together and the skips
together. For example, if the pipeline consists of the following stages:

{ $limit: 100 },
{ $skip: 5 },
{ $limit: 10},
{ $skip: 2 }

During the intermediate step, the optimizer reverses the position of the $skip (page 798) followed by a $limit
(page 791) to $limit (page 791) followed by the $skip (page 798).

{ $limit: 100 },
{ $limit: 15},
{ $skip: 5 },
{ $skip: 2 }

The $limit (page 791) value has increased to the sum of the initial value and the $skip (page 798) value. Then,
for the final $limit (page 791) value, the optimizer selects the minimum between the adjacent $limit (page 791)
values. For the final $skip (page 798) value, the optimizer adds the adjacent $skip (page 798) values, to transform
the sequence to the following:

{ $limit: 15 },
{ $skip: 7 }

23.4.4 Memory for Cumulative Operators

Certain pipeline operators require access to the entire input set before they can produce any output. For example,
$sort (page 798) must receive all of the input from the preceding pipeline operator before it can produce its first
output document. The current implementation of $sort (page 798) does not go to disk in these cases: in order to sort
the contents of the pipeline, the entire input must fit in memory. Changed in version 2.4: When a $sort (page 798)
immediately precedes a $limit (page 791) in the pipeline, the $sort (page 798) operation only maintains the top
n results as it progresses, where n is the specified limit. Before 2.4, $sort (page 798) would sort all the results in
memory, and then limit the results to n results. $group (page 790) has similar characteristics: Before any $group
(page 790) passes its output along the pipeline, it must receive the entirety of its input. For the $group (page 790)
operator, this frequently does not require as much memory as $sort (page 798), because it only needs to retain one
record for each unique key in the grouping specification.

The current implementation of the aggregation framework logs a warning if a cumulative operator consumes 5% or
more of the physical memory on the host. Cumulative operators produce an error if they consume 10% or more of the
physical memory on the host.

23.5 Sharded Operation

Note: Changed in version 2.1. Some aggregation operations using aggregate (page 809) will cause mongos
(page 981) instances to require more CPU resources than in previous versions. This modified performance profile may
dictate alternate architectural decisions if you use the aggregation framework extensively in a sharded environment.

The aggregation framework is compatible with sharded collections.

23.5. Sharded Operation 253

MongoDB Documentation, Release 2.4.2

When operating on a sharded collection, the aggregation pipeline is split into two parts. The aggregation framework
pushes all of the operators up to the first $group (page 790) or $sort (page 798) operation to each shard. 1 Then,
a second pipeline on the mongos (page 981) runs. This pipeline consists of the first $group (page 790) or $sort
(page 798) and any remaining pipeline operators, and runs on the results received from the shards.

The $group (page 790) operator brings in any “sub-totals” from the shards and combines them: in some cases these
may be structures. For example, the $avg (page 784) expression maintains a total and count for each shard; mongos
(page 981) combines these values and then divides.

23.6 Limitations

Aggregation operations with the aggregate (page 809) command have the following limitations:

• The pipeline cannot operate on values of the following types: Binary, Symbol, MinKey, MaxKey, DBRef,
Code, CodeWScope.

• Output from the pipeline can only contain 16 megabytes. If your result set exceeds this limit, the aggregate
(page 809) command produces an error.

• If any single aggregation operation consumes more than 10 percent of system RAM the operation will produce
an error.

1 If an early $match (page 792) can exclude shards through the use of the shard key in the predicate, then these operators are only pushed to
the relevant shards.

254 Chapter 23. Aggregation Framework

CHAPTER 24

Aggregation Framework Examples

MongoDB provides flexible data aggregation functionality with the aggregate (page 809) command. For additional
information about aggregation consider the following resources:

• Aggregation Framework (page 249)

• Aggregation Framework Reference (page 265)

• SQL to Aggregation Framework Mapping Chart (page 281)

This document provides a number of practical examples that display the capabilities of the aggregation framework.
All examples use a publicly available data set of all zipcodes and populations in the United States.

24.1 Requirements

mongod (page 971) and mongo (page 984), version 2.2 or later.

24.2 Aggregations using the Zip Code Data Set

To run you will need the zipcode data set. These data are available at: media.mongodb.org/zips.json. Use
mongoimport (page 1004) to load this data set into your mongod (page 971) instance.

24.2.1 Data Model

Each document in this collection has the following form:

{
"_id": "10280",
"city": "NEW YORK",
"state": "NY",
"pop": 5574,
"loc": [
-74.016323,
40.710537

]
}

255

http://media.mongodb.org/zips.json

MongoDB Documentation, Release 2.4.2

In these documents:

• The _id field holds the zipcode as a string.

• The city field holds the city.

• The state field holds the two letter state abbreviation.

• The pop field holds the population.

• The loc field holds the location as a latitude longitude pair.

All of the following examples use the aggregate() (page 903) helper in the mongo (page 984) shell.
aggregate() (page 903) provides a wrapper around the aggregate (page 809) database command. See the
documentation for your driver (page 529) for a more idiomatic interface for data aggregation operations.

24.2.2 States with Populations Over 10 Million

To return all states with a population greater than 10 million, use the following aggregation operation:

db.zipcodes.aggregate({ $group :
{ _id : "$state",
totalPop : { $sum : "$pop" } } },

{ $match : {totalPop : { $gte : 10*1000*1000 } } })

Aggregations operations using the aggregate() (page 903) helper, process all documents on the zipcodes col-
lection. aggregate() (page 903) a number of pipeline (page 249) operators that define the aggregation process.

In the above example, the pipeline passes all documents in the zipcodes collection through the following steps:

• the $group (page 790) operator collects all documents and creates documents for each state.

These new per-state documents have one field in addition the _id field: totalPop which is a generated field
using the $sum (page 800) operation to calculate the total value of all pop fields in the source documents.

After the $group (page 790) operation the documents in the pipeline resemble the following:

{
"_id" : "AK",
"totalPop" : 550043

}

• the $match (page 792) operation filters these documents so that the only documents that remain are those
where the value of totalPop is greater than or equal to 10 million.

The $match (page 792) operation does not alter the documents, which have the same format as the documents
output by $group (page 790).

The equivalent SQL for this operation is:

SELECT state, SUM(pop) AS pop
FROM zips
GROUP BY state
HAVING pop > (10*1000*1000)

24.2.3 Average City Population by State

To return the average populations for cities in each state, use the following aggregation operation:

256 Chapter 24. Aggregation Framework Examples

MongoDB Documentation, Release 2.4.2

db.zipcodes.aggregate({ $group :
{ _id : { state : "$state", city : "$city" },
pop : { $sum : "$pop" } } },

{ $group :
{ _id : "$_id.state",
avgCityPop : { $avg : "$pop" } } })

Aggregations operations using the aggregate() (page 903) helper, process all documents on the zipcodes col-
lection. aggregate() (page 903) a number of pipeline (page 249) operators that define the aggregation process.

In the above example, the pipeline passes all documents in the zipcodes collection through the following steps:

• the $group (page 790) operator collects all documents and creates new documents for every combination of
the city and state fields in the source document.

After this stage in the pipeline, the documents resemble the following:

{
"_id" : {

"state" : "CO",
"city" : "EDGEWATER"

},
"pop" : 13154

}

• the second $group (page 790) operator collects documents by the state field and use the $avg (page 784)
expression to compute a value for the avgCityPop field.

The final output of this aggregation operation is:

{
"_id" : "MN",
"avgCityPop" : 5335

},

24.2.4 Largest and Smallest Cities by State

To return the smallest and largest cities by population for each state, use the following aggregation operation:

db.zipcodes.aggregate({ $group:
{ _id: { state: "$state", city: "$city" },
pop: { $sum: "$pop" } } },

{ $sort: { pop: 1 } },
{ $group:
{ _id : "$_id.state",
biggestCity: { $last: "$_id.city" },
biggestPop: { $last: "$pop" },
smallestCity: { $first: "$_id.city" },
smallestPop: { $first: "$pop" } } },

// the following $project is optional, and
// modifies the output format.

{ $project:
{ _id: 0,
state: "$_id",
biggestCity: { name: "$biggestCity", pop: "$biggestPop" },
smallestCity: { name: "$smallestCity", pop: "$smallestPop" } } })

24.2. Aggregations using the Zip Code Data Set 257

MongoDB Documentation, Release 2.4.2

Aggregations operations using the aggregate() (page 903) helper, process all documents on the zipcodes col-
lection. aggregate() (page 903) a number of pipeline (page 249) operators that define the aggregation process.

All documents from the zipcodes collection pass into the pipeline, which consists of the following steps:

• the $group (page 790) operator collects all documents and creates new documents for every combination of
the city and state fields in the source documents.

By specifying the value of _id as a sub-document that contains both fields, the operation preserves the state
field for use later in the pipeline. The documents produced by this stage of the pipeline have a second field,
pop, which uses the $sum (page 800) operator to provide the total of the pop fields in the source document.

At this stage in the pipeline, the documents resemble the following:

{
"_id" : {

"state" : "CO",
"city" : "EDGEWATER"

},
"pop" : 13154

}

• $sort (page 798) operator orders the documents in the pipeline based on the vale of the pop field from largest
to smallest. This operation does not alter the documents.

• the second $group (page 790) operator collects the documents in the pipeline by the state field, which is a
field inside the nested _id document.

Within each per-state document this $group (page 790) operator specifies four fields: Using the $last
(page 791) expression, the $group (page 790) operator creates the biggestcity and biggestpop fields
that store the city with the largest population and that population. Using the $first (page 787) expression, the
$group (page 790) operator creates the smallestcity and smallestpop fields that store the city with
the smallest population and that population.

The documents, at this stage in the pipeline resemble the following:

{
"_id" : "WA",
"biggestCity" : "SEATTLE",
"biggestPop" : 520096,
"smallestCity" : "BENGE",
"smallestPop" : 2

}

• The final operation is $project (page 796), which renames the _id field to state and moves
the biggestCity, biggestPop, smallestCity, and smallestPop into biggestCity and
smallestCity sub-documents.

The final output of this aggregation operation is:

{
"state" : "RI",
"biggestCity" : {
"name" : "CRANSTON",
"pop" : 176404

},
"smallestCity" : {
"name" : "CLAYVILLE",
"pop" : 45

}
}

258 Chapter 24. Aggregation Framework Examples

MongoDB Documentation, Release 2.4.2

24.3 Aggregation with User Preference Data

24.3.1 Data Model

Consider a hypothetical sports club with a database that contains a user collection that tracks user’s join dates, sport
preferences, and stores these data in documents that resemble the following:

{
_id : "jane",
joined : ISODate("2011-03-02"),
likes : ["golf", "racquetball"]

}
{

_id : "joe",
joined : ISODate("2012-07-02"),
likes : ["tennis", "golf", "swimming"]

}

24.3.2 Normalize and Sort Documents

The following operation returns user names in upper case and in alphabetical order. The aggregation includes user
names for all documents in the users collection. You might do this to normalize user names for processing.

db.users.aggregate(
[
{ $project : { name:{$toUpper:"$_id"} , _id:0 } },
{ $sort : { name : 1 } }

]
)

All documents from the users collection passes through the pipeline, which consists of the following operations:

• The $project (page 796) operator:

– creates a new field called name.

– converts the value of the _id to upper case, with the $toUpper (page 801) operator. Then the
$project (page 796) creates a new filed, named name to hold this value.

– suppresses the id field. $project (page 796) will pass the _id field by default, unless explicitly
suppressed.

• The $sort (page 798) operator orders the results by the name field.

The results of the aggregation would resemble the following:

{
"name" : "JANE"

},
{

"name" : "JILL"
},
{

"name" : "JOE"
}

24.3. Aggregation with User Preference Data 259

MongoDB Documentation, Release 2.4.2

24.3.3 Return Usernames Ordered by Join Month

The following aggregation operation returns user names sorted by the month they joined. This kind of aggregation
could help generate membership renewal notices.

db.users.aggregate(
[
{ $project : { month_joined : {

$month : "$joined"
},

name : "$_id",
_id : 0

},
{ $sort : { month_joined : 1 } }

]
)

The pipeline passes all documents in the users collection through the following operations:

• The $project (page 796) operator:

– Creates two new fields: month_joined and name.

– Suppresses the id from the results. The aggregate() (page 903) method includes the _id, unless
explicitly suppressed.

• The $month (page 795) operator converts the values of the joined field to integer representations of the
month. Then the $project (page 796) operator assigns those values to the month_joined field.

• The $sort (page 798) operator sorts the results by the month_joined field.

The operation returns results that resemble the following:

{
"month_joined" : 1,
"name" : "ruth"

},
{

"month_joined" : 1,
"name" : "harold"

},
{

"month_joined" : 1,
"name" : "kate"

}
{

"month_joined" : 2,
"name" : "jill"

}

24.3.4 Return Total Number of Joins per Month

The following operation shows how many people joined each month of the year. You might use this aggregated data
for such information for recruiting and marketing strategies.

db.users.aggregate(
[
{ $project : { month_joined : { $month : "$joined" } } } ,
{ $group : { _id : {month_joined:"$month_joined"} , number : { $sum : 1 } } },

260 Chapter 24. Aggregation Framework Examples

MongoDB Documentation, Release 2.4.2

{ $sort : { "_id.month_joined" : 1 } }
]

)

The pipeline passes all documents in the users collection through the following operations:

• The $project (page 796) operator creates a new field called month_joined.

• The $month (page 795) operator converts the values of the joined field to integer representations of the
month. Then the $project (page 796) operator assigns the values to the month_joined field.

• The $group (page 790) operator collects all documents with a given month_joined value and counts how
many documents there are for that value. Specifically, for each unique value, $group (page 790) creates a new
“per-month” document with two fields:

– _id, which contains a nested document with the month_joined field and its value.

– number, which is a generated field. The $sum (page 800) operator increments this field by 1 for every
document containing the given month_joined value.

• The $sort (page 798) operator sorts the documents created by $group (page 790) according to the contents
of the month_joined field.

The result of this aggregation operation would resemble the following:

{
"_id" : {
"month_joined" : 1

},
"number" : 3

},
{

"_id" : {
"month_joined" : 2

},
"number" : 9

},
{

"_id" : {
"month_joined" : 3

},
"number" : 5

}

24.3.5 Return the Five Most Common “Likes”

The following aggregation collects top five most “liked” activities in the data set. In this data set, you might use an
analysis of this to help inform planning and future development.

db.users.aggregate(
[
{ $unwind : "$likes" },
{ $group : { _id : "$likes" , number : { $sum : 1 } } },
{ $sort : { number : -1 } },
{ $limit : 5 }

]
)

24.3. Aggregation with User Preference Data 261

MongoDB Documentation, Release 2.4.2

The pipeline begins with all documents in the users collection, and passes these documents through the following
operations:

• The $unwind (page 801) operator separates each value in the likes array, and creates a new version of the
source document for every element in the array.

Example

Given the following document from the users collection:

{
_id : "jane",
joined : ISODate("2011-03-02"),
likes : ["golf", "racquetball"]

}

The $unwind (page 801) operator would create the following documents:

{
_id : "jane",
joined : ISODate("2011-03-02"),
likes : "golf"

}
{
_id : "jane",
joined : ISODate("2011-03-02"),
likes : "racquetball"

}

• The $group (page 790) operator collects all documents the same value for the likes field and counts each
grouping. With this information, $group (page 790) creates a new document with two fields:

– _id, which contains the likes value.

– number, which is a generated field. The $sum (page 800) operator increments this field by 1 for every
document containing the given likes value.

• The $sort (page 798) operator sorts these documents by the number field in reverse order.

• The $limit (page 791) operator only includes the first 5 result documents.

The results of aggregation would resemble the following:

{
"_id" : "golf",
"number" : 33

},
{

"_id" : "racquetball",
"number" : 31

},
{

"_id" : "swimming",
"number" : 24

},
{

"_id" : "handball",
"number" : 19

},
{

262 Chapter 24. Aggregation Framework Examples

MongoDB Documentation, Release 2.4.2

"_id" : "tennis",
"number" : 18

}

24.3. Aggregation with User Preference Data 263

MongoDB Documentation, Release 2.4.2

264 Chapter 24. Aggregation Framework Examples

CHAPTER 25

Aggregation Framework Reference

New in version 2.1.0. The aggregation framework provides the ability to project, process, and/or control the output of
the query, without using map-reduce. Aggregation uses a syntax that resembles the same syntax and form as “regular”
MongoDB database queries.

These aggregation operations are all accessible by way of the aggregate() (page 903) method. While all examples
in this document use this method, aggregate() (page 903) is merely a wrapper around the database command
aggregate (page 809). The following prototype aggregation operations are equivalent:

db.people.aggregate(<pipeline>)
db.people.aggregate([<pipeline>])
db.runCommand({ aggregate: "people", pipeline: [<pipeline>] })

These operations perform aggregation routines on the collection named people. <pipeline> is a placeholder for
the aggregation pipeline definition. aggregate() (page 903) accepts the stages of the pipeline (i.e. <pipeline>)
as an array, or as arguments to the method.

This documentation provides an overview of all aggregation operators available for use in the aggregation pipeline as
well as details regarding their use and behavior.

See Also:

Aggregation Framework (page 249) overview, the Aggregation Framework Documentation Index (page 247), and the
Aggregation Framework Examples (page 255) for more information on the aggregation functionality.

Aggregation Operators:

• Pipeline (page 266)
• Expressions (page 275)

– $group Operators (page 275)
– Boolean Operators (page 277)
– Comparison Operators (page 277)
– Arithmetic Operators (page 278)
– String Operators (page 279)
– Date Operators (page 279)
– Conditional Expressions (page 280)

265

MongoDB Documentation, Release 2.4.2

25.1 Pipeline

Warning: The pipeline cannot operate on values of the following types: Binary, Symbol, MinKey, MaxKey,
DBRef, Code, and CodeWScope.

Pipeline operators appear in an array. Conceptually, documents pass through these operators in a sequence. All
examples in this section assume that the aggregation pipeline begins with a collection named article that contains
documents that resemble the following:

{
title : "this is my title" ,
author : "bob" ,
posted : new Date() ,
pageViews : 5 ,
tags : ["fun" , "good" , "fun"] ,
comments : [

{ author :"joe" , text : "this is cool" } ,
{ author :"sam" , text : "this is bad" }

],
other : { foo : 5 }

}

The current pipeline operators are:

$project
Reshapes a document stream by renaming, adding, or removing fields. Also use $project (page 796) to
create computed values or sub-objects. Use $project (page 796) to:

•Include fields from the original document.

•Insert computed fields.

•Rename fields.

•Create and populate fields that hold sub-documents.

Use $project (page 796) to quickly select the fields that you want to include or exclude from the response.
Consider the following aggregation framework operation.

db.article.aggregate(
{ $project : {

title : 1 ,
author : 1 ,

}}
);

This operation includes the title field and the author field in the document that returns from the aggregation
pipeline.

Note: The _id field is always included by default. You may explicitly exclude _id as follows:

db.article.aggregate(
{ $project : {

_id : 0 ,
title : 1 ,
author : 1

}}
);

266 Chapter 25. Aggregation Framework Reference

MongoDB Documentation, Release 2.4.2

Here, the projection excludes the _id field but includes the title and author fields.

Projections can also add computed fields to the document stream passing through the pipeline. A computed field
can use any of the expression operators (page 275). Consider the following example:

db.article.aggregate(
{ $project : {

title : 1,
doctoredPageViews : { $add:["$pageViews", 10] }

}}
);

Here, the field doctoredPageViews represents the value of the pageViews field after adding 10 to the
original field using the $add (page 783).

Note: You must enclose the expression that defines the computed field in braces, so that the expression is a
valid object.

You may also use $project (page 796) to rename fields. Consider the following example:

db.article.aggregate(
{ $project : {

title : 1 ,
page_views : "$pageViews" ,
bar : "$other.foo"

}}
);

This operation renames the pageViews field to page_views, and renames the foo field in the other sub-
document as the top-level field bar. The field references used for renaming fields are direct expressions and do
not use an operator or surrounding braces. All aggregation field references can use dotted paths to refer to fields
in nested documents.

Finally, you can use the $project (page 796) to create and populate new sub-documents. Consider the
following example that creates a new object-valued field named stats that holds a number of values:

db.article.aggregate(
{ $project : {

title : 1 ,
stats : {

pv : "$pageViews",
foo : "$other.foo",
dpv : { $add:["$pageViews", 10] }

}
}}

);

This projection includes the title field and places $project (page 796) into “inclusive” mode. Then, it
creates the stats documents with the following fields:

•pv which includes and renames the pageViews from the top level of the original documents.

•foo which includes the value of other.foo from the original documents.

•dpv which is a computed field that adds 10 to the value of the pageViews field in the original document
using the $add (page 783) aggregation expression.

$match
$match (page 792) pipes the documents that match its conditions to the next operator in the pipeline.

25.1. Pipeline 267

MongoDB Documentation, Release 2.4.2

The $match (page 792) query syntax is identical to the read operation query (page 162) syntax.

Example

The following operation uses $match (page 792) to perform a simple equality match:

db.articles.aggregate(
{ $match : { author : "dave" } }

);

The $match (page 792) selects the documents where the author field equals dave, and the aggregation
returns the following:

{ "result" : [
{
"_id" : ObjectId("512bc95fe835e68f199c8686"),
"author": "dave",
"score" : 80

},
{ "_id" : ObjectId("512bc962e835e68f199c8687"),
"author" : "dave",
"score" : 85

}
],

"ok" : 1 }

Example

The following example selects documents to process using the $match (page 792) pipeline operator and then
pipes the results to the $group (page 790) pipeline operator to compute a count of the documents:

db.articles.aggregate([
{ $match : { score : { $gt : 70, $lte : 90 } } },
{ $group: { _id: null, count: { $sum: 1 } } }

]);

In the aggregation pipeline, $match (page 792) selects the documents where the score is greater than 70 and
less than or equal to 90. These documents are then piped to the $group (page 790) to perform a count. The
aggregation returns the following:

{
"result" : [

{
"_id" : null,
"count" : 3

}
],

"ok" : 1 }

Note:

•Place the $match (page 792) as early in the aggregation pipeline as possible. Because $match
(page 792) limits the total number of documents in the aggregation pipeline, earlier $match (page 792)
operations minimize the amount of processing down the pipe.

•If you place a $match (page 792) at the very beginning of a pipeline, the query can take advantage
of indexes like any other db.collection.find() (page 910) or db.collection.findOne()

268 Chapter 25. Aggregation Framework Reference

MongoDB Documentation, Release 2.4.2

(page 914).

New in version 2.4: $match (page 792) queries can support the geospatial $geoWithin (page 747) opera-

tions.
Warning: You cannot use $where (page 777) in $match (page 792) queries as part of the aggregation
pipeline.

$limit
Restricts the number of documents that pass through the $limit (page 791) in the pipeline.

$limit (page 791) takes a single numeric (positive whole number) value as a parameter. Once the specified
number of documents pass through the pipeline operator, no more will. Consider the following example:

db.article.aggregate(
{ $limit : 5 }

);

This operation returns only the first 5 documents passed to it from by the pipeline. $limit (page 791) has no
effect on the content of the documents it passes.

Note: Changed in version 2.4: When a $sort (page 798) immediately precedes a $limit (page 791) in
the pipeline, the $sort (page 798) operation only maintains the top n results as it progresses, where n is the
specified limit. Before 2.4, $sort (page 798) would sort all the results in memory, and then limit the results to
n results.

$skip
Skips over the specified number of documents that pass through the $skip (page 798) in the pipeline before
passing all of the remaining input.

$skip (page 798) takes a single numeric (positive whole number) value as a parameter. Once the operation has
skipped the specified number of documents, it passes all the remaining documents along the pipeline without
alteration. Consider the following example:

db.article.aggregate(
{ $skip : 5 }

);

This operation skips the first 5 documents passed to it by the pipeline. $skip (page 798) has no effect on the
content of the documents it passes along the pipeline.

$unwind
Peels off the elements of an array individually, and returns a stream of documents. $unwind (page 801) returns
one document for every member of the unwound array within every source document. Take the following
aggregation command:

db.article.aggregate(
{ $project : {

author : 1 ,
title : 1 ,
tags : 1

}},
{ $unwind : "$tags" }

);

Note: The dollar sign (i.e. $) must proceed the field specification handed to the $unwind (page 801) operator.

25.1. Pipeline 269

MongoDB Documentation, Release 2.4.2

In the above aggregation $project (page 796) selects (inclusively) the author, title, and tags fields,
as well as the _id field implicitly. Then the pipeline passes the results of the projection to the $unwind
(page 801) operator, which will unwind the tags field. This operation may return a sequence of documents
that resemble the following for a collection that contains one document holding a tags field with an array of 3
items.

{
"result" : [

{
"_id" : ObjectId("4e6e4ef557b77501a49233f6"),
"title" : "this is my title",
"author" : "bob",
"tags" : "fun"

},
{

"_id" : ObjectId("4e6e4ef557b77501a49233f6"),
"title" : "this is my title",
"author" : "bob",
"tags" : "good"

},
{

"_id" : ObjectId("4e6e4ef557b77501a49233f6"),
"title" : "this is my title",
"author" : "bob",
"tags" : "fun"

}
],
"OK" : 1

}

A single document becomes 3 documents: each document is identical except for the value of the tags field.
Each value of tags is one of the values in the original “tags” array.

Note: $unwind (page 801) has the following behaviors:

•$unwind (page 801) is most useful in combination with $group (page 790).

•You may undo the effects of unwind operation with the $group (page 790) pipeline operator.

•If you specify a target field for $unwind (page 801) that does not exist in an input document, the pipeline
ignores the input document, and will generate no result documents.

•If you specify a target field for $unwind (page 801) that is not an array,
db.collection.aggregate() (page 903) generates an error.

•If you specify a target field for $unwind (page 801) that holds an empty array ([]) in an input document,
the pipeline ignores the input document, and will generates no result documents.

$group
Groups documents together for the purpose of calculating aggregate values based on a collection of documents.
Practically, group often supports tasks such as average page views for each page in a website on a daily basis.

The output of $group (page 790) depends on how you define groups. Begin by specifying an identifier (i.e. a
_id field) for the group you’re creating with this pipeline. You can specify a single field from the documents in
the pipeline, a previously computed value, or an aggregate key made up from several incoming fields. Aggregate
keys may resemble the following document:

{ _id : { author: ’$author’, pageViews: ’$pageViews’, posted: ’$posted’ } }

270 Chapter 25. Aggregation Framework Reference

MongoDB Documentation, Release 2.4.2

With the exception of the _id field, $group (page 790) cannot output nested documents.

Every group expression must specify an _id field. You may specify the _id field as a dotted field path refer-
ence, a document with multiple fields enclosed in braces (i.e. { and }), or a constant value.

Note: Use $project (page 796) as needed to rename the grouped field after an $group (page 790) operation,
if necessary.

Consider the following example:

db.article.aggregate(
{ $group : {

_id : "$author",
docsPerAuthor : { $sum : 1 },
viewsPerAuthor : { $sum : "$pageViews" }

}}
);

This groups by the author field and computes two fields, the first docsPerAuthor is a counter field
that adds one for each document with a given author field using the $sum (page 800) function. The
viewsPerAuthor field is the sum of all of the pageViews fields in the documents for each group.

Each field defined for the $group (page 790) must use one of the group aggregation function listed below to
generate its composite value:

•$addToSet (page 783)

•$first (page 787)

•$last (page 791)

•$max (page 793)

•$min (page 794)

•$avg (page 784)

•$push (page 798)

•$sum (page 800)

Warning: The aggregation system currently stores $group (page 790) operations in memory, which may
cause problems when processing a larger number of groups.

$sort
The $sort (page 798) pipeline operator sorts all input documents and returns them to the pipeline in sorted
order. Consider the following prototype form:

db.<collection-name>.aggregate(
{ $sort : { <sort-key> } }

);

This sorts the documents in the collection named <collection-name>, according to the key and specifica-
tion in the { <sort-key> } document.

Specify the sort in a document with a field or fields that you want to sort by and a value of 1 or -1 to specify an
ascending or descending sort respectively, as in the following example:

db.users.aggregate(
{ $sort : { age : -1, posts: 1 } }

);

25.1. Pipeline 271

MongoDB Documentation, Release 2.4.2

This operation sorts the documents in the users collection, in descending order according by the age field
and then in ascending order according to the value in the posts field.

When comparing values of different BSON types, MongoDB uses the following comparison order, from lowest
to highest:

1.MinKey (internal type)

2.Null

3.Numbers (ints, longs, doubles)

4.Symbol, String

5.Object

6.Array

7.BinData

8.ObjectID

9.Boolean

10.Date, Timestamp

11.Regular Expression

12.MaxKey (internal type)

Note: MongoDB treats some types as equivalent for comparison purposes. For instance, numeric types undergo
conversion before comparison.

Note: The $sort (page 798) cannot begin sorting documents until previous operators in the pipeline have
returned all output.

•$skip (page 798)

$sort (page 798) operator can take advantage of an index when placed at the beginning of the pipeline or
placed before the following aggregation operators:

•$project (page 796)

•$unwind (page 801)

•$group (page 790).

Changed in version 2.4: When a $sort (page 798) immediately precedes a $limit (page 791) in the pipeline,
the $sort (page 798) operation only maintains the top n results as it progresses, where n is the specified limit.
Before 2.4, $sort (page 798) would sort all the results in memory, and then limit the results to n results.

Warning: Changed in version 2.4: Sorts immediately proceeded by a limit no longer need to fit into memory.
Previously, all sorts had to fit into memory or use an index. Unless the $sort (page 798) operator can use
an index, or immediately precedes a $limit (page 791), the $sort (page 798) operation must fit within
memory.
For $sort (page 798) operations that immediately precede a $limit (page 791) stage, MongoDB only
needs to store the number of items specified by $limit (page 791) in memory.

$geoNear
New in version 2.4. $geoNear (page 788) returns documents in order of nearest to farthest from a specified
point and pass the documents through the aggregation pipeline.

272 Chapter 25. Aggregation Framework Reference

MongoDB Documentation, Release 2.4.2

Important:

•You can only use $geoNear (page 788) as the first stage of a pipeline.

•You must include the distanceField option. The distanceField option specifies the field that
will contain the calculated distance.

•The collection must have a geospatial index (page 346).

The $geoNear (page 788) accept the following options:

Fields

• near (coordinates) – Specifies the coordinates (e.g. [x, y]) to use as the center of a
geospatial query.

• distanceField (string) – Specifies the output field that will contain the calculated distance.
You can use the dot notation to specify a field within a subdocument.

• limit (number) – Optional. Specifies the maximum number of documents to return. The
default value is 100. See also the num option.

• num (number) – Optional. Synonym for the limit option. If both num and limit are
included, the num value overrides the limit value.

• maxDistance (number) – Optional. Limits the results to the documents within the specified
distance from the center coordinates.

• query (document) – Optional. Limits the results to the documents that match the query. The
query syntax is identical to the read operation query (page 162) syntax.

• spherical (boolean) – Optional. Default value is false. When true, MongoDB performs
calculation using spherical geometry.

• distanceMultiplier (number) – Optional. Specifies a factor to multiply all distances re-
turned by $geoNear (page 788). For example, use distanceMultiplier to convert
from spherical queries returned in radians to linear units (i.e. miles or kilometers) by multi-
plying by the radius of the Earth.

• includeLocs (string) – Optional. Specifies the output field that identifies the location used to
calculate the distance. This option is useful when a location field contains multiple locations.
You can use the dot notation to specify a field within a subdocument.

• uniqueDocs (boolean) – Optional. Default value is false. If a location field contains
multiple locations, the default settings will return the document multiple times if more than
one location meets the criteria.

When true, the document will only return once even if the document has multiple locations
that meet the criteria.

Example

The following aggregation finds at most 5 unique documents with a location at most .008 from the center
[40.72, -73.99] and have type equal to public:

db.places.aggregate([
{
$geoNear: {

near: [40.724, -73.997],
distanceField: "dist.calculated",
maxDistance: 0.008,

25.1. Pipeline 273

MongoDB Documentation, Release 2.4.2

query: { type: "public" },
includeLocs: "dist.location",
uniqueDocs: true,
num: 5

}
}

])

The aggregation returns the following:

{
"result" : [

{ "_id" : 7,
"name" : "Washington Square",
"type" : "public",
"location" : [

[40.731, -73.999],
[40.732, -73.998],
[40.730, -73.995],
[40.729, -73.996]

],
"dist" : {

"calculated" : 0.0050990195135962296,
"location" : [40.729, -73.996]

}
},
{ "_id" : 8,
"name" : "Sara D. Roosevelt Park",
"type" : "public",
"location" : [

[40.723, -73.991],
[40.723, -73.990],
[40.715, -73.994],
[40.715, -73.994]

],
"dist" : {

"calculated" : 0.006082762530298062,
"location" : [40.723, -73.991]

}
}

],
"ok" : 1

}

The matching documents in the result field contain two new fields:

•dist.calculated field that contains the calculated distance, and

•dist.location field that contains the location used in the calculation.

Note: The options for $geoNear (page 788) are similar to the geoNear (page 836) command with the
following exceptions:

•distanceField is a mandatory field for the $geoNear (page 788) pipeline operator; the option does
not exist in the geoNear (page 836) command.

•includeLocs accepts a string in the $geoNear (page 788) pipeline operator and a boolean in
the geoNear (page 836) command.

274 Chapter 25. Aggregation Framework Reference

MongoDB Documentation, Release 2.4.2

25.2 Expressions

These operators calculate values within the aggregation framework.

25.2.1 $group Operators

The $group (page 790) pipeline stage provides the following operations:

$addToSet
Returns an array of all the values found in the selected field among the documents in that group. Every unique
value only appears once in the result set. There is no ordering guarantee for the output documents.

$first
Returns the first value it encounters for its group .

Note: Only use $first (page 787) when the $group (page 790) follows an $sort (page 798) operation.
Otherwise, the result of this operation is unpredictable.

$last
Returns the last value it encounters for its group.

Note: Only use $last (page 791) when the $group (page 790) follows an $sort (page 798) operation.
Otherwise, the result of this operation is unpredictable.

$max
Returns the highest value among all values of the field in all documents selected by this group.

$min
The $min (page 794) operator returns the lowest non-null value of a field in the documents for a $group
(page 790) operation. Changed in version 2.4: If some, but not all, documents for the $min (page 794)
operation have either a null value for the field or are missing the field, the $min (page 794) operator only
considers the non-null and the non-missing values for the field. If all documents for the $min (page 794)
operation have null value for the field or are missing the field, the $min (page 794) operator returns null
for the minimum value. Before 2.4, if any of the documents for the $min (page 794) operation were missing
the field, the $min (page 794) operator would not return any value. If any of the documents for the $min
(page 794) had the value null, the $min (page 794) operator would return a null.

Example

The users collection contains the following documents:

{ "_id" : "abc001", "age" : 25 }
{ "_id" : "abe001", "age" : 35 }
{ "_id" : "efg001", "age" : 20 }
{ "_id" : "xyz001", "age" : 15 }

•To find the minimum value of the age field from all the documents, use the $min (page 794) operator:

db.users.aggregate([{ $group: { _id:0, minAge: { $min: "$age"} } }])

The operation returns the value of the age field in the minAge field:

25.2. Expressions 275

MongoDB Documentation, Release 2.4.2

{ "result" : [{ "_id" : 0, "minAge" : 15 }], "ok" : 1 }

•To find the minimum value of the age field for only those documents with _id starting with the letter a,
use the $min (page 794) operator after a $match (page 792) operation:

db.users.aggregate([{ $match: { _id: /^a/ } },
{ $group: { _id: 0, minAge: { $min: "$age"} } }

])

The operation returns the minimum value of the age field for the two documents with _id starting with
the letter a:

{ "result" : [{ "_id" : 0, "minAge" : 25 }], "ok" : 1 }

Example

The users collection contains the following documents where some of the documents are either missing the
age field or the age field contains null:

{ "_id" : "abc001", "age" : 25 }
{ "_id" : "abe001", "age" : 35 }
{ "_id" : "efg001", "age" : 20 }
{ "_id" : "xyz001", "age" : 15 }
{ "_id" : "xxx001" }
{ "_id" : "zzz001", "age" : null }

•The following operation finds the minimum value of the age field in all the documents:

db.users.aggregate([{ $group: { _id:0, minAge: { $min: "$age"} } }])

Because only some documents for the $min (page 794) operation are missing the age field or have age
field equal to null, $min (page 794) only considers the non-null and the non-missing values and the
operation returns the following document:

{ "result" : [{ "_id" : 0, "minAge" : 15 }], "ok" : 1 }

•The following operation finds the minimum value of the age field for only those documents where the
_id equals "xxx001" or "zzz001":

db.users.aggregate([{ $match: { _id: {$in: ["xxx001", "zzz001"] } } },
{ $group: { _id: 0, minAge: { $min: "$age"} } }

])

The $min (page 794) operation returns null for the minimum age since all documents for the $min
(page 794) operation have null value for the field age or are missing the field:

{ "result" : [{ "_id" : 0, "minAge" : null }], "ok" : 1 }

$avg
Returns the average of all the values of the field in all documents selected by this group.

$push
Returns an array of all the values found in the selected field among the documents in that group. A value may
appear more than once in the result set if more than one field in the grouped documents has that value.

276 Chapter 25. Aggregation Framework Reference

MongoDB Documentation, Release 2.4.2

$sum
Returns the sum of all the values for a specified field in the grouped documents, as in the second use above.

Alternately, if you specify a value as an argument, $sum (page 800) will increment this field by the specified
value for every document in the grouping. Typically, as in the first use above, specify a value of 1 in order to
count members of the group.

25.2.2 Boolean Operators

The three boolean operators accept Booleans as arguments and return Booleans as results.

Note: These operators convert non-booleans to Boolean values according to the BSON standards. Here, null,
undefined, and 0 values become false, while non-zero numeric values, and all other types, such as strings, dates,
objects become true.

$and
Takes an array one or more values and returns true if all of the values in the array are true. Otherwise $and
(page 783) returns false.

Note: $and (page 783) uses short-circuit logic: the operation stops evaluation after encountering the first
false expression.

$or
Takes an array of one or more values and returns true if any of the values in the array are true. Otherwise
$or (page 796) returns false.

Note: $or (page 796) uses short-circuit logic: the operation stops evaluation after encountering the first true
expression.

$not
Returns the boolean opposite value passed to it. When passed a true value, $not (page 796) returns false;
when passed a false value, $not (page 796) returns true.

25.2.3 Comparison Operators

These operators perform comparisons between two values and return a Boolean, in most cases, reflecting the result of
that comparison.

All comparison operators take an array with a pair of values. You may compare numbers, strings, and dates. Except
for $cmp (page 784), all comparison operators return a Boolean value. $cmp (page 784) returns an integer.

$cmp
Takes two values in an array and returns an integer. The returned value is:

•A negative number if the first value is less than the second.

•A positive number if the first value is greater than the second.

•0 if the two values are equal.

$eq
Takes two values in an array and returns a boolean. The returned value is:

•true when the values are equivalent.

25.2. Expressions 277

MongoDB Documentation, Release 2.4.2

•false when the values are not equivalent.

$gt
Takes two values in an array and returns an boolean. The returned value is:

•true when the first value is greater than the second value.

•false when the first value is less than or equal to the second value.

$gte
Takes two values in an array and returns an boolean. The returned value is:

•true when the first value is greater than or equal to the second value.

•false when the first value is less than the second value.

$lt
Takes two values in an array and returns an boolean. The returned value is:

•true when the first value is less than the second value.

•false when the first value is greater than or equal to the second value.

$lte
Takes two values in an array and returns an boolean. The returned value is:

•true when the first value is less than or equal to the second value.

•false when the first value is greater than the second value.

$ne
Takes two values in an array returns an boolean. The returned value is:

•true when the values are not equivalent.

•false when the values are equivalent.

25.2.4 Arithmetic Operators

These operators only support numbers.

$add
Takes an array of one or more numbers and adds them together, returning the sum.

$divide
Takes an array that contains a pair of numbers and returns the value of the first number divided by the second
number.

$mod
Takes an array that contains a pair of numbers and returns the remainder of the first number divided by the
second number.

See Also:

$mod (page 755)

$multiply
Takes an array of one or more numbers and multiples them, returning the resulting product.

$subtract
Takes an array that contains a pair of numbers and subtracts the second from the first, returning their difference.

278 Chapter 25. Aggregation Framework Reference

MongoDB Documentation, Release 2.4.2

25.2.5 String Operators

These operators manipulate strings within projection expressions.

$concat
New in version 2.4. Takes an array of strings, concatenates the strings, and returns the concatenated string.
$concat (page 784) can only accept an array of strings.

Use $concat (page 784) with the following syntax:

{ $concat: [<string>, <string>, ...] }

If array element has a value of null or refers to a field that is missing, $concat (page 784) will return null.

$strcasecmp
Takes in two strings. Returns a number. $strcasecmp (page 800) is positive if the first string is “greater
than” the second and negative if the first string is “less than” the second. $strcasecmp (page 800) returns 0
if the strings are identical.

Note: $strcasecmp (page 800) may not make sense when applied to glyphs outside the Roman alphabet.

$strcasecmp (page 800) internally capitalizes strings before comparing them to provide a case-insensitive
comparison. Use $cmp (page 784) for a case sensitive comparison.

$substr
$substr (page 800) takes a string and two numbers. The first number represents the number of bytes in the
string to skip, and the second number specifies the number of bytes to return from the string.

Note: $substr (page 800) is not encoding aware and if used improperly may produce a result string contain-
ing an invalid UTF-8 character sequence.

$toLower
Takes a single string and converts that string to lowercase, returning the result. All uppercase letters become
lowercase.

Note: $toLower (page 801) may not make sense when applied to glyphs outside the Roman alphabet.

$toUpper
Takes a single string and converts that string to uppercase, returning the result. All lowercase letters become
uppercase.

Note: $toUpper (page 801) may not make sense when applied to glyphs outside the Roman alphabet.

25.2.6 Date Operators

All date operators take a “Date” typed value as a single argument and return a number.

$dayOfYear
Takes a date and returns the day of the year as a number between 1 and 366.

$dayOfMonth
Takes a date and returns the day of the month as a number between 1 and 31.

25.2. Expressions 279

MongoDB Documentation, Release 2.4.2

$dayOfWeek
Takes a date and returns the day of the week as a number between 1 (Sunday) and 7 (Saturday.)

$year
Takes a date and returns the full year.

$month
Takes a date and returns the month as a number between 1 and 12.

$week
Takes a date and returns the week of the year as a number between 0 and 53.

Weeks begin on Sundays, and week 1 begins with the first Sunday of the year. Days preceding the first Sunday
of the year are in week 0. This behavior is the same as the “%U” operator to the strftime standard library
function.

$hour
Takes a date and returns the hour between 0 and 23.

$minute
Takes a date and returns the minute between 0 and 59.

$second
Takes a date and returns the second between 0 and 59, but can be 60 to account for leap seconds.

$millisecond
Takes a date and returns the millisecond portion of the date as an integer between 0 and 999.

25.2.7 Conditional Expressions

$cond
Use the $cond (page 787) operator with the following syntax:

{ $cond: [<boolean-expression>, <true-case>, <false-case>] }

Takes an array with three expressions, where the first expression evaluates to a Boolean value. If the first
expression evaluates to true, $cond (page 787) returns the value of the second expression. If the first expression
evaluates to false, $cond (page 787) evaluates and returns the third expression.

$ifNull
Use the $ifNull (page 791) operator with the following syntax:

{ $ifNull: [<expression>, <replacement-if-null>] }

Takes an array with two expressions. $ifNull (page 791) returns the first expression if it evaluates to a
non-null value. Otherwise, $ifNull (page 791) returns the second expression’s value.

280 Chapter 25. Aggregation Framework Reference

CHAPTER 26

SQL to Aggregation Framework
Mapping Chart

The aggregation framework (page 249) allows MongoDB to provide native aggregation capabilities that corresponds
to many common data aggregation operations in SQL. If you’re new to MongoDB you might want to consider the
Frequently Asked Questions (page 683) section for a selection of common questions.

The following table provides an overview of common SQL aggregation terms, functions, and concepts and the corre-
sponding MongoDB aggregation operators (page 266):

SQL Terms,
Functions, and
Concepts

MongoDB Aggregation Operators

WHERE $match (page 792)
GROUP BY $group (page 790)
HAVING $match (page 792)
SELECT $project (page 796)
ORDER BY $sort (page 798)
LIMIT $limit (page 791)
SUM() $sum
COUNT() $sum
join No direct corresponding operator; however, the $unwind (page 801) operator allows for

somewhat similar functionality, but with fields embedded within the document.

26.1 Examples

The following table presents a quick reference of SQL aggregation statements and the corresponding MongoDB state-
ments. The examples in the table assume the following conditions:

• The SQL examples assume two tables, orders and order_lineitem that join by the
order_lineitem.order_id and the orders.id columns.

• The MongoDB examples assume one collection orders that contain documents of the following prototype:

{
cust_id: "abc123",
ord_date: ISODate("2012-11-02T17:04:11.102Z"),

281

MongoDB Documentation, Release 2.4.2

status: ’A’,
price: 50,
items: [{ sku: "xxx", qty: 25, price: 1 },

{ sku: "yyy", qty: 25, price: 1 }]
}

• The MongoDB statements prefix the names of the fields from the documents in the collection orders with a $
character when they appear as operands to the aggregation operations.

282 Chapter 26. SQL to Aggregation Framework Mapping Chart

MongoDB Documentation, Release 2.4.2

SQL Example MongoDB Example Description

SELECT COUNT(*) AS count
FROM orders

db.orders.aggregate([
{ $group: { _id: null,

count: { $sum: 1 } } }
])

Count all records from orders

SELECT SUM(price) AS total
FROM orders

db.orders.aggregate([
{ $group: { _id: null,

total: { $sum: "$price" } } }
])

Sum the price field from orders

SELECT cust_id,
SUM(price) AS total

FROM orders
GROUP BY cust_id

db.orders.aggregate([
{ $group: { _id: "$cust_id",

total: { $sum: "$price" } } }
])

For each unique cust_id, sum the
price field.

SELECT cust_id,
SUM(price) AS total

FROM orders
GROUP BY cust_id
ORDER BY total

db.orders.aggregate([
{ $group: { _id: "$cust_id",

total: { $sum: "$price" } } },
{ $sort: { total: 1 } }

])

For each unique cust_id, sum the
price field, results sorted by sum.

SELECT cust_id,
ord_date,
SUM(price) AS total

FROM orders
GROUP BY cust_id, ord_date

db.orders.aggregate([
{ $group: { _id: { cust_id: "$cust_id",

ord_date: "$ord_date" },
total: { $sum: "$price" } } }

])

For each unique cust_id,
ord_date grouping, sum the
price field.

SELECT cust_id, count(*)
FROM orders
GROUP BY cust_id
HAVING count(*) > 1

db.orders.aggregate([
{ $group: { _id: "$cust_id",

count: { $sum: 1 } } },
{ $match: { count: { $gt: 1 } } }

])

For cust_id with multiple records,
return the cust_id and the corre-
sponding record count.

SELECT cust_id,
ord_date,
SUM(price) AS total

FROM orders
GROUP BY cust_id, ord_date
HAVING total > 250

db.orders.aggregate([
{ $group: { _id: { cust_id: "$cust_id",

ord_date: "$ord_date" },
total: { $sum: "$price" } } },

{ $match: { total: { $gt: 250 } } }
])

For each unique cust_id,
ord_date grouping, sum the
price field and return only where
the sum is greater than 250.

SELECT cust_id,
SUM(price) as total

FROM orders
WHERE status = ’A’
GROUP BY cust_id

db.orders.aggregate([
{ $match: { status: ’A’ } },
{ $group: { _id: "$cust_id",

total: { $sum: "$price" } } }
])

For each unique cust_id with sta-
tus A, sum the price field.

SELECT cust_id,
SUM(price) as total

FROM orders
WHERE status = ’A’
GROUP BY cust_id
HAVING total > 250

db.orders.aggregate([
{ $match: { status: ’A’ } },
{ $group: { _id: "$cust_id",

total: { $sum: "$price" } } },
{ $match: { total: { $gt: 250 } } }

])

For each unique cust_id with sta-
tus A, sum the price field and return
only where the sum is greater than
250.

SELECT cust_id,
SUM(li.qty) as qty

FROM orders o,
order_lineitem li

WHERE li.order_id = o.id
GROUP BY cust_id

db.orders.aggregate([
{ $unwind: "$items" },
{ $group: { _id: "$cust_id",

qty: { $sum: "$items.qty" } } }
])

For each unique cust_id, sum the
corresponding line item qty fields
associated with the orders.

SELECT COUNT(*)
FROM (SELECT cust_id, ord_date

FROM orders
GROUP BY cust_id, ord_date) as DerivedTable

db.orders.aggregate([
{ $group: { _id: { cust_id: "$cust_id",

ord_date: "$ord_date" } } },
{ $group: { _id: null, count: { $sum: 1 } } }

])

Count the number of distinct
cust_id, ord_date groupings.

26.1. Examples 283

MongoDB Documentation, Release 2.4.2

284 Chapter 26. SQL to Aggregation Framework Mapping Chart

CHAPTER 27

Map-Reduce

Map-reduce operations can handle complex aggregation tasks. To perform map-reduce operations, MongoDB provides
the mapReduce (page 851) command and, in the mongo (page 984) shell, the db.collection.mapReduce()
(page 921) wrapper method.

27.1 Examples

For examples of map-reduce, see

27.1.1 Map-Reduce Examples

In the mongo (page 984) shell, the db.collection.mapReduce() (page 921) method is a wrapper around the
mapReduce (page 851) command. The following examples use the db.collection.mapReduce() (page 921)
method:

Consider the following map-reduce operations on a collection orders that contains documents of the following
prototype:

{
_id: ObjectId("50a8240b927d5d8b5891743c"),
cust_id: "abc123",
ord_date: new Date("Oct 04, 2012"),
status: ’A’,
price: 250,
items: [{ sku: "mmm", qty: 5, price: 2.5 },

{ sku: "nnn", qty: 5, price: 2.5 }]
}

Return the Total Price Per Customer Id

Perform map-reduce operation on the orders collection to group by the cust_id, and for each cust_id, calculate
the sum of the price for each cust_id:

1. Define the map function to process each input document:

285

MongoDB Documentation, Release 2.4.2

• In the function, this refers to the document that the map-reduce operation is processing.

• The function maps the price to the cust_id for each document and emits the cust_id and price
pair.

var mapFunction1 = function() {
emit(this.cust_id, this.price);

};

2. Define the corresponding reduce function with two arguments keyCustId and valuesPrices:

• The valuesPrices is an array whose elements are the price values emitted by the map function and
grouped by keyCustId.

• The function reduces the valuesPrice array to the sum of its elements.

var reduceFunction1 = function(keyCustId, valuesPrices) {
return Array.sum(valuesPrices);

};

3. Perform the map-reduce on all documents in the orders collection using the mapFunction1 map function
and the reduceFunction1 reduce function.

db.orders.mapReduce(
mapFunction1,
reduceFunction1,
{ out: "map_reduce_example" }

)

This operation outputs the results to a collection named map_reduce_example. If the
map_reduce_example collection already exists, the operation will replace the contents with the re-
sults of this map-reduce operation:

Calculate the Number of Orders, Total Quantity, and Average Quantity Per Item

In this example you will perform a map-reduce operation on the orders collection, for all documents that have
an ord_date value greater than 01/01/2012. The operation groups by the item.sku field, and for each sku
calculates the number of orders and the total quantity ordered. The operation concludes by calculating the average
quantity per order for each sku value:

1. Define the map function to process each input document:

• In the function, this refers to the document that the map-reduce operation is processing.

• For each item, the function associates the sku with a new object value that contains the count of 1
and the item qty for the order and emits the sku and value pair.

var mapFunction2 = function() {
for (var idx = 0; idx < this.items.length; idx++) {

var key = this.items[idx].sku;
var value = {

count: 1,
qty: this.items[idx].qty

};
emit(key, value);

}
};

2. Define the corresponding reduce function with two arguments keySKU and valuesCountObjects:

286 Chapter 27. Map-Reduce

MongoDB Documentation, Release 2.4.2

• valuesCountObjects is an array whose elements are the objects mapped to the grouped keySKU
values passed by map function to the reducer function.

• The function reduces the valuesCountObjects array to a single object reducedValue that also
contains the count and the qty fields.

• In reducedValue, the count field contains the sum of the count fields from the individual array
elements, and the qty field contains the sum of the qty fields from the individual array elements.

var reduceFunction2 = function(keySKU, valuesCountObjects) {
reducedValue = { count: 0, qty: 0 };

for (var idx = 0; idx < valuesCountObjects.length; idx++) {
reducedValue.count += valuesCountObjects[idx].count;
reducedValue.qty += valuesCountObjects[idx].qty;

}

return reducedValue;
};

3. Define a finalize function with two arguments key and reducedValue. The function modifies the
reducedValue object to add a computed field named average and returns the modified object:

var finalizeFunction2 = function (key, reducedValue) {

reducedValue.average = reducedValue.qty/reducedValue.count;

return reducedValue;
};

4. Perform the map-reduce operation on the orders collection using the mapFunction2,
reduceFunction2, and finalizeFunction2 functions.

db.orders.mapReduce(mapFunction2,
reduceFunction2,
{
out: { merge: "map_reduce_example" },
query: { ord_date: { $gt: new Date(’01/01/2012’) } },
finalize: finalizeFunction2

}
)

This operation uses the query field to select only those documents with ord_date greater than new
Date(01/01/2012). Then it output the results to a collection map_reduce_example. If the
map_reduce_example collection already exists, the operation will merge the existing contents with the
results of this map-reduce operation:

27.1.2 Perform Incremental Map-Reduce

Map-reduce operations can handle complex aggregation tasks. To perform map-reduce operations, MongoDB provides
the mapReduce (page 851) command and, in the mongo (page 984) shell, the db.collection.mapReduce()
(page 921) wrapper method.

If the map-reduce dataset is constantly growing, then rather than performing the map-reduce operation over the entire
dataset each time you want to run map-reduce, you may want to perform an incremental map-reduce.

To perform incremental map-reduce:

1. Run a map-reduce job over the current collection and output the result to a separate collection.

27.1. Examples 287

MongoDB Documentation, Release 2.4.2

2. When you have more data to process, run subsequent map-reduce job with:

• the query parameter that specifies conditions that match only the new documents.

• the out parameter that specifies the reduce action to merge the new results into the existing output
collection.

Consider the following example where you schedule a map-reduce operation on a sessions collection to run at the
end of each day.

Data Setup

The sessions collection contains documents that log users’ session each day, for example:

db.sessions.save({ userid: "a", ts: ISODate(’2011-11-03 14:17:00’), length: 95 });
db.sessions.save({ userid: "b", ts: ISODate(’2011-11-03 14:23:00’), length: 110 });
db.sessions.save({ userid: "c", ts: ISODate(’2011-11-03 15:02:00’), length: 120 });
db.sessions.save({ userid: "d", ts: ISODate(’2011-11-03 16:45:00’), length: 45 });

db.sessions.save({ userid: "a", ts: ISODate(’2011-11-04 11:05:00’), length: 105 });
db.sessions.save({ userid: "b", ts: ISODate(’2011-11-04 13:14:00’), length: 120 });
db.sessions.save({ userid: "c", ts: ISODate(’2011-11-04 17:00:00’), length: 130 });
db.sessions.save({ userid: "d", ts: ISODate(’2011-11-04 15:37:00’), length: 65 });

Initial Map-Reduce of Current Collection

Run the first map-reduce operation as follows:

1. Define the map function that maps the userid to an object that contains the fields userid, total_time,
count, and avg_time:

var mapFunction = function() {
var key = this.userid;
var value = {

userid: this.userid,
total_time: this.length,
count: 1,
avg_time: 0

};

emit(key, value);
};

2. Define the corresponding reduce function with two arguments key and values to calculate the total time
and the count. The key corresponds to the userid, and the values is an array whose elements corresponds
to the individual objects mapped to the userid in the mapFunction.

var reduceFunction = function(key, values) {

var reducedObject = {
userid: key,
total_time: 0,
count:0,
avg_time:0

};

values.forEach(function(value) {
reducedObject.total_time += value.total_time;

288 Chapter 27. Map-Reduce

MongoDB Documentation, Release 2.4.2

reducedObject.count += value.count;
}

);
return reducedObject;

};

3. Define finalize function with two arguments key and reducedValue. The function modifies the
reducedValue document to add another field average and returns the modified document.

var finalizeFunction = function (key, reducedValue) {

if (reducedValue.count > 0)
reducedValue.avg_time = reducedValue.total_time / reducedValue.count;

return reducedValue;
};

4. Perform map-reduce on the session collection using the mapFunction, the reduceFunction, and the
finalizeFunction functions. Output the results to a collection session_stat. If the session_stat
collection already exists, the operation will replace the contents:

db.sessions.mapReduce(mapFunction,
reduceFunction,
{
out: { reduce: "session_stat" },
finalize: finalizeFunction

}
)

Subsequent Incremental Map-Reduce

Later as the sessions collection grows, you can run additional map-reduce operations. For example, add new
documents to the sessions collection:

db.sessions.save({ userid: "a", ts: ISODate(’2011-11-05 14:17:00’), length: 100 });
db.sessions.save({ userid: "b", ts: ISODate(’2011-11-05 14:23:00’), length: 115 });
db.sessions.save({ userid: "c", ts: ISODate(’2011-11-05 15:02:00’), length: 125 });
db.sessions.save({ userid: "d", ts: ISODate(’2011-11-05 16:45:00’), length: 55 });

At the end of the day, perform incremental map-reduce on the sessions collection but use the query field to select
only the new documents. Output the results to the collection session_stat, but reduce the contents with the
results of the incremental map-reduce:

db.sessions.mapReduce(mapFunction,
reduceFunction,
{
query: { ts: { $gt: ISODate(’2011-11-05 00:00:00’) } },
out: { reduce: "session_stat" },
finalize: finalizeFunction

}
);

For many simple aggregation tasks, see the aggregation framework (page 249).

27.1. Examples 289

MongoDB Documentation, Release 2.4.2

27.2 Temporary Collection

The map-reduce operation uses a temporary collection during processing. At completion, the map-reduce operation
renames the temporary collection. As a result, you can perform a map-reduce operation periodically with the same
target collection name without affecting the intermediate states. Use this mode when generating statistical output
collections on a regular basis.

27.3 Concurrency

The map-reduce operation is composed of many tasks, including:

• reads from the input collection,

• executions of the map function,

• executions of the reduce function,

• writes to the output collection.

These various tasks take the following locks:

• The read phase takes a read lock. It yields every 100 documents.

• The insert into the temporary collection takes a write lock for a single write.

If the output collection does not exist, the creation of the output collection takes a write lock.

If the output collection exists, then the output actions (i.e. merge, replace, reduce) take a write lock.

Changed in version 2.4: The V8 JavaScript engine, which became the default in 2.4, allows multiple JavaScript
operations to execute at the same time. Prior to 2.4, JavaScript code (i.e. map, reduce, finalize functions)
executed in a single thread.

Note: The final write lock during post-processing makes the results appear atomically. However, output actions
merge and reduce may take minutes to process. For the merge and reduce, the nonAtomic flag is available.
See the db.collection.mapReduce() (page 921) reference for more information.

27.4 Sharded Cluster

27.4.1 Sharded Input

When using sharded collection as the input for a map-reduce operation, mongos (page 981) will automatically dis-
patch the map-reduce job to each shard in parallel. There is no special option required. mongos (page 981) will wait
for jobs on all shards to finish.

27.4.2 Sharded Output

By default the output collection is not sharded. The process is:

• mongos (page 981) dispatches a map-reduce finish job to the shard that will store the target collection.

• The target shard pulls results from all other shards, and runs a final reduce/finalize operation, and write to the
output.

290 Chapter 27. Map-Reduce

MongoDB Documentation, Release 2.4.2

• If using the sharded option to the out parameter, MongoDB shards the output using _id field as the shard
key. Changed in version 2.2.

• If the output collection does not exist, MongoDB creates and shards the collection on the _id field. If the
collection is empty, MongoDB creates chunks using the result of the first stage of the map-reduce operation.

• mongos (page 981) dispatches, in parallel, a map-reduce finish job to every shard that owns a chunk.

• Each shard will pull the results it owns from all other shards, run a final reduce/finalize, and write to the output
collection.

Note:

• During later map-reduce jobs, MongoDB splits chunks as needed.

• Balancing of chunks for the output collection is automatically prevented during post-processing to avoid con-
currency issues.

In MongoDB 2.0:

• mongos (page 981) retrieves the results from each shard, and performs merge sort to order the results, and
performs a reduce/finalize as needed. mongos (page 981) then writes the result to the output collection in
sharded mode.

• This model requires only a small amount of memory, even for large datasets.

• Shard chunks are not automatically split during insertion. This requires manual intervention until the chunks
are granular and balanced.

Warning: For best results, only use the sharded output options for mapReduce (page 851) in version 2.2 or
later.

27.5 Troubleshooting Map-Reduce Operations

You can troubleshoot the map function and the reduce function in the mongo (page 984) shell. See the following
tutorials for more information:

27.5.1 Troubleshoot the Map Function

The map function is a JavaScript function that associates or “maps” a value with a key and emits the key and value
pair during a map-reduce (page 285) operation.

To verify the key and value pairs emitted by the map function, write your own emit function.

Consider a collection orders that contains documents of the following prototype:

{
_id: ObjectId("50a8240b927d5d8b5891743c"),
cust_id: "abc123",
ord_date: new Date("Oct 04, 2012"),
status: ’A’,
price: 250,
items: [{ sku: "mmm", qty: 5, price: 2.5 },

{ sku: "nnn", qty: 5, price: 2.5 }]
}

27.5. Troubleshooting Map-Reduce Operations 291

MongoDB Documentation, Release 2.4.2

1. Define the map function that maps the price to the cust_id for each document and emits the cust_id and
price pair:

var map = function() {
emit(this.cust_id, this.price);

};

2. Define the emit function to print the key and value:

var emit = function(key, value) {
print("emit");
print("key: " + key + " value: " + tojson(value));

}

3. Invoke the map function with a single document from the orders collection:

var myDoc = db.orders.findOne({ _id: ObjectId("50a8240b927d5d8b5891743c") });
map.apply(myDoc);

4. Verify the key and value pair is as you expected.

emit
key: abc123 value:250

5. Invoke the map function with multiple documents from the orders collection:

var myCursor = db.orders.find({ cust_id: "abc123" });

while (myCursor.hasNext()) {
var doc = myCursor.next();
print ("document _id= " + tojson(doc._id));
map.apply(doc);
print();

}

6. Verify the key and value pairs are as you expected.

See Also:

The map function must meet various requirements. For a list of all the requirements for the map function,
see mapReduce (page 851), or the mongo (page 984) shell helper method db.collection.mapReduce()
(page 921).

27.5.2 Troubleshoot the Reduce Function

The reduce function is a JavaScript function that “reduces” to a single object all the values associated with a par-
ticular key during a map-reduce (page 285) operation. The reduce function must meet various requirements. This
tutorial helps verify that the reduce function meets the following criteria:

• The reduce function must return an object whose type must be identical to the type of the value emitted by
the map function.

• The order of the elements in the valuesArray should not affect the output of the reduce function.

• The reduce function must be idempotent.

For a list of all the requirements for the reduce function, see mapReduce (page 851), or the mongo (page 984)
shell helper method db.collection.mapReduce() (page 921).

292 Chapter 27. Map-Reduce

MongoDB Documentation, Release 2.4.2

Confirm Output Type

You can test that the reduce function returns a value that is the same type as the value emitted from the map function.

1. Define a reduceFunction1 function that takes the arguments keyCustId and valuesPrices.
valuesPrices is an array of integers:

var reduceFunction1 = function(keyCustId, valuesPrices) {
return Array.sum(valuesPrices);

};

2. Define a sample array of integers:

var myTestValues = [5, 5, 10];

3. Invoke the reduceFunction1 with myTestValues:

reduceFunction1(’myKey’, myTestValues);

4. Verify the reduceFunction1 returned an integer:

20

5. Define a reduceFunction2 function that takes the arguments keySKU and valuesCountObjects.
valuesCountObjects is an array of documents that contain two fields count and qty:

var reduceFunction2 = function(keySKU, valuesCountObjects) {
reducedValue = { count: 0, qty: 0 };

for (var idx = 0; idx < valuesCountObjects.length; idx++) {
reducedValue.count += valuesCountObjects[idx].count;
reducedValue.qty += valuesCountObjects[idx].qty;

}

return reducedValue;
};

6. Define a sample array of documents:

var myTestObjects = [
{ count: 1, qty: 5 },
{ count: 2, qty: 10 },
{ count: 3, qty: 15 }

];

7. Invoke the reduceFunction2 with myTestObjects:

reduceFunction2(’myKey’, myTestObjects);

8. Verify the reduceFunction2 returned a document with exactly the count and the qty field:

{ "count" : 6, "qty" : 30 }

Ensure Insensitivity to the Order of Mapped Values

The reduce function takes a key and a values array as its argument. You can test that the result of the reduce
function does not depend on the order of the elements in the values array.

1. Define a sample values1 array and a sample values2 array that only differ in the order of the array elements:

27.5. Troubleshooting Map-Reduce Operations 293

MongoDB Documentation, Release 2.4.2

var values1 = [
{ count: 1, qty: 5 },
{ count: 2, qty: 10 },
{ count: 3, qty: 15 }

];

var values2 = [
{ count: 3, qty: 15 },
{ count: 1, qty: 5 },
{ count: 2, qty: 10 }

];

2. Define a reduceFunction2 function that takes the arguments keySKU and valuesCountObjects.
valuesCountObjects is an array of documents that contain two fields count and qty:

var reduceFunction2 = function(keySKU, valuesCountObjects) {
reducedValue = { count: 0, qty: 0 };

for (var idx = 0; idx < valuesCountObjects.length; idx++) {
reducedValue.count += valuesCountObjects[idx].count;
reducedValue.qty += valuesCountObjects[idx].qty;

}

return reducedValue;
};

3. Invoke the reduceFunction2 first with values1 and then with values2:

reduceFunction2(’myKey’, values1);
reduceFunction2(’myKey’, values2);

4. Verify the reduceFunction2 returned the same result:

{ "count" : 6, "qty" : 30 }

Ensure Reduce Function Idempotence

Because the map-reduce operation may call a reduce multiple times for the same key, the reduce function must
return a value of the same type as the value emitted from the map function. You can test that the reduce function
process “reduced” values without affecting the final value.

1. Define a reduceFunction2 function that takes the arguments keySKU and valuesCountObjects.
valuesCountObjects is an array of documents that contain two fields count and qty:

var reduceFunction2 = function(keySKU, valuesCountObjects) {
reducedValue = { count: 0, qty: 0 };

for (var idx = 0; idx < valuesCountObjects.length; idx++) {
reducedValue.count += valuesCountObjects[idx].count;
reducedValue.qty += valuesCountObjects[idx].qty;

}

return reducedValue;
};

2. Define a sample key:

294 Chapter 27. Map-Reduce

MongoDB Documentation, Release 2.4.2

var myKey = ’myKey’;

3. Define a sample valuesIdempotent array that contains an element that is a call to the reduceFunction2
function:

var valuesIdempotent = [
{ count: 1, qty: 5 },
{ count: 2, qty: 10 },
reduceFunction2(myKey, [{ count:3, qty: 15 }])

];

4. Define a sample values1 array that combines the values passed to reduceFunction2:

var values1 = [
{ count: 1, qty: 5 },
{ count: 2, qty: 10 },
{ count: 3, qty: 15 }

];

5. Invoke the reduceFunction2 first with myKey and valuesIdempotent and then with myKey and
values1:

reduceFunction2(myKey, valuesIdempotent);
reduceFunction2(myKey, values1);

6. Verify the reduceFunction2 returned the same result:

{ "count" : 6, "qty" : 30 }

27.5. Troubleshooting Map-Reduce Operations 295

MongoDB Documentation, Release 2.4.2

296 Chapter 27. Map-Reduce

CHAPTER 28

Simple Aggregation Methods and
Commands

In addition to the aggregation framework (page 249) and map-reduce, MongoDB provides the following methods and
commands to perform aggregation:

28.1 Count

MongoDB offers the following command and methods to provide count functionality:

• count (page 821)

• db.collection.count() (page 904)

• cursor.count() (page 891)

28.2 Distinct

MongoDB offers the following command and method to provide the distinct functionality:

• distinct (page 824)

• db.collection.distinct() (page 905)

28.3 Group

MongoDB offers the following command and method to provide group functionality:

• group (page 840)

• db.collection.group() (page 917)

297

MongoDB Documentation, Release 2.4.2

298 Chapter 28. Simple Aggregation Methods and Commands

Part VII

Indexes

299

MongoDB Documentation, Release 2.4.2

Indexes provide high performance read operations for frequently used queries. Indexes are particularly useful where
the total size of the documents exceeds the amount of available RAM.

For basic concepts and options, see Indexing Overview (page 303). For procedures and operational concerns, see
Indexing Operations (page 321). For information on how applications might use indexes, see Indexing Strategies
(page 315).

301

MongoDB Documentation, Release 2.4.2

302

CHAPTER 29

Index Concepts

29.1 Indexing Overview

This document provides an overview of indexes in MongoDB, including index types and creation options. For op-
erational guidelines and procedures, see the Indexing Operations (page 321) document. For strategies and practical
approaches, see the Indexing Strategies (page 315) document.

29.1.1 Synopsis

An index is a data structure that allows you to quickly locate documents based on the values stored in certain specified
fields. Fundamentally, indexes in MongoDB are similar to indexes in other database systems. MongoDB supports
indexes on any field or sub-field contained in documents within a MongoDB collection.

MongoDB indexes have the following core features:

• MongoDB defines indexes on a per-collection level.

• You can create indexes on a single field or on multiple fields using a compound index (page 305).

• Indexes enhance query performance, often dramatically. However, each index also incurs some overhead for
every write operation. Consider the queries, the frequency of these queries, the size of your working set, the
insert load, and your application’s requirements as you create indexes in your MongoDB environment.

• All MongoDB indexes use a B-tree data structure. MongoDB can use this representation of the data to optimize
query responses.

• Every query, including update operations, uses one and only one index. The query optimizer (page 168) selects
the index empirically by occasionally running alternate query plans and by selecting the plan with the best re-
sponse time for each query type. You can override the query optimizer using the cursor.hint() (page 894)
method.

• An index “covers” a query if:

– all the fields in the query (page 162) are part of that index, and

– all the fields returned in the documents that match the query are in the same index.

When an index covers a query, the server can both match the query conditions (page 162) and return the results
using only the index; MongoDB does not need to look at the documents, only the index, to fulfill the query.
Querying the index can be faster than querying the documents outside of the index.

303

MongoDB Documentation, Release 2.4.2

See Create Indexes that Support Covered Queries (page 316) for more information.

• Using queries with good index coverage reduces the number of full documents that MongoDB needs to store in
memory, thus maximizing database performance and throughput.

• If an update does not change the size of a document or cause the document to outgrow its allocated area, then
MongoDB will update an index only if the indexed fields have changed. This improves performance. Note that
if the document has grown and must move, all index keys must then update.

29.1.2 Index Types

This section enumerates the types of indexes available in MongoDB. For all collections, MongoDB creates the default
_id index (page 304). You can create additional indexes with the ensureIndex() (page 907) method on any single
field or sequence of fields (page 305) within any document or sub-document (page 305). MongoDB also supports
indexes of arrays, called multi-key indexes (page 307).

_id Index

The _id index is a unique index (page 308) 1 on the _id field, and MongoDB creates this index by default on all
collections. 2 You cannot delete the index on _id.

The _id field is the primary key for the collection, and every document must have a unique _id field. You may store
any unique value in the _id field. The default value of _id is an ObjectID on every insert() (page 920) operation.
An ObjectId is a 12-byte unique identifiers suitable for use as the value of an _id field.

Note: In sharded clusters, if you do not use the _id field as the shard key, then your application must ensure the
uniqueness of the values in the _id field to prevent errors. This is most-often done by using a standard auto-generated
ObjectId.

Secondary Indexes

All indexes in MongoDB are secondary indexes. You can create indexes on any field within any document or sub-
document. Additionally, you can create compound indexes with multiple fields, so that a single query can match
multiple components using the index while scanning fewer whole documents.

In general, you should create indexes that support your primary, common, and user-facing queries. Doing so requires
MongoDB to scan the fewest number of documents possible.

In the mongo (page 984) shell, you can create an index by calling the ensureIndex() (page 907) method. Argu-
ments to ensureIndex() (page 907) resemble the following:

{ "field": 1 }
{ "product.quantity": 1 }
{ "product": 1, "quantity": 1 }

For each field in the index specify either 1 for an ascending order or -1 for a descending order, which represents the
order of the keys in the index. For indexes with more than one key (i.e. compound indexes (page 305)) the sequence
of fields is important.

1 Although the index on _id is unique, the getIndexes() (page 915) method will not print unique: true in the mongo (page 984)
shell.

2 Before version 2.2 capped collections did not have an _id field. In 2.2, all capped collections have an _id field, except those in the local
database. See the release notes (page 1160) for more information.

304 Chapter 29. Index Concepts

MongoDB Documentation, Release 2.4.2

Indexes on Sub-documents

You can create indexes on fields that hold sub-documents as in the following example:

Example

Given the following document in the factories collection:

{ "_id": ObjectId(...), metro: { city: "New York", state: "NY" } })

You can create an index on the metro key. The following queries would then use that index, and both would return
the above document:

db.factories.find({ metro: { city: "New York", state: "NY" } });

db.factories.find({ metro: { $gte : { city: "New York" } } });

The second query returns the document because { city: "New York" } is less than { city: "New
York", state: "NY" } The order of comparison is in ascending key order in the order the keys occur in
the BSON document.

Indexes on Embedded Fields

You can create indexes on fields in sub-documents, just as you can index top-level fields in documents. 3 These
indexes allow you to use a “dot notation,” to introspect into sub-documents.

Consider a collection named people that holds documents that resemble the following example document:

{"_id": ObjectId(...)
"name": "John Doe"
"address": {

"street": "Main"
"zipcode": 53511
"state": "WI"
}

}

You can create an index on the address.zipcode field, using the following specification:

db.people.ensureIndex({ "address.zipcode": 1 })

Compound Indexes

MongoDB supports “compound indexes,” where a single index structure holds references to multiple fields within a
collection’s documents. Consider a collection named products that holds documents that resemble the following
document:

{
"_id": ObjectId(...)
"item": "Banana"
"category": ["food", "produce", "grocery"]
"location": "4th Street Store"
"stock": 4

3 Indexes on Sub-documents (page 305), by contrast allow you to index fields that hold documents, including the full content, up to the maximum
Index Size (page 1106) of the sub-document in the index.

29.1. Indexing Overview 305

MongoDB Documentation, Release 2.4.2

"type": cases
"arrival": Date(...)

}

If most applications queries include the item field and a significant number of queries will also check the stock
field, you can specify a single compound index to support both of these queries:

db.products.ensureIndex({ "item": 1, "location": 1, "stock": 1 })

Compound indexes support queries on any prefix of the fields in the index. 4 For example, MongoDB can use the
above index to support queries that select the item field and to support queries that select the item field and the
location field. The index, however, would not support queries that select the following:

• only the location field

• only the stock field

• only the location and stock fields

• only the item and stock fields

Important: You may not create compound indexes that have hashed index fields. You will receive an error if you
attempt to create a compound index that includes a hashed index (page 324).

When creating an index, the number associated with a key specifies the direction of the index. The options are 1
(ascending) and -1 (descending). Direction doesn’t matter for single key indexes or for random access retrieval but is
important if you are doing sort queries on compound indexes.

The order of fields in a compound index is very important. In the previous example, the index will contain references
to documents sorted first by the values of the item field and, within each value of the item field, sorted by the values
of location, and then sorted by values of the stock field.

Indexes with Ascending and Descending Keys

Indexes store references to fields in either ascending or descending order. For single-field indexes, the order of
keys doesn’t matter, because MongoDB can traverse the index in either direction. However, for compound indexes
(page 305), if you need to order results against two fields, sometimes you need the index fields running in opposite
order relative to each other.

To specify an index with a descending order, use the following form:

db.products.ensureIndex({ "field": -1 })

More typically in the context of a compound index (page 305), the specification would resemble the following proto-
type:

db.products.ensureIndex({ "fieldA": 1, "fieldB": -1 })

Consider a collection of event data that includes both usernames and a timestamp. If you want to return a list of events
sorted by username and then with the most recent events first. To create this index, use the following command:

db.events.ensureIndex({ "username" : 1, "timestamp" : -1 })

4 Index prefixes are the beginning subset of fields. For example, given the index { a: 1, b: 1, c: 1 } both { a: 1 } and {
a: 1, b: 1 } are prefixes of the index.

306 Chapter 29. Index Concepts

MongoDB Documentation, Release 2.4.2

Multikey Indexes

If you index a field that contains an array, MongoDB indexes each value in the array separately, in a “multikey index.”

Example

Given the following document:

{ "_id" : ObjectId("..."),
"name" : "Warm Weather",
"author" : "Steve",
"tags" : ["weather", "hot", "record", "april"] }

Then an index on the tags field would be a multikey index and would include these separate entries:

{ tags: "weather" }
{ tags: "hot" }
{ tags: "record" }
{ tags: "april" }

Queries could use the multikey index to return queries for any of the above values.

Note: For hashed indexes, MongoDB collapses sub-documents and computes the hash for the entire value, but does
not support multi-key (i.e. arrays) indexes. For fields that hold sub-documents, you cannot use the index to support
queries that introspect the sub-document.

You can use multikey indexes to index fields within objects embedded in arrays, as in the following example:

Example

Consider a feedback collection with documents in the following form:

{
"_id": ObjectId(...)
"title": "Grocery Quality"
"comments": [

{ author_id: ObjectId(...)
date: Date(...)
text: "Please expand the cheddar selection." },

{ author_id: ObjectId(...)
date: Date(...)
text: "Please expand the mustard selection." },

{ author_id: ObjectId(...)
date: Date(...)
text: "Please expand the olive selection." }

]
}

An index on the comments.text field would be a multikey index and would add items to the index for all of the
sub-documents in the array.

With an index, such as { comments.text: 1 } you, consider the following query:

db.feedback.find({ "comments.text": "Please expand the olive selection." })

This would select the document, that contains the following document in the comments.text array:

29.1. Indexing Overview 307

MongoDB Documentation, Release 2.4.2

{ author_id: ObjectId(...)
date: Date(...)
text: "Please expand the olive selection." }

Compound Multikey Indexes May Only Include One Array Field

While you can create multikey compound indexes (page 305), at most one field in a compound index may hold an
array. For example, given an index on { a: 1, b: 1 }, the following documents are permissible:

{a: [1, 2], b: 1}

{a: 1, b: [1, 2]}

However, the following document is impermissible, and MongoDB cannot insert such a document into a collection
with the {a: 1, b: 1 } index:

{a: [1, 2], b: [1, 2]}

If you attempt to insert a such a document, MongoDB will reject the insertion, and produce an error that says cannot
index parallel arrays. MongoDB does not index parallel arrays because they require the index to include
each value in the Cartesian product of the compound keys, which could quickly result in incredibly large and difficult
to maintain indexes.

Unique Indexes

A unique index causes MongoDB to reject all documents that contain a duplicate value for the indexed field. To
create a unique index on the user_id field of the members collection, use the following operation in the mongo
(page 984) shell:

db.addresses.ensureIndex({ "user_id": 1 }, { unique: true })

By default, unique is false on MongoDB indexes.

If you use the unique constraint on a compound index (page 305) then MongoDB will enforce uniqueness on the
combination of values, rather than the individual value for any or all values of the key.

If a document does not have a value for the indexed field in a unique index, the index will store a null value for this
document. MongoDB will only permit one document without a unique value in the collection because of this unique
constraint. You can combine with the sparse index (page 308) to filter these null values from the unique index.

You may not specify a unique constraint on a hashed index (page 309).

Sparse Indexes

Sparse indexes only contain entries for documents that have the indexed field. 5 Any document that is missing the
field is not indexed. The index is “sparse” because of the missing documents when values are missing.

By contrast, non-sparse indexes contain all documents in a collection, and store null values for documents that do
not contain the indexed field. Create a sparse index on the xmpp_id field, of the members collection, using the
following operation in the mongo (page 984) shell:

db.addresses.ensureIndex({ "xmpp_id": 1 }, { sparse: true })

5 All documents that have the indexed field are indexed in a sparse index, even if that field stores a null value in some documents.

308 Chapter 29. Index Concepts

MongoDB Documentation, Release 2.4.2

By default, sparse is false on MongoDB indexes.

Warning: Using these indexes will sometimes result in incomplete results when filtering or sorting results,
because sparse indexes are not complete for all documents in a collection.

Note: Do not confuse sparse indexes in MongoDB with block-level indexes in other databases. Think of them as
dense indexes with a specific filter.

You can combine the sparse index option with the unique indexes (page 308) option so that mongod (page 971) will
reject documents that have duplicate values for a field, but that ignore documents that do not have the key.

Hashed Index

New in version 2.4. Hashed indexes maintain entries with hashes of the values of the indexed field. The hashing
function collapses sub-documents and computes the hash for the entire value but does not support multi-key (i.e.
arrays) indexes.

MongoDB can use the hashed index to support equality queries, but hashed indexes do not support range queries.

You may not create compound indexes that have hashed index fields or specify a unique constraint
on a hashed index; however, you can create both a hashed index and an ascending/descending
(i.e. non-hashed) index on the same field: MongoDB will use the scalar index for range queries.

Warning: hashed indexes truncate floating point numbers to 64-bit integers before hashing. For example,
a hashed index would store the same value for a field that held a value of 2.3, 2.2 and 2.9. To prevent
collisions, do not use a hashed index for floating point numbers that cannot be consistently converted to 64-bit
integers (and then back to floating point.) hashed indexes do not support floating point values larger than 253.

Create a hashed index using an operation that resembles the following:

db.active.ensureIndex({ a: "hashed" })

This operation creates a hashed index for the active collection on the a field.

29.1.3 Index Creation Options

You specify index creation options in the second argument in ensureIndex() (page 907).

The options sparse (page 308), unique (page 308),and TTL (page 311) affect the kind of index that MongoDB creates.
This section addresses, background construction (page 309) and duplicate dropping (page 311), which affect how
MongoDB builds the indexes.

Background Construction

By default, creating an index is a blocking operation. Building an index on a large collection of data can take a
long time to complete. To resolve this issue, the background option can allow you to continue to use your mongod
(page 971) instance during the index build.

For example, to create an index in the background of the zipcode field of the people collection you would issue
the following:

db.people.ensureIndex({ zipcode: 1}, {background: true})

29.1. Indexing Overview 309

http://en.wikipedia.org/wiki/Database_index#Sparse_index

MongoDB Documentation, Release 2.4.2

By default, background is false for building MongoDB indexes.

You can combine the background option with other options, as in the following:

db.people.ensureIndex({ zipcode: 1}, {background: true, sparse: true })

Be aware of the following behaviors with background index construction:

• A mongod (page 971) instance can build more than one index in the background concurrently. Changed in
version 2.4: Before 2.4, a mongod (page 971) instance could only build one background index per database at
a time.Changed in version 2.2: Before 2.2, a single mongod (page 971) instance could only build one index at
a time.

• The indexing operation runs in the background so that other database operations can run while creating the
index. However, the mongo (page 984) shell session or connection where you are creating the index will block
until the index build is complete. Open another connection or mongo (page 984) instance to continue using
commands to the database.

• The background index operation use an incremental approach that is slower than the normal “foreground” index
builds. If the index is larger than the available RAM, then the incremental process can take much longer than
the foreground build.

• If your application includes ensureIndex() (page 907) operations, and an index doesn’t exist for other
operational concerns, building the index can have a severe impact on the performance of the database.

Make sure that your application checks for the indexes at start up using the getIndexes() (page 915) method
or the equivalent method for your driver and terminates if the proper indexes do not exist. Always build indexes
in production instances using separate application code, during designated maintenance windows.

Building Indexes on Secondaries

Background index operations on a replica set primary become foreground indexing operations on secondary members
of the set. All indexing operations on secondaries block replication.

To build large indexes on secondaries the best approach is to restart one secondary at a time in standalone mode and
build the index. After building the index, restart as a member of the replica set, allow it to catch up with the other
members of the set, and then build the index on the next secondary. When all the secondaries have the new index, step
down the primary, restart it as a standalone, and build the index on the former primary.

Remember, the amount of time required to build the index on a secondary node must be within the window of the
oplog, so that the secondary can catch up with the primary.

See Build Indexes on Replica Sets (page 325) for more information on this process.

Indexes on secondary members in “recovering” mode are always built in the foreground to allow them to catch up as
soon as possible.

See Build Indexes on Replica Sets (page 325) for a complete procedure for rebuilding indexes on secondaries.

Note: If MongoDB is building an index in the background, you cannot perform other administrative operations involv-
ing that collection, including repairDatabase (page 863), drop that collection (i.e. db.collection.drop()
(page 906),) and compact (page 816). These operations will return an error during background index builds.

Queries will not use these indexes until the index build is complete.

310 Chapter 29. Index Concepts

http://api.mongodb.org/

MongoDB Documentation, Release 2.4.2

Drop Duplicates

MongoDB cannot create a unique index (page 308) on a field that has duplicate values. To force the creation of a
unique index, you can specify the dropDups option, which will only index the first occurrence of a value for the key,
and delete all subsequent values.

Warning: As in all unique indexes, if a document does not have the indexed field, MongoDB will include it in
the index with a “null” value.
If subsequent fields do not have the indexed field, and you have set {dropDups: true}, MongoDB will
remove these documents from the collection when creating the index. If you combine dropDups with the sparse
(page 308) option, this index will only include documents in the index that have the value, and the documents
without the field will remain in the database.

To create a unique index that drops duplicates on the username field of the accounts collection, use a command
in the following form:

db.accounts.ensureIndex({ username: 1 }, { unique: true, dropDups: true })

Warning: Specifying { dropDups: true } will delete data from your database. Use with extreme cau-
tion.

By default, dropDups is false.

29.1.4 Index Features

TTL Indexes

TTL indexes are special indexes that MongoDB can use to automatically remove documents from a collection after
a certain amount of time. This is ideal for some types of information like machine generated event data, logs, and
session information that only need to persist in a database for a limited amount of time.

These indexes have the following limitations:

• Compound indexes (page 305) are not supported.

• The indexed field must be a date type.

• If the field holds an array, and there are multiple date-typed data in the index, the document will expire when
the lowest (i.e. earliest) matches the expiration threshold.

Note: TTL indexes expire data by removing documents in a background task that runs once a minute. As a result, the
TTL index provides no guarantees that expired documents will not exist in the collection. Consider that:

• Documents may remain in a collection after they expire and before the background process runs.

• The duration of the removal operations depend on the workload of your mongod (page 971) instance.

In all other respects, TTL indexes are normal indexes, and if appropriate, MongoDB can use these indexes to fulfill
arbitrary queries.

See Also:

Expire Data from Collections by Setting TTL (page 551)

29.1. Indexing Overview 311

MongoDB Documentation, Release 2.4.2

Geospatial Indexes

MongoDB provides “geospatial indexes” to support location-based and other similar queries in a two dimensional
coordinate systems. For example, use geospatial indexes when you need to take a collection of documents that have
coordinates, and return a number of options that are “near” a given coordinate pair.

To create a geospatial index, your documents must have a coordinate pair. For maximum compatibility, these coor-
dinate pairs should be in the form of a two element array, such as [x , y]. Given the field of loc, that held a
coordinate pair, in the collection places, you would create a geospatial index as follows:

db.places.ensureIndex({ loc : "2d" })

MongoDB will reject documents that have values in the loc field beyond the minimum and maximum values.

Note: MongoDB permits only one geospatial index per collection. Although, MongoDB will allow clients to create
multiple geospatial indexes, a single query can use only one index.

See the $near (page 756), and the database command geoNear (page 836) for more information on accessing
geospatial data.

Geohaystack Indexes

In addition to conventional geospatial indexes (page 312), MongoDB also provides a bucket-based geospatial index,
called “geospatial haystack indexes.” These indexes support high performance queries for locations within a small
area, when the query must filter along another dimension.

Example

If you need to return all documents that have coordinates within 25 miles of a given point and have a type field value
of “museum,” a haystack index would be provide the best support for these queries.

Haystack indexes allow you to tune your bucket size to the distribution of your data, so that in general you search only
very small regions of 2d space for a particular kind of document. These indexes are not suited for finding the closest
documents to a particular location, when the closest documents are far away compared to bucket size.

text Indexes

New in version 2.4. MongoDB provides text indexes to support the search of string content in documents of a
collection. text indexes are case-insensitive and can include any field that contains string data. text indexes drop
language-specific stop words (e.g. in English, “the,” “an,” “a,” “and,” etc.) and uses simple language-specific suffix
stemming. See Text Search Languages (page 361) for the supported languages.

You can only access the text index with the text (page 875) command.

See Text Search (page 349) for more information.

29.1.5 Index Behaviors

Limitations

• A collection may have no more than 64 indexes (page 1106).

• Index keys can be no larger than 1024 bytes (page 1106).

312 Chapter 29. Index Concepts

MongoDB Documentation, Release 2.4.2

Documents with fields that have values greater than this size cannot be indexed.

To query for documents that were too large to index, you can use a command similar to the following:

db.myCollection.find({<key>: <value too large to index>}).hint({$natural: 1})

• The name of an index, including the namespace must be shorter than 128 characters (page 1106).

• Indexes have storage requirements, and impacts insert/update speed to some degree.

• Create indexes to support queries and other operations, but do not maintain indexes that your MongoDB instance
cannot or will not use.

• For queries with the $or (page 760) operator, each clause of an $or (page 760) query executes in parallel, and
can each use a different index.

• For queries that use the sort() (page 900) method and use the $or (page 760) operator, the query cannot use
the indexes on the $or (page 760) fields.

• 2d geospatial queries (page 346) do not support queries that use the $or (page 760) operator.

Consider Insert Throughput

If your application is write-heavy, then be careful when creating new indexes, since each additional index with impose
a write-performance penalty. In general, don’t be careless about adding indexes. Add indexes to complement your
queries. Always have a good reason for adding a new index, and be sure to benchmark alternative strategies.

MongoDB must update all indexes associated with a collection after every insert, update, or delete operation. For
update operations, if the updated document does not move to a new location, then MongoDB only modifies the updated
fields in the index. Therefore, every index on a collection adds some amount of overhead to these write operations.
In almost every case, the performance gains that indexes realize for read operations are worth the insertion penalty.
However, in some cases:

• An index to support an infrequent query might incur more insert-related costs than savings in read-time.

• If you have many indexes on a collection with a high insert throughput and a number of related indexes, you
may find better overall performance with a smaller number of indexes, even if some queries are less optimally
supported by an index.

• If your indexes and queries are not sufficiently selective (page 319), the speed improvements for query opera-
tions may not offset the costs of maintaining an index. For more information see Create Queries that Ensure
Selectivity (page 319).

29.1. Indexing Overview 313

MongoDB Documentation, Release 2.4.2

314 Chapter 29. Index Concepts

CHAPTER 30

Indexing Strategies for Applications

30.1 Indexing Strategies

The best indexes for your application are based on a number of factors, including the kinds of queries you expect, the
ratio of reads to writes, and the amount of free memory on your system.

When developing your indexing strategy you should have a deep understanding of:

• The application’s queries.

• The relative frequency of each query in the application.

• The current indexes created for your collections.

• Which indexes the most common queries use.

The best overall strategy for designing indexes is to profile a variety of index configurations with data sets similar to
the ones you’ll be running in production to see which configurations perform best.

MongoDB can only use one index to support any given operation. However, each clause of an $or (page 760) query
may use a different index.

The following topics describe indexing strategies:

30.1.1 Create Indexes to Support Your Queries

An index supports a query when the index contains all the fields scanned by the query. The query scans the index and
not the collection. Creating indexes that supports queries results in greatly increased query performance.

This document describes strategies for creating indexes that support queries.

Create a Single-Key Index if All Queries Use the Same, Single Key

If you only ever query on a single key in a given collection, then you need to create just one single-key index for that
collection. For example, you might create an index on category in the product collection:

db.products.ensureIndex({ "category": 1 })

315

MongoDB Documentation, Release 2.4.2

Create Compound Indexes to Support Several Different Queries

If you sometimes query on only one key and at other times query on that key combined with a second key, then creating
a compound index is more efficient than creating a single-key index. MongoDB will use the compound index for both
queries. For example, you might create an index on both category and item.

db.products.ensureIndex({ "category": 1, "item": 1 })

This allows you both options. You can query on just category, and you also can query on category combined
with item. A single compound index (page 305) on multiple fields can support all the queries that search a “prefix”
subset of those fields.

Note: With the exception of queries that use the $or (page 760) operator, a query does not use multiple indexes. A
query uses only one index.

Example

The following index on a collection:

{ x: 1, y: 1, z: 1 }

Can support queries that the following indexes support:

{ x: 1 }
{ x: 1, y: 1 }

There are some situations where the prefix indexes may offer better query performance: for example if z is a large
array.

The { x: 1, y: 1, z: 1 } index can also support many of the same queries as the following index:

{ x: 1, z: 1 }

Also, { x: 1, z: 1 } has an additional use. Given the following query:

db.collection.find({ x: 5 }).sort({ z: 1})

The { x: 1, z: 1 } index supports both the query and the sort operation, while the { x: 1, y: 1,
z: 1 } index only supports the query. For more information on sorting, see Use Indexes to Sort Query Results
(page 317).

Create Indexes that Support Covered Queries

A covered query is a query in which:

• all the fields in the query (page 162) are part of an index, and

• all the fields returned in the results are in the same index.

Because the index “covers” the query, MongoDB can both match the query conditions (page 162) and return the
results using only the index; MongoDB does not need to look at the documents, only the index, to fulfill the query.

Querying only the index can be much faster than querying documents outside of the index. Index keys are typically
smaller than the documents they catalog, and indexes are typically available in RAM or located sequentially on disk.

MongoDB automatically uses an index that covers a query when possible. To ensure that an index can cover a query,
create an index that includes all the fields listed in the query document (page 162) and in the query result. You can
specify the fields to return in the query results with a projection (page 165) document. By default, MongoDB includes

316 Chapter 30. Indexing Strategies for Applications

MongoDB Documentation, Release 2.4.2

the _id field in the query result. So, if the index does not include the _id field, then you must exclude the _id field
(i.e. _id: 0) from the query results.

Example

Given collection users with an index on the fields user and status, as created by the following option:

db.users.ensureIndex({ status: 1, user: 1 })

Then, this index will cover the following query which selects on the status field and returns only the user field:

db.users.find({ status: "A" }, { user: 1, _id: 0 })

In the operation, the projection document explicitly specifies _id: 0 to exclude the _id field from the result since
the index is only on the status and the user fields.

If the projection document does not specify the exclusion of the _id field, the query returns the _id field. The
following query is not covered by the index on the status and the user fields because with the projection document
{ user: 1 }, the query returns both the user field and the _id field:

db.users.find({ status: "A" }, { user: 1 })

An index cannot cover a query if:

• any of the indexed fields in any of the documents in the collection includes an array. If an indexed field is an
array, the index becomes a multi-key index (page 307) index and cannot support a covered query.

• any of the indexed fields are fields in subdocuments. To index fields in subdocuments, use dot notation. For
example, consider a collection users with documents of the following form:

{ _id: 1, user: { login: "tester" } }

The collection has the following indexes:

{ user: 1 }

{ "user.login": 1 }

The { user: 1 } index covers the following query:

db.users.find({ user: { login: "tester" } }, { user: 1, _id: 0 })

However, the { "user.login": 1 } index does not cover the following query:

db.users.find({ "user.login": "tester" }, { "user.login": 1, _id: 0 })

The query, however, does use the { "user.login": 1 } index to find matching documents.

To determine whether a query is a covered query, use the explain() (page 892) method. If the explain()
(page 892) output displays true for the indexOnly (page 1088) field, the query is covered by an index, and
MongoDB queries only that index to match the query and return the results.

For more information see Measure Index Use (page 329).

30.1.2 Use Indexes to Sort Query Results

For the fastest performance when sorting query results by a given field, create a sorted index on that field.

30.1. Indexing Strategies 317

MongoDB Documentation, Release 2.4.2

To sort query results on multiple fields, create a compound index (page 305). MongoDB sorts results based on the
field order in the index. For queries that include a sort that uses a compound index, ensure that all fields before the
first sorted field are equality matches.

Example

If you create the following index:

{ a: 1, b: 1, c: 1, d: 1 }

The following query and sort operations can use the index:

db.collection.find().sort({ a:1 })
db.collection.find().sort({ a:1, b:1 })

db.collection.find({ a:4 }).sort({ a:1, b:1 })
db.collection.find({ b:5 }).sort({ a:1, b:1 })

db.collection.find({ a:5 }).sort({ b:1, c:1 })

db.collection.find({ a:5, c:4, b:3 }).sort({ d:1 })

db.collection.find({ a: { $gt:4 } }).sort({ a:1, b:1 })
db.collection.find({ a: { $gt:5 } }).sort({ a:1, b:1 })

db.collection.find({ a:5, b:3, d:{ $gt:4 } }).sort({ c:1 })
db.collection.find({ a:5, b:3, c:{ $lt:2 }, d:{ $gt:4 } }).sort({ c:1 })

However, the following queries cannot sort the results using the index:

db.collection.find().sort({ b:1 })
db.collection.find({ b:5 }).sort({ b:1 })

Note: For in-memory sorts that do not use an index, the sort() (page 900) operation is significantly slower. The
sort() (page 900) operation will abort when it uses 32 megabytes of memory.

30.1.3 Ensure Indexes Fit RAM

For the fastest processing, ensure that your indexes fit entirely in RAM so that the system can avoid reading the index
from disk.

To check the size of your indexes, use the db.collection.totalIndexSize() (page 932) helper, which
returns data in bytes:

> db.collection.totalIndexSize()
4294976499

The above example shows an index size of almost 4.3 gigabytes. To ensure this index fits in RAM, you must not only
have more than that much RAM available but also must have RAM available for the rest of the working set. Also
remember:

If you have and use multiple collections, you must consider the size of all indexes on all collections. The indexes and
the working set must be able to fit in memory at the same time.

There are some limited cases where indexes do not need to fit in memory. See Indexes that Hold Only Recent Values
in RAM (page 319).

318 Chapter 30. Indexing Strategies for Applications

MongoDB Documentation, Release 2.4.2

See Also:

For additional collection statistics (page 1072), use collStats (page 815) or db.collection.stats()
(page 931).

Indexes that Hold Only Recent Values in RAM

Indexes do not have to fit entirely into RAM in all cases. If the value of the indexed field increments with every insert,
and most queries select recently added documents; then MongoDB only needs to keep the parts of the index that hold
the most recent or “right-most” values in RAM. This allows for efficient index use for read and write operations and
minimize the amount of RAM required to support the index.

30.1.4 Create Queries that Ensure Selectivity

Selectivity is the ability of a query to narrow results using the index. Effective indexes are more selective and allow
MongoDB to use the index for a larger portion of the work associated with fulfilling the query.

To ensure selectivity, write queries that limit the number of possible documents with the indexed field. Write queries
that are appropriately selective relative to your indexed data.

Example

Suppose you have a field called status where the possible values are new and processed. If you add an index
on status you’ve created a low-selectivity index. The index will be of little help in locating records.

A better strategy, depending on your queries, would be to create a compound index (page 305) that includes the low-
selectivity field and another field. For example, you could create a compound index on status and created_at.

Another option, again depending on your use case, might be to use separate collections, one for each status.

Example

Consider an index { a : 1 } (i.e. an index on the key a sorted in ascending order) on a collection where a has
three values evenly distributed across the collection:

{ _id: ObjectId(), a: 1, b: "ab" }
{ _id: ObjectId(), a: 1, b: "cd" }
{ _id: ObjectId(), a: 1, b: "ef" }
{ _id: ObjectId(), a: 2, b: "jk" }
{ _id: ObjectId(), a: 2, b: "lm" }
{ _id: ObjectId(), a: 2, b: "no" }
{ _id: ObjectId(), a: 3, b: "pq" }
{ _id: ObjectId(), a: 3, b: "rs" }
{ _id: ObjectId(), a: 3, b: "tv" }

If you query for { a: 2, b: "no" } MongoDB must scan 3 documents in the collection to return the one
matching result. Similarly, a query for { a: { $gt: 1}, b: "tv" } must scan 6 documents, also to
return one result.

Consider the same index on a collection where a has nine values evenly distributed across the collection:

{ _id: ObjectId(), a: 1, b: "ab" }
{ _id: ObjectId(), a: 2, b: "cd" }
{ _id: ObjectId(), a: 3, b: "ef" }
{ _id: ObjectId(), a: 4, b: "jk" }
{ _id: ObjectId(), a: 5, b: "lm" }

30.1. Indexing Strategies 319

MongoDB Documentation, Release 2.4.2

{ _id: ObjectId(), a: 6, b: "no" }
{ _id: ObjectId(), a: 7, b: "pq" }
{ _id: ObjectId(), a: 8, b: "rs" }
{ _id: ObjectId(), a: 9, b: "tv" }

If you query for { a: 2, b: "cd" }, MongoDB must scan only one document to fulfill the query. The index
and query are more selective because the values of a are evenly distributed and the query can select a specific document
using the index.

However, although the index on a is more selective, a query such as { a: { $gt: 5 }, b: "tv" }would
still need to scan 4 documents.

If overall selectivity is low, and if MongoDB must read a number of documents to return results, then some queries
may perform faster without indexes. To determine performance, see Measure Index Use (page 329).

For a conceptual introduction to indexes in MongoDB see Indexing Overview (page 303).

320 Chapter 30. Indexing Strategies for Applications

CHAPTER 31

Index Tutorials

31.1 Indexing Operations

Indexes allow MongoDB to process and fulfill queries quickly by creating small and efficient representations of the
documents in a collection.

The documents in this section outline specific tasks related to building and maintaining indexes for data in MongoDB
collections. For a conceptual overview of MongoDB indexing, see the Indexing Overview (page 303) document. For
strategies and practical approaches, see the Indexing Strategies (page 315) document.

31.1.1 Create an Index

Indexes allow MongoDB to process and fulfill queries quickly by creating small and efficient representations of the
documents in a collection. MongoDB creates an index on the _id field of every collection by default, but allows users
to create indexes for any collection using on any field in a document.

This tutorial describes how to create an index on a single field. MongoDB also supports compound indexes (page 305),
which are indexes on multiple fields. See Create a Compound Index (page 322) for instructions on building compound
indexes.

Build a Foreground Index on a Single Field

To create an index, use db.collection.ensureIndex() (page 907) or a similar method from your driver. For
example the following creates an index on the phone-number field of the people collection:

db.people.ensureIndex({ "phone-number": 1 })

ensureIndex() (page 907) only creates an index if an index of the same specification does not already exist.

All indexes support and optimize the performance for queries that select on this field. For queries that cannot use an
index, MongoDB must scan all documents in a collection for documents that match the query.

Examples

If you create an index on the user_id field in the records, this index is, the index will support the following
query:

321

http://api.mongodb.org/

MongoDB Documentation, Release 2.4.2

db.records.find({ user_id: 2 })

However, the following query, on the profile_url field is not supported by this index:

db.records.find({ profile_url: 2 })

Additional Considerations

If your collection holds a large amount of data, and your application needs to be able to access the data while building
the index, consider building the index in the background, as described in Background Construction (page 309). To
build indexes on replica sets, see the Build Indexes on Replica Sets (page 325) section for more information.

Note: To build or rebuild indexes for a replica set see Build Indexes on Replica Sets (page 325).

Some drivers may specify indexes, using NumberLong(1) rather than 1 as the specification. This does not have any
affect on the resulting index.

See Also:

Create a Compound Index (page 322), Indexing Operations (page 321) and Indexing Overview (page 303) for more
information.

31.1.2 Create a Compound Index

Indexes allow MongoDB to process and fulfill queries quickly by creating small and efficient representations of the
documents in a collection. MongoDB supports indexes that include content on a single field, as well as compound
indexes (page 305) that include content from multiple fields. Continue reading for instructions and examples of
building a compound index.

Build a Compound Index

To create a compound index (page 305) use an operation that resembles the following prototype:

db.collection.ensureIndex({ a: 1, b: 1, c: 1 })

Example

The following operation will create an index on the item, category, and price fields of the products collec-
tion:

db.products.ensureIndex({ item: 1, category: 1, price: 1 })

Additional Considerations

If your collection holds a large amount of data, and your application needs to be able to access the data while building
the index, consider building the index in the background, as described in Background Construction (page 309). To
build indexes on replica sets, see the Build Indexes on Replica Sets (page 325) section for more information.

Note: To build or rebuild indexes for a replica set see Build Indexes on Replica Sets (page 325).

322 Chapter 31. Index Tutorials

MongoDB Documentation, Release 2.4.2

Some drivers may specify indexes, using NumberLong(1) rather than 1 as the specification. This does not have any
affect on the resulting index.

See Also:

Create an Index (page 321), Indexing Operations (page 321) and Indexing Overview (page 303) for more information.

31.1.3 Create a Unique Index

MongoDB allows you to specify a unique constraint (page 308) on an index. These constraints prevent applications
from inserting documents that have duplicate values for the inserted fields. Additionally, if you want to create an index
on a collection that has existing data that might have duplicate values for the indexed field, you may chose combine
unique enforcement with duplicate dropping (page 311).

Unique Indexes

To create a unique indexes (page 308), consider the following prototype:

db.collection.ensureIndex({ a: 1 }, { unique: true })

For example, you may want to create a unique index on the "tax-id": of the accounts collection to prevent
storing multiple account records for the same legal entity:

db.accounts.ensureIndex({ "tax-id": 1 }, { unique: true })

The _id index (page 304) is a unique index. In some situations you may consider using _id field itself for this kind of
data rather than using a unique index on another field.

In many situations you will want to combine the unique constraint with the sparse option. When MongoDB
indexes a field, if a document does not have a value for a field, the index entry for that item will be null. Since
unique indexes cannot have duplicate values for a field, without the sparse option, MongoDB will reject the second
document and all subsequent documents without the indexed field. Consider the following prototype.

db.collection.ensureIndex({ a: 1 }, { unique: true, sparse: true })

You can also enforce a unique constraint on compound indexes (page 305), as in the following prototype:

db.collection.ensureIndex({ a: 1, b: 1 }, { unique: true })

These indexes enforce uniqueness for the combination of index keys and not for either key individually.

Drop Duplicates

To force the creation of a unique index (page 308) index on a collection with duplicate values in the field you
are indexing you can use the dropDups option. This will force MongoDB to create a unique index by delet-
ing documents with duplicate values when building the index. Consider the following prototype invocation of
db.collection.ensureIndex() (page 907):

db.collection.ensureIndex({ a: 1 }, { dropDups: true })

See the full documentation of duplicate dropping (page 311) for more information.

Warning: Specifying { dropDups: true } may delete data from your database. Use with extreme cau-
tion.

Refer to the ensureIndex() (page 907) documentation for additional index creation options.

31.1. Indexing Operations 323

MongoDB Documentation, Release 2.4.2

31.1.4 Create a Sparse Index

Sparse indexes are like non-sparse indexes, except that they omit references to documents that do not include the
indexed field. For fields that are only present in some documents sparse indexes may provide a significant space
savings. See Sparse Indexes (page 308) for more information about sparse indexes and their use.

See Also:

Indexing Overview (page 303) and Indexing Operations (page 321) for more information.

Prototype

To create a sparse index (page 308) on a field, use an operation that resembles the following prototype:

db.collection.ensureIndex({ a: 1 }, { sparse: true })

Example

The following operation, creates a sparse index on the users collection that only includes a document in the index if
the twitter_name field exists in a document.

db.users.ensureIndex({ twitter_name: 1 }, { sparse: true })

The index excludes all documents that do not include the twitter_name field.

Considerations

Note: Sparse indexes can affect the results returned by the query, particularly with respect to sorts on fields not
included in the index. See the sparse index (page 308) section for more information.

31.1.5 Create a Hashed Index

New in version 2.4. Hashed indexes (page 309) compute a hash of the value of a field in a collection and index the
hashed value. These indexes permit equality queries and may be suitable shard keys for some collections.

See Also:

Hashed Sharding (page 464) for more information about hashed indexes in sharded clusters, as well as Indexing
Overview (page 303) and Indexing Operations (page 321) for more information about indexes.

Operation

To create a hashed index (page 309), specify hashed as the value of the index key, as in the following prototype:

Example

db.collection.ensureIndex({ a: "hashed" })

324 Chapter 31. Index Tutorials

MongoDB Documentation, Release 2.4.2

Considerations

MongoDB supports hashed indexes of any single field. The hashing function collapses sub-documents and computes
the hash for the entire value, but does not support multi-key (i.e. arrays) indexes.

You may not create compound indexes that have hashed index fields.

31.1.6 Build Indexes on Replica Sets

Background index creation operations (page 309) become foreground indexing operations on secondary members of
replica sets. The foreground index building process blocks all replication and read operations on the secondaries while
they build the index.

Secondaries will begin building indexes after the primary finishes building the index. In sharded clusters, the mongos
(page 981) will send ensureIndex() (page 907) to the primary members of the replica set for each shard, which
then replicate to the secondaries after the primary finishes building the index.

To minimize the impact of building an index on your replica set, use the following procedure to build indexes on
secondaries:

See Also:

Indexing Operations (page 321) and Indexing Overview (page 303) for more information.

Considerations

Warning: Ensure that your oplog is large enough to permit the indexing or re-indexing operation to complete
without falling too far behind to catch up. See the “oplog sizing (page 372)” documentation for additional infor-
mation.

Note: This procedure does take one member out of the replica set at a time. However, this procedure will only affect
one member of the set at a time rather than all secondaries at the same time.

Procedure

Note: If you need to build an index in a sharded cluster, repeat the following procedure for each replica set that
provides each shard.

Stop One Secondary

Stop the mongod (page 971) process on one secondary. Restart the mongod (page 971) process without the
--replSet (page 977) option and running on a different port. 1 This instance is now in “standalone” mode.

For example, if your mongod (page 971) normally runs with on the default port of 27017 with the --replSet
(page 977) option you would use the following invocation:

mongod --port 47017

1 By running the mongod (page 971) on a different port, you ensure that the other members of the replica set and all clients will not contact the
member while you are building the index.

31.1. Indexing Operations 325

MongoDB Documentation, Release 2.4.2

Build the Index

Create the new index using the ensureIndex() (page 907) in the mongo (page 984) shell, or comparable method
in your driver. This operation will create or rebuild the index on this mongod (page 971) instance

For example, to create an ascending index on the username field of the records collection, use the following
mongo (page 984) shell operation:

db.records.ensureIndex({ username: 1 })

See Also:

Create an Index (page 321) and Create a Compound Index (page 322) for more information.

Restart the Program mongod

When the index build completes, estart the mongod (page 971) instance with the --replSet (page 977) option on
its usual port:

mongod --port 27017 --replSet rs0

Modify the port number (e.g. 27017) or the replica set name (e.g. rs0) as needed.

Allow replication to catch up on this member.

Build Indexes on all Secondaries

For each secondary in the set, build an index according to the following steps:

1. Stop One Secondary (page 325)

2. Build the Index (page 326)

3. Restart the Program mongod (page 326)

Build the Index on the Primary

Finally, to build the index on the primary, begin by stepping down the primary. Use the rs.stepDown() (page 953)
method in the mongo (page 984) shell to cause the current primary to become a secondary graceful and allow the set
to elect another member as primary.

Then repeat the index building procedure, listed below, to build the index on the primary:

1. Stop One Secondary (page 325)

2. Build the Index (page 326)

3. Restart the Program mongod (page 326)

31.1.7 Build Indexes in the Background

By default, MongoDB builds indexes in the foreground, which means that these indexes block all other read and write
operations to the database while the index builds. Background index construction (page 309) allows read and write
operations to continue while building the index; however, these index builds take longer to complete and result in a
larger index.

See Also:

326 Chapter 31. Index Tutorials

MongoDB Documentation, Release 2.4.2

Indexing Overview (page 303) and Indexing Operations (page 321) for more infomration.

Procedure

To create an index in the background, add the background argument to the ensureIndex() (page 907) operation,
as in the following index:

db.collection.ensureIndex({ a: 1 }, { background: true })

Consider the section on background index construction (page 309) for more information about these indexes and their
implications.

31.1.8 Remove Indexes

To remove an index from a collection use the dropIndex() (page 906) method and the following procedure. If you
simply need to rebuild indexes you can use the process described in the Rebuild Indexes (page 327) document.

See Also:

Indexing Operations (page 321) and Indexing Overview (page 303) for more information about indexes and indexing
operations in MongoDB.

Operations

To remove an index, use the db.collection.dropIndex() (page 906) method, as in the following example:

db.accounts.dropIndex({ "tax-id": 1 })

This will remove the index on the "tax-id" field in the accounts collection. The shell provides the following
document after completing the operation:

{ "nIndexesWas" : 3, "ok" : 1 }

Where the value of nIndexesWas reflects the number of indexes before removing this index. You can also use the
db.collection.dropIndexes() (page 907) to remove all indexes, except for the _id index (page 304) from a
collection.

These shell helpers provide wrappers around the dropIndexes (page 825) database command. Your client library
(page 529) may have a different or additional interface for these operations.

31.1.9 Rebuild Indexes

If you need to rebuild indexes for a collection you can use the db.collection.reIndex() (page 928) method
to rebuild all indexes on a collection in a single operation. This operation drops all indexes, including the _id index
(page 304), and then rebuilds all indexes.

See Also:

Indexing Overview (page 303) and Indexing Operations (page 321).

Process

The operation takes the following form:

31.1. Indexing Operations 327

MongoDB Documentation, Release 2.4.2

db.accounts.reIndex()

MongoDB will return the following document when the operation completes:

{
"nIndexesWas" : 2,
"msg" : "indexes dropped for collection",
"nIndexes" : 2,
"indexes" : [

{
"key" : {

"_id" : 1,
"tax-id" : 1

},
"ns" : "records.accounts",
"name" : "_id_"

}
],
"ok" : 1

}

This shell helper provides a wrapper around the reIndex (page 860) database command. Your client library
(page 529) may have a different or additional interface for this operation.

Additional Considerations

Note: To build or rebuild indexes for a replica set see Build Indexes on Replica Sets (page 325).

31.1.10 Monitor and Manage In Progress Index Creation and Building

To see the status of the indexing processes, you can use the db.currentOp() (page 936) method in the mongo
(page 984) shell. The value of the query field and the msg field will indicate if the operation is an index build. The
msg field also indicates the percent of the build that is complete.

To terminate an ongoing index build, use the db.killOp() (page 941) method in the mongo (page 984) shell.

For more information about the output of db.currentOp() (page 936), see the Current Operation Reporting
(page 1078). Changed in version 2.4: Before MongoDB 2.4, you could only terminate background index builds. After
2.4, you can terminate any index build, including foreground index builds.

31.1.11 Return a List of All Indexes

When performing maintenance you may want to check which indexes exist on a collection. Every index on a collection
has a corresponding document in the system.indexes (page 1101) collection, and you can use standard queries
(i.e. find() (page 910)) to list the indexes, or in the mongo (page 984) shell, the getIndexes() (page 915)
method to return a list of the indexes on a collection, as in the following examples.

See Also:

Indexing Overview (page 303) and Indexing Operations (page 321) for more information about indexes in MongoDB
and common index management operations.

328 Chapter 31. Index Tutorials

MongoDB Documentation, Release 2.4.2

List all Indexes on a Collection

To return a list of all indexes on a collection, use the, use the db.collection.getIndexes() (page 915) method
or a similar method for your driver.

For example, to view all indexes on the people collection:

db.people.getIndexes()

List all Indexes for a Database

To return a list of all indexes on all collections in a database, use the following operation in the mongo (page 984)
shell:

db.system.indexes.find()

See system.indexes (page 1101) for more information about these documents.

31.1.12 Measure Index Use

Synopsis

Query performance is a good general indicator of index use; however, for more precise insight into index use, Mon-
goDB provides a number of tools that allow you to study query operations and observe index use for your database.

See Also:

Indexing Overview (page 303), Indexing Strategies (page 315), and Indexing Operations (page 321) for more informa-
tion.

Operations

Return Query Plan with explain()

Append the explain() (page 892) method to any cursor (e.g. query) to return a document with statistics about the
query process, including the index used, the number of documents scanned, and the time the query takes to process in
milliseconds.

Control Index Use with hint()

Append the hint() (page 894) to any cursor (e.g. query) with the index as the argument to force MongoDB to use a
specific index to fulfill the query. Consider the following example:

db.people.find({ name: "John Doe", zipcode: { $gt: 63000 } } }).hint({ zipcode: 1 })

You can use hint() (page 894) and explain() (page 892) in conjunction with each other to compare the effec-
tiveness of a specific index. Specify the $natural operator to the hint() (page 894) method to prevent MongoDB
from using any index:

db.people.find({ name: "John Doe", zipcode: { $gt: 63000 } } }).hint({ $natural: 1 })

31.1. Indexing Operations 329

http://api.mongodb.org/

MongoDB Documentation, Release 2.4.2

Instance Index Use Reporting

MongoDB provides a number of metrics of index use and operation that you may want to consider when analyzing
index use for your database:

• In the output of serverStatus (page 869):

– indexCounters (page 1058)

– scanned (page 1068)

– scanAndOrder (page 1068)

• In the output of collStats (page 815):

– totalIndexSize (page 1073)

– indexSizes (page 1074)

• In the output of dbStats (page 823):

– dbStats.indexes (page 1071)

– dbStats.indexSize (page 1071)

31.1.13 Build Old Style Indexes

Important: Use this procedure only if you must have indexes that are compatible with a version of MongoDB earlier
than 2.0.

MongoDB version 2.0 introduced the {v:1} index format. MongoDB versions 2.0 and later support both the {v:1}
format and the earlier {v:0} format.

MongoDB versions prior to 2.0, however, support only the {v:0} format. If you need to roll back MongoDB to a
version prior to 2.0, you must drop and re-create your indexes.

To build pre-2.0 indexes, use the dropIndexes() (page 907) and ensureIndex() (page 907) methods. You
cannot simply reindex the collection. When you reindex on versions that only support {v:0} indexes, the v fields in
the index definition still hold values of 1, even though the indexes would now use the {v:0} format. If you were to
upgrade again to version 2.0 or later, these indexes would not work.

Example

Suppose you rolled back from MongoDB 2.0 to MongoDB 1.8, and suppose you had the following index on the
items collection:

{ "v" : 1, "key" : { "name" : 1 }, "ns" : "mydb.items", "name" : "name_1" }

The v field tells you the index is a {v:1} index, which is incompatible with version 1.8.

To drop the index, issue the following command:

db.items.dropIndex({ name : 1 })

To recreate the index as a {v:0} index, issue the following command:

db.foo.ensureIndex({ name : 1 } , { v : 0 })

330 Chapter 31. Index Tutorials

MongoDB Documentation, Release 2.4.2

See Also:

Index Performance Enhancements (page 1166).

31.1. Indexing Operations 331

MongoDB Documentation, Release 2.4.2

332 Chapter 31. Index Tutorials

CHAPTER 32

Geospatial Indexing

See Geospatial Indexes and Queries (page 333) for an introduction to geospatial indexing.

32.1 Geospatial Indexes and Queries

MongoDB offers a number of indexes and query mechanisms to handle geospatial information. This section introduces
MongoDB’s geospatial features.

32.1.1 Surfaces

Before storing your location data and writing queries, you must decide the type of surface to use to perform calcula-
tions. The type you choose affects how you store data, what type of index to build, and the syntax of your queries.

MongoDB offers two surface types:

• Spherical

To calculate geometry over an Earth-like sphere, store your location data on a spherical surface and use 2dsphere
(page 338) index.

Store your location data as GeoJSON objects with this coordinate-axis order: longitude, latitude. The coordi-
nate reference system for GeoJSON uses the WGS84 datum.

• Flat

To calculate distances on a Euclidean plane, store your location data as legacy coordinate pairs and use a 2d
(page 334) index.

32.1.2 Location Data

If you choose spherical surface calculations, you store location data as

• GeoJSON objects (preferred).

Queries on GeoJSON objects always calculate on a sphere. The default coordinate reference system for Geo-
JSON uses the WGS84 datum. New in version 2.4: The storage and querying of GeoJSON objects is new in
version 2.4. Prior to version 2.4, all geospatial data was stored as coordinate pairs. MongoDB supports the
following GeoJSON objects:

333

MongoDB Documentation, Release 2.4.2

– Point

– LineString

– Polygon

• Legacy coordinate pairs

MongoDB supports spherical surface calculations on legacy coordinate pairs by converting the data to the Geo-
JSON Point type.

If you choose flat surface calculations, you can store data only as legacy coordinate pairs.

32.1.3 Query Operations

MongoDB’s geospatial query operators let you query for:

• Inclusion. MongoDB can query for locations contained entirely within a specified polygon. Inclusion queries
use the $geoWithin (page 747) operator.

• Intersection. MongoDB can query for locations that intersect with a specified geometry. These queries apply
only to data on a spherical surface. These queries use the $geoIntersects (page 746) operator.

• Proximity. MongoDB can query for the points nearest to another point. Proximity queries use the $near
(page 756) operator. The $near (page 756) operator requires a 2d or 2dsphere index.

32.1.4 Geospatial Indexes

MongoDB provides the following geospatial index types to support the geospatial queries:

• 2dsphere (page 338), which supports:

– Calculations on a sphere

– Both GeoJSON objects and legacy coordinate pairs

– A compound index with scalar index fields (i.e. ascending or descending) as a prefix or suffix of the
2dsphere index field

New in version 2.4: 2dsphere indexes are not available before version 2.4.

• 2d (page 334), which supports:

– Calculations using flat geometry

– Legacy coordinate pairs (i.e., geospatial points on a flat coordinate system)

– A compound index with only one additional field, as a suffix of the 2d index field

32.1.5 Additional Resources

Consider the following pages for complete documentation of geospatial indexes and queries:

2d Indexes

Use a 2d index for data stored as points on a two-dimensional plane. The 2d index is intended for legacy coordinate
pairs used in MongoDB 2.2 and earlier.

Use a 2d index if:

334 Chapter 32. Geospatial Indexing

MongoDB Documentation, Release 2.4.2

• your database has legacy location data from MongoDB 2.2 or earlier, and

• you do not intend to store any location data as GeoJSON objects.

Do not use a 2d index if your location data includes GeoJSON objects. To index on both legacy coordinate pairs and
GeoJSON objects, use a 2dsphere index (page 338).

The 2d index supports calculations on a flat, Euclidean plane. The 2d index also supports distance-only calculations
on a sphere, but for geometric calculations on a sphere, store data as GeoJSON objects and use the 2dsphere index
type.

A 2d index can reference two fields. The first must be the location field. A 2d compound index constructs queries
that select first on the location field and second on the additional field. If the location criteria selects a large number of
documents, the additional criteria only filters the result set. The additional criteria does not result in a more targeted
query.

MongoDB allows one 2d index per collection.

Important: You cannot use a 2d index as a shard key when sharding a collection. However, you can create and
maintain a geospatial index on a sharded collection by using a different field as the shard key.

Store Points on a 2D Plane

To store location data as legacy coordinate pairs, use either an array (preferred):

loc : [<longitude> , <latitude>]

Or an embedded document:

loc : { lng : <longitude> , lat : <latitude> }

Arrays are preferred as certain languages do not guarantee associative map ordering.

Whether as an array or document, if you use longitude and latitude, store coordinates in this order: longitude, latitude.

Create a 2d Index

To build a geospatial 2d index, use the ensureIndex() (page 907) method and specify 2d. Use the following
syntax:

db.<collection>.ensureIndex({ <location field> : "2d" , <additional field> : <value> } ,
{ <index-specification options> })

The 2d index uses the following optional index-specification options:

{ min : <lower bound> , max : <upper bound> ,
bits : <bit precision> }

Define Location Range for a 2d Index By default, a 2d index assumes longitude and latitude and has boundaries
of -180 inclusive and 180 non-inclusive (i.e. [-180 , 180]). If documents contain coordinate data outside of
the specified range, MongoDB returns an error.

Important: The default boundaries allow applications to insert documents with invalid latitudes greater than 90 or
less than -90. The behavior of geospatial queries with such invalid points is not defined.

32.1. Geospatial Indexes and Queries 335

MongoDB Documentation, Release 2.4.2

On 2d indexes you can change the location range.

You can build a 2d geospatial index with a location range other than the default. Use the min and max options when
creating the index. Use the following syntax:

db.collection.ensureIndex({ <location field> : "2d" } ,
{ min : <lower bound> , max : <upper bound> })

Define Location Precision for a 2d Index By default, a 2d index on legacy coordinate pairs uses 26 bits of pre-
cision, which is roughly equivalent to 2 feet or 60 centimeters of precision using the default range of -180 to 180.
Precision is measured by the size in bits of the geohash values used to store location data. You can configure geospa-
tial indexes with up to 32 bits of precision.

Index precision does not affect query accuracy. The actual grid coordinates are always used in the final query process-
ing. Advantages to lower precision are a lower processing overhead for insert operations and use of less space. An
advantage to higher precision is that queries scan smaller portions of the index to return results.

To configure a location precision other than the default, use the bits option when creating the index. Use following
syntax:

db.<collection>.ensureIndex({<location field> : "<index type>"} ,
{ bits : <bit precision> })

For information on the internals of geohash values, see Geohash Values (page 346).

Query a 2d Index

The following sections describe queries supported by the 2d index. For an overview of recommended geospatial
queries, see Geospatial Query Compatibility Chart (page 342).

Points within a Shape Defined on a Flat Surface To select all legacy coordinate pairs found within a given shape
on a flat surface, use the $geoWithin (page 747) operator along with a shape operator. Use the following syntax:

db.<collection>.find({ <location field> :
{ $geoWithin :

{ $box|$polygon|$center : <coordinates>
} } })

The following queries for documents within a rectangle defined by [0 , 0] at the bottom left corner and by [
100 , 100] at the top right corner.

db.places.find({ loc :
{ $geoWithin :

{ $box : [[0 , 0] ,
[100 , 100]]

} } })

The following queries for documents that are within the circle centered on [-74 , 40.74] and with a radius of
10:

db.places.find({ loc: { $geoWithin :
{ $center : [[-74, 40.74] , 10]

} } })

For syntax and examples for each shape, see the following:

• $box (page 742)

336 Chapter 32. Geospatial Indexing

MongoDB Documentation, Release 2.4.2

• $polygon (page 762)

• $center (page 743) (defines a circle)

Points within a Circle Defined on a Sphere MongoDB supports rudimentary spherical queries on flat 2d indexes
for legacy reasons. In general, spherical calculations should use a 2dsphere index, as described in 2dsphere Indexes
(page 338).

To query for legacy coordinate pairs in a “spherical cap” on a sphere, use $geoWithin (page 747) with the
$centerSphere (page 743) operator. Specify an array that contains:

• The grid coordinates of the circle’s center point

• The circle’s radius measured in radians. To calculate radians, see Calculate Distances in a 2d Index Using
Spherical Geometry (page 343).

Use the following syntax:

db.<collection>.find({ <location field> :
{ $geoWithin :

{ $centerSphere : [[<x>, <y>] , <radius>] }
} })

The following example query returns all documents within a 10-mile radius of longitude 88 W and latitude 30 N.
The example converts distance to radians by dividing distance by the approximate radius of the earth, 3959 miles:

db.<collection>.find({ loc : { $geoWithin :
{ $centerSphere :

[[88 , 30] , 10 / 3959]
} } })

Proximity to a Point on a Flat Surface Proximity queries return the 100 legacy coordinate pairs closest to the
defined point and sort the results by distance. Use either the $near (page 756) operator or geoNear (page 836)
command. Both require a 2d index.

The $near (page 756) operator uses the following syntax:

db.<collection>.find({ <location field> :
{ $near : [<x> , <y>]

} })

For examples, see $near (page 756).

The geoNear (page 836) command uses the following syntax:

db.runCommand({ geoNear: <collection>, near: [<x> , <y>] })

The geoNear (page 836) command offers more options and returns more information than does the $near
(page 756) operator. To run the command, see geoNear (page 836).

Exact Matches on a Flat Surface You can use the db.collection.find() (page 910) method to query for
an exact match on a location. These queries use the following syntax:

db.<collection>.find({ <location field>: [<x> , <y>] })

This query will return any documents with the value of [<x> , <y>].

32.1. Geospatial Indexes and Queries 337

MongoDB Documentation, Release 2.4.2

2dsphere Indexes

New in version 2.4. A 2dsphere index supports queries that calculate geometries on an earth-like sphere. The index
supports data stored as both GeoJSON objects and as legacy coordinate pairs. The index supports legacy coordinate
pairs by converting the data to the GeoJSON Point type.

The 2dsphere index supports all MongoDB geospatial queries: queries for inclusion, intersection and proximity.

A compound (page 305) 2dsphere index can reference multiple location and non-location fields within a collection’s
documents. You can arrange the fields in any order.

The default datum for an earth-like sphere in MongoDB 2.4 is WGS84. Coordinate-axis order is longitude, latitude.

Important: You cannot use a 2d index as a shard key when sharding a collection. However, you can create and
maintain a geospatial index on a sharded collection by using a different field as the shard key.

Store GeoJSON Objects

New in version 2.4. MongoDB supports the following GeoJSON objects:

• Point

• LineString

• Polygon

In order to index GeoJSON data, you must store the data in a location field that you name. The location field contains
a subdocument with a type field specifying the GeoJSON object type and a coordinates field specifying the
object’s coordinates. Always store coordinates in this order: longitude, latitude.

Use the following syntax:

{ <location field> : { type : "<GeoJSON type>" ,
coordinates : <coordinates>

} }

The following example stores a GeoJSON Point:

{ loc : { type : "Point" ,
coordinates : [40, 5]

} }

The following example stores a GeoJSON LineString:

{ loc : { type : "LineString" ,
coordinates : [[40 , 5] , [41 , 6]]

} }

The following example stores a GeoJSON Polygon with an exterior ring and no interior rings (or holes):

{ loc :
{ type : "Polygon" ,

coordinates : [[[0 , 0] , [3 , 6] , [6 , 1] , [0 , 0]]]
} }

338 Chapter 32. Geospatial Indexing

MongoDB Documentation, Release 2.4.2

Create a 2dsphere Index

To create a geospatial index for GeoJSON-formatted data, use the ensureIndex() (page 907) method and set the
value of the location field for your collection to 2dsphere. A 2dsphere index can be a compound index (page 305)
and does not require the location field to be the first field indexed.

To create the index use the following syntax:

db.collection.ensureIndex({ <location field> : "2dsphere" })

The following are four example commands for creating a 2dsphere index:

db.collection.ensureIndex({ loc : "2dsphere" })
db.collection.ensureIndex({ loc : "2dsphere" , type : 1 })
db.collection.ensureIndex({ rating : 1 , loc : "2dsphere" })
db.collection.ensureIndex({ loc : "2dsphere" , rating : 1 , category : -1 })

The first example creates a simple geospatial index on the location field loc. The second example creates a compound
index where the second field contains non-location data. The third example creates an index where the location field
is not the primary field: the location field does not have to be the first field in a 2dsphere index. The fourth example
creates a compound index with three fields. You can include as many fields as you like in a 2dsphere index.

Query a 2dsphere Index

The following sections describe queries supported by the 2dsphere index. For an overview of recommended geospa-
tial queries, see Geospatial Query Compatibility Chart (page 342).

GeoJSON Objects Bounded by a Polygon The $geoWithin (page 747) operator queries for location data found
within a GeoJSON polygon. Your location data must be stored in GeoJSON format. Use the following syntax:

db.<collection>.find({ <location field> :
{ $geoWithin :
{ $geometry :
{ type : "Polygon" ,
coordinates : [<coordinates>]

} } } })

The following example selects all points and shapes that exist entirely within a GeoJSON polygon:

db.places.find({ loc :
{ $geoWithin :
{ $geometry :
{ type : "Polygon" ,
coordinates : [[[0 , 0] , [3 , 6] , [6 , 1] , [0 , 0]]]

} } } })

Intersections of GeoJSON Objects New in version 2.4. The $geoIntersects (page 746) operator queries for
locations that intersect a specified GeoJSON object. A location intersects the object if the intersection is non-empty.
This includes documents that have a shared edge.

The $geoIntersects (page 746) operator uses the following syntax:

db.<collection>.find({ <location field> :
{ $geoIntersects :
{ $geometry :
{ type : "<GeoJSON object type>" ,

32.1. Geospatial Indexes and Queries 339

MongoDB Documentation, Release 2.4.2

coordinates : [<coordinates>]
} } } })

The following example uses $geoIntersects (page 746) to select all indexed points and shapes that intersect with
the polygon defined by the coordinates array.

db.places.find({ loc :
{ $geoIntersects :
{ $geometry :
{ type : "Polygon" ,
coordinates: [[[0 , 0] , [3 , 6] , [6 , 1] , [0 , 0]]]

} } } })

Proximity to a GeoJSON Point Proximity queries return the 100 points closest to the defined point and sorts the
results by distance. A proximity query on GeoJSON data requires a 2dsphere index.

To query for proximity to a GeoJSON point, use either the $near (page 756) operator or geoNear (page 836)
command. Distance is in meters.

The $near (page 756) uses the following syntax:

db.<collection>.find({ <location field> :
{ $near :
{ $geometry :

{ type : "Point" ,
coordinates : [<longitude> , <latitude>] } ,

$maxDistance : <distance in meters>
} } })

For examples, see $near (page 756).

The geoNear (page 836) command uses the following syntax:

db.runCommand({ geoNear: <collection>, near: [<x> , <y>] })

The geoNear (page 836) command offers more options and returns more information than does the $near
(page 756) operator. To run the command, see geoNear (page 836).

Points within a Circle Defined on a Sphere To select all grid coordinates in a “spherical cap” on a sphere, use
$geoWithin (page 747) with the $centerSphere (page 743) operator. Specify an array that contains:

• The grid coordinates of the circle’s center point

• The circle’s radius measured in radians. To calculate radians, see Calculate Distances in a 2d Index Using
Spherical Geometry (page 343).

Use the following syntax:

db.<collection>.find({ <location field> :
{ $geoWithin :
{ $centerSphere :

[[<x>, <y>] , <radius>] }
} })

The following example queries grid coordinates and returns all documents within a 10 mile radius of longitude 88 W
and latitude 30 N. The example converts the distance, 10 miles, to radians by dividing by the approximate radius of
the earth, 3959 miles:

340 Chapter 32. Geospatial Indexing

MongoDB Documentation, Release 2.4.2

db.places.find({ loc :
{ $geoWithin :
{ $centerSphere :

[[88 , 30] , 10 / 3959]
} } })

Haystack Indexes

A haystack index is a special index that is optimized to return results over small areas. Haystack indexes improve
performance on queries that use flat geometry.

For queries that use spherical geometry, a 2dsphere index is a better option than a haystack index. 2dsphere indexes
allow field reordering; haystack indexes require the first field to be the location field. Also, haystack indexes are only
usable via commands and so always return all results at once.

Haystack indexes create “buckets” of documents from the same geographic area in order to improve performance for
queries limited to that area. Each bucket in a haystack index contains all the documents within a specified proximity
to a given longitude and latitude.

This document describes how to:

• Create a Haystack Index (page 341)

• Query a Haystack Index (page 342)

Create a Haystack Index

To build a haystack index, use the bucketSize option when creating the index. A bucketSize of 5 creates an
index that groups location values that are within 5 units of the specified longitude and latitude. The bucketSize also
determines the granularity of the index. You can tune the parameter to the distribution of your data so that in general
you search only very small regions. The areas defined by buckets can overlap. A document can exist in multiple
buckets.

A haystack index can reference two fields: the location field and a second field. The second field is used for exact
matches. Haystack indexes return documents based on location and an exact match on a single additional criterion.
These indexes are not necessarily suited to returning the closest documents to a particular location.

To build a haystack index, use the following syntax:

db.coll.ensureIndex({ <location field> : "geoHaystack" , <additional field> : 1 } ,
{ bucketSize : <bucket value> })

Example

If you have a collection with documents that contain fields similar to the following:

{ _id : 100, pos: { lng : 126.9, lat : 35.2 } , type : "restaurant"}
{ _id : 200, pos: { lng : 127.5, lat : 36.1 } , type : "restaurant"}
{ _id : 300, pos: { lng : 128.0, lat : 36.7 } , type : "national park"}

The following operations create a haystack index with buckets that store keys within 1 unit of longitude or latitude.

db.places.ensureIndex({ pos : "geoHaystack", type : 1 } ,
{ bucketSize : 1 })

This index stores the document with an _id field that has the value 200 in two different buckets:

• In a bucket that includes the document where the _id field has a value of 100

32.1. Geospatial Indexes and Queries 341

MongoDB Documentation, Release 2.4.2

• In a bucket that includes the document where the _id field has a value of 300

To query using a haystack index you use the geoSearch (page 836) command. See Query a Haystack Index
(page 342).

By default, queries that use a haystack index return 50 documents.

Query a Haystack Index A haystack index is a special 2d geospatial index that is optimized to return results over
small areas. To create a haystack index see Create a Haystack Index (page 341).

To query a haystack index, use the geoSearch (page 836) command. You must specify both the coordinates and the
additional field to geoSearch (page 836). For example, to return all documents with the value restaurant in the
type field near the example point, the command would resemble:

db.runCommand({ geoSearch : "places" ,
search : { type: "restaurant" } ,
near : [-74, 40.74] ,
maxDistance : 10 })

Note: Haystack indexes are not suited to queries for the complete list of documents closest to a particular location.
The closest documents could be more distant compared to the bucket size.

Note: Spherical query operations (page 343) are not currently supported by haystack indexes.

The find() (page 910) method and geoNear (page 836) command cannot access the haystack index.

Geospatial Query Compatibility Chart

While numerous combinations of query operators are possible, the following table shows the recommended operators
for different types of queries. The table uses the $geoWithin (page 747), $geoIntersects (page 746) and
$near (page 756) operators.

342 Chapter 32. Geospatial Indexing

MongoDB Documentation, Release 2.4.2

Query Document Geometry of the
Query Condition

Surface Type for
Query Calculation

Units for Query Cal-
culation

Supported by this
Index

Returns points, lines
and polygons

{ $geoWithin : {
$geometry : <GeoJSON Polygon>

} }

polygon sphere meters 2dsphere

{ $geoIntersects : {
$geometry : <GeoJSON>

} }

point, line or polygon sphere meters 2dsphere

{ $near : {
$geometry : <GeoJSON Point>,
$maxDistance : d

} }

point sphere meters 2dsphere
The index is required.

Returns points only

{ $geoWithin : {
$box : [[x1, y1], [x2, y2]]

} }

rectangle flat flat units 2d

{ $geoWithin : {
$polygon : [[x1, y1],

[x1, y2],
[x2, y2],
[x2, y1]]

} }

polygon flat flat units 2d

{ $geoWithin : {
$center : [x1, y1],
$maxDistance : d

} }

circular region flat flat units 2d

{ $geoWithin : {
$centerSphere :

[[x, y], radius]
$maxDistance : d

} }

circular region sphere radians 2d
2dsphere

{ $near : [x1, y1],
$maxDistance : d

}

point flat / flat units flat units 2d
The index is required.

Calculate Distances in a 2d Index Using Spherical Geometry

32.1. Geospatial Indexes and Queries 343

MongoDB Documentation, Release 2.4.2

Note: While basic queries using spherical distance are supported by the 2d index, consider moving to a 2dsphere
index if your data is primarily longitude and latitude.

The 2d index supports queries that calculate distances on a Euclidean plane (flat surface). The index also supports the
following query operators and command that calculate distances using spherical geometry:

• $nearSphere (page 757)

• $centerSphere (page 743)

• $near (page 756)

• geoNear (page 836) command with the { spherical: true } option.

Important: These three queries use radians for distance. Other query types do not.

For spherical query operators to function properly, you must convert distances to radians, and convert from radians to
the distances units used by your application.

To convert:

• distance to radians: divide the distance by the radius of the sphere (e.g. the Earth) in the same units as the
distance measurement.

• radians to distance: multiply the radian measure by the radius of the sphere (e.g. the Earth) in the units system
that you want to convert the distance to.

The radius of the Earth is approximately 3,959 miles or 6,371 kilometers.

The following query would return documents from the places collection within the circle described by the center [
-74, 40.74] with a radius of 100 miles:

db.places.find({ loc: { $geoWithin: { $centerSphere: [[-74, 40.74] ,
100 / 3959] } } })

You may also use the distanceMultiplier option to the geoNear (page 836) to convert radians in the mongod
(page 971) process, rather than in your application code. See distance multiplier (page 345).

The following spherical query, returns all documents in the collection places within 100 miles from the point [
-74, 40.74].

db.runCommand({ geoNear: "places",
near: [-74, 40.74],
spherical: true

})

The output of the above command would be:

{
// [...]
"results" : [

{
"dis" : 0.01853688938212826,
"obj" : {

"_id" : ObjectId(...)
"loc" : [

-73,
40

]
}

}

344 Chapter 32. Geospatial Indexing

MongoDB Documentation, Release 2.4.2

],
"stats" : {

// [...]
"avgDistance" : 0.01853688938212826,
"maxDistance" : 0.01853714811400047

},
"ok" : 1

}

Warning: Spherical queries that wrap around the poles or at the transition from -180 to 180 longitude raise an
error.

Note: While the default Earth-like bounds for geospatial indexes are between -180 inclusive, and 180, valid values
for latitude are between -90 and 90.

Distance Multiplier

The distanceMultiplier option of the geoNear (page 836) command returns distances only after multiplying
the results by an assigned value. This allows MongoDB to return converted values, and removes the requirement to
convert units in application logic.

Using distanceMultiplier in spherical queries provides results from the geoNear (page 836) command that
do not need radian-to-distance conversion. The following example uses distanceMultiplier in the geoNear
(page 836) command with a spherical (page 343) example:

db.runCommand({ geoNear: "places",
near: [-74, 40.74],
spherical: true,
distanceMultiplier: 3959

})

The output of the above operation would resemble the following:

{
// [...]
"results" : [

{
"dis" : 73.46525170413567,
"obj" : {

"_id" : ObjectId(...)
"loc" : [

-73,
40

]
}

}
],
"stats" : {

// [...]
"avgDistance" : 0.01853688938212826,
"maxDistance" : 0.01853714811400047

},
"ok" : 1

}

32.1. Geospatial Indexes and Queries 345

MongoDB Documentation, Release 2.4.2

Geospatial Index Internals

This document provides a more in-depth explanation of the internals of MongoDB’s geospatial features. This material
is not necessary for normal operations or application development but may be useful for troubleshooting and for further
understanding MongoDB’s behavior and approach.

Geospatial Indexes and Sharding

You cannot use a geospatial index as a shard key when sharding a collection. However, you can create and maintain a
geospatial index on a sharded collection by using a different field as the shard key. You can query for geospatial data
using geoNear (page 836) and $geoWithin (page 747).

Queries using $near (page 756) are not supported for sharded collections. Use geoNear (page 836) instead.

Geohash Values

When you create a geospatial index on legacy coordinate pairs, MongoDB computes geohash values for the coordinate
pairs within the specified range (page 335) and indexes the geohash values.

To calculate a geohash value, continuously divide a 2D map into quadrants. Then assign each quadrant a two-bit value.
For example, a two-bit representation of four quadrants would be:

01 11

00 10

These two-bit values (00, 01, 10, and 11) represent each of the quadrants and all points within each quadrant. For
a geohash with two bits of resolution, all points in the bottom left quadrant would have a geohash of 00. The top
left quadrant would have the geohash of 01. The bottom right and top right would have a geohash of 10 and 11,
respectively.

To provide additional precision, continue dividing each quadrant into sub-quadrants. Each sub-quadrant would have
the geohash value of the containing quadrant concatenated with the value of the sub-quadrant. The geohash for the
upper-right quadrant is 11, and the geohash for the sub-quadrants would be (clockwise from the top left): 1101,
1111, 1110, and 1100, respectively.

To calculate a more precise geohash, continue dividing the sub-quadrant and concatenate the two-bit identifier for each
division. The more “bits” in the hash identifier for a given point, the smaller possible area that the hash can describe
and the higher the resolution of the geospatial index.

Multi-location Documents for 2D Indexes

New in version 2.0: Support for multiple locations in a document. While 2d geospatial indexes do not support more
than one set of coordinates in a document, you can use a multi-key index (page 307) to index multiple coordinate pairs
in a single document. In the simplest example you may have a field (e.g. locs) that holds an array of coordinates, as
in the following example:

{ _id : ObjectId(...),
locs : [[55.5 , 42.3] ,

[-74 , 44.74] ,
{ lng : 55.5 , lat : 42.3 }]

}

The values of the array may be either arrays, as in [55.5, 42.3], or embedded documents, as in { lng :
55.5 , lat : 42.3 }.

346 Chapter 32. Geospatial Indexing

MongoDB Documentation, Release 2.4.2

You could then create a geospatial index on the locs field, as in the following:

db.places.ensureIndex({ "locs": "2d" })

You may also model the location data as a field inside of a sub-document. In this case, the document would contain
a field (e.g. addresses) that holds an array of documents where each document has a field (e.g. loc:) that holds
location coordinates. For example:

{ _id : ObjectId(...),
name : "...",
addresses : [{

context : "home" ,
loc : [55.5, 42.3]

} ,
{
context : "home",
loc : [-74 , 44.74]

}
]

}

You could then create the geospatial index on the addresses.loc field as in the following example:

db.records.ensureIndex({ "addresses.loc": "2d" })

For documents with multiple coordinate values, queries may return the same document multiple times if more than
one indexed coordinate pair satisfies the query constraints. Use the uniqueDocs parameter to geoNear (page 836)
or the $uniqueDocs (page 776) operator with $geoWithin (page 747).

To include the location field with the distance field in multi-location document queries, specify includeLocs:
true in the geoNear (page 836) command.

32.1. Geospatial Indexes and Queries 347

MongoDB Documentation, Release 2.4.2

348 Chapter 32. Geospatial Indexing

CHAPTER 33

Text Indexing

New in version 2.4: text indexes were added in 2.4 as a beta feature.

33.1 Text Search

New in version 2.4.

33.1.1 Overview

Text search supports the search of string content in documents of a collection. Text search introduces a new text
(page 312) index type and a new text (page 875) command.

The text search process:

• tokenizes and stems the search term(s) during both the index creation and the text command execution.

• assigns a score to each document that contains the search term in the indexed fields. The score determines the
relevance of a document to a given search query.

By default, text (page 875) command returns at most the top 100 matching documents as determined by the scores.

Important: Before you can create a text index or run the text command (page 356), you need to manually enable the
text search. See Enable Text Search (page 349) for information on how to enable the text search feature.

Enable Text Search

New in version 2.4. The text search (page 349) is currently a beta feature. As a beta feature:

• You need to explicitly enable the feature before creating a text index (page 350) or using the text (page 875)
command.

• To enable text search on replica sets (page 367) and sharded clusters (page 463), you need to enable on each
and every mongod (page 971) for replica sets and on each and every mongos (page 981) for sharded clusters.

349

MongoDB Documentation, Release 2.4.2

Warning:
• Do not enable or use text search on production systems.
• Text indexes have significant storage requirements and performance costs. See text Indexes (page 312) for

more information.

You can enable the text search feature at startup with the textSearchEnabled (page 1041) parameter:

mongod --setParameter textSearchEnabled=true

You may prefer to set the textSearchEnabled (page 1041) parameter in the configuration file (page 1026).

Additionally, you can enable the feature in the mongo (page 984) shell with the setParameter (page 869) com-
mand. This command does not propagate from the primary to the secondaries. You must enable on each and every
mongod (page 971) for replica sets.

Note: You must set the parameter every time you start the server. You may prefer to add the parameter to the
configuration files (page 1026).

33.1.2 Storage Requirements and Performance Costs

text indexes have the following storage requirements and performance costs:

• text indexes change the space allocation method for all future record allocations in a collection to
usePowerOf2Sizes (page 814).

• text indexes can be large. They contain one index entry for each unique post-stemmed word in each indexed
field for each document inserted.

• Building a text index is very similar to building a large multi-key index and will take longer than building a
simple ordered (scalar) index on the same data.

• When building a large text index on an existing collection, ensure that you have a sufficiently high limit on
open file descriptors. See the recommended settings (page 108).

• text indexes will impact insertion throughput because MongoDB must add an index entry for each unique
post-stemmed word in each indexed field of each new source document.

• Additionally, text indexes do not store phrases or information about the proximity of words in the documents.
As a result, phrase queries will run much more effectively when the entire collection fits in RAM.

33.1.3 Create a text Index

To perform text search, create a text index on the field or fields whose value is a string or an array of string elements.
To create a text index, use the db.collection.ensureIndex() (page 907) method with a document that
contains field and value pairs where the value is the string literal text.

Important:

• Text indexes have significant storage requirements and performance costs. See Storage Requirements and Per-
formance Costs (page 350) for more information.

• A collection can have at most one text index.

The following tutorials offer examples on text index creation patterns:

350 Chapter 33. Text Indexing

MongoDB Documentation, Release 2.4.2

Create text Index on Multiple Fields

You can create a text index on the field or fields whose value is a string or an array of string elements. When creating
a text index on multiple fields, you can specify the individual fields or you can wildcard specifier ($**).

Index Specific Fields

The following example creates a text index on the fields subject and content:

db.collection.ensureIndex(
{
subject: "text",
content: "text"

}
)

This text index catalogs all string data in the subject field and the content field, where the field value is either
a string or an array of string elements.

Index All Fields

To allow for text search on all fields with string content, use the wildcard specifier ($**) to index all fields that contain
string content.

The following example indexes any string value in the data of every field of every document in collection and
names the index TextIndex:

db.collection.ensureIndex(
{ "$**": "text" },
{ name: "TextIndex" }

)

Specify a Language for Text Index

The default language associated with the indexed data determines the list of stop words and the rules for the stemmer
and tokenizer. The default language for the indexed data is english.

To specify a different language, use the default_language option when creating the text index. See Text Search
Languages (page 361) for the languages available for default_language.

The following example creates a text index on the content field and sets the default_language to spanish:

db.collection.ensureIndex(
{ content : "text" },
{ default_language: "spanish" }

)

See Also:

Create a text Index on a Multi-language Collection (page 352)

Specify text Index Name to Avoid Name Length Limit

The default name for the index consists of each indexed field name concatenated with _text. For example, the
following command creates a text index on the fields content, users.comments, and users.profiles:

33.1. Text Search 351

MongoDB Documentation, Release 2.4.2

db.collection.ensureIndex(
{
content: "text",
"users.comments": "text",
"users.profiles": "text"

}
)

The default name for the index is:

"content_text_users.comments_text_users.profiles_text"

To avoid creating an index with a name that exceeds the index name length limit (page 1106), you can pass
the name option to the db.collection.ensureIndex() (page 907) method:

db.collection.ensureIndex(
{
content: "text",
"users.comments": "text",
"users.profiles": "text"

},
{
name: "MyTextIndex"

}
)

Note: To drop the text index, use the index name. To get the name of an index, use
db.collection.getIndexes() (page 915).

Create a text Index on a Multi-language Collection

Specify the Index Language within the Document

If a collection contains documents that are in different languages, include a field in the documents that contain the
language to use:

• If you include a field named language in the document, by default, the ensureIndex() (page 907) method
will use the value of this field to override the default language.

• To use a field with a name other than language, you must specify the name of this field to the
ensureIndex() (page 907) method with the language_override option.

See Text Search Languages (page 361) for a list of supported languages.

Include the language Field

Include a field language that specifies the language to use for the individual documents.

For example, the documents of a multi-language collection quotes contain the field language:

{ _id: 1, language: "portuguese", quote: "A sorte protege os audazes" }
{ _id: 2, language: "spanish", quote: "Nada hay más surreal que la realidad." }
{ _id: 3, language: "english", quote: "is this a dagger which I see before me" }

Create a text index on the field quote:

352 Chapter 33. Text Indexing

MongoDB Documentation, Release 2.4.2

db.quotes.ensureIndex({ quote: "text" })

• For the documents that contain the language field, the text index uses that language to determine the stop
words and the rules for the stemmer and the tokenizer.

• For documents that do not contain the language field, the index uses the default language, which is English,
to determine the stop words and rules for the stemmer and the tokenizer.

For example, the Spanish word que is a stop word. So the following text (page 875) command would not match
any document:

db.quotes.runCommand("text", { search: "que", language: "spanish" })

Use any Field to Specify the Language for a Document

Include a field that specifies the language to use for the individual documents. To use a field with a name other than
language, include the language_override option when creating the index.

For example, the documents of a multi-language collection quotes contain the field idioma:

{ _id: 1, idioma: "portuguese", quote: "A sorte protege os audazes" }
{ _id: 2, idioma: "spanish", quote: "Nada hay más surreal que la realidad." }
{ _id: 3, idioma: "english", quote: "is this a dagger which I see before me" }

Create a text index on the field quote with the language_override option:

db.quotes.ensureIndex({ quote : "text" },
{ language_override: "idioma" })

• For the documents that contain the idioma field, the text index uses that language to determine the stop
words and the rules for the stemmer and the tokenizer.

• For documents that do not contain the idioma field, the index uses the default language, which is English, to
determine the stop words and rules for the stemmer and the tokenizer.

For example, the Spanish word que is a stop word. So the following text (page 875) command would not match
any document:

db.quotes.runCommand("text", { search: "que", language: "spanish" })

Control Results of Text Search with Weights

By default, the text (page 875) command returns matching documents based on scores, from highest to lowest. For
a text index, the weight of an indexed field denotes the significance of the field relative to the other indexed fields in
terms of the score. The score for a given word in a document is derived from the weighted sum of the frequency for
each of the indexed fields in that document.

The default weight is 1 for the indexed fields. To adjust the weights for the indexed fields, include the weights
option in the db.collection.ensureIndex() (page 907) method.

Warning: Choose the weights carefully in order to prevent the need to reindex.

A collection blog has the following documents:

33.1. Text Search 353

MongoDB Documentation, Release 2.4.2

{ _id: 1,
content: "This morning I had a cup of coffee.",
about: "beverage",
keywords: ["coffee"]

}

{ _id: 2,
content: "Who doesn’t like cake?",
about: "food",
keywords: ["cake", "food", "dessert"]

}

To create a text index with different field weights for the content field and the keywords field, include the
weights option to the ensureIndex() (page 907) method. For example, the following command creates an
index on three fields and assigns weights to two of the fields:

db.blog.ensureIndex(
{
content: "text",
keywords: "text",
about: "text"

},
{
weights: {

content: 10,
keywords: 5,

},
name: "TextIndex"

}
)

The text index has the following fields and weights:

• content has a weight of 10,

• keywords has a weight of 5, and

• about has the default weight of 1.

These weights denote the relative significance of the indexed fields to each other. For instance, a term match in the
content field has:

• 2 times (i.e. 10:5) the impact as a term match in the keywords field and

• 10 times (i.e. 10:1) the impact as a term match in the about field.

Limit the Number of Index Entries Scanned for Text Search

The text (page 875) command includes the filter option to further restrict the results of a text search. For a
filter that specifies equality conditions, this tutorial demonstrates how to perform text searches on only those
documents that match the filter conditions, as opposed to performing a text search first on all the documents and
then matching on the filter condition.

Consider a collection inventory that contains the following documents:

{ _id: 1, dept: "tech", description: "a fun green computer" }
{ _id: 2, dept: "tech", description: "a wireless red mouse" }
{ _id: 3, dept: "kitchen", description: "a green placemat" }
{ _id: 4, dept: "kitchen", description: "a red peeler" }

354 Chapter 33. Text Indexing

MongoDB Documentation, Release 2.4.2

{ _id: 5, dept: "food", description: "a green apple" }
{ _id: 6, dept: "food", description: "a red potato" }

A common use case is to perform text searches by individual departments, such as:

db.inventory.runCommand("text", {
search: "green",
filter: { dept : "kitchen" }

}
)

To limit the text search to scan only those documents within a specific dept, create a compound index that specifies
an ascending/descending index key on the field dept and a text index key on the field description:

db.inventory.ensureIndex(
{
dept: 1,
description: "text"

}
)

Important:

• The ascending/descending index keys must be listed before, or prefix, the text index keys.

• By prefixing the text index fields with ascending/descending index fields, MongoDB will only index docu-
ments that have the prefix fields.

• You cannot include multi-key (page 307) index fields or geospatial (page 312) index fields.

• The text (page 875) command must include the filter option that specifies an equality condition for the
prefix fields.

Then, the text search within a particular department will limit the scan of indexed documents. For example, the
following text (page 875) command scans only those documents with dept equal to kitchen:

db.inventory.runCommand("text", {
search: "green",
filter: { dept : "kitchen" }

}
)

The returned result includes the statistics that shows that the command scanned 1 document, as indicated by the
nscanned field:

{

"queryDebugString" : "green||||||",
"language" : "english",
"results" : [

{
"score" : 0.75,
"obj" : {

"_id" : 3,
"dept" : "kitchen",
"description" : "a green placemat"

}
}

],

33.1. Text Search 355

MongoDB Documentation, Release 2.4.2

"stats" : {
"nscanned" : 1,
"nscannedObjects" : 0,
"n" : 1,
"nfound" : 1,
"timeMicros" : 211

},
"ok" : 1

}

For more information on the result set, see Text Search Output (page 360).

Return Text Queries Using Only a text Index

To create a text index that can cover queries (page 316):

1. Append scalar index fields to a text index, as in the following example which specifies an ascending index
key on username:

db.collection.ensureIndex({ comments: "text",
username: 1 })

Warning: You cannot include multi-key (page 307) index field or geospatial (page 312) index field.

2. Use the project option in the text (page 875) to return only the fields in the index, as in the following:

db.quotes.runCommand("text", { search: "tomorrow",
project: { username: 1,

_id: 0
}

}
)

Note: By default, the _id field is included in the result set. Since the example index did not include the _id field,
you must explicitly exclude the field in the project document.

33.1.4 text Command

The text (page 875) command can search for words and phrases. The command matches on the complete stemmed
words. For example, if a document field contains the word blueberry, a search on the term blue will not match
the document. However, a search on either blueberry or blueberries will match.

For information and examples on various text search patterns, see Search String Content for Text (page 356).

Search String Content for Text

In 2.4, you can enable the text search feature to create text indexes and issue text queries using the text (page 875).

The following tutorial offers various query patterns for using the text search feature.

The examples in this tutorial use a collection quotes that has a text index on the fields quote that contains a
string and related_quotes that contains an array of string elements.

356 Chapter 33. Text Indexing

MongoDB Documentation, Release 2.4.2

Search for a Term

The following command searches for the word TOMORROW:

db.quotes.runCommand("text", { search: "TOMORROW" })

Because text (page 875) command is case-insensitive, the text search will match the following document in the
quotes collection:

{
"_id" : ObjectId("50ecef5f8abea0fda30ceab3"),
"quote" : "tomorrow, and tomorrow, and tomorrow, creeps in this petty pace",
"related_quotes" : [

"is this a dagger which I see before me",
"the handle toward my hand?"

],
"src" : {

"title" : "Macbeth",
"from" : "Act V, Scene V"

},
"speaker" : "macbeth"

}

Match Any of the Search Terms

If the search string is a space-delimited text, text (page 875) command performs a logical OR search on each term
and returns documents that contains any of the terms.

For example, the search string "tomorrow largo" searches for the term tomorrow OR the term largo:

db.quotes.runCommand("text", { search: "tomorrow largo" })

The command will match the following documents in the quotes collection:

{
"_id" : ObjectId("50ecef5f8abea0fda30ceab3"),
"quote" : "tomorrow, and tomorrow, and tomorrow, creeps in this petty pace",
"related_quotes" : [

"is this a dagger which I see before me",
"the handle toward my hand?"

],
"src" : {

"title" : "Macbeth",
"from" : "Act V, Scene V"

},
"speaker" : "macbeth"

}

{
"_id" : ObjectId("50ecf0cd8abea0fda30ceab4"),
"quote" : "Es tan corto el amor y es tan largo el olvido.",
"related_quotes" : [

"Como para acercarla mi mirada la busca.",
"Mi corazón la busca, y ella no está conmigo."

],
"speaker" : "Pablo Neruda",
"src" : {

"title" : "Veinte poemas de amor y una canción desesperada",

33.1. Text Search 357

MongoDB Documentation, Release 2.4.2

"from" : "Poema 20"
}

}

Match Phrases

To match the exact phrase that includes a space(s) as a single term, escape the quotes.

For example, the following command searches for the exact phrase "and tomorrow":

db.quotes.runCommand("text", { search: "\"and tomorrow\"" })

If the search string contains both phrase and individual terms, the text (page 875) command performs a compound
logical AND of the phrase with the compound logical OR of the single terms

For example, the following command contains a search string that contains the individual terms corto and largo
as well as the phrase \"and tomorrow\":

db.quotes.runCommand("text", { search: "corto largo \"and tomorrow\"" })

The text (page 875) command performs the equivalent to the following logical operation:

(corto OR largo OR tomorrow) AND ("and tomorrow")

Match Some Words But Not Others

A negated term is a term that is prefixed by a minus sign -. If you negate a term, the text (page 875) command will
exclude the documents that contain those terms from the results.

Note: If the search text contains only negated terms, the text (page 875) command will not return any results.

The following example returns those documents that contain the term tomorrow but not the term petty.

db.quotes.runCommand("text" , { search: "tomorrow -petty" })

Limit the Number of Matching Documents in the Result Set

Note: The result from the text (page 875) command must fit within the maximum BSON Document Size
(page 1105).

By default, the text (page 875) command will return up to 100 matching documents, from highest to lowest scores.
To override this default limit, use the limit option in the text (page 875) command, as in the following example:

db.quotes.runCommand("text", { search: "tomorrow", limit: 2 })

The text (page 875) command will return at most 2 of the highest scoring results.

The limit can be any number as long as the result set fits within the maximum BSON Document Size
(page 1105).

358 Chapter 33. Text Indexing

MongoDB Documentation, Release 2.4.2

Specify Which Fields to Return in the Result Set

In the text (page 875) command, use the project option to specify the fields to include (1) or exclude (0) in the
matching documents.

Note: The _id field is always returned unless explicitly excluded in the project document.

The following example returns only the _id field and the src field in the matching documents:

db.quotes.runCommand("text", { search: "tomorrow",
project: { "src": 1 } })

Search with Additional Query Conditions

The text (page 875) command can also use the filter option to specify additional query conditions.

The following example will return the documents that contain the term tomorrow AND the speaker is macbeth:

db.quotes.runCommand("text", { search: "tomorrow",
filter: { speaker : "macbeth" } })

See Also:

Limit the Number of Index Entries Scanned for Text Search (page 354)

Search for Text in Specific Languages

You can specify the language that determines the tokenization, stemming, and removal of stop words, as in the follow-
ing example:

db.quotes.runCommand("text", { search: "amor", language: "spanish" })

See Also:

Create a text Index on a Multi-language Collection (page 352)

See Text Search Languages (page 361) for a list of supported languages.

Text Search Output

The text (page 875) command returns a document that contains the result set.

See Text Search Output (page 360) for information on the output.

33.1.5 Text Search Output

The text (page 875) command returns a document that contains the result set.

See Text Search Output (page 360) for information on the output.

33.1. Text Search 359

MongoDB Documentation, Release 2.4.2

Text Search Reference

Text Search Output

The text (page 875) command returns a document, as in the following example:

Warning: The complete results of the text (page 875) command must fit within the BSON Document Size
(page 1105). Otherwise, the command will limit the results to fit within the BSON Document Size (page 1105).
Use the limit and the project parameters with the text (page 875) command to limit the size of the result
set.

{
"queryDebugString" : "tomorrow||||||",
"language" : "english",
"results" : [

{
"score" : 1.3125,
"obj": {

"_id" : ObjectId("50ecef5f8abea0fda30ceab3"),
"quote" : "tomorrow, and tomorrow, and tomorrow, creeps in this petty pace",
"related_quotes" : [

"is this a dagger which I see before me",
"the handle toward my hand?"

],
"src" : {

"title" : "Macbeth",
"from" : "Act V, Scene V"

},
"speaker" : "macbeth"

}
}

],
"stats" : {

"nscanned" : 1,
"nscannedObjects" : 0,
"n" : 1,
"nfound" : 1,
"timeMicros" : 163

},
"ok" : 1

}

The returned document contains the following fields:

text.queryDebugString
For internal use only.

text.language
The language (page 360) field returns the language used for the text search. This language determines the list
of stop words and the rules for the stemmer and tokenizer.

text.results
The results (page 360) field returns an array of result documents that contain the information on the matching
documents. The result documents are ordered by the score (page 360). Each result document contains:

text.results.obj
The obj (page 360) field returns the actual document from the collection that contained the stemmed term
or terms.

360 Chapter 33. Text Indexing

MongoDB Documentation, Release 2.4.2

text.results.score
The score (page 360) field for the document that contained the stemmed term or terms. The score
(page 360) field signifies how well the document matched the stemmed term or terms. See Control Results
of Text Search with Weights (page 353) for how you can adjust the scores for the matching words.

text.stats
The stats (page 361) field returns a document that contains the query execution statistics. The stats
(page 361) field contains:

text.stats.nscanned
The nscanned (page 361) field returns the total number of index entries scanned.

text.stats.nscannedObjects
The nscannedObjects (page 361) field returns the total number of documents scanned.

text.stats.n
The n (page 361) field returns the number of elements in the results (page 360) array. This number may
be less than the total number of matching documents, i.e. nfound (page 361), if the full result exceeds
the BSON Document Size (page 1105).

text.stats.nfound
The nfound (page 361) field returns the total number number of documents that match. This number
may be greater than the size of the results (page 360) array, i.e. n (page 361), if the result set exceeds
the BSON Document Size (page 1105).

text.stats.timeMicros
The timeMicros (page 361) field returns the time in microseconds for the search.

text.ok
The ok (page 361) returns the status of the text (page 875) command.

Text Search Languages

The text index (page 312) and the text (page 875) command support the following languages:

• danish

• dutch

• english

• finnish

• french

• german

• hungarian

• italian

• norwegian

• portuguese

• romanian

• russian

• spanish

• swedish

• turkish

33.1. Text Search 361

MongoDB Documentation, Release 2.4.2

Note: If you specify a language value of "none", then the text search has no list of stop words, and the text search
does not stem or tokenize the search terms.

362 Chapter 33. Text Indexing

Part VIII

Replication

363

MongoDB Documentation, Release 2.4.2

Database replication ensures redundancy, backup, and automatic failover. Replication occurs through groups of servers
known as replica sets.

365

MongoDB Documentation, Release 2.4.2

366

CHAPTER 34

Replica Set Use and Operation

Consider these higher level introductions to replica sets:

34.1 Replica Set Fundamental Concepts

A MongoDB replica set is a cluster of mongod (page 971) instances that replicate amongst one another and ensure
automated failover. Most replica sets consist of two or more mongod (page 971) instances with at most one of these
designated as the primary and the rest as secondary members. Clients direct all writes to the primary, while the
secondary members replicate from the primary asynchronously.

Database replication with MongoDB adds redundancy, helps to ensure high availability, simplifies certain administra-
tive tasks such as backups, and may increase read capacity. Most production deployments use replication.

If you’re familiar with other database systems, you may think about replica sets as a more sophisticated form of
traditional master-slave replication. 1 In master-slave replication, a master node accepts writes while one or more slave
nodes replicate those write operations and thus maintain data sets identical to the master. For MongoDB deployments,
the member that accepts write operations is the primary, and the replicating members are secondaries.

MongoDB’s replica sets provide automated failover. If a primary fails, the remaining members will automatically try
to elect a new primary.

A replica set can have up to 12 members, but only 7 members can have votes. For information regarding non-voting
members, see non-voting members (page 369)

See Also:

The Replication (page 365) index for a list of the documents in this manual that describe the operation and use of
replica sets.

34.1.1 Member Configurations

You can configure replica set members in a variety of ways, as listed here. In most cases, members of a replica set
have the default proprieties.

1 MongoDB also provides conventional master/slave replication. Master/slave replication operates by way of the same mechanism as replica
sets, but lacks the automatic failover capabilities. While replica sets are the recommended solution for production, a replica set can support only 12
members in total. If your deployment requires more than 11 slave members, you’ll need to use master/slave replication.

367

MongoDB Documentation, Release 2.4.2

Secondary-Only Members

These members have data but cannot become primary under any circumstance. To configure a member to be secondary-
only, see Prevent Replica Set Member from Becoming Primary (page 431).

Hidden Members

These members cannot become primary and are invisible to client applications. However, hidden members do vote in
elections (page 369).

Hidden members are ideal for instances that will have significantly different usage patterns than the other members
and require separation from normal traffic. Typically, hidden members provide reporting, dedicated backups, and
dedicated read-only testing and integration support.

To configure a member to be a hidden member, see Configure a Replica Set Member as Hidden (page 430).

Delayed Members

Delayed members copy and apply operations from the primary’s oplog with a specified delay. If a member has a delay
of one hour, then the latest entry in this member’s oplog will not be more recent than one hour old, and the state of
data for the member will reflect the state of the set an hour earlier.

Example

If the current time is 09:52 and the secondary is a delayed by an hour, no operation will be more recent than 08:52.

Delayed members may help recover from various kinds of human error. Such errors may include inadvertently deleted
databases or botched application upgrades. Consider the following factors when determining the amount of slave delay
to apply:

• Ensure that the length of the delay is equal to or greater than your maintenance windows.

• The size of the oplog is sufficient to capture more than the number of operations that typically occur in that period
of time. For more information on oplog size, see the Oplog (page 372) topic in the Replica Set Fundamental
Concepts (page 367) document.

Delayed members must have a priority set to 0 to prevent them from becoming primary in their replica sets. Also
these members should be hidden (page 368) to prevent your application from seeing or querying this member.

To configure a member to be a delayed member, see Configure a Delayed Replica Set Member (page 429).

Arbiters

These members have no data and exist solely to participate in elections (page 369). Arbiters have the following
interactions with the rest of the replica set:

• Credential exchanges that authenticate the arbiter with the replica set. All MongoDB processes within a replica
set use keyfiles. These exchanges are encrypted.

MongoDB only transmits the authentication credentials in a cryptographically secure exchange, and encrypts
no other exchange.

• Exchanges of replica set configuration data and of votes. These are not encrypted.

If your MongoDB deployment uses SSL, then all communications between arbiters and the other members of the
replica set are secure. See the documentation Connect to MongoDB with SSL (page 77) for more information.
As with all MongoDB components, run arbiters on secure networks.

368 Chapter 34. Replica Set Use and Operation

MongoDB Documentation, Release 2.4.2

To add an arbiter to the replica set, see Add an Arbiter to Replica Set (page 426).

Non-Voting Members

These members do not vote in elections. Non-voting members are only used for larger sets with more than 12 members.
To configure a member as non-voting, see Configure a Non-Voting Replica Set Member (page 430).

34.1.2 Failover and Recovery

Replica sets feature automated failover. If the primary goes offline or becomes unresponsive and a majority of the
original set members can still connect to each other, the set will elect a new primary.

While failover is automatic, replica set administrators should still understand exactly how this process works. This
section below describe failover in detail.

In most cases, failover occurs without administrator intervention seconds after the primary either steps down, becomes
inaccessible, or becomes otherwise ineligible to act as primary. If your MongoDB deployment does not failover
according to expectations, consider the following operational errors:

• No remaining member is able to form a majority. This can happen as a result of network partitions that render
some members inaccessible. Design your deployment to ensure that a majority of set members can elect a
primary in the same facility as core application systems.

• No member is eligible to become primary. Members must have a priority setting greater than 0, have a state
that is less than ten seconds behind the last operation to the replica set, and generally be more up to date than
the voting members.

In many senses, rollbacks (page 370) represent a graceful recovery from an impossible failover and recovery situation.

Rollbacks occur when a primary accepts writes that other members of the set do not successfully replicate before the
primary steps down. When the former primary begins replicating again it performs a “rollback.” If the operations
replicate to another member and that member remains available and accessible to a majority of the replica set, there
will be no rollback.

Rollbacks remove those operations from the instance that were never replicated to the set so that the data set is in a
consistent state. The mongod (page 971) program writes rolled back data to a BSON file that you can view using
bsondump (page 999), applied manually using mongorestore (page 996).

You can prevent rollbacks using a replica acknowledged (page 175) write concern. These write operations require
not only the primary to acknowledge the write operation, sometimes even the majority of the set to confirm the write
operation before returning.

See Also:

The Elections (page 369) section in the Replica Set Fundamental Concepts (page 367) document, and the Election
Internals (page 388) section in the Replica Set Internals and Behaviors (page 387) document.

Elections

When any failover occurs, an election takes place to decide which member should become primary.

Elections provide a mechanism for the members of a replica set to autonomously select a new primary without ad-
ministrator intervention. The election allows replica sets to recover from failover situations very quickly and robustly.

Whenever the primary becomes unreachable, the secondary members trigger an election. The first member to receive
votes from a majority of the set will become primary. The most important feature of replica set elections is that a
majority of the original number of members in the replica set must be present for election to succeed. If you have a

34.1. Replica Set Fundamental Concepts 369

MongoDB Documentation, Release 2.4.2

three-member replica set, the set can elect a primary when two or three members can connect to each other. If two
members in the replica go offline, then the remaining member will remain a secondary.

Note:

• When the current primary steps down and triggers an election, the mongod (page 971) instances will close all
client connections. This ensures that the clients maintain an accurate view of the replica set and helps prevent
rollbacks.

• Members on either side of a network partition cannot see each other when determining whether a majority is
available to hold an election.

That means that if a primary steps down and neither side of the partition has a majority on its own, the set will
not elect a new primary and the set will become read only. To avoid this situation, attempt to place a majority of
instances in one data center with a minority of instances in a secondary facility.

For more information on elections and failover, see the Failover and Recovery (page 369) section in the Troubleshoot
Replica Sets (page 422) document.

Member Priority

In a replica set, every member has a “priority,” that helps determine eligibility for election (page 369) to primary. By
default, all members have a priority of 1, unless you modify the priority (page 442) value. All members have a
single vote in elections.

Warning: Always configure the priority (page 442) value to control which members will become primary.
Do not configure votes (page 443) except to permit more than 7 secondary members.

For more information on member priorities, see the Adjust Priority for Replica Set Member (page 406) document.

34.1.3 Consistency

This section provides an overview of the concepts that underpin database consistency and the MongoDB mechanisms
to ensure that users have access to consistent data.

In MongoDB, all read operations issued to the primary of a replica set are consistent with the last write operation.

If clients configure the read preference to permit secondary reads, read operations cannot return from secondary
members that have not replicated more recent updates or operations. In these situations the query results may reflect a
previous state.

This behavior is sometimes characterized as eventual consistency because the secondary member’s state will eventually
reflect the primary’s state and MongoDB cannot guarantee strict consistency for read operations from secondary
members.

There is no way to guarantee consistency for reads from secondary members, except by configuring the client and
driver to ensure that write operations succeed on all members before completing successfully.

Rollbacks

In some failover situations primaries will have accepted write operations that have not replicated to the secondaries
after a failover occurs. This case is rare and typically occurs as a result of a network partition with replication lag.
When this member (the former primary) rejoins the replica set and attempts to continue replication as a secondary the

370 Chapter 34. Replica Set Use and Operation

MongoDB Documentation, Release 2.4.2

former primary must revert these operations or “roll back” these operations to maintain database consistency across
the replica set.

MongoDB writes the rollback data to a BSON file in the database’s dbpath (page 1029) directory. Use bsondump
(page 999) to read the contents of these rollback files and then manually apply the changes to the new primary. There
is no way for MongoDB to appropriately and fairly handle rollback situations automatically. Therefore you must
intervene manually to apply rollback data. Even after the member completes the rollback and returns to secondary
status, administrators will need to apply or decide to ignore the rollback data. MongoDB writes rollback data to a
rollback/ folder within the dbpath (page 1029) directory to files with filenames in the following form:

<database>.<collection>.<timestamp>.bson

For example:

records.accounts.2011-05-09T18-10-04.0.bson

The best strategy for avoiding all rollbacks is to ensure write propagation (page 378) to all or some of the members in
the set. Using these kinds of policies prevents situations that might create rollbacks.

Warning: A mongod (page 971) instance will not rollback more than 300 megabytes of data. If your system
needs to rollback more than 300 MB, you will need to manually intervene to recover this data. If this is the case,
you will find the following line in your mongod (page 971) log:

[replica set sync] replSet syncThread: 13410 replSet too much data to roll back

In these situations you will need to manually intervene to either save data or to force the member to perform
an initial sync from a “current” member of the set by deleting the content of the existing dbpath (page 1029)
directory.

For more information on failover, see:

• The Failover and Recovery (page 369) section in this document.

• The Failover and Recovery (page 369) section in the Replica Set Administration (page 397) document.

Application Concerns

Client applications are indifferent to the configuration and operation of replica sets. While specific configuration
depends to some extent on the client drivers (page 529), there is often minimal or no difference between applications
using replica sets or standalone instances.

There are two major concepts that are important to consider when working with replica sets:

1. Write Concern (page 174).

Write concern sends a MongoDB client a response from the server to confirm successful write operations. In
replica sets you can configure replica acknowledged (page 175) write concern to ensure that secondary members
of the set have replicated operations before the write returns.

2. Read Preference (page 381)

By default, read operations issued against a replica set return results from the primary. Users may configure
read preference on a per-connection basis to prefer that read operations return on the secondary members.

Read preference and write concern have particular consistency (page 370) implications.

For a more detailed discussion of application concerns, see Replica Set Considerations and Behaviors for Applications
and Development (page 378).

34.1. Replica Set Fundamental Concepts 371

MongoDB Documentation, Release 2.4.2

34.1.4 Administration and Operations

This section provides a brief overview of concerns relevant to administrators of replica set deployments.

For more information on replica set administration, operations, and architecture, see:

• Deploy a Replica Set (page 397)

• Add Members to a Replica Set (page 402)

• Remove Members from Replica Set (page 405)

• Replace a Replica Set Member (page 405)

• Adjust Priority for Replica Set Member (page 406)

• Resync a Member of a Replica Set (page 406)

• Configure a Secondary’s Sync Target (page 432)

• Configure a Delayed Replica Set Member (page 429)

• Configure a Replica Set Member as Hidden (page 430)

• Configure a Non-Voting Replica Set Member (page 430)

• Prevent Replica Set Member from Becoming Primary (page 431)

• Replica Set Architectures and Deployment Patterns (page 375)

Oplog

The oplog (operations log) is a special capped collection that keeps a rolling record of all operations that modify that
data stored in your databases. MongoDB applies database operations on the primary and then records the operations
on the primary’s oplog. The secondary members then replicate this log and apply the operations to themselves in an
asynchronous process. All replica set members contain a copy of the oplog, allowing them to maintain the current
state of the database. Operations in the oplog are idempotent.

By default, the size of the oplog is as follows:

• For 64-bit Linux, Solaris, FreeBSD, and Windows systems, MongoDB will allocate 5% of the available free
disk space to the oplog.

If this amount is smaller than a gigabyte, then MongoDB will allocate 1 gigabyte of space.

• For 64-bit OS X systems, MongoDB allocates 183 megabytes of space to the oplog.

• For 32-bit systems, MongoDB allocates about 48 megabytes of space to the oplog.

Before oplog creation, you can specify the size of your oplog with the oplogSize (page 1034) option. After you
start a replica set member for the first time, you can only change the size of the oplog by using the Change the Size of
the Oplog (page 413) tutorial.

In most cases, the default oplog size is sufficient. For example, if an oplog that is 5% of free disk space fills up in 24
hours of operations, then secondaries can stop copying entries from the oplog for up to 24 hours without becoming
stale. However, most replica sets have much lower operation volumes, and their oplogs can hold a much larger number
of operations.

The following factors affect how MongoDB uses space in the oplog:

• Update operations that affect multiple documents at once.

The oplog must translate multi-updates into individual operations, in order to maintain idempotency. This can
use a great deal of oplog space without a corresponding increase in disk utilization.

372 Chapter 34. Replica Set Use and Operation

MongoDB Documentation, Release 2.4.2

• If you delete roughly the same amount of data as you insert.

In this situation the database will not grow significantly in disk utilization, but the size of the operation log can
be quite large.

• If a significant portion of your workload entails in-place updates.

In-place updates create a large number of operations but do not change the quantity data on disk.

If you can predict your replica set’s workload to resemble one of the above patterns, then you may want to consider
creating an oplog that is larger than the default. Conversely, if the predominance of activity of your MongoDB-based
application are reads and you are writing a small amount of data, you may find that you need a much smaller oplog.

To view oplog status, including the size and the time range of operations, issue the
db.printReplicationInfo() (page 943) method. For more information on oplog status, see Check the
Size of the Oplog (page 424).

For additional information about oplog behavior, see Oplog Internals (page 387) and Syncing (page 389).

Replica Set Deployment

Without replication, a standalone MongoDB instance represents a single point of failure and any disruption of the
MongoDB system will render the database unusable and potentially unrecoverable. Replication increase the reliability
of the database instance, and replica sets are capable of distributing reads to secondary members depending on read
preference. For database work loads dominated by read operations, (i.e. “read heavy”) replica sets can greatly increase
the capability of the database system.

The minimum requirements for a replica set include two members with data, for a primary and a secondary, and an
arbiter (page 368). In most circumstances, however, you will want to deploy three data members.

For those deployments that rely heavily on distributing reads to secondary instances, add additional members to the
set as load increases. As your deployment grows, consider adding or moving replica set members to secondary
data centers or to geographically distinct locations for additional redundancy. While many architectures are possible,
always ensure that the quorum of members required to elect a primary remains in your main facility.

Depending on your operational requirements, you may consider adding members configured for a specific purpose
including, a delayed member to help provide protection against human errors and change control, a hidden member to
provide an isolated member for reporting and monitoring, and/or a secondary only member (page 368) for dedicated
backups.

The process of establishing a new replica set member can be resource intensive on existing members. As a result,
deploy new members to existing replica sets significantly before current demand saturates the existing members.

Note: Journaling, provides single-instance write durability. The journaling greatly improves the reliability and
durability of a database. Unless MongoDB runs with journaling, when a MongoDB instance terminates ungracefully,
the database can end in a corrupt and unrecoverable state.

You should assume that a database, running without journaling, that suffers a crash or unclean shutdown is in corrupt
or inconsistent state.

Use journaling, however, do not forego proper replication because of journaling.

64-bit versions of MongoDB after version 2.0 have journaling enabled by default.

Security

In most cases, replica set administrators do not have to keep additional considerations in mind beyond the normal
security precautions that all MongoDB administrators must take. However, ensure that:

34.1. Replica Set Fundamental Concepts 373

MongoDB Documentation, Release 2.4.2

• Your network configuration will allow every member of the replica set to contact every other member of the
replica set.

• If you use MongoDB’s authentication system to limit access to your infrastructure, ensure that you configure a
keyFile (page 1028) on all members to permit authentication.

For most instances, the most effective ways to control access and to secure the connection between members of a
replica set depend on network-level access control. Use your environment’s firewall and network routing to ensure
that traffic only from clients and other replica set members can reach your mongod (page 971) instances. If needed,
use virtual private networks (VPNs) to ensure secure connections over wide area networks (WANs.)

Additionally, MongoDB provides an authentication mechanism for mongod (page 971) and mongos (page 981)
instances connecting to replica sets. These instances enable authentication but specify a shared key file that serves as
a shared password. New in version 1.8: Added support authentication in replica set deployments.Changed in version
1.9.1: Added support authentication in sharded replica set deployments. To enable authentication add the following
option to your configuration file:

keyFile = /srv/mongodb/keyfile

Note: You may chose to set these run-time configuration options using the --keyFile (page 973) (or mongos
--keyFile (page 982)) options on the command line.

Setting keyFile (page 1028) enables authentication and specifies a key file for the replica set members to use when
authenticating to each other. The content of the key file is arbitrary but must be the same on all members of the replica
set and on all mongos (page 981) instances that connect to the set.

The key file must be less one kilobyte in size and may only contain characters in the base64 set. The key file must not
have group or “world” permissions on UNIX systems. Use the following command to use the OpenSSL package to
generate “random” content for use in a key file:

openssl rand -base64 753

Note: Key file permissions are not checked on Windows systems.

Architectures

The architecture and design of the replica set deployment can have a great impact on the set’s capacity and capability.
This section provides a general overview of the architectural possibilities for replica set deployments. However,
for most production deployments a conventional 3-member replica set with priority (page 442) values of 1 are
sufficient.

While the additional flexibility discussed is below helpful for managing a variety of operational complexities, it always
makes sense to let those complex requirements dictate complex architectures, rather than add unnecessary complexity
to your deployment.

Consider the following factors when developing an architecture for your replica set:

• Ensure that the members of the replica set will always be able to elect a primary. Run an odd number of members
or run an arbiter on one of your application servers if you have an even number of members.

• With geographically distributed members, know where the “quorum” of members will be in the case of any
network partitions. Attempt to ensure that the set can elect a primary among the members in the primary data
center.

• Consider including a hidden (page 368) or delayed member (page 368) in your replica set to support dedicated
functionality, like backups, reporting, and testing.

374 Chapter 34. Replica Set Use and Operation

MongoDB Documentation, Release 2.4.2

• Consider keeping one or two members of the set in an off-site data center, but make sure to configure the priority
(page 370) to prevent it from becoming primary.

• Create custom write concerns with replica set tags (page 433) to ensure that applications can control the thresh-
old for a successful write operation. Use these write concerns to ensure that operations propagate to specific
data centers or to machines of different functions before returning successfully.

For more information regarding replica set configuration and deployments see Replica Set Architectures and Deploy-
ment Patterns (page 375).

34.2 Replica Set Architectures and Deployment Patterns

There is no single ideal replica set architecture for every deployment or environment. Indeed the flexibility of replica
sets might be their greatest strength. This document describes the most commonly used deployment patterns for replica
sets. The descriptions are necessarily not mutually exclusive, and you can combine features of each architecture in
your own deployment.

For an overview of operational practices and background information, see the Architectures (page 374) topic in the
Replica Set Fundamental Concepts (page 367) document.

34.2.1 Three Member Sets

The minimum recommended architecture for a replica set consists of:

• One primary and

• Two secondary members, either of which can become the primary at any time.

This makes failover (page 369) possible and ensures there exists two full and independent copies of the data set
at all times. If the primary fails, the replica set elects another member as primary and continues replication until
the primary recovers.

Note: While not recommended, the minimum supported configuration for replica sets includes one primary, one
secondary, and one arbiter (page 368). The arbiter requires fewer resources and lowers costs but sacrifices operational
flexibility and redundancy.

See Also:

Deploy a Replica Set (page 397).

34.2.2 Sets with Four or More Members

To increase redundancy or to provide additional resources for distributing secondary read operations, you can add
additional members to a replica set.

When adding additional members, ensure the following architectural conditions are true:

• The set has an odd number of voting members.

If you have an even number of voting members, deploy an arbiter (page 368) to create an odd number.

• The set has no more than 7 voting members at a time.

34.2. Replica Set Architectures and Deployment Patterns 375

MongoDB Documentation, Release 2.4.2

• Members that cannot function as primaries in a failover have their priority (page 442) values set to 0.

If a member cannot function as a primary because of resource or network latency constraints a priority
(page 442) value of 0 prevents it from being a primary. Any member with a priority value greater than 0 is
available to be a primary.

• A majority of the set’s members operate in the main data center.

See Also:

Add Members to a Replica Set (page 402).

34.2.3 Geographically Distributed Sets

A geographically distributed replica set provides data recovery should one data center fail. These sets include at least
one member in a secondary data center. The member has its priority (page 442) set (page 445) to 0 to prevent the
member from ever becoming primary.

In many circumstances, these deployments consist of the following:

• One primary in the first (i.e., primary) data center.

• One secondary member in the primary data center. This member can become the primary member at any time.

• One secondary member in a secondary data center. This member is ineligible to become primary. Set its
local.system.replset.members[n].priority (page 442) to 0.

If the primary is unavailable, the replica set will elect a new primary from the primary data center.

If the connection between the primary and secondary data centers fails, the member in the secondary center cannot
independently become the primary.

If the primary data center fails, you can manually recover the data set from the secondary data center. With appropriate
write concern (page 174) there will be no data loss and downtime can be minimal.

When you add a secondary data center, make sure to keep an odd number of members overall to prevent ties during
elections for primary by deploying an arbiter (page 368) in your primary data center. For example, if you have three
members in the primary data center and add a member in a secondary center, you create an even number. To create an
odd number and prevent ties, deploy an arbiter (page 368) in your primary data center.

See Also:

Deploy a Geographically Distributed Replica Set (page 407)

34.2.4 Non-Production Members

In some cases it may be useful to maintain a member that has an always up-to-date copy of the entire data set but that
cannot become primary. You might create such a member to provide backups, to support reporting operations, or to
act as a cold standby. Such members fall into one or more of the following categories:

• Low-Priority: These members have local.system.replset.members[n].priority (page 442)
settings such that they are either unable to become primary or very unlikely to become primary. In all other
respects these low-priority members are identical to other replica set member. (See: Secondary-Only Members
(page 368).)

• Hidden: These members cannot become primary and the set excludes them from the output of
db.isMaster() (page 941) and from the output of the database command isMaster (page 847). Exclud-
ing hidden members from such outputs prevents clients and drivers from using hidden members for secondary
reads. (See: Hidden Members (page 368).)

376 Chapter 34. Replica Set Use and Operation

MongoDB Documentation, Release 2.4.2

• Voting: This changes the number of votes that a member of the replica set has in elections. In general, use
priority to control the outcome of elections, as weighting votes introduces operational complexities and risks.
Only modify the number of votes when you need to have more than 7 members in a replica set. (See: Non-Voting
Members (page 369).)

Note: All members of a replica set vote in elections except for non-voting (page 369) members. Priority, hidden, or
delayed status does not affect a member’s ability to vote in an election.

Backups

For some deployments, keeping a replica set member for dedicated backup purposes is operationally advantageous.
Ensure this member is close, from a networking perspective, to the primary or likely primary. Ensure that the repli-
cation lag is minimal or non-existent. To create a dedicated hidden member (page 368) for the purpose of creating
backups.

If this member runs with journaling enabled, you can safely use standard block level backup methods (page 46) to
create a backup of this member. Otherwise, if your underlying system does not support snapshots, you can connect
mongodump (page 992) to create a backup directly from the secondary member. In these cases, use the --oplog
(page 994) option to ensure a consistent point-in-time dump of the database state.

See Also:

Backup Strategies for MongoDB Systems (page 41).

Delayed Replication

Delayed members are special mongod (page 971) instances in a replica set that apply operations from the oplog on a
delay to provide a running “historical” snapshot of the data set, or a rolling backup. Typically these members provide
protection against human error, such as unintentionally deleted databases and collections or failed application upgrades
or migrations.

Otherwise, delayed member function identically to secondary members, with the following operational differences:
they are not eligible for election to primary and do not receive secondary queries. Delayed members do vote in
elections for primary.

See Replica Set Delayed Nodes (page 368) for more information about configuring delayed replica set members.

Reporting

Typically hidden members provide a substrate for reporting purposes, because the replica set segregates these instances
from the cluster. Since no secondary reads reach hidden members, they receive no traffic beyond what replication
requires. While hidden members are not electable as primary, they are still able to vote in elections for primary. If
your operational parameters requires this kind of reporting functionality, see Hidden Replica Set Nodes (page 368) and
local.system.replset.members[n].hidden (page 442) for more information regarding this functionality.

Cold Standbys

For some sets, it may not be possible to initialize a new member in a reasonable amount of time. In these situations, it
may be useful to maintain a secondary member with an up-to-date copy for the purpose of replacing another member
in the replica set. In most cases, these members can be ordinary members of the replica set, but in large sets, with
varied hardware availability, or given some patterns of geographical distribution (page 376), you may want to use a
member with a different priority, hidden, or voting status.

34.2. Replica Set Architectures and Deployment Patterns 377

MongoDB Documentation, Release 2.4.2

Cold standbys may be valuable when your primary and “hot standby” secondaries members have a different hardware
specification or connect via a different network than the main set. In these cases, deploy members with priority equal
to 0 to ensure that they will never become primary. These members will vote in elections for primary but will never
be eligible for election to primary. Consider likely failover scenarios, such as inter-site network partitions, and ensure
there will be members eligible for election as primary and a quorum of voting members in the main facility.

Note: If your set already has 7 members, set the local.system.replset.members[n].votes (page 443)
value to 0 for these members, so that they won’t vote in elections.

See Also:

Secondary Only (page 368), and Hidden Nodes (page 368).

34.2.5 Arbiters

Deploy an arbiter to ensure that a replica set will have a sufficient number of members to elect a primary. While
having replica sets with 2 members is not recommended for production environments, if you have just two members,
deploy an arbiter. Also, for any replica set with an even number of members, deploy an arbiter.

To deploy an arbiter, see the Add an Arbiter to Replica Set (page 426).

34.3 Replica Set Considerations and Behaviors for Applications and
Development

From the perspective of a client application, whether a MongoDB instance is running as a single server (i.e. “stan-
dalone”) or a replica set is transparent. However, replica sets offer some configuration options for write and read
operations. 2

34.3.1 Write Concern

After the driver write concern change (page 1183) all officially supported MongoDB drivers enable write concern by
default.

Write Concern for Replica Sets

MongoDB’s built-in write concern confirms the success of write operations to a replica set’s primary. Write concern
uses the getLastError (page 837) command after write operations to return an object with error information or
confirmation that there are no errors.

From the perspective of a client application, whether a MongoDB instance is running as a single server (i.e. “stan-
dalone”) or a replica set is transparent. However, replica sets offer some configuration options for write and read
operations. 3

2 Sharded clusters where the shards are also replica sets provide the same configuration options with regards to write and read operations.
3 Sharded clusters where the shards are also replica sets provide the same configuration options with regards to write and read operations.

378 Chapter 34. Replica Set Use and Operation

MongoDB Documentation, Release 2.4.2

Verify Write Operations

The default write concern confirms write operations only on the primary. You can configure write concern to confirm
write operations to additional replica set members as well by issuing the getLastError (page 837) command with
the w option.

The w option confirms that write operations have replicated to the specified number of replica set members, including
the primary. You can either specify a number or specify majority, which ensures the write propagates to a majority
of set members. The following example ensures the operation has replicated to two members (the primary and one
other member):

db.runCommand({ getLastError: 1, w: 2 })

The following example ensures the write operation has replicated to a majority of the configured members of the set.

db.runCommand({ getLastError: 1, w: "majority" })

If you specify a w value greater than the number of members that hold a copy of the data (i.e., greater than the number
of non-arbiter members), the operation blocks until those members become available. This can cause the operation
to block forever. To specify a timeout threshold for the getLastError (page 837) operation, use the wtimeout
argument. The following example sets the timeout to 5000 milliseconds:

db.runCommand({ getLastError: 1, w: 2, wtimeout:5000 })

Modify Default Write Concern

You can configure your own “default” getLastError (page 837) behavior for a replica set. Use the
getLastErrorDefaults (page 444) setting in the replica set configuration (page 441). The following sequence
of commands creates a configuration that waits for the write operation to complete on a majority of the set members
before returning:

cfg = rs.conf()
cfg.settings = {}
cfg.settings.getLastErrorDefaults = {w: "majority"}
rs.reconfig(cfg)

The getLastErrorDefaults (page 444) setting affects only those getLastError (page 837) commands that
have no other arguments.

Note: Use of insufficient write concern can lead to rollbacks (page 370) in the case of replica set failover (page 369).
Always ensure that your operations have specified the required write concern for your application.

See Also:

Write Concern (page 174) and Write Concern Options (page 1110)

Custom Write Concerns

You can use replica set tags to create custom write concerns using the getLastErrorDefaults (page 444) and
getLastErrorModes (page 444) replica set settings.

Note: Custom write concern modes specify the field name and a number of distinct values for that field. By contrast,
read preferences use the value of fields in the tag document to direct read operations.

34.3. Replica Set Considerations and Behaviors for Applications and Development 379

MongoDB Documentation, Release 2.4.2

In some cases, you may be able to use the same tags for read preferences and write concerns; however, you may need
to create additional tags for write concerns depending on the requirements of your application.

Single Tag Write Concerns

Consider a five member replica set, where each member has one of the following tag sets:

{ "use": "reporting" }
{ "use": "backup" }
{ "use": "application" }
{ "use": "application" }
{ "use": "application" }

You could create a custom write concern mode that will ensure that applicable write operations will not return until
members with two different values of the use tag have acknowledged the write operation. Create the mode with the
following sequence of operations in the mongo (page 984) shell:

cfg = rs.conf()
cfg.settings = { getLastErrorModes: { use2: { "use": 2 } } }
rs.reconfig(cfg)

To use this mode pass the string multiUse to the w option of getLastError (page 837) as follows:

db.runCommand({ getLastError: 1, w: use2 })

Specific Custom Write Concerns

If you have a three member replica with the following tag sets:

{ "disk": "ssd" }
{ "disk": "san" }
{ "disk": "spinning" }

You cannot specify a custom getLastErrorModes (page 444) value to ensure that the write propagates to the san
before returning. However, you may implement this write concern policy by creating the following additional tags, so
that the set resembles the following:

{ "disk": "ssd" }
{ "disk": "san", "disk.san": "san" }
{ "disk": "spinning" }

Then, create a custom getLastErrorModes (page 444) value, as follows:

cfg = rs.conf()
cfg.settings = { getLastErrorModes: { san: { "disk.san": 1 } } }
rs.reconfig(cfg)

To use this mode pass the string san to the w option of getLastError (page 837) as follows:

db.runCommand({ getLastError: 1, w: san })

This operation will not return until a replica set member with the tag disk.san returns.

You may set a custom write concern mode as the default write concern mode using getLastErrorDefaults
(page 444) replica set as in the following setting:

380 Chapter 34. Replica Set Use and Operation

MongoDB Documentation, Release 2.4.2

cfg = rs.conf()
cfg.settings.getLastErrorDefaults = { ssd:1 }
rs.reconfig(cfg)

See Also:

Configure Replica Set Tag Sets (page 433) for further information about replica set reconfiguration and tag sets.

34.3.2 Read Preference

Read preference describes how MongoDB clients route read operations to members of a replica set.

Background

By default, an application directs its read operations to the primary member in a replica set. Reading from the primary
guarantees that read operations reflect the latest version of a document. However, for an application that does not
require fully up-to-date data, you can improve read throughput, or reduce latency, by distributing some or all reads to
secondary members of the replica set.

The following are use cases where you might use secondary reads:

• Running systems operations that do not affect the front-end application, operations such as backups and reports.

• Providing low-latency queries for geographically distributed deployments. If one secondary is closer to an
application server than the primary, you may see better performance for that application if you use secondary
reads.

• Providing graceful degradation in failover (page 369) situations where a set has no primary for 10 seconds or
more. In this use case, you should give the application the primaryPreferred (page 382) read preference,
which prevents the application from performing reads if the set has no primary.

MongoDB drivers allow client applications to configure a read preference on a per-connection, per-collection, or
per-operation basis. For more information about secondary read operations in the mongo (page 984) shell, see the
readPref() (page 898) method. For more information about a driver’s read preference configuration, see the
appropriate MongoDB Drivers and Client Libraries (page 529) API documentation.

Note: Read preferences affect how an application selects which member to use for read operations. As a result read
preferences dictate if the application receives stale or current data from MongoDB. Use appropriate write concern
policies to ensure proper data replication and consistency.

If read operations account for a large percentage of your application’s traffic, distributing reads to secondary members
can improve read throughput. However, in most cases sharding (page 463) provides better support for larger scale
operations, as clusters can distribute read and write operations across a group of machines.

Read Preference Modes

New in version 2.2. MongoDB drivers (page 529) support five read preference modes:

• primary (page 382)

• primaryPreferred (page 382)

• secondary (page 382)

• secondaryPreferred (page 382)

34.3. Replica Set Considerations and Behaviors for Applications and Development 381

MongoDB Documentation, Release 2.4.2

• nearest (page 383)

You can specify a read preference mode on connection objects, database object, collection object, or per-operation.
The syntax for specifying the read preference mode is specific to the driver and to the idioms of the host language.

Read preference modes are also available to clients connecting to a sharded cluster through a mongos (page 981).
The mongos (page 981) instance obeys specified read preferences when connecting to the replica set that provides
each shard in the cluster.

In the mongo (page 984) shell, the readPref() (page 898) cursor method provides access to read preferences.

Warning: All read preference modes except primary (page 382) may return stale data as secondaries replicate
operations from the primary with some delay.
Ensure that your application can tolerate stale data if you choose to use a non-primary (page 382) mode.

For more information, see read preference background (page 381) and read preference behavior (page 384). See also
the documentation for your driver.

primary
All read operations use only the current replica set primary. This is the default. If the primary is unavailable,
read operations produce an error or throw an exception.

The primary (page 382) read preference mode is not compatible with read preference modes that use tag sets
(page 383). If you specify a tag set with primary (page 382), the driver will produce an error.

primaryPreferred
In most situations, operations read from the primary member of the set. However, if the primary is unavailable,
as is the case during failover situations, operations read from secondary members.

When the read preference includes a tag set (page 383), the client reads first from the primary, if available, and
then from secondaries that match the specified tags. If no secondaries have matching tags, the read operation
produces an error.

Since the application may receive data from a secondary, read operations using the primaryPreferred
(page 382) mode may return stale data in some situations.

Warning: Changed in version 2.2: mongos (page 981) added full support for read preferences. When
connecting to a mongos (page 981) instance older than 2.2, using a client that supports read preference
modes, primaryPreferred (page 382) will send queries to secondaries.

secondary
Operations read only from the secondary members of the set. If no secondaries are available, then this read
operation produces an error or exception.

Most sets have at least one secondary, but there are situations where there may be no available secondary. For
example, a set with a primary, a secondary, and an arbiter may not have any secondaries if a member is in
recovering state or unavailable.

When the read preference includes a tag set (page 383), the client attempts to find secondary members that
match the specified tag set and directs reads to a random secondary from among the nearest group (page 385).
If no secondaries have matching tags, the read operation produces an error. 4

Read operations using the secondary (page 382) mode may return stale data.

4 If your set has more than one secondary, and you use the secondary (page 382) read preference mode, consider the following effect. If
you have a three member replica set (page 375) with a primary and two secondaries, and if one secondary becomes unavailable, all secondary
(page 382) queries must target the remaining secondary. This will double the load on this secondary. Plan and provide capacity to support this as
needed.

382 Chapter 34. Replica Set Use and Operation

http://api.mongodb.org/
http://api.mongodb.org/

MongoDB Documentation, Release 2.4.2

secondaryPreferred
In most situations, operations read from secondary members, but in situations where the set consists of a single
primary (and no other members,) the read operation will use the set’s primary.

When the read preference includes a tag set (page 383), the client attempts to find a secondary member that
matches the specified tag set and directs reads to a random secondary from among the nearest group (page 385).
If no secondaries have matching tags, the read operation produces an error.

Read operations using the secondaryPreferred (page 382) mode may return stale data.

nearest
The driver reads from the nearest member of the set according to the member selection (page 385) process.
Reads in the nearest (page 383) mode do not consider the member’s type. Reads in nearest (page 383)
mode may read from both primaries and secondaries.

Set this mode to minimize the effect of network latency on read operations without preference for current or
stale data.

If you specify a tag set (page 383), the client attempts to find a replica set member that matches the specified
tag set and directs reads to an arbitrary member from among the nearest group (page 385).

Read operations using the nearest (page 383) mode may return stale data.

Note: All operations read from a member of the nearest group of the replica set that matches the specified
read preference mode. The nearest (page 383) mode prefers low latency reads over a member’s primary or
secondary status.

For nearest (page 383), the client assembles a list of acceptable hosts based on tag set and then narrows that
list to the host with the shortest ping time and all other members of the set that are within the “local threshold,”
or acceptable latency. See Member Selection (page 385) for more information.

Tag Sets

Tag sets allow you to specify custom read preferences (page 381) and write concerns (page 174) so that your applica-
tion can target operations to specific members, based on custom parameters.

Note: Consider the following properties of read preferences:

• Custom read preferences and write concerns evaluate tags sets in different ways.

• Read preferences consider the value of a tag when selecting a member to read from.

• Write concerns ignore the value of a tag to when selecting a member except to consider whether or not the value
is unique.

You can specify tag sets with the following read preference modes:

• primaryPreferred (page 382)

• secondary (page 382)

• secondaryPreferred (page 382)

• nearest (page 383)

You cannot specify tag sets with the primary (page 382) read preference mode.

34.3. Replica Set Considerations and Behaviors for Applications and Development 383

MongoDB Documentation, Release 2.4.2

Tags are not compatible with primary (page 382) and only apply when selecting (page 385) a secondary member
of a set for a read operation. However, the nearest (page 383) read mode, when combined with a tag set will select
the nearest member that matches the specified tag set, which may be a primary or secondary.

All interfaces use the same member selection logic (page 385) to choose the member to which to direct read operations,
basing the choice on read preference mode and tag sets.

For information on configuring tag sets, see Configure Replica Set Tag Sets (page 433).

For more information on how read preference modes (page 381) interact with tag sets, see the documentation for each
read preference mode.

Behavior

Changed in version 2.2.

Auto-Retry

Connection between MongoDB drivers and mongod (page 971) instances in a replica set must balance two concerns:

1. The client should attempt to prefer current results, and any connection should read from the same member of
the replica set as much as possible.

2. The client should minimize the amount of time that the database is inaccessible as the result of a connection
issue, networking problem, or failover in a replica set.

As a result, MongoDB drivers and mongos (page 981):

• Reuse a connection to specific mongod (page 971) for as long as possible after establishing a connection to that
instance. This connection is pinned to this mongod (page 971).

• Attempt to reconnect to a new member, obeying existing read preference modes (page 381), if the connection to
mongod (page 971) is lost.

Reconnections are transparent to the application itself. If the connection permits reads from secondary mem-
bers, after reconnecting, the application can receive two sequential reads returning from different secondaries.
Depending on the state of the individual secondary member’s replication, the documents can reflect the state of
your database at different moments.

• Return an error only after attempting to connect to three members of the set that match the read preference mode
(page 381) and tag set (page 383). If there are fewer than three members of the set, the client will error after
connecting to all existing members of the set.

After this error, the driver selects a new member using the specified read preference mode. In the absence of a
specified read preference, the driver uses primary (page 382).

• After detecting a failover situation, 5 the driver attempts to refresh the state of the replica set as quickly as
possible.

Request Association

Reads from secondary may reflect the state of the data set at different points in time because secondary members of
a replica set may lag behind the current state of the primary by different amounts. To prevent subsequent reads from
jumping around in time, the driver can associate application threads to a specific member of the set after the first read.
The thread will continue to read from the same member until:

5 When a failover occurs, all members of the set close all client connections that produce a socket error in the driver. This behavior prevents or
minimizes rollback.

384 Chapter 34. Replica Set Use and Operation

MongoDB Documentation, Release 2.4.2

• The application performs a read with a different read preference.

• The thread terminates.

• The client receives a socket exception, as is the case when there’s a network error or when the mongod
(page 971) closes connections during a failover. This triggers a retry (page 384), which may be transparent
to the application.

If an application thread issues a query with the primaryPreferred (page 382) mode while the primary is inacces-
sible, the thread will carry the association with that secondary for the lifetime of the thread. The thread will associate
with the primary, if available, only after issuing a query with a different read preference, even if a primary becomes
available. By extension, if a thread issues a read with the secondaryPreferred (page 382) when all secondaries
are down, it will carry an association with the primary. This application thread will continue to read from the primary
even if a secondary becomes available later in the thread’s lifetime.

Member Selection

Clients, by way of their drivers, and mongos (page 981) instances for sharded clusters periodically update their view
of the replica set’s state: which members are up or down, which member is primary, and the latency to each mongod
(page 971) instance.

For any operation that targets a member other than the primary, the driver:

1. Assembles a list of suitable members, taking into account member type (i.e. secondary, primary, or all members.)

2. Excludes members not matching the tag sets, if specified.

3. Determines which suitable member is the closest to the client in absolute terms.

4. Builds a list of members that are within a defined ping distance (in milliseconds) of the “absolute nearest”
member. 6

5. Selects a member from these hosts at random. The member receives the read operation.

Once the application selects a member of the set to use for read operations, the driver continues to use this connection
for read preference until the application specifies a new read preference or something interrupts the connection. See
Request Association (page 384) for more information.

Sharding and mongos

Changed in version 2.2: Before version 2.2, mongos (page 981) did not support the read preference mode semantics
(page 381). In most sharded clusters, a replica set provides each shard where read preferences are also applicable.
Read operations in a sharded cluster, with regard to read preference, are identical to unsharded replica sets.

Unlike simple replica sets, in sharded clusters, all interactions with the shards pass from the clients to the mongos
(page 981) instances that are actually connected to the set members. mongos (page 981) is responsible for the
application of the read preferences, which is transparent to applications.

There are no configuration changes required for full support of read preference modes in sharded environments, as
long as the mongos (page 981) is at least version 2.2. All mongos (page 981) maintain their own connection pool to
the replica set members. As a result:

• A request without a specified preference has primary (page 382), the default, unless, the mongos (page 981)
reuses an existing connection that has a different mode set.

Always explicitly set your read preference mode to prevent confusion.

6 Applications can configure the threshold used in this stage. The default “acceptable latency” is 15 milliseconds, which you can override
in the drivers with their own secondaryAcceptableLatencyMS option. For mongos (page 981) you can use the --localThreshold
(page 983) or localThreshold (page 1036) runtime options to set this value.

34.3. Replica Set Considerations and Behaviors for Applications and Development 385

MongoDB Documentation, Release 2.4.2

• All nearest (page 383) and latency calculations reflect the connection between the mongos (page 981) and
the mongod (page 971) instances, not the client and the mongod (page 971) instances.

This produces the desired result, because all results must pass through the mongos (page 981) before returning
to the client.

Database Commands

Because some database commands read and return data from the database, all of the official drivers support full read
preference mode semantics (page 381) for the following commands:

• group (page 840)

• mapReduce (page 851) 7

• aggregate (page 809)

• collStats (page 815)

• dbStats (page 823)

• count (page 821)

• distinct (page 824)

• geoNear (page 836)

• geoSearch (page 836)

• geoWalk (page 837)

mongos (page 981) currently does not route commands using read preferences; clients send all commands to shards’
primaries. See SERVER-7423.

Uses for non-Primary Read Preferences

You must exercise care when specifying read preferences: modes other than primary (page 382) can and will return
stale data. These secondary queries will not include the most recent write operations to the replica set’s primary.
Nevertheless, there are several common use cases for using non-primary (page 382) read preference modes:

• Reporting and analytics workloads.

Having these queries target a secondary helps distribute load and prevent these operations from affecting the
main workload of the primary.

Also consider using secondary (page 382) in conjunction with a direct connection to a hidden member
(page 368) of the set.

• Providing local reads for geographically distributed applications.

If you have application servers in multiple data centers, you may consider having a geographically distributed
replica set (page 376) and using a non primary read preference or the nearest (page 383) to avoid network
latency.

• Maintaining availability during a failover.

Use primaryPreferred (page 382) if you want your application to do consistent reads from the primary
under normal circumstances, but to allow stale reads from secondaries in an emergency. This provides a “read-
only mode” for your application during a failover.

7 Only “inline” mapReduce (page 851) operations that do not write data support read preference, otherwise these operations must run on the
primary members.

386 Chapter 34. Replica Set Use and Operation

https://jira.mongodb.org/browse/SERVER-7423

MongoDB Documentation, Release 2.4.2

Warning: In some situations using secondaryPreferred (page 382) to distribute read load to replica sets
may carry significant operational risk: if all secondaries are unavailable and your set has enough arbiters to prevent
the primary from stepping down, then the primary will receive all traffic from clients.
For this reason, use secondary (page 382) to distribute read load to replica sets, not secondaryPreferred
(page 382).

Using read modes other than primary (page 382) and primaryPreferred (page 382) to provide extra capacity
is not in and of itself justification for non-primary (page 382) in many cases. Furthermore, sharding (page 461)
increases read and write capacity by distributing read and write operations across a group of machines.

34.4 Replica Set Internals and Behaviors

This document provides a more in-depth explanation of the internals and operation of replica set features. This material
is not necessary for normal operation or application development but may be useful for troubleshooting and for further
understanding MongoDB’s behavior and approach.

For additional information about the internals of replication replica sets see the following resources in the MongoDB
Manual:

• The local Database (page 1099)

• Replica Set Commands (page 449)

• Replication Info Reference (page 448)

• Replica Set Configuration (page 441)

34.4.1 Oplog Internals

For an explanation of the oplog, see Oplog (page 372).

Under various exceptional situations, updates to a secondary’s oplog might lag behind the desired performance time.
See Replication Lag (page 422) for details.

All members of a replica set send heartbeats (pings) to all other members in the set and can import operations to the
local oplog from any other member in the set.

Replica set oplog operations are idempotent. The following operations require idempotency:

• initial sync

• post-rollback catch-up

• sharding chunk migrations

34.4.2 Read Preference Internals

MongoDB uses single-master replication to ensure that the database remains consistent. However, clients may modify
the read preferences (page 381) on a per-connection basis in order to distribute read operations to the secondary
members of a replica set. Read-heavy deployments may achieve greater query throughput by distributing reads to
secondary members. But keep in mind that replication is asynchronous; therefore, reads from secondaries may not
always reflect the latest writes to the primary.

See Also:

Consistency (page 370)

34.4. Replica Set Internals and Behaviors 387

MongoDB Documentation, Release 2.4.2

Note: Use db.getReplicationInfo() (page 940) from a secondary member and the replication status
(page 448) output to asses the current state of replication and determine if there is any unintended replication de-
lay.

34.4.3 Member Configurations

Replica sets can include members with the following four special configurations that affect membership behavior:

• Secondary-only (page 368) members have their priority (page 442) values set to 0 and thus are not eligible
for election as primaries.

• Hidden (page 368) members do not appear in the output of db.isMaster() (page 941). This prevents clients
from discovering and potentially querying the member in question.

• Delayed (page 368) members lag a fixed period of time behind the primary. These members are typically used
for disaster recovery scenarios. For example, if an administrator mistakenly truncates a collection, and you
discover the mistake within the lag window, then you can manually fail over to the delayed member.

• Arbiters (page 368) exist solely to participate in elections. They do not replicate data from the primary.

In almost every case, replica sets simplify the process of administering database replication. However, replica sets still
have a unique set of administrative requirements and concerns. Choosing the right system architecture (page 375) for
your data set is crucial.

See Also:

Member Configurations (page 367)

34.4.4 Security Internals

Administrators of replica sets also have unique monitoring (page 93) and security (page 373) concerns. The replica
set functions (page 885) in the mongo (page 984) shell, provide the tools necessary for replica set administration. In
particular use the rs.conf() (page 950) to return a document that holds the replica set configuration (page 441)
and use rs.reconfig() (page 951) to modify the configuration of an existing replica set.

34.4.5 Election Internals

Elections are the process replica set members use to select which member should become primary. A primary is
the only member in the replica set that can accept write operations, including insert() (page 920), update()
(page 932), and remove() (page 928).

The following events can trigger an election:

• You initialize a replica set for the first time.

• A primary steps down. A primary will step down in response to the replSetStepDown (page 867) command
or if it sees that one of the current secondaries is eligible for election and has a higher priority. A primary
also will step down when it cannot contact a majority of the members of the replica set. When the current
primary steps down, it closes all open client connections to prevent clients from unknowingly writing data to a
non-primary member.

• A secondary member loses contact with a primary. A secondary will call for an election if it cannot establish a
connection to a primary.

• A failover occurs.

388 Chapter 34. Replica Set Use and Operation

MongoDB Documentation, Release 2.4.2

In an election, all members have one vote, including hidden (page 368) members, arbiters (page 368), and even
recovering members. Any mongod (page 971) can veto an election.

In the default configuration, all members have an equal chance of becoming primary; however, it’s possible to set
priority (page 442) values that weight the election. In some architectures, there may be operational reasons for
increasing the likelihood of a specific replica set member becoming primary. For instance, a member located in a
remote data center should not become primary. See: Member Priority (page 370) for more information.

Any member of a replica set can veto an election, even if the member is a non-voting member (page 369).

A member of the set will veto an election under the following conditions:

• If the member seeking an election is not a member of the voter’s set.

• If the member seeking an election is not up-to-date with the most recent operation accessible in the replica set.

• If the member seeking an election has a lower priority than another member in the set that is also eligible for
election.

• If a secondary only member (page 368) 8 is the most current member at the time of the election, another eligible
member of the set will catch up to the state of this secondary member and then attempt to become primary.

• If the current primary member has more recent operations (i.e. a higher “optime”) than the member seeking
election, from the perspective of the voting member.

• The current primary will veto an election if it has the same or more recent operations (i.e. a “higher or equal
optime”) than the member seeking election.

The first member to receive votes from a majority of members in a set becomes the next primary until the next election.
Be aware of the following conditions and possible situations:

• Replica set members send heartbeats (pings) to each other every 2 seconds. If a heartbeat does not return for
more than 10 seconds, the other members mark the delinquent member as inaccessible.

• Replica set members compare priorities only with other members of the set. The absolute value of priorities does
not have any impact on the outcome of replica set elections, with the exception of the value 0, which indicates
the member cannot become primary and cannot seek election. For details, see Configure a Non-Voting Replica
Set Member (page 430).

• A replica set member cannot become primary unless it has the highest “optime” of any visible member in the
set.

• If the member of the set with the highest priority is within 10 seconds of the latest oplog entry, then the set will
not elect a primary until the member with the highest priority catches up to the latest operation.

See Also:

Non-voting members in a replica set (page 369), Configure a Non-Voting Replica Set Member (page 430), and
replica configuration (page 443).

34.4.6 Syncing

In order to remain up-to-date with the current state of the replica set, set members sync, or copy, oplog entries from
other members. Members sync data at two different points:

• Initial sync occurs when MongoDB creates new databases on a new or restored member, populating the member
with the replica set’s data. When a new or restored member joins or rejoins a set, the member waits to receive
heartbeats from other members. By default, the member syncs from the the closest member of the set that is
either the primary or another secondary with more recent oplog entries. This prevents two secondaries from
syncing from each other.

8 Remember that hidden (page 368) and delayed (page 368) imply secondary-only (page 368) configuration.

34.4. Replica Set Internals and Behaviors 389

MongoDB Documentation, Release 2.4.2

• Replication occurs continually after initial sync and keeps the member updated with changes to the replica set’s
data.

In MongoDB 2.0, secondaries only change sync targets if the connection to the sync target drops 9 or produces an
error.

For example:

1. If you have two secondary members in one data center and a primary in a second facility, and if you start all
three instances at roughly the same time (i.e. with no existing data sets or oplog), both secondaries will likely
sync from the primary, as neither secondary has more recent oplog entries.

If you restart one of the secondaries, then when it rejoins the set it will likely begin syncing from the other
secondary, because of proximity.

2. If you have a primary in one facility and a secondary in an alternate facility, and if you add another secondary
to the alternate facility, the new secondary will likely sync from the existing secondary because it is closer than
the primary.

In MongoDB 2.2, secondaries also use the following additional sync behaviors:

• Secondaries will sync from delayed members (page 368) only if no other member is available.

• Secondaries will not sync from hidden members (page 368).

• Secondaries will not start syncing from a member in a recovering state.

• For one member to sync from another, both members must have the same value, either true or false, for the
buildIndexes (page 442) field.

34.4.7 Multithreaded Replication

MongoDB applies write operations in batches using a multithreaded approach. The replication process divides each
batch among a group of threads which apply many operations with greater concurrency.

Even though threads may apply operations out of order, a client reading data from a secondary will never return
documents that reflect an in-between state that never existed on the primary. To ensure this consistency, MongoDB
blocks all read operations while applying the batch of operations.

To help improve the performance of operation application, MongoDB fetches all the memory pages that hold data and
indexes that the operations in the batch will affect. The prefetch stage minimizes the amount of time MongoDB must
hold the write lock to apply operations. See the replIndexPrefetch (page 1034) setting to modify the index
fetching behavior.

34.4.8 Pre-Fetching Indexes to Improve Replication Throughput

By default, secondaries will in most cases pre-fetch Indexes (page 301) associated with the affected document to
improve replication throughput.

You can limit this feature to pre-fetch only the index on the _id field, or you can disable this feature entirely. For
more information, see replIndexPrefetch (page 1034).

The following document describes master-slave replication, which is deprecated. Use replica sets instead of master-
slave in all new deployments.

9 Secondaries will stop syncing from a member if the connection used to poll oplog entries is unresponsive for 30 seconds. If a connection times
out, the member may select a new member to sync from.

390 Chapter 34. Replica Set Use and Operation

MongoDB Documentation, Release 2.4.2

34.5 Master Slave Replication

Deprecated since version 1.6: Replica sets (page 367) replace master-slave replication. Use replica sets rather than
master-slave replication for all new production deployments. Replica sets provide functional super-set of master-
slave and are more robust for production use. Master-slave replication preceded replica and makes it possible have
a large number of non-master (i.e. slave) and to only replicate operations for a single database; however, master-
slave replication provides less redundancy, and does not automate failover. See Deploy Master-Slave Equivalent using
Replica Sets (page 393) for a replica set configuration that is equivalent to master-slave replication.

Warning: This documentation remains to support legacy deployments and for archival purposes, only.

34.5.1 Fundamental Operations

Initial Deployment

To configure a master-slave deployment, start two mongod (page 971) instances: one in master (page 1035) mode,
and the other in slave (page 1035) mode.

To start a mongod (page 971) instance in master (page 1035) mode, invoke mongod (page 971) as follows:

mongod --master --dbpath /data/masterdb/

With the --master (page 978) option, the mongod (page 971) will create a local.oplog.$main (page 1100)
collection, which the “operation log” that queues operations that the slaves will apply to replicate operations from the
master. The --dbpath (page 973) is optional.

To start a mongod (page 971) instance in slave (page 1035) mode, invoke mongod (page 971) as follows:

mongod --slave --source <masterhostname><:<port>> --dbpath /data/slavedb/

Specify the hostname and port of the master instance to the --source (page 978) argument. The --dbpath
(page 973) is optional.

For slave (page 1035) instances, MongoDB stores data about the source server in the local.sources
(page 1100) collection.

Configuration Options for Master-Slave Deployments

As an alternative to specifying the --source (page 978) run-time option, can add a document to local.sources
(page 1100) specifying the master (page 1035) instance, as in the following operation in the mongo (page 984)
shell:

1 use local
2 db.sources.find()
3 db.sources.insert({ host: <masterhostname> <,only: databasename> });

In line 1, you switch context to the local database. In line 2, the find() (page 910) operation should re-
turn no documents, to ensure that there are no documents in the sources collection. Finally, line 3 uses
db.collection.insert() (page 920) to insert the source document into the local.sources (page 1100)
collection. The model of the local.sources (page 1100) document is as follows:

host
The host field specifies the master (page 1035)mongod (page 971) instance, and holds a resolvable hostname,
i.e. IP address, or a name from a host file, or preferably a fully qualified domain name.

34.5. Master Slave Replication 391

MongoDB Documentation, Release 2.4.2

You can append <:port> to the host name if the mongod (page 971) is not running on the default 27017
port.

only
Optional. Specify a name of a database. When specified, MongoDB will only replicate the indicated database.

Operational Considerations for Replication with Master Slave Deployments

Master instances store operations in an oplog which is a capped collection (page 532). As a result, if a slave falls too
far behind the state of the master, it cannot “catchup” and must re-sync from scratch. Slave may become out of sync
with a master if:

• The slave falls far behind the data updates available from that master.

• The slave stops (i.e. shuts down) and restarts later after the master has overwritten the relevant operations from
the master.

When slaves, are out of sync, replication stops. Administrators must intervene manually to restart replication. Use
the resync (page 868) command. Alternatively, the --autoresync (page 978) allows a slave to restart replica-
tion automatically, after ten second pause, when the slave falls out of sync with the master. With --autoresync
(page 978) specified, the slave will only attempt to re-sync once in a ten minute period.

To prevent these situations you should specify the a larger oplog when you start the master (page 1035) in-
stance, by adding the --oplogSize (page 977) option when starting mongod (page 971). If you do not specify
--oplogSize (page 977), mongod (page 971) will allocate 5% of available disk space on start up to the oplog,
with a minimum of 1GB for 64bit machines and 50MB for 32bit machines.

34.5.2 Run time Master-Slave Configuration

MongoDB provides a number of run time configuration options for mongod (page 971) instances in master-slave de-
ployments. You can specify these options in configuration files (page 35) or on the command-line. See documentation
of the following:

• For master nodes:

– master (page 1035)

– slave (page 1035)

• For slave nodes:

– source (page 1035)

– only (page 1035)

– slaveDelay (page 1035)

Also consider the Master-Slave Replication Command Line Options (page 978) for related options.

Diagnostics

On a master instance, issue the following operation in the mongo (page 984) shell to return replication status from the
perspective of the master:

db.printReplicationInfo()

On a slave instance, use the following operation in the mongo (page 984) shell to return the replication status from
the perspective of the slave:

392 Chapter 34. Replica Set Use and Operation

MongoDB Documentation, Release 2.4.2

db.printSlaveReplicationInfo()

Use the serverStatus (page 869) as in the following operation, to return status of the replication:

db.serverStatus()

See server status repl fields (page 1061) for documentation of the relevant section of output.

34.5.3 Security

When running with auth (page 1029) enabled, in master-slave deployments, you must create a user account for the
local database on both mongod (page 971) instances. Log in, and authenticate to the admin database on the slave
instance, and then create the repl user on the local database, with the following operation:

use local
db.addUser(’repl’, <replpassword>)

Once created, repeat the operation on the master instance.

The slave instance first looks for a user named repl in the local.system.users (page 154) collection.
If present, the slave uses this user account to authenticate to the local database in the master instance. If
the repl user does not exist, the slave instance attempts to authenticate using the first user document in the
local.system.users (page 154) collection.

The local database works like the admin database: an account for local has access to the entire server.

See Also:

Security (page 123) for more information about security in MongoDB

34.5.4 Ongoing Administration and Operation of Master-Slave Deployments

Deploy Master-Slave Equivalent using Replica Sets

If you want a replication configuration that resembles master-slave replication, using replica sets replica sets, con-
sider the following replica configuration document. In this deployment hosts <master> and <slave> 10 provide
replication that is roughly equivalent to a two-instance master-slave deployment:

{
_id : ’setName’,
members : [
{ _id : 0, host : "<master>", priority : 1 },
{ _id : 1, host : "<slave>", priority : 0, votes : 0 }

]
}

See Replica Set Configuration (page 441) for more information about replica set configurations.

Failing over to a Slave (Promotion)

To permanently failover from a unavailable or damaged master (A in the following example) to a slave (B):

1. Shut down A.

2. Stop mongod (page 971) on B.

10 In replica set configurations, the host (page 442) field must hold a resolvable hostname.

34.5. Master Slave Replication 393

MongoDB Documentation, Release 2.4.2

3. Back up and move all data files that begin with local on B from the dbpath (page 1029).

Warning: Removing local.* is irrevocable and cannot be undone. Perform this step with extreme
caution.

4. Restart mongod (page 971) on B with the --master (page 978) option.

Note: This is a one time operation, and is not reversible. A cannot become a slave of B until it completes a full resync.

Inverting Master and Slave

If you have a master (A) and a slave (B) and you would like to reverse their roles, follow this procedure. The procedure
assumes A is healthy, up-to-date and available.

If A is not healthy but the hardware is okay (power outage, server crash, etc.), skip steps 1 and 2 and in step 8 replace
all of A‘s files with B‘s files in step 8.

If A is not healthy and the hardware is not okay, replace A with a new machine. Also follow the instructions in the
previous paragraph.

To invert the master and slave in a deployment:

1. Halt writes on A using the fsync command.

2. Make sure B is up to date with the state of A.

3. Shut down B.

4. Back up and move all data files that begin with local on B from the dbpath (page 1029) to remove the
existing local.sources data.

Warning: Removing local.* is irrevocable and cannot be undone. Perform this step with extreme
caution.

5. Start B with the --master (page 978) option.

6. Do a write on B, which primes the oplog to provide a new sync start point.

7. Shut down B. B will now have a new set of data files that start with local.

8. Shut down A and replace all files in the dbpath (page 1029) of A that start with local with a copy of the files
in the dbpath (page 1029) of B that begin with local.

Considering compressing the local files from B while you copy them, as they may be quite large.

9. Start B with the --master (page 978) option.

10. Start A with all the usual slave options, but include fastsync (page 977).

Creating a Slave from an Existing Master’s Disk Image

If you can stop write operations to the master for an indefinite period, you can copy the data files from the master to
the new slave and then start the slave with --fastsync (page 977).

Warning: Be careful with --fastsync (page 977). If the data on both instances is identical, a discrepancy will
exist forever.

394 Chapter 34. Replica Set Use and Operation

MongoDB Documentation, Release 2.4.2

fastsync (page 1034) is a way to start a slave by starting with an existing master disk image/backup. This option
declares that the administrator guarantees the image is correct and completely up-to-date with that of the master. If
you have a full and complete copy of data from a master you can use this option to avoid a full synchronization upon
starting the slave.

Creating a Slave from an Existing Slave’s Disk Image

You can just copy the other slave’s data file snapshot without any special options. Only take data snapshots when a
mongod (page 971) process is down or locked using db.fsyncLock() (page 938).

Resyncing a Slave that is too Stale to Recover

Slaves asynchronously apply write operations from the master that the slaves poll from the master’s oplog. The oplog
is finite in length, and if a slave is too far behind, a full resync will be necessary. To resync the slave, connect to a
slave using the mongo (page 984) and issue the resync (page 868) command:

use admin
db.runCommand({ resync: 1 })

This forces a full resync of all data (which will be very slow on a large database). You can achieve the same effect by
stopping mongod (page 971) on the slave, deleting the entire content of the dbpath (page 1029) on the slave, and
restarting the mongod (page 971).

Slave Chaining

Slaves cannot be “chained.” They must all connect to the master directly.

If a slave attempts “slave from” another slave you will see the following line in the mongod (page 971) long of the
shell:

assertion 13051 tailable cursor requested on non capped collection ns:local.oplog.$main

Correcting a Slave’s Source

To change a slave’s source, manually modify the slave’s local.sources (page 1100) collection.

Example

Consider the following: If you accidentally set an incorrect hostname for the slave’s source (page 1035), as in the
following example:

mongod --slave --source prod.mississippi

You can correct this, by restarting the slave without the --slave (page 978) and --source (page 978) arguments:

mongod

Connect to this mongod (page 971) instance using the mongo (page 984) shell and update the local.sources
(page 1100) collection, with the following operation sequence:

use local

db.sources.update({ host : "prod.mississippi" }, { $set : { host : "prod.mississippi.example.net" } })

34.5. Master Slave Replication 395

MongoDB Documentation, Release 2.4.2

Restart the slave with the correct command line arguments or with no --source (page 978) option. After configuring
local.sources (page 1100) the first time, the --source (page 978) will have no subsequent effect. Therefore,
both of the following invocations are correct:

mongod --slave --source prod.mississippi.example.net

or

mongod --slave

The slave now polls data from the correct master.

For documentation of MongoDB’s operational segregation capabilities for replica set deployments see the Data Center
Awareness (page 61)

396 Chapter 34. Replica Set Use and Operation

CHAPTER 35

Replica Set Tutorials and Procedures

The following tutorials describe a number of common replica set maintenance and operational practices in greater
detail.

35.1 Replica Set Administration

Replica sets automate most administrative tasks associated with database replication. Nevertheless, several operations
related to deployment and systems management require administrator intervention.

The following tutorials provide task-oriented instructions for specific administrative tasks related to replica set opera-
tion.

35.1.1 Deploy a Replica Set

This tutorial describes how to create a three-member replica set from three existing mongod (page 971) instances.
The tutorial provides two procedures: one for development and test systems; and a one for production systems.

To instead deploy a replica set from a single standalone MongoDB instance, see Convert a Standalone to a Replica
Set (page 401). For additional information regarding replica set deployments, see Replica Set Fundamental Concepts
(page 367) and Replica Set Architectures and Deployment Patterns (page 375).

Overview

Three member replica sets provide enough redundancy to survive most network partitions and other system failures.
Additionally, these sets have sufficient capacity for many distributed read operations. Most deployments require no
additional members or configuration.

Requirements

Most replica sets consist of three or more mongod (page 971) instances. 1 This tutorial describes a three member
set. Production environments should have at least three distinct systems so that each system can run its own instance
of mongod (page 971). For development systems you can run all three instances of the mongod (page 971) process

1 To ensure smooth elections (page 369) always design replica sets with odd numbers of members. Use Arbiters (page 368) to ensure the set has
odd number of voting members and avoid tied elections.

397

MongoDB Documentation, Release 2.4.2

on a local system or within a virtual instance. For production environments, you should maintain as much separation
between members as possible. For example, when using virtual machines for production deployments, each member
should live on a separate host server, served by redundant power circuits and with redundant network paths.

Procedures

These procedures assume you already have instances of MongoDB installed on the systems you will add as members
of your replica set. If you have not already installed MongoDB, see the installation tutorials (page 3).

Deploy a Development or Test Replica Set

The examples in this procedure create a new replica set named rs0.

1. Before creating your replica set, verify that every member can successfully connect to every other member. The
network configuration must allow all possible connections between any two members. To test connectivity, see
Test Connections Between all Members (page 424).

2. Start three instances of mongod (page 971) as members of a replica set named rs0, as described in this step.
For ephemeral tests and the purposes of this guide, you may run the mongod (page 971) instances in separate
windows of GNU Screen. OS X and most Linux distributions come with screen installed by default 2 systems.

(a) Create the necessary data directories by issuing a command similar to the following:

mkdir -p /srv/mongodb/rs0-0 /srv/mongodb/rs0-1 /srv/mongodb/rs0-2

(b) Issue the following commands, each in a distinct screen window:

mongod --port 27017 --dbpath /srv/mongodb/rs0-0 --replSet rs0
mongod --port 27018 --dbpath /srv/mongodb/rs0-1 --replSet rs0
mongod --port 27019 --dbpath /srv/mongodb/rs0-2 --replSet rs0

This starts each instance as a member of a replica set named rs0, each running on a distinct port. If
you are already using these ports, you can select different ports. See the documentation of the following
options for more information: --port (page 972), --dbpath (page 973), and --replSet (page 977).

3. Open a mongo (page 984) shell and connect to the first mongod (page 971) instance, with the following
command:

mongo --port 27017

4. Create a replica set configuration object in the mongo (page 984) shell environment to use to initiate the replica
set with the following sequence of operations:

rsconf = {
_id: "rs0",
members: [

{
_id: 0,
host: "<hostname>:27017"

}
]

}

5. Use rs.initiate() (page 951) to initiate a replica set consisting of the current member and using the default
configuration:

2 GNU Screen is packaged as screen on Debian-based, Fedora/Red Hat-based, and Arch Linux.

398 Chapter 35. Replica Set Tutorials and Procedures

http://www.gnu.org/software/screen/

MongoDB Documentation, Release 2.4.2

rs.initiate(rsconf)

6. Display the current replica configuration (page 441):

rs.conf()

7. Add the second and third mongod (page 971) instances to the replica set using the rs.add() (page 949)
method. Replace <hostname> with your system’s hostname in the following examples:

rs.add("<hostname>:27018")
rs.add("<hostname>:27019")

After these commands return you have a fully functional replica set. New replica sets elect a primary within a
few seconds.

8. Check the status of your replica set at any time with the rs.status() (page 953) operation.

See Also:

The documentation of the following shell functions for more information:

• rs.initiate() (page 951)

• rs.conf() (page 950)

• rs.reconfig() (page 951)

• rs.add() (page 949)

You may also consider the simple setup script as an example of a basic automatically configured replica set.

Deploy a Production Replica Set

Production replica sets are very similar to the development or testing deployment described above, with the following
differences:

• Each member of the replica set resides on its own machine, and the MongoDB processes all bind to port 27017,
which is the standard MongoDB port.

• Each member of the replica set must be accessible by way of resolvable DNS or hostnames in the following
scheme:

– mongodb0.example.net

– mongodb1.example.net

– mongodb2.example.net

Configure DNS names appropriately, or set up your systems’ http://docs.mongodb.org/manual/etc/hosts
file to reflect this configuration.

• You specify run-time configuration on each system in a configuration file (page 1026) stored in
http://docs.mongodb.org/manual/etc/mongodb.conf or in a related location. You do not spec-
ify run-time configuration through command line options.

For each MongoDB instance, use the following configuration. Set configuration values appropriate to your
systems:

port = 27017

bind_ip = 10.8.0.10

dbpath = /srv/mongodb/

35.1. Replica Set Administration 399

https://github.com/mongodb/mongo-snippets/blob/master/replication/simple-setup.py

MongoDB Documentation, Release 2.4.2

fork = true

replSet = rs0

You do not need to specify an interface with bind_ip (page 1027). However, if you do not specify an interface,
MongoDB listens for connections on all available IPv4 interfaces. Modify bind_ip (page 1027) to reflect a
secure interface on your system that is able to access all other members of the set and on which all other
members of the replica set can access the current member. The DNS or host names must point and resolve to
this IP address. Configure network rules or a virtual private network (i.e. “VPN”) to permit this access.

For more documentation on run time options used above and on additional configuration options, see Configu-
ration File Options (page 1026).

To deploy a production replica set:

1. Before creating your replica set, verify that every member can successfully connect to every other member. The
network configuration must allow all possible connections between any two members. To test connectivity, see
Test Connections Between all Members (page 424).

2. On each system start the mongod (page 971) process by issuing a command similar to following:

mongod --config /etc/mongodb.conf

Note: In production deployments you likely want to use and configure a control script to manage this process
based on this command. Control scripts are beyond the scope of this document.

3. Open a mongo (page 984) shell connected to this host:

mongo

4. Use rs.initiate() (page 951) to initiate a replica set consisting of the current member and using the default
configuration:

rs.initiate()

5. Display the current replica configuration (page 441):

rs.conf()

6. Add two members to the replica set by issuing a sequence of commands similar to the following.

rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")

After these commands return you have a fully functional replica set. New replica sets elect a primary within a
few seconds.

7. Check the status of your replica set at any time with the rs.status() (page 953) operation.

See Also:

The documentation of the following shell functions for more information:

• rs.initiate() (page 951)

• rs.conf() (page 950)

• rs.reconfig() (page 951)

• rs.add() (page 949)

400 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

35.1.2 Convert a Standalone to a Replica Set

While standalone MongoDB instances are useful for testing, development and trivial deployments, for production
use, replica sets provide required robustness and disaster recovery. This tutorial describes how to convert an existing
standalone instance into a three-member replica set. If you’re deploying a replica set “fresh,” without any existing
MongoDB data or instance, see Deploy a Replica Set (page 397).

For more information on replica sets, their use, and administration (page 365), see:

• Replica Set Fundamental Concepts (page 367),

• Replica Set Architectures and Deployment Patterns (page 375),

• Add Members to a Replica Set (page 402)

• Add an Arbiter to Replica Set (page 426)

• Remove Members from Replica Set (page 405)

• Replace a Replica Set Member (page 405)

• Adjust Priority for Replica Set Member (page 406)

• Resync a Member of a Replica Set (page 406)

• Configure a Secondary’s Sync Target (page 432)

• Configure a Delayed Replica Set Member (page 429)

• Configure a Replica Set Member as Hidden (page 430)

• Configure a Non-Voting Replica Set Member (page 430)

• Prevent Replica Set Member from Becoming Primary (page 431)

• Manage Chained Replication (page 417)

• Troubleshoot Replica Sets (page 422), and

• Replica Set Considerations and Behaviors for Applications and Development (page 378).

Note: If you’re converting a standalone instance into a replica set that is a shard in a sharded cluster you must change
the shard host information in the config database. While connected to a mongos (page 981) instance with a mongo
(page 984) shell, issue a command in the following form:

db.getSiblingDB("config").shards.save({_id: "<name>", host: "<replica-set>/<member,><member,><...>" })

Replace <name> with the name of the shard, replace <replica-set> with the name of the replica set, and replace
<member,><member,><> with the list of the members of the replica set.

After completing this operation you must restart all mongos (page 981) instances. When possible you should restart
all components of the replica sets (i.e. all mongos (page 981) and all shard mongod (page 971) instances.)

Procedure

This procedure assumes you have a standalone instance of MongoDB installed. If you have not already installed
MongoDB, see the installation tutorials (page 3).

1. Shut down the your MongoDB instance and then restart using the --replSet (page 977) option and the name
of the replica set, which is rs0 in the example below.

Use a command similar to the following:

35.1. Replica Set Administration 401

MongoDB Documentation, Release 2.4.2

mongod --port 27017 --dbpath /srv/mongodb/db0 --replSet rs0

Replace http://docs.mongodb.org/manual/srv/mongodb/db0 with the path of your dbpath
(page 1029).

This starts the instance as a member of a replica set named rs0. For more information on configuration options,
see Configuration File Options (page 1026) and the mongod (page 971).

2. Open a mongo (page 984) shell and connect to the mongod (page 971) instance. In a new system shell session,
use the following command to start a mongo (page 984) shell:

mongo

3. Use rs.initiate() (page 951) to initiate the replica set:

rs.initiate()

The set is now operational. To return the replica set configuration, call the rs.conf() (page 950) method. To
check the status of the replica set, use rs.status() (page 953).

4. Now add additional replica set members. On two distinct systems, start two new standalone mongod (page 971)
instances. Then, in the mongo (page 984) shell instance connected to the first mongod (page 971) instance,
issue a command in the following form:

rs.add("<hostname><:port>")

Replace <hostname> and <port> with the resolvable hostname and port of the mongod (page 971) instance
you want to add to the set. Repeat this operation for each mongod (page 971) that you want to add to the set.

For more information on adding hosts to a replica set, see the Add Members to a Replica Set (page 402) docu-
ment.

35.1.3 Add Members to a Replica Set

Overview

This tutorial explains how to add an additional member to an existing replica set.

Before adding a new member to an existing replica set, do one of the following to prepare the new member’s data
directory:

• Make sure the new member’s data directory does not contain data. The new member will copy the data from an
existing member.

If the new member is in a recovering state, it must exit and become a secondary before MongoDB can copy all
data as part of the replication process. This process takes time but does not require administrator intervention.

• Manually copy the data directory from an existing member. The new member becomes a secondary member
and will catch up to the current state of the replica set after a short interval. Copying the data over manually
shortens the amount of time for the new member to become current.

Ensure that you can copy the data directory to the new member and begin replication within the window allowed
by the oplog (page 372). If the difference in the amount of time between the most recent operation and the
most recent operation to the database exceeds the length of the oplog on the existing members, then the new
instance will have to perform an initial sync, which completely resynchronizes the data, as described in Resync
a Member of a Replica Set (page 406).

Use db.printReplicationInfo() (page 943) to check the current state of replica set members with
regards to the oplog.

402 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

For background on replication deployment patterns, see the Replica Set Architectures and Deployment Patterns
(page 375) document.

Requirements

1. An active replica set.

2. A new MongoDB system capable of supporting your dataset, accessible by the active replica set through the
network.

If neither of these conditions are satisfied, please use the MongoDB installation tutorial (page 3) and the Deploy a
Replica Set (page 397) tutorial instead.

Procedures

The examples in this procedure use the following configuration:

• The active replica set is rs0.

• The new member to be added is mongodb3.example.net.

• The mongod (page 971) instance default port is 27017.

• The mongodb.conf configuration file exists in the http://docs.mongodb.org/manual/etc direc-
tory and contains the following replica set information:

port = 27017

bind_ip = 10.8.0.10

dbpath = /srv/mongodb/db0

logpath = /var/log/mongodb.log

fork = true

replSet = rs0

For more information on configuration options, see Configuration File Options (page 1026).

Add a Member to an Existing Replica Set

This procedure uses the above example configuration (page 403).

1. Deploy a new mongod (page 971) instance, specifying the name of the replica set. You can do this one of two
ways:

• Using the mongodb.conf file. On the primary, issue a command that resembles the following:

mongod --config /etc/mongodb.conf

• Using command line arguments. On the primary, issue command that resembles the following:

mongod --dbpath /srv/mongodb/db0 --replSet rs0

Replace http://docs.mongodb.org/manual/srv/mongodb/db0 with the path of your dbpath
(page 1029).

Take note of the host name and port information for the new mongod (page 971) instance.

35.1. Replica Set Administration 403

MongoDB Documentation, Release 2.4.2

2. Open a mongo (page 984) shell connected to the replica set’s primary:

mongo

Note: The primary is the only member that can add or remove members from the replica set. If you do
not know which member is the primary, log into any member of the replica set using mongo (page 984) and
issue the db.isMaster() (page 941) command to determine which member is in the isMaster.primary
(page 848) field. For example, on the system shell:

mongo mongodb0.example.net

Then in the mongo (page 984) shell:

db.isMaster()

If you are not connected to the primary, disconnect from the current client and reconnect to the primary.

3. In the mongo (page 984) shell, issue the following command to add the new member to the replica set.

rs.add("mongodb3.example.net")

Note: You can also include the port number, depending on your setup:

rs.add("mongodb3.example.net:27017")

4. Verify that the member is now part of the replica set by calling the rs.conf() (page 950) method, which
displays the replica set configuration (page 441):

rs.conf()

You can use the rs.status() (page 953) function to provide an overview of replica set status (page 446).

Add a Member to an Existing Replica Set (Alternate Procedure)

Alternately, you can add a member to a replica set by specifying an entire configuration document with some or all of
the fields in a members (page 441) sub-documents. For example:

rs.add({_id: 1, host: "mongodb3.example.net:27017", priority: 0, hidden: true})

This configures a hidden member that is accessible at mongodb3.example.net:27017. See host (page 442),
priority (page 442), and hidden (page 442) for more information about these settings. When you specify a
full configuration object with rs.add() (page 949), you must declare the _id field, which is not automatically
populated in this case.

Production Notes

• In production deployments you likely want to use and configure a control script to manage this process based
on this command.

• A member can be removed from a set and re-added later. If the removed member’s data is still relatively fresh, it
can recover and catch up from its old data set. See the rs.add() (page 949) and rs.remove() (page 952)
helpers.

404 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

• If you have a backup or snapshot of an existing member, you can move the data files (i.e.
http://docs.mongodb.org/manual/data/db or dbpath (page 1029)) to a new system and use
them to quickly initiate a new member. These files must be:

– clean: the existing dataset must be from a consistent copy of the database from a member of the same
replica set. See the Backup Strategies for MongoDB Systems (page 41) document for more information.

– recent: the copy must more recent than the oldest operation in the primary member’s oplog. The new
secondary must be able to become current using operations from the primary’s oplog.

• There is a maximum of seven voting members (page 388) in any replica set. When adding more members to a
replica set that already has seven votes, you must either:

– add the new member as a non-voting members (page 369) or,

– remove votes from an existing member (page 443).

35.1.4 Remove Members from Replica Set

You may remove a member of a replica set at any time; however, for best results always shut down the mongod
(page 971) instance before removing it from a replica set. Changed in version 2.2: Before 2.2, you had to shut down
the mongod (page 971) instance before removing it. While 2.2 removes this requirement, it remains good practice.
To remove a member, use the rs.remove() (page 952) method in the mongo (page 984) shell while connected to
the current primary. Issue the db.isMaster() (page 941) command when connected to any member of the set to
determine the current primary. Use a command in either of the following forms to remove the member:

rs.remove("mongo2.example.net:27017")
rs.remove("mongo3.example.net")

This operation disconnects the shell briefly and forces a re-connection as the replica set renegotiates which member
will be primary. The shell displays an error even if this command succeeds.

You can re-add a removed member to a replica set at any time using the procedure for adding replica set members
(page 402). Additionally, consider using the replica set reconfiguration procedure (page 445) to change the host
(page 442) value to rename a member in a replica set directly.

35.1.5 Replace a Replica Set Member

Use this procedure to replace a member of a replica set when the hostname has changed. This procedure preserves all
existing configuration for a member, except its hostname/location.

You may need to replace a replica set member if you want to replace an existing system and only need to change the
hostname rather than completely replace all configured options related to the previous member.

Use rs.reconfig() (page 951) to change the value of the host (page 442) field to reflect the new hostname or
port number. rs.reconfig() (page 951) will not change the value of _id (page 441).

cfg = rs.conf()
cfg.members[0].host = "mongo2.example.net:27019"
rs.reconfig(cfg)

Warning: Any replica set configuration change can trigger the current primary to step down, which forces an
election (page 369). This causes the current shell session, and clients connected to this replica set, to produce an
error even when the operation succeeds.

35.1. Replica Set Administration 405

MongoDB Documentation, Release 2.4.2

35.1.6 Adjust Priority for Replica Set Member

To change the value of the priority (page 442) in the replica set configuration, use the following sequence of
commands in the mongo (page 984) shell:

cfg = rs.conf()
cfg.members[0].priority = 0.5
cfg.members[1].priority = 2
cfg.members[2].priority = 2
rs.reconfig(cfg)

The first operation uses rs.conf() (page 950) to set the local variable cfg to the contents of the current replica
set configuration, which is a document. The next three operations change the priority (page 442) value in the
cfg document for the first three members configured in the members (page 441) array. The final operation calls
rs.reconfig() (page 951) with the argument of cfg to initialize the new configuration.

Note: When updating the replica configuration object, address all members of the set using the index value in the
array. The array index begins with 0. Do not confuse this index value with the value of the _id (page 441) field in
each document in the members (page 441) array.

The _id (page 441) rarely corresponds to the array index.

If a member has priority (page 442) set to 0, it is ineligible to become primary and will not seek election. Hidden
members (page 368), delayed members (page 368), and arbiters (page 368) all have priority (page 442) set to 0.

All members have a priority (page 442) equal to 1 by default.

The value of priority (page 442) can be any floating point (i.e. decimal) number between 0 and 1000. Priorities
are only used to determine the preference in election. The priority value is used only in relation to other members.
With the exception of members with a priority of 0, the absolute value of the priority (page 442) value is irrelevant.

Replica sets will preferentially elect and maintain the primary status of the member with the highest priority
(page 442) setting.

Warning: Replica set reconfiguration can force the current primary to step down, leading to an election for
primary in the replica set. Elections cause the current primary to close all open client connections.
Perform routine replica set reconfiguration during scheduled maintenance windows.

See Also:

The Replica Reconfiguration Usage (page 445) example revolves around changing the priorities of the members
(page 441) of a replica set.

35.1.7 Resync a Member of a Replica Set

When a secondary’s replication process falls so far behind that primary overwrites oplog entries that the secondary
has not yet replicated, that secondary cannot catch up and becomes “stale.” When that occurs, you must completely
resynchronize the member by removing its data and performing an initial sync.

To do so, use one of the following approaches:

• Restart the mongod (page 971) with an empty data directory and let MongoDB’s normal initial syncing feature
restore the data. This is the more simple option, but may take longer to replace the data.

See Automatically Resync a Stale Member (page 407).

406 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

• Restart the machine with a copy of a recent data directory from another member in the replica set. This proce-
dure can replace the data more quickly but requires more manual steps.

See Resync by Copying All Datafiles from Another Member (page 407).

Automatically Resync a Stale Member

This procedure relies on MongoDB’s regular process for initial sync. This will restore the data on the stale member
to reflect the current state of the set. For an overview of MongoDB initial sync process, see the Syncing (page 389)
section.

To resync the stale member:

1. Stop the stale member’s mongod (page 971) instance. On Linux systems you can use mongod --shutdown
(page 977) Set --dbpath (page 973) to the member’s data directory, as in the following:

mongod --dbpath /data/db/ --shutdown

2. Delete all data and sub-directories from the member’s data directory. By removing the data dbpath
(page 1029), MongoDB will perform a complete resync. Consider making a backup first.

3. Restart the mongod (page 971) instance on the member. For example:

mongod --dbpath /data/db/ --replSet rsProduction

At this point, the mongod (page 971) will perform an initial sync. The length of the initial sync may process
depends on the size of the database and network connection between members of the replica set.

Initial sync operations can impact the other members of the set and create additional traffic to the primary, and
can only occur if another member of the set is accessible and up to date.

Resync by Copying All Datafiles from Another Member

This approach uses a copy of the data files from an existing member of the replica set, or a back of the data files to
“seed” the stale member.

The copy or backup of the data files must be sufficiently recent to allow the new member to catch up with the oplog,
otherwise the member would need to perform an initial sync.

Note: In most cases you cannot copy data files from a running mongod (page 971) instance to another, because the
data files will change during the file copy operation. Consider the Backup Strategies for MongoDB Systems (page 41)
documentation for several methods that you can use to capture a consistent snapshot of a running mongod (page 971)
instance.

Important: You must always copy the content of the local database when using data files to resync a member of a
replica set.

After you have copied the data files from the “seed” source, start the mongod (page 971) instance and allow it to apply
all operations from the oplog until it reflects the current state of the replica set.

35.1.8 Deploy a Geographically Distributed Replica Set

This tutorial outlines the process for deploying a replica set with members in multiple locations. The tutorial addresses
three-member sets, four-member sets, and sets with more than four members.

35.1. Replica Set Administration 407

MongoDB Documentation, Release 2.4.2

For appropriate background, see Replica Set Fundamental Concepts (page 367) and Replica Set Architectures and
Deployment Patterns (page 375). For related tutorials, see Deploy a Replica Set (page 397) and Add Members to a
Replica Set (page 402).

Overview

While replica sets provide basic protection against single-instance failure, when all of the members of a replica set
reside in a single facility, the replica set is still susceptible to some classes of errors in that facility including power
outages, networking distortions, and natural disasters. To protect against these classes of failures, deploy a replica set
with one or more members in a geographically distinct facility or data center.

Requirements

For a three-member replica set you need two instances in a primary facility (hereafter, “Site A”) and one member in
a secondary facility (hereafter, “Site B”.) Site A should be the same facility or very close to your primary application
infrastructure (i.e. application servers, caching layer, users, etc.)

For a four-member replica set you need two members in Site A, two members in Site B (or one member in Site B and
one member in Site C,) and a single arbiter in Site A.

For replica sets with additional members in the secondary facility or with multiple secondary facilities, the require-
ments are the same as above but with the following notes:

• Ensure that a majority of the voting members (page 369) are within Site A. This includes secondary-only mem-
bers (page 368) and arbiters (page 368) For more information on the need to keep the voting majority on one
site, see Elections (page 369).

• If you deploy a replica set with an uneven number of members, deploy an arbiter (page 368) on Site A. The
arbiter must be on site A to keep the majority there.

For all configurations in this tutorial, deploy each replica set member on a separate system. Although you may deploy
more than one replica set member on a single system, doing so reduces the redundancy and capacity of the replica set.
Such deployments are typically for testing purposes and beyond the scope of this tutorial.

Procedures

Deploy a Distributed Three-Member Replica Set

A geographically distributed three-member deployment has the following features:

• Each member of the replica set resides on its own machine, and the MongoDB processes all bind to port 27017,
which is the standard MongoDB port.

• Each member of the replica set must be accessible by way of resolvable DNS or hostnames in the following
scheme:

– mongodb0.example.net

– mongodb1.example.net

– mongodb2.example.net

Configure DNS names appropriately, or set up your systems’ http://docs.mongodb.org/manual/etc/hosts
file to reflect this configuration. Ensure that one system (e.g. mongodb2.example.net) resides in Site B.
Host all other systems in Site A.

• Ensure that network traffic can pass between all members in the network securely and efficiently. Consider the
following:

408 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

– Establish a virtual private network between the systems in Site A and Site B to encrypt all traffic between
the sites and remains private. Ensure that your network topology routes all traffic between members within
a single site over the local area network.

– Configure authentication using auth (page 1029) and keyFile (page 1028), so that only servers and
process with authentication can connect to the replica set.

– Configure networking and firewall rules so that only traffic (incoming and outgoing packets) on the default
MongoDB port (e.g. 27017) from within your deployment.

See Also:

For more information on security and firewalls, see Security (page 373).

• Specify run-time configuration on each system in a configuration file (page 1026) stored in
http://docs.mongodb.org/manual/etc/mongodb.conf or in a related location. Do not specify
run-time configuration through command line options.

For each MongoDB instance, use the following configuration, with values set appropriate to your systems:

port = 27017

bind_ip = 10.8.0.10

dbpath = /srv/mongodb/

fork = true

replSet = rs0/mongodb0.example.net,mongodb1.example.net,mongodb2.example.net

Modify bind_ip (page 1027) to reflect a secure interface on your system that is able to access all other
members of the set and that is accessible to all other members of the replica set. The DNS or host names need to
point and resolve to this IP address. Configure network rules or a virtual private network (i.e. “VPN”) to permit
this access.

Note: The portion of the replSet (page 1034) following the http://docs.mongodb.org/manual/
provides a “seed list” of known members of the replica set. mongod (page 971) uses this list to fetch configura-
tion changes following restarts. It is acceptable to omit this section entirely, and have the replSet (page 1034)
option resemble:

replSet = rs0

For more documentation on the above run time configurations, as well as additional configuration options, see
Configuration File Options (page 1026).

To deploy a geographically distributed three-member set:

1. On each system start the mongod (page 971) process by issuing a command similar to following:

mongod --config /etc/mongodb.conf

Note: In production deployments you likely want to use and configure a control script to manage this process
based on this command. Control scripts are beyond the scope of this document.

2. Open a mongo (page 984) shell connected to one of the mongod (page 971) instances:

mongo

35.1. Replica Set Administration 409

MongoDB Documentation, Release 2.4.2

3. Use the rs.initiate() (page 951) method on one member to initiate a replica set consisting of the current
member and using the default configuration:

rs.initiate()

4. Display the current replica configuration (page 441):

rs.conf()

5. Add the remaining members to the replica set by issuing a sequence of commands similar to the following. The
example commands assume the current primary is mongodb0.example.net:

rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")

6. Make sure that you have configured the member located in Site B (i.e. mongodb2.example.net) as a
secondary-only member (page 368):

(a) Issue the following command to determine the _id (page 441) value for mongodb2.example.net:

rs.conf()

(b) In the members (page 441) array, save the _id (page 441) value. The example in the next step assumes
this value is 2.

(c) In the mongo (page 984) shell connected to the replica set’s primary, issue a command sequence similar
to the following:

cfg = rs.conf()
cfg.members[2].priority = 0
rs.reconfig(cfg)

Note: In some situations, the rs.reconfig() (page 951) shell method can force the current primary
to step down and causes an election. When the primary steps down, all clients will disconnect. This is
the intended behavior. While, this typically takes 10-20 seconds, attempt to make these changes during
scheduled maintenance periods.

After these commands return you have a geographically distributed three-member replica set.

7. To check the status of your replica set, issue rs.status() (page 953).

See Also:

The documentation of the following shell functions for more information:

• rs.initiate() (page 951)

• rs.conf() (page 950)

• rs.reconfig() (page 951)

• rs.add() (page 949)

Deploy a Distributed Four-Member Replica Set

A geographically distributed four-member deployment has the following features:

• Each member of the replica set, except for the arbiter (see below), resides on its own machine, and the MongoDB
processes all bind to port 27017, which is the standard MongoDB port.

410 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

• Each member of the replica set must be accessible by way of resolvable DNS or hostnames in the following
scheme:

– mongodb0.example.net

– mongodb1.example.net

– mongodb2.example.net

– mongodb3.example.net

Configure DNS names appropriately, or set up your systems’ http://docs.mongodb.org/manual/etc/host
file to reflect this configuration. Ensure that one system (e.g. mongodb2.example.net) resides in Site B.
Host all other systems in Site A.

• One host (e.g. mongodb3.example.net) will be an arbiter and can run on a system that is also used for an
application server or some other shared purpose.

• There are three possible architectures for this replica set:

– Two members in Site A, two secondary-only members (page 368) in Site B, and an arbiter in Site A.

– Three members in Site A and one secondary-only member in Site B.

– Two members in Site A, one secondary-only member in Site B, one secondary-only member in Site C, and
an arbiter in site A.

In most cases the first architecture is preferable because it is the least complex.

• Ensure that network traffic can pass between all members in the network securely and efficiently. Consider the
following:

– Establish a virtual private network between the systems in Site A and Site B (and Site C if it exists) to
encrypt all traffic between the sites and remains private. Ensure that your network topology routes all
traffic between members within a single site over the local area network.

– Configure authentication using auth (page 1029) and keyFile (page 1028), so that only servers and
process with authentication can connect to the replica set.

– Configure networking and firewall rules so that only traffic (incoming and outgoing packets) on the default
MongoDB port (e.g. 27017) from within your deployment.

See Also:

For more information on security and firewalls, see Security (page 373).

• Specify run-time configuration on each system in a configuration file (page 1026) stored in
http://docs.mongodb.org/manual/etc/mongodb.conf or in a related location. Do not specify
run-time configuration through command line options.

For each MongoDB instance, use the following configuration, with values set appropriate to your systems:

port = 27017

bind_ip = 10.8.0.10

dbpath = /srv/mongodb/

fork = true

replSet = rs0/mongodb0.example.net,mongodb1.example.net,mongodb2.example.net,mongodb3.example.net

Modify bind_ip (page 1027) to reflect a secure interface on your system that is able to access all other
members of the set and that is accessible to all other members of the replica set. The DNS or host names need to

35.1. Replica Set Administration 411

MongoDB Documentation, Release 2.4.2

point and resolve to this IP address. Configure network rules or a virtual private network (i.e. “VPN”) to permit
this access.

Note: The portion of the replSet (page 1034) following the http://docs.mongodb.org/manual/
provides a “seed list” of known members of the replica set. mongod (page 971) uses this list to fetch configura-
tion changes following restarts. It is acceptable to omit this section entirely, and have the replSet (page 1034)
option resemble:

replSet = rs0

For more documentation on the above run time configurations, as well as additional configuration options, see
doc:/reference/configuration-options.

To deploy a geographically distributed four-member set:

1. On each system start the mongod (page 971) process by issuing a command similar to following:

mongod --config /etc/mongodb.conf

Note: In production deployments you likely want to use and configure a control script to manage this process
based on this command. Control scripts are beyond the scope of this document.

2. Open a mongo (page 984) shell connected to this host:

mongo

3. Use rs.initiate() (page 951) to initiate a replica set consisting of the current member and using the default
configuration:

rs.initiate()

4. Display the current replica configuration (page 441):

rs.conf()

5. Add the remaining members to the replica set by issuing a sequence of commands similar to the following. The
example commands assume the current primary is mongodb0.example.net:

rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")
rs.add("mongodb3.example.net")

6. In the same shell session, issue the following command to add the arbiter (e.g. mongodb4.example.net):

rs.addArb("mongodb4.example.net")

7. Make sure that you have configured each member located in Site B (e.g. mongodb3.example.net) as a
secondary-only member (page 368):

(a) Issue the following command to determine the _id (page 441) value for the member:

rs.conf()

(b) In the members (page 441) array, save the _id (page 441) value. The example in the next step assumes
this value is 2.

(c) In the mongo (page 984) shell connected to the replica set’s primary, issue a command sequence similar
to the following:

412 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

cfg = rs.conf()
cfg.members[2].priority = 0
rs.reconfig(cfg)

Note: In some situations, the rs.reconfig() (page 951) shell method can force the current primary
to step down and causes an election. When the primary steps down, all clients will disconnect. This is
the intended behavior. While, this typically takes 10-20 seconds, attempt to make these changes during
scheduled maintenance periods.

After these commands return you have a geographically distributed four-member replica set.

8. To check the status of your replica set, issue rs.status() (page 953).

See Also:

The documentation of the following shell functions for more information:

• rs.initiate() (page 951)

• rs.conf() (page 950)

• rs.reconfig() (page 951)

• rs.add() (page 949)

Deploy a Distributed Set with More than Four Members

The procedure for deploying a geographically distributed set with more than four members is similar to the above
procedures, with the following differences:

• Never deploy more than seven voting members.

• Use the procedure for a four-member set if you have an even number of members (see Deploy a Distributed
Four-Member Replica Set (page 410)). Ensure that Site A always has a majority of the members by deploying
the arbiter within Site A. For six member sets, deploy at least three voting members in addition to the arbiter in
Site A, the remaining members in alternate sites.

• Use the procedure for a three-member set if you have an odd number of members (see Deploy a Distributed
Three-Member Replica Set (page 408)). Ensure that Site A always has a majority of the members of the set. For
example, if a set has five members, deploy three members within the primary facility and two members in other
facilities.

• If you have a majority of the members of the set outside of Site A and the network partitions to prevent com-
munication between sites, the current primary in Site A will step down, even if none of the members outside of
Site A are eligible to become primary.

35.1.9 Change the Size of the Oplog

The oplog exists internally as a capped collection, so you cannot modify its size in the course of normal operations. In
most cases the default oplog size (page 372) is an acceptable size; however, in some situations you may need a larger
or smaller oplog. For example, you might need to change the oplog size if your applications perform large numbers of
multi-updates or deletes in short periods of time.

This tutorial describes how to resize the oplog. For a detailed explanation of oplog sizing, see the Oplog (page 372)
topic in the Replica Set Fundamental Concepts (page 367) document. For details on the how oplog size affects delayed
members and affects replication lag, see the Delayed Members (page 368) topic and the Check the Replication Lag
(page 422) topic in Replica Set Administration (page 397).

35.1. Replica Set Administration 413

MongoDB Documentation, Release 2.4.2

Overview

The following is an overview of the procedure for changing the size of the oplog:

1. Shut down the current primary instance in the replica set and then restart it on a different port and in “standalone”
mode.

2. Create a backup of the old (current) oplog. This is optional.

3. Save the last entry from the old oplog.

4. Drop the old oplog.

5. Create a new oplog of a different size.

6. Insert the previously saved last entry from the old oplog into the new oplog.

7. Restart the server as a member of the replica set on its usual port.

8. Apply this procedure to any other member of the replica set that could become primary.

Procedure

The examples in this procedure use the following configuration:

• The active replica set is rs0.

• The replica set is running on port 27017.

• The replica set is running with a data directory (page 1029) of
http://docs.mongodb.org/manual/srv/mongodb.

To change the size of the oplog for a replica set, use the following procedure for every member of the set that may
become primary.

1. Shut down the mongod (page 971) instance and restart it in “standalone” mode running on a different port.

Note: Shutting down the primary member of the set will trigger a failover situation and another member in the
replica set will become primary. In most cases, it is least disruptive to modify the oplogs of all the secondaries
before modifying the primary.

To shut down the current primary instance, use a command that resembles the following:

mongod --dbpath /srv/mongodb --shutdown

To restart the instance on a different port and in “standalone” mode (i.e. without replSet (page 1034) or
--replSet (page 977)), use a command that resembles the following:

mongod --port 37017 --dbpath /srv/mongodb

2. Backup the existing oplog on the standalone instance. Use the following sequence of commands:

mongodump --db local --collection ’oplog.rs’ --port 37017

Note: You can restore the backup using the mongorestore (page 996) utility.

Connect to the instance using the mongo (page 984) shell:

mongo --port 37017

414 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

3. Save the last entry from the old (current) oplog.

(a) In the mongo (page 984) shell, enter the following command to use the local database to interact with
the oplog:

use local

(b) Use the db.collection.save() (page 930) operation to save the last entry in the oplog to a tempo-
rary collection:

db.temp.save(db.oplog.rs.find({ }, { ts: 1, h: 1 }).sort({$natural : -1}).limit(1).next())

You can see this oplog entry in the temp collection by issuing the following command:

db.temp.find()

4. Drop the old oplog.rs collection in the local database. Use the following command:

db.oplog.rs.drop()

This will return true on the shell.

5. Use the create (page 822) command to create a new oplog of a different size. Specify the size argument in
bytes. A value of 2147483648 will create a new oplog that’s 2 gigabytes:

db.runCommand({ create : "oplog.rs", capped : true, size : 2147483648 })

Upon success, this command returns the following status:

{ "ok" : 1 }

6. Insert the previously saved last entry from the old oplog into the new oplog:

db.oplog.rs.save(db.temp.findOne())

To confirm the entry is in the new oplog, issue the following command:

db.oplog.rs.find()

7. Restart the server as a member of the replica set on its usual port:

mongod --dbpath /srv/mongodb --shutdown
mongod --replSet rs0 --dbpath /srv/mongodb

The replica member will recover and “catch up” and then will be eligible for election to primary. To step down
the “temporary” primary that took over when you initially shut down the server, use the rs.stepDown()
(page 953) method. This will force an election for primary. If the server’s priority (page 370) is higher than all
other members in the set and if it has successfully “caught up,” then it will likely become primary.

8. Repeat this procedure for all other members of the replica set that are or could become primary.

35.1.10 Force a Member to Become Primary

Synopsis

You can force a replica set member to become primary by giving it a higher priority (page 442) value than any
other member in the set.

Optionally, you also can force a member never to become primary by setting its priority (page 442) value to 0,
which means the member can never seek election (page 369) as primary. For more information, see Secondary-Only
Members (page 368).

35.1. Replica Set Administration 415

MongoDB Documentation, Release 2.4.2

Procedures

Force a Member to be Primary by Setting its Priority High

Changed in version 2.0. For more information on priorities, see Member Priority (page 370).

This procedure assumes your current primary is m1.example.net and that you’d like to instead make
m3.example.net primary. The procedure also assumes you have a three-member replica set with the configu-
ration below. For more information on configurations, see Replica Set Configuration Use (page 445).

This procedure assumes this configuration:

{
"_id" : "rs",
"version" : 7,
"members" : [

{
"_id" : 0,
"host" : "m1.example.net:27017"

},
{

"_id" : 1,
"host" : "m2.example.net:27017"

},
{

"_id" : 2,
"host" : "m3.example.net:27017"

}
]

}

1. In the mongo (page 984) shell, use the following sequence of operations to make m3.example.net the
primary:

cfg = rs.conf()
cfg.members[0].priority = 0.5
cfg.members[1].priority = 0.5
cfg.members[2].priority = 1
rs.reconfig(cfg)

This sets m3.example.net to have a higher local.system.replset.members[n].priority
(page 442) value than the other mongod (page 971) instances.

The following sequence of events occur:

• m3.example.net and m2.example.net sync with m1.example.net (typically within 10 sec-
onds).

• m1.example.net sees that it no longer has highest priority and, in most cases, steps down.
m1.example.net does not step down if m3.example.net‘s sync is far behind. In that case,
m1.example.net waits until m3.example.net is within 10 seconds of its optime and then steps
down. This minimizes the amount of time with no primary following failover.

• The step down forces on election in which m3.example.net becomes primary based on its priority
(page 442) setting.

2. Optionally, if m3.example.net is more than 10 seconds behind m1.example.net‘s optime, and if you
don’t need to have a primary designated within 10 seconds, you can force m1.example.net to step down by
running:

416 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

db.adminCommand({replSetStepDown:1000000, force:1})

This prevents m1.example.net from being primary for 1,000,000 seconds, even if there is no other member
that can become primary. When m3.example.net catches up with m1.example.net it will become
primary.

If you later want to make m1.example.net primary again while it waits for m3.example.net to catch
up, issue the following command to make m1.example.net seek election again:

rs.freeze()

The rs.freeze() (page 951) provides a wrapper around the replSetFreeze (page 864) database com-
mand.

Force a Member to be Primary Using Database Commands

Changed in version 1.8. Consider a replica set with the following members:

• mdb0.example.net - the current primary.

• mdb1.example.net - a secondary.

• mdb2.example.net - a secondary .

To force a member to become primary use the following procedure:

1. In a mongo (page 984) shell, run rs.status() (page 953) to ensure your replica set is running as expected.

2. In a mongo (page 984) shell connected to the mongod (page 971) instance running on mdb2.example.net,
freeze mdb2.example.net so that it does not attempt to become primary for 120 seconds.

rs.freeze(120)

3. In a mongo (page 984) shell connected the mongod (page 971) running on mdb0.example.net, step down
this instance that the mongod (page 971) is not eligible to become primary for 120 seconds:

rs.stepDown(120)

mdb1.example.net becomes primary.

Note: During the transition, there is a short window where the set does not have a primary.

For more information, consider the rs.freeze() (page 951) and rs.stepDown() (page 953) methods that wrap
the replSetFreeze (page 864) and replSetStepDown (page 867) commands.

35.1.11 Manage Chained Replication

Starting in version 2.0, MongoDB supports chained replication. A chained replication occurs when a secondary
member replicates from another secondary member instead of from the primary. This might be the case, for example,
if a secondary selects its replication target based on ping time and if the closest member is another secondary.

Chained replication can reduce load on the primary. But chained replication can also result in increased replication lag,
depending on the topology of the network. New in version 2.2.2. You can use the chainingAllowed (page 443)
setting in Replica Set Configuration (page 441) to disable chained replication for situations where chained replication
is causing lag.

MongoDB enables chained replication by default. This procedure describes how to disable it and how to re-enable it.

35.1. Replica Set Administration 417

MongoDB Documentation, Release 2.4.2

Note: If chained replication is disabled, you still can use replSetSyncFrom (page 867) to specify that a secondary
replicates from another secondary. But that configuration will last only until the secondary recalculates which member
to sync from.

Disable Chained Replication

To disable chained replication, set the chainingAllowed (page 443) field in Replica Set Configuration (page 441)
to false.

You can use the following sequence of commands to set chainingAllowed (page 443) to false:

1. Copy the configuration settings into the cfg object:

cfg = rs.config()

2. Take note of whether the current configuration settings contain the settings sub-document. If they do, skip
this step.

Warning: To avoid data loss, skip this step if the configuration settings contain the settings sub-
document.

If the current configuration settings do not contain the settings sub-document, create the sub-document by
issuing the following command:

cfg.settings = { }

3. Issue the following sequence of commands to set chainingAllowed (page 443) to false:

cfg.settings.chainingAllowed = false
rs.reconfig(cfg)

Re-enable Chained Replication

To re-enable chained replication, set chainingAllowed (page 443) to true. You can use the following sequence
of commands:

cfg = rs.config()
cfg.settings.chainingAllowed = true
rs.reconfig(cfg)

35.1.12 Change Hostnames in a Replica Set

Synopsis

For most replica sets the hostnames 3 in the host (page 442) field never change. However, in some cases you must
migrate some or all host names in a replica set as organizational needs change. This document presents two possible
procedures for changing the hostnames in the host (page 442) field. Depending on your environments availability
requirements, you may:

3 Always use resolvable hostnames for the value of the host (page 442) field in the replica set configuration to avoid confusion and complexity.

418 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

1. Make the configuration change without disrupting the availability of the replica set. While this ensures that your
application will always be able to read and write data to the replica set, this procedure can take a long time and
may incur downtime at the application layer. 4

For this procedure, see Changing Hostnames while Maintaining the Replica Set’s Availability (page 420).

2. Stop all members of the replica set at once running on the “old” hostnames or interfaces, make the configuration
changes, and then start the members at the new hostnames or interfaces. While the set will be totally unavailable
during the operation, the total maintenance window is often shorter.

For this procedure, see Changing All Hostnames in Replica Set at Once (page 421).

See Also:

• Replica Set Configuration (page 441)

• Replica Set Reconfiguration Process (page 445)

• rs.conf() (page 950) and rs.reconfig() (page 951)

And the following tutorials:

• Deploy a Replica Set (page 397)

• Add Members to a Replica Set (page 402)

Procedures

Given a replica set with three members:

• database0.example.com:27017 (the primary)

• database1.example.com:27017

• database2.example.com:27017

And with the following rs.conf() (page 950) output:

{
"_id" : "rs",
"version" : 3,
"members" : [

{
"_id" : 0,
"host" : "database0.example.com:27017"

},
{

"_id" : 1,
"host" : "database1.example.com:27017"

},
{

"_id" : 2,
"host" : "database2.example.com:27017"

}
]

}

The following procedures change the members’ hostnames as follows:

• mongodb0.example.net:27017 (the primary)

4 You will have to configure your applications so that they can connect to the replica set at both the old and new locations. This often requires a
restart and reconfiguration at the application layer, which may affect the availability of your applications. This re-configuration is beyond the scope
of this document and makes the second option (page 421) preferable when you must change the hostnames of all members of the replica set at once.

35.1. Replica Set Administration 419

MongoDB Documentation, Release 2.4.2

• mongodb1.example.net:27017

• mongodb2.example.net:27017

Use the most appropriate procedure for your deployment.

Changing Hostnames while Maintaining the Replica Set’s Availability

This procedure uses the above assumptions (page 419).

1. For each secondary in the replica set, perform the following sequence of operations:

(a) Stop the secondary.

(b) Restart the secondary at the new location.

(c) Open a mongo (page 984) shell connected to the replica set’s primary. In our example, the primary runs
on port 27017 so you would issue the following command:

mongo --port 27017

(d) Run the following reconfigure option, for the host (page 442) value where n is 1:

cfg = rs.conf()

cfg.members[1].host = "mongodb1.example.net:27017"

rs.reconfig(cfg)

See Replica Set Configuration (page 441) for more information.

(e) Make sure your client applications are able to access the set at the new location and that the secondary has
a chance to catch up with the other members of the set.

Repeat the above steps for each non-primary member of the set.

2. Open a mongo (page 984) shell connected to the primary and step down the primary using
replSetStepDown (page 867). In the mongo (page 984) shell, use the rs.stepDown() (page 953)
wrapper, as follows:

rs.stepDown()

3. When the step down succeeds, shut down the primary.

4. To make the final configuration change, connect to the new primary in the mongo (page 984) shell and recon-
figure the host (page 442) value where n is 0:

cfg = rs.conf()

cfg.members[0].host = "mongodb0.example.net:27017"

rs.reconfig(cfg)

5. Start the original primary.

6. Open a mongo (page 984) shell connected to the primary.

7. To confirm the new configuration, call rs.conf() (page 950) in the mongo (page 984) shell.

Your output should resemble:

420 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

{
"_id" : "rs",
"version" : 4,
"members" : [

{
"_id" : 0,
"host" : "mongodb0.example.net:27017"

},
{

"_id" : 1,
"host" : "mongodb1.example.net:27017"

},
{

"_id" : 2,
"host" : "mongodb2.example.net:27017"

}
]

}

Changing All Hostnames in Replica Set at Once

This procedure uses the above assumptions (page 419).

1. Stop all members in the replica set.

2. Restart each member on a different port and without using the --replSet (page 977) run-time op-
tion. Changing the port number during maintenance prevents clients from connecting to this host while
you perform maintenance. Use the member’s usual --dbpath (page 973), which in this example is
http://docs.mongodb.org/manual/data/db1. Use a command that resembles the following:

mongod --dbpath /data/db1/ --port 37017

3. For each member of the replica set, perform the following sequence of operations:

(a) Open a mongo (page 984) shell connected to the mongod (page 971) running on the new, temporary port.
For example, for a member running on a temporary port of 37017, you would issue this command:

mongo --port 37017

(b) Edit the replica set configuration manually. The replica set configuration is the only document in the
system.replset collection in the local database. Edit the replica set configuration with the new
hostnames and correct ports for all the members of the replica set. Consider the following sequence of
commands to change the hostnames in a three-member set:

use local

cfg = db.system.replset.findOne({ "_id": "rs" })

cfg.members[0].host = "mongodb0.example.net:27017"

cfg.members[1].host = "mongodb1.example.net:27017"

cfg.members[2].host = "mongodb2.example.net:27017"

db.system.replset.update({ "_id": "rs" } , cfg)

(c) Stop the mongod (page 971) process on the member.

35.1. Replica Set Administration 421

MongoDB Documentation, Release 2.4.2

4. After re-configuring all members of the set, start each mongod (page 971) instance in the normal way: use the
usual port number and use the --replSet (page 977) option. For example:

mongod --dbpath /data/db1/ --port 27017 --replSet rs

5. Connect to one of the mongod (page 971) instances using the mongo (page 984) shell. For example:

mongo --port 27017

6. To confirm the new configuration, call rs.conf() (page 950) in the mongo (page 984) shell.

Your output should resemble:

{
"_id" : "rs",
"version" : 4,
"members" : [

{
"_id" : 0,
"host" : "mongodb0.example.net:27017"

},
{

"_id" : 1,
"host" : "mongodb1.example.net:27017"

},
{

"_id" : 2,
"host" : "mongodb2.example.net:27017"

}
]

}

35.1.13 Troubleshoot Replica Sets

This section describes common strategies for troubleshooting replica sets.

Check Replica Set Status

To display the current state of the replica set and current state of each member, run the rs.status() (page 953)
method in a mongo (page 984) shell connected to the replica set’s primary. For descriptions of the information
displayed by rs.status() (page 953), see Replica Set Status Reference (page 446).

Note: The rs.status() (page 953) method is a wrapper that runs the replSetGetStatus (page 865) database
command.

Check the Replication Lag

Replication lag is a delay between an operation on the primary and the application of that operation from the oplog to
the secondary. Replication lag can be a significant issue and can seriously affect MongoDB replica set deployments.
Excessive replication lag makes “lagged” members ineligible to quickly become primary and increases the possibility
that distributed read operations will be inconsistent.

To check the current length of replication lag:

422 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

• In a mongo (page 984) shell connected to the primary, call the db.printSlaveReplicationInfo()
(page 943) method.

The returned document displays the syncedTo value for each member, which shows you when each member
last read from the oplog, as shown in the following example:

source: m1.example.net:30001
syncedTo: Tue Oct 02 2012 11:33:40 GMT-0400 (EDT)

= 7475 secs ago (2.08hrs)
source: m2.example.net:30002

syncedTo: Tue Oct 02 2012 11:33:40 GMT-0400 (EDT)
= 7475 secs ago (2.08hrs)

Note: The rs.status() (page 953) method is a wrapper around the replSetGetStatus (page 865)
database command.

• Monitor the rate of replication by watching the oplog time in the “replica” graph in the MongoDB Monitoring
Service. For more information see the documentation for MMS.

Possible causes of replication lag include:

• Network Latency

Check the network routes between the members of your set to ensure that there is no packet loss or network
routing issue.

Use tools including ping to test latency between set members and traceroute to expose the routing of
packets network endpoints.

• Disk Throughput

If the file system and disk device on the secondary is unable to flush data to disk as quickly as the primary,
then the secondary will have difficulty keeping state. Disk-related issues are incredibly prevalent on multi-
tenant systems, including vitalized instances, and can be transient if the system accesses disk devices over an IP
network (as is the case with Amazon’s EBS system.)

Use system-level tools to assess disk status, including iostat or vmstat.

• Concurrency

In some cases, long-running operations on the primary can block replication on secondaries. For best results,
configure write concern (page 174) to require confirmation of replication to secondaries, as described in Write
Concern for Replica Sets (page 378). This prevents write operations from returning if replication cannot keep
up with the write load.

Use the database profiler to see if there are slow queries or long-running operations that correspond to the
incidences of lag.

• Appropriate Write Concern

If you are performing a large data ingestion or bulk load operation that requires a large number of writes to the
primary, particularly with unacknowledged write concern (page 174), the secondaries will not be able to read
the oplog fast enough to keep up with changes.

To prevent this, require write acknowledgment or journaled write concern (page 174) after every 100, 1,000, or
an another interval to provide an opportunity for secondaries to catch up with the primary.

For more information see:

– Write Concern for Replica Sets (page 378)

– Oplog (page 372)

35.1. Replica Set Administration 423

http://mms.10gen.com/
http://mms.10gen.com/
http://mms.10gen.com/help/

MongoDB Documentation, Release 2.4.2

Test Connections Between all Members

All members of a replica set must be able to connect to every other member of the set to support replication. Al-
ways verify connections in both “directions.” Networking topologies and firewall configurations prevent normal and
required connectivity, which can block replication.

Consider the following example of a bidirectional test of networking:

Example

Given a replica set with three members running on three separate hosts:

• m1.example.net

• m2.example.net

• m3.example.net

1. Test the connection from m1.example.net to the other hosts with the following operation set
m1.example.net:

mongo --host m2.example.net --port 27017

mongo --host m3.example.net --port 27017

2. Test the connection from m2.example.net to the other two hosts with the following operation set from
m2.example.net, as in:

mongo --host m1.example.net --port 27017

mongo --host m3.example.net --port 27017

You have now tested the connection between m2.example.net and m1.example.net in both directions.

3. Test the connection from m3.example.net to the other two hosts with the following operation set from the
m3.example.net host, as in:

mongo --host m1.example.net --port 27017

mongo --host m2.example.net --port 27017

If any connection, in any direction fails, check your networking and firewall configuration and reconfigure your envi-
ronment to allow these connections.

Check the Size of the Oplog

A larger oplog can give a replica set a greater tolerance for lag, and make the set more resilient.

To check the size of the oplog for a given replica set member, connect to the member in a mongo (page 984) shell and
run the db.printReplicationInfo() (page 943) method.

The output displays the size of the oplog and the date ranges of the operations contained in the oplog. In the following
example, the oplog is about 10MB and is able to fit about 26 hours (94400 seconds) of operations:

configured oplog size: 10.10546875MB
log length start to end: 94400 (26.22hrs)
oplog first event time: Mon Mar 19 2012 13:50:38 GMT-0400 (EDT)
oplog last event time: Wed Oct 03 2012 14:59:10 GMT-0400 (EDT)
now: Wed Oct 03 2012 15:00:21 GMT-0400 (EDT)

424 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

The oplog should be long enough to hold all transactions for the longest downtime you expect on a secondary. At a
minimum, an oplog should be able to hold minimum 24 hours of operations; however, many users prefer to have 72
hours or even a week’s work of operations.

For more information on how oplog size affects operations, see:

• The Oplog (page 372) topic in the Replica Set Fundamental Concepts (page 367) document.

• The Delayed Members (page 368) topic in this document.

• The Check the Replication Lag (page 422) topic in this document.

Note: You normally want the oplog to be the same size on all members. If you resize the oplog, resize it on all
members.

To change oplog size, see the Change the Size of the Oplog (page 413) tutorial.

Oplog Entry Timestamp Error

Consider the following error in mongod (page 971) output and logs:

replSet error fatal couldn’t query the local local.oplog.rs collection. Terminating mongod after 30 seconds.
<timestamp> [rsStart] bad replSet oplog entry?

Often, an incorrectly typed value in the ts field in the last oplog entry causes this error. The correct data type is
Timestamp.

Check the type of the ts value using the following two queries against the oplog collection:

db = db.getSiblingDB("local")
db.oplog.rs.find().sort({$natural:-1}).limit(1)
db.oplog.rs.find({ts:{$type:17}}).sort({$natural:-1}).limit(1)

The first query returns the last document in the oplog, while the second returns the last document in the oplog where
the ts value is a Timestamp. The $type (page 774) operator allows you to select BSON type 17, is the Timestamp
data type.

If the queries don’t return the same document, then the last document in the oplog has the wrong data type in the ts
field.

Example

If the first query returns this as the last oplog entry:

{ "ts" : {t: 1347982456000, i: 1},
"h" : NumberLong("8191276672478122996"),
"op" : "n",
"ns" : "",
"o" : { "msg" : "Reconfig set", "version" : 4 } }

And the second query returns this as the last entry where ts has the Timestamp type:

{ "ts" : Timestamp(1347982454000, 1),
"h" : NumberLong("6188469075153256465"),
"op" : "n",
"ns" : "",
"o" : { "msg" : "Reconfig set", "version" : 3 } }

35.1. Replica Set Administration 425

MongoDB Documentation, Release 2.4.2

Then the value for the ts field in the last oplog entry is of the wrong data type.

To set the proper type for this value and resolve this issue, use an update operation that resembles the following:

db.oplog.rs.update({ ts: { t:1347982456000, i:1 } },
{ $set: { ts: new Timestamp(1347982456000, 1)}})

Modify the timestamp values as needed based on your oplog entry. This operation may take some period to complete
because the update must scan and pull the entire oplog into memory.

Duplicate Key Error on local.slaves

The duplicate key on local.slaves error, occurs when a secondary or slave changes its hostname and the primary or
master tries to update its local.slaves collection with the new name. The update fails because it contains the
same _id value as the document containing the previous hostname. The error itself will resemble the following.

exception 11000 E11000 duplicate key error index: local.slaves.$_id_ dup key: { : ObjectId(’<object ID>’) } 0ms

This is a benign error and does not affect replication operations on the secondary or slave.

To prevent the error from appearing, drop the local.slaves collection from the primary or master, with the
following sequence of operations in the mongo (page 984) shell:

use local
db.slaves.drop()

The next time a secondary or slave polls the primary or master, the primary or master recreates the local.slaves
collection.

35.1.14 Add an Arbiter to Replica Set

Arbiters are special mongod (page 971) instances that do not hold a copy of the data and thus cannot become primary.
Arbiters exist solely to participate in elections (page 369). Because arbiters do not hold a copies of collection data,
they have minimal resource requirements and do not require dedicated hardware.

Note: Because of their minimal system requirements, you may safely deploy an arbiter on a system with another
workload, such as an application server or monitoring member.

Warning: Do not run arbiter processes on a system that is an active primary or secondary of its replica set.

Add an Arbiter

Note: To prevent tied elections, do not add an arbiter to a set if the set already has an odd number of voting members.

1. Create a data directory for the arbiter. The mongod (page 971) uses this directory for configu-
ration information. It will not hold database collection data. The following example creates the
http://docs.mongodb.org/manual/data/arb data directory:

mkdir /data/arb

426 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

2. Start the arbiter, making sure to specify the replica set name and the data directory. Consider the following
example:

mongod --port 30000 --dbpath /data/arb --replSet rs

3. In a mongo (page 984) shell connected to the primary, add the arbiter to the replica set by issuing the
rs.addArb() (page 950) method, which uses the following syntax:

rs.addArb("<hostname><:port>")

For example, if the arbiter runs on m1.example.net:30000, you would issue this command:

rs.addArb("m1.example.net:30000")

35.1.15 Convert a Secondary to an Arbiter

If you have a secondary in a replica set that no longer needs to hold a copy of the data but that you want to retain in
the set to ensure that the replica set will be able to elect a primary (page 369), you can convert the secondary into an
arbiter (page 368). This document provides two equivalent procedures for this process.

Synopsis

Both of the following procedures are operationally equivalent. Choose whichever procedure you are most comfortable
with:

1. You may operate the arbiter on the same port as the former secondary. In this procedure, you must shut down
the secondary and remove its data before restarting and reconfiguring it as an arbiter.

For this procedure, see Convert a Secondary to an Arbiter and Reuse the Port Number (page 427).

2. Run the arbiter on a new port. In this procedure, you can reconfigure the server as an arbiter before shutting
down the instance running as a secondary.

For this procedure, see Convert a Secondary to an Arbiter Running on a New Port Number (page 428).

See Also:

• Arbiters (page 368)

• rs.addArb() (page 950)

• Replica Set Administration (page 397)

Procedures

Convert a Secondary to an Arbiter and Reuse the Port Number

1. If your application is connecting directly to the secondary, modify the application so that MongoDB queries
don’t reach the secondary.

2. Shut down the secondary.

3. Remove the secondary from the replica set by calling the rs.remove() (page 952) method. Perform this
operation while connected to the current primary in the mongo (page 984) shell:

rs.remove("<hostname><:port>")

35.1. Replica Set Administration 427

MongoDB Documentation, Release 2.4.2

4. Verify that the replica set no longer includes the secondary by calling the rs.conf() (page 950) method in
the mongo (page 984) shell:

rs.conf()

5. Move the secondary’s data directory to an archive folder. For example:

mv /data/db /data/db-old

Optional

You may remove the data instead.

6. Create a new, empty data directory to point to when restarting the mongod (page 971) instance. You can reuse
the previous name. For example:

mkdir /data/db

7. Restart the mongod (page 971) instance for the secondary, specifying the port number, the empty data directory,
and the replica set. You can use the same port number you used before. Issue a command similar to the
following:

mongod --port 27021 --dbpath /data/db --replSet rs

8. In the mongo (page 984) shell convert the secondary to an arbiter using the rs.addArb() (page 950) method:

rs.addArb("<hostname><:port>")

9. Verify the arbiter belongs to the replica set by calling the rs.conf() (page 950) method in the mongo
(page 984) shell.

rs.conf()

The arbiter member should include the following:

"arbiterOnly" : true

Convert a Secondary to an Arbiter Running on a New Port Number

1. If your application is connecting directly to the secondary or has a connection string referencing the secondary,
modify the application so that MongoDB queries don’t reach the secondary.

2. Create a new, empty data directory to be used with the new port number. For example:

mkdir /data/db-temp

3. Start a new mongod (page 971) instance on the new port number, specifying the new data directory and the
existing replica set. Issue a command similar to the following:

mongod --port 27021 --dbpath /data/db-temp --replSet rs

4. In the mongo (page 984) shell connected to the current primary, convert the new mongod (page 971) instance
to an arbiter using the rs.addArb() (page 950) method:

rs.addArb("<hostname><:port>")

5. Verify the arbiter has been added to the replica set by calling the rs.conf() (page 950) method in the mongo
(page 984) shell.

428 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

rs.conf()

The arbiter member should include the following:

"arbiterOnly" : true

6. Shut down the secondary.

7. Remove the secondary from the replica set by calling the rs.remove() (page 952) method in the mongo
(page 984) shell:

rs.remove("<hostname><:port>")

8. Verify that the replica set no longer includes the old secondary by calling the rs.conf() (page 950) method
in the mongo (page 984) shell:

rs.conf()

9. Move the secondary’s data directory to an archive folder. For example:

mv /data/db /data/db-old

Optional

You may remove the data instead.

35.1.16 Configure a Delayed Replica Set Member

To configure a replica set member with a one hour delay, use the following sequence of operations in the mongo
(page 984) shell:

cfg = rs.conf()
cfg.members[0].priority = 0
cfg.members[0].slaveDelay = 3600
rs.reconfig(cfg)

Warning: The rs.reconfig() (page 951) shell method can force the current primary to step down, which
causes an election (page 369). When the primary steps down, the mongod (page 971) closes all client connections.
While this typically takes 10-20 seconds, attempt to make these changes during scheduled maintenance periods.
To successfully reconfigure a replica set, a majority of the members must be accessible.

After the replica set reconfigures, the first member of the set in the members (page 441) array will have a priority
of 0 and cannot become primary. The slaveDelay value delays both replication and the member’s oplog by 3600
seconds (1 hour). Setting slaveDelay (page 443) to a non-zero value also sets hidden (page 442) to true for
this replica set so that it does not receive application queries in normal operations.

See Also:

The Elections (page 369) section in the Replica Set Fundamental Concepts (page 367) document, and the Election
Internals (page 388) section in the Replica Set Internals and Behaviors (page 387) document.

Warning: The length of the secondary slaveDelay (page 443) must fit within the window of the oplog. If
the oplog is shorter than the slaveDelay (page 443) window, the delayed member cannot successfully replicate
operations.

See Also:

35.1. Replica Set Administration 429

MongoDB Documentation, Release 2.4.2

slaveDelay (page 443), Replica Set Reconfiguration (page 445), Oplog (page 372), and the Change the Size of the
Oplog (page 413) tutorial.

35.1.17 Configure a Replica Set Member as Hidden

Hidden members are part of a replica set but cannot become primary and are invisible to client applications. However,
hidden members do vote in elections (page 369).

Hidden members are ideal for instances that will have significantly different usage patterns than the other members
and require separation from normal traffic. Typically, hidden members provide reporting, dedicated backups, and
dedicated read-only testing and integration support.

Hidden members have priority (page 442) set 0 and have hidden (page 442) set to true.

To configure a hidden member, on the primary, use the following sequence of operations in the mongo (page 984)
shell:

cfg = rs.conf()
cfg.members[0].priority = 0
cfg.members[0].hidden = true
rs.reconfig(cfg)

Warning: The rs.reconfig() (page 951) shell method can force the current primary to step down, which
causes an election (page 369). When the primary steps down, the mongod (page 971) closes all client connections.
While this typically takes 10-20 seconds, attempt to make these changes during scheduled maintenance periods.
To successfully reconfigure a replica set, a majority of the members must be accessible.

After re-configuring the set, the first member of the set in the members (page 441) array will have a priority of 0 so
that it cannot become primary. The other members in the set will not advertise the hidden member in the isMaster
(page 847) or db.isMaster() (page 941) output.

See Also:

The Elections (page 369) section in the Replica Set Fundamental Concepts (page 367) document, and the Election
Internals (page 388) section in the Replica Set Internals and Behaviors (page 387) document.

Changed in version 2.0.

See Also:

Read Preference (page 381) and Replica Set Reconfiguration (page 445).

35.1.18 Configure a Non-Voting Replica Set Member

You may choose to change the number of votes that each member has in elections (page 369) for primary. In general,
all members should have only 1 vote to prevent intermittent ties, deadlock, or the wrong members from becoming
primary. Use replica set priorities (page 370) to control which members are more likely to become primary.

To disable a member’s ability to vote in elections, use the following command sequence in the mongo (page 984)
shell.

cfg = rs.conf()
cfg.members[3].votes = 0
cfg.members[4].votes = 0
cfg.members[5].votes = 0
rs.reconfig(cfg)

430 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

This sequence gives 0 votes to the fourth, fifth, and sixth members of the set according to the order of the members
(page 441) array in the output of rs.conf() (page 950). This setting allows the set to elect these members as
primary but does not allow them to vote in elections. If you have three non-voting members, you can add three
additional voting members to your set. Place voting members so that your designated primary or primaries can reach
a majority of votes in the event of a network partition.

Warning: The rs.reconfig() (page 951) shell method can force the current primary to step down, which
causes an election (page 369). When the primary steps down, the mongod (page 971) closes all client connections.
While this typically takes 10-20 seconds, attempt to make these changes during scheduled maintenance periods.
To successfully reconfigure a replica set, a majority of the members must be accessible.

Note: In general and when possible, all members should have only 1 vote. This prevents intermittent ties, deadlocks,
or the wrong members from becoming primary. Use Replica Set Priorities (page 370) to control which members are
more likely to become primary.

See Also:

votes (page 443) and Replica Set Reconfiguration (page 445).

See Also:

The Elections (page 369) section in the Replica Set Fundamental Concepts (page 367) document, and the Election
Internals (page 388) section in the Replica Set Internals and Behaviors (page 387) document.

35.1.19 Prevent Replica Set Member from Becoming Primary

The secondary-only configuration prevents a secondary member in a replica set from ever becoming a primary in a
failover. You can set secondary-only mode for any member of the set except the current primary.

For example, you may want to configure all members of a replica sets located outside of the main data centers as
secondary-only to prevent these members from ever becoming primary.

To configure a member as secondary-only, set its priority (page 442) value to 0. Any member with a priority
(page 442) equal to 0 will never seek election (page 369) and cannot become primary in any situation. For more
information on priority levels, see Member Priority (page 370).

Note: When updating the replica configuration object, address all members of the set using the index value in the
array. The array index begins with 0. Do not confuse this index value with the value of the _id (page 441) field in
each document in the members (page 441) array.

The _id (page 441) rarely corresponds to the array index.

As an example of modifying member priorities, assume a four-member replica set. Use the following sequence of
operations in the mongo (page 984) shell to modify member priorities:

cfg = rs.conf()
cfg.members[0].priority = 2
cfg.members[1].priority = 1
cfg.members[2].priority = 0.5
cfg.members[3].priority = 0
rs.reconfig(cfg)

This reconfigures the set, with the following priority settings:

• Member 0 to a priority of 2 so that it becomes primary, under most circumstances.

35.1. Replica Set Administration 431

MongoDB Documentation, Release 2.4.2

• Member 1 to a priority of 1, which is the default value. Member 1 becomes primary if no member with a higher
priority is eligible.

• Member 2 to a priority of 0.5, which makes it less likely to become primary than other members but doesn’t
prohibit the possibility.

• Member 3 to a priority of 0. Member 3 cannot become the primary member under any circumstances.

Warning: The rs.reconfig() (page 951) shell method can force the current primary to step down, which
causes an election (page 369). When the primary steps down, the mongod (page 971) closes all client connections.
While this typically takes 10-20 seconds, attempt to make these changes during scheduled maintenance periods.
To successfully reconfigure a replica set, a majority of the members must be accessible.

Note:

• If your replica set has an even number of members, add an arbiter (page 426) to ensure that members can
quickly obtain a majority of votes in an election for primary.

• MongoDB does not permit the current primary to have a priority (page 442) of 0. If you want to prevent
the current primary from becoming primary, first use rs.stepDown() (page 953) to step down the current
primary, and then reconfigure the replica set (page 445) with rs.conf() (page 950) and rs.reconfig()
(page 951).

See Also:

priority (page 442) and Replica Set Reconfiguration (page 445).

35.1.20 Configure a Secondary’s Sync Target

To override the default sync target selection logic, you may manually configure a secondary member’s sync target for
pulling oplog entries temporarily. The following operations provide access to this functionality:

• replSetSyncFrom (page 867) command, or

• rs.syncFrom() (page 953) helper in the mongo (page 984) shell

Only modify the default sync logic as needed, and always exercise caution. rs.syncFrom() (page 953) will not
affect an in-progress initial sync operation. To affect the sync target for the initial sync, run rs.syncFrom()
(page 953) operation before initial sync.

If you run rs.syncFrom() (page 953) during initial sync, MongoDB produces no error messages, but the sync
target will not change until after the initial sync operation.

Note: replSetSyncFrom (page 867) and rs.syncFrom() (page 953) provide a temporary override of default
behavior. If:

• the mongod (page 971) instance restarts,

• the connection to the sync target closes, or

• Changed in version 2.4: The sync target falls more than 30 seconds behind another member of the replica set;

then, the mongod (page 971) instance will revert to the default sync logic and target.

432 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

35.1.21 Configure Replica Set Tag Sets

Tag sets let you customize write concern and read preferences for a replica set. MongoDB stores tag sets in the replica
set configuration object, which is the document returned by rs.conf() (page 950), in the members[n].tags
(page 443) sub-document.

This document introduces the configuration of tag sets. For an overview on tag sets and their use, see Write Concern
for Replica Sets (page 378) and Tag Sets (page 383).

Differences Between Read Preferences and Write Concerns

Custom read preferences and write concerns evaluate tags sets in different ways:

• Read preferences consider the value of a tag when selecting a member to read from.

• Write concerns do not use the value of a tag to select a member except to consider whether or not the value is
unique.

For example, a tag set for a read operation may resemble the following document:

{ "disk": "ssd", "use": "reporting" }

To fulfill the request, a member would need to have both of these tags. Therefore the following tag sets, would satisfy
this requirement:

{ "disk": "ssd", "use": "reporting" }
{ "disk": "ssd", "use": "reporting", "rack": 1 }
{ "disk": "ssd", "use": "reporting", "rack": 4 }
{ "disk": "ssd", "use": "reporting", "mem": "64"}

The following tag sets would not be able to fulfill this query:

{ "disk": "ssd" }
{ "use": "reporting" }
{ "disk": "ssd", "use": "production" }
{ "disk": "ssd", "use": "production", "rack": 3 }
{ "disk": "spinning", "use": "reporting", "mem": "32" }

Add Tag Sets to a Replica Set

Given the following replica set configuration:

{
"_id" : "rs0",
"version" : 1,
"members" : [

{
"_id" : 0,
"host" : "mongodb0.example.net:27017"

},
{

"_id" : 1,
"host" : "mongodb1.example.net:27017"

},
{

"_id" : 2,
"host" : "mongodb2.example.net:27017"

}

35.1. Replica Set Administration 433

MongoDB Documentation, Release 2.4.2

]
}

You could add the tag sets to the members of this replica set with the following command sequence in the mongo
(page 984) shell:

conf = rs.conf()
conf.members[0].tags = { "dc": "east", "use": "production" }
conf.members[1].tags = { "dc": "east", "use": "reporting" }
conf.members[2].tags = { "use": "production" }
rs.reconfig(conf)

After this operation the output of rs.conf() (page 950) would resemble the following:

{
"_id" : "rs0",
"version" : 2,
"members" : [

{
"_id" : 0,
"host" : "mongodb0.example.net:27017",
"tags" : {

"dc": "east",
"use": "production"

}
},
{

"_id" : 1,
"host" : "mongodb1.example.net:27017",
"tags" : {

"dc": "east",
"use": "reporting"

}
},
{

"_id" : 2,
"host" : "mongodb2.example.net:27017",
"tags" : {

"use": "production"
}

}
]

}

Custom Multi-Datacenter Write Concerns

Given a five member replica set with members in two data centers:

1. a facility VA tagged dc.va

2. a facility GTO tagged dc.gto

Create a custom write concern to require confirmation from two data centers using replica set tags, using the following
sequence of operations in the mongo (page 984) shell:

1. Create the replica set configuration object conf:

conf = rs.conf()

434 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

2. Add tags to the replica set members reflecting their locations:

conf.members[0].tags = { "dc.va": "rack1"}
conf.members[1].tags = { "dc.va": "rack2"}
conf.members[2].tags = { "dc.gto": "rack1"}
conf.members[3].tags = { "dc.gto": "rack2"}
conf.members[4].tags = { "dc.va": "rack1"}
rs.reconfig(conf)

3. Create a custom getLastErrorModes (page 444) setting to ensure that the write operation will propagate
to at least one member of each facility:

conf.settings = { getLastErrorModes: { MultipleDC : { "dc.va": 1, "dc.gto": 1}}

4. Reconfigure the replica set using the new conf configuration object:

rs.reconfig(conf)

To ensure that a write operation propagators to at least one member of the set in both facilities, then use the
MultipleDC write concern mode, as follows:

db.runCommand({ getLastError: 1, w: "MultipleDC" })

Alternatively, if you want to ensure that each write operation propagates to at least 2 racks in each facility, reconfigure
the replica set as follows in the mongo (page 984) shell:

1. Create the replica set configuration object conf:

conf = rs.conf()

2. Redefine the getLastErrorModes (page 444) value to require two different values of both dc.va and
dc.gto:

conf.settings = { getLastErrorModes: { MultipleDC : { "dc.va": 2, "dc.gto": 2}}

3. Reconfigure the replica set using the new conf configuration object:

rs.reconfig(conf)

Now, the following write concern operation will only return after the write operation propagates to at least two different
racks in the each facility:

db.runCommand({ getLastError: 1, w: "MultipleDC" })

Configure Tag Sets for Functional Segregation of Read and Write Operations

Given a replica set with tag sets that reflect:

• data center facility,

• physical rack location of instance, and

• storage system (i.e. disk) type.

Where each member of the set has a tag set that resembles one of the following: 5

{"dc.va": "rack1", disk:"ssd", ssd: "installed" }
{"dc.va": "rack2", disk:"raid"}
{"dc.gto": "rack1", disk:"ssd", ssd: "installed" }

5 Since read preferences and write concerns use the value of fields in tag sets differently, larger deployments will have some redundancy.

35.1. Replica Set Administration 435

MongoDB Documentation, Release 2.4.2

{"dc.gto": "rack2", disk:"raid"}
{"dc.va": "rack1", disk:"ssd", ssd: "installed" }

To target a read operation to a member of the replica set with an disk type of ssd, you could use the following tag set:

{ disk: "ssd" }

However, to create comparable write concern modes, you would specify a different set of getLastErrorModes
(page 444) configuration. Consider the following sequence of operations in the mongo (page 984) shell:

1. Create the replica set configuration object conf:

conf = rs.conf()

2. Redefine the getLastErrorModes (page 444) value to configure two write concern modes:

conf.settings = {
"getLastErrorModes" : {

"ssd" : {
"ssd" : 1

},
"MultipleDC" : {

"dc.va" : 1,
"dc.gto" : 1

}
}

}

3. Reconfigure the replica set using the new conf configuration object:

rs.reconfig(conf)

Now, you can specify the MultipleDC write concern mode, as in the following operation, to ensure that a write
operation propagates to each data center.

db.runCommand({ getLastError: 1, w: "MultipleDC" })

Additionally, you can specify the ssd write concern mode, as in the following operation, to ensure that a write
operation propagates to at least one instance with an SSD.

35.1.22 Reconfigure a Replica Set with Unavailable Members

To reconfigure a replica set when a minority of members are unavailable, use the rs.reconfig() (page 951)
operation on the current primary, following the example in the Replica Set Reconfiguration Procedure (page 445).

This document provides the following options for re-configuring a replica set when a majority of members are not
accessible:

• Reconfigure by Forcing the Reconfiguration (page 436)

• Reconfigure by Replacing the Replica Set (page 437)

You may need to use one of these procedures, for example, in a geographically distributed replica set, where no local
group of members can reach a majority. See Elections (page 369) for more information on this situation.

Reconfigure by Forcing the Reconfiguration

Changed in version 2.0. This procedure lets you recover while a majority of replica set members are down or un-
reachable. You connect to any surviving member and use the force option to the rs.reconfig() (page 951)

436 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

method.

The force option forces a new configuration onto the. Use this procedure only to recover from catastrophic inter-
ruptions. Do not use force every time you reconfigure. Also, do not use the force option in any automatic scripts
and do not use force when there is still a primary.

To force reconfiguration:

1. Back up a surviving member.

2. Connect to a surviving member and save the current configuration. Consider the following example commands
for saving the configuration:

cfg = rs.conf()

printjson(cfg)

3. On the same member, remove the down and unreachable members of the replica set from the members
(page 441) array by setting the array equal to the surviving members alone. Consider the following example,
which uses the cfg variable created in the previous step:

cfg.members = [cfg.members[0] , cfg.members[4] , cfg.members[7]]

4. On the same member, reconfigure the set by using the rs.reconfig() (page 951) command with the force
option set to true:

rs.reconfig(cfg, {force : true})

This operation forces the secondary to use the new configuration. The configuration is then propagated to all the
surviving members listed in the members array. The replica set then elects a new primary.

Note: When you use force : true, the version number in the replica set configuration increases signif-
icantly, by tens or hundreds of thousands. This is normal and designed to prevent set version collisions if you
accidentally force re-configurations on both sides of a network partition and then the network partitioning ends.

5. If the failure or partition was only temporary, shut down or decommission the removed members as soon as
possible.

Reconfigure by Replacing the Replica Set

Use the following procedure only for versions of MongoDB prior to version 2.0. If you’re running MongoDB 2.0 or
later, use the above procedure, Reconfigure by Forcing the Reconfiguration (page 436).

These procedures are for situations where a majority of the replica set members are down or unreachable. If a majority
is running, then skip these procedures and instead use the rs.reconfig() (page 951) command according to the
examples in Example Reconfiguration Operations (page 445).

If you run a pre-2.0 version and a majority of your replica set is down, you have the two options described here. Both
involve replacing the replica set.

Reconfigure by Turning Off Replication

This option replaces the replica set with a standalone server.

1. Stop the surviving mongod (page 971) instances. To ensure a clean shutdown, use an existing control script or
an invocation that resembles the following:

35.1. Replica Set Administration 437

MongoDB Documentation, Release 2.4.2

mongod --dbpath /data/db/ --shutdown

Set --dbpath (page 973) to the data directory of your mongod (page 971) instance.

2. Create a backup of the data directory (i.e. dbpath (page 1029)) of the surviving members of the set.

Optional

If you have a backup of the database you may instead remove this data.

3. Restart one of the mongod (page 971) instances without the --replSet (page 977) parameter.

The data is now accessible and provided by a single server that is not a replica set member. Clients can use this
server for both reads and writes.

When possible, re-deploy a replica set to provide redundancy and to protect your deployment from operational inter-
ruption.

Reconfigure by “Breaking the Mirror”

This option selects a surviving replica set member to be the new primary and to “seed” a new replica set. In the fol-
lowing procedure, the new primary is db0.example.net. MongoDB copies the data from db0.example.net
to all the other members.

1. Stop the surviving mongod (page 971) instances. To ensure a clean shutdown, use an existing control script or
an invocation that resembles the following:

mongod --dbpath /data/db/ --shutdown

Set --dbpath (page 973) to the data directory of your mongod (page 971) instance.

2. Move the data directories (i.e. dbpath (page 1029)) for all the members except db0.example.net, so that
all the members except db0.example.net have empty data directories. For example:

mv /data/db /data/db-old

3. Move the data files for local database (i.e. local.*) so that db0.example.net has no local database.
For example

mkdir /data/local-old
mv /data/db/local* /data/local-old/

4. Start each member of the replica set normally.

5. Connect to db0.example.net in a mongo (page 984) shell and run rs.initiate() (page 951) to initiate
the replica set.

6. Add the other set members using rs.add() (page 949). For example, to add a member running on
db1.example.net at port 27017, issue the following command:

rs.add("db1.example.net:27017")

MongoDB performs an initial sync on the added members by copying all data from db0.example.net to
the added members.

See Also:

• rs.status() (page 953) and db.isMaster() (page 941)

• Replica Set Reconfiguration Process (page 445)

438 Chapter 35. Replica Set Tutorials and Procedures

MongoDB Documentation, Release 2.4.2

• rs.conf() (page 950) and rs.reconfig() (page 951)

• Replica Set Configuration (page 441)

35.1. Replica Set Administration 439

MongoDB Documentation, Release 2.4.2

440 Chapter 35. Replica Set Tutorials and Procedures

CHAPTER 36

Replica Set Reference Material

Additionally, consider the following reference material for replica sets.

36.1 Replica Set Configuration

36.1.1 Synopsis

This reference provides an overview of replica set configuration options and settings.

Use rs.conf() (page 950) in the mongo (page 984) shell to retrieve this configuration. Note that default values are
not explicitly displayed.

36.1.2 Configuration Variables

local.system.replset._id
Type: string

Value: <setname>

An _id field holding the name of the replica set. This reflects the set name configured with replSet
(page 1034) or mongod --replSet (page 977).

local.system.replset.members
Type: array

Contains an array holding an embedded document for each member of the replica set. The members document
contains a number of fields that describe the configuration of each member of the replica set.

The members (page 441) field in the replica set configuration document is a zero-indexed array.

local.system.replset.members[n]._id
Type: ordinal

Provides the zero-indexed identifier of every member in the replica set.

Note: When updating the replica configuration object, address all members of the set using the index value in
the array. The array index begins with 0. Do not confuse this index value with the value of the _id (page 441)
field in each document in the members (page 441) array.

441

MongoDB Documentation, Release 2.4.2

The _id (page 441) rarely corresponds to the array index.

local.system.replset.members[n].host
Type: <hostname><:port>

Identifies the host name of the set member with a hostname and port number. This name must be resolvable for
every host in the replica set.

Warning: host (page 442) cannot hold a value that resolves to localhost or the local interface unless
all members of the set are on hosts that resolve to localhost.

local.system.replset.members[n].arbiterOnly
Optional.

Type: boolean

Default: false

Identifies an arbiter. For arbiters, this value is true, and is automatically configured by rs.addArb()
(page 950)”.

local.system.replset.members[n].buildIndexes
Optional.

Type: boolean

Default: true

Determines whether the mongod (page 971) builds indexes on this member. Do not set to false if a replica
set can become a master, or if any clients ever issue queries against this instance.

Omitting index creation, and thus this setting, may be useful, if:

•You are only using this instance to perform backups using mongodump (page 992),

•this instance will receive no queries, and

•index creation and maintenance overburdens the host system.

If set to false, secondaries configured with this option do build indexes on the _id field, to facilitate opera-
tions required for replication.

Warning: You may only set this value when adding a member to a replica set. You may not reconfigure a
replica set to change the value of the buildIndexes (page 442) field after adding the member to the set.
Other secondaries cannot replicate from a members where buildIndexes (page 442) is false.

local.system.replset.members[n].hidden
Optional.

Type: boolean

Default: false

When this value is true, the replica set hides this instance, and does not include the member in the output of
db.isMaster() (page 941) or isMaster (page 847). This prevents read operations (i.e. queries) from ever
reaching this host by way of secondary read preference.

See Also:

“Hidden Replica Set Members (page 368)“

442 Chapter 36. Replica Set Reference Material

MongoDB Documentation, Release 2.4.2

local.system.replset.members[n].priority
Optional.

Type: Number, between 0 and 100.0 including decimals.

Default: 1

Specify higher values to make a member more eligible to become primary, and lower values to make the member
less eligible to become primary. Priorities are only used in comparison to each other, members of the set will
veto elections from members when another eligible member has a higher absolute priority value. Changing the
balance of priority in a replica set will cause an election.

A priority (page 442) of 0 makes it impossible for a member to become primary.

See Also:

“Replica Set Member Priority (page 370)” and “Replica Set Elections (page 369).”

local.system.replset.members[n].tags
Optional.

Type: MongoDB Document

Default: none

Used to represent arbitrary values for describing or tagging members for the purposes of extending write concern
to allow configurable data center awareness.

Use in conjunction with getLastErrorModes (page 444) and getLastErrorDefaults (page 444) and
db.getLastError() (page 939) (i.e. getLastError (page 837).)

For procedures on configuring tag sets, see Configure Replica Set Tag Sets (page 433).

local.system.replset.members[n].slaveDelay
Optional.

Type: Integer. (seconds.)

Default: 0

Describes the number of seconds “behind” the master that this replica set member should “lag.” Use this option
to create delayed members (page 368), that maintain a copy of the data that reflects the state of the data set some
amount of time (specified in seconds.) Typically these members help protect against human error, and provide
some measure of insurance against the unforeseen consequences of changes and updates.

local.system.replset.members[n].votes
Optional.

Type: Integer

Default: 1

Controls the number of votes a server has in a replica set election (page 369). The number of votes each member
has can be any non-negative integer, but it is highly recommended each member has 1 or 0 votes.

If you need more than 7 members, use this setting to add additional non-voting members with a votes
(page 443) value of 0.

For most deployments and most members, use the default value, 1, for votes (page 443).

local.system.replset.settings
Optional.

Type: MongoDB Document

The settings document configures options that apply to the whole replica set.

36.1. Replica Set Configuration 443

MongoDB Documentation, Release 2.4.2

local.system.replset.settings.chainingAllowed
Optional.

Type: boolean

Default: true New in version 2.2.2. When chainingAllowed (page 443) is true, the replica set allows
secondary members to replicate from other secondary members. When chainingAllowed (page 443) is
false, secondaries can replicate only from the primary.

When you run rs.config() (page 950) to view a replica set’s configuration, the chainingAllowed
(page 443) field appears only when set to false. If not set, chainingAllowed (page 443) is true.

See Also:

Manage Chained Replication (page 417)

local.system.replset.settings.getLastErrorDefaults
Optional.

Type: MongoDB Document

Specify arguments to the getLastError (page 837) that members of this replica set will use when no ar-
guments to getLastError (page 837) has no arguments. If you specify any arguments, getLastError
(page 837) , ignores these defaults.

local.system.replset.settings.getLastErrorModes
Optional.

Type: MongoDB Document

Defines the names and combination of members (page 441) for use by the application layer to guarantee write
concern to database using the getLastError (page 837) command to provide data-center awareness.

36.1.3 Example Document

The following document provides a representation of a replica set configuration document. Angle brackets (e.g. < and
>) enclose all optional fields.

{
_id : <setname>,
version: <int>,
members: [
{

_id : <ordinal>,
host : hostname<:port>,
<arbiterOnly : <boolean>,>
<buildIndexes : <boolean>,>
<hidden : <boolean>,>
<priority: <priority>,>
<tags: { <document> },>
<slaveDelay : <number>,>
<votes : <number>>

}
, ...

],
<settings: {
<getLastErrorDefaults : <lasterrdefaults>,>
<chainingAllowed : <boolean>,>
<getLastErrorModes : <modes>>

}>
}

444 Chapter 36. Replica Set Reference Material

MongoDB Documentation, Release 2.4.2

36.1.4 Example Reconfiguration Operations

Most modifications of replica set configuration use the mongo (page 984) shell. Consider the following reconfigura-
tion operation:

Example

Given the following replica set configuration:

{
"_id" : "rs0",
"version" : 1,
"members" : [

{
"_id" : 0,
"host" : "mongodb0.example.net:27017"

},
{

"_id" : 1,
"host" : "mongodb1.example.net:27017"

},
{

"_id" : 2,
"host" : "mongodb2.example.net:27017"

}
]

}

And the following reconfiguration operation:

cfg = rs.conf()
cfg.members[0].priority = 0.5
cfg.members[1].priority = 2
cfg.members[2].priority = 2
rs.reconfig(cfg)

This operation begins by saving the current replica set configuration to the local variable cfg using the rs.conf()
(page 950) method. Then it adds priority values to the cfg document where for the first three sub-documents in the
members (page 441) array. Finally, it calls the rs.reconfig() (page 951) method with the argument of cfg to
initialize this new configuration. The replica set configuration after this operation will resemble the following:

{
"_id" : "rs0",
"version" : 1,
"members" : [

{
"_id" : 0,
"host" : "mongodb0.example.net:27017",
"priority" : 0.5

},
{

"_id" : 1,
"host" : "mongodb1.example.net:27017",
"priority" : 2

},
{

"_id" : 2,
"host" : "mongodb2.example.net:27017",
"priority" : 1

36.1. Replica Set Configuration 445

MongoDB Documentation, Release 2.4.2

}
]

}

Using the “dot notation” demonstrated in the above example, you can modify any existing setting or specify any of
optional replica set configuration variables (page 441). Until you run rs.reconfig(cfg) at the shell, no changes
will take effect. You can issue cfg = rs.conf() at any time before using rs.reconfig() (page 951) to undo
your changes and start from the current configuration. If you issue cfg as an operation at any point, the mongo
(page 984) shell at any point will output the complete document with modifications for your review.

The rs.reconfig() (page 951) operation has a “force” option, to make it possible to reconfigure a replica set if a
majority of the replica set is not visible, and there is no primary member of the set. use the following form:

rs.reconfig(cfg, { force: true })

Warning: Forcing a rs.reconfig() (page 951) can lead to rollback situations and other difficult to recover
from situations. Exercise caution when using this option.

Note: The rs.reconfig() (page 951) shell method can force the current primary to step down and causes an
election in some situations. When the primary steps down, all clients will disconnect. This is by design. While this
typically takes 10-20 seconds, attempt to make these changes during scheduled maintenance periods.

36.2 Replica Set Status Reference

The replSetGetStatus (page 865) provides an overview of the current status of a replica set. Issue the following
command against the admin database, in the mongo (page 984) shell:

db.runCommand({ replSetGetStatus: 1 })

You can also use the following helper in the mongo (page 984) shell to access this functionality

rs.status()

The value specified (e.g 1 above,) does not impact the output of the command. Data provided by this command
derives from data included in heartbeats sent to the current instance by other members of the replica set: because of
the frequency of heartbeats, these data can be several seconds out of date.

Note: The mongod (page 971) must have replication enabled and be a member of a replica set for the for
replSetGetStatus (page 865) to return successfully.

See Also:

“rs.status() (page 953)” shell helper function, “Replication (page 365)”.

36.2.1 Fields

replSetGetStatus.set
The set value is the name of the replica set, configured in the replSet (page 1034) setting. This is the same
value as _id (page 441) in rs.conf() (page 950).

446 Chapter 36. Replica Set Reference Material

MongoDB Documentation, Release 2.4.2

replSetGetStatus.date
The value of the date field is an ISODate of the current time, according to the current server. Compare this to
the value of the lastHeartbeat (page 448) to find the operational lag between the current host and the other
hosts in the set.

replSetGetStatus.myState
The value of myState (page 447) reflects state of the current replica set member. An integer between 0 and
10 represents the state of the member. These integers map to states, as described in the following table:

Number Name State
0 STARTUP Start up, phase 1 (parsing configuration.)
1 PRIMARY Primary.
2 SECONDARY Secondary.
3 RECOVERING Member is recovering (initial sync, post-rollback, stale members.)
4 FATAL Member has encountered an unrecoverable error.
5 STARTUP2 Start up, phase 2 (forking threads.)
6 UNKNOWN Unknown (the set has never connected to the member.)
7 ARBITER Member is an arbiter.
8 DOWN Member is not accessible to the set.
9 ROLLBACK Member is rolling back data. See rollback.
10 SHUNNED Member has been removed from replica set.

replSetGetStatus.members
The members field holds an array that contains a document for every member in the replica set. See the
“Member Statuses (page 447)” for an overview of the values included in these documents.

replSetGetStatus.syncingTo
The syncingTo field is only present on the output of rs.status() (page 953) on secondary and recovering
members, and holds the hostname of the member from which this instance is syncing.

36.2.2 Member Statuses

replSetGetStatus.members.name
The name field holds the name of the server.

replSetGetStatus.members.self
The self field is only included in the document for the current mongod instance in the members array. It’s
value is true.

replSetGetStatus.members.errmsg
This field contains the most recent error or status message received from the member. This field may be empty
(e.g. "") in some cases.

replSetGetStatus.members.health
The health value is only present for the other members of the replica set (i.e. not the member that returns
rs.status (page 953).) This field conveys if the member is up (i.e. 1) or down (i.e. 0.)

replSetGetStatus.members.state
The value of the state (page 447) reflects state of this replica set member. An integer between 0 and 10
represents the state of the member. These integers map to states, as described in the following table:

36.2. Replica Set Status Reference 447

MongoDB Documentation, Release 2.4.2

Number Name State
0 STARTUP Start up, phase 1 (parsing configuration.)
1 PRIMARY Primary.
2 SECONDARY Secondary.
3 RECOVERING Member is recovering (initial sync, post-rollback, stale members.)
4 FATAL Member has encountered an unrecoverable error.
5 STARTUP2 Start up, phase 2 (forking threads.)
6 UNKNOWN Unknown (the set has never connected to the member.)
7 ARBITER Member is an arbiter.
8 DOWN Member is not accessible to the set.
9 ROLLBACK Member is rolling back data. See rollback.
10 SHUNNED Member has been removed from replica set.

replSetGetStatus.members.stateStr
A string that describes state (page 447).

replSetGetStatus.members.uptime
The uptime (page 448) field holds a value that reflects the number of seconds that this member has been online.

This value does not appear for the member that returns the rs.status() (page 953) data.

replSetGetStatus.members.optime
A document that contains information regarding the last operation from the operation log that this member has
applied.

replSetGetStatus.members.optime.t
A 32-bit timestamp of the last operation applied to this member of the replica set from the oplog.

replSetGetStatus.members.optime.i
An incremented field, which reflects the number of operations in since the last time stamp. This value only
increases if there is more than one operation per second.

replSetGetStatus.members.optimeDate
An ISODate formatted date string that reflects the last entry from the oplog that this member applied. If this
differs significantly from lastHeartbeat (page 448) this member is either experiencing “replication lag” or
there have not been any new operations since the last update. Compare members.optimeDate between all
of the members of the set.

replSetGetStatus.members.lastHeartbeat
The lastHeartbeat value provides an ISODate formatted date of the last heartbeat received from this mem-
ber. Compare this value to the value of the date (page 446) field to track latency between these members.

This value does not appear for the member that returns the rs.status() (page 953) data.

replSetGetStatus.members.pingMS
The pingMS represents the number of milliseconds (ms) that a round-trip packet takes to travel between the
remote member and the local instance.

This value does not appear for the member that returns the rs.status() (page 953) data.

36.3 Replication Info Reference

The db.getReplicationInfo() (page 940) provides current status of the current replica status, using data
polled from the “oplog”. Consider the values of this output when diagnosing issues with replication.

See Also:

“Replica Set Fundamental Concepts (page 367)” for more information on replication.

448 Chapter 36. Replica Set Reference Material

MongoDB Documentation, Release 2.4.2

36.3.1 All Nodes

The following fields are present in the output of db.getReplicationInfo() (page 940) for both primary and
secondary nodes.

db.getReplicationInfo.logSizeMB
Returns the total size of the oplog in megabytes. This refers to the total amount of space allocated to the oplog
rather than the current size of operations stored in the oplog.

db.getReplicationInfo.usedMB
Returns the total amount of space used by the oplog in megabytes. This refers to the total amount of space
currently used by operations stored in the oplog rather than the total amount of space allocated.

36.3.2 Primary Nodes

The following fields appear in the output of db.getReplicationInfo() (page 940) for primary nodes.

db.getReplicationInfo.errmsg
Returns the last error status.

db.getReplicationInfo.oplogMainRowCount
Returns a counter of the number of items or rows (i.e. documents) in the oplog.

36.3.3 Secondary Nodes

The following fields appear in the output of db.getReplicationInfo() (page 940) for secondary nodes.

db.getReplicationInfo.timeDiff
Returns the difference between the first and last operation in the oplog, represented in seconds.

db.getReplicationInfo.timeDiffHours
Returns the difference between the first and last operation in the oplog, rounded and represented in hours.

db.getReplicationInfo.tFirst
Returns a time stamp for the first (i.e. earliest) operation in the oplog. Compare this value to the last write
operation issued against the server.

db.getReplicationInfo.tLast
Returns a time stamp for the last (i.e. latest) operation in the oplog. Compare this value to the last write operation
issued against the server.

db.getReplicationInfo.now
Returns a time stamp reflecting the current time. The shell process generates this value, and the datum may
differ slightly from the server time if you’re connecting from a remote host as a result. Equivalent to Date()
(page 887).

36.4 Replica Set Commands

This reference collects documentation for all JavaScript methods (page 450) for the mongo (page 984) shell that
support replica set functionality, as well as all database commands (page 453) related to replication function.

See Replication (page 365), for a list of all replica set documentation.

36.4. Replica Set Commands 449

MongoDB Documentation, Release 2.4.2

36.4.1 JavaScript Methods

The following methods apply to replica sets. For a complete list of all methods, see JavaScript Methods (page 881).

rs.status()

Returns A document with status information.

This output reflects the current status of the replica set, using data derived from the heartbeat packets sent by the
other members of the replica set.

This method provides a wrapper around the replSetGetStatus (page 865) database command.

See Also:

“Replica Set Status Reference (page 446)” for documentation of this output.

db.isMaster()
Returns a status document with fields that includes the ismaster field that reports if the current node is the
primary node, as well as a report of a subset of current replica set configuration.

This function provides a wrapper around the database command isMaster (page 847)

rs.initiate(configuration)

Parameters

• configuration – Optional. A document that specifies the configuration of a replica set. If
not specified, MongoDB will use a default configuration.

Initiates a replica set. Optionally takes a configuration argument in the form of a document that holds the
configuration of a replica set. Consider the following model of the most basic configuration for a 3-member
replica set:

{
_id : <setname>,
members : [

{_id : 0, host : <host0>},
{_id : 1, host : <host1>},
{_id : 2, host : <host2>},

]
}

This function provides a wrapper around the “replSetInitiate (page 865)” database command.

rs.conf()

Returns a document that contains the current replica set configuration object.

rs.config()
rs.config() (page 950) is an alias of rs.conf() (page 950).

rs.reconfig(configuration[, force])
Parameters

• configuration – A document that specifies the configuration of a replica set.

• force – Optional. Specify { force: true } as the force parameter to force the replica
set to accept the new configuration even if a majority of the members are not accessible. Use
with caution, as this can lead to rollback situations.

Initializes a new replica set configuration. This function will disconnect the shell briefly and forces a reconnec-
tion as the replica set renegotiates which node will be primary. As a result, the shell will display an error even
if this command succeeds.

450 Chapter 36. Replica Set Reference Material

MongoDB Documentation, Release 2.4.2

rs.reconfig() (page 951) provides a wrapper around the “replSetReconfig (page 866)” database
command.

rs.reconfig() (page 951) overwrites the existing replica set configuration. Retrieve the current configura-
tion object with rs.conf() (page 950), modify the configuration as needed and then use rs.reconfig()
(page 951) to submit the modified configuration object.

To reconfigure a replica set, use the following sequence of operations:

conf = rs.conf()

// modify conf to change configuration

rs.reconfig(conf)

If you want to force the reconfiguration if a majority of the set isn’t connected to the current member, or you’re
issuing the command against a secondary, use the following form:

conf = rs.conf()

// modify conf to change configuration

rs.reconfig(conf, { force: true })

Warning: Forcing a rs.reconfig() (page 951) can lead to rollback situations and other difficult to
recover from situations. Exercise caution when using this option.

See Also:

“Replica Set Configuration (page 441)” and “Replica Set Administration (page 397)”.

rs.add(hostspec, arbiterOnly)
Specify one of the following forms:

Parameters

• host (string,document) – Either a string or a document. If a string, specifies a host (and
optionally port-number) for a new host member for the replica set; MongoDB will add this
host with the default configuration. If a document, specifies any attributes about a member
of a replica set.

• arbiterOnly (boolean) – Optional. If true, this host is an arbiter. If the second argument
evaluates to true, as is the case with some documents, then this instance will become an
arbiter.

Provides a simple method to add a member to an existing replica set. You can specify new hosts in one of two
ways:

1.as a “hostname” with an optional port number to use the default configuration as in the Add a Member to
an Existing Replica Set (page 403) example.

2.as a configuration document, as in the Add a Member to an Existing Replica Set (Alternate Procedure)
(page 404) example.

This function will disconnect the shell briefly and forces a reconnection as the replica set renegotiates which
node will be primary. As a result, the shell will display an error even if this command succeeds.

rs.add() (page 949) provides a wrapper around some of the functionality of the “replSetReconfig
(page 866)” database command and the corresponding shell helper rs.reconfig() (page 951). See the
Replica Set Configuration (page 441) document for full documentation of all replica set configuration options.

36.4. Replica Set Commands 451

MongoDB Documentation, Release 2.4.2

Example

To add a mongod (page 971) accessible on the default port 27017 running on the host
mongodb3.example.net, use the following rs.add() (page 949) invocation:

rs.add(’mongodb3.example.net:27017’)

If mongodb3.example.net is an arbiter, use the following form:

rs.add(’mongodb3.example.net:27017’, true)

To add mongodb3.example.net as a secondary-only (page 368) member of set, use the following form of
rs.add() (page 949):

rs.add({ "_id": "3", "host": "mongodbd3.example.net:27017", "priority": 0 })

Replace, 3 with the next unused _id value in the replica set. See rs.conf() (page 950) to see the existing
_id values in the replica set configuration document.

See the Replica Set Configuration (page 441) and Replica Set Administration (page 397) documents for more
information.

rs.addArb(hostname)

Parameters

• host (string) – Specifies a host (and optionally port-number) for a arbiter member for the
replica set.

Adds a new arbiter to an existing replica set.

This function will disconnect the shell briefly and forces a reconnection as the replica set renegotiates which
node will be primary. As a result, the shell will display an error even if this command succeeds.

rs.stepDown(seconds)

Parameters

• seconds (init) – Specify the duration of this operation. If not specified the command uses
the default value of 60 seconds.

Returns disconnects shell.

Forces the current replica set member to step down as primary and then attempt to avoid election as primary for
the designated number of seconds. Produces an error if the current node is not primary.

This function will disconnect the shell briefly and forces a reconnection as the replica set renegotiates which
node will be primary. As a result, the shell will display an error even if this command succeeds.

rs.stepDown() (page 953) provides a wrapper around the database command replSetStepDown
(page 867).

rs.freeze(seconds)

Parameters

• seconds (init) – Specify the duration of this operation.

Forces the current node to become ineligible to become primary for the period specified.

rs.freeze() (page 951) provides a wrapper around the database command replSetFreeze (page 864).

rs.remove(hostname)

Parameters

452 Chapter 36. Replica Set Reference Material

MongoDB Documentation, Release 2.4.2

• hostname – Specify one of the existing hosts to remove from the current replica set.

Removes the node described by the hostname parameter from the current replica set. This function will
disconnect the shell briefly and forces a reconnection as the replica set renegotiates negotiates which node will
be primary. As a result, the shell will display an error even if this command succeeds.

Note: Before running the rs.remove() (page 952) operation, you must shut down the replica set member
that you’re removing. Changed in version 2.2: This procedure is no longer required when using rs.remove()
(page 952), but it remains good practice.

rs.slaveOk()
Provides a shorthand for the following operation:

db.getMongo().setSlaveOk()

This allows the current connection to allow read operations to run on secondary nodes. See the readPref()
(page 898) method for more fine-grained control over read preference (page 381) in the mongo (page 984) shell.

db.isMaster()
Returns a status document with fields that includes the ismaster field that reports if the current node is the
primary node, as well as a report of a subset of current replica set configuration.

This function provides a wrapper around the database command isMaster (page 847)

rs.help()
Returns a basic help text for all of the replication (page 367) related shell functions.

rs.syncFrom()
New in version 2.2. Provides a wrapper around the replSetSyncFrom (page 867), which allows administra-
tors to configure the member of a replica set that the current member will pull data from. Specify the name of
the member you want to replicate from in the form of [hostname]:[port].

See replSetSyncFrom (page 867) for more details.

36.4.2 Database Commands

The following commands apply to replica sets. For a complete list of all commands, see Database Commands Quick
Reference (page 803).

isMaster
The isMaster (page 847) command provides a basic overview of the current replication configuration. Mon-
goDB drivers and clients use this command to determine what kind of member they’re connected to and to
discover additional members of a replica set. The db.isMaster() (page 941) method provides a wrapper
around this database command.

The command takes the following form:

{ isMaster: 1 }

This command returns a document containing the following fields:

isMaster.setname
The name of the current replica set, if applicable.

isMaster.ismaster
A boolean value that reports when this node is writable. If true, then the current node is either a primary
in a replica set, a master in a master-slave configuration, or a standalone mongod (page 971).

36.4. Replica Set Commands 453

MongoDB Documentation, Release 2.4.2

isMaster.secondary
A boolean value that, when true, indicates that the current member is a secondary member of a replica
set.

isMaster.hosts
An array of strings in the format of “[hostname]:[port]” listing all members of the replica set that
are not “hidden”.

isMaster.arbiter
An array of strings in the format of “[hostname]:[port]” listing all members of the replica set that
are arbiters

Only appears in the isMaster (page 847) response for replica sets that have arbiter members.

isMaster.arbiterOnly
A boolean value that, when true indicates that the current instance is an arbiter.

arbiterOnly (page 848) only appears in the isMaster (page 847) response from arbiters.

isMaster.primary
The [hostname]:[port] for the current replica set primary, if applicable.

isMaster.me
The [hostname]:[port] of the node responding to this command.

isMaster.maxBsonObjectSize
The maximum permitted size of a BSON object in bytes for this mongod (page 971) process. If not
provided, clients should assume a max size of “4 * 1024 * 1024”.

isMaster.localTime
New in version 2.1.1. Returns the local server time in UTC. This value is a ISOdate. You can use the
toString() JavaScript method to convert this value to a local date string, as in the following example:

db.isMaster().localTime.toString();

resync
The resync (page 868) command forces an out-of-date slave mongod (page 971) instance to re-synchronize
itself. Note that this command is relevant to master-slave replication only. It does not apply to replica sets.

Warning: This command obtains a global write lock and will block other operations until it has completed.

replSetFreeze
The replSetFreeze (page 864) command prevents a replica set member from seeking election for the speci-
fied number of seconds. Use this command in conjunction with the replSetStepDown (page 867) command
to make a different node in the replica set a primary.

The replSetFreeze (page 864) command uses the following syntax:

{ replSetFreeze: <seconds> }

If you want to unfreeze a replica set member before the specified number of seconds has elapsed, you can issue
the command with a seconds value of 0:

{ replSetFreeze: 0 }

Restarting the mongod (page 971) process also unfreezes a replica set member.

replSetFreeze (page 864) is an administrative command, and you must issue it against the admin database.

replSetGetStatus
The replSetGetStatus command returns the status of the replica set from the point of view of the current

454 Chapter 36. Replica Set Reference Material

MongoDB Documentation, Release 2.4.2

server. You must run the command against the admin database. The command has the following prototype
format:

{ replSetGetStatus: 1 }

However, you can also run this command from the shell like so:

rs.status()

See Also:

“Replica Set Status Reference (page 446)” and “Replica Set Fundamental Concepts (page 367)“

replSetInitiate
The replSetInitiate (page 865) command initializes a new replica set. Use the following syntax:

{ replSetInitiate : <config_document> }

The <config_document> is a document that specifies the replica set’s configuration. For instance, here’s a
config document for creating a simple 3-member replica set:

{
_id : <setname>,
members : [

{_id : 0, host : <host0>},
{_id : 1, host : <host1>},
{_id : 2, host : <host2>},

]
}

A typical way of running this command is to assign the config document to a variable and then to pass the
document to the rs.initiate() (page 951) helper:

config = {
_id : "my_replica_set",
members : [

{_id : 0, host : "rs1.example.net:27017"},
{_id : 1, host : "rs2.example.net:27017"},
{_id : 2, host : "rs3.example.net", arbiterOnly: true},

]
}

rs.initiate(config)

Notice that omitting the port cause the host to use the default port of 27017. Notice also that you can specify
other options in the config documents such as the arbiterOnly setting in this example.

See Also:

“Replica Set Configuration (page 441),” “Replica Set Administration (page 397),” and “Replica Set Reconfigu-
ration (page 445).”

replSetMaintenance
The replSetMaintenance (page 866) admin command enables or disables the maintenance mode for a
secondary member of a replica set.

The command has the following prototype form:

{ replSetMaintenance: <boolean> }

Consider the following behavior when running the replSetMaintenance (page 866) command:

•You cannot run the command on the Primary.

36.4. Replica Set Commands 455

MongoDB Documentation, Release 2.4.2

•You must run the command against the admin database.

•When enabled replSetMaintenance: 1, the member enters the RECOVERING state. While the
secondary is RECOVERING:

–The member is not accessible for read operations.

–The member continues to sync its oplog from the Primary.

replSetReconfig
The replSetReconfig (page 866) command modifies the configuration of an existing replica set. You can
use this command to add and remove members, and to alter the options set on existing members. Use the
following syntax:

{ replSetReconfig: <new_config_document>, force: false }

You may also run the command using the shell’s rs.reconfig() (page 951) method.

Be aware of the following replSetReconfig (page 866) behaviors:

•You must issue this command against the admin database of the current primary member of the replica
set.

•You can optionally force the replica set to accept the new configuration by specifying force: true.
Use this option if the current member is not primary or if a majority of the members of the set are not
accessible.

Warning: Forcing the replSetReconfig (page 866) command can lead to a rollback situation.
Use with caution.

Use the force option to restore a replica set to new servers with different hostnames. This works even if
the set members already have a copy of the data.

•A majority of the set’s members must be operational for the changes to propagate properly.

•This command can cause downtime as the set renegotiates primary-status. Typically this is 10-20 seconds,
but could be as long as a minute or more. Therefore, you should attempt to reconfigure only during
scheduled maintenance periods.

•In some cases, replSetReconfig (page 866) forces the current primary to step down, initiating an
election for primary among the members of the replica set. When this happens, the set will drop all current
connections.

Note: replSetReconfig (page 866) obtains a special mutually exclusive lock to prevent more than one
replSetReconfig (page 866) operation from occurring at the same time.

replSetSyncFrom
New in version 2.2.

Options

• host – Specifies the name and port number of the replica set member that this member
replicates from. Use the [hostname]:[port] form.

replSetSyncFrom (page 867) allows you to explicitly configure which host the current mongod (page 971)
will poll oplog entries from. This operation may be useful for testing different patterns and in situations where
a set member is not replicating from the host you want. The member to replicate from must be a valid source
for data in the set.

A member cannot replicate from:

456 Chapter 36. Replica Set Reference Material

MongoDB Documentation, Release 2.4.2

•itself.

•an arbiter, because arbiters do not hold data.

•a member that does not build indexes.

•an unreachable member.

•a mongod (page 971) instance that is not a member of the same replica set.

If you attempt to replicate from a member that is more than 10 seconds behind the current member, mongod
(page 971) will return and log a warning, but it still will replicate from the member that is behind.

If you run rs.syncFrom() (page 953) during initial sync, MongoDB produces no error messages, but the
sync target will not change until after the initial sync operation.

The command has the following prototype form:

{ replSetSyncFrom: "[hostname]:[port]" }

To run the command in the mongo (page 984) shell, use the following invocation:

db.adminCommand({ replSetSyncFrom: "[hostname]:[port]" })

You may also use the rs.syncFrom() (page 953) helper in the mongo (page 984) shell, in an operation with
the following form:

rs.syncFrom("[hostname]:[port]")

Note: replSetSyncFrom (page 867) and rs.syncFrom() (page 953) provide a temporary override of
default behavior. If:

•the mongod (page 971) instance restarts,

•the connection to the sync target closes, or

•Changed in version 2.4: The sync target falls more than 30 seconds behind another member of the replica
set;

then, the mongod (page 971) instance will revert to the default sync logic and target.

36.5 Replica Set Features and Version Compatibility

Note: This table is for archival purposes and does not list all features of replica sets. Always use the latest stable
release of MongoDB in production deployments.

Features Version
Slave Delay 1.6.3
Hidden 1.7
replSetFreeze (page 864) and replSetStepDown (page 867) 1.7.3
Replicated ops in mongostat (page 1011) 1.7.3
Syncing from Secondaries 1.8.0
Authentication 1.8.0
Replication from Nearest Server (by ping Time) 2.0
replSetSyncFrom (page 867) support for replicating from specific members. 2.2

Additionally:

36.5. Replica Set Features and Version Compatibility 457

MongoDB Documentation, Release 2.4.2

• 1.8-series secondaries can replicate from 1.6-series primaries.

• 1.6-series secondaries cannot replicate from 1.8-series primaries.

458 Chapter 36. Replica Set Reference Material

Part IX

Sharding

459

MongoDB Documentation, Release 2.4.2

Sharding distributes a single logical database system across a cluster of machines.

461

MongoDB Documentation, Release 2.4.2

462

CHAPTER 37

Sharding Concepts

37.1 Sharded Cluster Overview

Sharding is MongoDB’s approach to scaling out. Sharding partitions a collection and stores the different portions on
different machines. When a database’s collections become too large for existing storage, you need only add a new
machine. Sharding automatically distributes collection data to the new server.

Sharding automatically balances data and load across machines. Sharding provides additional write capacity by dis-
tributing the write load over a number of mongod (page 971) instances. Sharding allows users to increase the potential
amount of data in the working set.

37.1.1 Sharding

Sharding occurs within a sharded cluster. A sharded cluster consists of the following components:

• Shards. A shard is a container that holds a subset of a collection’s data. Each shard is either a single mongod
(page 971) instance or a replica set. In production, all shards should be replica sets.

Applications do not access shards directly but instead access mongos instances (page 468).

• Config servers. Each config server (page 478) is a mongod (page 971) instance that holds metadata about the
cluster. The metadata maps chunks to shards.

• mongos instances. The mongos instances (page 468) route the reads and writes from applications to the shards.
Applications do not access the shards directly.

Within a sharded cluster, you enable sharding on a per-database basis. When you enable sharding on a database,
MongoDB distributes the collections across the shards. MongoDB does not yet distribute data within a collection.

After enabling sharding for a database, you choose which collections to shard. For each sharded collection, you specify
a shard key.

To set up a sharded cluster, see Deploy a Sharded Cluster (page 481).

37.1.2 Shard Keys

The shard key determines the distribution of the collection’s documents among the cluster’s shards. The shard key is
a field that exists in every document in the collection. MongoDB distributes documents according to ranges of values

463

MongoDB Documentation, Release 2.4.2

in the shard key. A given shard holds documents for which the shard key falls within a specific range of values. Shard
keys, like indexes, can be either a single field or multiple fields.

Within a shard, MongoDB further partitions documents into chunks. Each chunk represents a smaller range of values
within the shard’s range. When a chunk grows beyond the chunk size (page 476), MongoDB splits the chunk into
smaller chunks, always based on ranges in the shard key.

To select a shard key, see Select a Shard Key (page 485).

37.1.3 Hashed Sharding

New in version 2.4. Hashed shard keys (page 474) use a hashed index (page 324) of a single field as the shard key to
partition data across your sharded cluster.

The field you choose as your hashed shard key should have a good cardinality, or large number of different values.
Hashed keys work well with fields that increase monotonically like ObjectId values or timestamps.

If you shard an empty collection using a hashed shard key, MongoDB will automatically create and migrate
chunks so that each shard has two chunks. You can control how many chunks MongoDB will create with the
numInitialChunks parameter to shardCollection (page 870) or by manually creating chunks on the empty
collection using the split (page 872) command.

To shard a collection using a hashed shard key, see Hashed Sharding (page 485).

37.1.4 Shard Balancing

Balancing is the process MongoDB uses to redistribute data within a sharded cluster. When a shard has too many
chunks when compared to other shards, MongoDB automatically balances the shards. MongoDB balances the shards
without intervention from the application layer.

The balancing process attempts to minimize the impact that balancing can have on the cluster, by:

• Moving only one chunk at a time.

• Initiating a balancing round only when the difference in the number of chunks between the shard with the
greatest number and the shard with the lowest exceeds the migration threshold (page 475).

You may disable the balancer on a temporary basis for maintenance and limit the window during which it runs to
prevent the balancing process from impacting production traffic.

To disable the balancer, see Disable the Balancer (page 507).

See Also:

Manage Sharded Cluster Balancer (page 505).

Note: The balancing procedure for sharded clusters is entirely transparent to the user and application layer. This
documentation is only included for your edification and possible troubleshooting purposes.

37.1.5 When to Use Sharding

While sharding is a powerful and compelling feature, it comes with significant infrastructure requirements and some
limited complexity costs. As a result, use sharding only as necessary and when indicated by actual operational re-
quirements.

You should consider deploying a sharded cluster if:

464 Chapter 37. Sharding Concepts

MongoDB Documentation, Release 2.4.2

• your data set approaches or exceeds the storage capacity of a single node in your system.

• the size of your system’s active working set will soon exceed the capacity of the maximum amount of RAM for
your system.

• your system has a large amount of write activity, a single MongoDB instance cannot write data fast enough to
meet demand, and all other approaches have not reduced contention.

If these attributes are not present in your system, sharding will only add additional complexity to your sys-
tem without providing much benefit. When designing your data model, if you will eventually need a
sharded cluster, consider which collections you will want to shard and the corresponding shard keys.

Warning: It takes time and resources to deploy sharding, and if your system has already reached or exceeded its
capacity, you will have a difficult time deploying sharding without impacting your application.
As a result, if you think you will need to partition your database in the future, do not wait until your system is
overcapacity to enable sharding.

For information on requirements, see the following:

• Infrastructure Requirements for Sharded Clusters (page 465)

• Data Quantity Requirements for Sharded Clusters (page 466)

37.2 Sharded Cluster Architectures

This document describes requirements, organization and design of sharded cluster deployments.

37.2.1 Infrastructure Requirements for Sharded Clusters

A sharded cluster has the following components:

• Three config servers.

These special mongod (page 971) instances store the metadata for the cluster. The mongos (page 981) in-
stances cache this data and use it to determine which shard is responsible for which chunk.

For development and testing purposes you may deploy a cluster with a single configuration server process, but
always use exactly three config servers for redundancy and safety in production.

• Two or more shards. Each shard consists of one or more mongod (page 971) instances that store the data for
the shard.

These “normal” mongod (page 971) instances hold all of the actual data for the cluster.

Typically each shard is a replica sets. Each replica set consists of multiple mongod (page 971) instances. The
members of the replica set provide redundancy and high availability for the data in each shard.

Warning: MongoDB enables data partitioning, or sharding, on a per collection basis. You must access all
data in a sharded cluster via the mongos (page 981) instances as below. If you connect directly to a mongod
(page 971) in a sharded cluster you will see its fraction of the cluster’s data. The data on any given shard
may be somewhat random: MongoDB provides no guarantee that any two contiguous chunks will reside on
a single shard.

• One or more mongos (page 981) instances.

These instance direct queries from the application layer to the shards that hold the data. The mongos (page 981)
instances have no persistent state or data files and only cache metadata in RAM from the config servers.

37.2. Sharded Cluster Architectures 465

MongoDB Documentation, Release 2.4.2

Note: In most situations mongos (page 981) instances use minimal resources, and you can run them on your
application servers without impacting application performance. However, if you use the aggregation framework
some processing may occur on the mongos (page 981) instances, causing that mongos (page 981) to require
more system resources.

37.2.2 Data Quantity Requirements for Sharded Clusters

Your cluster must manage a significant quantity of data for sharding to have an effect on your collection. The default
chunk size is 64 megabytes, and the balancer (page 464) will not begin moving data until the imbalance of chunks in
the cluster exceeds the migration threshold (page 475).

Practically, this means that unless your cluster has many hundreds of megabytes of data, chunks will remain on a
single shard.

While there are some exceptional situations where you may need to shard a small collection of data, most of the time
the additional complexity added by sharding the small collection is not worth the additional complexity and overhead
unless you need additional concurrency or capacity for some reason. If you have a small data set, usually a properly
configured single MongoDB instance or replica set will be more than sufficient for your persistence layer needs.

Chunk size is user configurable (page 983). However, the default value is of 64 megabytes is ideal for most
deployments. See the Chunk Size (page 476) section in the Sharded Cluster Internals (page 471) document for more
information.

37.2.3 Restriction on the Use of the localhost Interface

Because all components of a sharded cluster must communicate with each other over the network, there are special
restrictions regarding the use of localhost addresses:

If you use either “localhost” or “127.0.0.1” as the host identifier, then you must use “localhost” or “127.0.0.1”
for all host settings for any MongoDB instances in the cluster. This applies to both the host argument to addShard
(page 807) and the value to the mongos --configdb (page 982) run time option. If you mix localhost addresses
with remote host address, MongoDB will produce errors.

37.2.4 Test Cluster Architecture

You can deploy a very minimal cluster for testing and development. These non-production clusters have the following
components:

• One config server (page 478).

• At least one mongod (page 971) instance (either replica sets or as a standalone node.)

• One mongos (page 981) instance.

Warning: Use the test cluster architecture for testing and development only.

37.2.5 Production Cluster Architecture

In a production cluster, you must ensure that data is redundant and that your systems are highly available. To that end,
a production-level cluster must have the following components:

466 Chapter 37. Sharding Concepts

MongoDB Documentation, Release 2.4.2

• Three config servers (page 478), each residing on a discrete system.

A single sharded cluster must have exclusive use of its config servers (page 478). If you have multiple shards,
you will need to have a group of config servers for each cluster.

• Two or more replica sets to serve as shards. For information on replica sets, see Replication (page 365).

• Two or more mongos (page 981) instances. Typically, you deploy a single mongos (page 981) instance on each
application server. Alternatively, you may deploy several mongos (page 981) nodes and let your application
connect to these via a load balancer.

37.2.6 Sharded and Non-Sharded Data

Sharding operates on the collection level. You can shard multiple collections within a database, or have multiple
databases with sharding enabled. 1 However, in production deployments some databases and collections will use
sharding, while other databases and collections will only reside on a single database instance or replica set (i.e. a
shard.)

Regardless of the data architecture of your sharded cluster, ensure that all queries and operations use the mongos
router to access the data cluster. Use the mongos (page 981) even for operations that do not impact the sharded data.

Every database has a “primary” 2 shard that holds all un-sharded collections in that database. All collections that are
not sharded reside on the primary for their database. Use the movePrimary (page 859) command to change the pri-
mary shard for a database. Use the db.printShardingStatus() (page 943) command or the sh.status()
(page 962) to see an overview of the cluster, which contains information about the chunk and database distribution
within the cluster.

Warning: The movePrimary (page 859) command can be expensive because it copies all non-sharded data to
the new shard, during which that data will be unavailable for other operations.

When you deploy a new sharded cluster, the “first shard” becomes the primary for all databases before enabling
sharding. Databases created subsequently, may reside on any shard in the cluster.

37.2.7 High Availability and MongoDB

A production (page 466) cluster has no single point of failure. This section introduces the availability concerns for
MongoDB deployments and highlights potential failure scenarios and available resolutions:

• Application servers or mongos (page 981) instances become unavailable.

If each application server has its own mongos (page 981) instance, other application servers can continue
access the database. Furthermore, mongos (page 981) instances do not maintain persistent state, and they can
restart and become unavailable without loosing any state or data. When a mongos (page 981) instance starts, it
retrieves a copy of the config database and can begin routing queries.

• A single mongod (page 971) becomes unavailable in a shard.

Replica sets (page 365) provide high availability for shards. If the unavailable mongod (page 971) is a primary,
then the replica set will elect (page 369) a new primary. If the unavailable mongod (page 971) is a secondary,
and it disconnects the primary and secondary will continue to hold all data. In a three member replica set, even
if a single member of the set experiences catastrophic failure, two other members have full copies of the data. 3

1 As you configure sharding, you will use the enableSharding (page 826) command to enable sharding for a database. This simply makes
it possible to use the shardCollection (page 870) command on a collection within that database.

2 The term “primary” in the context of databases and sharding, has nothing to do with the term primary in the context of replica sets.
3 If an unavailable secondary becomes available while it still has current oplog entries, it can catch up to the latest state of the set using the

normal replication process, otherwise it must perform an initial sync.

37.2. Sharded Cluster Architectures 467

MongoDB Documentation, Release 2.4.2

Always investigate availability interruptions and failures. If a system is unrecoverable, replace it and create a
new member of the replica set as soon as possible to replace the lost redundancy.

• All members of a replica set become unavailable.

If all members of a replica set within a shard are unavailable, all data held in on that shard is unavailable.
However, the data on all other shards will remain available, and it’s possible to read and write data to the other
shards. However, your application must be able to deal with partial results, and you should investigate the cause
of the interruption and attempt to recover the shard as soon as possible.

• One or two config database become unavailable.

Three distinct mongod (page 971) instances provide the config database using a special two-phase commits
to maintain consistent state between these mongod (page 971) instances. Cluster operation will continue as
normal but chunk migration (page 464) and the cluster can create no new chunk splits (page 499). Replace the
config server as soon as possible. If all multiple config databases become unavailable, the cluster can become
inoperable.

Note: All config servers must be running and available when you first initiate a sharded cluster.

37.3 Query Routing in Sharded Clusters

MongoDB provides the mongos (page 981) program to handle query routing in a sharded cluster.

37.3.1 mongos Operational Overview

The mongos (page 981) program provides a single unified interface to a sharded cluster. An application does not
access shards (i.e. the mongod (page 971) instances) directly but instead accesses the mongos (page 981). The
mongos (page 981) routes queries and returns results.

The mongos (page 981) keeps track of what data is on which shard by caching that information as metadata on
the config servers (page 478). The mongos (page 981) uses the metadata to route operations from applications and
clients to the mongod (page 971) instances. A mongos (page 981) has no persistent state and consume minimal
system resources.

The most common practice is to run mongos (page 981) instances on the same systems as your application servers,
but you can maintain mongos (page 981) instances on the shards or on other dedicated resources.

Note: Changed in version 2.1. Some aggregation operations using the aggregate (page 809) command (i.e.
db.collection.aggregate() (page 903),) will cause mongos (page 981) instances to require more CPU
resources than in previous versions. This modified performance profile may dictate alternate architecture decisions if
you use the aggregation framework extensively in a sharded environment.

37.3.2 Broadcast Operations vs Targeted Operations

In general, operations in a sharded environment are either:

• Broadcast to all shards in the cluster that hold documents in a collection

• Targeted at a single shard or a limited group of shards, based on the shard key

For best performance, use targeted operations whenever possible. While some operations must broadcast to all shards,
you can ensure MongoDB uses targeted operations whenever possible by always including the shard key.

468 Chapter 37. Sharding Concepts

MongoDB Documentation, Release 2.4.2

Broadcast Operations

A query operation is broadcast to all shards 4 unless the mongos (page 981) can determine which shard or shard
stores this data.

Multi-update operations are always broadcast operations.

The remove() (page 928) operation is always a broadcast operation, unless the operation specifies the shard key in
full.

Targeted Operations

All insert() (page 920) operations target to one shard.

All single update() (page 932) operations target to one shard. This includes upsert operations.

For queries that include the shard key, mongos (page 981) can target the query at a specific shard or set of shards.
This is the case only if the portion of the shard key included in the query is a prefix of the shard key. For example, if
the shard key is:

{ a: 1, b: 1, c: 1 }

The mongos (page 981) program can route queries that include the full shard key or either of the following shard key
prefixes at a specific shard or set of shards:

{ a: 1 }
{ a: 1, b: 1 }

Depending on the distribution of data in the cluster and the selectivity of the query, mongos (page 981) may still have
to contact multiple shards 5 to fulfill these queries.

37.3.3 mongos Query Routing

A mongos (page 981) instance uses the following process to route a query to a cluster. The mongos (page 981):

1. Determines the list of shards that must receive the query.

2. Establishes a cursor on all targeted shards.

The following topics describe the process in more detail.

mongos Determines which Shards Receive a Query

In some cases, when the shard key or a prefix of the shard key is a part of the query, the mongos (page 981) can route
the query to a subset of the shards. Otherwise, the mongos (page 981) must direct the query to all shards that hold
documents for that collection.

Example

Given the following shard key:

{ zipcode: 1, u_id: 1, c_date: 1 }

Depending on the distribution of chunks in the cluster, the mongos (page 981) may be able to target the query at a
subset of shards, if the query contains the following fields:

4 If a shard does not store chunks from a given collection, queries for documents in that collection are not broadcast to that shard.
5 mongos (page 981) will route some queries, even some that include the shard key, to all shards, if needed.

37.3. Query Routing in Sharded Clusters 469

MongoDB Documentation, Release 2.4.2

{ zipcode: 1 }
{ zipcode: 1, u_id: 1 }
{ zipcode: 1, u_id: 1, c_date: 1 }

mongos Establishes a Cursor on Targeted Shards

When the first batch of results returns from the cursors:

For query with sorted results (i.e. using cursor.sort() (page 900)) the mongos (page 981) instance performs a
merge sort of all queries.

For a query with unsorted results, the mongos (page 981) instance returns a result cursor that “round robins” results
from all cursors on the shards. Changed in version 2.0.5: Before 2.0.5, the mongos (page 981) exhausted each cursor,
one by one.

37.4 Security Practices for Sharded Clusters

MongoDB controls access to sharded clusters with key files that store authentication credentials. The components of
sharded clusters use the secret stored in the key files when authenticating to each other. Create key files and then point
your mongos (page 981) and mongod (page 971) instances to the files, as described later in this section.

Beyond the auth (page 1029) mechanisms described in this section, always run your sharded clusters in trusted
networking environments that limit access to the cluster with network rules. Your networking environments should
enforce restrictions that ensure only known traffic reaches your mongos (page 981) and mongod (page 971) instances.

This section describes authentication specific to sharded clusters. For information on authentication across MongoDB,
see Authentication (page 128).

37.4.1 Access Control Privileges in Sharded Clusters

In sharded clusters, MongoDB provides separate administrative privileges for the sharded cluster and for each shard.
Beyond these administration privileges, privileges for sharded cluster deployments are functionally the same as any
other MongoDB deployment. See, Authentication (page 128) for more information.

For sharded clusters, MongoDB provides these separate administrative privileges:

• Administrative privileges for the sharded cluster. These privileges provide read-and-write access to the config
servers’ ‘admin. These users can run all administrative commands. Administrative privileges also give the user
read-and-write access to all the cluster’s databases.

The credentials for administrative privileges on the cluster reside on the config servers. To receive admin access
to the cluster, you must authenticate a session while connected to a mongos (page 981) instance using the
admin database.

• Administrative privileges for the mongod (page 971) instance, or replica set, that provides each individual
shard. Each shard has its own admin database that stores administrative credentials and access for that shard
only. These credentials are completely distinct from the cluster-wide administrative credentials.

For more information on privileges, see Authentication (page 128).

470 Chapter 37. Sharding Concepts

MongoDB Documentation, Release 2.4.2

37.4.2 Access a Sharded Cluster with Authentication

To access a sharded cluster as an authenticated user, use the appropriate authentication options in mongo (page 984).

To access a sharded cluster as an authenticated, non-admin user, see either of the following:

• authenticate (page 810)

• db.auth() (page 902)

To terminate an authenticated session, see the logout (page 850) command.

37.5 Sharded Cluster Internals

This document introduces lower level sharding concepts for users who are familiar with sharding generally and want
to learn more about the internals. This document provides a more detailed understanding of your cluster’s behavior.
For higher level sharding concepts, see Sharded Cluster Overview (page 463). For complete documentation of sharded
clusters see the Sharding (page 461) section of this manual.

37.5.1 Shard Keys

Shard keys are the field in a collection that MongoDB uses to distribute documents within a sharded cluster. See the
overview of shard keys (page 463) for an introduction to these topics.

Cardinality

Cardinality in the context of MongoDB, refers to the ability of the system to partition data into chunks. For example,
consider a collection of data such as an “address book” that stores address records:

• Consider the use of a state field as a shard key:

The state key’s value holds the US state for a given address document. This field has a low cardinality as all
documents that have the same value in the state field must reside on the same shard, even if a particular state’s
chunk exceeds the maximum chunk size.

Since there are a limited number of possible values for the state field, MongoDB may distribute data unevenly
among a small number of fixed chunks. This may have a number of effects:

– If MongoDB cannot split a chunk because all of its documents have the same shard key, migrations involv-
ing these un-splitable chunks will take longer than other migrations, and it will be more difficult for your
data to stay balanced.

– If you have a fixed maximum number of chunks, you will never be able to use more than that number of
shards for this collection.

• Consider the use of a zipcode field as a shard key:

While this field has a large number of possible values, and thus has potentially higher cardinality, it’s possible
that a large number of users could have the same value for the shard key, which would make this chunk of users
un-splitable.

In these cases, cardinality depends on the data. If your address book stores records for a geographically dis-
tributed contact list (e.g. “Dry cleaning businesses in America,”) then a value like zipcode would be sufficient.
However, if your address book is more geographically concentrated (e.g “ice cream stores in Boston Mas-
sachusetts,”) then you may have a much lower cardinality.

37.5. Sharded Cluster Internals 471

MongoDB Documentation, Release 2.4.2

• Consider the use of a phone-number field as a shard key:

Phone number has a high cardinality, because users will generally have a unique value for this field, MongoDB
will be able to split as many chunks as needed.

While “high cardinality,” is necessary for ensuring an even distribution of data, having a high cardinality does not
guarantee sufficient query isolation (page 472) or appropriate write scaling (page 472). Please continue reading for
more information on these topics.

Write Scaling

Some possible shard keys will allow your application to take advantage of the increased write capacity that the cluster
can provide, while others do not. Consider the following example where you shard by the values of the default _id
field, which is ObjectID.

ObjectID is computed upon document creation, that is a unique identifier for the object. However, the most signif-
icant bits of data in this value represent a time stamp, which means that they increment in a regular and predictable
pattern. Even though this value has high cardinality (page 471), when using this, any date, or other monotonically
increasing number as the shard key, all insert operations will be storing data into a single chunk, and therefore, a single
shard. As a result, the write capacity of this shard will define the effective write capacity of the cluster.

A shard key that increases monotonically will not hinder performance if you have a very low insert rate, or if most
of your write operations are update() (page 932) operations distributed through your entire data set. Generally,
choose shard keys that have both high cardinality and will distribute write operations across the entire cluster.

Typically, a computed shard key that has some amount of “randomness,” such as ones that include a cryptographic
hash (i.e. MD5 or SHA1) of other content in the document, will allow the cluster to scale write operations. However,
random shard keys do not typically provide query isolation (page 472), which is another important characteristic of
shard keys.

Querying

The mongos (page 981) provides an interface for applications to interact with sharded clusters that hides the com-
plexity of data partitioning. A mongos (page 981) receives queries from applications, and uses metadata from the
config server (page 478), to route queries to the mongod (page 971) instances with the appropriate data. While the
mongos (page 981) succeeds in making all querying operational in sharded environments, the shard key you select
can have a profound affect on query performance.

See Also:

The mongos and Sharding (page 468) and config server (page 478) sections for a more general overview of querying
in sharded environments.

Query Isolation

The fastest queries in a sharded environment are those that mongos (page 981) will route to a single shard, using the
shard key and the cluster meta data from the config server (page 478). For queries that don’t include the shard key,
mongos (page 981) must query all shards, wait for their response and then return the result to the application. These
“scatter/gather” queries can be long running operations.

If your query includes the first component of a compound shard key 6, the mongos (page 981) can route the query
directly to a single shard, or a small number of shards, which provides better performance. Even if you query values
of the shard key reside in different chunks, the mongos (page 981) will route queries directly to specific shards.

6 In many ways, you can think of the shard key a cluster-wide unique index. However, be aware that sharded systems cannot enforce cluster-wide
unique indexes unless the unique field is in the shard key. Consider the Indexing Overview (page 303) page for more information on indexes and
compound indexes.

472 Chapter 37. Sharding Concepts

MongoDB Documentation, Release 2.4.2

To select a shard key for a collection:

• determine the most commonly included fields in queries for a given application

• find which of these operations are most performance dependent.

If this field has low cardinality (i.e not sufficiently selective) you should add a second field to the shard key making a
compound shard key. The data may become more splitable with a compound shard key.

See Also:

mongos Operational Overview (page 468) for more information on query operations in the context of sharded clusters.
Specifically the mongos Operational Overview (page 468) sub-section outlines the procedure that mongos (page 981)
uses to route read operations to the shards.

Sorting

In sharded systems, the mongos (page 981) performs a merge-sort of all sorted query results from the shards. See the
sharded query routing (page 468) and Use Indexes to Sort Query Results (page 317) sections for more information.

Operations and Reliability

The most important consideration when choosing a shard key are:

• to ensure that MongoDB will be able to distribute data evenly among shards, and

• to scale writes across the cluster, and

• to ensure that mongos (page 981) can isolate most queries to a specific mongod (page 971).

Furthermore:

• Each shard should be a replica set, if a specific mongod (page 971) instance fails, the replica set members will
elect another to be primary and continue operation. However, if an entire shard is unreachable or fails for some
reason, that data will be unavailable.

• If the shard key allows the mongos (page 981) to isolate most operations to a single shard, then the failure of a
single shard will only render some data unavailable.

• If your shard key distributes data required for every operation throughout the cluster, then the failure of the entire
shard will render the entire cluster unavailable.

In essence, this concern for reliability simply underscores the importance of choosing a shard key that isolates query
operations to a single shard.

Choosing a Shard Key

For many data sets, there may be no single, naturally occurring key in your collection that possesses all of the qualities
of a good shard key. For these cases, you may select one of the following strategies:

1. Compute a more ideal shard key in your application layer, and store this in all of your documents, potentially in
the _id field.

2. Use a compound shard key that uses two or three values from all documents that provide the right mix of
cardinality with scalable write operations and query isolation.

3. Determine that the impact of using a less than ideal shard key, is insignificant in your use case given:

• limited write volume,

• expected data size, or

37.5. Sharded Cluster Internals 473

MongoDB Documentation, Release 2.4.2

• query patterns and demands.

4. New in version 2.4: Use a hashed shard key. With a hashed shard key, you can choose a field that has high
cardinality and create a hashed indexes (page 324) index on that field. MongoDB then uses the values of this
hashed index as the shard key values, thus ensuring an even distribution across the shards.

From a decision making stand point, begin by finding the field that will provide the required query isolation (page 472),
ensure that writes will scale across the cluster (page 472), and then add an additional field to provide additional
cardinality (page 471) if your primary key does not have sufficient split-ability.

Shard Key Indexes

All sharded collections must have an index that starts with the shard key. If you shard a collection that does not yet
contain documents and without such an index, the shardCollection (page 870) command will create an index
on the shard key. If the collection already contains documents, you must create an appropriate index before using
shardCollection (page 870). Changed in version 2.2: The index on the shard key no longer needs to be identical
to the shard key. This index can be an index of the shard key itself as before, or a compound index where the shard key
is the prefix of the index. This index cannot be a multikey index. If you have a collection named people, sharded
using the field { zipcode: 1 }, and you want to replace this with an index on the field { zipcode: 1,
username: 1 }, then:

1. Create an index on { zipcode: 1, username: 1 }:

db.people.ensureIndex({ zipcode: 1, username: 1 });

2. When MongoDB finishes building the index, you can safely drop existing index on { zipcode: 1 }:

db.people.dropIndex({ zipcode: 1 });

Warning: The index on the shard key cannot be a multikey index.
As above, an index on { zipcode: 1, username: 1 } can only replace an index on zipcode if there
are no array values for the username field.
If you drop the last appropriate index for the shard key, recover by recreating a index on just the shard key.

Hashed Shard Keys

New in version 2.4. Hashed shard keys use a special hashed index type (page 309) to store hashes of the shard key
field to partition data in a cluster.

Use hashed shard keys when you want to shard using a field that increases monotonically, like an ObjectId, or has high
cardinality but uneven distribution.

Example

A hashed index on an ObjectId will lead to an even distribution of documents across all shards since the hash of two
sequential documents will have different hashes.

Note: Hash-based sharding does not support tag-aware sharding.

Warning: hashed indexes truncate floating point numbers to 64-bit integers before hashing. For example,
a hashed index would store the same value for a field that held a value of 2.3, 2.2 and 2.9. To prevent
collisions, do not use a hashed index for floating point numbers that cannot be consistently converted to 64-bit
integers (and then back to floating point.) hashed indexes do not support floating point values larger than 253.

474 Chapter 37. Sharding Concepts

MongoDB Documentation, Release 2.4.2

37.5.2 Cluster Balancer

The balancer (page 464) sub-process is responsible for redistributing chunks evenly among the shards and ensuring
that each member of the cluster is responsible for the same volume of data. This section contains complete docu-
mentation of the balancer process and operations. For a higher level introduction see the Shard Balancing (page 464)
section.

Balancing Internals

A balancing round originates from an arbitrary mongos (page 981) instance from one of the cluster’s mongos
(page 981) instances. When a balancer process is active, the responsible mongos (page 981) acquires a “lock”
by modifying a document in the lock collection in the Config Database Contents (page 1093).

By default, the balancer process is always running. When the number of chunks in a collection is unevenly distributed
among the shards, the balancer begins migrating chunks from shards with more chunks to shards with a fewer number
of chunks. The balancer will continue migrating chunks, one at a time, until the data is evenly distributed among the
shards.

While these automatic chunk migrations are crucial for distributing data, they carry some overhead in terms of band-
width and workload, both of which can impact database performance. As a result, MongoDB attempts to minimize
the effect of balancing by only migrating chunks when the distribution of chunks passes the migration thresholds
(page 475).

The migration process ensures consistency and maximizes availability of chunks during balancing: when MongoDB
begins migrating a chunk, the database begins copying the data to the new server and tracks incoming write operations.
After migrating chunks, the “from” mongod (page 971) sends all new writes to the “receiving” server. Finally,
mongos (page 981) updates the chunk record in the config database to reflect the new location of the chunk.

Note: Changed in version 2.0: Before MongoDB version 2.0, large differences in timekeeping (i.e. clock skew)
between mongos (page 981) instances could lead to failed distributed locks, which carries the possibility of data loss,
particularly with skews larger than 5 minutes. Always use the network time protocol (NTP) by running ntpd on your
servers to minimize clock skew.

Migration Thresholds

Changed in version 2.2: The following thresholds appear first in 2.2; prior to this release, balancing would only
commence if the shard with the most chunks had 8 more chunks than the shard with the least number of chunks. In
order to minimize the impact of balancing on the cluster, the balancer will not begin balancing until the distribution of
chunks has reached certain thresholds. These thresholds apply to the difference in number of chunks between the shard
with the greatest number of chunks and the shard with the least number of chunks. The balancer has the following
thresholds:

Number of Chunks Migration Threshold
Less than 20 2
21-80 4
Greater than 80 8

Once a balancing round starts, the balancer will not stop until the difference between the number of chunks on any
two shards is less than two.

Note: You can restrict the balancer so that it only operates between specific start and end times. See Schedule the
Balancing Window (page 506) for more information.

37.5. Sharded Cluster Internals 475

MongoDB Documentation, Release 2.4.2

The specification of the balancing window is relative to the local time zone of all individual mongos (page 981)
instances in the sharded cluster.

Chunk Size

The default chunk size in MongoDB is 64 megabytes.

When chunks grow beyond the specified chunk size (page 476) a mongos (page 981) instance will split the chunk
in half. This will eventually lead to migrations, when chunks become unevenly distributed among the cluster. The
mongos (page 981) instances will initiate a round of migrations to redistribute data in the cluster.

Chunk size is arbitrary and must account for the following:

1. Small chunks lead to a more even distribution of data at the expense of more frequent migrations, which creates
expense at the query routing (mongos (page 981)) layer.

2. Large chunks lead to fewer migrations, which is more efficient both from the networking perspective and in
terms internal overhead at the query routing layer. Large chunks produce these efficiencies at the expense of a
potentially more uneven distribution of data.

For many deployments it makes sense to avoid frequent and potentially spurious migrations at the expense of a slightly
less evenly distributed data set, but this value is configurable (page 501). Be aware of the following limitations when
modifying chunk size:

• Automatic splitting only occurs when inserting documents or updating existing documents; if you lower the
chunk size it may take time for all chunks to split to the new size.

• Splits cannot be “undone:” if you increase the chunk size, existing chunks must grow through insertion or
updates until they reach the new size.

Note: Chunk ranges are inclusive of the lower boundary and exclusive of the upper boundary.

Shard Size

By default, MongoDB will attempt to fill all available disk space with data on every shard as the data set grows.
Monitor disk utilization in addition to other performance metrics, to ensure that the cluster always has capacity to
accommodate additional data.

You can also configure a “maximum size” for any shard when you add the shard using the maxSize parameter of the
addShard (page 807) command. This will prevent the balancer from migrating chunks to the shard when the value
of mapped (page 1057) exceeds the maxSize setting.

See Also:

Change the Maximum Storage Size for a Given Shard (page 504) and Monitoring for MongoDB (page 87).

Chunk Migration

MongoDB migrates chunks in a sharded cluster to distribute data evenly among shards. Migrations may be either:

• Manual. In these migrations you must specify the chunk that you want to migrate and the destination shard.
Only migrate chunks manually after initiating sharding, to distribute data during bulk inserts, or if the cluster
becomes uneven. See Migrating Chunks (page 502) for more details.

• Automatic. The balancer process handles most migrations when distribution of chunks between shards becomes
uneven. See Migration Thresholds (page 475) for more details.

476 Chapter 37. Sharding Concepts

MongoDB Documentation, Release 2.4.2

All chunk migrations use the following procedure:

1. The balancer process sends the moveChunk (page 858) command to the source shard for the chunk. In this
operation the balancer passes the name of the destination shard to the source shard.

2. The source initiates the move with an internal moveChunk (page 858) command with the destination shard.

3. The destination shard begins requesting documents in the chunk, and begins receiving these chunks.

4. After receiving the final document in the chunk, the destination shard initiates a synchronization process to
ensure that all changes to the documents in the chunk on the source shard during the migration process exist on
the destination shard.

When fully synchronized, the destination shard connects to the config database and updates the chunk location
in the cluster metadata. After completing this operation, once there are no open cursors on the chunk, the source
shard starts deleting its copy of documents from the migrated chunk.

If enabled, the _secondaryThrottle setting causes the balancer to wait for replication to secondaries. For more
information, see Require Replication before Chunk Migration (Secondary Throttle) (page 505).

Detect Connections to mongos Instances

If your application must detect if the MongoDB instance its connected to is mongos (page 981), use the isMaster
(page 847) command. When a client connects to a mongos (page 981), isMaster (page 847) returns a document
with a msg field that holds the string isdbgrid. For example:

{
"ismaster" : true,
"msg" : "isdbgrid",
"maxBsonObjectSize" : 16777216,
"ok" : 1

}

If the application is instead connected to a mongod (page 971), the returned document does not include the
isdbgrid string.

37.5.3 Sharded Cluster Metadata

Sharded cluster metadata is contained in the Config Database Contents (page 1093) and comprises information about
the sharded cluster’s partitioned data sets. The config database stores the relationship between chunks and where they
reside within a sharded cluster. Without a config database, the mongos (page 981) instances would be unable to route
queries or write operations within the cluster.

Config Database

The config database contains information about your sharding configuration and stores the information in a set of
collections used by sharding.

Important: Back up the config database before performing any maintenance on the config server.

To access the config database, issue the following command from the mongo (page 984) shell:

use config

In general, you should never manipulate the content of the config database directly. The config database contains
the following collections:

37.5. Sharded Cluster Internals 477

MongoDB Documentation, Release 2.4.2

• changelog (page 1093)

• chunks (page 1095)

• collections (page 1095)

• databases (page 1096)

• lockpings (page 1096)

• locks (page 1096)

• mongos (page 1097)

• settings (page 1097)

• shards (page 1097)

• version (page 1098)

See Config Database Contents (page 1093) for full documentation of these collections and their role in sharded clus-
ters.

Config Servers

Config servers are special mongod (page 971) instances that maintain the sharded cluster metadata in the config
database. A sharded cluster operates with a group of three config servers that use a two-phase commit process that
ensures immediate consistency and reliability. Config servers do not run as replica sets.

For testing purposes you may deploy a cluster with a single config server, but this is not recommended for production.

All config servers must be available on initial setup of a sharded cluster. Each mongos (page 981) instance must be
able to write to the config.version collection.

Warning: If your cluster has a single config server, this mongod (page 971) is a single point of failure. If the
instance is inaccessible the cluster is not accessible. If you cannot recover the data on a config server, the cluster
will be inoperable.
Always use three config servers for production deployments.

Read and Write Operations on Config Servers

The load on configuration servers is small because each mongos (page 981) instance maintains a cached copy of the
configuration database. MongoDB only writes data to the config server to:

• create splits in existing chunks, which happens as data in existing chunks exceeds the maximum chunk size.

• migrate a chunk between shards.

If one or two configuration instances become unavailable, the cluster’s metadata becomes read only. It is still possible
to read and write data from the shards, but no chunk migrations or splits will occur until all three servers are accessible.
At the same time, config server data is only read in the following situations:

• A new mongos (page 981) starts for the first time, or an existing mongos (page 981) restarts.

• After a chunk migration, the mongos (page 981) instances update themselves with the new cluster metadata.

If all three config servers are inaccessible, you can continue to use the cluster as long as you don’t restart the mongos
(page 981) instances until after config servers are accessible again. If you restart the mongos (page 981) instances and
there are no accessible config servers, the mongos (page 981) would be unable to direct queries or write operations
to the cluster.

478 Chapter 37. Sharding Concepts

MongoDB Documentation, Release 2.4.2

Because the configuration data is small relative to the amount of data stored in a cluster, the amount of activity is
relatively low, and 100% up time is not required for a functioning sharded cluster. As a result, backing up the config
servers is not difficult. Backups of config servers are critical as clusters become totally inoperable when you lose all
configuration instances and data. Precautions to ensure that the config servers remain available and intact are critical.

Note: Configuration servers store metadata for a single sharded cluster. You must have a separate configuration server
or servers for each cluster you administer.

37.5. Sharded Cluster Internals 479

MongoDB Documentation, Release 2.4.2

480 Chapter 37. Sharding Concepts

CHAPTER 38

Administration

The following document provides a list of tutorials for administering sharded clusters.

38.1 Sharded Cluster Administration

The following tutorials provide instructions for administering sharded clusters. For conceptual topics, see Sharding
(page 461).

38.1.1 Deploy Sharded Clusters

Deploy a Sharded Cluster

The topics on this page present an ordered sequence of the tasks required to set up a sharded cluster. Before deploying a
sharded cluster for the first time, consider the Sharded Cluster Overview (page 463) and Sharded Cluster Architectures
(page 465) documents.

To set up a sharded cluster, complete the following sequence of tasks in the order defined below:

1. Start the Config Server Database Instances (page 482)

2. Start the mongos Instances (page 482)

3. Add Shards to the Cluster (page 483)

4. Enable Sharding for a Database (page 483)

5. Enable Sharding for a Collection (page 484)

Warning: Sharding and “localhost” Addresses
If you use either “localhost” or 127.0.0.1 as the hostname portion of any host identifier, for example as the
host argument to addShard (page 807) or the value to the --configdb (page 982) run time option, then you
must use “localhost” or 127.0.0.1 for all host settings for any MongoDB instances in the cluster. If you mix
localhost addresses and remote host address, MongoDB will error.

481

MongoDB Documentation, Release 2.4.2

Start the Config Server Database Instances

The config server processes are mongod (page 971) instances that store the cluster’s metadata. You designate a
mongod (page 971) as a config server using the --configsvr (page 978) option. Each config server stores a
complete copy of the cluster’s metadata.

In production deployments, you must deploy exactly three config server instances, each running on different servers
to assure good uptime and data safety. In test environments, you can run all three instances on a single server.

Config server instances receive relatively little traffic and demand only a small portion of system resources. Therefore,
you can run an instance on a system that runs other cluster components.

1. Create data directories for each of the three config server instances. By default, a config server stores its data
files in the /data/configdb directory. You can choose a different location. To create a data directory, issue a
command similar to the following:

mkdir /data/configdb

2. Start the three config server instances. Start each by issuing a command using the following syntax:

mongod --configsvr --dbpath <path> --port <port>

The default port for config servers is 27019. You can specify a different port. The following example starts a
config server using the default port and default data directory:

mongod --configsvr --dbpath /data/configdb --port 27019

For additional command options, see mongod (page 971) or Configuration File Options (page 1026).

Note: All config servers must be running and available when you first initiate a sharded cluster.

Start the mongos Instances

The mongos (page 981) instances are lightweight and do not require data directories. You can run a mongos
(page 981) instance on a system that runs other cluster components, such as on an application server or a server
running a mongod (page 971) process. By default, a mongos (page 981) instance runs on port 27017.

When you start the mongos (page 981) instance, specify the hostnames of the three config servers, either in the
configuration file or as command line parameters. For operational flexibility, use DNS names for the config servers
rather than explicit IP addresses. If you’re not using resolvable hostname, you cannot change the config server names
or IP addresses without a restarting every mongos (page 981) and mongod (page 971) instance.

To start a mongos (page 981) instance, issue a command using the following syntax:

mongos --configdb <config server hostnames>

For example, to start a mongos (page 981) that connects to config server instance running on the following hosts and
on the default ports:

• cfg0.example.net

• cfg1.example.net

• cfg2.example.net

You would issue the following command:

mongos --configdb cfg0.example.net:27019,cfg1.example.net:27019,cfg2.example.net:27019

482 Chapter 38. Administration

MongoDB Documentation, Release 2.4.2

Add Shards to the Cluster

A shard can be a standalone mongod (page 971) or or a replica set. In a production environment, each shard should
be a replica set.

1. From a mongo (page 984) shell, connect to the mongos (page 981) instance. Issue a command using the
following syntax:

mongo --host <hostname of machine running mongos> --port <port mongos listens on>

For example, if a mongos (page 981) is accessible at mongos0.example.net on port 27017, issue the
following command:

mongo --host mongos0.example.net --port 27017

2. Add each shard to the cluster using the sh.addShard() (page 955) method, as shown in the examples below.
Issue sh.addShard() (page 955) separately for each shard. If the shard is a replica set, specify the name of
the replica set and specify a member of the set. In production deployments, all shards should be replica sets.

Optional

You can instead use the addShard (page 807) database command, which lets you specify a name and maximum
size for the shard. If you do not specify these, MongoDB automatically assigns a name and maximum size. To
use the database command, see addShard (page 807).

The following are examples of adding a shard with sh.addShard() (page 955):

• To add a shard for a replica set named rs1 with a member running on port 27017 on
mongodb0.example.net, issue the following command:

sh.addShard("rs1/mongodb0.example.net:27017")

Changed in version 2.0.3. For MongoDB versions prior to 2.0.3, you must specify all members of the
replica set. For example:

sh.addShard("rs1/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017")

• To add a shard for a standalone mongod (page 971) on port 27017 of mongodb0.example.net,
issue the following command:

sh.addShard("mongodb0.example.net:27017")

Note: It might take some time for chunks to migrate to the new shard.

Enable Sharding for a Database

Before you can shard a collection, you must enable sharding for the collection’s database. Enabling sharding for a
database does not redistribute data but make it possible to shard the collections in that database.

Once you enable sharding for a database, MongoDB assigns a primary shard for that database where MongoDB stores
all data before sharding begins.

1. From a mongo (page 984) shell, connect to the mongos (page 981) instance. Issue a command using the
following syntax:

38.1. Sharded Cluster Administration 483

MongoDB Documentation, Release 2.4.2

mongo --host <hostname of machine running mongos> --port <port mongos listens on>

2. Issue the sh.enableSharding() (page 958) method, specifying the name of the database for which to
enable sharding. Use the following syntax:

sh.enableSharding("<database>")

Optionally, you can enable sharding for a database using the enableSharding (page 826) command, which uses
the following syntax:

db.runCommand({ enableSharding: <database> })

Enable Sharding for a Collection

You enable sharding on a per-collection basis.

1. Determine what you will use for the shard key. Your selection of the shard key affects the efficiency of sharding.
See the selection considerations listed in the Select a Shard Key (page 485).

2. If the collection already contains data you must create an index on the shard key using ensureIndex()
(page 907). If the collection is empty then MongoDB will create the index as part of the
sh.shardCollection() (page 961) step.

3. Enable sharding for a collection by issuing the sh.shardCollection() (page 961) method in the mongo
(page 984) shell. The method uses the following syntax:

sh.shardCollection("<database>.<collection>", shard-key-pattern)

Replace the <database>.<collection> string with the full namespace of your database, which consists
of the name of your database, a dot (e.g. .), and the full name of the collection. The shard-key-pattern
represents your shard key, which you specify in the same form as you would an index (page 907) key pattern.

Example

The following sequence of commands shards four collections:

sh.shardCollection("records.people", { "zipcode": 1, "name": 1 })
sh.shardCollection("people.addresses", { "state": 1, "_id": 1 })
sh.shardCollection("assets.chairs", { "type": 1, "_id": 1 })

db.alerts.ensureIndex({ _id : "hashed" })
sh.shardCollection("events.alerts", { "_id": "hashed" })

In order, these operations shard:

(a) The people collection in the records database using the shard key { "zipcode": 1, "name":
1 }.

This shard key distributes documents by the value of the zipcode field. If a number of documents have
the same value for this field, then that chunk will be splitable (page 471) by the values of the name field.

(b) The addresses collection in the people database using the shard key { "state": 1, "_id":
1 }.

This shard key distributes documents by the value of the state field. If a number of documents have the
same value for this field, then that chunk will be splitable (page 471) by the values of the _id field.

484 Chapter 38. Administration

MongoDB Documentation, Release 2.4.2

(c) The chairs collection in the assets database using the shard key { "type": 1, "_id": 1
}.

This shard key distributes documents by the value of the type field. If a number of documents have the
same value for this field, then that chunk will be splitable (page 471) by the values of the _id field.

(d) The alerts collection in the events database using the shard key { "_id": "hashed" }. New
in version 2.4. This shard key distributes documents by a hash of the value of the _id field. MongoDB
computes the hash of the _id field for the hashed index (page 324), which should provide an even distri-
bution of documents across a cluster.

Select a Shard Key

This document gives guidelines for selecting a shard key. Choosing the correct shard key can have a great impact on
the performance, capability, and functioning of your database and cluster. Appropriate shard key choice depends on
the schema of your data and the way that your application queries and writes data to the database.

Use the following guidelines when creating a shard key.

Create a Shard Key that is Easily Divisible

An easily divisible shard key makes it easy for MongoDB to distribute content among the shards. Shard keys that have
a limited number of possible values can result in chunks that are “unsplitable.” See the Cardinality (page 471) section
for more information.

Create a Shard Key that has High Randomness

A shard key with high randomness prevents any single shard from becoming a bottleneck and will distribute write
operations among the cluster.

Conversely, a shard keys that has a high correlation with insert time is a poor choice. For more information, see the
Write Scaling (page 472).

Create a Shard Key that Targets a Single Shard

A shard key that targets a single shard makes it possible for the mongos (page 981) program to return most query
operations directly from a single specific mongod (page 971) instance. Your shard key should be the primary field
used by your queries. Fields with a high degree of “randomness” are poor choices for this reason. For examples, see
Query Isolation (page 472).

Create a Special Purpose or Compound Key

The challenge when selecting a shard key is that there is not always an obvious choice. Often, an existing field in your
collection may not be the optimal key. In those situations, computing a special purpose shard key into an additional
field or using a compound shard key may help produce one that is more ideal.

Hashed Sharding

New in version 2.4. Hashed shard keys (page 474) use a hashed index (page 324) of a single field as the shard key to
partition data across your sharded cluster.

38.1. Sharded Cluster Administration 485

MongoDB Documentation, Release 2.4.2

Procedure

To shard a collection using a hashed shard key, issue an operation in the mongo (page 984) shell that resembles the
following:

sh.shardCollection("records.active", { a: "hashed" })

This operation shards the active collection in the records database, using a hash of the a field as the shard key.

Additional Considerations

The field you choose as your hashed shard key should have a good cardinality, or large number of different values.
Hashed keys work well with fields that increase monotonically like ObjectId values or timestamps.

If you shard an empty collection using a hashed shard key, MongoDB will automatically create and migrate
chunks so that each shard has two chunks. You can control how many chunks MongoDB will create with the
numInitialChunks parameter to shardCollection (page 870).

See Create a Hashed Index (page 324) for limitations on hashed indexes.

Warning: hashed indexes truncate floating point numbers to 64-bit integers before hashing. For example,
a hashed index would store the same value for a field that held a value of 2.3, 2.2 and 2.9. To prevent
collisions, do not use a hashed index for floating point numbers that cannot be consistently converted to 64-bit
integers (and then back to floating point.) hashed indexes do not support floating point values larger than 253.

Warning: Hashed shard keys are only supported by the MongoDB 2.4 and greater versions of the mongos
(page 981) program. After sharding a collection with a hashed shard key, you must use the MongoDB 2.4 or
greater mongos (page 981) instances in your sharded cluster.

Enable Authentication in a Sharded Cluster

New in version 2.0: Support for authentication with sharded clusters. To control access to a sharded cluster, create key
files and then set the keyFile (page 1028) option on all components of the sharded cluster, including all mongos
(page 981) instances, all config server mongod (page 971) instances, and all shard mongod (page 971) instances.
The content of the key file is arbitrary but must be the same on all cluster members.

Note: For an overview of authentication, see Authentication (page 128). For an overview of security, see Security
(page 123).

Procedure

To enable authentication, do the following:

1. Generate a key file to store authentication information, as described in the Generate a Key File (page 141)
section.

2. On each component in the sharded cluster, enable authentication by doing one of the following:

• In the configuration file, set the keyFile (page 1028) option to the key file’s path and then start the
component, as in the following example:

486 Chapter 38. Administration

MongoDB Documentation, Release 2.4.2

keyFile = /srv/mongodb/keyfile

• When starting the component, set --keyFile (page 982) option, which is an option for both mongos
(page 981) instances and mongod (page 971) instances. Set the --keyFile (page 982) to the key file’s
path.

Note: The keyFile (page 1028) setting implies auth (page 1029), which means in most cases you do not
need to set auth (page 1029) explicitly.

3. Add the first administrative user and then add subsequent users. See Add Users (page 139).

View Cluster Configuration

List Databases with Sharding Enabled

To list the databases that have sharding enabled, query the databases collection in the Config Database Contents
(page 1093). A database has sharding enabled if the value of the partitioned field is true. Connect to a mongos
(page 981) instance with a mongo (page 984) shell, and run the following operation to get a full list of databases with
sharding enabled:

use config
db.databases.find({ "partitioned": true })

Example

You can use the following sequence of commands when to return a list of all databases in the cluster:

use config
db.databases.find()

If this returns the following result set:

{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "animals", "partitioned" : true, "primary" : "m0.example.net:30001" }
{ "_id" : "farms", "partitioned" : false, "primary" : "m1.example2.net:27017" }

Then sharding is only enabled for the animals database.

List Shards

To list the current set of configured shards, use the listShards (page 849) command, as follows:

use admin
db.runCommand({ listShards : 1 })

View Cluster Details

To view cluster details, issue db.printShardingStatus() (page 943) or sh.status() (page 962). Both
methods return the same output.

Example

38.1. Sharded Cluster Administration 487

MongoDB Documentation, Release 2.4.2

In the following example output from sh.status() (page 962)

• sharding version displays the version number of the shard metadata.

• shards displays a list of the mongod (page 971) instances used as shards in the cluster.

• databases displays all databases in the cluster, including database that do not have sharding enabled.

• The chunks information for the foo database displays how many chunks are on each shard and displays the
range of each chunk.

--- Sharding Status ---
sharding version: { "_id" : 1, "version" : 3 }
shards:
{ "_id" : "shard0000", "host" : "m0.example.net:30001" }
{ "_id" : "shard0001", "host" : "m3.example2.net:50000" }

databases:
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "animals", "partitioned" : true, "primary" : "shard0000" }

foo.big chunks:
shard0001 1
shard0000 6

{ "a" : { $minKey : 1 } } -->> { "a" : "elephant" } on : shard0001 Timestamp(2000, 1) jumbo
{ "a" : "elephant" } -->> { "a" : "giraffe" } on : shard0000 Timestamp(1000, 1) jumbo
{ "a" : "giraffe" } -->> { "a" : "hippopotamus" } on : shard0000 Timestamp(2000, 2) jumbo
{ "a" : "hippopotamus" } -->> { "a" : "lion" } on : shard0000 Timestamp(2000, 3) jumbo
{ "a" : "lion" } -->> { "a" : "rhinoceros" } on : shard0000 Timestamp(1000, 3) jumbo
{ "a" : "rhinoceros" } -->> { "a" : "springbok" } on : shard0000 Timestamp(1000, 4)
{ "a" : "springbok" } -->> { "a" : { $maxKey : 1 } } on : shard0000 Timestamp(1000, 5)

foo.large chunks:
shard0001 1
shard0000 5

{ "a" : { $minKey : 1 } } -->> { "a" : "hen" } on : shard0001 Timestamp(2000, 0)
{ "a" : "hen" } -->> { "a" : "horse" } on : shard0000 Timestamp(1000, 1) jumbo
{ "a" : "horse" } -->> { "a" : "owl" } on : shard0000 Timestamp(1000, 2) jumbo
{ "a" : "owl" } -->> { "a" : "rooster" } on : shard0000 Timestamp(1000, 3) jumbo
{ "a" : "rooster" } -->> { "a" : "sheep" } on : shard0000 Timestamp(1000, 4)
{ "a" : "sheep" } -->> { "a" : { $maxKey : 1 } } on : shard0000 Timestamp(1000, 5)

{ "_id" : "test", "partitioned" : false, "primary" : "shard0000" }

Add Shards to a Cluster

You add shards to a sharded cluster after you create the cluster or anytime that you need to add capacity to the cluster.
If you have not created a sharded cluster, see Deploy a Sharded Cluster (page 481).

When adding a shard to a cluster, you should always ensure that the cluster has enough capacity to support the
migration without affecting legitimate production traffic.

In production environments, all shards should be replica sets.

Add a Shard to a Cluster

You interact with a sharded cluster by connecting to a mongos (page 981) instance.

1. From a mongo (page 984) shell, connect to the mongos (page 981) instance. Issue a command using the
following syntax:

488 Chapter 38. Administration

MongoDB Documentation, Release 2.4.2

mongo --host <hostname of machine running mongos> --port <port mongos listens on>

For example, if a mongos (page 981) is accessible at mongos0.example.net on port 27017, issue the
following command:

mongo --host mongos0.example.net --port 27017

2. Add each shard to the cluster using the sh.addShard() (page 955) method, as shown in the examples below.
Issue sh.addShard() (page 955) separately for each shard. If the shard is a replica set, specify the name of
the replica set and specify a member of the set. In production deployments, all shards should be replica sets.

Optional

You can instead use the addShard (page 807) database command, which lets you specify a name and maximum
size for the shard. If you do not specify these, MongoDB automatically assigns a name and maximum size. To
use the database command, see addShard (page 807).

The following are examples of adding a shard with sh.addShard() (page 955):

• To add a shard for a replica set named rs1 with a member running on port 27017 on
mongodb0.example.net, issue the following command:

sh.addShard("rs1/mongodb0.example.net:27017")

Changed in version 2.0.3. For MongoDB versions prior to 2.0.3, you must specify all members of the
replica set. For example:

sh.addShard("rs1/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017")

• To add a shard for a standalone mongod (page 971) on port 27017 of mongodb0.example.net,
issue the following command:

sh.addShard("mongodb0.example.net:27017")

Note: It might take some time for chunks to migrate to the new shard.

Convert a Replica Set to a Replicated Sharded Cluster

Overview

Following this tutorial, you will convert a single 3-member replica set to a cluster that consists of 2 shards. Each shard
will consist of an independent 3-member replica set.

The tutorial uses a test environment running on a local system UNIX-like system. You should feel encouraged to
“follow along at home.” If you need to perform this process in a production environment, notes throughout the
document indicate procedural differences.

The procedure, from a high level, is as follows:

1. Create or select a 3-member replica set and insert some data into a collection.

2. Start the config databases and create a cluster with a single shard.

3. Create a second replica set with three new mongod (page 971) instances.

4. Add the second replica set as a shard in the cluster.

38.1. Sharded Cluster Administration 489

MongoDB Documentation, Release 2.4.2

5. Enable sharding on the desired collection or collections.

Process

Install MongoDB according to the instructions in the MongoDB Installation Tutorial (page 3).

Deploy a Replica Set with Test Data If have an existing MongoDB replica set deployment, you can omit the this
step and continue from Deploy Sharding Infrastructure (page 491).

Use the following sequence of steps to configure and deploy a replica set and to insert test data.

1. Create the following directories for the first replica set instance, named firstset:

• http://docs.mongodb.org/manual/data/example/firstset1

• http://docs.mongodb.org/manual/data/example/firstset2

• http://docs.mongodb.org/manual/data/example/firstset3

To create directories, issue the following command:

mkdir -p /data/example/firstset1 /data/example/firstset2 /data/example/firstset3

2. In a separate terminal window or GNU Screen window, start three mongod (page 971) instances by running
each of the following commands:

mongod --dbpath /data/example/firstset1 --port 10001 --replSet firstset --oplogSize 700 --rest
mongod --dbpath /data/example/firstset2 --port 10002 --replSet firstset --oplogSize 700 --rest
mongod --dbpath /data/example/firstset3 --port 10003 --replSet firstset --oplogSize 700 --rest

Note: The --oplogSize 700 (page 977) option restricts the size of the operation log (i.e. oplog) for
each mongod (page 971) instance to 700MB. Without the --oplogSize (page 977) option, each mongod
(page 971) reserves approximately 5% of the free disk space on the volume. By limiting the size of the oplog,
each instance starts more quickly. Omit this setting in production environments.

3. In a mongo (page 984) shell session in a new terminal, connect to the mongodb instance on port 10001 by
running the following command. If you are in a production environment, first read the note below.

mongo localhost:10001/admin

Note: Above and hereafter, if you are running in a production environment or are testing this process with
mongod (page 971) instances on multiple systems, replace “localhost” with a resolvable domain, hostname, or
the IP address of your system.

4. In the mongo (page 984) shell, initialize the first replica set by issuing the following command:

db.runCommand({"replSetInitiate" :
{"_id" : "firstset", "members" : [{"_id" : 1, "host" : "localhost:10001"},

{"_id" : 2, "host" : "localhost:10002"},
{"_id" : 3, "host" : "localhost:10003"}

]}})
{

"info" : "Config now saved locally. Should come online in about a minute.",
"ok" : 1

}

490 Chapter 38. Administration

MongoDB Documentation, Release 2.4.2

5. In the mongo (page 984) shell, create and populate a new collection by issuing the following sequence of
JavaScript operations:

use test
switched to db test
people = ["Marc", "Bill", "George", "Eliot", "Matt", "Trey", "Tracy", "Greg", "Steve", "Kristina", "Katie", "Jeff"];
for(var i=0; i<1000000; i++){

name = people[Math.floor(Math.random()*people.length)];
user_id = i;
boolean = [true, false][Math.floor(Math.random()*2)];
added_at = new Date();
number = Math.floor(Math.random()*10001);
db.test_collection.save({"name":name, "user_id":user_id, "boolean": boolean, "added_at":added_at, "number":number });
}

The above operations add one million documents to the collection test_collection. This can take several
minutes, depending on your system.

The script adds the documents in the following form:

{ "_id" : ObjectId("4ed5420b8fc1dd1df5886f70"), "name" : "Greg", "user_id" : 4, "boolean" : true, "added_at" : ISODate("2011-11-29T20:35:23.121Z"), "number" : 74 }

Deploy Sharding Infrastructure This procedure creates the three config databases that store the cluster’s metadata.

Note: For development and testing environments, a single config database is sufficient. In production environments,
use three config databases. Because config instances store only the metadata for the sharded cluster, they have minimal
resource requirements.

1. Create the following data directories for three config database instances:

• http://docs.mongodb.org/manual/data/example/config1

• http://docs.mongodb.org/manual/data/example/config2

• http://docs.mongodb.org/manual/data/example/config3

Issue the following command at the system prompt:

mkdir -p /data/example/config1 /data/example/config2 /data/example/config3

2. In a separate terminal window or GNU Screen window, start the config databases by running the following
commands:

mongod --configsvr --dbpath /data/example/config1 --port 20001
mongod --configsvr --dbpath /data/example/config2 --port 20002
mongod --configsvr --dbpath /data/example/config3 --port 20003

3. In a separate terminal window or GNU Screen window, start mongos (page 981) instance by running the
following command:

mongos --configdb localhost:20001,localhost:20002,localhost:20003 --port 27017 --chunkSize 1

Note: If you are using the collection created earlier or are just experimenting with sharding, you can use a
small --chunkSize (page 983) (1MB works well.) The default chunkSize (page 1036) of 64MB means
that your cluster must have 64MB of data before the MongoDB’s automatic sharding begins working.

In production environments, do not use a small shard size.

38.1. Sharded Cluster Administration 491

MongoDB Documentation, Release 2.4.2

The configdb (page 1036) options specify the configuration databases (e.g. localhost:20001,
localhost:20002, and localhost:2003). The mongos (page 981) instance runs on the default “Mon-
goDB” port (i.e. 27017), while the databases themselves are running on ports in the 30001 series. In the this
example, you may omit the --port 27017 (page 981) option, as 27017 is the default port.

4. Add the first shard in mongos (page 981). In a new terminal window or GNU Screen session, add the first
shard, according to the following procedure:

(a) Connect to the mongos (page 981) with the following command:

mongo localhost:27017/admin

(b) Add the first shard to the cluster by issuing the addShard (page 807) command:

db.runCommand({ addShard : "firstset/localhost:10001,localhost:10002,localhost:10003" })

(c) Observe the following message, which denotes success:

{ "shardAdded" : "firstset", "ok" : 1 }

Deploy a Second Replica Set This procedure deploys a second replica set. This closely mirrors the process used to
establish the first replica set above, omitting the test data.

1. Create the following data directories for the members of the second replica set, named secondset:

• http://docs.mongodb.org/manual/data/example/secondset1

• http://docs.mongodb.org/manual/data/example/secondset2

• http://docs.mongodb.org/manual/data/example/secondset3

2. In three new terminal windows, start three instances of mongod (page 971) with the following commands:

mongod --dbpath /data/example/secondset1 --port 10004 --replSet secondset --oplogSize 700 --rest
mongod --dbpath /data/example/secondset2 --port 10005 --replSet secondset --oplogSize 700 --rest
mongod --dbpath /data/example/secondset3 --port 10006 --replSet secondset --oplogSize 700 --rest

Note: As above, the second replica set uses the smaller oplogSize (page 1034) configuration. Omit this
setting in production environments.

3. In the mongo (page 984) shell, connect to one mongodb instance by issuing the following command:

mongo localhost:10004/admin

4. In the mongo (page 984) shell, initialize the second replica set by issuing the following command:

db.runCommand({"replSetInitiate" :
{"_id" : "secondset",
"members" : [{"_id" : 1, "host" : "localhost:10004"},

{"_id" : 2, "host" : "localhost:10005"},
{"_id" : 3, "host" : "localhost:10006"}

]}})

{
"info" : "Config now saved locally. Should come online in about a minute.",
"ok" : 1

}

5. Add the second replica set to the cluster. Connect to the mongos (page 981) instance created in the previous
procedure and issue the following sequence of commands:

492 Chapter 38. Administration

MongoDB Documentation, Release 2.4.2

use admin
db.runCommand({ addShard : "secondset/localhost:10004,localhost:10005,localhost:10006" })

This command returns the following success message:

{ "shardAdded" : "secondset", "ok" : 1 }

6. Verify that both shards are properly configured by running the listShards (page 849) command. View this
and example output below:

db.runCommand({listShards:1})
{

"shards" : [
{

"_id" : "firstset",
"host" : "firstset/localhost:10001,localhost:10003,localhost:10002"

},
{

"_id" : "secondset",
"host" : "secondset/localhost:10004,localhost:10006,localhost:10005"

}
],

"ok" : 1
}

Enable Sharding MongoDB must have sharding enabled on both the database and collection levels.

Enabling Sharding on the Database Level Issue the enableSharding (page 826) command. The following
example enables sharding on the “test” database:

db.runCommand({ enableSharding : "test" })
{ "ok" : 1 }

Create an Index on the Shard Key MongoDB uses the shard key to distribute documents between shards. Once
selected, you cannot change the shard key. Good shard keys:

• have values that are evenly distributed among all documents,

• group documents that are often accessed at the same time into contiguous chunks, and

• allow for effective distribution of activity among shards.

Typically shard keys are compound, comprising of some sort of hash and some sort of other primary key. Selecting
a shard key depends on your data set, application architecture, and usage pattern, and is beyond the scope of this
document. For the purposes of this example, we will shard the “number” key. This typically would not be a good
shard key for production deployments.

Create the index with the following procedure:

use test
db.test_collection.ensureIndex({number:1})

See Also:

The Shard Key Overview (page 463) and Shard Key (page 471) sections.

38.1. Sharded Cluster Administration 493

MongoDB Documentation, Release 2.4.2

Shard the Collection Issue the following command:

use admin
db.runCommand({ shardCollection : "test.test_collection", key : {"number":1} })
{ "collectionsharded" : "test.test_collection", "ok" : 1 }

The collection test_collection is now sharded!

Over the next few minutes the Balancer begins to redistribute chunks of documents. You can confirm this activity
by switching to the test database and running db.stats() (page 946) or db.printShardingStatus()
(page 943).

As clients insert additional documents into this collection, mongos (page 981) distributes the documents evenly
between the shards.

In the mongo (page 984) shell, issue the following commands to return statics against each cluster:

use test
db.stats()
db.printShardingStatus()

Example output of the db.stats() (page 946) command:

{
"raw" : {

"firstset/localhost:10001,localhost:10003,localhost:10002" : {
"db" : "test",
"collections" : 3,
"objects" : 973887,
"avgObjSize" : 100.33173458522396,
"dataSize" : 97711772,
"storageSize" : 141258752,
"numExtents" : 15,
"indexes" : 2,
"indexSize" : 56978544,
"fileSize" : 1006632960,
"nsSizeMB" : 16,
"ok" : 1

},
"secondset/localhost:10004,localhost:10006,localhost:10005" : {

"db" : "test",
"collections" : 3,
"objects" : 26125,
"avgObjSize" : 100.33286124401914,
"dataSize" : 2621196,
"storageSize" : 11194368,
"numExtents" : 8,
"indexes" : 2,
"indexSize" : 2093056,
"fileSize" : 201326592,
"nsSizeMB" : 16,
"ok" : 1

}
},
"objects" : 1000012,
"avgObjSize" : 100.33176401883178,
"dataSize" : 100332968,
"storageSize" : 152453120,
"numExtents" : 23,
"indexes" : 4,

494 Chapter 38. Administration

MongoDB Documentation, Release 2.4.2

"indexSize" : 59071600,
"fileSize" : 1207959552,
"ok" : 1

}

Example output of the db.printShardingStatus() (page 943) command:

--- Sharding Status ---
sharding version: { "_id" : 1, "version" : 3 }
shards:

{ "_id" : "firstset", "host" : "firstset/localhost:10001,localhost:10003,localhost:10002" }
{ "_id" : "secondset", "host" : "secondset/localhost:10004,localhost:10006,localhost:10005" }

databases:
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "test", "partitioned" : true, "primary" : "firstset" }

test.test_collection chunks:
secondset 5
firstset 186

[...]

In a few moments you can run these commands for a second time to demonstrate that chunks are migrating from
firstset to secondset.

When this procedure is complete, you will have converted a replica set into a cluster where each shard is itself a replica
set.

38.1.2 Sharded Cluster Maintenance and Administration

Administer and Manage Shard Tags

In a sharded cluster, you can use tags to associate specific ranges of a shard key with a specific shard or subset of
shards.

Tag a Shard

Associate tags with a particular shard using the sh.addShardTag() (page 956) method when connected to a
mongos (page 981) instance. A single shard may have multiple tags, and multiple shards may also have the same tag.

Example

The following example adds the tag NYC to two shards, and the tags SFO and NRT to a third shard:

sh.addShardTag("shard0000", "NYC")
sh.addShardTag("shard0001", "NYC")
sh.addShardTag("shard0002", "SFO")
sh.addShardTag("shard0002", "NRT")

You may remove tags from a particular shard using the sh.removeShardTag() (page 960) method when con-
nected to a mongos (page 981) instance, as in the following example, which removes the NRT tag from a shard:

sh.removeShardTag("shard0002", "NRT")

38.1. Sharded Cluster Administration 495

MongoDB Documentation, Release 2.4.2

Tag a Shard Key Range

To assign a tag to a range of shard keys use the sh.addTagRange() (page 956) method when connected to a
mongos (page 981) instance. Any given shard key range may only have one assigned tag. You cannot overlap defined
ranges, or tag the same range more than once.

Example

Given a collection named users in the records database, sharded by the zipcode field. The following operations
assign:

• two ranges of zip codes in Manhattan and Brooklyn the NYC tag

• one range of zip codes in San Francisco the SFO tag

sh.addTagRange("records.users", { zipcode: "10001" }, { zipcode: "10281" }, "NYC")
sh.addTagRange("records.users", { zipcode: "11201" }, { zipcode: "11240" }, "NYC")
sh.addTagRange("records.users", { zipcode: "94102" }, { zipcode: "94135" }, "SFO")

Note: Shard ranges are always inclusive of the lower value and exclusive of the upper boundary.

Remove a Tag From a Shard Key Range

The mongod (page 971) does not provide a helper for removing a tag range. You may delete tag assignment from
a shard key range by removing the corresponding document from the tags (page 1098) collection of the config
database.

Each document in the tags (page 1098) holds the namespace of the sharded collection and a minimum shard key
value.

Example

The following example removes the NYC tag assignment for the range of zip codes within Manhattan:

use config
db.tags.remove({ _id: { ns: "records.users", min: { zipcode: "10001" }}, tag: "NYC" })

View Existing Shard Tags

The output from sh.status() (page 962) lists tags associated with a shard, if any, for each shard. A shard’s tags
exist in the shard’s document in the shards (page 1097) collection of the config database. To return all shards with
a specific tag, use a sequence of operations that resemble the following, which will return only those shards tagged
with NYC:

use config
db.shards.find({ tags: "NYC" })

You can find tag ranges for all namespaces in the tags (page 1098) collection of the config database. The output of
sh.status() (page 962) displays all tag ranges. To return all shard key ranges tagged with NYC, use the following
sequence of operations:

496 Chapter 38. Administration

MongoDB Documentation, Release 2.4.2

use config
db.tags.find({ tags: "NYC" })

Deploy Three Config Servers for Production Deployments

This procedure converts a test deployment with only one config server (page 478) to a production deployment with
three config servers.

For redundancy, all production sharded clusters (page 463) should deploy three config servers on three different
machines. Use a single config server only for testing deployments, never for production deployments. When you shift
to production, upgrade immediately to three config servers.

To convert a test deployment with one config server to a production deployment with three config servers:

1. Shut down all existing MongoDB processes in the cluster. This includes:

• all mongod (page 971) instances or replica sets that provide your shards.

• all mongos (page 981) instances in your cluster.

2. Copy the entire dbpath (page 1029) file system tree from the existing config server to the two machines that
will provide the additional config servers. These commands, issued on the system with the existing Config
Database Contents (page 1093), mongo-config0.example.net may resemble the following:

rsync -az /data/configdb mongo-config1.example.net:/data/configdb
rsync -az /data/configdb mongo-config2.example.net:/data/configdb

3. Start all three config servers, using the same invocation that you used for the single config server.

mongod --configsvr

4. Restart all shard mongod (page 971) and mongos (page 981) processes.

Migrate Config Servers with the Same Hostname

This procedure migrates a config server (page 478) in a sharded cluster (page 463) to a new system that uses the same
hostname.

1. Shut down the config server that you are moving.

This will render all config data for your cluster read only (page 478).

2. Change the DNS entry that points to the system that provided the old config server, so that the same hostname
points to the new system.

How you do this depends on how you organize your DNS and hostname resolution services.

3. Move the entire dbpath (page 1029) file system tree from the old config server to the new config server. This
command, issued on the old config server system, may resemble the following:

rsync -az /data/configdb mongo-config0.example.net:/data/configdb

4. Start the config instance on the new system. The default invocation is:

mongod --configsvr

When you start the third config server, your cluster will become writable and it will be able to create new splits and
migrate chunks as needed.

38.1. Sharded Cluster Administration 497

MongoDB Documentation, Release 2.4.2

Migrate Config Servers with Different Hostnames

This procedure migrates a config server (page 478) in a sharded cluster (page 463) to a new server that uses a different
hostname. Use this procedure only if the config server will not be accessible via the same hostname. If possible, avoid
changing the hostname so that you can instead use the the procedure to migrate a config server and use the same
hostname (page 497).

1. Disable the cluster balancer process temporarily. See Disable the Balancer (page 507) for more information.

2. Shut down the config server (page 478) you are moving.

This will render all config data for your cluster “read only:”

rsync -az /data/configdb mongodb.config2.example.net:/data/configdb

3. Start the config instance on the new system. The default invocation is:

mongod --configsvr

4. Shut down all existing MongoDB processes. This includes:

• all mongod (page 971) instances or replica sets that provide your shards.

• the mongod (page 971) instances that provide your existing config databases (page 1093).

• all mongos (page 981) instances in your cluster.

5. Restart all mongod (page 971) processes that provide the shard servers.

6. Update the --configdb (page 982) parameter (or configdb (page 1036)) for all mongos (page 981) in-
stances and restart all mongos (page 981) instances.

7. Re-enable the balancer to allow the cluster to resume normal balancing operations. See the Disable the Balancer
(page 507) section for more information on managing the balancer process.

Replace a Config Server

This procedure replaces an inoperable config server (page 478) in a sharded cluster (page 463). Use this procedure
only to replace a config server that has become inoperable (e.g. hardware failure).

This process assumes that the hostname of the instance will not change. If you must change the hostname of the
instance, use the procedure to migrate a config server and use a new hostname (page 498).

1. Disable the cluster balancer process temporarily. See Disable the Balancer (page 507) for more information.

2. Provision a new system, with the same hostname as the previous host.

You will have to ensure that the new system has the same IP address and hostname as the system it’s replacing
or you will need to modify the DNS records and wait for them to propagate.

3. Shut down one (and only one) of the existing config servers. Copy all this host’s dbpath (page 1029) file
system tree from the current system to the system that will provide the new config server. This command, issued
on the system with the data files, may resemble the following:

rsync -az /data/configdb mongodb.config2.example.net:/data/configdb

4. Restart the config server process that you used in the previous step to copy the data files to the new config server
instance.

5. Start the new config server instance. The default invocation is:

mongod --configsvr

498 Chapter 38. Administration

MongoDB Documentation, Release 2.4.2

6. Re-enable the balancer to allow the cluster to resume normal balancing operations. See the Disable the Balancer
(page 507) section for more information on managing the balancer process.

Note: In the course of this procedure never remove a config server from the configdb (page 1036) parameter on
any of the mongos (page 981) instances. If you need to change the name of a config server, always make sure that all
mongos (page 981) instances have three config servers specified in the configdb (page 1036) setting at all times.

Backup Cluster Metadata

This procedure shuts down the mongod (page 971) instance of a config server (page 478) in order to create a backup
of a sharded cluster’s (page 463) metadata. The cluster’s config servers store all of the cluster’s metadata, most
importantly the mapping from chunks to shards.

When you perform this procedure, the cluster remains operational 1.

1. Disable the cluster balancer process temporarily. See Disable the Balancer (page 507) for more information.

2. Shut down one of the config databases.

3. Create a full copy of the data files (i.e. the path specified by the dbpath (page 1029) option for the config
instance.)

4. Restart the original configuration server.

5. Re-enable the balancer to allow the cluster to resume normal balancing operations. See the Disable the Balancer
(page 507) section for more information on managing the balancer process.

See Also:

Backup Strategies for MongoDB Systems (page 41).

Manage Chunks in a Sharded Cluster

This page describes various operations on chunks in sharded clusters. MongoDB automates most chunk management
operations. However, these chunk management operations are accessible to administrators for use in some situations,
typically surrounding initial setup, deployment, and data ingestion.

Split Chunks

Normally, MongoDB splits a chunk following inserts when a chunk exceeds the chunk size (page 476). The balancer
may migrate recently split chunks to a new shard immediately if mongos (page 981) predicts future insertions will
benefit from the move.

MongoDB treats all chunks the same, whether split manually or automatically by the system.

Warning: You cannot merge or combine chunks once you have split them.

You may want to split chunks manually if:

• you have a large amount of data in your cluster and very few chunks, as is the case after deploying a cluster
using existing data.

1 While one of the three config servers is unavailable, the cluster cannot split any chunks nor can it migrate chunks between shards. Your
application will be able to write data to the cluster. The Config Servers (page 478) section of the documentation provides more information on this
topic.

38.1. Sharded Cluster Administration 499

MongoDB Documentation, Release 2.4.2

• you expect to add a large amount of data that would initially reside in a single chunk or shard.

Example

You plan to insert a large amount of data with shard key values between 300 and 400, but all values of your shard
keys are between 250 and 500 are in a single chunk.

Warning: Be careful when splitting data in a sharded collection to create new chunks. When you shard a
collection that has existing data, MongoDB automatically creates chunks to evenly distribute the collection. To
split data effectively in a sharded cluster you must consider the number of documents in a chunk and the average
document size to create a uniform chunk size. When chunks have irregular sizes, shards may have an equal number
of chunks but have very different data sizes. Avoid creating splits that lead to a collection with differently sized
chunks.

Use sh.status() (page 962) to determine the current chunks ranges across the cluster.

To split chunks manually, use the split (page 872) command with operators: middle and find. The equivalent
shell helpers are sh.splitAt() (page 961) or sh.splitFind() (page 962).

Example

The following command will split the chunk that contains the value of 63109 for the zipcode field in the people
collection of the records database:

sh.splitFind("records.people", { "zipcode": 63109 })

sh.splitFind() (page 962) will split the chunk that contains the first document returned that matches this query
into two equally sized chunks. You must specify the full namespace (i.e. “<database>.<collection>”) of the
sharded collection to sh.splitFind() (page 962). The query in sh.splitFind() (page 962) need not contain
the shard key, though it almost always makes sense to query for the shard key in this case, and including the shard key
will expedite the operation.

Use sh.splitAt() (page 961) to split a chunk in two using the queried document as the partition point:

sh.splitAt("records.people", { "zipcode": 63109 })

However, the location of the document that this query finds with respect to the other documents in the chunk does not
affect how the chunk splits.

Create Chunks (Pre-Splitting)

Pre-splitting the chunk ranges in an empty sharded collection, allows clients to insert data into an already-partitioned
collection. In most situations a sharded cluster will create and distribute chunks automatically without user interven-
tion. However, in a limited number of use profiles, MongoDB cannot create enough chunks or distribute data fast
enough to support required throughput. For example, if:

• you must partition an existing data collection that resides on a single shard.

• you must ingest a large volume of data into a cluster that isn’t balanced, or where the ingestion of data will lead
to an imbalance of data.

This can arise in an initial data loading, or in a case where you must insert a large volume of data into a
single chunk, as is the case when you must insert at the beginning or end of the chunk range, as is the case for
monotonically increasing or decreasing shard keys.

500 Chapter 38. Administration

MongoDB Documentation, Release 2.4.2

Preemptively splitting chunks increases cluster throughput for these operations, by reducing the overhead of migrating
chunks that hold data during the write operation. MongoDB only creates splits after an insert operation and can migrate
only a single chunk at a time. Chunk migrations are resource intensive and further complicated by large write volume
to the migrating chunk.

Warning: You can only pre-split an empty collection. When you enable sharding for a collection that contains data
MongoDB automatically creates splits. Subsequent attempts to create splits manually, can lead to unpredictable
chunk ranges and sizes as well as inefficient or ineffective balancing behavior.

To create and migrate chunks manually, use the following procedure:

1. Split empty chunks in your collection by manually performing split (page 872) command on chunks.

Example

To create chunks for documents in the myapp.users collection, using the email field as the shard key, use
the following operation in the mongo (page 984) shell:

for (var x=97; x<97+26; x++){
for(var y=97; y<97+26; y+=6) {
var prefix = String.fromCharCode(x) + String.fromCharCode(y);
db.runCommand({ split : "myapp.users" , middle : { email : prefix } });

}
}

This assumes a collection size of 100 million documents.

2. Migrate chunks manually using the moveChunk (page 858) command:

Example

To migrate all of the manually created user profiles evenly, putting each prefix chunk on the next shard from the
other, run the following commands in the mongo shell:

var shServer = ["sh0.example.net", "sh1.example.net", "sh2.example.net", "sh3.example.net", "sh4.example.net"];
for (var x=97; x<97+26; x++){

for(var y=97; y<97+26; y+=6) {
var prefix = String.fromCharCode(x) + String.fromCharCode(y);
db.adminCommand({moveChunk : "myapp.users", find : {email : prefix}, to : shServer[(y-97)/6]})

}
}

You can also let the balancer automatically distribute the new chunks. For an introduction to balancing, see
Shard Balancing (page 464). For lower level information on balancing, see Cluster Balancer (page 475).

Modify Chunk Size

When you initialize a sharded cluster, 2 the default chunk size is 64 megabytes. this default chunk size works well
for most deployments. however, if you notice that automatic migrations are incurring a level of i/o that your hardware
cannot handle, you may want to reduce the chunk size. for the automatic splits and migrations, a small chunk size
leads to more rapid and frequent migrations.

to modify the chunk size, use the following procedure:

2 The first mongos (page 981) that connects to a set of config servers initializes the sharded cluster.

38.1. Sharded Cluster Administration 501

MongoDB Documentation, Release 2.4.2

1. connect to any mongos (page 981) in the cluster using the mongo (page 984) shell.

2. issue the following command to switch to the Config Database Contents (page 1093):

use config

3. Issue the following save() (page 930) operation:

db.settings.save({ _id:"chunksize", value: <size> })

Where the value of <size> reflects the new chunk size in megabytes. Here, you’re essentially writing a
document whose values store the global chunk size configuration value.

Note: The chunkSize (page 1036) and --chunkSize (page 983) options, passed at runtime to the mongos
(page 981) do not affect the chunk size after you have initialized the cluster. 1

To eliminate confusion you should always set chunk size using the above procedure and never use the runtime options.

Modifying the chunk size has several limitations:

• Automatic splitting only occurs when inserting documents or updating existing documents.

• If you lower the chunk size it may take time for all chunks to split to the new size.

• Splits cannot be “undone.”

If you increase the chunk size, existing chunks must grow through insertion or updates until they reach the new size.

Migrate Chunks

In most circumstances, you should let the automatic balancer migrate chunks between shards. However, you may want
to migrate chunks manually in a few cases:

• If you create chunks by pre-splitting the data in your collection, you will have to migrate chunks manually to
distribute chunks evenly across the shards. Use pre-splitting in limited situations, to support bulk data ingestion.

• If the balancer in an active cluster cannot distribute chunks within the balancing window, then you will have to
migrate chunks manually.

For more information on how chunks move between shards, see Cluster Balancer (page 475), in particular the section
Chunk Migration (page 476).

To migrate chunks, use the moveChunk (page 858) command.

Note: To return a list of shards, use the listShards (page 849) command.

Specify shard names using the addShard (page 807) command using the name argument. If you do not specify a
name in the addShard (page 807) command, MongoDB will assign a name automatically.

The following example assumes that the field username is the shard key for a collection named users in the myapp
database, and that the value smith exists within the chunk you want to migrate.

To move this chunk, you would issue the following command from a mongo (page 984) shell connected to any
mongos (page 981) instance.

db.adminCommand({ moveChunk : "myapp.users",
find : {username : "smith"},
to : "mongodb-shard3.example.net" })

502 Chapter 38. Administration

MongoDB Documentation, Release 2.4.2

This command moves the chunk that includes the shard key value “smith” to the shard named
mongodb-shard3.example.net. The command will block until the migration is complete.

See Create Chunks (Pre-Splitting) (page 500) for an introduction to pre-splitting. New in version 2.2:
moveChunk (page 858) command has the: _secondaryThrottle parameter. When set to true,
MongoDB ensures that changes to shards as part of chunk migrations replicate to secondaries throughout
the migration operation. For more information, see Require Replication before Chunk Migration (Sec-
ondary Throttle) (page 505).Changed in version 2.4: In 2.4, _secondaryThrottle is true by default.

Warning: The moveChunk (page 858) command may produce the following error message:

The collection’s metadata lock is already taken.

These errors occur when clients have too many open cursors that access the chunk you are migrating. You can
either wait until the cursors complete their operation or close the cursors manually.

Strategies for Bulk Inserts in Sharded Clusters

Large bulk insert operations, including initial data ingestion or routine data import, can have a significant impact on a
sharded cluster. For bulk insert operations, consider the following strategies:

• If the collection does not have data, then there is only one chunk, which must reside on a single shard. MongoDB
must receive data, create splits, and distribute chunks to the available shards. To avoid this performance cost,
you can pre-split the collection, as described in Create Chunks (Pre-Splitting) (page 500).

• You can parallelize import processes by sending insert operations to more than one mongos (page 981) instance.
If the collection is empty, pre-split first, as described in Create Chunks (Pre-Splitting) (page 500).

• If your shard key increases monotonically during an insert then all the inserts will go to the last chunk in the
collection, which will always end up on a single shard. Therefore, the insert capacity of the cluster will never
exceed the insert capacity of a single shard.

If your insert volume is never larger than what a single shard can process, then there is no problem; however, if
the insert volume exceeds that range, and you cannot avoid a monotonically increasing shard key, then consider
the following modifications to your application:

– Reverse all the bits of the shard key to preserve the information while avoiding the correlation of insertion
order and increasing sequence of values.

– Swap the first and last 16-bit words to “shuffle” the inserts.

Example

The following example, in C++, swaps the leading and trailing 16-bit word of BSON ObjectIds generated so
that they are no longer monotonically increasing.

using namespace mongo;
OID make_an_id() {
OID x = OID::gen();
const unsigned char *p = x.getData();
swap((unsigned short&) p[0], (unsigned short&) p[10]);
return x;

}

void foo() {
// create an object
BSONObj o = BSON("_id" << make_an_id() << "x" << 3 << "name" << "jane");

38.1. Sharded Cluster Administration 503

MongoDB Documentation, Release 2.4.2

// now we might insert o into a sharded collection...
}

For information on choosing a shard key, see Shard Keys (page 463) and see Shard Key Internals (page 471) (in
particular, Operations and Reliability (page 473) and Choosing a Shard Key (page 473)).

Configure Behavior of Balancer Process in Sharded Clusters

The balancer is a process that runs on one of the mongos (page 981) instances in a cluster and ensures that chunks are
evenly distributed throughout a sharded cluster. In most deployments, the default balancer configuration is sufficient
for normal operation. However, administrators might need to modify balancer behavior depending on application or
operational requirements. If you encounter a situation where you need to modify the behavior of the balancer, use the
procedures described in this document.

For conceptual information about the balancer, see Shard Balancing (page 464) and Cluster Balancer (page 475).

Schedule a Window of Time for Balancing to Occur

You can schedule a window of time during which the balancer can migrate chunks, as described in the following
procedures:

• Schedule the Balancing Window (page 506)

• Remove a Balancing Window Schedule (page 506).

The mongos (page 981) instances user their own local timezones to when respecting balancer window.

Configure Default Chunk Size

The default chunk size for a sharded cluster is 64 megabytes. In most situations, the default size is appropriate for
splitting and migrating chunks. For information on how chunk size affects deployments, see details, see Chunk Size
(page 476).

Changing the default chunk size affects chunks that are processes during migrations and auto-splits but does not
retroactively affect all chunks.

To configure default chunk size, see Modify Chunk Size (page 501).

Change the Maximum Storage Size for a Given Shard

The maxSize field in the shards (page 1097) collection in the config database (page 1093) sets the maximum size
for a shard, allowing you to control whether the balancer will migrate chunks to a shard. If dataSize (page 1071) is
above a shard’s maxSize, the balancer will not move chunks to the shard. Also, the balancer will not move chunks
off an overloaded shard. This must happen manually. The maxSize value only affects the balancer’s selection of
destination shards.

By default, maxSize is not specified, allowing shards to consume the total amount of available space on their ma-
chines if necessary.

You can set maxSize both when adding a shard and once a shard is running.

To set maxSize when adding a shard, set the addShard (page 807) command’s maxSize parameter to the maxi-
mum size in megabytes. For example, the following command run in the mongo (page 984) shell adds a shard with a
maximum size of 125 megabytes:

504 Chapter 38. Administration

MongoDB Documentation, Release 2.4.2

db.runCommand({ addshard : "example.net:34008", maxSize : 125 })

To set maxSize on an existing shard, insert or update the maxSize field in the shards (page 1097) collection in
the config database (page 1093). Set the maxSize in megabytes.

Example

Assume you have the following shard without a maxSize field:

{ "_id" : "shard0000", "host" : "example.net:34001" }

Run the following sequence of commands in the mongo (page 984) shell to insert a maxSize of 125 megabytes:

use config
db.shards.update({ _id : "shard0000" }, { $set : { maxSize : 125 } })

To later increase the maxSize setting to 250 megabytes, run the following:

use config
db.shards.update({ _id : "shard0000" }, { $set : { maxSize : 250 } })

Require Replication before Chunk Migration (Secondary Throttle)

New in version 2.2.1: _secondaryThrotle became an option to the balancer and to moveChunk (page 858)
in 2.2.1. _secondaryThrottle makes it possible to require the balancer wait for replication to secondaries
during migrations.Changed in version 2.4: _secondaryThrottle became the default mode for all balancer and
moveChunk (page 858) operations.

See Also:

Secondary Throttle in the v2.2 Manual for more information on configuring _secondaryThrottle.

Manage Sharded Cluster Balancer

This page describes provides common administrative procedures related to balancing. For an introduction to balancing,
see Shard Balancing (page 464). For lower level information on balancing, see Cluster Balancer (page 475).

See Also:

Configure Behavior of Balancer Process in Sharded Clusters (page 504)

Check the Balancer Lock

To see if the balancer process is active in your cluster, do the following:

1. Connect to any mongos (page 981) in the cluster using the mongo (page 984) shell.

2. Issue the following command to switch to the Config Database Contents (page 1093):

use config

3. Use the following query to return the balancer lock:

db.locks.find({ _id : "balancer" }).pretty()

When this command returns, you will see output like the following:

38.1. Sharded Cluster Administration 505

http://docs.mongodb.org/v2.2/tutorial/configure-sharded-cluster-balancer

MongoDB Documentation, Release 2.4.2

{ "_id" : "balancer",
"process" : "mongos0.example.net:1292810611:1804289383",

"state" : 2,
"ts" : ObjectId("4d0f872630c42d1978be8a2e"),

"when" : "Mon Dec 20 2010 11:41:10 GMT-0500 (EST)",
"who" : "mongos0.example.net:1292810611:1804289383:Balancer:846930886",
"why" : "doing balance round" }

This output confirms that:

• The balancer originates from the mongos (page 981) running on the system with the hostname
mongos0.example.net.

• The value in the state field indicates that a mongos (page 981) has the lock. For version 2.0 and later, the
value of an active lock is 2; for earlier versions the value is 1.

Optional

You can also use the following shell helper, which returns a boolean to report if the balancer is active:

sh.getBalancerState()

Schedule the Balancing Window

In some situations, particularly when your data set grows slowly and a migration can impact performance, it’s useful
to be able to ensure that the balancer is active only at certain times. Use the following procedure to specify a window
during which the balancer will be able to migrate chunks:

1. Connect to any mongos (page 981) in the cluster using the mongo (page 984) shell.

2. Issue the following command to switch to the Config Database Contents (page 1093):

use config

3. Use an operation modeled on the following example update() (page 932) operation to modify the balancer’s
window:

db.settings.update({ _id : "balancer" }, { $set : { activeWindow : { start : "<start-time>", stop : "<stop-time>" } } }, true)

Replace <start-time> and <end-time> with time values using two digit hour and minute values (e.g
HH:MM) that describe the beginning and end boundaries of the balancing window. These times will be evaluated
relative to the time zone of each individual mongos (page 981) instance in the sharded cluster. For instance,
running the following will force the balancer to run between 11PM and 6AM local time only:

db.settings.update({ _id : "balancer" }, { $set : { activeWindow : { start : "23:00", stop : "6:00" } } }, true)

Note: The balancer window must be sufficient to complete the migration of all data inserted during the day.

As data insert rates can change based on activity and usage patterns, it is important to ensure that the balancing window
you select will be sufficient to support the needs of your deployment.

Remove a Balancing Window Schedule

If you have set the balancing window (page 506) and wish to remove the schedule so that the balancer is always
running, issue the following sequence of operations:

506 Chapter 38. Administration

MongoDB Documentation, Release 2.4.2

use config
db.settings.update({ _id : "balancer" }, { $unset : { activeWindow : true } })

Disable the Balancer

By default the balancer may run at any time and only moves chunks as needed. To disable the balancer for a short
period of time and prevent all migration, use the following procedure:

1. Connect to any mongos (page 981) in the cluster using the mongo (page 984) shell.

2. Issue one of the following operations to disable the balancer:

sh.stopBalancer()

3. Later, issue one the following operations to enable the balancer:

sh.startBalancer()

Note: If a migration is in progress, the system will complete the in-progress migration. After disabling, you can use
the following operation in the mongo (page 984) shell to determine if there are no migrations in progress:

use config
while(db.locks.findOne({_id: "balancer"}).state) {

print("waiting..."); sleep(1000);
}

The above process and the sh.setBalancerState() (page 960), sh.startBalancer() (page 962), and
sh.stopBalancer() (page 963) helpers provide wrappers on the following process, which may be useful if you
need to run this operation from a driver that does not have helper functions:

1. Connect to any mongos (page 981) in the cluster using the mongo (page 984) shell.

2. Issue the following command to switch to the Config Database Contents (page 1093):

use config

3. Issue the following update to disable the balancer:

db.settings.update({ _id: "balancer" }, { $set : { stopped: true } } , true);

4. To enable the balancer again, alter the value of “stopped” as follows:

db.settings.update({ _id: "balancer" }, { $set : { stopped: false } } , true);

Disable Balancing During Backups

If MongoDB migrates a chunk during a backup (page 41), you can end with an inconsistent snapshot of your sharded
cluster. Never run a backup while the balancer is active. To ensure that the balancer is inactive during your backup
operation:

• Set the balancing window (page 506) so that the balancer is inactive during the backup. Ensure that the backup
can complete while you have the balancer disabled.

• manually disable the balancer (page 507) for the duration of the backup procedure.

Confirm that the balancer is not active using the sh.getBalancerState() (page 959) method before starting a
backup operation. When the backup procedure is complete you can reactivate the balancer process.

38.1. Sharded Cluster Administration 507

MongoDB Documentation, Release 2.4.2

Remove Shards from an Existing Sharded Cluster

To remove a shard you must ensure the shard’s data is migrated to the remaining shards in the cluster. This procedure
describes how to safely migrate data and how to remove a shard.

This procedure describes how to safely remove a single shard. Do not use this procedure to migrate an entire cluster
to new hardware. To migrate an entire shard to new hardware, migrate individual shards as if they were independent
replica sets.

To remove a shard, first connect to one of the cluster’s mongos (page 981) instances using mongo (page 984) shell.
Then follow the ordered sequence of tasks on this page:

1. Ensure the Balancer Process is Active (page 508)

2. Determine the Name of the Shard to Remove (page 508)

3. Remove Chunks from the Shard (page 508)

4. Check the Status of the Migration (page 509)

5. Move Unsharded Data (page 509)

6. Finalize the Migration (page 509)

Ensure the Balancer Process is Active

To successfully migrate data from a shard, the balancer process must be active. Check the balancer state using the
sh.getBalancerState() (page 959) helper in the mongo (page 984) shell. For more information, see the
section on balancer operations (page 507).

Determine the Name of the Shard to Remove

To determine the name of the shard, connect to a mongos (page 981) instance with the mongo (page 984) shell and
either:

• Use the listShards (page 849) command, as in the following:

db.adminCommand({ listShards: 1 })

• Run either the sh.status() (page 962) or the db.printShardingStatus() (page 943) method.

The shards._id field lists the name of each shard.

Remove Chunks from the Shard

Run the removeShard (page 861) command. This begins “draining” chunks from the shard you are removing to
other shards in the cluster. For example, for a shard named mongodb0, run:

db.runCommand({ removeShard: "mongodb0" })

This operation returns immediately, with the following response:

{ msg : "draining started successfully" , state: "started" , shard :"mongodb0" , ok : 1 }

Depending on your network capacity and the amount of data, this operation can take from a few minutes to several
days to complete.

508 Chapter 38. Administration

MongoDB Documentation, Release 2.4.2

Check the Status of the Migration

To check the progress of the migration at any stage in the process, run removeShard (page 861). For example, for
a shard named mongodb0, run:

db.runCommand({ removeShard: "mongodb0" })

The command returns output similar to the following:

{ msg: "draining ongoing" , state: "ongoing" , remaining: { chunks: NumberLong(42), dbs : NumberLong(1) }, ok: 1 }

In the output, the remaining document displays the remaining number of chunks that MongoDB must migrate to
other shards and the number of MongoDB databases that have “primary” status on this shard.

Continue checking the status of the removeShard command until the number of chunks remaining is 0. Then proceed
to the next step.

Move Unsharded Data

If the shard is the primary shard for one or more databases in the cluster, then the shard will have unsharded data. If
the shard is not the primary shard for any databases, skip to the next task, Finalize the Migration (page 509).

In a cluster, a database with unsharded collections stores those collections only on a single shard. That shard becomes
the primary shard for that database. (Different databases in a cluster can have different primary shards.)

Warning: Do not perform this procedure until you have finished draining the shard.

1. To determine if the shard you are removing is the primary shard for any of the cluster’s databases, issue one of
the following methods:

• sh.status() (page 962)

• db.printShardingStatus() (page 943)

In the resulting document, the databases field lists each database and its primary shard. For example, the
following database field shows that the products database uses mongodb0 as the primary shard:

{ "_id" : "products", "partitioned" : true, "primary" : "mongodb0" }

2. To move a database to another shard, use the movePrimary (page 859) command. For example, to migrate
all remaining unsharded data from mongodb0 to mongodb1, issue the following command:

db.runCommand({ movePrimary: "products", to: "mongodb1" })

This command does not return until MongoDB completes moving all data, which may take a long time. The
response from this command will resemble the following:

{ "primary" : "mongodb1", "ok" : 1 }

Finalize the Migration

To clean up all metadata information and finalize the removal, run removeShard (page 861) again. For example,
for a shard named mongodb0, run:

db.runCommand({ removeShard: "mongodb0" })

A success message appears at completion:

38.1. Sharded Cluster Administration 509

MongoDB Documentation, Release 2.4.2

{ msg: "remove shard completed successfully" , stage: "completed", host: "mongodb0", ok : 1 }

Once the value of the stage field is “completed”, you may safely stop the processes comprising the mongodb0
shard.

See Also:

Backup and Restore Sharded Clusters (page 55).

38.1.3 Manage Data in Sharded Clusters

Tag Aware Sharding

For sharded clusters, MongoDB makes it possible to associate specific ranges of a shard key with a specific shard or
subset of shards. This association dictates the policy of the cluster balancer process as it balances the chunks around
the cluster. This capability enables the following deployment patterns:

• isolating a specific subset of data on specific set of shards.

• controlling the balancing policy so that in a geographically distributed cluster the most relevant portions of the
data set reside on the shards with greatest proximity to the application servers.

This document describes the behavior, operation, and use of tag aware sharding in MongoDB deployments.

Note: Shard key range tags are entirely distinct from replica set member tags (page 383).

Hash-based sharding does not support tag-aware sharding.

Behavior and Operations

Tags in a sharded cluster are pieces of metadata that dictate the policy and behavior of the cluster balancer. Using
tags, you may associate individual shards in a cluster with one or more tags. Then, you can assign this tag string to
a range of shard key values for a sharded collection. When migrating a chunk, the balancer will select a destination
shard based on the configured tag ranges.

The balancer migrates chunks in tagged ranges to shards with those tags, if tagged shards are not balanced. 3

Note: Because a single chunk may span different tagged shard key ranges, the balancer may migrate chunks to tagged
shards that contain values that exceed the upper bound of the selected tag range.

Example

Given a sharded collection with two configured tag ranges, such that:

• Shard key values between 100 and 200 have tags to direct corresponding chunks to shards tagged NYC.

• Shard Key values between 200 and 300 have tags to direct corresponding chunks to shards tagged SFO.

In this cluster, the balancer will migrate a chunk with shard key values ranging between 150 and 220 to a shard
tagged NYC, since 150 is closer to 200 than 300.

3 To migrate chunks in a tagged environment, the balancer selects a target shard with a tag range that has an upper bound that is greater than the
migrating chunk’s lower bound. If a shard with a matching tagged range exists, the balancer will migrate the chunk to that shard.

510 Chapter 38. Administration

MongoDB Documentation, Release 2.4.2

After configuring tags on shards and ranges of the shard key, the cluster may take some time to reach the proper
distribution of data, depending on the division of chunks (i.e. splits) and the current distribution of data in the cluster.
Once configured, the balancer will respect tag ranges during future balancing rounds (page 475).

See Also:

Administer and Manage Shard Tags (page 495)

Enforce Unique Keys for Sharded Collections

Overview

The unique (page 907) constraint on indexes ensures that only one document can have a value for a field in a
collection. For sharded collections these unique indexes cannot enforce uniqueness (page 1106) because insert and
indexing operations are local to each shard. 4

If your need to ensure that a field is always unique in all collections in a sharded environment, there are two options:

1. Enforce uniqueness of the shard key (page 463).

MongoDB can enforce uniqueness for the shard key. For compound shard keys, MongoDB will enforce unique-
ness on the entire key combination, and not for a specific component of the shard key.

You cannot specify a unique constraint on a hashed index (page 309).

2. Use a secondary collection to enforce uniqueness.

Create a minimal collection that only contains the unique field and a reference to a document in the main
collection. If you always insert into a secondary collection before inserting to the main collection, MongoDB
will produce an error if you attempt to use a duplicate key.

Note: If you have a small data set, you may not need to shard this collection and you can create multiple unique
indexes. Otherwise you can shard on a single unique key.

Always use the default acknowledged (page 174) write concern (page 174) in conjunction with a recent MongoDB
driver (page 1183).

Unique Constraints on the Shard Key

Process To shard a collection using the unique constraint, specify the shardCollection (page 870) command
in the following form:

db.runCommand({ shardCollection : "test.users" , key : { email : 1 } , unique : true });

Remember that the _id field index is always unique. By default, MongoDB inserts an ObjectId into the _id field.
However, you can manually insert your own value into the _id field and use this as the shard key. To use the _id
field as the shard key, use the following operation:

db.runCommand({ shardCollection : "test.users" })

Warning: In any sharded collection where you are not sharding by the _id field, you must ensure uniqueness of
the _id field. The best way to ensure _id is always unique is to use ObjectId, or another universally unique
identifier (UUID.)

4 If you specify a unique index on a sharded collection, MongoDB will be able to enforce uniqueness only among the documents located on a
single shard at the time of creation.

38.1. Sharded Cluster Administration 511

MongoDB Documentation, Release 2.4.2

Limitations

• You can only enforce uniqueness on one single field in the collection using this method.

• If you use a compound shard key, you can only enforce uniqueness on the combination of component keys in
the shard key.

In most cases, the best shard keys are compound keys that include elements that permit write scaling (page 472) and
query isolation (page 472), as well as high cardinality (page 471). These ideal shard keys are not often the same keys
that require uniqueness and requires a different approach.

Unique Constraints on Arbitrary Fields

If you cannot use a unique field as the shard key or if you need to enforce uniqueness over multiple fields, you must
create another collection to act as a “proxy collection”. This collection must contain both a reference to the original
document (i.e. its ObjectId) and the unique key.

If you must shard this “proxy” collection, then shard on the unique key using the above procedure (page 511); other-
wise, you can simply create multiple unique indexes on the collection.

Process Consider the following for the “proxy collection:”

{
"_id" : ObjectId("...")
"email" ": "..."

}

The _id field holds the ObjectId of the document it reflects, and the email field is the field on which you want to
ensure uniqueness.

To shard this collection, use the following operation using the email field as the shard key:

db.runCommand({ shardCollection : "records.proxy" , key : { email : 1 } , unique : true });

If you do not need to shard the proxy collection, use the following command to create a unique index on the email
field:

db.proxy.ensureIndex({ "email" : 1 }, {unique : true})

You may create multiple unique indexes on this collection if you do not plan to shard the proxy collection.

To insert documents, use the following procedure in the JavaScript shell (page 984):

use records;

var primary_id = ObjectId();

db.proxy.insert({
"_id" : primary_id
"email" : "example@example.net"

})

// if: the above operation returns successfully,
// then continue:

db.information.insert({
"_id" : primary_id
"email": "example@example.net"

512 Chapter 38. Administration

MongoDB Documentation, Release 2.4.2

// additional information...
})

You must insert a document into the proxy collection first. If this operation succeeds, the email field is unique, and
you may continue by inserting the actual document into the information collection.

See Also:

The full documentation of: db.collection.ensureIndex() (page 907) and shardCollection
(page 870).

Considerations

• Your application must catch errors when inserting documents into the “proxy” collection and must enforce
consistency between the two collections.

• If the proxy collection requires sharding, you must shard on the single field on which you want to enforce
uniqueness.

• To enforce uniqueness on more than one field using sharded proxy collections, you must have one proxy col-
lection for every field for which to enforce uniqueness. If you create multiple unique indexes on a single proxy
collection, you will not be able to shard proxy collections.

Shard GridFS Data Store

When sharding a GridFS store, consider the following:

files Collection

Most deployments will not need to shard the files collection. The files collection is typically small, and only
contains metadata. None of the required keys for GridFS lend themselves to an even distribution in a sharded situation.
If you must shard the files collection, use the _id field possibly in combination with an application field

Leaving files unsharded means that all the file metadata documents live on one shard. For production GridFS stores
you must store the files collection on a replica set.

chunks Collection

To shard the chunks collection by { files_id : 1 , n : 1 }, issue commands similar to the following:

db.fs.chunks.ensureIndex({ files_id : 1 , n : 1 })

db.runCommand({ shardCollection : "test.fs.chunks" , key : { files_id : 1 , n : 1 } })

You may also want shard using just the file_id field, as in the following operation:

db.runCommand({ shardCollection : "test.fs.chunks" , key : { files_id : 1 } })

Note: Changed in version 2.2. Before 2.2, you had to create an additional index on files_id to shard using only
this field.

The default files_id value is an ObjectId, as a result the values of files_id are always ascending, and applica-
tions will insert all new GridFS data to a single chunk and shard. If your write load is too high for a single server to
handle, consider a different shard key or use a different value for different value for _id in the files collection.

38.1. Sharded Cluster Administration 513

MongoDB Documentation, Release 2.4.2

514 Chapter 38. Administration

CHAPTER 39

Reference

• Sharding Commands (page 515)

• Config Database Contents (page 1093)

• mongos (page 981)

39.1 Sharding Commands

39.1.1 JavaScript Methods

sh.addShard(host)

Parameters

• host (string) – Specify the hostname of a database instance or a replica set configuration.

Use this method to add a database instance or replica set to a sharded cluster. This method must be run on a
mongos (page 981) instance. The host parameter can be in any of the following forms:

[hostname]
[hostname]:[port]
[set]/[hostname]
[set]/[hostname],[hostname]:port

You can specify shards using the hostname, or a hostname and port combination if the shard is running on a
non-standard port.

Warning: Do not use localhost for the hostname unless your configuration server is also running on
localhost.

The optimal configuration is to deploy shards across replica sets. To add a shard on a replica set you must specify
the name of the replica set and the hostname of at least one member of the replica set. You must specify at least
one member of the set, but can specify all members in the set or another subset if desired. sh.addShard()
(page 955) takes the following form:

If you specify additional hostnames, all must be members of the same replica set.

515

MongoDB Documentation, Release 2.4.2

sh.addShard("set-name/seed-hostname")

Example

sh.addShard("repl0/mongodb3.example.net:27327")

The sh.addShard() (page 955) method is a helper for the addShard (page 807) command. The
addShard (page 807) command has additional options which are not available with this helper.

See Also:

•addShard (page 807)

•Sharded Cluster Administration (page 481)

•Add Shards to a Cluster (page 488)

•Remove Shards from an Existing Sharded Cluster (page 508)

sh.enableSharding(database)

Parameters

• database (string) – Specify a database name to shard.

Enables sharding on the specified database. This does not automatically shard any collections, but makes it
possible to begin sharding collections using sh.shardCollection() (page 961).

See Also:

sh.shardCollection() (page 961)

sh.shardCollection(collection, key, unique)

Parameters

• collection (string) – The namespace of the collection to shard.

• key (document) – A document containing a shard key that the sharding system uses to par-
tition and distribute objects among the shards.

• unique (boolean) – When true, the unique option ensures that the underlying index en-
forces a unique constraint. Hashed shard keys do not support unique constraints.

Shards the named collection, according to the specified shard key. Specify shard keys in the form
of a document. Shard keys may refer to a single document field, or more typically several doc-
ument fields to form a “compound shard key.” New in version 2.4: Use the form {field:
"hashed"} to create a hashed shard key. Hashed shard keys may not be compound indexes.

Warning: MongoDB provides no method to deactivate sharding for a collection after calling
shardCollection (page 870). Additionally, after shardCollection (page 870), you cannot change
shard keys or modify the value of any field used in your shard key index.

See Also:

shardCollection (page 870) for additional options, Sharding (page 461), Sharded Cluster Overview
(page 463) for an overview of sharding with MongoDB and Deploy a Sharded Cluster (page 481) for a tu-
torial. Also review Shard Keys (page 463) regarding choosing a shard key.

sh.splitFind(namespace, query)

Parameters

516 Chapter 39. Reference

MongoDB Documentation, Release 2.4.2

• namespace (string) – Specify the namespace (i.e. “<database>.<collection>”) of
the sharded collection that contains the chunk to split.

• query – Specify a query to identify a document in a specific chunk. Typically specify the
shard key for a document as the query.

Splits the chunk containing the document specified by the query at its median point, creating two roughly
equal chunks. Use sh.splitAt() (page 961) to split a collection in a specific point.

In most circumstances, you should leave chunk splitting to the automated processes. However, when initially
deploying a sharded cluster it is necessary to perform some measure of pre-splitting using manual methods
including sh.splitFind() (page 962).

sh.splitAt(namespace, query)

Parameters

• namespace (string) – Specify the namespace (i.e. “<database>.<collection>”) of
the sharded collection that contains the chunk to split.

• query (document) – Specify a query to identify a document in a specific chunk. Typically
specify the shard key for a document as the query.

Splits the chunk containing the document specified by the query as if that document were at the “middle” of
the collection, even if the specified document is not the actual median of the collection. Use this command
to manually split chunks unevenly. Use the “sh.splitFind() (page 962)” function to split a chunk at the
actual median.

In most circumstances, you should leave chunk splitting to the automated processes within MongoDB. However,
when initially deploying a sharded cluster it is necessary to perform some measure of pre-splitting using manual
methods including sh.splitAt() (page 961).

sh.moveChunk(collection, query, destination)

Parameters

• collection (string) – Specifies the sharded collection containing the chunk to migrate.

• query (document) – A document that specifies an equality match on the shard key, which
selects the chunk to move.

• destination (string) – Specifies the name of the shard that you wish to move the designated
chunk to.

Moves the chunk containing the document specified by the query to the shard described by destination.

This method provides a wrapper around the moveChunk (page 858). In most circumstances, allow the balancer
to automatically migrate chunks, and avoid calling sh.moveChunk() (page 960) directly.

See Also:

moveChunk (page 858), sh.splitAt() (page 961), sh.splitFind() (page 962), Sharding (page 461),
and chunk migration (page 476).

sh.setBalancerState(state)

Parameters

• state (boolean) – true enables the balancer if disabled, and false disables the balancer.

Enables or disables the balancer. Use sh.getBalancerState() (page 959) to determine if the balancer is
currently enabled or disabled and sh.isBalancerRunning() (page 959) to check its current state.

See Also:

• sh.enableBalancing() (page 958)

39.1. Sharding Commands 517

MongoDB Documentation, Release 2.4.2

• sh.disableBalancing() (page 957)

• sh.getBalancerHost() (page 958)

• sh.getBalancerState() (page 959)

• sh.isBalancerRunning() (page 959)

• sh.startBalancer() (page 962)

• sh.stopBalancer() (page 963)

• sh.waitForBalancer() (page 963)

• sh.waitForBalancerOff() (page 964)

sh.isBalancerRunning()

Returns boolean

Returns true if the balancer process is currently running and migrating chunks and false if the balancer process is
not running. Use sh.getBalancerState() (page 959) to determine if the balancer is enabled or disabled.

See Also:

• sh.enableBalancing() (page 958)

• sh.disableBalancing() (page 957)

• sh.getBalancerHost() (page 958)

• sh.getBalancerState() (page 959)

• sh.setBalancerState() (page 960)

• sh.startBalancer() (page 962)

• sh.stopBalancer() (page 963)

• sh.waitForBalancer() (page 963)

• sh.waitForBalancerOff() (page 964)

sh.status()

Returns a formatted report of the status of the sharded cluster, including data regarding the distri-
bution of chunks.

sh.addShardTag(shard, tag)
New in version 2.2.

Parameters

• shard (string) – Specifies the name of the shard that you want to give a specific tag.

• tag (string) – Specifies the name of the tag that you want to add to the shard.

sh.addShardTag() (page 956) associates a shard with a tag or identifier. MongoDB uses these identifiers
to direct chunks that fall within a tagged range to specific shards.

sh.addTagRange() (page 956) associates chunk ranges with tag ranges.

Always issue sh.addShardTag() (page 956) when connected to a mongos (page 981) instance.

Example

The following example adds three tags, NYC, LAX, and NRT, to three shards:

518 Chapter 39. Reference

MongoDB Documentation, Release 2.4.2

sh.addShardTag("shard0000", "NYC")
sh.addShardTag("shard0001", "LAX")
sh.addShardTag("shard0002", "NRT")

See Also:

•sh.addTagRange() (page 956) and

•sh.removeShardTag() (page 960)

sh.addTagRange(namespace, minimum, maximum, tag)
New in version 2.2.

Parameters

• namespace (string) – Specifies the namespace, in the form of
<database>.<collection> of the sharded collection that you would like to
tag.

• minimum (document) – Specifies the minimum value of the shard key range to include in
the tag. Specify the minimum value in the form of <fieldname>:<value>. This value
must be of the same BSON type or types as the shard key.

• maximum (document) – Specifies the maximum value of the shard key range to include in
the tag. Specify the maximum value in the form of <fieldname>:<value>. This value
must be of the same BSON type or types as the shard key.

• tag (string) – Specifies the name of the tag to attach the range specified by the minimum
and maximum arguments to.

sh.addTagRange() (page 956) attaches a range of values of the shard key to a shard tag created using the
sh.addShardTag() (page 956) method. Use this operation to ensure that the documents that exist within
the specified range exist on shards that have a matching tag.

Always issue sh.addTagRange() (page 956) when connected to a mongos (page 981) instance.

Note: If you add a tag range to a collection using sh.addTagRange() (page 956), and then later drop the
collection or its database, MongoDB does not remove tag association. If you later create a new collection with
the same name, the old tag association will apply to the new collection.

Example

Given a shard key of {STATE:1,ZIP:1}, create a tag range covering ZIP codes in New York State:

sh.addTagRange("exampledb.collection",
{STATE: "NY", ZIP: {minKey:1}},
{STATE:"NY", ZIP: {maxKey:1}},
"NY"
)

See Also:

sh.addShardTag() (page 956), sh.removeShardTag() (page 960)

sh.removeShardTag(shard, tag)
New in version 2.2.

Parameters

39.1. Sharding Commands 519

MongoDB Documentation, Release 2.4.2

• shard (string) – Specifies the name of the shard that you want to remove a tag from.

• tag (string) – Specifies the name of the tag that you want to remove from the shard.

Removes the association between a tag and a shard.

Always issue sh.removeShardTag() (page 960) when connected to a mongos (page 981) instance.

See Also:

sh.addShardTag() (page 956), sh.addTagRange() (page 956)

sh.help()

Returns a basic help text for all sharding related shell functions.

39.1.2 Database Commands

The following database commands support sharded clusters.

addShard

Parameters

• hostname (string) – a hostname or replica-set/hostname string.

• name (string) – Optional. Unless specified, a name will be automatically provided to
uniquely identify the shard.

• maxSize (integer) – Optional, megabytes. Limits the maximum size of a shard. If maxSize
is 0 then MongoDB will not limit the size of the shard.

Use the addShard (page 807) command to add a database instance or replica set to a sharded cluster. You
must run this command when connected a mongos (page 981) instance.

The command takes the following form:

{ addShard: "<hostname><:port>" }

Example

db.runCommand({addShard: "mongodb0.example.net:27027"})

Replace <hostname><:port> with the hostname and port of the database instance you want to add as a
shard.

Warning: Do not use localhost for the hostname unless your configuration server is also running on
localhost.

The optimal configuration is to deploy shards across replica sets. To add a shard on a replica set you must
specify the name of the replica set and the hostname of at least one member of the replica set. You must specify
at least one member of the set, but can specify all members in the set or another subset if desired. addShard
(page 807) takes the following form:

{ addShard: "replica-set/hostname:port" }

Example

db.runCommand({ addShard: "repl0/mongodb3.example.net:27327"})

520 Chapter 39. Reference

MongoDB Documentation, Release 2.4.2

If you specify additional hostnames, all must be members of the same replica set.

Send this command to only one mongos (page 981) instance, it will store shard configuration information in
the config database.

Note: Specify a maxSize when you have machines with different disk capacities, or if you want to limit the
amount of data on some shards.

The maxSize constraint prevents the balancer from migrating chunks to the shard when the value of
mem.mapped (page 1057) exceeds the value of maxSize.

See Also:

•sh.addShard() (page 955)

•Sharded Cluster Administration (page 481)

•Add Shards to a Cluster (page 488)

•Remove Shards from an Existing Sharded Cluster (page 508)

listShards
Use the listShards (page 849) command to return a list of configured shards. The command takes the
following form:

{ listShards: 1 }

enableSharding
The enableSharding (page 826) command enables sharding on a per-database level. Use the following
command form:

{ enableSharding: "<database name>" }

Once you’ve enabled sharding in a database, you can use the shardCollection (page 870) command to
begin the process of distributing data among the shards.

shardCollection
The shardCollection (page 870) command marks a collection for sharding and will allow data to begin
distributing among shards. You must run enableSharding (page 826) on a database before running the
shardCollection (page 870) command.

{ shardCollection: "<database>.<collection>", key: <shardkey> }

This enables sharding for the collection specified by <collection> in the database named <database>,
using the key <shardkey> to distribute documents among the shard. <shardkey> is a document and takes
the same form as an index specification document (page 186).

Parameters

• shardCollection (string) – Specify the namespace of a collection to shard in the form
<database>.<collection>.

• key (document) – Specify the index specification to use as the shard key. The index must
exist prior to the shardCollection (page 870) command unless the collection is empty.
If the collection is empty, then MongoDB will create the index prior to sharding the collec-
tion. New in version 2.4: The key may be in the form { field : "hashed" } which
will use the specified field as a hashed shard key (page 474) .

39.1. Sharding Commands 521

MongoDB Documentation, Release 2.4.2

• unique (boolean) – When true, the unique option ensures that the underlying index en-
forces a unique constraint. Hashed shard keys do not support unique constraints.

• numInitialChunks (integer) – New in version 2.4. Specify the number of chunks to create
upon sharding the collection. The collection will then be pre-split and balanced across the
specified number of chunks.

You can specify no more than 8192 chunks using numInitialChunks.

Choosing the right shard key to effectively distribute load among your shards requires some planning. Also
review Shard Keys (page 463) regarding choosing a shard key.

Warning: MongoDB provides no method to deactivate sharding for a collection after calling
shardCollection (page 870). Additionally, after shardCollection (page 870), you cannot change
shard keys or modify the value of any field used in your shard key index.

See Also:

Sharding (page 461), Sharded Cluster Overview (page 463), and Deploy a Sharded Cluster (page 481).

shardingState
shardingState (page 870) is an admin command that reports if mongod (page 971) is a member of a
sharded cluster. shardingState (page 870) has the following prototype form:

{ shardingState: 1 }

For shardingState (page 870) to detect that a mongod (page 971) is a member of a sharded cluster, the
mongod (page 971) must satisfy the following conditions:

1.the mongod (page 971) is a primary member of a replica set, and

2.the mongod (page 971) instance is a member of a sharded cluster.

If shardingState (page 870) detects that a mongod (page 971) is a member of a sharded cluster,
shardingState (page 870) returns a document that resembles the following prototype:

{
"enabled" : true,
"configServer" : "<configdb-string>",
"shardName" : "<string>",
"shardHost" : "string:",
"versions" : {

"<database>.<collection>" : Timestamp(<...>),
"<database>.<collection>" : Timestamp(<...>)

},
"ok" : 1

}

Otherwise, shardingState (page 870) will return the following document:

{ "note" : "from execCommand", "ok" : 0, "errmsg" : "not master" }

The response from shardingState (page 870) when used with a config server is:

{ "enabled": false, "ok": 1 }

Note: mongos (page 981) instances do not provide the shardingState (page 870).

522 Chapter 39. Reference

MongoDB Documentation, Release 2.4.2

Warning: This command obtains a write lock on the affected database and will block other operations until
it has completed; however, the operation is typically short lived.

removeShard
Starts the process of removing a shard from a cluster. This is a multi-stage process. Begin by issuing the
following command:

{ removeShard : "[shardName]" }

The balancer will then migrate chunks from the shard specified by [shardName]. This process happens
slowly to avoid placing undue load on the overall cluster.

The command returns immediately, with the following message:

{ msg : "draining started successfully" , state: "started" , shard: "shardName" , ok : 1 }

If you run the command again, you’ll see the following progress output:

{ msg: "draining ongoing" , state: "ongoing" , remaining: { chunks: 23 , dbs: 1 }, ok: 1 }

The remaining document specifies how many chunks and databases remain on the shard. Use
db.printShardingStatus() (page 943) to list the databases that you must move from the shard.

Each database in a sharded cluster has a primary shard. If the shard you want to remove is also the primary of
one of the cluster’s databases, then you must manually move the database to a new shard. This can be only after
the shard is empty. See the movePrimary (page 859) command for details.

After removing all chunks and databases from the shard, you may issue the command again, to return:

{ msg: "remove shard completed successfully", stage: "completed", host: "shardName", ok : 1 }

39.1. Sharding Commands 523

MongoDB Documentation, Release 2.4.2

524 Chapter 39. Reference

Part X

Application Development

525

MongoDB Documentation, Release 2.4.2

MongoDB provides language-specific client libraries called drivers that let you develop applications to interact with
your databases.

This page lists the documents, tutorials, and reference pages that describe application development. For API-level
documentation, see MongoDB Drivers and Client Libraries (page 529).

For an overview of topics with which every MongoDB application developer will want familiarity, see the aggregation
(page 247) and indexes (page 301) documents. For an introduction to basic MongoDB use, see the administration
tutorials (page 117).

See Also:

Core MongoDB Operations (CRUD) (page 159) section and the FAQ: MongoDB for Application Developers
(page 687) document. Developers also should be familiar with the The mongo Shell (page 555) shell and the MongoDB
query and update operators (page 737).

527

MongoDB Documentation, Release 2.4.2

528

CHAPTER 40

Development Considerations

The following documents outline basic application development topics:

40.1 MongoDB Drivers and Client Libraries

Applications communicate with MongoDB by way of a client library or driver that handles all interaction with the
database in language appropriate and sensible manner. See the following pages for more information about the Mon-
goDB drivers:

• JavaScript (Language Center, docs)

• Python (Language Center, docs)

• Ruby (Language Center, docs)

• PHP (Language Center, docs)

• Perl (Language Center, docs)

• Java (Language Center, docs)

• Scala (Language Center, docs)

• C# (Language Center, docs)

• C (Language Center, docs)

• C++ (Language Center, docs)

• Haskell (Language Center, docs)

• Erlang (Language Center, docs)

40.2 Optimization Strategies for MongoDB

There are many factors that affect database performance and responsiveness, including index use, query structure, data
models, application design, and architecture, as well as operational factors such as architecture and system configura-
tion.

This section describes techniques for optimizing application performance with MongoDB.

529

http://docs.mongodb.org/ecosystem/drivers
http://docs.mongodb.org/ecosystem/drivers/javascript
http://api.mongodb.org/js/current
http://docs.mongodb.org/ecosystem/drivers/python
http://api.mongodb.org/python/current
http://docs.mongodb.org/ecosystem/drivers/ruby
http://api.mongodb.org/ruby/current
http://docs.mongodb.org/ecosystem/drivers/php
http://php.net/mongo/
http://docs.mongodb.org/ecosystem/drivers/perl
http://api.mongodb.org/perl/current/
http://docs.mongodb.org/ecosystem/drivers/java
http://api.mongodb.org/java/current
http://docs.mongodb.org/ecosystem/drivers/scala
http://api.mongodb.org/scala/casbah/current/
http://docs.mongodb.org/ecosystem/drivers/csharp
http://api.mongodb.org/csharp/current/
http://docs.mongodb.org/ecosystem/drivers/c
http://api.mongodb.org/c/current/
http://docs.mongodb.org/ecosystem/drivers/cpp
http://api.mongodb.org/cplusplus/current/
http://hackage.haskell.org/package/mongoDB
http://api.mongodb.org/haskell/mongodb
http://docs.mongodb.org/ecosystem/drivers/erlang
http://api.mongodb.org/erlang/mongodb

MongoDB Documentation, Release 2.4.2

40.2.1 Optimize Query Performance with Indexes and Projections

Create Indexes to Support Queries

For commonly issued queries, create indexes (page 301). If a query searches multiple fields, create a compound index
(page 305). Scanning an index is much faster than scanning a collection. The indexes structures are smaller than the
documents reference, and store references in order.

Example

If you have a posts collection containing blog posts, and if you regularly issue a query that sorts on the
author_name field, then you can optimize the query by creating an index on the author_name field:

db.posts.ensureIndex({ author_name : 1 })

Indexes also improve efficiency on queries that routinely sort on a given field.

Example

If you regularly issue a query that sorts on the timestamp field, then you can optimize the query by creating an
index on the timestamp field:

Creating this index:

db.posts.ensureIndex({ timestamp : 1 })

Optimizes this query:

db.posts.find().sort({ timestamp : -1 })

Because MongoDB can read indexes in both ascending and descending order, the direction of a single-key index does
not matter.

Indexes support queries, update operations, and some phases of the aggregation pipeline (page 251).

Index keys that are of the BinData type are more efficiently stored in the index if:

• the binary subtype value is in the range of 0-7 or 128-135, and

• the length of the byte array is: 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, or 32.

Limit the Number of Query Results to Reduce Network Demand

MongoDB cursors return results in groups of multiple documents. If you know the number of results you want, you
can reduce the demand on network resources by issuing the cursor.limit() (page 894) method.

This is typically used in conjunction with sort operations. For example, if you need only 10 results from your query to
the posts collection, you would issue the following command:

db.posts.find().sort({ timestamp : -1 }).limit(10)

For more information on limiting results, see cursor.limit() (page 894)

530 Chapter 40. Development Considerations

MongoDB Documentation, Release 2.4.2

Use Projections to Return Only Necessary Data

When you need only a subset of fields from documents, you can achieve better performance by returning only the
fields you need:

For example, if in your query to the posts collection, you need only the timestamp, title, author, and
abstract fields, you would issue the following command:

db.posts.find({}, { timestamp : 1 , title : 1 , author : 1 , abstract : 1}).sort({ timestamp : -1 })

For more information on using projections, see Result Projections (page 165).

Use $hint to Select a Particular Index

In most cases the query optimizer (page 168) selects the optimal index for a specific operation; however, you can
force MongoDB to use a specific index using the hint() (page 894) method. Use hint() (page 894) to support
performance testing, or on some queries where you must select a field or field included in several indexes.

Use the Increment Operator to Perform Operations Server-Side

Use MongoDB’s $inc (page 751) operator to increment or decrement values in documents. The operator increments
the value of the field on the server side, as an alternative to selecting a document, making simple modifications in
the client and then writing the entire document to the server. The $inc (page 751) operator can also help avoid race
conditions, which would result when two application instances queried for a document, manually incremented a field,
and saved the entire document back at the same time.

40.2.2 Evaluate Performance of Current Operations

The following sections describe techniques for evaluating operational performance.

Use the Database Profiler to Evaluate Operations Against the Database

MongoDB provides a database profiler that shows performance characteristics of each operation against the database.
Use the profiler to locate any queries or write operations that are running slow. You can use this information, for
example, to determine what indexes to create.

For more information, see Database Profiling (page 92).

Use db.currentOp() to Evaluate mongod Operations

The db.currentOp() (page 936) method reports on current operations running on a mongod (page 971) instance.
For documentation of the output of db.currentOp() (page 936) see Current Operation Reporting (page 1078).

Use $explain to Evaluate Query Performance

The explain() (page 892) method returns statistics on a query, and reports the index MongoDB selected to fulfill
the query, as well as information about the internal operation of the query.

Example

40.2. Optimization Strategies for MongoDB 531

MongoDB Documentation, Release 2.4.2

To use explain() (page 892) on a query for documents matching the expression { a: 1 }, in the collection
records, use an operation that resembles the following in the mongo (page 984) shell:

db.records.find({ a: 1 }).explain()

40.2.3 Use Capped Collections for Fast Writes and Reads

Use Capped Collections for Fast Writes

Capped Collections (page 532) are circular, fixed-size collections that keep documents well-ordered, even without the
use of an index. This means that capped collections can receive very high-speed writes and sequential reads.

These collections are particularly useful for keeping log files but are not limited to that purpose. Use capped collections
where appropriate.

Use Natural Order for Fast Reads

To return documents in the order they exist on disk, return sorted operations using the $natural (page 755) operator.
On a capped collection, this also returns the documents in the order in which they were written.

Natural order does not use indexes but can be fast for operations when you want to select the first or last items on disk.

See Also:

sort() (page 900) and limit() (page 894).

See Also:

Server-side JavaScript (page 534).

40.3 Capped Collections

Capped collections are fixed-size collections that support high-throughput operations that insert, retrieve, and delete
documents based on insertion order. Capped collections work in a way similar to circular buffers: once a collection
fills its allocated space, it makes room for new documents by overwriting the oldest documents in the collection.

Capped collections have the following behaviors:

• Capped collections guarantee preservation of the insertion order. As a result, queries do not need an index to
return documents in insertion order. Without this indexing overhead, they can support higher insertion through-
put.

• Capped collections guarantee that insertion order is identical to the order on disk (natural order) and do so
by prohibiting updates that increase document size. Capped collections only allow updates that fit the original
document size, which ensures a document does not change its location on disk.

• Capped collections automatically remove the oldest documents in the collection without requiring scripts or
explicit remove operations.

For example, the oplog.rs collection that stores a log of the operations in a replica set uses a capped collection.
Consider the following potential uses cases for capped collections:

• Store log information generated by high-volume systems. Inserting documents in a capped collection without
an index is close to the speed of writing log information directly to a file system. Furthermore, the built-in
first-in-first-out property maintains the order of events, while managing storage use.

532 Chapter 40. Development Considerations

MongoDB Documentation, Release 2.4.2

• Cache small amounts of data in a capped collections. Since caches are read rather than write heavy, you would
either need to ensure that this collection always remains in the working set (i.e. in RAM) or accept some write
penalty for the required index or indexes.

40.3.1 Recommendations and Restrictions

• You cannot shard a capped collection.

• Capped collections created after 2.2 have an _id field and an index on the _id field by default. Capped
collections created before 2.2 do not have an index on the _id field by default. If you are using capped
collections with replication prior to 2.2, you should explicitly create an index on the _id field.

• You can update documents in a collection after inserting them; however, these updates cannot cause the doc-
uments to grow. If the update operation causes the document to grow beyond their original size, the update
operation will fail.

If you plan to update documents in a capped collection, remember to create an index to prevent update operations
that require a table scan.

• You cannot delete documents from a capped collection. To remove all records from a capped collection, use the
‘emptycapped’ command. To remove the collection entirely, use the drop() (page 906) method.

Warning: If you have a capped collection in a replica set outside of the local database, before 2.2, you should
create a unique index on _id. Ensure uniqueness using the unique: true option to the ensureIndex()
(page 907) method or by using an ObjectId for the _id field. Alternately, you can use the autoIndexId option
to create (page 822) when creating the capped collection, as in the Query a Capped Collection (page 533)
procedure.

• Use natural ordering to retrieve the most recently inserted elements from the collection efficiently. This is
(somewhat) analogous to tail on a log file.

40.3.2 Procedures

Create a Capped Collection

You must create capped collections explicitly using the createCollection() (page 935) method, which is a
helper in the mongo (page 984) shell for the create (page 822) command. When creating a capped collection you
must specify the maximum size of the collection in bytes, which MongoDB will pre-allocate for the collection. The
size of the capped collection includes a small amount of space for internal overhead.

db.createCollection("mycoll", {capped:true, size:100000})

See Also:

db.createCollection() (page 935) and create (page 822).

Query a Capped Collection

If you perform a find() (page 910) on a capped collection with no ordering specified, MongoDB guarantees that
the ordering of results is the same as the insertion order.

To retrieve documents in reverse insertion order, issue find() (page 910) along with the sort() (page 900) method
with the $natural (page 755) parameter set to -1, as shown in the following example:

40.3. Capped Collections 533

MongoDB Documentation, Release 2.4.2

db.cappedCollection.find().sort({ $natural: -1 })

Check if a Collection is Capped

Use the db.collection.isCapped() (page 921) method to determine if a collection is capped, as follows:

db.collection.isCapped()

Convert a Collection to Capped

You can convert a non-capped collection to a capped collection with the convertToCapped (page 819) command:

db.runCommand({"convertToCapped": "mycoll", size: 100000});

The size parameter specifies the size of the capped collection in bytes. Changed in version 2.2: Before 2.2, capped
collections did not have an index on _id unless you specified autoIndexId to the create (page 822), after 2.2
this became the default.

Automatically Remove Data After a Specified Period of Time

For additional flexibility when expiring data, consider MongoDB’s TTL indexes, as described in Expire Data from
Collections by Setting TTL (page 551). These indexes allow you to expire and remove data from normal collections
using a special type, based on the value of a date-typed field and a TTL value for the index.

TTL Collections (page 551) are not compatible with capped collections.

Tailable Cursor

You can use a tailable cursor with capped collections. Similar to the Unix tail -f command, the tailable cursor
“tails” the end of a capped collection. As new documents are inserted into the capped collection, you can use the
tailable cursor to continue retrieving documents.

See Create Tailable Cursor (page 543) for information on creating a tailable cursor.

40.4 Server-side JavaScript

Changed in version 2.4: The V8 JavaScript engine, which became the default in 2.4, allows multiple JavaScript
operations to execute at the same time. Prior to 2.4, MongoDB operations that required the JavaScript interpreter had
to acquire a lock, and a single mongod (page 971) could only run a single JavaScript operation at a time.

40.4.1 Overview

MongoDB supports server-side execution of JavaScript code within the database process:

• mapReduce (page 851) and the corresponding mongo (page 984) shell method
db.collection.mapReduce() (page 921). See Map-Reduce (page 285) for more information.

• eval (page 826) command, and the corresponding mongo (page 984) shell method db.eval() (page 936)

• $where (page 777) operator

• Running .js files via a mongo shell Instance on the Server (page 535)

534 Chapter 40. Development Considerations

MongoDB Documentation, Release 2.4.2

See Also:

Store a JavaScript Function on the Server (page 535)

You can disable all server-side execution of JavaScript, by passing the --noscripting (page 975) option on the
command line or setting noscripting (page 1031) in a configuration file.

40.4.2 Running .js files via a mongo shell Instance on the Server

You can run a JavaScript (.js) file using a mongo (page 984) shell instance on the server. This is a good technique
for performing batch administrative work. When you run mongo (page 984) shell on the server, connecting via the
localhost interface, the connection is fast with low latency.

40.4.3 Concurrency

Refer to the individual method or operator documentation for any concurrency information. See also the concurrency
table (page 702).

40.5 Store a JavaScript Function on the Server

Note: We do not recommend using server-side stored functions if possible.

There is a special system collection named system.js that can store JavaScript functions for reuse.

To store a function, you can use the db.collection.save() (page 930), as in the following example:

db.system.js.save(
{

_id : "myAddFunction" ,
value : function (x, y){ return x + y; }

}
);

• The _id field holds the name of the function and is unique per database.

• The value field holds the function definition

Once you save a function in the system.js collection, you can use the function from any JavaScript context (e.g.
eval (page 826) command or the mongo (page 984) shell method db.eval() (page 936), $where (page 777) op-
erator, mapReduce (page 851) or mongo (page 984) shell method db.collection.mapReduce() (page 921)).

Consider the following example from the mongo (page 984) shell that first saves a function named echoFunction
to the system.js collection and calls the function using db.eval() (page 936) method:

db.system.js.save(
{ _id: "echoFunction",
value : function(x) { return x; }

}
)

db.eval("echoFunction(’test’)")

See http://github.com/mongodb/mongo/tree/master/jstests/storefunc.js for a full example. New in version 2.1: In the
mongo (page 984) shell, you can use db.loadServerScripts() (page 942) to load all the scripts saved in the

40.5. Store a JavaScript Function on the Server 535

http://github.com/mongodb/mongo/tree/master/jstests/storefunc.js

MongoDB Documentation, Release 2.4.2

system.js collection for the current database. Once loaded, you can invoke the functions directly in the shell, as in
the following example:

db.loadServerScripts();

echoFunction(3);

myAddFunction(3, 5);

See Also:

• Read Preference (page 381)

• Write Concern (page 378)

• Indexing Strategies (page 315)

• Aggregation Framework (page 249)

• Map-Reduce (page 285)

• Perform Incremental Map-Reduce (page 287)

• Troubleshoot the Map Function (page 291)

• Troubleshoot the Reduce Function (page 292)

• Connection String URI Format (page 1108)

536 Chapter 40. Development Considerations

CHAPTER 41

Application Design Patterns for
MongoDB

The following documents provide patterns for developing application features:

41.1 Perform Two Phase Commits

41.1.1 Synopsis

This document provides a pattern for doing multi-document updates or “transactions” using a two-phase commit
approach for writing data to multiple documents. Additionally, you can extend this process to provide a rollback
(page 541) like functionality.

41.1.2 Background

Operations on a single document are always atomic with MongoDB databases; however, operations that involve mul-
tiple documents, which are often referred to as “transactions,” are not atomic. Since documents can be fairly complex
and contain multiple “nested” documents, single-document atomicity provides necessary support for many practical
use cases.

Thus, without precautions, success or failure of the database operation cannot be “all or nothing,” and without support
for multi-document transactions it’s possible for an operation to succeed for some operations and fail with others.
When executing a transaction composed of several sequential operations the following issues arise:

• Atomicity: if one operation fails, the previous operation within the transaction must “rollback” to the previous
state (i.e. the “nothing,” in “all or nothing.”)

• Isolation: operations that run concurrently with the transaction operation set must “see” a consistent view of the
data throughout the transaction process.

• Consistency: if a major failure (i.e. network, hardware) interrupts the transaction, the database must be able to
recover a consistent state.

Despite the power of single-document atomic operations, there are cases that require multi-document transactions. For
these situations, you can use a two-phase commit, to provide support for these kinds of multi-document updates.

537

MongoDB Documentation, Release 2.4.2

Because documents can represent both pending data and states, you can use a two-phase commit to ensure that data is
consistent, and that in the case of an error, the state that preceded the transaction is recoverable (page 541).

Note: Because only single-document operations are atomic with MongoDB, two-phase commits can only offer
transaction-like semantics. It’s possible for applications to return intermediate data at intermediate points during the
two-phase commit or rollback.

41.1.3 Pattern

Overview

The most common example of transaction is to transfer funds from account A to B in a reliable way, and this pattern
uses this operation as an example. In a relational database system, this operation would encapsulate subtracting funds
from the source (A) account and adding them to the destination (B) within a single atomic transaction. For MongoDB,
you can use a two-phase commit in these situations to achieve a compatible response.

All of the examples in this document use the mongo (page 984) shell to interact with the database, and assume that
you have two collections: First, a collection named accounts that will store data about accounts with one account
per document, and a collection named transactions which will store the transactions themselves.

Begin by creating two accounts named A and B, with the following command:

db.accounts.save({name: "A", balance: 1000, pendingTransactions: []})
db.accounts.save({name: "B", balance: 1000, pendingTransactions: []})

To verify that these operations succeeded, use find() (page 910):

db.accounts.find()

mongo (page 984) will return two documents that resemble the following:

{ "_id" : ObjectId("4d7bc66cb8a04f512696151f"), "name" : "A", "balance" : 1000, "pendingTransactions" : [] }
{ "_id" : ObjectId("4d7bc67bb8a04f5126961520"), "name" : "B", "balance" : 1000, "pendingTransactions" : [] }

Transaction Description

Set Transaction State to Initial

Create the transaction collection by inserting the following document. The transaction document holds the
source and destination, which refer to the name fields of the accounts collection, as well as the value
field that represents the amount of data change to the balance field. Finally, the state field reflects the current
state of the transaction.

db.transactions.save({source: "A", destination: "B", value: 100, state: "initial"})

To verify that these operations succeeded, use find() (page 910):

db.transactions.find()

This will return a document similar to the following:

{ "_id" : ObjectId("4d7bc7a8b8a04f5126961522"), "source" : "A", "destination" : "B", "value" : 100, "state" : "initial" }

538 Chapter 41. Application Design Patterns for MongoDB

MongoDB Documentation, Release 2.4.2

Switch Transaction State to Pending

Before modifying either records in the accounts collection, set the transaction state to pending from initial.

Set the local variable t in your shell session, to the transaction document using findOne() (page 914):

t = db.transactions.findOne({state: "initial"})

After assigning this variable t, the shell will return the value of t, you will see the following output:

{
"_id" : ObjectId("4d7bc7a8b8a04f5126961522"),
"source" : "A",
"destination" : "B",
"value" : 100,
"state" : "initial"

}

Use update() (page 932) to change the value of state to pending:

db.transactions.update({_id: t._id}, {$set: {state: "pending"}})
db.transactions.find()

The find() (page 910) operation will return the contents of the transactions collection, which should resemble
the following:

{ "_id" : ObjectId("4d7bc7a8b8a04f5126961522"), "source" : "A", "destination" : "B", "value" : 100, "state" : "pending" }

Apply Transaction to Both Accounts

Continue by applying the transaction to both accounts. The update() (page 932) query will prevent you from
applying the transaction if the transaction is not already pending. Use the following update() (page 932) operation:

db.accounts.update({name: t.source, pendingTransactions: {$ne: t._id}}, {$inc: {balance: -t.value}, $push: {pendingTransactions: t._id}})
db.accounts.update({name: t.destination, pendingTransactions: {$ne: t._id}}, {$inc: {balance: t.value}, $push: {pendingTransactions: t._id}})
db.accounts.find()

The find() (page 910) operation will return the contents of the accounts collection, which should now resemble
the following:

{ "_id" : ObjectId("4d7bc97fb8a04f5126961523"), "balance" : 900, "name" : "A", "pendingTransactions" : [ObjectId("4d7bc7a8b8a04f5126961522")] }
{ "_id" : ObjectId("4d7bc984b8a04f5126961524"), "balance" : 1100, "name" : "B", "pendingTransactions" : [ObjectId("4d7bc7a8b8a04f5126961522")] }

Set Transaction State to Committed

Use the following update() (page 932) operation to set the transaction’s state to committed:

db.transactions.update({_id: t._id}, {$set: {state: "committed"}})
db.transactions.find()

The find() (page 910) operation will return the contents of the transactions collection, which should now
resemble the following:

{ "_id" : ObjectId("4d7bc7a8b8a04f5126961522"), "destination" : "B", "source" : "A", "state" : "committed", "value" : 100 }

41.1. Perform Two Phase Commits 539

MongoDB Documentation, Release 2.4.2

Remove Pending Transaction

Use the following update() (page 932) operation to set remove the pending transaction from the documents in the
accounts collection:

db.accounts.update({name: t.source}, {$pull: {pendingTransactions: t._id}})
db.accounts.update({name: t.destination}, {$pull: {pendingTransactions: t._id}})
db.accounts.find()

The find() (page 910) operation will return the contents of the accounts collection, which should now resemble
the following:

{ "_id" : ObjectId("4d7bc97fb8a04f5126961523"), "balance" : 900, "name" : "A", "pendingTransactions" : [] }
{ "_id" : ObjectId("4d7bc984b8a04f5126961524"), "balance" : 1100, "name" : "B", "pendingTransactions" : [] }

Set Transaction State to Done

Complete the transaction by setting the state of the transaction document to done:

db.transactions.update({_id: t._id}, {$set: {state: "done"}})
db.transactions.find()

The find() (page 910) operation will return the contents of the transactions collection, which should now
resemble the following:

{ "_id" : ObjectId("4d7bc7a8b8a04f5126961522"), "destination" : "B", "source" : "A", "state" : "done", "value" : 100 }

Recovering from Failure Scenarios

The most important part of the transaction procedure is not, the prototypical example above, but rather the possibility
for recovering from the various failure scenarios when transactions do not complete as intended. This section will
provide an overview of possible failures and provide methods to recover from these kinds of events.

There are two classes of failures:

• all failures that occur after the first step (i.e. “setting the transaction set to initial (page 538)”) but before the
third step (i.e. “applying the transaction to both accounts (page 539).”)

To recover, applications should get a list of transactions in the pending state and resume from the second step
(i.e. “switching the transaction state to pending (page 539).”)

• all failures that occur after the third step (i.e. “applying the transaction to both accounts (page 539)”) but before
the fifth step (i.e. “setting the transaction state to done (page 540).”)

To recover, application should get a list of transactions in the committed state and resume from the fourth
step (i.e. “remove the pending transaction (page 540).”)

Thus, the application will always be able to resume the transaction and eventually arrive at a consistent state. Run
the following recovery operations every time the application starts to catch any unfinished transactions. You may also
wish run the recovery operation at regular intervals to ensure that your data remains consistent.

The time required to reach a consistent state depends, on how long the application needs to recover each transaction.

540 Chapter 41. Application Design Patterns for MongoDB

MongoDB Documentation, Release 2.4.2

Rollback

In some cases you may need to “rollback” or undo a transaction when the application needs to “cancel” the transaction,
or because it can never recover as in cases where one of the accounts doesn’t exist, or stops existing during the
transaction.

There are two possible rollback operations:

1. After you apply the transaction (page 539) (i.e. the third step,) you have fully committed the transaction and
you should not roll back the transaction. Instead, create a new transaction and switch the values in the source
and destination fields.

2. After you create the transaction (page 538) (i.e. the first step,) but before you apply the transaction (page 539)
(i.e the third step,) use the following process:

Set Transaction State to Canceling Begin by setting the transaction’s state to canceling using the following
update() (page 932) operation:

db.transactions.update({_id: t._id}, {$set: {state: "canceling"}})

Undo the Transaction Use the following sequence of operations to undo the transaction operation from both ac-
counts:

db.accounts.update({name: t.source, pendingTransactions: t._id}, {$inc: {balance: t.value}, $pull: {pendingTransactions: t._id}})
db.accounts.update({name: t.destination, pendingTransactions: t._id}, {$inc: {balance: -t.value}, $pull: {pendingTransactions: t._id}})
db.accounts.find()

The find() (page 910) operation will return the contents of the accounts collection, which should resemble the
following:

{ "_id" : ObjectId("4d7bc97fb8a04f5126961523"), "balance" : 1000, "name" : "A", "pendingTransactions" : [] }
{ "_id" : ObjectId("4d7bc984b8a04f5126961524"), "balance" : 1000, "name" : "B", "pendingTransactions" : [] }

Set Transaction State to Canceled Finally, use the following update() (page 932) operation to set the transac-
tion’s state to canceled:

Step 3: set the transaction’s state to “canceled”:

db.transactions.update({_id: t._id}, {$set: {state: "canceled"}})

Multiple Applications

Transactions exist, in part, so that several applications can create and run operations concurrently without causing data
inconsistency or conflicts. As a result, it is crucial that only one 1 application can handle a given transaction at any
point in time.

Consider the following example, with a single transaction (i.e. T1) and two applications (i.e. A1 and A2). If both
applications begin processing the transaction which is still in the initial state (i.e. step 1 (page 538)), then:

• A1 can apply the entire whole transaction before A2 starts.

• A2will then apply T1 for the second time, because the transaction does not appear as pending in the accounts
documents.

To handle multiple applications, create a marker in the transaction document itself to identify the application that is
handling the transaction. Use findAndModify() (page 911) method to modify the transaction:

41.1. Perform Two Phase Commits 541

MongoDB Documentation, Release 2.4.2

t = db.transactions.findAndModify({query: {state: "initial", application: {$exists: 0}},
update: {$set: {state: "pending", application: "A1"}},
new: true})

When you modify and reassign the local shell variable t, the mongo (page 984) shell will return the t object, which
should resemble the following:

{
"_id" : ObjectId("4d7be8af2c10315c0847fc85"),
"application" : "A1",
"destination" : "B",
"source" : "A",
"state" : "pending",
"value" : 150

}

Amend the transaction operations to ensure that only applications that match the identifier in the value of the
application field before applying the transaction.

If the application A1 fails during transaction execution, you can use the recovery procedures (page 540), but applica-
tions should ensure that they “owns” the transaction before applying the transaction. For example to resume pending
jobs, use a query that resembles the following:

db.transactions.find({application: "A1", state: "pending"})

This will (or may) return a document from the transactions document that resembles the following:

{ "_id" : ObjectId("4d7be8af2c10315c0847fc85"), "application" : "A1", "destination" : "B", "source" : "A", "state" : "pending", "value" : 150 }

41.1.4 Using Two-Phase Commits in Production Applications

The example transaction above is intentionally simple. For example, it assumes that:

• it is always possible roll back operations an account.

• account balances can hold negative values.

Production implementations would likely be more complex. Typically accounts need to information about current
balance, pending credits, pending debits. Then:

• when your application switches the transaction state to pending (page 539) (i.e. step 2) it would also make sure
that the accounts has sufficient funds for the transaction. During this update operation, the application would
also modify the values of the credits and debits as well as adding the transaction as pending.

• when your application removes the pending transaction (page 539) (i.e. step 4) the application would apply the
transaction on balance, modify the credits and debits as well as removing the transaction from the pending
field., all in one update.

Because all of the changes in the above two operations occur within a single update() (page 932) operation, these
changes are all atomic.

Additionally, for most important transactions, ensure that:

• the database interface (i.e. client library or driver) has a reasonable write concern configured to ensure that
operations return a response on the success or failure of a write operation.

• your mongod (page 971) instance has journaling enabled to ensure that your data is always in a recoverable
state, in the event of an unclean mongod (page 971) shutdown.

542 Chapter 41. Application Design Patterns for MongoDB

MongoDB Documentation, Release 2.4.2

41.2 Create Tailable Cursor

41.2.1 Overview

By default, MongoDB will automatically close a cursor when the client has exhausted all results in the cursor. How-
ever, for capped collections (page 532) you may use a Tailable Cursor that remains open after the client exhausts
the results in the initial cursor. Tailable cursors are conceptually equivalent to the tail Unix command with the -f
option (i.e. with “follow” mode.) After clients insert new additional documents into a capped collection, the tailable
cursor will continue to retrieve documents.

Use tailable cursors on capped collections with high numbers of write operations for which an index would be too
expensive. For instance, MongoDB replication (page 367) uses tailable cursors to tail the primary’s oplog.

Note: If your query is on an indexed field, do not use tailable cursors, but instead, use a regular cursor. Keep track of
the last value of the indexed field returned by the query. To retrieve the newly added documents, query the collection
again using the last value of the indexed field in the query criteria, as in the following example:

db.<collection>.find({ indexedField: { $gt: <lastvalue> } })

Consider the following behaviors related to tailable cursors:

• Tailable cursors do not use indexes and return documents in natural order.

• Because tailable cursors do not use indexes, the initial scan for the query may be expensive; but, after initially
exhausting the cursor, subsequent retrievals of the newly added documents are inexpensive.

• Tailable cursors may become dead, or invalid, if either:

– the query returns no match.

– the cursor returns the document at the “end” of the collection and then the application deletes those docu-
ment.

A dead cursor has an id of 0.

See your driver documentation (page 529) for the driver-specific method to specify the tailable cursor. For more
information on the details of specifying a tailable cursor, see MongoDB wire protocol documentation.

41.2.2 C++ Example

The tail function uses a tailable cursor to output the results from a query to a capped collection:

• The function handles the case of the dead cursor by having the query be inside a loop.

• To periodically check for new data, the cursor->more() statement is also inside a loop.

#include "client/dbclient.h"

using namespace mongo;

/*
* Example of a tailable cursor.

* The function "tails" the capped collection (ns) and output elements as they are added.

* The function also handles the possibility of a dead cursor by tracking the field ’insertDate’.

* New documents are added with increasing values of ’insertDate’.

*/

void tail(DBClientBase& conn, const char *ns) {

41.2. Create Tailable Cursor 543

http://docs.mongodb.org/meta-driver/latest/legacy/mongodb-wire-protocol

MongoDB Documentation, Release 2.4.2

BSONElement lastValue = minKey.firstElement();

Query query = Query().hint(BSON("$natural" << 1));

while (1) {
auto_ptr<DBClientCursor> c =

conn.query(ns, query, 0, 0, 0,
QueryOption_CursorTailable | QueryOption_AwaitData);

while (1) {
if (!c->more()) {

if (c->isDead()) {
break;

}

continue;
}

BSONObj o = c->next();
lastValue = o["insertDate"];
cout << o.toString() << endl;

}

query = QUERY("insertDate" << GT << lastValue).hint(BSON("$natural" << 1));
}

}

The tail function performs the following actions:

• Initialize the lastValue variable, which tracks the last accessed value. The function will use the lastValue
if the cursor becomes invalid and tail needs to restart the query. Use hint() (page 894) to ensure that the
query uses the $natural (page 755) order.

• In an outer while(1) loop,

– Query the capped collection and return a tailable cursor that blocks for several seconds waiting for new
documents

auto_ptr<DBClientCursor> c =
conn.query(ns, query, 0, 0, 0,

QueryOption_CursorTailable | QueryOption_AwaitData);

* Specify the capped collection using ns as an argument to the function.

* Set the QueryOption_CursorTailable option to create a tailable cursor.

* Set the QueryOption_AwaitData option so that the returned cursor blocks for a few seconds to
wait for data.

– In an inner while (1) loop, read the documents from the cursor:

* If the cursor has no more documents and is not invalid, loop the inner while loop to recheck for
more documents.

* If the cursor has no more documents and is dead, break the inner while loop.

* If the cursor has documents:

· output the document,

· update the lastValue value,

544 Chapter 41. Application Design Patterns for MongoDB

MongoDB Documentation, Release 2.4.2

· and loop the inner while (1) loop to recheck for more documents.

– If the logic breaks out of the inner while (1) loop and the cursor is invalid:

* Use the lastValue value to create a new query condition that matches documents added after the
lastValue. Explicitly ensure $natural order with the hint() method:

query = QUERY("insertDate" << GT << lastValue).hint(BSON("$natural" << 1));

* Loop through the outer while (1) loop to re-query with the new query condition and repeat.

See Also:

Detailed blog post on tailable cursor

41.3 Isolate Sequence of Operations

41.3.1 Overview

Write operations are atomic on the level of a single document: no single write operation can atomically affect more
than one document or more than one collection.

When a single write operation modifies multiple documents, the operation as a whole is not atomic, and other opera-
tions may interleave. The modification of a single document, or record, is always atomic, even if the write operation
modifies multiple sub-document within the single record.

No other operations are atomic; however, you can isolate a single write operation that affects multiple documents
using the isolation operator (page 751).

This document describes one method of updating documents only if the local copy of the document reflects the current
state of the document in the database. In addition the following methods provide a way to manage isolated sequences
of operations:

• the findAndModify() (page 911) provides an isolated query and modify operation.

• Perform Two Phase Commits (page 537)

• Create a unique index (page 308), to ensure that a key doesn’t exist when you insert it.

41.3.2 Update if Current

In this pattern, you will:

• query for a document,

• modify the fields in that document

• and update the fields of a document only if the fields have not changed in the collection since the query.

Consider the following example in JavaScript which attempts to update the qty field of a document in the products
collection:

1 var myCollection = db.products;
2 var myDocument = myCollection.findOne({ sku: ’abc123’ });
3

4 if (myDocument) {
5

6 var oldQty = myDocument.qty;
7

41.3. Isolate Sequence of Operations 545

http://shtylman.com/post/the-tail-of-mongodb

MongoDB Documentation, Release 2.4.2

8 if (myDocument.qty < 10) {
9 myDocument.qty *= 4;

10 } else if (myDocument.qty < 20) {
11 myDocument.qty *= 3;
12 } else {
13 myDocument.qty *= 2;
14 }
15

16 myCollection.update(
17 {
18 _id: myDocument._id,
19 qty: oldQty
20 },
21 {
22 $set: { qty: myDocument.qty }
23 }
24)
25

26 var err = db.getLastErrorObj();
27

28 if (err && err.code) {
29 print("unexpected error updating document: " + tojson(err));
30 } else if (err.n == 0) {
31 print("No update: no matching document for { _id: " + myDocument._id + ", qty: " + oldQty + " }")
32 }
33

34 }

Your application may require some modifications of this pattern, such as:

• Use the entire document as the query in lines 18 and 19, to generalize the operation and guarantee that the
original document was not modified, rather than ensuring that as single field was not changed.

• Add a version variable to the document that applications increment upon each update operation to the documents.
Use this version variable in the query expression. You must be able to ensure that all clients that connect to your
database obey this constraint.

• Use $set (page 770) in the update expression to modify only your fields and prevent overriding other fields.

• Use one of the methods described in Create an Auto-Incrementing Sequence Field (page 546).

41.4 Create an Auto-Incrementing Sequence Field

41.4.1 Synopsis

MongoDB reserves the _id field in the top level of all documents as a primary key. _id must be unique, and always
has an index with a unique constraint (page 308). However, except for the unique constraint you can use any value for
the _id field in your collections. This tutorial describes two methods for creating an incrementing sequence number
for the _id field using the following:

• A Counters Collection (page 547)

• Optimistic Loop (page 548)

546 Chapter 41. Application Design Patterns for MongoDB

MongoDB Documentation, Release 2.4.2

Warning: Generally in MongoDB, you would not use an auto-increment pattern for the _id field, or any field,
because it does not scale for databases with larger numbers of documents. Typically the default value ObjectId is
more ideal for the _id.

A Counters Collection

Use a separate counters collection tracks the last number sequence used. The _id field contains the sequence
name and the seq contains the last value of the sequence.

1. Insert into the counters collection, the initial value for the userid:

db.counters.insert(
{

_id: "userid",
seq: 0

}
)

2. Create a getNextSequence function that accepts a name of the sequence. The function uses the
findAndModify() (page 911) method to atomically increment the seq value and return this new value:

function getNextSequence(name) {
var ret = db.counters.findAndModify(

{
query: { _id: name },
update: { $inc: { seq: 1 } },
new: true

}
);

return ret.seq;
}

3. Use this getNextSequence() function during insert() (page 920).

db.users.insert(
{

_id: getNextSequence("userid"),
name: "Sarah C."

}
)

db.users.insert(
{

_id: getNextSequence("userid"),
name: "Bob D."

}
)

You can verify the results with find() (page 910):

db.users.find()

The _id fields contain incrementing sequence values:

{
_id : 1,
name : "Sarah C."

41.4. Create an Auto-Incrementing Sequence Field 547

MongoDB Documentation, Release 2.4.2

}
{
_id : 2,
name : "Bob D."

}

Note: When findAndModify() (page 911) includes the upsert: true option and the query field(s) is not
uniquely indexed, the method could insert a document multiple times in certain circumstances. For instance, if multiple
clients each invoke the method with the same query condition and these methods complete the find phase before any
of methods perform the modify phase, these methods could insert the same document.

In the counters collection example, the query field is the _id field, which always has a unique index. Consider that
the findAndModify() (page 911) includes the upsert: true option, as in the following modified example:

function getNextSequence(name) {
var ret = db.counters.findAndModify(

{
query: { _id: name },
update: { $inc: { seq: 1 } },
new: true,
upsert: true

}
);

return ret.seq;
}

If multiple clients were to invoke the getNextSequence() method with the same name parameter, then the
methods would observe one of the following behaviors:

• Exactly one findAndModify() (page 911) would successfully insert a new document.

• Zero or more findAndModify() (page 911) methods would update the newly inserted document.

• Zero or more findAndModify() (page 911) methods would fail when they attempted to insert a duplicate.

If the method fails due to a unique index constraint violation, retry the method. Absent a delete of the document, the
retry should not fail.

Optimistic Loop

In this pattern, an Optimistic Loop calculates the incremented _id value and attempts to insert a document with the
calculated _id value. If the insert is successful, the loop ends. Otherwise, the loop will iterate through possible _id
values until the insert is successful.

1. Create a function named insertDocument that performs the “insert if not present” loop. The function wraps
the insert() (page 920) method and takes a doc and a targetCollection arguments.

function insertDocument(doc, targetCollection) {

while (1) {

var cursor = targetCollection.find({}, { _id: 1 }).sort({ _id: -1 }).limit(1);

var seq = cursor.hasNext() ? cursor.next()._id + 1 : 1;

doc._id = seq;

548 Chapter 41. Application Design Patterns for MongoDB

MongoDB Documentation, Release 2.4.2

targetCollection.insert(doc);

var err = db.getLastErrorObj();

if(err && err.code) {
if(err.code == 11000 /* dup key */)

continue;
else

print("unexpected error inserting data: " + tojson(err));
}

break;
}

}

The while (1) loop performs the following actions:

• Queries the targetCollection for the document with the maximum _id value.

• Determines the next sequence value for _id by:

– adding 1 to the returned _id value if the returned cursor points to a document.

– otherwise: it sets the next sequence value to 1 if the returned cursor points to no document.

• For the doc to insert, set its _id field to the calculated sequence value seq.

• Insert the doc into the targetCollection.

• If the insert operation errors with duplicate key, repeat the loop. Otherwise, if the insert operation encoun-
ters some other error or if the operation succeeds, break out of the loop.

2. Use the insertDocument() function to perform an insert:

var myCollection = db.users2;

insertDocument(
{

name: "Grace H."
},
myCollection

);

insertDocument(
{

name: "Ted R."
},
myCollection

)

You can verify the results with find() (page 910):

db.users2.find()

The _id fields contain incrementing sequence values:

{
_id: 1,
name: "Grace H."

}
{

41.4. Create an Auto-Incrementing Sequence Field 549

MongoDB Documentation, Release 2.4.2

_id : 2,
"name" : "Ted R."

}

The while loop may iterate many times in collections with larger insert volumes.

41.5 Limit Number of Elements in an Array after an Update

New in version 2.4.

41.5.1 Synopsis

Consider an application where users may submit many scores (e.g. for a test), but the application only needs to track
the top three test scores.

This pattern uses the $push (page 765) operator with the $each (page 744), $sort (page 773), and $slice
(page 772) modifiers to sort and maintain an array of fixed size.

Important: The array elements must be documents in order to use the $sort (page 773) modifier.

41.5.2 Pattern

Consider the following document in the collection students:

{
_id: 1,
scores: [

{ attempt: 1, score: 10 },
{ attempt: 2 , score:8 }

]
}

The following update uses the $push (page 765) operator with:

• the $each (page 744) modifier to append to the array 2 new elements,

• the $sort (page 773) modifier to order the elements by ascending (1) score, and

• the $slice (page 772) modifier to keep the last 3 elements of the ordered array.

db.students.update(
{ _id: 1 },
{ $push: { scores: { $each : [

{ attempt: 3, score: 7 },
{ attempt: 4, score: 4 }

],
$sort: { score: 1 },
$slice: -3

}
}

}
)

550 Chapter 41. Application Design Patterns for MongoDB

MongoDB Documentation, Release 2.4.2

Note: When using the $sort (page 773) modifier on the array element, access the field in the subdocument element
directly instead of using the dot notation on the array field.

After the operation, the document contains the only the top 3 scores in the scores array:

{
"_id" : 1,
"scores" : [

{ "attempt" : 3, "score" : 7 },
{ "attempt" : 2, "score" : 8 },
{ "attempt" : 1, "score" : 10 }

]
}

See Also:

• $push (page 765) operator,

• $each (page 744) modifier,

• $sort (page 773) modifier, and

• $slice (page 772) modifier.

41.6 Expire Data from Collections by Setting TTL

New in version 2.2. This document provides an introductions to MongoDB’s “time to live” or “TTL” collection feature.
Implemented as a special index type, TTL collections make it possible to store data in MongoDB and have the mongod
(page 971) automatically remove data after a specified period of time. This is ideal for some types of information like
machine generated event data, logs, and session information that only need to persist in a database for a limited period
of time.

41.6.1 Background

Collections expire by way of a special index that keeps track of insertion time in conjunction with a background thread
in mongod (page 971) that regularly removes expired documents from the collection. You can use this feature to
expire data from replica sets and sharded clusters.

Use the expireAfterSeconds option to the ensureIndex (page 907) method in conjunction with a TTL value
in seconds to create an expiring collection. TTL collections set the usePowerOf2Sizes (page 814) collection
flag, which means MongoDB must allocate more disk space relative to data size. This approach helps mitigate the
possibility of storage fragmentation caused by frequent delete operations and leads to more predictable storage use
patterns.

Note: When the TTL thread is active, you will see a delete (page 219) operation in the output of db.currentOp()
(page 936) or in the data collected by the database profiler (page 95).

41.6.2 Constraints

Consider the following limitations:

• the indexed field must be a date BSON type. If the field does not have a date type, the data will not expire.

41.6. Expire Data from Collections by Setting TTL 551

MongoDB Documentation, Release 2.4.2

• you cannot create this index on the _id field, or a field that already has an index.

• the TTL index may not be compound (may not have multiple fields).

• if the field holds an array, and there are multiple date-typed data in the index, the document will expire when the
lowest (i.e. earliest) matches the expiration threshold.

• you cannot use a TTL index on a capped collection, because MongoDB cannot remove documents from a capped
collection.

Note: TTL indexes expire data by removing documents in a background task that runs once a minute. As a result, the
TTL index provides no guarantees that expired documents will not exist in the collection. Consider that:

• Documents may remain in a collection after they expire and before the background process runs.

• The duration of the removal operations depend on the workload of your mongod (page 971) instance.

41.6.3 Enabling a TTL for a Collection

To set a TTL on the collection “log.events” for one hour use the following command at the mongo (page 984)
shell:

db.log.events.ensureIndex({ "status": 1 }, { expireAfterSeconds: 3600 })

The status field must hold date/time information. MongoDB will automatically delete documents from this collec-
tion once the value of status is one or more hours old.

41.6.4 Replication

The TTL background thread only runs on primary members of replica sets. Secondaries members will replicate
deletion operations from the primaries.

552 Chapter 41. Application Design Patterns for MongoDB

Part XI

The mongo Shell

553

MongoDB Documentation, Release 2.4.2

The mongo (page 984) shell is an interactive JavaScript shell for MongoDB, and is part of all MongoDB distributions.
This section provides an introduction to the shell, and outlines key functions, operations, and use of the mongo
(page 984) shell.

Most examples in the MongoDB Manual (page 1) use the mongo (page 984) shell; however, many drivers (page 529)
provide similar interfaces to MongoDB.

555

http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.4.2

556

CHAPTER 42

Getting Started with the mongo Shell

This document provides a basic introduction to using the mongo (page 984) shell. See Install MongoDB (page 3) for
instructions on installing MongoDB for your system.

42.1 Start the mongo Shell

To start the mongo (page 984) shell and connect to your MongoDB (page 971) instance running on localhost with
default port:

1. Go to your <mongodb installation dir>:

cd <mongodb installation dir>

2. Type ./bin/mongo to start mongo (page 984):

./bin/mongo

If you have added the <mongodb installation dir>/bin to the PATH environment variable, you can
just type mongo instead of ./bin/mongo.

3. To display the database you are using, type db:

db

The command should return test, which is the default database. To switch databases, issue the use <db>
command, as in the following example:

use <database>

To list the available databases, use the command show dbs. See also How can I access to different databases
temporarily? (page 697) to access a different database from the current database without switching your current
database context (i.e. db..)

To start the mongo (page 984) shell with other options, see examples of starting up mongo (page 989) and mongo
reference (page 984) which provides details on the available options.

Note: When starting, mongo (page 984) checks the user’s HOME (page 987) directory for a JavaScript file named
.mongorc.js (page 987). If found, mongo (page 984) interprets the content of .mongorc.js before displaying the
prompt for the first time. If you use the shell to evaluate a JavaScript file or expression, either by using the --eval

557

MongoDB Documentation, Release 2.4.2

(page 985) option on the command line or by specifying a .js file to mongo (page 987), mongo (page 984) will read
the .mongorc.js file after the JavaScript has finished processing.

42.2 Executing Queries

From the mongo (page 984) shell, you can use the shell methods (page 881) to run queries, as in the following
example:

db.<collection>.find()

• The db refers to the current database.

• The <collection> is the name of the collection to query. See Collection Help (page 566) to list the available
collections.

If the mongo (page 984) shell does not accept the name of the collection, for instance if the name contains a
space or starts with a number, you can use an alternate syntax to refer to the collection, as in the following:

db["3test"].find()

db.getCollection("3test").find()

• The find() (page 910) method is the JavaScript method to retrieve documents from <collection>. The
find() (page 910) method returns a cursor to the results; however, in the mongo (page 984) shell, if the
returned cursor is not assigned to a variable, then the cursor is automatically iterated up to 20 times to print up
to the first 20 documents that match the query. The mongo (page 984) shell will prompt Type it to iterate
another 20 times.

You can set the DBQuery.shellBatchSize attribute to change the number of iteration from the default
value 20, as in the following example which sets it to 10:

DBQuery.shellBatchSize = 10;

For more information and examples on cursor handling in the mongo (page 984) shell, see Cursors (page 169).

See also Cursor Help (page 566) for list of cursor help in the mongo (page 984) shell.

For more documentation of basic MongoDB operations in the mongo (page 984) shell, see:

• Getting Started with MongoDB (page 21)

• mongo Shell Quick Reference (page 571)

• Create (page 195)

• Read (page 203)

• Update (page 213)

• Delete (page 219)

• Indexing Operations (page 321)

• Read Operations (page 161)

• Write Operations (page 173)

558 Chapter 42. Getting Started with the mongo Shell

MongoDB Documentation, Release 2.4.2

42.3 Print

The mongo (page 984) shell automatically prints the results of the find() (page 910) method if the returned cursor
is not assigned to a variable. To format the result, you can add the .pretty() to the operation, as in the following:

db.<collection>.find().pretty()

In addition, you can use the following explicit print methods in the mongo (page 984) shell:

• print() to print without formatting

• print(tojson(<obj>)) to print with JSON formatting and equivalent to printjson()

• printjson() to print with JSON formatting and equivalent to print(tojson(<obj>))

42.4 Use a Custom Prompt

You may modify the content of the prompt by creating the variable prompt in the shell. The prompt variable can
hold strings as well as any arbitrary JavaScript. If prompt holds a function that returns a string, mongo (page 984)
can display dynamic information in each prompt. Consider the following examples:

Example

Create a prompt with the number of commands issued in the current session, define the following variables:

cmdCount = 1;
prompt = function() {

return (cmdCount++) + "> ";
}

The prompt would then resemble the following:

1> db.collection.find()
2> show collections
3>

Example

To create a mongo (page 984) shell prompt in the form of <database>@<hostnane>$ define the following
variables:

host = db.serverStatus().host;

prompt = function() {
return db+"@"+host+"$ ";

}

The prompt would then resemble the following:

<database>@<hostname>$ use records
switched to db records
records@<hostname>$

Example

42.3. Print 559

MongoDB Documentation, Release 2.4.2

To create a mongo (page 984) shell prompt that contains the system up time and the number of documents in the
current database, define the following prompt variable:

prompt = function() {
return "Uptime:"+db.serverStatus().uptime+" Documents:"+db.stats().objects+" > ";

}

The prompt would then resemble the following:

Uptime:5897 Documents:6 > db.people.save({name : "James"});
Uptime:5948 Documents:7 >

42.5 Use an External Editor in the mongo Shell

New in version 2.2. In the mongo (page 984) shell you can use the edit operation to edit a function or variable in an
external editor. The edit operation uses the value of your environments EDITOR variable.

At your system prompt you can define the EDITOR variable and start mongo (page 984) with the following two
operations:

export EDITOR=vim
mongo

Then, consider the following example shell session:

MongoDB shell version: 2.2.0
> function f() {}
> edit f
> f
function f() {

print("this really works");
}
> f()
this really works
> o = {}
{ }
> edit o
> o
{ "soDoes" : "this" }
>

Note: As mongo (page 984) shell interprets code edited in an external editor, it may modify code in functions,
depending on the JavaScript compiler. For mongo (page 984) may convert 1+1 to 2 or remove comments. The actual
changes affect only the appearance of the code and will vary based on the version of JavaScript used but will not affect
the semantics of the code.

42.6 Exit the Shell

To exit the shell, type quit() or use the <Ctrl-c> shortcut.

560 Chapter 42. Getting Started with the mongo Shell

CHAPTER 43

Data Types in the mongo Shell

MongoDB BSON provide support for additional data types than JSON. Drivers (page 529) provide native support for
these data types in host languages and the mongo (page 984) shell also provides several helper classes to support the
use of these data types in the mongo (page 984) JavaScript shell. See MongoDB Extended JSON (page 1113) for
additional information.

43.1 Date

The mongo (page 984) shell provides various options to return the date, either as a string or as an object:

• Date() method which returns the current date as a string.

• Date() constructor which returns an ISODate object when used with the new operator.

• ISODate() constructor which returns an ISODate object when used with or without the new operator.

Consider the following examples:

• To return the date as a string, use the Date() method, as in the following example:

var myDateString = Date();

– To print the value of the variable, type the variable name in the shell, as in the following:

myDateString

The result is the value of myDateString:

Wed Dec 19 2012 01:03:25 GMT-0500 (EST)

– To verify the type, use the typeof operator, as in the following:

typeof myDateString

The operation returns string.

• To get the date as an ISODate object, instantiate a new instance using the Date() constructor with the new
operator, as in the following example:

var myDateObject = new Date();

561

MongoDB Documentation, Release 2.4.2

– To print the value of the variable, type the variable name in the shell, as in the following:

myDateObject

The result is the value of myDateObject:

ISODate("2012-12-19T06:01:17.171Z")

– To verify the type, use the typeof operator, as in the following:

typeof myDateObject

The operation returns object.

• To get the date as an ISODate object, instantiate a new instance using the ISODate() constructor without
the new operator, as in the following example:

var myDateObject2 = ISODate();

You can use the new operator with the ISODate() constructor as well.

– To print the value of the variable, type the variable name in the shell, as in the following:

myDateObject2

The result is the value of myDateObject2:

ISODate("2012-12-19T06:15:33.035Z")

– To verify the type, use the typeof operator, as in the following:

typeof myDateObject2

The operation returns object.

43.2 ObjectId

The mongo (page 984) shell provides the ObjectId() wrapper class around ObjectId data types. To generate a
new ObjectId, use the following operation in the mongo (page 984) shell:

new ObjectId

See Also:

ObjectId (page 188) for full documentation of ObjectIds in MongoDB.

43.3 NumberLong

By default, the mongo (page 984) shell treats all numbers as floating-point values. The mongo (page 984) shell
provides the NumberLong() class to handle 64-bit integers.

The NumberLong() constructor accepts the long as a string:

NumberLong("2090845886852")

The following examples use the NumberLong() class to write to the collection:

562 Chapter 43. Data Types in the mongo Shell

MongoDB Documentation, Release 2.4.2

db.collection.insert({ _id: 10, calc: NumberLong("2090845886852") })
db.collection.update({ _id: 10 },

{ $set: { calc: NumberLong("2555555000000") } })
db.collection.update({ _id: 10 },

{ $inc: { calc: NumberLong(5) } })

Retrieve the document to verify:

db.collection.findOne({ _id: 10 })

In the returned document, the calc field contains a NumberLong object:

{ "_id" : 10, "calc" : NumberLong("2555555000005") }

If you increment (page 751) the field that contains a NumberLong object by a float, the data type changes to a
floating point value, as in the following example:

1. Use $inc (page 751) to increment the calc field by 5, which the mongo (page 984) shell treats as a float:

db.collection.update({ _id: 10 },
{ $inc: { calc: 5 } })

2. Retrieve the updated document:

db.collection.findOne({ _id: 10 })

In the updated document, the calc field contains a floating point value:

{ "_id" : 10, "calc" : 2555555000010 }

43.3. NumberLong 563

MongoDB Documentation, Release 2.4.2

564 Chapter 43. Data Types in the mongo Shell

CHAPTER 44

Access the mongo Shell Help
Information

In addition to the documentation in the MongoDB Manual (page 1), the mongo (page 984) shell provides some addi-
tional information in its “online” help system. This document provides an overview of accessing this help information.

See Also:

• mongo Manual Page (page 984)

• The mongo Shell (page 555) (MongoDB Manual (page 1) section on the shell.)

• mongo Shell Quick Reference (page 571).

44.1 Command Line Help

To see the list of options and help for starting the mongo (page 984) shell, use the --help (page 986) option from
the command line:

mongo --help

44.2 Shell Help

To see the list of help, in the mongo (page 984) shell, type help:

help

44.3 Database Help

• To see the list of databases on the server, use the show dbs command:

show dbs

New in version 2.4: show databases is now an alias for show dbs

565

MongoDB Documentation, Release 2.4.2

• To see the list of help for methods you can use on the db object, call the db.help() (page 940) method:

db.help()

• To see the implementation of a method in the shell, type the db.<method name> without the parenthe-
sis (()), as in the following example which will return the implementation of the method db.addUser()
(page 901):

db.addUser

44.4 Collection Help

• To see the list of collections in the current database, use the show collections command:

show collections

• To see the help for methods available on the collection objects (e.g. db.<collection>), use the
db.<collection>.help() method:

db.collection.help()

<collection> can be the name of a collection that exists, although you may specify a collection that doesn’t
exist.

• To see the collection method implementation, type the db.<collection>.<method> name without the
parenthesis (()), as in the following example which will return the implementation of the save() (page 930)
method:

db.collection.save

44.5 Cursor Help

When you perform read operations (page 161) with the find() (page 910) method in the mongo (page 984) shell,
you can use various cursor methods to modify the find() (page 910) behavior and various JavaScript methods to
handle the cursor returned from the find() (page 910) method.

• To list the available modifier and cursor handling methods, use the db.collection.find().help()
command:

db.collection.find().help()

<collection> can be the name of a collection that exists, although you may specify a collection that doesn’t
exist.

• To see the implementation of the cursor method, type the db.<collection>.find().<method> name
without the parenthesis (()), as in the following example which will return the implementation of the
toArray() method:

db.collection.find().toArray

Some useful methods for handling cursors are:

• hasNext() (page 893) which checks whether the cursor has more documents to return.

• next() (page 898) which returns the next document and advances the cursor position forward by one.

566 Chapter 44. Access the mongo Shell Help Information

MongoDB Documentation, Release 2.4.2

• forEach(<function>) (page 893) which iterates the whole cursor and applies the <function> to each
document returned by the cursor. The <function> expects a single argument which corresponds to the
document from each iteration.

For examples on iterating a cursor and retrieving the documents from the cursor, see cursor handling (page 169). See
also Cursor Methods (page 882) for all available cursor methods.

44.6 Type Help

To get a list of the wrapper classes available in the mongo (page 984) shell, such as BinData(), type help misc
in the mongo (page 984) shell:

help misc

44.6. Type Help 567

MongoDB Documentation, Release 2.4.2

568 Chapter 44. Access the mongo Shell Help Information

CHAPTER 45

Write Scripts for the mongo Shell

You can write scripts for the mongo (page 984) shell in JavaScript that manipulate data in MongoDB or perform
administrative operation. For more information about the mongo (page 984) shell see The mongo Shell (page 555),
and see the Running .js files via a mongo shell Instance on the Server (page 535) section for more information about
using these mongo (page 984) script.

This tutorial provides an introduction to writing JavaScript that uses the mongo (page 984) shell to access MongoDB.

45.1 Opening New Connections

From the mongo (page 984) shell or from a JavaScript file, you can instantiate database connections using the
Mongo() (page 887) constructor:

new Mongo()
new Mongo(<host>)
new Mongo(<host:port>)

Consider the following example that instantiates a new connection to the MongoDB instance running on localhost on
the default port and sets the global db variable to myDatabase using the getDB() (page 888) method:

conn = new Mongo();
db = conn.getDB("myDatabase");

Additionally, you can use the connect() method to connect to the MongoDB instance. The following example
connects to the MongoDB instance that is running on localhost with the non-default port 27020 and set the
global db variable:

db = connect("localhost:27020/myDatabase");

If you create new connections inside a JavaScript file (page 570):

• You cannot use use <dbname> inside the file to set the db global variable.

• To set the db global variable, use the getDB() (page 888) method or the connect() method. You can assign
the database reference to a variable other than db.

• Additionally, inside the script, you would need to call db.getLastErrorObj() (page 939) or
db.getLastError() (page 939) explicitly to wait for the result of write operations (page 173).

569

MongoDB Documentation, Release 2.4.2

45.2 Scripting

From the command line, use mongo (page 984) to evaluate JavaScript.

45.2.1 --eval option

Use the --eval (page 985) option to mongo (page 984) to pass the shell a JavaScript fragment, as in the following:

mongo test --eval "printjson(db.getCollectionNames())"

This returns the output of db.getCollectionNames() (page 939) using the mongo (page 984) shell connected
to the mongod (page 971) or mongos (page 981) instance running on port 27017 on the localhost interface.

45.2.2 evaluate a javascript file

You can specify a .js file to the mongo (page 984) shell, and mongo (page 984) will evaluate the javascript directly.
consider the following example:

mongo localhost:27017/test myjsfile.js

This operation evaluates the myjsfile.js script in a mongo (page 984) shell that connects to the test database
on the mongod (page 971) instance accessible via the localhost interface on port 27017.

Alternately, you can specify the mongodb connection parameters inside of the javascript file using the Mongo()
constructor. See Opening New Connections (page 569) for more information.

570 Chapter 45. Write Scripts for the mongo Shell

CHAPTER 46

mongo Shell Quick Reference

46.1 mongo Shell Command History

You can retrieve previous commands issued in the mongo (page 984) shell with the up and down arrow keys. Com-
mand history is stored in ~/.dbshell file. See .dbshell (page 987) for more information.

46.2 Command Line Options

The mongo (page 984) executable can be started with numerous options. See mongo executable (page 984) page for
details on all available options.

The following table displays some common options for mongo (page 984):

Option Description
--help
(page 986)

Show command line options

--nodb
(page 985)

Start mongo (page 984) shell without connecting to a database.
To connect later, see Opening New Connections (page 569).

--shell
(page 985)

Used in conjunction with a JavaScript file (i.e. <file.js> (page 987)) to continue in the mongo
(page 984) shell after running the JavaScript file.
See JavaScript file (page 570) for an example.

46.3 Command Helpers

The mongo (page 984) shell provides various help. The following table displays some common help methods and
commands:

571

MongoDB Documentation, Release 2.4.2

Help Methods and
Commands

Description

help Show help.
db.help() Show help for database methods.
db.<collection>.help()Show help on collection methods. The <collection> can be the name of an existing

collection or a non-existing collection.
show dbs Print a list of all databases on the server.
use <db> Switch current database to <db>. The mongo (page 984) shell variable db is set to the

current database.
show
collections

Print a list of all collections for current database

show users Print a list of users for current database.
show profile Print the five most recent operations that took 1 millisecond or more. See documentation

on the database profiler (page 95) for more information.
show
databases

New in version 2.4: Print a list of all available databases.

46.4 Basic Shell JavaScript Operations

The mongo (page 984) shell provides numerous mongo Shell JavaScript Quick Reference (page 881) methods for
database operations.

In the mongo (page 984) shell, db is the variable that references the current database. The variable is automatically
set to the default database test or is set when you use the use <db> to switch current database.

The following table displays some common JavaScript operations:

572 Chapter 46. mongo Shell Quick Reference

MongoDB Documentation, Release 2.4.2

JavaScript Database Operations Description
db.auth() (page 902) If running in secure mode, authenticate the user.
coll = db.<collection> Set a specific collection in the current database to a vari-

able coll, as in the following example:
coll = db.myCollection;
You can perform operations on the myCollection
using the variable, as in the following example:
coll.find();

db.collection.find() (page 910) Find all documents in the collection and returns a cursor.
See the Read (page 203) and Read Operations
(page 161) for more information and examples.
See Cursors (page 169) for additional information on
cursor handling in the mongo (page 984) shell.

db.collection.insert() (page 920) Insert a new document into the collection.
db.collection.update() (page 932) Update an existing document in the collection.

See Update (page 213) for more information.
db.collection.save() (page 930) Insert either a new document or update an existing doc-

ument in the collection.
See Update (page 213) for more information.

db.collection.remove() (page 928) Delete documents from the collection.
See Delete (page 219) for more information.

db.collection.drop() (page 906) Drops or removes completely the collection.
db.collection.ensureIndex() (page 907) Create a new index on the collection if the index does

not exist; otherwise, the operation has no effect.
db.getSiblingDB() (page 940) or
db.getSisterDB()

Return a reference to another database using this same
connection without explicitly switching the current
database. This allows for cross database queries. See
How can I access to different databases temporarily?
(page 697) for more information.

For more information on performing operations in the shell, see:

• Create (page 195)

• Read (page 203)

• Update (page 213)

• Delete (page 219)

• Indexing Operations (page 321)

• Read Operations (page 161)

• Write Operations (page 173)

• mongo Shell JavaScript Quick Reference (page 881)

46.5 Keyboard Shortcuts

Changed in version 2.2. The mongo (page 984) shell provides most keyboard shortcuts similar to those found in the
bash shell or in Emacs. For some functions mongo (page 984) provides multiple key bindings, to accommodate
several familiar paradigms.

The following table enumerates the keystrokes supported by the mongo (page 984) shell:

46.5. Keyboard Shortcuts 573

MongoDB Documentation, Release 2.4.2

Keystroke Function
Up-arrow previous-history
Down-arrow next-history
Home beginning-of-line
End end-of-line
Tab autocomplete
Left-arrow backward-character
Right-arrow forward-character
Ctrl-left-arrow backward-word
Ctrl-right-arrow forward-word
Meta-left-arrow backward-word
Meta-right-arrow forward-word
Ctrl-A beginning-of-line
Ctrl-B backward-char
Ctrl-C exit-shell
Ctrl-D delete-char (or exit shell)
Ctrl-E end-of-line
Ctrl-F forward-char
Ctrl-G abort
Ctrl-J accept-line
Ctrl-K kill-line
Ctrl-L clear-screen
Ctrl-M accept-line
Ctrl-N next-history
Ctrl-P previous-history
Ctrl-R reverse-search-history
Ctrl-S forward-search-history
Ctrl-T transpose-chars
Ctrl-U unix-line-discard
Ctrl-W unix-word-rubout
Ctrl-Y yank
Ctrl-Z Suspend (job control works in linux)
Ctrl-H (i.e. Backspace) backward-delete-char
Ctrl-I (i.e. Tab) complete
Meta-B backward-word
Meta-C capitalize-word
Meta-D kill-word
Meta-F forward-word
Meta-L downcase-word
Meta-U upcase-word
Meta-Y yank-pop
Meta-[Backspace] backward-kill-word
Meta-< beginning-of-history
Meta-> end-of-history

46.6 Queries

In the mongo (page 984) shell, perform read operations using the db.collection.find() (page 910) and
db.collection.findOne() (page 914) methods.

The db.collection.find() (page 910) method returns a cursor object which the mongo (page 984) shell

574 Chapter 46. mongo Shell Quick Reference

MongoDB Documentation, Release 2.4.2

iterates to print documents on screen. By default, mongo (page 984) prints the first 20. The mongo (page 984) shell
will prompt the user to “Type it” to continue iterating the next 20 results.

The following table provides some common read operations in the mongo (page 984) shell:

46.6. Queries 575

MongoDB Documentation, Release 2.4.2

Read Operations Description
db.collection.find(<query>) (page 910) Find the documents matching the <query> criteria in

the collection. If the <query> criteria is not specified
or is empty (i.e {}), the read operation selects all doc-
uments in the collection.
The following example selects the documents in the
users collection with the name field equal to "Joe":
coll = db.users;
coll.find({ name: "Joe" });
For more information on specifying the <query> cri-
teria, see Query Document (page 162).

db.collection.find(<query>,
<projection>) (page 910)

Find documents matching the <query> criteria and re-
turn just specific fields in the <projection>.
The following example selects all documents from the
collection but returns only the name field and the _id
field. The _id is always returned unless explicitly spec-
ified to not return.
coll = db.users;
coll.find({ },

{ name: true }
);

For more information on specifying the
<projection>, see Result Projections (page 165).

db.collection.find().sort(<sort
order>) (page 900)

Return results in the specified <sort order>.
The following example selects all documents from the
collection and returns the results sorted by the name
field in ascending order (1). Use -1 for descending or-
der:
coll = db.users;
coll.find().sort({ name: 1 });

db.collection.find(<query>).sort(
<sort order>) (page 900)

Return the documents matching the <query> criteria
in the specified <sort order>.

db.collection.find(...).limit(<n>
) (page 894)

Limit result to <n> rows. Highly recommended if you
need only a certain number of rows for best perfor-
mance.

db.collection.find(...).skip(<n>
) (page 899)

Skip <n> results.

db.collection.count() (page 904) Returns total number of documents in the collection.
db.collection.find(<query>).count()
(page 891)

Returns the total number of documents that match the
query.
The count() (page 891) ignores limit()
(page 894) and skip() (page 899). For exam-
ple, if 100 records match but the limit is 10, count()
(page 891) will return 100. This will be faster than
iterating yourself, but still take time.

db.collection.findOne(<query>)
(page 914)

Find and return a single document. Returns null if not
found.

The following example selects a single doc-
ument in the users collection with the
name field matches to "Joe":

coll = db.users;
coll.findOne({ name: "Joe" });
Internally, the findOne() (page 914) method is
the find() (page 910) method with a limit(1)
(page 894).

576 Chapter 46. mongo Shell Quick Reference

MongoDB Documentation, Release 2.4.2

See Read (page 203) and Read Operations (page 161) documentation for more information and examples. See Query,
Update, and Projection Operators Quick Reference (page 737) to specify other query operators.

46.7 Error Checking Methods

The mongo (page 984) shell provides numerous administrative database methods (page 883), including error checking
methods. These methods are:

Error Checking Methods Description
db.getLastError() (page 939) Returns error message from the last operation.
db.getLastErrorObj() (page 939) Returns the error document from the last operation.

46.8 Administrative Command Helpers

The following table lists some common methods to support database administration:

JavaScript Database
Administration Methods

Description

db.cloneDatabase(<host>)
(page 903)

Clone the current database from the host specified. The host database
instance must be in noauth mode.

db.copyDatabase(<from>,
<to>, <host>) (page 934)

Copy the <from> database from the <host> to the <to> database on the
current server.
The <host> database instance must be in noauth mode.

db.fromColl.renameCollection(<toColl>)
(page 929)

Rename collection from fromColl to toColl.

db.repairDatabase()
(page 944)

Repair and compact the current database. This operation can be very slow
on large databases.

db.addUser(<user>,
<pwd>) (page 901)

Add user to current database.

db.getCollectionNames()
(page 939)

Get the list of all collections in the current database.

db.dropDatabase()
(page 936)

Drops the current database.

See also administrative database methods (page 883) for a full list of methods.

46.9 Opening Additional Connections

You can create new connections within the mongo (page 984) shell.

The following table displays the methods to create the connections:

JavaScript Connection Create Methods Description

db = connect("<host><:port>/<dbname>")
Open a new database connection.

conn = new Mongo()
db = conn.getDB("dbname")

Open a connection to a new server using new
Mongo().
Use getDB() method of the connection to select a
database.

46.7. Error Checking Methods 577

MongoDB Documentation, Release 2.4.2

See also Opening New Connections (page 569) for more information on the opening new connections from the mongo
(page 984) shell.

46.10 Miscellaneous

The following table displays some miscellaneous methods:

Method Description
Object.bsonsize(<document>) Prints the BSON size of an <document>

See the MongoDB JavaScript API Documentation for a full list of JavaScript methods .

46.11 Additional Resources

Consider the following reference material that addresses the mongo (page 984) shell and its interface:

• mongo (page 984)

• mongo Shell JavaScript Quick Reference (page 881)

• Query, Update, and Projection Operators Quick Reference (page 737)

• Database Commands Quick Reference (page 803)

• Aggregation Framework Reference (page 265)

• Meta Query Operator Quick Reference (page 881)

Additionally, the MongoDB source code repository includes a jstests directory which contains numerous mongo
(page 984) shell scripts.

The Getting Started with MongoDB (page 21) provides a general introduction to MongoDB using examples from the
mongo (page 984) shell. Additionally, the following documents from other sections address topics relevant to the
mongo (page 984) shell use:

• FAQ: The mongo Shell (page 697)

• mongo (page 984)

• mongo Shell JavaScript Quick Reference (page 881)

Furthermore, consider the following reference material that addresses the mongo (page 984) shell and its interface:

• Query, Update, and Projection Operators Quick Reference (page 737)

• Database Commands Quick Reference (page 803)

• Aggregation Framework Reference (page 265)

• Meta Query Operator Quick Reference (page 881)

578 Chapter 46. mongo Shell Quick Reference

http://api.mongodb.org/js/index.html
https://github.com/mongodb/mongo/tree/master/jstests/

Part XII

Use Cases

579

MongoDB Documentation, Release 2.4.2

The use case documents introduce the patterns, designs, and operations used in application development with Mon-
goDB. Each document provides concrete examples and implementation details to support core MongoDB use cases.
These documents highlight application design, and data modeling strategies (i.e. schema design) for MongoDB with
special attention to pragmatic considerations including indexing, performance, sharding, and scaling. Each document
is distinct and can stand alone; however, each section builds on a set of common topics.

The operational intelligence case studies describe applications that collect machine generated data from logging sys-
tems, application output, and other systems. The product data management case studies address aspects of applications
required for building product catalogs, and managing inventory in e-commerce systems. The content management case
studies introduce basic patterns and techniques for building content management systems using MongoDB.

Finally, the introductory application development tutorials with Python and MongoDB (page 649), provides a complete
and fully developed application that you can build using MongoDB and popular Python web development tool kits.

581

http://www.10gen.com/use-cases

MongoDB Documentation, Release 2.4.2

582

CHAPTER 47

Operational Intelligence

As an introduction to the use of MongoDB for operational intelligence and real time analytics use, the document
“Storing Log Data (page 583)” describes several ways and approaches to modeling and storing machine generated
data with MongoDB. Then, “Pre-Aggregated Reports (page 593)” describes methods and strategies for processing
data to generate aggregated reports from raw event-data. Finally “Hierarchical Aggregation (page 602)” presents a
method for using MongoDB to process and store hierarchical reports (i.e. per-minute, per-hour, and per-day) from raw
event data.

47.1 Storing Log Data

47.1.1 Overview

This document outlines the basic patterns and principles for using MongoDB as a persistent storage engine for log
data from servers and other machine data.

Problem

Servers generate a large number of events (i.e. logging,) that contain useful information about their operation including
errors, warnings, and users behavior. By default, most servers, store these data in plain text log files on their local file
systems.

While plain-text logs are accessible and human-readable, they are difficult to use, reference, and analyze without
holistic systems for aggregating and storing these data.

Solution

The solution described below assumes that each server generates events also consumes event data and that each server
can access the MongoDB instance. Furthermore, this design assumes that the query rate for this logging data is
substantially lower than common for logging applications with a high-bandwidth event stream.

Note: This case assumes that you’re using an standard uncapped collection for this event data, unless otherwise noted.
See the section on capped collections (page 593)

583

MongoDB Documentation, Release 2.4.2

Schema Design

The schema for storing log data in MongoDB depends on the format of the event data that you’re storing. For a simple
example, consider standard request logs in the combined format from the Apache HTTP Server. A line from these
logs may resemble the following:

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 200 2326 "http://www.example.com/start.html" "Mozilla/4.08 [en] (Win98; I ;Nav)"

The simplest approach to storing the log data would be putting the exact text of the log record into a document:

{
_id: ObjectId(’4f442120eb03305789000000’),

line: ’127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 200 2326 "http://www.example.com/start.html" "Mozilla/4.08 [en] (Win98; I ;Nav)"’
}

While this solution is does capture all data in a format that MongoDB can use, the data is not particularly useful, or
it’s not terribly efficient: if you need to find events that the same page, you would need to use a regular expression
query, which would require a full scan of the collection. The preferred approach is to extract the relevant information
from the log data into individual fields in a MongoDB document.

When you extract data from the log into fields, pay attention to the data types you use to render the log data into
MongoDB.

As you design this schema, be mindful that the data types you use to encode the data can have a significant im-
pact on the performance and capability of the logging system. Consider the date field: In the above example,
[10/Oct/2000:13:55:36 -0700] is 28 bytes long. If you store this with the UTC timestamp type, you can
convey the same information in only 8 bytes.

Additionally, using proper types for your data also increases query flexibility: if you store date as a timestamp you can
make date range queries, whereas it’s very difficult to compare two strings that represent dates. The same issue holds
for numeric fields; storing numbers as strings requires more space and is difficult to query.

Consider the following document that captures all data from the above log entry:

{
_id: ObjectId(’4f442120eb03305789000000’),
host: "127.0.0.1",
logname: null,
user: ’frank’,
time: ISODate("2000-10-10T20:55:36Z"),
path: "/apache_pb.gif",
request: "GET /apache_pb.gif HTTP/1.0",
status: 200,
response_size: 2326,
referrer: "http://www.example.com/start.html",
user_agent: "Mozilla/4.08 [en] (Win98; I ;Nav)"

}

When extracting data from logs and designing a schema, also consider what information you can omit from your log
tracking system. In most cases there’s no need to track all data from an event log, and you can omit other fields. To
continue the above example, here the most crucial information may be the host, time, path, user agent, and referrer, as
in the following example document:

{
_id: ObjectId(’4f442120eb03305789000000’),
host: "127.0.0.1",
time: ISODate("2000-10-10T20:55:36Z"),
path: "/apache_pb.gif",
referer: "http://www.example.com/start.html",

584 Chapter 47. Operational Intelligence

MongoDB Documentation, Release 2.4.2

user_agent: "Mozilla/4.08 [en] (Win98; I ;Nav)"
}

You may also consider omitting explicit time fields, because the ObjectId embeds creation time:

{
_id: ObjectId(’4f442120eb03305789000000’),
host: "127.0.0.1",
path: "/apache_pb.gif",
referer: "http://www.example.com/start.html",
user_agent: "Mozilla/4.08 [en] (Win98; I ;Nav)"

}

System Architecture

The primary performance concern for event logging systems are:

1. how many inserts per second can it support, which limits the event throughput, and

2. how will the system manage the growth of event data, particularly concerning a growth in insert activity.

In most cases the best way to increase the capacity of the system is to use an architecture with some sort of
partitioning or sharding that distributes writes among a cluster of systems.

47.1.2 Operations

Insertion speed is the primary performance concern for an event logging system. At the same time, the system must
be able to support flexible queries so that you can return data from the system efficiently. This section describes
procedures for both document insertion and basic analytics queries.

The examples that follow use the Python programming language and the PyMongo driver for MongoDB, but you can
implement this system using any language you choose.

Inserting a Log Record

Write Concern

MongoDB has a configurable write concern. This capability allows you to balance the importance of guaranteeing
that all writes are fully recorded in the database with the speed of the insert.

For example, if you issue writes to MongoDB and do not require that the database issue any response, the write
operations will return very fast (i.e. asynchronously,) but you cannot be certain that all writes succeeded. Conversely,
if you require that MongoDB acknowledge every write operation, the database will not return as quickly but you can
be certain that every item will be present in the database.

The proper write concern is often an application specific decision, and depends on the reporting requirements and uses
of your analytics application.

Insert Performance

The following example contains the setup for a Python console session using PyMongo, with an event from the Apache
Log:

47.1. Storing Log Data 585

http://api.mongodb.org/python/current

MongoDB Documentation, Release 2.4.2

>>> import bson
>>> import pymongo
>>> from datetime import datetime
>>> conn = pymongo.Connection()
>>> db = conn.event_db
>>> event = {
... _id: bson.ObjectId(),
... host: "127.0.0.1",
... time: datetime(2000,10,10,20,55,36),
... path: "/apache_pb.gif",
... referer: "http://www.example.com/start.html",
... user_agent: "Mozilla/4.08 [en] (Win98; I ;Nav)"
...}

The following command will insert the event object into the events collection.

>>> db.events.insert(event, w=0)

By setting w=0, you do not require that MongoDB acknowledges receipt of the insert. Although very fast, this is risky
because the application cannot detect network and server failures. See Write Concern (page 174) for more information.

If you want to ensure that MongoDB acknowledges inserts, you can pass w=1 argument as follows:

>>> db.events.insert(event, w=1)

MongoDB also supports a more stringent level of write concern, if you have a lower tolerance for data loss:

You can ensure that MongoDB not only acknowledge receipt of the message but also commit the write operation to
the on-disk journal before returning successfully to the application, use can use the following insert() operation:

>>> db.events.insert(event, j=True)

Note: j=True implies w=1.

Finally, if you have extremely low tolerance for event data loss, you can require that MongoDB replicate the data to
multiple secondary replica set members before returning:

>>> db.events.insert(event, w=majority)

This will force your application to acknowledge that the data has replicated to a majority of configured members of
the replica set. You can combine options as well:

>>> db.events.insert(event, j=True, w=majority)

In this case, your application will wait for a successful journal commit on the primary and a replication acknowledg-
ment from a majority of configured secondaries. This is the safest option presented in this section, but it is the slowest.
There is always a trade-off between safety and speed.

Note: If possible, consider using bulk inserts to insert event data.

All write concern options apply to bulk inserts, but you can pass multiple events to the insert() method at once.
Batch inserts allow MongoDB to distribute the performance penalty incurred by more stringent write concern across
a group of inserts.

See Also:

Write Concern for Replica Sets (page 378) and getLastError (page 837).

586 Chapter 47. Operational Intelligence

http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.insert
http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.insert

MongoDB Documentation, Release 2.4.2

Finding All Events for a Particular Page

The value in maintaining a collection of event data derives from being able to query that data to answer specific
questions. You may have a number of simple queries that you may use to analyze these data.

As an example, you may want to return all of the events associated with specific value of a field. Extending the Apache
access log example from above, a common case would be to query for all events with a specific value in the path
field: This section contains a pattern for returning data and optimizing this operation.

Query

Use a query that resembles the following to return all documents with the
http://docs.mongodb.org/manual/apache_pb.gif value in the path field:

>>> q_events = db.events.find({’path’: ’/apache_pb.gif’})

Note: If you choose to shard the collection that stores this data, the shard key you choose can impact the performance
of this query. See the sharding (page 591) section of the sharding document.

Index Support

Adding an index on the path field would significantly enhance the performance of this operation.

>>> db.events.ensure_index(’path’)

Because the values of the path likely have a random distribution, in order to operate efficiently, the entire index
should be resident in RAM. In this case, the number of distinct paths is typically small in relation to the number of
documents, which will limit the space that the index requires.

If your system has a limited amount of RAM, or your data set has a wider distribution in values, you may need to re
investigate your indexing support. In most cases, however, this index is entirely sufficient.

See Also:

The db.collection.ensureIndex() (page 907) JavaScript method and the
db.events.ensure_index() method in PyMongo.

Finding All the Events for a Particular Date

The next example describes the process for returning all the events for a particular date.

Query

To retrieve this data, use the following query:

>>> q_events = db.events.find(’time’:
... { ’$gte’:datetime(2000,10,10),’$lt’:datetime(2000,10,11)})

47.1. Storing Log Data 587

http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.ensure_index
http://api.mongodb.org/python/current

MongoDB Documentation, Release 2.4.2

Index Support

In this case, an index on the time field would optimize performance:

>>> db.events.ensure_index(’time’)

Because your application is inserting events in order, the parts of the index that capture recent events will always be
in active RAM. As a result, if you query primarily on recent data, MongoDB will be able to maintain a large index,
quickly fulfill queries, and avoid using much system memory.

See Also:

The db.events.ensureIndex() (page 907) JavaScript method and the db.events.ensure_index()
method in PyMongo.

Finding All Events for a Particular Host/Date

The following example describes a more complex query for returning all events in the collection for a particular host
on a particular date. This kinds analysis may be useful for investigating suspicious behavior by a specific user.

Query

Use a query that resembles the following:

>>> q_events = db.events.find({
... ’host’: ’127.0.0.1’,
... ’time’: {’$gte’:datetime(2000,10,10),’$lt’:datetime(2000,10,11)}
... })

This query selects documents from the events collection where the host field is 127.0.0.1 (i.e. local host), and
the value of the time field represents a date that is on or after (i.e. $gte (page 749)) 2000-10-10 but before (i.e.
$lt (page 752)) 2000-10-11.

Index Support

The indexes you use may have significant implications for the performance of these kinds of queries. For instance,
you can create a compound index on the time and host field, using the following command:

>>> db.events.ensure_index([(’time’, 1), (’host’, 1)])

To analyze the performance for the above query using this index, issue the q_events.explain() method in a
Python console. This will return something that resembles:

{ ...
u’cursor’: u’BtreeCursor time_1_host_1’,
u’indexBounds’: {u’host’: [[u’127.0.0.1’, u’127.0.0.1’]],
u’time’: [

[datetime.datetime(2000, 10, 10, 0, 0),
datetime.datetime(2000, 10, 11, 0, 0)]]

},
...
u’millis’: 4,
u’n’: 11,
u’nscanned’: 1296,
u’nscannedObjects’: 11,
... }

588 Chapter 47. Operational Intelligence

http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.ensure_index
http://api.mongodb.org/python/current
http://api.mongodb.org/python/current/api/pymongo/cursor.html#pymongo.cursor.Cursor.explain

MongoDB Documentation, Release 2.4.2

This query had to scan 1296 items from the index to return 11 objects in 4 milliseconds. Conversely, you can test a
different compound index with the host field first, followed by the time field. Create this index using the following
operation:

>>> db.events.ensure_index([(’host’, 1), (’time’, 1)])

Use the q_events.explain() operation to test the performance:

{ ...
u’cursor’: u’BtreeCursor host_1_time_1’,
u’indexBounds’: {u’host’: [[u’127.0.0.1’, u’127.0.0.1’]],
u’time’: [[datetime.datetime(2000, 10, 10, 0, 0),

datetime.datetime(2000, 10, 11, 0, 0)]]},
...
u’millis’: 0,
u’n’: 11,
...
u’nscanned’: 11,
u’nscannedObjects’: 11,
...

}

Here, the query had to scan 11 items from the index before returning 11 objects in less than a millisecond. By placing
the more selective element of your query first in a compound index you may be able to build more useful queries.

Note: Although the index order has an impact query performance, remember that index scans are much faster than
collection scans, and depending on your other queries, it may make more sense to use the { time: 1, host:
1 } index depending on usage profile.

See Also:

The db.events.ensureIndex() (page 907) JavaScript method and the db.events.ensure_index()
method in PyMongo.

Counting Requests by Day and Page

The following example describes the process for using the collection of Apache access events to determine the number
of request per resource (i.e. page) per day in the last month.

Aggregation

New in version 2.1. The aggregation framework provides the capacity for queries that select, process, and aggregate
results from large numbers of documents. The aggregate() (page 903) offers greater flexibility, capacity with less
complexity than the existing mapReduce (page 851) and group (page 840) aggregation commands.

Consider the following aggregation pipeline: 1

>>> result = db.command(’aggregate’, ’events’, pipeline=[
... { ’$match’: {
... ’time’: {
... ’$gte’: datetime(2000,10,1),
... ’$lt’: datetime(2000,11,1) } } },
... { ’$project’: {

1 To translate statements from the aggregation framework (page 249) to SQL, you can consider the $match (page 792) equivalent to WHERE,
$project (page 796) to SELECT, and $group (page 790) to GROUP BY.

47.1. Storing Log Data 589

http://api.mongodb.org/python/current/api/pymongo/cursor.html#pymongo.cursor.Cursor.explain
http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.ensure_index
http://api.mongodb.org/python/current

MongoDB Documentation, Release 2.4.2

... ’path’: 1,

... ’date’: {

... ’y’: { ’$year’: ’$time’ },

... ’m’: { ’$month’: ’$time’ },

... ’d’: { ’$dayOfMonth’: ’$time’ } } } },

... { ’$group’: {

... ’_id’: {

... ’p’:’$path’,

... ’y’: ’$date.y’,

... ’m’: ’$date.m’,

... ’d’: ’$date.d’ },

... ’hits’: { ’$sum’: 1 } } },

...])

This command aggregates documents from the events collection with a pipeline that:

1. Uses the $match (page 792) to limit the documents that the aggregation framework must process. $match
(page 792) is similar to a find() (page 910) query.

This operation selects all documents where the value of the time field represents a date that is on or after (i.e.
$gte (page 749)) 2000-10-10 but before (i.e. $lt (page 752)) 2000-10-11.

2. Uses the $project (page 796) to limit the data that continues through the pipeline. This operator:

• Selects the path field.

• Creates a y field to hold the year, computed from the time field in the original documents.

• Creates a m field to hold the month, computed from the time field in the original documents

• Creates a d field to hold the day, computed from the time field in the original documents.

3. Uses the $group (page 790) to create new computed documents. This step will create a single new document
for each unique path/date combination. The documents take the following form:

• the _id field holds a sub-document with the contents path field from the original documents in the p
field, with the date fields from the $project (page 796) as the remaining fields.

• the hits field use the $sum (page 800) statement to increment a counter for every document in the group.
In the aggregation output, this field holds the total number of documents at the beginning of the aggregation
pipeline with this unique date and path.

Note: In sharded environments, the performance of aggregation operations depends on the shard key. Ideally, all the
items in a particular $group (page 790) operation will reside on the same server.

While this distribution of documents would occur if you chose the time field as the shard key, a field like path
also has this property and is a typical choice for sharding. Also see the “sharding considerations (page 591).” of this
document for additional recommendations for using sharding.

See Also:

“Aggregation Framework (page 249)“

Index Support

To optimize the aggregation operation, ensure that the initial $match (page 792) query has an index. Use the follow-
ing command to create an index on the time field in the events collection:

590 Chapter 47. Operational Intelligence

MongoDB Documentation, Release 2.4.2

>>> db.events.ensure_index(’time’)

Note: If you have already created a compound index on the time and host (i.e. { time: 1, host, 1 },)
MongoDB will use this index for range queries on just the time field. Do not create an additional index, in these
situations.

47.1.3 Sharding

Eventually your system’s events will exceed the capacity of a single event logging database instance. In these situations
you will want to use a sharded cluster, which takes advantage of MongoDB’s sharding functionality. This section
introduces the unique sharding concerns for this event logging case.

See Also:

Sharding (page 461) and FAQ: Sharding with MongoDB (page 705)

Limitations

In a sharded environment the limitations on the maximum insertion rate are:

• the number of shards in the cluster.

• the shard key you chose.

Because MongoDB distributed data in using “ranges” (i.e. chunks) of keys, the choice of shard key can control how
MongoDB distributes data and the resulting systems’ capacity for writes and queries.

Ideally, your shard key should allow insertions balance evenly among the shards 2 and for most queries to only need
to access a single shard. 3 Continue reading for an analysis of a collection of shard key choices.

Shard by Time

While using the timestamp, or the ObjectId in the _id field, 4 would distribute your data evenly among shards,
these keys lead to two problems:

1. All inserts always flow to the same shard, which means that your sharded cluster will have the same write
throughput as a standalone instance.

2. Most reads will tend to cluster on the same shard, as analytics queries.

Shard by a Semi-Random Key

To distribute data more evenly among the shards, you may consider using a more “random” piece of data, such as a
hash of the _id field (i.e. the ObjectId as a shard key.

While this introduces some additional complexity into your application, to generate the key, it will distribute writes
among the shards. In these deployments having 5 shards will provide 5 times the write capacity as a single instance.

Using this shard key, or any hashed value as a key presents the following downsides:

• the shard key, and the index on the key will consume additional space in the database.

2 For this reason, avoid shard keys based on the timestamp or the insertion time (i.e. the ObjectId) because all writes will end up on a single
node.

3 For this reason, avoid randomized shard keys (e.g. hash based shard keys) because any query will have to access all shards in the cluster.
4 The ObjectId derives from the creation time, and is effectively a timestamp in this case.

47.1. Storing Log Data 591

MongoDB Documentation, Release 2.4.2

• queries, unless they include the shard key itself, 5 must run in parallel on all shards, which may lead to degraded
performance.

This might be an acceptable trade-off in some situations. The workload of event logging systems tends to be heavily
skewed toward writing, read performance may not be as critical as more robust write performance.

Shard by an Evenly-Distributed Key in the Data Set

If a field in your documents has values that are evenly distributed among the documents, you may consider using this
key as a shard key.

Continuing the example from above, you may consider using the path field. Which may have a couple of advantages:

1. writes will tend to balance evenly among shards.

2. reads will tend to be selective and local to a single shard if the query selects on the path field.

There are a few potential problems with these kinds of shard keys:

1. If a large number of documents will have the same shard key, you run the risk of having a portion of your data
collection MongoDB cannot distribute throughout the cluster.

2. If there are a small number of possible values, there may be a limit to how much MongoDB will be able to
distribute the data among the shard.

Note: Test using your existing data to ensure that the distribution is truly even, and that there is a sufficient quantity
of distinct values for the shard key.

Shard by Combine a Natural and Synthetic Key

MongoDB supports compound shard keys that combine the best aspects of sharding by a evenly distributed key in the
set (page 592) and sharding by a random key (page 591). In these situations, the shard key would resemble { path:
1 , ssk: 1 } where, path is an often used “natural key, or value from your data and ssk is a hash of the _id
field. 6

Using this type of shard key, data is largely distributed by the natural key, or path, which makes most queries that
access the path field local to a single shard or group of shards. At the same time, if there is not sufficient distribution
for specific values of path, the ssk makes it possible for MongoDB to create chunks and data across the cluster.

In most situations, these kinds of keys provide the ideal balance between distributing writes across the cluster and
ensuring that most queries will only need to access a select number of shards.

Test with Your Own Data

Selecting shard keys is difficult because: there are no definitive “best-practices,” the decision has a large impact on
performance, and it is difficult or impossible to change the shard key after making the selection.

The sharding options (page 591) provides a good starting point for thinking about shard key selection. Nevertheless,
the best way to select a shard key is to analyze the actual insertions and queries from your own application.

5 Typically, it is difficult to use these kinds of shard keys in queries.
6 You must still calculate the value of this synthetic key in your application when you insert documents into your collection.

592 Chapter 47. Operational Intelligence

MongoDB Documentation, Release 2.4.2

47.1.4 Managing Event Data Growth

Without some strategy for managing the size of your database, most event logging systems can grow infinitely. This
is particularly important in the context of MongoDB may not relinquish data to the file system in the way you might
expect. Consider the following strategies for managing data growth:

Capped Collections

Depending on your data retention requirements as well as your reporting and analytics needs, you may consider using
a capped collection to store your events. Capped collections have a fixed size, and drop old data when inserting new
data after reaching cap.

Note: In the current version, it is not possible to shard capped collections.

Multiple Collections, Single Database

Strategy: Periodically rename your event collection so that your data collection rotates in much the same way that
you might rotate log files. When needed, you can drop the oldest collection from the database.

This approach has several advantages over the single collection approach:

1. Collection renames are fast and atomic.

2. MongoDB does not bring any document into memory to drop a collection.

3. MongoDB can effectively reuse space freed by removing entire collections without leading to data fragmenta-
tion.

Nevertheless, this operation may increase some complexity for queries, if any of your analyses depend on events that
may reside in the current and previous collection. For most real time data collection systems, this approach is the most
ideal.

Multiple Databases

Strategy: Rotate databases rather than collections, as in the “Multiple Collections, Single Database (page 593) exam-
ple.

While this significantly increases application complexity for insertions and queries, when you drop old databases,
MongoDB will return disk space to the file system. This approach makes the most sense in scenarios where your event
insertion rates and/or your data retention rates were extremely variable.

For example, if you are performing a large backfill of event data and want to make sure that the entire set of event data
for 90 days is available during the backfill, during normal operations you only need 30 days of event data, you might
consider using multiple databases.

47.2 Pre-Aggregated Reports

47.2.1 Overview

This document outlines the basic patterns and principles for using MongoDB as an engine for collecting and processing
events in real time for use in generating up to the minute or second reports.

47.2. Pre-Aggregated Reports 593

MongoDB Documentation, Release 2.4.2

Problem

Servers and other systems can generate a large number of documents, and it can be difficult to access and analyze such
large collections of data originating from multiple servers.

This document makes the following assumptions about real-time analytics:

• There is no need to retain transactional event data in MongoDB, and how your application handles transactions
is outside of the scope of this document.

• You require up-to-the minute data, or up-to-the-second if possible.

• The queries for ranges of data (by time) must be as fast as possible.

See Also:

“Storing Log Data (page 583).”

Solution

The solution described below assumes a simple scenario using data from web server access logs. With this data, you
will want to return the number of hits to a collection of web sites at various levels of granularity based on time (i.e. by
minute, hour, day, week, and month) as well as by the path of a resource.

To achieve the required performance to support these tasks, upserts and increment (page 751) operations will allow
you to calculate statistics, produce simple range-based queries, and generate filters to support time-series charts of
aggregated data.

47.2.2 Schema

Schemas for real-time analytics systems must support simple and fast query and update operations. In particular,
attempt to avoid the following situations which can degrade performance:

• documents growing significantly after creation.

Document growth forces MongoDB to move the document on disk, which can be time and resource consuming
relative to other operations;

• queries requiring MongoDB to scan documents in the collection without using indexes; and

• deeply nested documents that make accessing particular fields slow.

Intuitively, you may consider keeping “hit counts” in individual documents with one document for every unit of time
(i.e. minute, hour, day, etc.) However, queries must return multiple documents for all non-trivial time-rage queries,
which can slow overall query performance.

Preferably, to maximize query performance, use more complex documents, and keep several aggregate values in each
document. The remainder of this section outlines several schema designs that you may consider for this real-time
analytics system. While there is no single pattern for every problem, each pattern is more well suited to specific
classes of problems.

One Document Per Page Per Day

Consider the following example schema for a solution that stores all statistics for a single day and page in a single
document:

594 Chapter 47. Operational Intelligence

MongoDB Documentation, Release 2.4.2

{
_id: "20101010/site-1/apache_pb.gif",
metadata: {

date: ISODate("2000-10-10T00:00:00Z"),
site: "site-1",
page: "/apache_pb.gif" },

daily: 5468426,
hourly: {

"0": 227850,
"1": 210231,
...
"23": 20457 },

minute: {
"0": 3612,
"1": 3241,
...
"1439": 2819 }

}

This approach has a couple of advantages:

• For every request on the website, you only need to update one document.

• Reports for time periods within the day, for a single page require fetching a single document.

There are, however, significant issues with this approach. The most significant issue is that, as you upsert data into the
hourly and monthly fields, the document grows. Although MongoDB will pad the space allocated to documents,
it must still will need to reallocate these documents multiple times throughout the day, which impacts performance.

Pre-allocate Documents

Simple Pre-Allocation

To mitigate the impact of repeated document migrations throughout the day, you can tweak the “one document per
page per day (page 594)” approach by adding a process that “pre-allocates” documents with fields that hold 0 values
throughout the previous day. Thus, at midnight, new documents will exist.

Note: To avoid situations where your application must pre-allocate large numbers of documents at midnight, it’s best
to create documents throughout the previous day by upserting randomly when you update a value in the current day’s
data.

This requires some tuning, to balance two requirements:

1. your application should have pre-allocated all or nearly all of documents by the end of the day.

2. your application should infrequently pre-allocate a document that already exists to save time and resources on
extraneous upserts.

As a starting point, consider the average number of hits a day (h), and then upsert a blank document upon update with
a probability of 1/h.

Pre-allocating increases performance by initializing all documents with 0 values in all fields. After create, documents
will never grow. This means that:

1. there will be no need to migrate documents within the data store, which is a problem in the “one document per
page per day (page 594)” approach.

47.2. Pre-Aggregated Reports 595

MongoDB Documentation, Release 2.4.2

2. MongoDB will not add padding to the records, which leads to a more compact data representation and better
memory use of your memory.

Add Intra-Document Hierarchy

Note: MongoDB stores BSON documents as a sequence of fields and values, not as a hash table. As a result, writing
to the field stats.mn.0 is considerably faster than writing to stats.mn.1439.

Figure 47.1: In order to update the value in minute #1349, MongoDB must skip over all 1349 entries before it.

To optimize update and insert operations you can introduce intra-document hierarchy. In particular, you can split the
minute field up into 24 hourly fields:

{
_id: "20101010/site-1/apache_pb.gif",
metadata: {

date: ISODate("2000-10-10T00:00:00Z"),
site: "site-1",
page: "/apache_pb.gif" },

daily: 5468426,
hourly: {

"0": 227850,
"1": 210231,
...
"23": 20457 },

minute: {
"0": {

"0": 3612,
"1": 3241,
...
"59": 2130 },

"1": {
"60": ... ,
},
...
"23": {

...
"1439": 2819 }

}
}

This allows MongoDB to “skip forward” throughout the day when updating the minute data, which makes the update
performance more uniform and faster later in the day.

Separate Documents by Granularity Level

Pre-allocating documents (page 595) is a reasonable design for storing intra-day data, but the model breaks down
when displaying data over longer multi-day periods like months or quarters. In these cases, consider storing daily
statistics in a single document as above, and then aggregate monthly data into a separate document.

596 Chapter 47. Operational Intelligence

MongoDB Documentation, Release 2.4.2

Figure 47.2: To update the value in minute #1349, MongoDB first skips the first 23 hours and then skips 59 minutes
for only 82 skips as opposed to 1439 skips in the previous schema.

This introduce a second set of upsert operations to the data collection and aggregation portion of your application but
the gains reduction in disk seeks on the queries, should be worth the costs. Consider the following example schema:

1. Daily Statistics

{
_id: "20101010/site-1/apache_pb.gif",
metadata: {

date: ISODate("2000-10-10T00:00:00Z"),
site: "site-1",
page: "/apache_pb.gif" },

hourly: {
"0": 227850,
"1": 210231,
...
"23": 20457 },

minute: {
"0": {

"0": 3612,
"1": 3241,
...
"59": 2130 },

"1": {
"0": ...,

},
...
"23": {

"59": 2819 }
}

}

2. Monthly Statistics

{
_id: "201010/site-1/apache_pb.gif",
metadata: {

date: ISODate("2000-10-00T00:00:00Z"),
site: "site-1",
page: "/apache_pb.gif" },

daily: {
"1": 5445326,
"2": 5214121,
... }

}

47.2. Pre-Aggregated Reports 597

MongoDB Documentation, Release 2.4.2

47.2.3 Operations

This section outlines a number of common operations for building and interacting with real-time-analytics reporting
system. The major challenge is in balancing performance and write (i.e. upsert) performance. All examples in this
document use the Python programming language and the PyMongo driver for MongoDB, but you can implement this
system using any language you choose.

Log an Event

Logging an event such as a page request (i.e. “hit”) is the main “write” activity for your system. To maximize
performance, you’ll be doing in-place updates with the upsert operation. Consider the following example:

from datetime import datetime, time

def log_hit(db, dt_utc, site, page):

Update daily stats doc
id_daily = dt_utc.strftime(’%Y%m%d/’) + site + page
hour = dt_utc.hour
minute = dt_utc.minute

Get a datetime that only includes date info
d = datetime.combine(dt_utc.date(), time.min)
query = {

’_id’: id_daily,
’metadata’: { ’date’: d, ’site’: site, ’page’: page } }

update = { ’$inc’: {
’hourly.%d’ % (hour,): 1,
’minute.%d.%d’ % (hour,minute): 1 } }

db.stats.daily.update(query, update, upsert=True)

Update monthly stats document
id_monthly = dt_utc.strftime(’%Y%m/’) + site + page
day_of_month = dt_utc.day
query = {

’_id’: id_monthly,
’metadata’: {

’date’: d.replace(day=1),
’site’: site,
’page’: page } }

update = { ’$inc’: {
’daily.%d’ % day_of_month: 1} }

db.stats.monthly.update(query, update, upsert=True)

The upsert operation (i.e. upsert=True) performs an update if the document exists, and an insert if the document
does not exist.

Note: This application requires upserts, because the pre-allocation (page 599) method only pre-allocates new docu-
ments with a high probability, not with complete certainty.

Without preallocation, you end up with a dynamically growing document, slowing upserts as MongoDB moves docu-
ments to accommodate growth.

598 Chapter 47. Operational Intelligence

http://api.mongodb.org/python/current

MongoDB Documentation, Release 2.4.2

Pre-allocate

To prevent document growth, you can preallocate new documents before the system needs them. As you create new
documents, set all values to 0 for so that documents will not grow to accommodate updates. Consider the following
preallocate() function:

def preallocate(db, dt_utc, site, page):

Get id values
id_daily = dt_utc.strftime(’%Y%m%d/’) + site + page
id_monthly = dt_utc.strftime(’%Y%m/’) + site + page

Get daily metadata
daily_metadata = {

’date’: datetime.combine(dt_utc.date(), time.min),
’site’: site,
’page’: page }

Get monthly metadata
monthly_metadata = {

’date’: daily_metadata[’date’].replace(day=1),
’site’: site,
’page’: page }

Initial zeros for statistics
hourly = dict((str(i), 0) for i in range(24))
minute = dict(

(str(i), dict((str(j), 0) for j in range(60)))
for i in range(24))

daily = dict((str(i), 0) for i in range(1, 32))

Perform upserts, setting metadata
db.stats.daily.update(

{
’_id’: id_daily,
’hourly’: hourly,
’minute’: minute},

{ ’$set’: { ’metadata’: daily_metadata }},
upsert=True)

db.stats.monthly.update(
{

’_id’: id_monthly,
’daily’: daily },

{ ’$set’: { ’m’: monthly_metadata }},
upsert=True)

The function pre-allocated both the monthly and daily documents at the same time. The performance benefits from
separating these operations are negligible, so it’s reasonable to keep both operations in the same function.

Ideally, your application should pre-allocate documents before needing to write data to maintain consistent update
performance. Additionally, its important to avoid causing a spike in activity and latency by creating documents all at
once.

In the following example, document updates (i.e. “log_hit()”) will also pre-allocate a document probabilistically.
However, by “tuning probability,” you can limit redundant preallocate() calls.

from random import random
from datetime import datetime, timedelta, time

Example probability based on 500k hits per day per page

47.2. Pre-Aggregated Reports 599

MongoDB Documentation, Release 2.4.2

prob_preallocate = 1.0 / 500000

def log_hit(db, dt_utc, site, page):
if random.random() < prob_preallocate:

preallocate(db, dt_utc + timedelta(days=1), site, page)
Update daily stats doc
...

Using this method, there will be a high probability that each document will already exist before your application needs
to issue update operations. You’ll also be able to prevent a regular spike in activity for pre-allocation, and be able to
eliminate document growth.

Retrieving Data for a Real-Time Chart

This example describes fetching the data from the above MongoDB system, for use in generating a chart that displays
the number of hits to a particular resource over the last hour.

Querying

Use the following query in a find_one operation at the Python/PyMongo console to retrieve the number of hits to a
specific resource (i.e. http://docs.mongodb.org/manual/index.html) with minute-level granularity:

>>> db.stats.daily.find_one(
... {’metadata’: {’date’:dt, ’site’:’site-1’, ’page’:’/index.html’}},
... { ’minute’: 1 })

Use the following query to retrieve the number of hits to a resource over the last day, with hour-level granularity:

>>> db.stats.daily.find_one(
... {’metadata’: {’date’:dt, ’site’:’site-1’, ’page’:’/foo.gif’}},
... { ’hourly’: 1 })

If you want a few days of hourly data, you can use a query in the following form:

>>> db.stats.daily.find(
... {
... ’metadata.date’: { ’$gte’: dt1, ’$lte’: dt2 },
... ’metadata.site’: ’site-1’,
... ’metadata.page’: ’/index.html’},
... { ’metadata.date’: 1, ’hourly’: 1 } },
... sort=[(’metadata.date’, 1)])

Indexing

To support these query operation, create a compound index on the following daily statistics fields: metadata.site,
metadata.page, and metadata.date (in that order.) Use the following operation at the Python/PyMongo
console.

>>> db.stats.daily.ensure_index([
... (’metadata.site’, 1),
... (’metadata.page’, 1),
... (’metadata.date’, 1)])

This index makes it possible to efficiently run the query for multiple days of hourly data. At the same time, any
compound index on page and date, will allow you to query efficiently for a single day’s statistics.

600 Chapter 47. Operational Intelligence

http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.find_one

MongoDB Documentation, Release 2.4.2

Get Data for a Historical Chart

Querying

To retrieve daily data for a single month, use the following query:

>>> db.stats.monthly.find_one(
... {’metadata’:
... {’date’:dt,
... ’site’: ’site-1’,
... ’page’:’/index.html’}},
... { ’daily’: 1 })

To retrieve several months of daily data, use a variation on the above query:

>>> db.stats.monthly.find(
... {
... ’metadata.date’: { ’$gte’: dt1, ’$lte’: dt2 },
... ’metadata.site’: ’site-1’,
... ’metadata.page’: ’/index.html’},
... { ’metadata.date’: 1, ’daily’: 1 } },
... sort=[(’metadata.date’, 1)])

Indexing

Create the following index to support these queries for monthly data on the metadata.site, metadata.page,
and metadata.date fields:

>>> db.stats.monthly.ensure_index([
... (’metadata.site’, 1),
... (’metadata.page’, 1),
... (’metadata.date’, 1)])

This field order will efficiently support range queries for a single page over several months.

47.2.4 Sharding

The only potential limits on the performance of this system are the number of shards in your system, and the shard key
that you use.

An ideal shard key will distribute upserts between the shards while routing all queries to a single shard,
or a small number of shards.

While your choice of shard key may depend on the precise workload of your deployment, consider using {
metadata.site: 1, metadata.page: 1 } as a shard key. The combination of site and page (or event)
will lead to a well balanced cluster for most deployments.

Enable sharding for the daily statistics collection with the following shardCollection (page 870) command in
the Python/PyMongo console:

>>> db.command(’shardCollection’, ’stats.daily’, {
... key : { ’metadata.site’: 1, ’metadata.page’ : 1 } })

Upon success, you will see the following response:

{ "collectionsharded" : "stats.daily", "ok" : 1 }

47.2. Pre-Aggregated Reports 601

MongoDB Documentation, Release 2.4.2

Enable sharding for the monthly statistics collection with the following shardCollection (page 870) command
in the Python/PyMongo console:

>>> db.command(’shardCollection’, ’stats.monthly’, {
... key : { ’metadata.site’: 1, ’metadata.page’ : 1 } })

Upon success, you will see the following response:

{ "collectionsharded" : "stats.monthly", "ok" : 1 }

One downside of the { metadata.site: 1, metadata.page: 1 } shard key is: if one page dominates
all your traffic, all updates to that page will go to a single shard. This is basically unavoidable, since all update for a
single page are going to a single document.

You may wish to include the date in addition to the site, and page fields so that MongoDB can split histories so that
you can serve different historical ranges with different shards. Use the following shardCollection (page 870)
command to shard the daily statistics collection in the Python/PyMongo console:

>>> db.command(’shardCollection’, ’stats.daily’, {
... ’key’:{’metadata.site’:1,’metadata.page’:1,’metadata.date’:1}})
{ "collectionsharded" : "stats.daily", "ok" : 1 }

Enable sharding for the monthly statistics collection with the following shardCollection (page 870) command
in the Python/PyMongo console:

>>> db.command(’shardCollection’, ’stats.monthly’, {
... ’key’:{’metadata.site’:1,’metadata.page’:1,’metadata.date’:1}})
{ "collectionsharded" : "stats.monthly", "ok" : 1 }

Note: Determine your actual requirements and load before deciding to shard. In many situations a single MongoDB
instance may be able to keep track of all events and pages.

47.3 Hierarchical Aggregation

47.3.1 Overview

Background

If you collect a large amount of data, but do not pre-aggregate (page 593), and you want to have access to aggregated
information and reports, then you need a method to aggregate these data into a usable form. This document provides
an overview of these aggregation patterns and processes.

For clarity, this case study assumes that the incoming event data resides in a collection named events. For details on
how you might get the event data into the events collection, please see “Storing Log Data (page 583)” document. This
document continues using this example.

Solution

The first step in the aggregation process is to aggregate event data into the finest required granularity. Then use this
aggregation to generate the next least specific level granularity and this repeat process until you have generated all
required views.

602 Chapter 47. Operational Intelligence

MongoDB Documentation, Release 2.4.2

The solution uses several collections: the raw data (i.e. events) collection as well as collections for aggregated
hourly, daily, weekly, monthly, and yearly statistics. All aggregations use the mapReduce (page 851) command, in a
hierarchical process. The following figure illustrates the input and output of each job:

Figure 47.3: Hierarchy of data aggregation.

Note: Aggregating raw events into an hourly collection is qualitatively different from the operation that aggregates
hourly statistics into the daily collection.

See Also:

map-reduce, mapReduce (page 851), and the Map-Reduce (page 285) page for more information on the Map-reduce
data aggregation paradigm.

47.3.2 Schema

When designing the schema for event storage, it’s important to track the events included in the aggregation and events
that are not yet included.

Relational Approach

A simple tactic from relational database, uses an auto-incremented integer as the primary key. However, this introduces
a significant performance penalty for event logging process because the aggregation process must fetch new keys one
at a time.

If you can batch your inserts into the events collection, you can use an auto-increment primary key by using the
find_and_modify command to generate the _id values, as in the following example:

>>> obj = db.my_sequence.find_and_modify(
... query={’_id’:0},
... update={’$inc’: {’inc’: 50}}
... upsert=True,
... new=True)
>>> batch_of_ids = range(obj[’inc’]-50, obj[’inc’])

47.3. Hierarchical Aggregation 603

http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.find_and_modify

MongoDB Documentation, Release 2.4.2

However, in most cases you can simply include a timestamp with each event that you can use to distinguish processed
events from unprocessed events.

This example assumes that you are calculating average session length for logged-in users on a website. The events
will have the following form:

{
"userid": "rick",
"ts": ISODate(’2010-10-10T14:17:22Z’),
"length":95

}

The operations described in the next session will calculate total and average session times for each user at the hour,
day, week, month and year. For each aggregation you will want to store the number of sessions so that MongoDB can
incrementally recompute the average session times. The aggregate document will resemble the following:

{
_id: { u: "rick", d: ISODate("2010-10-10T14:00:00Z") },
value: {

ts: ISODate(’2010-10-10T15:01:00Z’),
total: 254,
count: 10,
mean: 25.4 }

}

Note: The timestamp value in the _id sub-document, which will allow you to incrementally update documents at
various levels of the hierarchy.

47.3.3 Operations

This section assumes that all events exist in the events collection and have a timestamp. The operations, thus are to
aggregate from the events collection into the smallest aggregate–hourly totals– and then aggregate from the hourly
totals into coarser granularity levels. In all cases, these operations will store aggregation time as a last_run variable.

Creating Hourly Views from Event Collections

Aggregation

Note: Although this solution uses Python and PyMongo to connect with MongoDB, you must pass JavaScript
functions (i.e. mapf, reducef, and finalizef) to the mapReduce (page 851) command.

Begin by creating a map function, as below:

mapf_hour = bson.Code(’’’function() {
var key = {

u: this.userid,
d: new Date(

this.ts.getFullYear(),
this.ts.getMonth(),
this.ts.getDate(),
this.ts.getHours(),
0, 0, 0);

emit(

604 Chapter 47. Operational Intelligence

http://api.mongodb.org/python/current

MongoDB Documentation, Release 2.4.2

key,
{

total: this.length,
count: 1,
mean: 0,
ts: new Date(); });

}’’’)

In this case, it emits key-value pairs that contain the data you want to aggregate as you’d expect. The function also
emits a ts value that makes it possible to cascade aggregations to coarser grained aggregations (i.e. hour to day, etc.)

Consider the following reduce function:

reducef = bson.Code(’’’function(key, values) {
var r = { total: 0, count: 0, mean: 0, ts: null };
values.forEach(function(v) {

r.total += v.total;
r.count += v.count;

});
return r;

}’’’)

The reduce function returns a document in the same format as the output of the map function. This pattern for map
and reduce functions makes map-reduce processes easier to test and debug.

While the reduce function ignores the mean and ts (timestamp) values, the finalize step, as follows, computes these
data:

finalizef = bson.Code(’’’function(key, value) {
if(value.count > 0) {

value.mean = value.total / value.count;
}
value.ts = new Date();
return value;

}’’’)

With the above function the map_reduce operation itself will resemble the following:

cutoff = datetime.utcnow() - timedelta(seconds=60)
query = { ’ts’: { ’$gt’: last_run, ’$lt’: cutoff } }

db.events.map_reduce(
map=mapf_hour,
reduce=reducef,
finalize=finalizef,
query=query,
out={ ’reduce’: ’stats.hourly’ })

last_run = cutoff

The cutoff variable allows you to process all events that have occurred since the last run but before 1 minute ago.
This allows for some delay in logging events. You can safely run this aggregation as often as you like, provided that
you update the last_run variable each time.

Indexing

Create an index on the timestamp (i.e. the ts field) to support the query selection of the map_reduce operation.
Use the following operation at the Python/PyMongo console:

47.3. Hierarchical Aggregation 605

http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.map_reduce
http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.map_reduce

MongoDB Documentation, Release 2.4.2

>>> db.events.ensure_index(’ts’)

Deriving Day-Level Data

Aggregation

To calculate daily statistics, use the hourly statistics as input. Begin with the following map function:

mapf_day = bson.Code(’’’function() {
var key = {

u: this._id.u,
d: new Date(

this._id.d.getFullYear(),
this._id.d.getMonth(),
this._id.d.getDate(),
0, 0, 0, 0) };

emit(
key,
{

total: this.value.total,
count: this.value.count,
mean: 0,
ts: null });

}’’’)

The map function for deriving day-level data differs from the initial aggregation above in the following ways:

• the aggregation key is the (userid, date) rather than (userid, hour) to support daily aggregation.

• the keys and values emitted (i.e. emit()) are actually the total and count values from the hourly aggregates
rather than properties from event documents.

This is the case for all the higher-level aggregation operations.

Because the output of this map function is the same as the previous map function, you can use the same reduce and
finalize functions.

The actual code driving this level of aggregation is as follows:

cutoff = datetime.utcnow() - timedelta(seconds=60)
query = { ’value.ts’: { ’$gt’: last_run, ’$lt’: cutoff } }

db.stats.hourly.map_reduce(
map=mapf_day,
reduce=reducef,
finalize=finalizef,
query=query,
out={ ’reduce’: ’stats.daily’ })

last_run = cutoff

There are a couple of things to note here. First of all, the query is not on ts now, but value.ts, the timestamp written
during the finalization of the hourly aggregates. Also note that you are, in fact, aggregating from the stats.hourly
collection into the stats.daily collection.

606 Chapter 47. Operational Intelligence

MongoDB Documentation, Release 2.4.2

Indexing

Because you will run the query option regularly which finds on the value.ts field, you may wish to create an index
to support this. Use the following operation in the Python/PyMongo shell to create this index:

>>> db.stats.hourly.ensure_index(’value.ts’)

Weekly and Monthly Aggregation

Aggregation

You can use the aggregated day-level data to generate weekly and monthly statistics. A map function for generating
weekly data follows:

mapf_week = bson.Code(’’’function() {
var key = {

u: this._id.u,
d: new Date(

this._id.d.valueOf()
- dt.getDay()*24*60*60*1000) };

emit(
key,
{

total: this.value.total,
count: this.value.count,
mean: 0,
ts: null });

}’’’)

Here, to get the group key, the function takes the current and subtracts days until you get the beginning of the week.
In the weekly map function, you’ll use the first day of the month as the group key, as follows:

mapf_month = bson.Code(’’’function() {
d: new Date(

this._id.d.getFullYear(),
this._id.d.getMonth(),
1, 0, 0, 0, 0) };

emit(
key,
{

total: this.value.total,
count: this.value.count,
mean: 0,
ts: null });

}’’’)

These map functions are identical to each other except for the date calculation.

Indexing

Create additional indexes to support the weekly and monthly aggregation options on the value.ts field. Use the
following operation in the Python/PyMongo shell.

>>> db.stats.daily.ensure_index(’value.ts’)
>>> db.stats.monthly.ensure_index(’value.ts’)

47.3. Hierarchical Aggregation 607

MongoDB Documentation, Release 2.4.2

Refactor Map Functions

Use Python’s string interpolation to refactor the map function definitions as follows:

mapf_hierarchical = ’’’function() {
var key = {

u: this._id.u,
d: %s };

emit(
key,
{

total: this.value.total,
count: this.value.count,
mean: 0,
ts: null });

}’’’

mapf_day = bson.Code(
mapf_hierarchical % ’’’new Date(

this._id.d.getFullYear(),
this._id.d.getMonth(),
this._id.d.getDate(),
0, 0, 0, 0)’’’)

mapf_week = bson.Code(
mapf_hierarchical % ’’’new Date(

this._id.d.valueOf()
- dt.getDay()*24*60*60*1000)’’’)

mapf_month = bson.Code(
mapf_hierarchical % ’’’new Date(

this._id.d.getFullYear(),
this._id.d.getMonth(),
1, 0, 0, 0, 0)’’’)

mapf_year = bson.Code(
mapf_hierarchical % ’’’new Date(

this._id.d.getFullYear(),
1, 1, 0, 0, 0, 0)’’’)

You can create a h_aggregate function to wrap the map_reduce operation, as below, to reduce code duplication:

def h_aggregate(icollection, ocollection, mapf, cutoff, last_run):
query = { ’value.ts’: { ’$gt’: last_run, ’$lt’: cutoff } }
icollection.map_reduce(

map=mapf,
reduce=reducef,
finalize=finalizef,
query=query,
out={ ’reduce’: ocollection.name })

With h_aggregate defined, you can perform all aggregation operations as follows:

cutoff = datetime.utcnow() - timedelta(seconds=60)

h_aggregate(db.events, db.stats.hourly, mapf_hour, cutoff, last_run)
h_aggregate(db.stats.hourly, db.stats.daily, mapf_day, cutoff, last_run)
h_aggregate(db.stats.daily, db.stats.weekly, mapf_week, cutoff, last_run)
h_aggregate(db.stats.daily, db.stats.monthly, mapf_month, cutoff, last_run)

608 Chapter 47. Operational Intelligence

http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.map_reduce

MongoDB Documentation, Release 2.4.2

h_aggregate(db.stats.monthly, db.stats.yearly, mapf_year, cutoff, last_run)

last_run = cutoff

As long as you save and restore the last_run variable between aggregations, you can run these aggregations as
often as you like since each aggregation operation is incremental.

47.3.4 Sharding

Ensure that you choose a shard key that is not the incoming timestamp, but rather something that varies significantly
in the most recent documents. In the example above, consider using the userid as the most significant part of the
shard key.

To prevent a single, active user from creating a large, chunk that MongoDB cannot split, use a compound shard key
with (username, timestamp) on the events collection. Consider the following:

>>> db.command(’shardCollection’,’events’, {
... ’key’ : { ’userid’: 1, ’ts’ : 1} })
{ "collectionsharded": "events", "ok" : 1 }

To shard the aggregated collections you must use the _id field, so you can issue the following group of shard opera-
tions in the Python/PyMongo shell:

db.command(’shardCollection’, ’stats.daily’, {
’key’: { ’_id’: 1 } })

db.command(’shardCollection’, ’stats.weekly’, {
’key’: { ’_id’: 1 } })

db.command(’shardCollection’, ’stats.monthly’, {
’key’: { ’_id’: 1 } })

db.command(’shardCollection’, ’stats.yearly’, {
’key’: { ’_id’: 1 } })

You should also update the h_aggregate map-reduce wrapper to support sharded output Add ’sharded’:True
to the out argument. See the full sharded h_aggregate function:

def h_aggregate(icollection, ocollection, mapf, cutoff, last_run):
query = { ’value.ts’: { ’$gt’: last_run, ’$lt’: cutoff } }
icollection.map_reduce(

map=mapf,
reduce=reducef,
finalize=finalizef,
query=query,
out={ ’reduce’: ocollection.name, ’sharded’: True })

47.3. Hierarchical Aggregation 609

MongoDB Documentation, Release 2.4.2

610 Chapter 47. Operational Intelligence

CHAPTER 48

Product Data Management

MongoDB’s flexible schema makes it particularly well suited to storing information for product data management and
e-commerce websites and solutions. The “Product Catalog (page 611)” document describes methods and practices for
modeling and managing a product catalog using MongoDB, while the “Inventory Management (page 619)” document
introduces a pattern for handling interactions between inventory and users’ shopping carts. Finally the “Category
Hierarchy (page 625)” document describes methods for interacting with category hierarchies in MongoDB.

48.1 Product Catalog

48.1.1 Overview

This document describes the basic patterns and principles for designing an E-Commerce product catalog system using
MongoDB as a storage engine.

Problem

Product catalogs must have the capacity to store many differed types of objects with different sets of attributes. These
kinds of data collections are quite compatible with MongoDB’s data model, but many important considerations and
design decisions remain.

Solution

For relational databases, there are several solutions that address this problem, each with a different performance profile.
This section examines several of these options and then describes the preferred MongoDB solution.

SQL and Relational Data Models

Concrete Table Inheritance

One approach, in a relational model, is to create a table for each product category. Consider the following example
SQL statement for creating database tables:

611

MongoDB Documentation, Release 2.4.2

CREATE TABLE ‘product_audio_album‘ (
‘sku‘ char(8) NOT NULL,
...
‘artist‘ varchar(255) DEFAULT NULL,
‘genre_0‘ varchar(255) DEFAULT NULL,
‘genre_1‘ varchar(255) DEFAULT NULL,
...,
PRIMARY KEY(‘sku‘))

...
CREATE TABLE ‘product_film‘ (

‘sku‘ char(8) NOT NULL,
...
‘title‘ varchar(255) DEFAULT NULL,
‘rating‘ char(8) DEFAULT NULL,
...,
PRIMARY KEY(‘sku‘))

...

This approach has limited flexibility for two key reasons:

• You must create a new table for every new category of products.

• You must explicitly tailor all queries for the exact type of product.

Single Table Inheritance

Another relational data model uses a single table for all product categories and adds new columns anytime you need
to store data regarding a new type of product. Consider the following SQL statement:

CREATE TABLE ‘product‘ (
‘sku‘ char(8) NOT NULL,
...
‘artist‘ varchar(255) DEFAULT NULL,
‘genre_0‘ varchar(255) DEFAULT NULL,
‘genre_1‘ varchar(255) DEFAULT NULL,
...
‘title‘ varchar(255) DEFAULT NULL,
‘rating‘ char(8) DEFAULT NULL,
...,
PRIMARY KEY(‘sku‘))

This approach is more flexible than concrete table inheritance: it allows single queries to span different product types,
but at the expense of space.

Multiple Table Inheritance

Also in the relational model, you may use a “multiple table inheritance” pattern to represent common attributes in
a generic “product” table, with some variations in individual category product tables. Consider the following SQL
statement:

CREATE TABLE ‘product‘ (
‘sku‘ char(8) NOT NULL,
‘title‘ varchar(255) DEFAULT NULL,
‘description‘ varchar(255) DEFAULT NULL,
‘price‘, ...
PRIMARY KEY(‘sku‘))

612 Chapter 48. Product Data Management

MongoDB Documentation, Release 2.4.2

CREATE TABLE ‘product_audio_album‘ (
‘sku‘ char(8) NOT NULL,
...
‘artist‘ varchar(255) DEFAULT NULL,
‘genre_0‘ varchar(255) DEFAULT NULL,
‘genre_1‘ varchar(255) DEFAULT NULL,
...,
PRIMARY KEY(‘sku‘),
FOREIGN KEY(‘sku‘) REFERENCES ‘product‘(‘sku‘))

...
CREATE TABLE ‘product_film‘ (

‘sku‘ char(8) NOT NULL,
...
‘title‘ varchar(255) DEFAULT NULL,
‘rating‘ char(8) DEFAULT NULL,
...,
PRIMARY KEY(‘sku‘),
FOREIGN KEY(‘sku‘) REFERENCES ‘product‘(‘sku‘))

...

Multiple table inheritance is more space-efficient than single table inheritance (page 612) and somewhat more flexible
than concrete table inheritance (page 612). However, this model does require an expensive JOIN operation to obtain
all relevant attributes relevant to a product.

Entity Attribute Values

The final substantive pattern from relational modeling is the entity-attribute-value schema where you would cre-
ate a meta-model for product data. In this approach, you maintain a table with three columns, e.g. entity_id,
attribute_id, value, and these triples describe each product.

Consider the description of an audio recording. You may have a series of rows representing the following relationships:

Entity Attribute Value
sku_00e8da9b type Audio Album
sku_00e8da9b title A Love Supreme
sku_00e8da9b
sku_00e8da9b artist John Coltrane
sku_00e8da9b genre Jazz
sku_00e8da9b genre General
...

This schema is totally flexible:

• any entity can have any set of any attributes.

• New product categories do not require any changes to the data model in the database.

The downside for these models, is that all nontrivial queries require large numbers of JOIN operations that results in
large performance penalties.

Avoid Modeling Product Data

Additionally some e-commerce solutions with relational database systems avoid choosing one of the data models
above, and serialize all of this data into a BLOB column. While simple, the details become difficult to access for search
and sort.

48.1. Product Catalog 613

MongoDB Documentation, Release 2.4.2

Non-Relational Data Model

Because MongoDB is a non-relational database, the data model for your product catalog can benefit from this addi-
tional flexibility. The best models use a single MongoDB collection to store all the product data, which is similar to the
single table inheritance (page 612) relational model. MongoDB’s dynamic schema means that each document need
not conform to the same schema. As a result, the document for each product only needs to contain attributes relevant
to that product.

Schema

At the beginning of the document, the schema must contain general product information, to facilitate searches of the
entire catalog. Then, a details sub-document that contains fields that vary between product types. Consider the
following example document for an album product.

{
sku: "00e8da9b",
type: "Audio Album",
title: "A Love Supreme",
description: "by John Coltrane",
asin: "B0000A118M",

shipping: {
weight: 6,
dimensions: {

width: 10,
height: 10,
depth: 1

},
},

pricing: {
list: 1200,
retail: 1100,
savings: 100,
pct_savings: 8

},

details: {
title: "A Love Supreme [Original Recording Reissued]",
artist: "John Coltrane",
genre: ["Jazz", "General"],

...
tracks: [

"A Love Supreme Part I: Acknowledgement",
"A Love Supreme Part II - Resolution",
"A Love Supreme, Part III: Pursuance",
"A Love Supreme, Part IV-Psalm"

],
},

}

A movie item would have the same fields for general product information, shipping, and pricing, but have different
details sub-document. Consider the following:

{
sku: "00e8da9d",
type: "Film",

614 Chapter 48. Product Data Management

MongoDB Documentation, Release 2.4.2

...,
asin: "B000P0J0AQ",

shipping: { ... },

pricing: { ... },

details: {
title: "The Matrix",
director: ["Andy Wachowski", "Larry Wachowski"],
writer: ["Andy Wachowski", "Larry Wachowski"],
...,
aspect_ratio: "1.66:1"

},
}

Note: In MongoDB, you can have fields that hold multiple values (i.e. arrays) without any restrictions on the number
of fields or values (as with genre_0 and genre_1) and also without the need for a JOIN operation.

48.1.2 Operations

For most deployments the primary use of the product catalog is to perform search operations. This section provides
an overview of various types of queries that may be useful for supporting an e-commerce site. All examples in this
document use the Python programming language and the PyMongo driver for MongoDB, but you can implement this
system using any language you choose.

Find Albums by Genre and Sort by Year Produced

Querying

This query returns the documents for the products of a specific genre, sorted in reverse chronological order:

query = db.products.find({’type’:’Audio Album’,
’details.genre’: ’jazz’})

query = query.sort([(’details.issue_date’, -1)])

Indexing

To support this query, create a compound index on all the properties used in the filter and in the sort:

db.products.ensure_index([
(’type’, 1),
(’details.genre’, 1),
(’details.issue_date’, -1)])

Note: The final component of the index is the sort field. This allows MongoDB to traverse the index in the sorted
order to preclude a slow in-memory sort.

48.1. Product Catalog 615

http://api.mongodb.org/python/current

MongoDB Documentation, Release 2.4.2

Find Products Sorted by Percentage Discount Descending

While most searches will be for a particular type of product (e.g album, movie, etc.,) in some situations you may want
to return all products in a certain price range, or discount percentage.

Querying

To return this data use the pricing information that exists in all products to find the products with the highest percentage
discount:

query = db.products.find({ ’pricing.pct_savings’: {’$gt’: 25 })
query = query.sort([(’pricing.pct_savings’, -1)])

Indexing

To support this type of query, you will want to create an index on the pricing.pct_savings field:

db.products.ensure_index(’pricing.pct_savings’)

Since MongoDB can read indexes in ascending or descending order, the order of the index does not matter.

Note: If you want to preform range queries (e.g. “return all products over $25”) and then sort by another property
like pricing.retail, MongoDB cannot use the index as effectively in this situation.

The field that you want to select a range, or perform sort operations, must be the last field in a compound index in
order to avoid scanning an entire collection. Using different properties within a single combined range query and sort
operation requires some scanning which will limit the speed of your query.

Find Movies Based on Staring Actor

Querying

Use the following query to select documents within the details of a specified product type (i.e. Film) of product (a
movie) to find products that contain a certain value (i.e. a specific actor in the details.actor field,) with the
results sorted by date descending:

query = db.products.find({’type’: ’Film’,
’details.actor’: ’Keanu Reeves’})

query = query.sort([(’details.issue_date’, -1)])

Indexing

To support this query, you may want to create the following index.

db.products.ensure_index([
(’type’, 1),
(’details.actor’, 1),
(’details.issue_date’, -1)])

This index begins with the type field and then narrows by the other search field, where the final component of the
index is the sort field to maximize index efficiency.

616 Chapter 48. Product Data Management

MongoDB Documentation, Release 2.4.2

Find Movies with a Particular Word in the Title

Regardless of database engine, in order to retrieve this information the system will need to scan some number of
documents or records to satisfy this query.

Querying

MongoDB supports regular expressions within queries. In Python, you can use the “python:re” module to construct
the query:

import re
re_hacker = re.compile(r’.*hacker.*’, re.IGNORECASE)

query = db.products.find({’type’: ’Film’, ’title’: re_hacker})
query = query.sort([(’details.issue_date’, -1)])

MongoDB provides a special syntax for regular expression queries without the need for the re module. Consider the
following alternative which is equivalent to the above example:

query = db.products.find({
’type’: ’Film’,
’title’: {’$regex’: ’.*hacker.*’, ’$options’:’i’}})

query = query.sort([(’details.issue_date’, -1)])

The $options (page 767) operator specifies a case insensitive match.

Indexing

The indexing strategy for these kinds of queries is different from previous attempts. Here, create an index on { type:
1, details.issue_date: -1, title: 1 } using the following command at the Python/PyMongo con-
sole:

db.products.ensure_index([
(’type’, 1),
(’details.issue_date’, -1),
(’title’, 1)])

This index makes it possible to avoid scanning whole documents by using the index for scanning the title rather
than forcing MongoDB to scan whole documents for the title field. Additionally, to support the sort on the
details.issue_date field, by placing this field before the title field, ensures that the result set is already
ordered before MongoDB filters title field.

48.1.3 Scaling

Sharding

Database performance for these kinds of deployments are dependent on indexes. You may use sharding to enhance
performance by allowing MongoDB to keep larger portions of those indexes in RAM. In sharded configurations, select
a shard key that allows mongos (page 981) to route queries directly to a single shard or small group of shards.

Since most of the queries in this system include the type field, include this in the shard key. Beyond this, the remain-
der of the shard key is difficult to predict without information about your database’s actual activity and distribution.
Consider that:

48.1. Product Catalog 617

http://docs.python.org/3/library/re.html#re

MongoDB Documentation, Release 2.4.2

• details.issue_date would be a poor addition to the shard key because, although it appears in a number
of queries, no query was were selective by this field.

• you should include one or more fields in the detail document that you query frequently, and a field that has
quasi-random features, to prevent large unsplittable chunks.

In the following example, assume that the details.genre field is the second-most queried field after type. Enable
sharding using the following shardCollection (page 870) operation at the Python/PyMongo console:

>>> db.command(’shardCollection’, ’product’, {
... key : { ’type’: 1, ’details.genre’ : 1, ’sku’:1 } })
{ "collectionsharded" : "details.genre", "ok" : 1 }

Note: Even if you choose a “poor” shard key that requires mongos (page 981) to broadcast all to all shards, you will
still see some benefits from sharding, because:

1. Sharding makes a larger amount of memory available to store indexes, and

2. MongoDB will parallelize queries across shards, reducing latency.

Read Preference

While sharding is the best way to scale operations, some data sets make it impossible to partition data so that mongos
(page 981) can route queries to specific shards. In these situations mongos (page 981) sends the query to all shards
and then combines the results before returning to the client.

In these situations, you can add additional read performance by allowing mongos (page 981) to read from the sec-
ondary instances in a replica set by configuring read preference in your client. Read preference is configurable on a
per-connection or per-operation basis. In PyMongo, set the read_preference argument.

The SECONDARY property in the following example, permits reads from a secondary (as well as a primary) for the
entire connection .

conn = pymongo.Connection(read_preference=pymongo.SECONDARY)

Conversely, the SECONDARY_ONLY read preference means that the client will only send read operation only to the
secondary member

conn = pymongo.Connection(read_preference=pymongo.SECONDARY_ONLY)

You can also specify read_preference for specific queries, as follows:

results = db.product.find(..., read_preference=pymongo.SECONDARY)

or

results = db.product.find(..., read_preference=pymongo.SECONDARY_ONLY)

See Also:

Replica Set Read Preference (page 381)

618 Chapter 48. Product Data Management

http://api.mongodb.org/python/current
http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.read_preference
http://api.mongodb.org/python/current/api/pymongo/connection.html#pymongo.connection.Connection.read_preference
http://api.mongodb.org/python/current/api/pymongo/connection.html#pymongo.connection.Connection.read_preference
http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.read_preference

MongoDB Documentation, Release 2.4.2

48.2 Inventory Management

48.2.1 Overview

This case study provides an overview of practices and patterns for designing and developing the inventory management
portions of an E-commerce application.

See Also:

“Product Catalog (page 611).”

Problem

Customers in e-commerce stores regularly add and remove items from their “shopping cart,” change quantities multiple
times, abandon the cart at any point, and sometimes have problems during and after checkout that require a hold or
canceled order. These activities make it difficult to maintain inventory systems and counts and ensure that customers
cannot “buy” items that are unavailable while they shop in your store.

Solution

This solution keeps the traditional metaphor of the shopping cart, but the shopping cart will age. After a shopping cart
has been inactive for a certain period of time, all items in the cart re-enter the available inventory and the cart is empty.
The state transition diagram for a shopping cart is below:

Schema

Inventory collections must maintain counts of the current available inventory of each stock-keeping unit (SKU; or
item) as well as a list of items in carts that may return to the available inventory if they are in a shopping cart that times
out. In the following example, the _id field stores the SKU:

{
_id: ’00e8da9b’,
qty: 16,
carted: [

{ qty: 1, cart_id: 42,
timestamp: ISODate("2012-03-09T20:55:36Z"), },

{ qty: 2, cart_id: 43,

48.2. Inventory Management 619

MongoDB Documentation, Release 2.4.2

timestamp: ISODate("2012-03-09T21:55:36Z"), },
]

}

Note: These examples use a simplified schema. In a production implementation, you may choose to merge this
schema with the product catalog schema described in the “Product Catalog (page 611)” document.

The SKU above has 16 items in stock, 1 item a cart, and 2 items in a second cart. This leaves a total of 19 unsold items
of merchandise.

To model the shopping cart objects, you need to maintain sku, quantity, fields embedded in a shopping cart
document:

{
_id: 42,
last_modified: ISODate("2012-03-09T20:55:36Z"),
status: ’active’,
items: [

{ sku: ’00e8da9b’, qty: 1, item_details: {...} },
{ sku: ’0ab42f88’, qty: 4, item_details: {...} }

]
}

Note: The item_details field in each line item allows your application to display the cart contents to the user
without requiring a second query to fetch details from the catalog collection.

48.2.2 Operations

This section introduces operations that you may use to support an e-commerce site. All examples in this document use
the Python programming language and the PyMongo driver for MongoDB, but you can implement this system using
any language you choose.

Add an Item to a Shopping Cart

Moving an item from the available inventory to a cart is a fundamental requirement for a shopping cart system. The
most important requirement is to ensure that your application will never move an unavailable item from the inventory
to the cart.

Ensure that inventory is only updated if there is sufficient inventory to satisfy the request with the following
add_item_to_cart function operation.

def add_item_to_cart(cart_id, sku, qty, details):
now = datetime.utcnow()

Make sure the cart is still active and add the line item
result = db.cart.update(

{’_id’: cart_id, ’status’: ’active’ },
{ ’$set’: { ’last_modified’: now },
’$push’: {

’items’: {’sku’: sku, ’qty’:qty, ’details’: details } } },
w=1)

if not result[’updatedExisting’]:
raise CartInactive()

620 Chapter 48. Product Data Management

http://api.mongodb.org/python/current

MongoDB Documentation, Release 2.4.2

Update the inventory
result = db.inventory.update(

{’_id’:sku, ’qty’: {’$gte’: qty}},
{’$inc’: {’qty’: -qty},
’$push’: {

’carted’: { ’qty’: qty, ’cart_id’:cart_id,
’timestamp’: now } } },

w=1)
if not result[’updatedExisting’]:

Roll back our cart update
db.cart.update(

{’_id’: cart_id },
{ ’$pull’: { ’items’: {’sku’: sku } } })

raise InadequateInventory()

The system does not trust that the available inventory can satisfy a request

First this operation checks to make sure that the cart is “active” before adding a item. Then, it verifies that the available
inventory to satisfy the request before decrementing inventory.

If there is not adequate inventory, the system removes the cart update: by specifying w=1 and checking the result
allows the application to report an error if the cart is inactive or available quantity is insufficient to satisfy the request.

Note: This operation requires no indexes beyond the default index on the _id field.

Modifying the Quantity in the Cart

The following process underlies adjusting the quantity of items in a users cart. The application must ensure that when
a user increases the quantity of an item, in addition to updating the carted entry for the user’s cart, that the inventory
exists to cover the modification.

def update_quantity(cart_id, sku, old_qty, new_qty):
now = datetime.utcnow()
delta_qty = new_qty - old_qty

Make sure the cart is still active and add the line item
result = db.cart.update(

{’_id’: cart_id, ’status’: ’active’, ’items.sku’: sku },
{’$set’: {

’last_modified’: now,
’items.$.qty’: new_qty },

},
w=1)

if not result[’updatedExisting’]:
raise CartInactive()

Update the inventory
result = db.inventory.update(

{’_id’:sku,
’carted.cart_id’: cart_id,
’qty’: {’$gte’: delta_qty} },
{’$inc’: {’qty’: -delta_qty },
’$set’: { ’carted.$.qty’: new_qty, ’timestamp’: now } },
w=1)

48.2. Inventory Management 621

MongoDB Documentation, Release 2.4.2

if not result[’updatedExisting’]:
Roll back our cart update
db.cart.update(

{’_id’: cart_id, ’items.sku’: sku },
{’$set’: { ’items.$.qty’: old_qty } })

raise InadequateInventory()

Note: That the positional operator $ updates the particular carted entry and item that matched the query.

This allows the application to update the inventory and keep track of the data needed to “rollback” the cart in a single
atomic operation. The code also ensures that the cart is active.

Note: This operation requires no indexes beyond the default index on the _id field.

Checking Out

The checkout operation must: validate the method of payment and remove the carted items after the transaction
succeeds. Consider the following procedure:

def checkout(cart_id):
now = datetime.utcnow()

Make sure the cart is still active and set to ’pending’. Also
fetch the cart details so we can calculate the checkout price
cart = db.cart.find_and_modify(

{’_id’: cart_id, ’status’: ’active’ },
update={’$set’: { ’status’: ’pending’,’last_modified’: now } })

if cart is None:
raise CartInactive()

Validate payment details; collect payment
try:

collect_payment(cart)
db.cart.update(

{’_id’: cart_id },
{’$set’: { ’status’: ’complete’ } })

db.inventory.update(
{’carted.cart_id’: cart_id},
{’$pull’: {’cart_id’: cart_id} },
multi=True)

except:
db.cart.update(

{’_id’: cart_id },
{’$set’: { ’status’: ’active’ } })

raise

Begin by “locking” the cart by setting its status to “pending” Then the system will verify that the cart is still active
and collect payment data. Then, the findAndModify (page 829) command makes it possible to update the cart
atomically and return its details to capture payment information. Then:

• If the payment is successful, then the application will remove the carted items from the inventory documents
and set the cart to complete.

• If payment is unsuccessful, the application will unlock the cart by setting its status to active and report a
payment error.

622 Chapter 48. Product Data Management

MongoDB Documentation, Release 2.4.2

Note: This operation requires no indexes beyond the default index on the _id field.

Returning Inventory from Timed-Out Carts

Process

Periodically, your application must “expire” inactive carts and return their items to available inventory. In the example
that follows the variable timeout controls the length of time before a cart expires:

def expire_carts(timeout):
now = datetime.utcnow()
threshold = now - timedelta(seconds=timeout)

Lock and find all the expiring carts
db.cart.update(

{’status’: ’active’, ’last_modified’: { ’$lt’: threshold } },
{’$set’: { ’status’: ’expiring’ } },
multi=True)

Actually expire each cart
for cart in db.cart.find({’status’: ’expiring’}):

Return all line items to inventory
for item in cart[’items’]:

db.inventory.update(
{ ’_id’: item[’sku’],
’carted.cart_id’: cart[’id’],
’carted.qty’: item[’qty’]

},
{’$inc’: { ’qty’: item[’qty’] },
’$pull’: { ’carted’: { ’cart_id’: cart[’id’] } } })

db.cart.update(
{’_id’: cart[’id’] },
{’$set’: { status’: ’expired’ })

This procedure:

1. finds all carts that are older than the threshold and are due for expiration.

2. for each “expiring” cart, return all items to the available inventory.

3. once the items return to the available inventory, set the status field to expired.

Indexing

To support returning inventory from timed-out cart, create an index to support queries on their status and
last_modified fields. Use the following operations in the Python/PyMongo shell:

db.cart.ensure_index([(’status’, 1), (’last_modified’, 1)])

48.2. Inventory Management 623

MongoDB Documentation, Release 2.4.2

Error Handling

The above operations do not account for one possible failure situation: if an exception occurs after updating the
shopping cart but before updating the inventory collection. This would result in a shopping cart that may be absent or
expired but items have not returned to available inventory.

To account for this case, your application will need a periodic cleanup operation that finds inventory items that have
carted items and check that to ensure that they exist in a user’s cart, and return them to available inventory if they
do not.

def cleanup_inventory(timeout):
now = datetime.utcnow()
threshold = now - timedelta(seconds=timeout)

Find all the expiring carted items
for item in db.inventory.find(

{’carted.timestamp’: {’$lt’: threshold }}):

Find all the carted items that matched
carted = dict(

(carted_item[’cart_id’], carted_item)
for carted_item in item[’carted’]
if carted_item[’timestamp’] < threshold)

First Pass: Find any carts that are active and refresh the carted items
for cart in db.cart.find(

{ ’_id’: {’$in’: carted.keys() },
’status’:’active’}):
cart = carted[cart[’_id’]]

db.inventory.update(
{ ’_id’: item[’_id’],
’carted.cart_id’: cart[’_id’] },

{ ’$set’: {’carted.$.timestamp’: now } })
del carted[cart[’_id’]]

Second Pass: All the carted items left in the dict need to now be
returned to inventory
for cart_id, carted_item in carted.items():

db.inventory.update(
{ ’_id’: item[’_id’],
’carted.cart_id’: cart_id,
’carted.qty’: carted_item[’qty’] },

{ ’$inc’: { ’qty’: carted_item[’qty’] },
’$pull’: { ’carted’: { ’cart_id’: cart_id } } })

To summarize: This operation finds all “carted” items that have time stamps older than the threshold. Then, the process
makes two passes over these items:

1. Of the items with time stamps older than the threshold, if the cart is still active, it resets the time stamp to
maintain the carts.

2. Of the stale items that remain in inactive carts, the operation returns these items to the inventory.

Note: The function above is safe for use because it checks to ensure that the cart has expired before returning items
from the cart to inventory. However, it could be long-running and slow other updates and queries.

Use judiciously.

624 Chapter 48. Product Data Management

MongoDB Documentation, Release 2.4.2

48.2.3 Sharding

If you need to shard the data for this system, the _id field is an ideal shard key for both carts and products because
most update operations use the _id field. This allows mongos (page 981) to route all updates that select on _id to a
single mongod (page 971) process.

There are two drawbacks for using _id as a shard key:

• If the cart collection’s _id is an incrementing value, all new carts end up on a single shard.

You can mitigate this effect by choosing a random value upon the creation of a cart, such as a hash (i.e. MD5 or
SHA-1) of an ObjectID, as the _id. The process for this operation would resemble the following:

import hashlib
import bson

cart_id = bson.ObjectId()
cart_id_hash = hashlib.md5(str(cart_id)).hexdigest()

cart = { "_id": cart_id, "cart_hash": cart_id_hash }
db.cart.insert(cart)

• Cart expiration and inventory adjustment requires update operations and queries to broadcast to all shards when
using _id as a shard key.

This may be less relevant as the expiration functions run relatively infrequently and you can queue them or
artificially slow them down (as with judicious use of sleep()) to minimize server load.

Use the following commands in the Python/PyMongo console to shard the cart and inventory collections:

>>> db.command(’shardCollection’, ’inventory’
... ’key’: { ’_id’: 1 })
{ "collectionsharded" : "inventory", "ok" : 1 }
>>> db.command(’shardCollection’, ’cart’)
... ’key’: { ’_id’: 1 })
{ "collectionsharded" : "cart", "ok" : 1 }

48.3 Category Hierarchy

48.3.1 Overview

This document provides the basic design for modeling a product hierarchy stored in MongoDB as well as a collection
of common operations for interacting with this data that will help you begin to write an E-commerce product category
hierarchy.

See Also:

“Product Catalog (page 611)“

Solution

To model a product category hierarchy, this solution keeps each category in its own document that also has a list of its
ancestors or “parents.” This document uses music genres as the basis of its examples:

Because these kinds of categories change infrequently, this model focuses on the operations needed to keep the hier-
archy up-to-date rather than the performance profile of update operations.

48.3. Category Hierarchy 625

MongoDB Documentation, Release 2.4.2

Figure 48.1: Initial category hierarchy

Schema

This schema has the following properties:

• A single document represents each category in the hierarchy.

• An ObjectId identifies each category document for internal cross-referencing.

• Each category document has a human-readable name and a URL compatible slug field.

• The schema stores a list of ancestors for each category to facilitate displaying a query and its ancestors using
only a single query.

Consider the following prototype:

{ "_id" : ObjectId("4f5ec858eb03303a11000002"),
"name" : "Modal Jazz",
"parent" : ObjectId("4f5ec858eb03303a11000001"),
"slug" : "modal-jazz",
"ancestors" : [

{ "_id" : ObjectId("4f5ec858eb03303a11000001"),
"slug" : "bop",
"name" : "Bop" },
{ "_id" : ObjectId("4f5ec858eb03303a11000000"),
"slug" : "ragtime",
"name" : "Ragtime" }]

}

48.3.2 Operations

This section outlines the category hierarchy manipulations that you may need in an E-Commerce site. All examples in
this document use the Python programming language and the PyMongo driver for MongoDB, but you can implement

626 Chapter 48. Product Data Management

http://api.mongodb.org/python/current

MongoDB Documentation, Release 2.4.2

this system using any language you choose.

Read and Display a Category

Querying

Use the following option to read and display a category hierarchy. This query will use the slug field to return the
category information and a “bread crumb” trail from the current category to the top level category.

category = db.categories.find(
{’slug’:slug},
{’_id’:0, ’name’:1, ’ancestors.slug’:1, ’ancestors.name’:1 })

Indexing

Create a unique index on the slug field with the following operation on the Python/PyMongo console:

>>> db.categories.ensure_index(’slug’, unique=True)

Add a Category to the Hierarchy

To add a category you must first determine its ancestors. Take adding a new category “Swing” as a child of “Ragtime”,
as below:

Figure 48.2: Adding a category

The insert operation would be trivial except for the ancestors. To define this array, consider the following helper
function:

48.3. Category Hierarchy 627

MongoDB Documentation, Release 2.4.2

def build_ancestors(_id, parent_id):
parent = db.categories.find_one(

{’_id’: parent_id},
{’name’: 1, ’slug’: 1, ’ancestors’:1})

parent_ancestors = parent.pop(’ancestors’)
ancestors = [parent] + parent_ancestors
db.categories.update(

{’_id’: _id},
{’$set’: { ’ancestors’: ancestors } })

You only need to travel “up” one level in the hierarchy to get the ancestor list for “Ragtime” that you can use to build
the ancestor list for “Swing.” Then create a document with the following set of operations:

doc = dict(name=’Swing’, slug=’swing’, parent=ragtime_id)
swing_id = db.categories.insert(doc)
build_ancestors(swing_id, ragtime_id)

Note: Since these queries and updates all selected based on _id, you only need the default MongoDB-supplied index
on _id to support this operation efficiently.

Change the Ancestry of a Category

This section address the process for reorganizing the hierarchy by moving “bop” under “swing” as follows:

Procedure

Update the bop document to reflect the change in ancestry with the following operation:

db.categories.update(
{’_id’:bop_id}, {’$set’: { ’parent’: swing_id } })

The following helper function, rebuilds the ancestor fields to ensure correctness. 1

def build_ancestors_full(_id, parent_id):
ancestors = []
while parent_id is not None:

parent = db.categories.find_one(
{’_id’: parent_id},
{’parent’: 1, ’name’: 1, ’slug’: 1, ’ancestors’:1})

parent_id = parent.pop(’parent’)
ancestors.append(parent)

db.categories.update(
{’_id’: _id},
{’$set’: { ’ancestors’: ancestors } })

You can use the following loop to reconstruct all the descendants of the “bop” category:

for cat in db.categories.find(
{’ancestors._id’: bop_id},
{’parent_id’: 1}):
build_ancestors_full(cat[’_id’], cat[’parent_id’])

1 Your application cannot guarantee that the ancestor list of a parent category is correct, because MongoDB may process the categories out-of-
order.

628 Chapter 48. Product Data Management

MongoDB Documentation, Release 2.4.2

Figure 48.3: Change the parent of a category

48.3. Category Hierarchy 629

MongoDB Documentation, Release 2.4.2

Indexing

Create an index on the ancestors._id field to support the update operation.

db.categories.ensure_index(’ancestors._id’)

Rename a Category

To a rename a category you need to both update the category itself and also update all the descendants. Consider
renaming “Bop” to “BeBop” as in the following figure:

Figure 48.4: Rename a category

First, you need to update the category name with the following operation:

db.categories.update(
{’_id’:bop_id}, {’$set’: { ’name’: ’BeBop’ } })

Next, you need to update each descendant’s ancestors list:

db.categories.update(
{’ancestors._id’: bop_id},

630 Chapter 48. Product Data Management

MongoDB Documentation, Release 2.4.2

{’$set’: { ’ancestors.$.name’: ’BeBop’ } },
multi=True)

This operation uses:

• the positional operation $ to match the exact “ancestor” entry that matches the query, and

• the multi option to update all documents that match this query.

Note: In this case, the index you have already defined on ancestors._id is sufficient to ensure good performance.

48.3.3 Sharding

For most deployments, sharding this collection has limited value because the collection will be very small. If you do
need to shard, because most updates query the _id field, this field is a suitable shard key. Shard the collection with
the following operation in the Python/PyMongo console.

>>> db.command(’shardCollection’, ’categories’, {
... ’key’: {’_id’: 1} })
{ "collectionsharded" : "categories", "ok" : 1 }

48.3. Category Hierarchy 631

MongoDB Documentation, Release 2.4.2

632 Chapter 48. Product Data Management

CHAPTER 49

Content Management Systems

The content management use cases introduce fundamental MongoDB practices and approaches, using familiar prob-
lems and simple examples. The “Metadata and Asset Management (page 633)” document introduces a model that you
may use when designing a web site content management system, while “Storing Comments (page 640)” introduces the
method for modeling user comments on content, like blog posts, and media, in MongoDB.

49.1 Metadata and Asset Management

49.1.1 Overview

This document describes the design and pattern of a content management system using MongoDB modeled on the
popular Drupal CMS.

Problem

You are designing a content management system (CMS) and you want to use MongoDB to store the content of your
sites.

Solution

To build this system you will use MongoDB’s flexible schema to store all content “nodes” in a single collection
regardless of type. This guide will provide prototype schema and describe common operations for the following
primary node types:

Basic Page Basic pages are useful for displaying infrequently-changing text such as an ‘about’ page. With a basic
page, the salient information is the title and the content.

Blog entry Blog entries record a “stream” of posts from users on the CMS and store title, author, content, and date as
relevant information.

Photo Photos participate in photo galleries, and store title, description, author, and date along with the actual photo
binary data.

This solution does not describe schema or process for storing or using navigational and organizational information.

633

http://www.drupal.org

MongoDB Documentation, Release 2.4.2

Schema

Although documents in the nodes collection contain content of different types, all documents have a similar structure
and a set of common fields. Consider the following prototype document for a “basic page” node type:

{
_id: ObjectId(...),
nonce: ObjectId(...),
metadata: {

type: ’basic-page’
section: ’my-photos’,
slug: ’about’,
title: ’About Us’,
created: ISODate(...),
author: { _id: ObjectId(...), name: ’Rick’ },
tags: [...],
detail: { text: ’# About Us\n...’ }

}
}

Most fields are descriptively titled. The section field identifies groupings of items, as in a photo gallery, or a
particular blog . The slug field holds a URL-friendly unique representation of the node, usually that is unique within
its section for generating URLs.

All documents also have a detail field that varies with the document type. For the basic page above, the detail
field might hold the text of the page. For a blog entry, the detail field might hold a sub-document. Consider the
following prototype:

{
...
metadata: {

...
type: ’blog-entry’,
section: ’my-blog’,
slug: ’2012-03-noticed-the-news’,
...
detail: {

publish_on: ISODate(...),
text: ’I noticed the news from Washington today...’

}
}

}

Photos require a different approach. Because photos can be potentially larger than these documents, it’s important to
separate the binary photo storage from the nodes metadata.

GridFS provides the ability to store larger files in MongoDB. GridFS stores data in two collections, in this case,
cms.assets.files, which stores metadata, and cms.assets.chunks which stores the data itself. Consider
the following prototype document from the cms.assets.files collection:

{
_id: ObjectId(...),
length: 123...,
chunkSize: 262144,
uploadDate: ISODate(...),
contentType: ’image/jpeg’,
md5: ’ba49a...’,
metadata: {

nonce: ObjectId(...),

634 Chapter 49. Content Management Systems

MongoDB Documentation, Release 2.4.2

slug: ’2012-03-invisible-bicycle’,
type: ’photo’,
section: ’my-album’,
title: ’Kitteh’,
created: ISODate(...),
author: { _id: ObjectId(...), name: ’Jared’ },
tags: [...],
detail: {

filename: ’kitteh_invisible_bike.jpg’,
resolution: [1600, 1600], ... }

}
}

Note: This document embeds the basic node document fields, which allows you to use the same code to manipulate
nodes, regardless of type.

49.1.2 Operations

This section outlines a number of common operations for building and interacting with the metadata and asset layer
of the cms for all node types. All examples in this document use the Python programming language and the PyMongo
driver for MongoDB, but you can implement this system using any language you choose.

Create and Edit Content Nodes

Procedure

The most common operations inside of a CMS center on creating and editing content. Consider the following
insert() operation:

db.cms.nodes.insert({
’nonce’: ObjectId(),
’metadata’: {

’section’: ’myblog’,
’slug’: ’2012-03-noticed-the-news’,
’type’: ’blog-entry’,
’title’: ’Noticed in the News’,
’created’: datetime.utcnow(),
’author’: { ’id’: user_id, ’name’: ’Rick’ },
’tags’: [’news’, ’musings’],
’detail’: {

’publish_on’: datetime.utcnow(),
’text’: ’I noticed the news from Washington today...’ }

}
})

Once inserted, your application must have some way of preventing multiple concurrent updates. The schema uses the
special nonce field to help detect concurrent edits. By using the nonce field in the query portion of the update
operation, the application will generate an error if there is an editing collision. Consider the following update

def update_text(section, slug, nonce, text):
result = db.cms.nodes.update(

{ ’metadata.section’: section,
’metadata.slug’: slug,
’nonce’: nonce },

49.1. Metadata and Asset Management 635

http://api.mongodb.org/python/current
http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.insert
http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.update
http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.update

MongoDB Documentation, Release 2.4.2

{ ’$set’:{’metadata.detail.text’: text, ’nonce’: ObjectId() } },
w=1)

if not result[’updatedExisting’]:
raise ConflictError()

You may also want to perform metadata edits to the item such as adding tags:

db.cms.nodes.update(
{ ’metadata.section’: section, ’metadata.slug’: slug },
{ ’$addToSet’: { ’tags’: { ’$each’: [’interesting’, ’funny’] } } })

In this example the $addToSet (page 740) operator will only add values to the tags field if they do not already
exist in the tags array, there’s no need to supply or update the nonce.

Index Support

To support updates and queries on the metadata.section, and metadata.slug, fields and to ensure that
two editors don’t create two documents with the same section name or slug. Use the following operation at the
Python/PyMongo console:

>>> db.cms.nodes.ensure_index([
... (’metadata.section’, 1), (’metadata.slug’, 1)], unique=True)

The unique=True option prevents to documents from colliding. If you want an index to support queries on the
above fields and the nonce field create the following index:

>>> db.cms.nodes.ensure_index([
... (’metadata.section’, 1), (’metadata.slug’, 1), (’nonce’, 1)])

However, in most cases, the first index will be sufficient to support these operations.

Upload a Photo

Procedure

To update a photo object, use the following operation, which builds upon the basic update procedure:

def upload_new_photo(
input_file, section, slug, title, author, tags, details):
fs = GridFS(db, ’cms.assets’)
with fs.new_file(

content_type=’image/jpeg’,
metadata=dict(

type=’photo’,
locked=datetime.utcnow(),
section=section,
slug=slug,
title=title,
created=datetime.utcnow(),
author=author,
tags=tags,
detail=detail)) as upload_file:

while True:
chunk = input_file.read(upload_file.chunk_size)
if not chunk: break
upload_file.write(chunk)

636 Chapter 49. Content Management Systems

MongoDB Documentation, Release 2.4.2

unlock the file
db.assets.files.update(

{’_id’: upload_file._id},
{’$set’: { ’locked’: None } })

Because uploading the photo spans multiple documents and is a non-atomic operation, you must “lock” the file during
upload by writing datetime.utcnow() in the record. This helps when there are multiple concurrent editors and
lets the application detect stalled file uploads. This operation assumes that, for photo upload, the last update will
succeed:

def update_photo_content(input_file, section, slug):
fs = GridFS(db, ’cms.assets’)

Delete the old version if it’s unlocked or was locked more than 5
minutes ago
file_obj = db.cms.assets.find_one(

{ ’metadata.section’: section,
’metadata.slug’: slug,
’metadata.locked’: None })

if file_obj is None:
threshold = datetime.utcnow() - timedelta(seconds=300)
file_obj = db.cms.assets.find_one(

{ ’metadata.section’: section,
’metadata.slug’: slug,
’metadata.locked’: { ’$lt’: threshold } })

if file_obj is None: raise FileDoesNotExist()
fs.delete(file_obj[’_id’])

update content, keep metadata unchanged
file_obj[’locked’] = datetime.utcnow()
with fs.new_file(**file_obj):

while True:
chunk = input_file.read(upload_file.chunk_size)
if not chunk: break
upload_file.write(chunk)

unlock the file
db.assets.files.update(

{’_id’: upload_file._id},
{’$set’: { ’locked’: None } })

As with the basic operations, you can use a much more simple operation to edit the tags:

db.cms.assets.files.update(
{ ’metadata.section’: section, ’metadata.slug’: slug },
{ ’$addToSet’: { ’metadata.tags’: { ’$each’: [’interesting’, ’funny’] } } })

Index Support

Create a unique index on { metadata.section: 1, metadata.slug: 1 } to support the above op-
erations and prevent users from creating or updating the same file concurrently. Use the following operation in the
Python/PyMongo console:

>>> db.cms.assets.files.ensure_index([
... (’metadata.section’, 1), (’metadata.slug’, 1)], unique=True)

49.1. Metadata and Asset Management 637

MongoDB Documentation, Release 2.4.2

Locate and Render a Node

To locate a node based on the value of metadata.section and metadata.slug, use the following find_one
operation.

node = db.nodes.find_one({’metadata.section’: section, ’metadata.slug’: slug })

Note: The index defined (section, slug) created to support the update operation, is sufficient to support this
operation as well.

Locate and Render a Photo

To locate an image based on the value of metadata.section and metadata.slug, use the following
find_one operation.

fs = GridFS(db, ’cms.assets’)
with fs.get_version({’metadata.section’: section, ’metadata.slug’: slug }) as img_fpo:

do something with the image file

Note: The index defined (section, slug) created to support the update operation, is sufficient to support this
operation as well.

Search for Nodes by Tag

Querying

To retrieve a list of nodes based on their tags, use the following query:

nodes = db.nodes.find({’metadata.tags’: tag })

Indexing

Create an index on the tags field in the cms.nodes collection, to support this query:

>>> db.cms.nodes.ensure_index(’tags’)

Search for Images by Tag

Procedure

To retrieve a list of images based on their tags, use the following operation:

image_file_objects = db.cms.assets.files.find({’metadata.tags’: tag })
fs = GridFS(db, ’cms.assets’)
for image_file_object in db.cms.assets.files.find(

{’metadata.tags’: tag }):
image_file = fs.get(image_file_object[’_id’])
do something with the image file

638 Chapter 49. Content Management Systems

http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.find_one
http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.find_one

MongoDB Documentation, Release 2.4.2

Indexing

Create an index on the tags field in the cms.assets.files collection, to support this query:

>>> db.cms.assets.files.ensure_index(’tags’)

Generate a Feed of Recently Published Blog Articles

Querying

Use the following operation to generate a list of recent blog posts sorted in descending order by date, for use on the
index page of your site, or in an .rss or .atom feed.

articles = db.nodes.find({
’metadata.section’: ’my-blog’
’metadata.published’: { ’$lt’: datetime.utcnow() } })

articles = articles.sort({’metadata.published’: -1})

Note: In many cases you will want to limit the number of nodes returned by this query.

Indexing

Create a compound index on the { metadata.section: 1, metadata.published: 1 } fields to sup-
port this query and sort operation.

>>> db.cms.nodes.ensure_index(
... [(’metadata.section’, 1), (’metadata.published’, -1)])

Note: For all sort or range queries, ensure that field with the sort or range operation is the final field in the index.

49.1.3 Sharding

In a CMS, read performance is more critical than write performance. To achieve the best read performance in a sharded
cluster, ensure that the mongos (page 981) can route queries to specific shards.

Also remember that MongoDB can not enforce unique indexes across shards. Using a compound shard key that
consists of metadata.section and metadata.slug, will provide the same semantics as describe above.

Warning: Consider the actual use and workload of your cluster before configuring sharding for your cluster.

Use the following operation at the Python/PyMongo shell:

>>> db.command(’shardCollection’, ’cms.nodes’, {
... key : { ’metadata.section’: 1, ’metadata.slug’ : 1 } })
{ "collectionsharded": "cms.nodes", "ok": 1}
>>> db.command(’shardCollection’, ’cms.assets.files’, {
... key : { ’metadata.section’: 1, ’metadata.slug’ : 1 } })
{ "collectionsharded": "cms.assets.files", "ok": 1}

49.1. Metadata and Asset Management 639

MongoDB Documentation, Release 2.4.2

To shard the cms.assets.chunks collection, you must use the _id field as the shard key. The following operation
will shard the collection

>>> db.command(’shardCollection’, ’cms.assets.chunks’, {
... key : { ’files_id’: 1 } })
{ "collectionsharded": "cms.assets.chunks", "ok": 1}

Sharding on the files_id field ensures routable queries because all reads from GridFS must first look up the
document in cms.assets.files and then look up the chunks separately.

49.2 Storing Comments

This document outlines the basic patterns for storing user-submitted comments in a content management system
(CMS.)

49.2.1 Overview

MongoDB provides a number of different approaches for storing data like users-comments on content from a CMS.
There is no correct implementation, but there are a number of common approaches and known considerations for each
approach. This case study explores the implementation details and trade offs of each option. The three basic patterns
are:

1. Store each comment in its own document.

This approach provides the greatest flexibility at the expense of some additional application level complexity.

These implementations make it possible to display comments in chronological or threaded order, and place no
restrictions on the number of comments attached to a specific object.

2. Embed all comments in the “parent” document.

This approach provides the greatest possible performance for displaying comments at the expense of flexibility:
the structure of the comments in the document controls the display format.

Note: Because of the limit on document size (page 1105), documents, including the original content and all
comments, cannot grow beyond 16 megabytes.

3. A hybrid design, stores comments separately from the “parent,” but aggregates comments into a small number
of documents, where each contains many comments.

Also consider that comments can be threaded, where comments are always replies to “parent” item or to another
comment, which carries certain architectural requirements discussed below.

49.2.2 One Document per Comment

Schema

If you store each comment in its own document, the documents in your comments collection, would have the fol-
lowing structure:

{
_id: ObjectId(...),
discussion_id: ObjectId(...),
slug: ’34db’,

640 Chapter 49. Content Management Systems

MongoDB Documentation, Release 2.4.2

posted: ISODateTime(...),
author: {

id: ObjectId(...),
name: ’Rick’
},

text: ’This is so bogus ... ’
}

This form is only suitable for displaying comments in chronological order. Comments store:

• the discussion_id field that references the discussion parent,

• a URL-compatible slug identifier,

• a posted timestamp,

• an author sub-document that contains a reference to a user’s profile in the id field and their name in the name
field, and

• the full text of the comment.

To support threaded comments, you might use a slightly different structure like the following:

{
_id: ObjectId(...),
discussion_id: ObjectId(...),
parent_id: ObjectId(...),
slug: ’34db/8bda’
full_slug: ’2012.02.08.12.21.08:34db/2012.02.09.22.19.16:8bda’,
posted: ISODateTime(...),
author: {

id: ObjectId(...),
name: ’Rick’
},

text: ’This is so bogus ... ’
}

This structure:

• adds a parent_id field that stores the contents of the _id field of the parent comment,

• modifies the slug field to hold a path composed of the parent or parent’s slug and this comment’s unique slug,
and

• adds a full_slug field that that combines the slugs and time information to make it easier to sort documents
in a threaded discussion by date.

Warning: MongoDB can only index 1024 bytes (page 1106). This includes all field data, the field name, and the
namespace (i.e. database name and collection name.) This may become an issue when you create an index of the
full_slug field to support sorting.

Operations

This section contains an overview of common operations for interacting with comments represented using a schema
where each comment is its own document.

All examples in this document use the Python programming language and the PyMongo driver for MongoDB, but you
can implement this system using any language you choose. Issue the following commands at the interactive Python
shell to load the required libraries:

49.2. Storing Comments 641

http://api.mongodb.org/python/current

MongoDB Documentation, Release 2.4.2

>>> import bson
>>> import pymongo

Post a New Comment

To post a new comment in a chronologically ordered (i.e. without threading) system, use the following insert()
operation:

slug = generate_pseudorandom_slug()
db.comments.insert({

’discussion_id’: discussion_id,
’slug’: slug,
’posted’: datetime.utcnow(),
’author’: author_info,
’text’: comment_text })

To insert a comment for a system with threaded comments, you must generate the slug path and full_slug at
insert. See the following operation:

posted = datetime.utcnow()

generate the unique portions of the slug and full_slug
slug_part = generate_pseudorandom_slug()
full_slug_part = posted.strftime(’%Y.%m.%d.%H.%M.%S’) + ’:’ + slug_part
load the parent comment (if any)
if parent_slug:

parent = db.comments.find_one(
{’discussion_id’: discussion_id, ’slug’: parent_slug })

slug = parent[’slug’] + ’/’ + slug_part
full_slug = parent[’full_slug’] + ’/’ + full_slug_part

else:
slug = slug_part
full_slug = full_slug_part

actually insert the comment
db.comments.insert({

’discussion_id’: discussion_id,
’slug’: slug,
’full_slug’: full_slug,
’posted’: posted,
’author’: author_info,
’text’: comment_text })

View Paginated Comments

To view comments that are not threaded, select all comments participating in a discussion and sort by the posted
field. For example:

cursor = db.comments.find({’discussion_id’: discussion_id})
cursor = cursor.sort(’posted’)
cursor = cursor.skip(page_num * page_size)
cursor = cursor.limit(page_size)

Because the full_slug field contains both hierarchical information (via the path) and chronological information,
you can use a simple sort on the full_slug field to retrieve a threaded view:

642 Chapter 49. Content Management Systems

http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.insert

MongoDB Documentation, Release 2.4.2

cursor = db.comments.find({’discussion_id’: discussion_id})
cursor = cursor.sort(’full_slug’)
cursor = cursor.skip(page_num * page_size)
cursor = cursor.limit(page_size)

See Also:

cursor.limit (page 894), cursor.skip (page 899), and cursor.sort (page 900)

Indexing

To support the above queries efficiently, maintain two compound indexes, on:

1. (‘‘discussion_id, posted)‘‘ and

2. (‘‘discussion_id, full_slug)‘‘

Issue the following operation at the interactive Python shell.

>>> db.comments.ensure_index([
... (’discussion_id’, 1), (’posted’, 1)])
>>> db.comments.ensure_index([
... (’discussion_id’, 1), (’full_slug’, 1)])

Note: Ensure that you always sort by the final element in a compound index to maximize the performance of these
queries.

Retrieve Comments via Direct Links

Queries

To directly retrieve a comment, without needing to page through all comments, you can select by the slug field:

comment = db.comments.find_one({
’discussion_id’: discussion_id,
’slug’: comment_slug})

You can retrieve a “sub-discussion,” or a comment and all of its descendants recursively, by performing a regular
expression prefix query on the full_slug field:

import re

subdiscussion = db.comments.find_one({
’discussion_id’: discussion_id,
’full_slug’: re.compile(’^’ + re.escape(parent_slug)) })

subdiscussion = subdiscussion.sort(’full_slug’)

Indexing

Since you have already created indexes on { discussion_id: 1, full_slug: } to support retrieving
sub-discussions, you can add support for the above queries by adding an index on { discussion_id: 1 ,
slug: 1 }. Use the following operation in the Python shell:

49.2. Storing Comments 643

MongoDB Documentation, Release 2.4.2

>>> db.comments.ensure_index([
... (’discussion_id’, 1), (’slug’, 1)])

49.2.3 Embedding All Comments

This design embeds the entire discussion of a comment thread inside of the topic document. In this example, the
“topic,” document holds the total content for whatever content you’re managing.

Schema

Consider the following prototype topic document:

{
_id: ObjectId(...),
... lots of topic data ...
comments: [

{ posted: ISODateTime(...),
author: { id: ObjectId(...), name: ’Rick’ },
text: ’This is so bogus ... ’ },

...]
}

This structure is only suitable for a chronological display of all comments because it embeds comments in chronolog-
ical order. Each document in the array in the comments contains the comment’s date, author, and text.

Note: Since you’re storing the comments in sorted order, there is no need to maintain per-comment slugs.

To support threading using this design, you would need to embed comments within comments, using a structure that
resembles the following:

{
_id: ObjectId(...),
... lots of topic data ...
replies: [

{ posted: ISODateTime(...),
author: { id: ObjectId(...), name: ’Rick’ },
text: ’This is so bogus ... ’,
replies: [

{ author: { ... }, ... },
...]

}

Here, the replies field in each comment holds the sub-comments, which can intern hold sub-comments.

Note: In the embedded document design, you give up some flexibility regarding display format, because it is difficult
to display comments except as you store them in MongoDB.

If, in the future, you want to switch from chronological to threaded or from threaded to chronological, this design
would make that migration quite expensive.

644 Chapter 49. Content Management Systems

MongoDB Documentation, Release 2.4.2

Warning: Remember that BSON documents have a 16 megabyte size limit (page 1105). If popular discussions
grow larger than 16 megabytes, additional document growth will fail.
Additionally, when MongoDB documents grow significantly after creation you will experience greater storage
fragmentation and degraded update performance while MongoDB migrates documents internally.

Operations

This section contains an overview of common operations for interacting with comments represented using a schema
that embeds all comments the document of the “parent” or topic content.

Note: For all operations below, there is no need for any new indexes since all the operations are function within
documents. Because you would retrieve these documents by the _id field, you can rely on the index that MongoDB
creates automatically.

Post a new comment

To post a new comment in a chronologically ordered (i.e unthreaded) system, you need the following update():

db.discussion.update(
{ ’discussion_id’: discussion_id },
{ ’$push’: { ’comments’: {

’posted’: datetime.utcnow(),
’author’: author_info,
’text’: comment_text } } })

The $push (page 765) operator inserts comments into the comments array in correct chronological order. For
threaded discussions, the update() operation is more complex. To reply to a comment, the following code assumes
that it can retrieve the ‘path’ as a list of positions, for the parent comment:

if path != []:
str_path = ’.’.join(’replies.%d’ % part for part in path)
str_path += ’.replies’

else:
str_path = ’replies’

db.discussion.update(
{ ’discussion_id’: discussion_id },
{ ’$push’: {

str_path: {
’posted’: datetime.utcnow(),
’author’: author_info,
’text’: comment_text } } })

This constructs a field name of the form replies.0.replies.2... as str_path and then uses this value with
the $push (page 765) operator to insert the new comment into the parent comment’s replies array.

View Paginated Comments

To view the comments in a non-threaded design, you must use the $slice (page 772) operator:

discussion = db.discussion.find_one(
{’discussion_id’: discussion_id},
{ ... some fields relevant to your page from the root discussion ...,

49.2. Storing Comments 645

http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.update
http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.update

MongoDB Documentation, Release 2.4.2

’comments’: { ’$slice’: [page_num * page_size, page_size] }
})

To return paginated comments for the threaded design, you must retrieve the whole document and paginate the com-
ments within the application:

discussion = db.discussion.find_one({’discussion_id’: discussion_id})

def iter_comments(obj):
for reply in obj[’replies’]:

yield reply
for subreply in iter_comments(reply):

yield subreply

paginated_comments = itertools.slice(
iter_comments(discussion),
page_size * page_num,
page_size * (page_num + 1))

Retrieve a Comment via Direct Links

Instead of retrieving comments via slugs as above, the following example retrieves comments using their position in
the comment list or tree.

For chronological (i.e. non-threaded) comments, just use the $slice (page 772) operator to extract a comment, as
follows:

discussion = db.discussion.find_one(
{’discussion_id’: discussion_id},
{’comments’: { ’$slice’: [position, position] } })

comment = discussion[’comments’][0]

For threaded comments, you must find the correct path through the tree in your application, as follows:

discussion = db.discussion.find_one({’discussion_id’: discussion_id})
current = discussion
for part in path:

current = current.replies[part]
comment = current

Note: Since parent comments embed child replies, this operation actually retrieves the entire sub-discussion for the
comment you queried for.

See Also:

find_one().

49.2.4 Hybrid Schema Design

Schema

In the “hybrid approach” you will store comments in “buckets” that hold about 100 comments. Consider the following
example document:

646 Chapter 49. Content Management Systems

http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.find_one

MongoDB Documentation, Release 2.4.2

{
_id: ObjectId(...),
discussion_id: ObjectId(...),
page: 1,
count: 42,
comments: [{

slug: ’34db’,
posted: ISODateTime(...),
author: { id: ObjectId(...), name: ’Rick’ },
text: ’This is so bogus ... ’ },

...]
}

Each document maintains page and count data that contains meta data regarding the page, the page number and the
comment count, in addition to the comments array that holds the comments themselves.

Note: Using a hybrid format makes storing threaded comments complex, and this specific configuration is not covered
in this document.

Also, 100 comments is a soft limit for the number of comments per page. This value is arbitrary: choose a value that
will prevent the maximum document size from growing beyond the 16MB BSON document size limit (page 1105),
but large enough to ensure that most comment threads will fit in a single document. In some situations the number of
comments per document can exceed 100, but this does not affect the correctness of the pattern.

Operations

This section contains a number of common operations that you may use when building a CMS using this hybrid storage
model with documents that hold 100 comment “pages.”

All examples in this document use the Python programming language and the PyMongo driver for MongoDB, but you
can implement this system using any language you choose.

Post a New Comment

Updating In order to post a new comment, you need to $push (page 765) the comment onto the last page
and $inc (page 751) that page’s comment count. Consider the following example that queries on the basis of a
discussion_id field:

page = db.comment_pages.find_and_modify(
{ ’discussion_id’: discussion[’_id’],

’page’: discussion[’num_pages’] },
{ ’$inc’: { ’count’: 1 },

’$push’: {
’comments’: { ’slug’: slug, ... } } },

fields={’count’:1},
upsert=True,
new=True)

The find_and_modify() operation is an upsert,: if MongoDB cannot find a document with the correct page
number, the find_and_modify()will create it and initialize the new document with appropriate values for count
and comments.

To limit the number of comments per page to roughly 100, you will need to create new pages as they become necessary.
Add the following logic to support this:

49.2. Storing Comments 647

http://api.mongodb.org/python/current
http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.find_and_modify
http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.find_and_modify

MongoDB Documentation, Release 2.4.2

if page[’count’] > 100:
db.discussion.update(

{ ’discussion_id: discussion[’_id’],
’num_pages’: discussion[’num_pages’] },

{ ’$inc’: { ’num_pages’: 1 } })

This update() operation includes the last known number of pages in the query to prevent a race condition where
the number of pages increments twice, that would result in a nearly or totally empty document. If another process
increments the number of pages, then update above does nothing.

Indexing To support the find_and_modify() and update() operations, maintain a compound index
on (discussion_id, page) in the comment_pages collection, by issuing the following operation at the
Python/PyMongo console:

>>> db.comment_pages.ensure_index([
... (’discussion_id’, 1), (’page’, 1)])

View Paginated Comments

The following function defines how to paginate comments with a fixed page size (i.e. not with the roughly 100
comment documents in the above example,) as en example:

def find_comments(discussion_id, skip, limit):
result = []
page_query = db.comment_pages.find(

{ ’discussion_id’: discussion_id },
{ ’count’: 1, ’comments’: { ’$slice’: [skip, limit] } })

page_query = page_query.sort(’page’)
for page in page_query:

result += page[’comments’]
skip = max(0, skip - page[’count’])
limit -= len(page[’comments’])
if limit == 0: break

return result

Here, the $slice (page 772) operator pulls out comments from each page, but only when this satisfies the skip
requirement. For example: if you have 3 pages with 100, 102, 101, and 22 comments on each page, and you wish to
retrieve comments where skip=300 and limit=50. Use the following algorithm:

Skip Limit Discussion
300 50 {$slice: [300, 50] } matches nothing in page #1; subtract page #1’s count from

skip and continue.
200 50 {$slice: [200, 50] } matches nothing in page #2; subtract page #2’s count from

skip and continue.
98 50 {$slice: [98, 50] } matches 2 comments in page #3; subtract page #3’s count from

skip (saturating at 0), subtract 2 from limit, and continue.
0 48 {$slice: [0, 48] } matches all 22 comments in page #4; subtract 22 from limit and

continue.
0 26 There are no more pages; terminate loop.

Note: Since you already have an index on (discussion_id, page) in your comment_pages collection, Mon-
goDB can satisfy these queries efficiently.

648 Chapter 49. Content Management Systems

http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.update
http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.find_and_modify
http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.update

MongoDB Documentation, Release 2.4.2

Retrieve a Comment via Direct Links

Query To retrieve a comment directly without paging through all preceding pages of commentary, use the slug to
find the correct page, and then use application logic to find the correct comment:

page = db.comment_pages.find_one(
{ ’discussion_id’: discussion_id,

’comments.slug’: comment_slug},
{ ’comments’: 1 })

for comment in page[’comments’]:
if comment[’slug’] = comment_slug:

break

Indexing To perform this query efficiently you’ll need a new index on the discussion_id and
comments.slug fields (i.e. { discussion_id: 1 comments.slug: 1 }.) Create this index using
the following operation in the Python/PyMongo console:

>>> db.comment_pages.ensure_index([
... (’discussion_id’, 1), (’comments.slug’, 1)])

49.2.5 Sharding

For all of the architectures discussed above, you will want to the discussion_id field to participate in the shard
key, if you need to shard your application.

For applications that use the “one document per comment” approach, consider using slug (or full_slug, in the
case of threaded comments) fields in the shard key to allow the mongos (page 981) instances to route requests by
slug. Issue the following operation at the Python/PyMongo console:

>>> db.command(’shardCollection’, ’comments’, {
... ’key’ : { ’discussion_id’ : 1, ’full_slug’: 1 } })

This will return the following response:

{ "collectionsharded" : "comments", "ok" : 1 }

In the case of comments that fully-embedded in parent content documents the determination of the shard key is outside
of the scope of this document.

For hybrid documents, use the page number of the comment page in the shard key along with the discussion_id
to allow MongoDB to split popular discussions between, while grouping discussions on the same shard. Issue the
following operation at the Python/PyMongo console:

>>> db.command(’shardCollection’, ’comment_pages’, {
... key : { ’discussion_id’ : 1, ’page’: 1 } })
{ "collectionsharded" : "comment_pages", "ok" : 1 }

49.2. Storing Comments 649

MongoDB Documentation, Release 2.4.2

650 Chapter 49. Content Management Systems

CHAPTER 50

Python Application Development

50.1 Write a Tumblelog Application with Django MongoDB Engine

50.1.1 Introduction

In this tutorial, you will learn how to create a basic tumblelog application using the popular Django Python web-
framework and the MongoDB database.

The tumblelog will consist of two parts:

1. A public site that lets people view posts and comment on them.

2. An admin site that lets you add, change and delete posts and publish comments.

This tutorial assumes that you are already familiar with Django and have a basic familiarity with MongoDB operation
and have installed MongoDB (page 3).

Where to get help

If you’re having trouble going through this tutorial, please post a message to mongodb-user or join the IRC chat in
#mongodb on irc.freenode.net to chat with other MongoDB users who might be able to help.

Note: Django MongoDB Engine uses a forked version of Django 1.3 that adds non-relational support.

50.1.2 Installation

Begin by installing packages required by later steps in this tutorial.

Prerequisite

This tutorial uses pip to install packages and virtualenv to isolate Python environments. While these tools and this
configuration are not required as such, they ensure a standard environment and are strongly recommended. Issue the
following commands at the system prompt:

651

http://www.djangoproject.com
http://groups.google.com/group/mongodb-user
http://freenode.net/
http://django-mongodb.org/
http://pypi.python.org/pypi/pip
http://virtualenv.org

MongoDB Documentation, Release 2.4.2

pip install virtualenv
virtualenv myproject

Respectively, these commands: install the virtualenv program (using pip) and create a isolated python environ-
ment for this project (named myproject.)

To activate myproject environment at the system prompt, use the following commands:

source myproject/bin/activate

Installing Packages

Django MongoDB Engine directly depends on:

• Django-nonrel, a fork of Django 1.3 that adds support for non-relational databases

• djangotoolbox, a bunch of utilities for non-relational Django applications and backends

Install by issuing the following commands:

pip install https://bitbucket.org/wkornewald/django-nonrel/get/tip.tar.gz
pip install https://bitbucket.org/wkornewald/djangotoolbox/get/tip.tar.gz
pip install https://github.com/django-nonrel/mongodb-engine/tarball/master

Continue with the tutorial to begin building the “tumblelog” application.

50.1.3 Build a Blog to Get Started

In this tutorial you will build a basic blog as the foundation of this application and use this as the basis of your
tumblelog application. You will add the first post using the shell and then later use the Django administrative interface.

Call the startproject command, as with other Django projects, to get started and create the basic project skeleton:

django-admin.py startproject tumblelog

Configuring Django

Configure the database in the tumblelog/settings.py file:

DATABASES = {
’default’: {

’ENGINE’: ’django_mongodb_engine’,
’NAME’: ’my_tumble_log’

}
}

See Also:

The Django MongoDB Engine Settings documentation for more configuration options.

Define the Schema

The first step in writing a tumblelog in Django is to define the “models” or in MongoDB’s terminology documents.

In this application, you will define posts and comments, so that each Post can contain a list of Comments. Edit the
tumblelog/models.py file so it resembles the following:

652 Chapter 50. Python Application Development

http://www.allbuttonspressed.com/projects/django-nonrel
http://www.allbuttonspressed.com/projects/djangotoolbox
http://django-mongodb.org/reference/settings.html
http://www.djangoproject.com

MongoDB Documentation, Release 2.4.2

from django.db import models
from django.core.urlresolvers import reverse

from djangotoolbox.fields import ListField, EmbeddedModelField

class Post(models.Model):
created_at = models.DateTimeField(auto_now_add=True, db_index=True)
title = models.CharField(max_length=255)
slug = models.SlugField()
body = models.TextField()
comments = ListField(EmbeddedModelField(’Comment’), editable=False)

def get_absolute_url(self):
return reverse(’post’, kwargs={"slug": self.slug})

def __unicode__(self):
return self.title

class Meta:
ordering = ["-created_at"]

class Comment(models.Model):
created_at = models.DateTimeField(auto_now_add=True)
body = models.TextField(verbose_name="Comment")
author = models.CharField(verbose_name="Name", max_length=255)

The Django “nonrel” code looks the same as vanilla Django, however there is no built in support for some of Mon-
goDB’s native data types like Lists and Embedded data. djangotoolbox handles these definitions.

See Also:

The Django MongoDB Engine fields documentation for more.

The models declare an index to the Post class. One for the created_at date as our frontpage will order by date:
there is no need to add db_index on SlugField because there is a default index on SlugField.

Add Data with the Shell

The manage.py provides a shell interface for the application that you can use to insert data into the tumblelog. Begin
by issuing the following command to load the Python shell:

python manage.py shell

Create the first post using the following sequence of operations:

>>> from tumblelog.models import *
>>> post = Post(
... title="Hello World!",
... slug="hello-world",
... body = "Welcome to my new shiny Tumble log powered by MongoDB and Django-MongoDB!"
...)
>>> post.save()

Add comments using the following sequence of operations:

>>> post.comments
[]

50.1. Write a Tumblelog Application with Django MongoDB Engine 653

http://django-mongodb.org/reference/fields.html

MongoDB Documentation, Release 2.4.2

>>> comment = Comment(
... author="Joe Bloggs",
... body="Great post! I’m looking forward to reading your blog")
>>> post.comments.append(comment)
>>> post.save()

Finally, inspect the post:

>>> post = Post.objects.get()
>>> post
<Post: Hello World!>
>>> post.comments
[<Comment: Comment object>]

Add the Views

Because django-mongodb provides tight integration with Django you can use generic views to display the frontpage
and post pages for the tumblelog. Insert the following content into the urls.py file to add the views:

from django.conf.urls.defaults import patterns, include, url
from django.views.generic import ListView, DetailView
from tumblelog.models import Post

urlpatterns = patterns(’’,
url(r’^$’, ListView.as_view(

queryset=Post.objects.all(),
context_object_name="posts_list"),
name="home"

),
url(r’^post/(?P<slug>[a-zA-Z0-9-]+)/$’, DetailView.as_view(

queryset=Post.objects.all(),
context_object_name="post"),
name="post"

),
)

Add Templates

In the tumblelog directory add the following directories templates and templates/tumblelog for storing the
tumblelog templates:

mkdir -p templates/tumblelog

Configure Django so it can find the templates by updating TEMPLATE_DIRS in the settings.py file to the fol-
lowing:

import os.path
TEMPLATE_DIRS = (

os.path.join(os.path.realpath(__file__), ’../templates’),
)

Then add a base template that all others can inherit from. Add the following to templates/base.html:

<!DOCTYPE html>
<html lang="en">
<head>

654 Chapter 50. Python Application Development

http://django-mongodb.org/
https://docs.djangoproject.com/en/1.3/topics/class-based-views/

MongoDB Documentation, Release 2.4.2

<meta charset="utf-8">
<title>My Tumblelog</title>
<link href="http://twitter.github.com/bootstrap/1.4.0/bootstrap.css" rel="stylesheet">
<style>.content {padding-top: 80px;}</style>

</head>

<body>

<div class="topbar">
<div class="fill">

<div class="container">
<h1>My Tumblelog! <small>Starring MongoDB and Django-MongoDB.</small></h1>

</div>
</div>

</div>

<div class="container">
<div class="content">

{% block page_header %}{% endblock %}
{% block content %}{% endblock %}

</div>
</div>

</body>
</html>

Create the frontpage for the blog, which should list all the posts. Add the following template to the
templates/tumblelog/post_list.html:

{% extends "base.html" %}

{% block content %}
{% for post in posts_list %}

<h2>{{ post.title }}</h2>
<p>{{ post.body|truncatewords:20 }}</p>
<p>

{{ post.created_at }} |
{% with total=post.comments|length %}

{{ total }} comment{{ total|pluralize }}
{% endwith %}

</p>
{% endfor %}

{% endblock %}

Finally, add templates/tumblelog/post_detail.html for the individual posts:

{% extends "base.html" %}

{% block page_header %}
<div class="page-header">
<h1>{{ post.title }}</h1>

</div>
{% endblock %}

{% block content %}
<p>{{ post.body }}<p>
<p>{{ post.created_at }}</p>
<hr>
<h2>Comments</h2>

50.1. Write a Tumblelog Application with Django MongoDB Engine 655

MongoDB Documentation, Release 2.4.2

{% if post.comments %}
{% for comment in post.comments %}

<p>{{ comment.body }}</p>
<p>{{ comment.author }} <small>on {{ comment.created_at }}</small></p>

{{ comment.text }}
{% endfor %}

{% endif %}
{% endblock %}

Run python manage.py runserver to see your new tumblelog! Go to http://localhost:8000/ and you should
see:

50.1.4 Add Comments to the Blog

In the next step you will provide the facility for readers of the tumblelog to comment on posts. This a requires custom
form and view to handle the form, and data. You will also update the template to include the form.

Create the Comments Form

You must customize form handling to deal with embedded comments. By extending ModelForm, it is possible to
append the comment to the post on save. Create and add the following to forms.py:

from django.forms import ModelForm
from tumblelog.models import Comment

class CommentForm(ModelForm):

def __init__(self, object, *args, **kwargs):
"""Override the default to store the original document
that comments are embedded in.
"""
self.object = object
return super(CommentForm, self).__init__(*args, **kwargs)

def save(self, *args):
"""Append to the comments list and save the post"""
self.object.comments.append(self.instance)
self.object.save()
return self.object

656 Chapter 50. Python Application Development

http://localhost:8000/

MongoDB Documentation, Release 2.4.2

class Meta:
model = Comment

Handle Comments in the View

You must extend the generic views need to handle the form logic. Add the following to the views.py file:

from django.http import HttpResponseRedirect
from django.views.generic import DetailView
from tumblelog.forms import CommentForm

class PostDetailView(DetailView):
methods = [’get’, ’post’]

def get(self, request, *args, **kwargs):
self.object = self.get_object()
form = CommentForm(object=self.object)
context = self.get_context_data(object=self.object, form=form)
return self.render_to_response(context)

def post(self, request, *args, **kwargs):
self.object = self.get_object()
form = CommentForm(object=self.object, data=request.POST)

if form.is_valid():
form.save()
return HttpResponseRedirect(self.object.get_absolute_url())

context = self.get_context_data(object=self.object, form=form)
return self.render_to_response(context)

Note: The PostDetailView class extends the DetailView class so that it can handle GET and POST requests.
On POST, post() validates the comment: if valid, post() appends the comment to the post.

Don’t forget to update the urls.py file and import the PostDetailView class to replace the DetailView class.

Add Comments to the Templates

Finally, you can add the form to the templates, so that readers can create comments. Splitting the template for the
forms out into templates/_forms.html will allow maximum reuse of forms code:

<fieldset>
{% for field in form.visible_fields %}
<div class="clearfix {% if field.errors %}error{% endif %}">

{{ field.label_tag }}
<div class="input">
{{ field }}
{% if field.errors or field.help_text %}

{% if field.errors %}

{{ field.errors|join:’ ’ }}
{% else %}

{{ field.help_text }}
{% endif %}

50.1. Write a Tumblelog Application with Django MongoDB Engine 657

https://django.readthedocs.org/en/latest/ref/class-based-views/flattened-index.html#DetailView

MongoDB Documentation, Release 2.4.2

{% endif %}

</div>
</div>
{% endfor %}
{% csrf_token %}
<div style="display:none">{% for h in form.hidden_fields %} {{ h }}{% endfor %}</div>
</fieldset>

After the comments section in post_detail.html add the following code to generate the comments form:

<h2>Add a comment</h2>
<form action="." method="post">
{% include "_forms.html" %}
<div class="actions">
<input type="submit" class="btn primary" value="comment">

</div>
</form>

Your tumblelog’s readers can now comment on your posts! Run python manage.py runserver to see the
changes by visiting http://localhost:8000/hello-world/. You should see the following:

658 Chapter 50. Python Application Development

http://localhost:8000/hello-world/

MongoDB Documentation, Release 2.4.2

50.1.5 Add Site Administration Interface

While you may always add posts using the shell interface as above, you can easily create an administrative interface
for posts with Django. Enable the admin by adding the following apps to INSTALLED_APPS in settings.py.

• django.contrib.admin

• django_mongodb_engine

• djangotoolbox

50.1. Write a Tumblelog Application with Django MongoDB Engine 659

https://django.readthedocs.org/en/latest/ref/contrib/admin/index.html#django.contrib.admin

MongoDB Documentation, Release 2.4.2

• tumblelog

Warning: This application does not require the Sites framework. As a result, remove
django.contrib.sites from INSTALLED_APPS. If you need it later please read SITE_ID issues docu-
ment.

Create a admin.py file and register the Post model with the admin app:

from django.contrib import admin
from tumblelog.models import Post

admin.site.register(Post)

Note: The above modifications deviate from the default django-nonrel and djangotoolbox mode of operation.
Django’s administration module will not work unless you exclude the comments field. By making the comments
field non-editable in the “admin” model definition, you will allow the administrative interface to function.

If you need an administrative interface for a ListField you must write your own Form / Widget.

See Also:

The Django Admin documentation docs for additional information.

Update the urls.py to enable the administrative interface. Add the import and discovery mechanism to the top of
the file and then add the admin import rule to the urlpatterns:

Enable admin
from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns(’’,

...

url(r’^admin/’, include(admin.site.urls)),
)

Finally, add a superuser and setup the indexes by issuing the following command at the system prompt:

python manage.py syncdb

Once done run the server and you can login to admin by going to http://localhost:8000/admin/.

660 Chapter 50. Python Application Development

https://django.readthedocs.org/en/latest/ref/contrib/sites.html#django.contrib.sites
http://django-mongodb.org/troubleshooting.html#site-id-issues
http://www.allbuttonspressed.com/projects/django-nonrel
https://docs.djangoproject.com/en/dev/ref/contrib/admin/
http://localhost:8000/admin/

MongoDB Documentation, Release 2.4.2

50.1.6 Convert the Blog to a Tumblelog

Currently, the application only supports posts. In this section you will add special post types including: Video, Image
and Quote to provide a more traditional tumblelog application. Adding this data requires no migration.

In models.py update the Post class to add new fields for the new post types. Mark these fields with blank=True
so that the fields can be empty.

Update Post in the models.py files to resemble the following:

POST_CHOICES = (
(’p’, ’post’),
(’v’, ’video’),
(’i’, ’image’),
(’q’, ’quote’),

)

class Post(models.Model):
created_at = models.DateTimeField(auto_now_add=True)
title = models.CharField(max_length=255)
slug = models.SlugField()

comments = ListField(EmbeddedModelField(’Comment’), editable=False)

post_type = models.CharField(max_length=1, choices=POST_CHOICES, default=’p’)

body = models.TextField(blank=True, help_text="The body of the Post / Quote")
embed_code = models.TextField(blank=True, help_text="The embed code for video")
image_url = models.URLField(blank=True, help_text="Image src")
author = models.CharField(blank=True, max_length=255, help_text="Author name")

50.1. Write a Tumblelog Application with Django MongoDB Engine 661

MongoDB Documentation, Release 2.4.2

def get_absolute_url(self):
return reverse(’post’, kwargs={"slug": self.slug})

def __unicode__(self):
return self.title

Note: Django-Nonrel doesn’t support multi-table inheritance. This means that you will have to manually create an
administrative form to handle data validation for the different post types.

The “Abstract Inheritance” facility means that the view logic would need to merge data from multiple collections.

The administrative interface should now handle adding multiple types of post. To conclude this process, you must
update the frontend display to handle and output the different post types.

In the post_list.html file, change the post output display to resemble the following:

{% if post.post_type == ’p’ %}
<p>{{ post.body|truncatewords:20 }}</p>

{% endif %}
{% if post.post_type == ’v’ %}

{{ post.embed_code|safe }}
{% endif %}
{% if post.post_type == ’i’ %}

<p><p>
{% endif %}
{% if post.post_type == ’q’ %}

<blockquote>{{ post.body|truncatewords:20 }}</blockquote>
<p>{{ post.author }}</p>

{% endif %}

In the post_detail.html file, change the output for full posts:

{% if post.post_type == ’p’ %}
<p>{{ post.body }}<p>

{% endif %}
{% if post.post_type == ’v’ %}

{{ post.embed_code|safe }}
{% endif %}
{% if post.post_type == ’i’ %}

<p><p>
{% endif %}
{% if post.post_type == ’q’ %}

<blockquote>{{ post.body }}</blockquote>
<p>{{ post.author }}</p>

{% endif %}

Now you have a fully fledged tumbleblog using Django and MongoDB!

662 Chapter 50. Python Application Development

http://www.allbuttonspressed.com/projects/django-nonrel

MongoDB Documentation, Release 2.4.2

50.2 Write a Tumblelog Application with Flask and MongoEngine

50.2.1 Introduction

This tutorial describes the process for creating a basic tumblelog application using the popular Flask Python web-
framework in conjunction with the MongoDB database.

The tumblelog will consist of two parts:

50.2. Write a Tumblelog Application with Flask and MongoEngine 663

http://flask.pocoo.org/

MongoDB Documentation, Release 2.4.2

1. A public site that lets people view posts and comment on them.

2. An admin site that lets you add and change posts.

This tutorial assumes that you are already familiar with Flask and have a basic familiarity with MongoDB and have in-
stalled MongoDB (page 3). This tutorial uses MongoEngine as the Object Document Mapper (ODM,) this component
may simplify the interaction between Flask and MongoDB.

Where to get help

If you’re having trouble going through this tutorial, please post a message to mongodb-user or join the IRC chat in
#mongodb on irc.freenode.net to chat with other MongoDB users who might be able to help.

50.2.2 Installation

Begin by installing packages required by later steps in this tutorial.

Prerequisite

This tutorial uses pip to install packages and virtualenv to isolate Python environments. While these tools and this
configuration are not required as such, they ensure a standard environment and are strongly recommended. Issue the
following command at the system prompt:

pip install virtualenv
virtualenv myproject

Respectively, these commands: install the virtualenv program (using pip) and create a isolated python environ-
ment for this project (named myproject.)

To activate myproject environment at the system prompt, use the following command:

source myproject/bin/activate

Install Packages

Flask is a “microframework,” because it provides a small core of functionality and is highly extensible. For the
“tumblelog” project, this tutorial includes task and the following extension:

• WTForms provides easy form handling.

• Flask-MongoEngine provides integration between MongoEngine, Flask, and WTForms.

• Flask-Script for an easy to use development server

Install with the following commands:

pip install flask
pip install flask-script
pip install WTForms
pip install mongoengine
pip install flask_mongoengine

Continue with the tutorial to begin building the “tumblelog” application.

664 Chapter 50. Python Application Development

http://mongoengine.org/
http://groups.google.com/group/mongodb-user
http://freenode.net/
http://pypi.python.org/pypi/pip
http://virtualenv.org
http://wtforms.simplecodes.com/docs/dev/
http://github.com/MongoEngine/flask-mongoengine
http://pypi.python.org/pypi/Flask-Script

MongoDB Documentation, Release 2.4.2

50.2.3 Build a Blog to Get Started

First, create a simple “bare bones” application. Make a directory named tumblelog for the project and then, add
the following content into a file named __init__.py:

from flask import Flask
app = Flask(__name__)

if __name__ == ’__main__’:
app.run()

Next, create the manage.py file. 1 Use this file to load additional Flask-scripts in the future. Flask-scripts provides
a development server and shell:

Set the path
import os, sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ’..’)))

from flask.ext.script import Manager, Server
from tumblelog import app

manager = Manager(app)

Turn on debugger by default and reloader
manager.add_command("runserver", Server(

use_debugger = True,
use_reloader = True,
host = ’0.0.0.0’)

)

if __name__ == "__main__":
manager.run()

You can run this application with a test server, by issuing the following command at the system prompt:

python manage.py runserver

There should be no errors, and you can visit http://localhost:5000/ in a web browser to view a page with a “404”
message.

Configure MongoEngine and Flask

Install the Flask extension and add the configuration. Update tumblelog/__init__.py so that it resembles the
following:

from flask import Flask
from flask.ext.mongoengine import MongoEngine

app = Flask(__name__)
app.config["MONGODB_SETTINGS"] = {’DB’: "my_tumble_log"}
app.config["SECRET_KEY"] = "KeepThisS3cr3t"

db = MongoEngine(app)

if __name__ == ’__main__’:
app.run()

1 This concept will be familiar to users of Django.

50.2. Write a Tumblelog Application with Flask and MongoEngine 665

http://localhost:5000/
http://flask.pocoo.org/

MongoDB Documentation, Release 2.4.2

See Also:

The MongoEngine Settings documentation for additional configuration options.

Define the Schema

The first step in writing a tumblelog in Flask is to define the “models” or in MongoDB’s terminology documents.

In this application, you will define posts and comments, so that each Post can contain a list of Comments. Edit the
models.py file so that it resembles the following:

import datetime
from flask import url_for
from tumblelog import db

class Post(db.Document):
created_at = db.DateTimeField(default=datetime.datetime.now, required=True)
title = db.StringField(max_length=255, required=True)
slug = db.StringField(max_length=255, required=True)
body = db.StringField(required=True)
comments = db.ListField(db.EmbeddedDocumentField(’Comment’))

def get_absolute_url(self):
return url_for(’post’, kwargs={"slug": self.slug})

def __unicode__(self):
return self.title

meta = {
’allow_inheritance’: True,
’indexes’: [’-created_at’, ’slug’],
’ordering’: [’-created_at’]

}

class Comment(db.EmbeddedDocument):
created_at = db.DateTimeField(default=datetime.datetime.now, required=True)
body = db.StringField(verbose_name="Comment", required=True)
author = db.StringField(verbose_name="Name", max_length=255, required=True)

As above, MongoEngine syntax is simple and declarative. If you have a Django background, the syntax may look
familiar. This example defines indexes for Post: one for the created_at date as our frontpage will order by date
and another for the individual post slug.

Add Data with the Shell

The manage.py provides a shell interface for the application that you can use to insert data into the tumblelog.
Before configuring the “urls” and “views” for this application, you can use this interface to interact with your the
tumblelog. Begin by issuing the following command to load the Python shell:

python manage.py shell

Create the first post using the following sequence of operations:

>>> from tumblelog.models import *
>>> post = Post(

666 Chapter 50. Python Application Development

http://readthedocs.org/docs/mongoengine-odm/en/latest/guide/connecting.html
http://flask.pocoo.org/

MongoDB Documentation, Release 2.4.2

... title="Hello World!",

... slug="hello-world",

... body="Welcome to my new shiny Tumble log powered by MongoDB, MongoEngine, and Flask"

...)
>>> post.save()

Add comments using the following sequence of operations:

>>> post.comments
[]
>>> comment = Comment(
... author="Joe Bloggs",
... body="Great post! I’m looking forward to reading your blog!"
...)
>>> post.comments.append(comment)
>>> post.save()

Finally, inspect the post:

>>> post = Post.objects.get()
>>> post
<Post: Hello World!>
>>> post.comments
[<Comment: Comment object>]

Add the Views

Using Flask’s class-based views system allows you to produce List and Detail views for tumblelog posts. Add
views.py and create a posts blueprint:

from flask import Blueprint, request, redirect, render_template, url_for
from flask.views import MethodView
from tumblelog.models import Post, Comment

posts = Blueprint(’posts’, __name__, template_folder=’templates’)

class ListView(MethodView):

def get(self):
posts = Post.objects.all()
return render_template(’posts/list.html’, posts=posts)

class DetailView(MethodView):

def get(self, slug):
post = Post.objects.get_or_404(slug=slug)
return render_template(’posts/detail.html’, post=post)

Register the urls
posts.add_url_rule(’/’, view_func=ListView.as_view(’list’))
posts.add_url_rule(’/<slug>/’, view_func=DetailView.as_view(’detail’))

Now in __init__.py register the blueprint, avoiding a circular dependency by registering the blueprints in a
method. Add the following code to the module:

50.2. Write a Tumblelog Application with Flask and MongoEngine 667

http://flask.pocoo.org/docs/blueprints/

MongoDB Documentation, Release 2.4.2

def register_blueprints(app):
Prevents circular imports
from tumblelog.views import posts
app.register_blueprint(posts)

register_blueprints(app)

Add this method and method call to the main body of the module and not in the main block.

Add Templates

In the tumblelog directory add the templates and templates/posts directories to store the tumblelog
templates:

mkdir -p templates/posts

Create a base template. All other templates will inherit from this template, which should exist in the
templates/base.html file:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>My Tumblelog</title>
<link href="http://twitter.github.com/bootstrap/1.4.0/bootstrap.css" rel="stylesheet">
<style>.content {padding-top: 80px;}</style>

</head>

<body>

{%- block topbar -%}
<div class="topbar">
<div class="fill">

<div class="container">
<h2>

My Tumblelog <small>Starring Flask, MongoDB and MongoEngine</small>
</h2>

</div>
</div>

</div>
{%- endblock -%}

<div class="container">
<div class="content">

{% block page_header %}{% endblock %}
{% block content %}{% endblock %}

</div>
</div>
{% block js_footer %}{% endblock %}

</body>
</html>

Continue by creating a landing page for the blog that will list all posts. Add the following to the
templates/posts/list.html file:

{% extends "base.html" %}

{% block content %}

668 Chapter 50. Python Application Development

MongoDB Documentation, Release 2.4.2

{% for post in posts %}
<h2>{{ post.title }}</h2>
<p>{{ post.body|truncate(100) }}</p>
<p>

{{ post.created_at.strftime(’%H:%M %Y-%m-%d’) }} |
{% with total=post.comments|length %}

{{ total }} comment {%- if total > 1 %}s{%- endif -%}
{% endwith %}

</p>
{% endfor %}

{% endblock %}

Finally, add templates/posts/detail.html template for the individual posts:

{% extends "base.html" %}

{% block page_header %}
<div class="page-header">
<h1>{{ post.title }}</h1>

</div>
{% endblock %}

{% block content %}
<p>{{ post.body }}<p>
<p>{{ post.created_at.strftime(’%H:%M %Y-%m-%d’) }}</p>
<hr>
<h2>Comments</h2>
{% if post.comments %}
{% for comment in post.comments %}

<p>{{ comment.body }}</p>
<p>{{ comment.author }} <small>on {{ comment.created_at.strftime(’%H:%M %Y-%m-%d’) }}</small></p>

{{ comment.text }}
{% endfor %}

{% endif %}
{% endblock %}

At this point, you can run the python manage.py runserver command again to see your new tumblelog! Go
to http://localhost:5000 to see something that resembles the following:

50.2.4 Add Comments to the Blog

In the next step you will provide the facility for readers of the tumblelog to comment on posts. To provide commenting,
you will create a form using WTForms that will update the view to handle the form data and update the template to
include the form.

50.2. Write a Tumblelog Application with Flask and MongoEngine 669

http://localhost:5000/
http://wtforms.simplecodes.com/docs/dev/

MongoDB Documentation, Release 2.4.2

Handle Comments in the View

Begin by updating and refactoring the views.py file so that it can handle the form. Begin by adding the import
statement and the DetailView class to this file:

from flask.ext.mongoengine.wtf import model_form

...

class DetailView(MethodView):

form = model_form(Comment, exclude=[’created_at’])

def get_context(self, slug):
post = Post.objects.get_or_404(slug=slug)
form = self.form(request.form)

context = {
"post": post,
"form": form

}
return context

def get(self, slug):
context = self.get_context(slug)
return render_template(’posts/detail.html’, **context)

def post(self, slug):
context = self.get_context(slug)
form = context.get(’form’)

if form.validate():
comment = Comment()
form.populate_obj(comment)

post = context.get(’post’)
post.comments.append(comment)
post.save()

return redirect(url_for(’posts.detail’, slug=slug))

return render_template(’posts/detail.html’, **context)

Note: DetailView extends the default Flask MethodView. This code remains DRY by defining a get_context
method to get the default context for both GET and POST requests. On POST, post() validates the comment: if
valid, post() appends the comment to the post.

Add Comments to the Templates

Finally, you can add the form to the templates, so that readers can create comments. Create a macro for the forms in
templates/_forms.html will allow you to reuse the form code:

{% macro render(form) -%}
<fieldset>
{% for field in form %}
{% if field.type in [’CSRFTokenField’, ’HiddenField’] %}

670 Chapter 50. Python Application Development

https://django.readthedocs.org/en/latest/ref/class-based-views/flattened-index.html#DetailView
https://django.readthedocs.org/en/latest/ref/class-based-views/flattened-index.html#DetailView

MongoDB Documentation, Release 2.4.2

{{ field() }}
{% else %}

<div class="clearfix {% if field.errors %}error{% endif %}">
{{ field.label }}
<div class="input">

{% if field.name == "body" %}
{{ field(rows=10, cols=40) }}

{% else %}
{{ field() }}

{% endif %}
{% if field.errors or field.help_text %}

{% if field.errors %}
{{ field.errors|join(’ ’) }}

{% else %}
{{ field.help_text }}

{% endif %}

{% endif %}
</div>

</div>
{% endif %}
{% endfor %}
</fieldset>
{% endmacro %}

Add the comments form to templates/posts/detail.html. Insert an import statement at the top of the
page and then output the form after displaying comments:

{% import "_forms.html" as forms %}

...

<hr>
<h2>Add a comment</h2>
<form action="." method="post">
{{ forms.render(form) }}
<div class="actions">
<input type="submit" class="btn primary" value="comment">

</div>
</form>

Your tumblelog’s readers can now comment on your posts! Run python manage.py runserver to see the
changes.

50.2. Write a Tumblelog Application with Flask and MongoEngine 671

MongoDB Documentation, Release 2.4.2

50.2.5 Add a Site Administration Interface

While you may always add posts using the shell interface as above, in this step you will add an administrative interface
for the tumblelog site. To add the administrative interface you will add authentication and an additional view. This
tutorial only addresses adding and editing posts: a “delete” view and detection of slug collisions are beyond the scope
of this tutorial.

672 Chapter 50. Python Application Development

MongoDB Documentation, Release 2.4.2

Add Basic Authentication

For the purposes of this tutorial all we need is a very basic form of authentication. The following example borrows
from the an example Flask “Auth snippet”. Create the file auth.py with the following content:

from functools import wraps
from flask import request, Response

def check_auth(username, password):
"""This function is called to check if a username /
password combination is valid.
"""
return username == ’admin’ and password == ’secret’

def authenticate():
"""Sends a 401 response that enables basic auth"""
return Response(
’Could not verify your access level for that URL.\n’
’You have to login with proper credentials’, 401,
{’WWW-Authenticate’: ’Basic realm="Login Required"’})

def requires_auth(f):
@wraps(f)
def decorated(*args, **kwargs):

auth = request.authorization
if not auth or not check_auth(auth.username, auth.password):

return authenticate()
return f(*args, **kwargs)

return decorated

Note: This creates a requires_auth decorator: provides basic authentication. Decorate any view that needs authenti-
cation with this decorator. The username is admin and password is secret.

Write an Administrative View

Create the views and admin blueprint in admin.py. The following view is deliberately generic, to facilitate cus-
tomization.

from flask import Blueprint, request, redirect, render_template, url_for
from flask.views import MethodView

from flask.ext.mongoengine.wtf import model_form

from tumblelog.auth import requires_auth
from tumblelog.models import Post, Comment

admin = Blueprint(’admin’, __name__, template_folder=’templates’)

class List(MethodView):
decorators = [requires_auth]
cls = Post

50.2. Write a Tumblelog Application with Flask and MongoEngine 673

http://flask.pocoo.org/snippets/8/

MongoDB Documentation, Release 2.4.2

def get(self):
posts = self.cls.objects.all()
return render_template(’admin/list.html’, posts=posts)

class Detail(MethodView):

decorators = [requires_auth]

def get_context(self, slug=None):
form_cls = model_form(Post, exclude=(’created_at’, ’comments’))

if slug:
post = Post.objects.get_or_404(slug=slug)
if request.method == ’POST’:

form = form_cls(request.form, inital=post._data)
else:

form = form_cls(obj=post)
else:

post = Post()
form = form_cls(request.form)

context = {
"post": post,
"form": form,
"create": slug is None

}
return context

def get(self, slug):
context = self.get_context(slug)
return render_template(’admin/detail.html’, **context)

def post(self, slug):
context = self.get_context(slug)
form = context.get(’form’)

if form.validate():
post = context.get(’post’)
form.populate_obj(post)
post.save()

return redirect(url_for(’admin.index’))
return render_template(’admin/detail.html’, **context)

Register the urls
admin.add_url_rule(’/admin/’, view_func=List.as_view(’index’))
admin.add_url_rule(’/admin/create/’, defaults={’slug’: None}, view_func=Detail.as_view(’create’))
admin.add_url_rule(’/admin/<slug>/’, view_func=Detail.as_view(’edit’))

Note: Here, the List and Detail views are similar to the frontend of the site; however, requires_auth
decorates both views.

The “Detail” view is slightly more complex: to set the context, this view checks for a slug and if there is no slug,
Detail uses the view for creating a new post. If a slug exists, Detail uses the view for editing an existing post.

674 Chapter 50. Python Application Development

MongoDB Documentation, Release 2.4.2

In the __init__.py file update the register_blueprints() method to import the new admin blueprint.

def register_blueprints(app):
Prevents circular imports
from tumblelog.views import posts
from tumblelog.admin import admin
app.register_blueprint(posts)
app.register_blueprint(admin)

Create Administrative Templates

Similar to the user-facing portion of the site, the administrative section of the application requires three templates: a
base template a list view, and a detail view.

Create an admin directory for the templates. Add a simple main index page for the admin in the
templates/admin/base.html file:

{% extends "base.html" %}

{%- block topbar -%}
<div class="topbar" data-dropdown="dropdown">

<div class="fill">
<div class="container">

<h2>
My Tumblelog Admin

</h2>
<ul class="nav secondary-nav">

<li class="menu">
Create new post

</div>
</div>

</div>
{%- endblock -%}

List all the posts in the templates/admin/list.html file:

{% extends "admin/base.html" %}

{% block content %}
<table class="condensed-table zebra-striped">
<thead>

<th>Title</th>
<th>Created</th>
<th>Actions</th>

</thead>
<tbody>
{% for post in posts %}

<tr>
<th>{{ post.title }}</th>
<td>{{ post.created_at.strftime(’%Y-%m-%d’) }}</td>
<td>Edit</td>

</tr>
{% endfor %}
</tbody>

</table>
{% endblock %}

50.2. Write a Tumblelog Application with Flask and MongoEngine 675

MongoDB Documentation, Release 2.4.2

Add a temple to create and edit posts in the templates/admin/detail.html file:

{% extends "admin/base.html" %}
{% import "_forms.html" as forms %}

{% block content %}
<h2>
{% if create %}

Add new Post
{% else %}

Edit Post
{% endif %}

</h2>

<form action="?{{ request.query_string }}" method="post">
{{ forms.render(form) }}
<div class="actions">

<input type="submit" class="btn primary" value="save">
Cancel

</div>
</form>

{% endblock %}

The administrative interface is ready for use. Restart the test server (i.e. runserver) so that you can log in to
the administrative interface located at http://localhost:5000/admin/. (The username is admin and the password is
secret.)

50.2.6 Converting the Blog to a Tumblelog

Currently, the application only supports posts. In this section you will add special post types including: Video, Im-
age and Quote to provide a more traditional tumblelog application. Adding this data requires no migration because
MongoEngine supports document inheritance.

Begin by refactoring the Post class to operate as a base class and create new classes for the new post types. Update
the models.py file to include the code to replace the old Post class:

class Post(db.DynamicDocument):
created_at = db.DateTimeField(default=datetime.datetime.now, required=True)
title = db.StringField(max_length=255, required=True)
slug = db.StringField(max_length=255, required=True)
comments = db.ListField(db.EmbeddedDocumentField(’Comment’))

676 Chapter 50. Python Application Development

http://localhost:5000/admin/
http://mongoengine.org/

MongoDB Documentation, Release 2.4.2

def get_absolute_url(self):
return url_for(’post’, kwargs={"slug": self.slug})

def __unicode__(self):
return self.title

@property
def post_type(self):

return self.__class__.__name__

meta = {
’allow_inheritance’: True,
’indexes’: [’-created_at’, ’slug’],
’ordering’: [’-created_at’]

}

class BlogPost(Post):
body = db.StringField(required=True)

class Video(Post):
embed_code = db.StringField(required=True)

class Image(Post):
image_url = db.StringField(required=True, max_length=255)

class Quote(Post):
body = db.StringField(required=True)
author = db.StringField(verbose_name="Author Name", required=True, max_length=255)

Note: In the Post class the post_type helper returns the class name, which will make it possible to render the
various different post types in the templates.

As MongoEngine handles returning the correct classes when fetching Post objects you do not need to modify the
interface view logic: only modify the templates.

Update the templates/posts/list.html file and change the post output format as follows:

{% if post.body %}
{% if post.post_type == ’Quote’ %}
<blockquote>{{ post.body|truncate(100) }}</blockquote>
<p>{{ post.author }}</p>

{% else %}
<p>{{ post.body|truncate(100) }}</p>

{% endif %}
{% endif %}
{% if post.embed_code %}

{{ post.embed_code|safe() }}
{% endif %}
{% if post.image_url %}

<p><p>
{% endif %}

In the templates/posts/detail.html change the output for full posts as follows:

50.2. Write a Tumblelog Application with Flask and MongoEngine 677

http://mongoengine.org/

MongoDB Documentation, Release 2.4.2

{% if post.body %}
{% if post.post_type == ’Quote’ %}
<blockquote>{{ post.body }}</blockquote>
<p>{{ post.author }}</p>

{% else %}
<p>{{ post.body }}</p>

{% endif %}
{% endif %}
{% if post.embed_code %}

{{ post.embed_code|safe() }}
{% endif %}
{% if post.image_url %}

<p><p>
{% endif %}

Updating the Administration

In this section you will update the administrative interface to support the new post types.

Begin by, updating the admin.py file to import the new document models and then update get_context() in the
Detail class to dynamically create the correct model form to use:

from tumblelog.models import Post, BlogPost, Video, Image, Quote, Comment

...

class Detail(MethodView):

decorators = [requires_auth]
Map post types to models
class_map = {

’post’: BlogPost,
’video’: Video,
’image’: Image,
’quote’: Quote,

}

def get_context(self, slug=None):

if slug:
post = Post.objects.get_or_404(slug=slug)
Handle old posts types as well
cls = post.__class__ if post.__class__ != Post else BlogPost
form_cls = model_form(cls, exclude=(’created_at’, ’comments’))
if request.method == ’POST’:

form = form_cls(request.form, inital=post._data)
else:

form = form_cls(obj=post)
else:

Determine which post type we need
cls = self.class_map.get(request.args.get(’type’, ’post’))
post = cls()
form_cls = model_form(cls, exclude=(’created_at’, ’comments’))
form = form_cls(request.form)

context = {
"post": post,
"form": form,

678 Chapter 50. Python Application Development

MongoDB Documentation, Release 2.4.2

"create": slug is None
}
return context

...

Update the template/admin/base.html file to create a new post drop down menu in the toolbar:

{% extends "base.html" %}

{%- block topbar -%}
<div class="topbar" data-dropdown="dropdown">

<div class="fill">
<div class="container">

<h2>
My Tumblelog Admin

</h2>
<ul class="nav secondary-nav">

<li class="menu">
Create new
<ul class="menu-dropdown">

{% for type in (’post’, ’video’, ’image’, ’quote’) %}
{{ type|title }}

{% endfor %}

</div>
</div>

</div>
{%- endblock -%}

{% block js_footer %}
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"></script>
<script src="http://twitter.github.com/bootstrap/1.4.0/bootstrap-dropdown.js"></script>

{% endblock %}

Now you have a fully fledged tumbleblog using Flask and MongoEngine!

50.2. Write a Tumblelog Application with Flask and MongoEngine 679

MongoDB Documentation, Release 2.4.2

50.2.7 Additional Resources

The complete source code is available on Github: <https://github.com/rozza/flask-tumblelog>

680 Chapter 50. Python Application Development

https://github.com/rozza/flask-tumblelog

Part XIII

Frequently Asked Questions

681

CHAPTER 51

FAQ: MongoDB Fundamentals

This document addresses basic high level questions about MongoDB and it’s use.

If you don’t find the answer you’re looking for, check the complete list of FAQs (page 683) or post your question to
the MongoDB User Mailing List.

Frequently Asked Questions:

• What kind of database is MongoDB? (page 683)
• Do MongoDB databases have tables? (page 684)
• Do MongoDB databases have schemas? (page 684)
• What languages can I use to work with the MongoDB? (page 684)
• Does MongoDB support SQL? (page 684)
• What are typical uses for MongoDB? (page 684)
• Does MongoDB support transactions? (page 685)
• Does MongoDB require a lot of RAM? (page 685)
• How do I configure the cache size? (page 685)
• Does MongoDB require a separate caching layer for application-level caching? (page 685)
• Does MongoDB handle caching? (page 686)
• Are writes written to disk immediately, or lazily? (page 686)
• What language is MongoDB written in? (page 686)
• What are the limitations of 32-bit versions of MongoDB? (page 686)

51.1 What kind of database is MongoDB?

MongoDB is document-oriented DBMS. Think of MySQL but with JSON-like objects comprising the data model,
rather than RDBMS tables. Significantly, MongoDB supports neither joins nor transactions. However, it features
secondary indexes, an expressive query language, atomic writes on a per-document level, and fully-consistent reads.

Operationally, MongoDB features master-slave replication with automated failover and built-in horizontal scaling via
automated range-based partitioning.

Note: MongoDB uses BSON, a binary object format similar to, but more expressive than, JSON.

683

https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

MongoDB Documentation, Release 2.4.2

51.2 Do MongoDB databases have tables?

Instead of tables, a MongoDB database stores its data in collections, which are the rough equivalent of RDBMS tables.
A collection holds one or more documents, which corresponds to a record or a row in a relational database table, and
each document has one or more fields, which corresponds to a column in a relational database table.

Collections have important differences from RDBMS tables. Documents in a single collection may have a unique
combination and set of fields. Documents need not have identical fields. You can add a field to some documents in a
collection without adding that field to all documents in the collection.

See Also:

SQL to MongoDB Mapping Chart (page 965)

51.3 Do MongoDB databases have schemas?

MongoDB uses dynamic schemas. You can create collections without defining the structure, i.e. the fields or the types
of their values, of the documents in the collection. You can change the structure of documents simply by adding new
fields or deleting existing ones. Documents in a collection need not have an identical set of fields.

In practice, it is common for a the documents in a collection to have a largely homogeneous structure; however, this
is not a requirement. MongoDB’s flexible schemas mean that schema migration and augmentation are very easy in
practice, and you will rarely, if ever, need to write scripts that perform “alter table” type operations, which simplifies
and facilitates iterative software development with MongoDB.

See Also:

SQL to MongoDB Mapping Chart (page 965)

51.4 What languages can I use to work with the MongoDB?

MongoDB client drivers exist for all of the most popular programming languages, and many of the less popular ones.
See the latest list of drivers for details.

See Also:

“MongoDB Drivers and Client Libraries (page 529).”

51.5 Does MongoDB support SQL?

No.

However, MongoDB does support a rich, ad-hoc query language of its own.

See Also:

The Query, Update, and Projection Operators Quick Reference (page 737) and the Query Overview (page 737) pages.

51.6 What are typical uses for MongoDB?

MongoDB has a general-purpose design, making it appropriate for a large number of use cases. Examples include
content management systems, mobile app, gaming, e-commerce, analytics, archiving, and logging.

684 Chapter 51. FAQ: MongoDB Fundamentals

http://www.mongodb.org/display/DOCS/Drivers

MongoDB Documentation, Release 2.4.2

Do not use MongoDB for systems that require SQL, joins, and multi-object transactions.

51.7 Does MongoDB support transactions?

MongoDB does not provide ACID transactions.

However, MongoDB does provide some basic transactional capabilities. Atomic operations are possible within the
scope of a single document: that is, we can debit a and credit b as a transaction if they are fields within the same
document. Because documents can be rich, some documents contain thousands of fields, with support for testing
fields in sub-documents.

Additionally, you can make writes in MongoDB durable (the ‘D’ in ACID). To get durable writes, you must enable
journaling, which is on by default in 64-bit builds. You must also issue writes with a write concern of {j: true}
to ensure that the writes block until the journal has synced to disk.

Users have built successful e-commerce systems using MongoDB, but application requiring multi-object commit with
rollback generally aren’t feasible.

51.8 Does MongoDB require a lot of RAM?

Not necessarily. It’s certainly possible to run MongoDB on a machine with a small amount of free RAM.

MongoDB automatically uses all free memory on the machine as its cache. System resource monitors show that
MongoDB uses a lot of memory, but it’s usage is dynamic. If another process suddenly needs half the server’s RAM,
MongoDB will yield cached memory to the other process.

Technically, the operating system’s virtual memory subsystem manages MongoDB’s memory. This means that Mon-
goDB will use as much free memory as it can, swapping to disk as needed. Deployments with enough memory to fit
the application’s working data set in RAM will achieve the best performance.

See Also:

FAQ: MongoDB Diagnostics (page 729) for answers to additional questions about MongoDB and Memory use.

51.9 How do I configure the cache size?

MongoDB has no configurable cache. MongoDB uses all free memory on the system automatically by way of memory-
mapped files. Operating systems use the same approach with their file system caches.

51.10 Does MongoDB require a separate caching layer for
application-level caching?

No. In MongoDB, a document’s representation in the database is similar to its representation in application memory.
This means the database already stores the usable form of data, making the data usable in both the persistent store and
in the application cache. This eliminates the need for a separate caching layer in the application.

This differs from relational databases, where caching data is more expensive. Relational databases must transform
data into object representations that applications can read and must store the transformed data in a separate cache: if
these transformation from data to application objects require joins, this process increases the overhead related to using
the database which increases the importance of the caching layer.

51.7. Does MongoDB support transactions? 685

MongoDB Documentation, Release 2.4.2

51.11 Does MongoDB handle caching?

Yes. MongoDB keeps all of the most recently used data in RAM. If you have created indexes for your queries and
your working data set fits in RAM, MongoDB serves all queries from memory.

MongoDB does not implement a query cache: MongoDB serves all queries directly from the indexes and/or data files.

51.12 Are writes written to disk immediately, or lazily?

Writes are physically written to the journal (page 71) within 100 milliseconds. At that point, the write is “durable” in
the sense that after a pull-plug-from-wall event, the data will still be recoverable after a hard restart.

While the journal commit is nearly instant, MongoDB writes to the data files lazily. MongoDB may wait to write
data to the data files for as much as one minute by default. This does not affect durability, as the journal has enough
information to ensure crash recovery. To change the interval for writing to the data files, see syncdelay (page 1032).

51.13 What language is MongoDB written in?

MongoDB is implemented in C++. Drivers and client libraries are typically written in their respective languages,
although some drivers use C extensions for better performance.

51.14 What are the limitations of 32-bit versions of MongoDB?

MongoDB uses memory-mapped files (page 719). When running a 32-bit build of MongoDB, the total storage size
for the server, including data and indexes, is 2 gigabytes. For this reason, do not deploy MongoDB to production on
32-bit machines.

If you’re running a 64-bit build of MongoDB, there’s virtually no limit to storage size. For production deployments,
64-bit builds and operating systems are strongly recommended.

See Also:

“Blog Post: 32-bit Limitations“

Note: 32-bit builds disable journaling by default because journaling further limits the maximum amount of data that
the database can store.

686 Chapter 51. FAQ: MongoDB Fundamentals

http://blog.mongodb.org/post/137788967/32-bit-limitations

CHAPTER 52

FAQ: MongoDB for Application
Developers

This document answers common questions about application development using MongoDB.

If you don’t find the answer you’re looking for, check the complete list of FAQs (page 683) or post your question to
the MongoDB User Mailing List.

Frequently Asked Questions:

• What is a namespace in MongoDB? (page 688)
• How do you copy all objects from one collection to another? (page 688)
• If you remove a document, does MongoDB remove it from disk? (page 688)
• When does MongoDB write updates to disk? (page 688)
• How do I do transactions and locking in MongoDB? (page 689)
• How do you aggregate data with MongoDB? (page 689)
• Why does MongoDB log so many “Connection Accepted” events? (page 689)
• Does MongoDB run on Amazon EBS? (page 689)
• Why are MongoDB’s data files so large? (page 689)
• How do I optimize storage use for small documents? (page 690)
• When should I use GridFS? (page 690)
• How does MongoDB address SQL or Query injection? (page 691)

– BSON (page 691)
– JavaScript (page 691)
– Dollar Sign Operator Escaping (page 692)
– Driver-Specific Issues (page 692)

• How does MongoDB provide concurrency? (page 692)
• What is the compare order for BSON types? (page 693)
• How do I query for fields that have null values? (page 694)
• Are there any restrictions on the names of Collections? (page 694)
• How do I isolate cursors from intervening write operations? (page 695)
• When should I embed documents within other documents? (page 695)
• Can I manually pad documents to prevent moves during updates? (page 696)

687

https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

MongoDB Documentation, Release 2.4.2

52.1 What is a namespace in MongoDB?

A “namespace” is the concatenation of the database name and the collection names with a period character in between.

Collections are containers for documents that share one or more indexes. Databases are groups of collections stored
on disk using a single set of data files.

For an example acme.users namespace, acme is the database name and users is the collection name. Period
characters can occur in collection names, so that the acme.user.history is a valid namespace, with the acme
database name, and the user.history collection name.

While data models like this appear to support nested collections, the collection namespace is flat, and there is no
difference from the perspective of MongoDB between acme, acme.users, and acme.records.

52.2 How do you copy all objects from one collection to another?

In the mongo (page 984) shell, you can use the following operation to duplicate the entire collection:

db.people.find().forEach(function(x){db.user.insert(x)});

Note: Because this process decodes BSON documents to JSON during the copy procedure, documents you may incur
a loss of type-fidelity.

Consider using mongodump (page 992) and mongorestore (page 996) to maintain type fidelity.

Also consider the cloneCollection (page 813) command that may provide some of this functionality.

52.3 If you remove a document, does MongoDB remove it from disk?

Yes.

When you use db.collection.remove() (page 928), the object will no longer exist in MongoDB’s on-disk data
storage.

52.4 When does MongoDB write updates to disk?

MongoDB flushes writes to disk on a regular interval. In the default configuration, MongoDB writes data to the main
data files on disk every 60 seconds and commits the journal every 100 milliseconds. These values are configurable
with the journalCommitInterval (page 1030) and syncdelay (page 1032).

These values represent the maximum amount of time between the completion of a write operation and the point when
the write is durable in the journal, if enabled, and when MongoDB flushes data to the disk. In many cases MongoDB
and the operating system flush data to disk more frequently, so that the above values resents a theoretical maximum.

However, by default, MongoDB uses a “lazy” strategy to write to disk. This is advantageous in situations where
the database receives a thousand increments to an object within one second, MongoDB only needs to flush this data
to disk once. In addition to the aforementioned configuration options, you can also use fsync (page 834) and
getLastError (page 837) to modify this strategy.

688 Chapter 52. FAQ: MongoDB for Application Developers

MongoDB Documentation, Release 2.4.2

52.5 How do I do transactions and locking in MongoDB?

MongoDB does not have support for traditional locking or complex transactions with rollback. MongoDB aims to be
lightweight, fast, and predictable in its performance. This is similar to the MySQL MyISAM autocommit model. By
keeping transaction support extremely simple, MongoDB can provide greater performance especially for partitioned
or replicated systems with a number of database server processes.

MongoDB does have support for atomic operations within a single document. Given the possibilities provided by
nested documents, this feature provides support for a large number of use-cases.

See Also:

The Isolate Sequence of Operations (page 545) page.

52.6 How do you aggregate data with MongoDB?

In version 2.1 and later, you can use the new “aggregation framework (page 249),” with the aggregate (page 809)
command.

MongoDB also supports map-reduce with the mapReduce (page 851), as well as basic aggregation with the group
(page 840), count (page 821), and distinct (page 824). commands.

See Also:

The Aggregation (page 247) page.

52.7 Why does MongoDB log so many “Connection Accepted”
events?

If you see a very large number connection and re-connection messages in your MongoDB log, then clients are fre-
quently connecting and disconnecting to the MongoDB server. This is normal behavior for applications that do not use
request pooling, such as CGI. Consider using FastCGI, an Apache Module, or some other kind of persistent application
server to decrease the connection overhead.

If these connections do not impact your performance you can use the run-time quiet (page 1033) option or the
command-line option --quiet (page 972) to suppress these messages from the log.

52.8 Does MongoDB run on Amazon EBS?

Yes.

MongoDB users of all sizes have had a great deal of success using MongoDB on the EC2 platform using EBS disks.

See Also:

Amazon EC2

52.9 Why are MongoDB’s data files so large?

MongoDB aggressively preallocates data files to reserve space and avoid file system fragmentation. You can use the
smallfiles (page 1032) flag to modify the file preallocation strategy.

52.5. How do I do transactions and locking in MongoDB? 689

http://docs.mongodb.org/ecosystem/platforms/amazon-ec2

MongoDB Documentation, Release 2.4.2

See Also:

Why are the files in my data directory larger than the data in my database? (page 721)

52.10 How do I optimize storage use for small documents?

Each MongoDB document contains a certain amount of overhead. This overhead is normally insignificant but becomes
significant if all documents are just a few bytes, as might be the case if the documents in your collection only have one
or two fields.

Consider the following suggestions and strategies for optimizing storage utilization for these collections:

• Use the _id field explicitly.

MongoDB clients automatically add an _id field to each document and generate a unique 12-byte ObjectId for
the _id field. Furthermore, MongoDB always indexes the _id field. For smaller documents this may account
for a significant amount of space.

To optimize storage use, users can specify a value for the _id field explicitly when inserting documents into the
collection. This strategy allows applications to store a value in the _id field that would have occupied space in
another portion of the document.

You can store any value in the _id field, but because this value serves as a primary key for documents in the
collection, it must uniquely identify them. If the field’s value is not unique, then it cannot serve as a primary key
as there would be collisions in collection.

• Use shorter field names.

MongoDB stores all field names in every document. For most documents, this represents a small fraction of the
space used by a document; however, for small documents the field names may represent a proportionally large
amount of space. Consider a collection of documents that resemble the following:

{ last_name : "Smith", best_score: 3.9 }

If you shorten the filed named last_name to lname and the field name best_score to score, as follows,
you could save 9 bytes per document.

{ lname : "Smith", score : 3.9 }

Shortening field names reduces expressiveness and does not provide considerable benefit on for larger docu-
ments and where document overhead is not significant concern. Shorter field names do not reduce the size of
indexes, because indexes have a predefined structure.

In general it is not necessary to use short field names.

• Embed documents.

In some cases you may want to embed documents in other documents and save on the per-document overhead.

52.11 When should I use GridFS?

For documents in a MongoDB collection, you should always use GridFS for storing files larger than 16 MB.

In some situations, storing large files may be more efficient in a MongoDB database than on a system-level filesystem.

• If your filesystem limits the number of files in a directory, you can use GridFS to store as many files as needed.

690 Chapter 52. FAQ: MongoDB for Application Developers

MongoDB Documentation, Release 2.4.2

• When you want to keep your files and metadata automatically synced and deployed across a number of systems
and facilities. When using geographically distributed replica sets (page 376) MongoDB can distribute files and
their metadata automatically to a number of mongod (page 971) instances and facilities.

• When you want to access information from portions of large files without having to load whole files into memory,
you can use GridFS to recall sections of files without reading the entire file into memory.

Do not use GridFS if you need to update the content of the entire file atomically. As an alternative you can store
multiple versions of each file and specify the current version of the file in the metadata. You can update the metadata
field that indicates “latest” status in an atomic update after uploading the new version of the file, and later remove
previous versions if needed.

Furthermore, if your files are all smaller the 16 MB BSON Document Size (page 1105) limit, consider storing the
file manually within a single document. You may use the BinData data type to store the binary data. See your drivers
(page 529) documentation for details on using BinData.

For more information on GridFS, see GridFS (page 190).

52.12 How does MongoDB address SQL or Query injection?

52.12.1 BSON

As a client program assembles a query in MongoDB, it builds a BSON object, not a string. Thus traditional SQL
injection attacks are not a problem. More details and some nuances are covered below.

MongoDB represents queries as BSON objects. Typically client libraries (page 529) provide a convenient, injection
free, process to build these objects. Consider the following C++ example:

BSONObj my_query = BSON("name" << a_name);
auto_ptr<DBClientCursor> cursor = c.query("tutorial.persons", my_query);

Here, my_query then will have a value such as { name : "Joe" }. If my_query contained special charac-
ters, for example ,, :, and {, the query simply wouldn’t match any documents. For example, users cannot hijack a
query and convert it to a delete.

52.12.2 JavaScript

Note: You can disable all server-side execution of JavaScript, by passing the --noscripting (page 975) option
on the command line or setting noscripting (page 1031) in a configuration file.

All of the following MongoDB operations permit you to run arbitrary JavaScript expressions directly on the server:-
$where (page 777):

• $where (page 777)

• db.eval() (page 936)

• mapReduce (page 851)

• group (page 840)

You must exercise care in these cases to prevent users from submitting malicious JavaScript.

Fortunately, you can express most queries in MongoDB without JavaScript and for queries that require JavaScript, you
can mix JavaScript and non-JavaScript in a single query. Place all the user-supplied fields directly in a BSON field and
pass JavaScript code to the $where (page 777) field.

52.12. How does MongoDB address SQL or Query injection? 691

MongoDB Documentation, Release 2.4.2

• If you need to pass user-supplied values in a $where (page 777) clause, you may escape these values with the
CodeWScope mechanism. When you set user-submitted values as variables in the scope document, you can
avoid evaluating them on the database server.

• If you need to use db.eval() (page 936) with user supplied values, you can either use a CodeWScope or
you can supply extra arguments to your function. For instance:

db.eval(function(userVal){...},
user_value);

This will ensure that your application sends user_value to the database server as data rather than code.

52.12.3 Dollar Sign Operator Escaping

Field names in MongoDB’s query language have a semantic. The dollar sign (i.e $) is a reserved character used to
represent operators (page 737) (i.e. $inc (page 751).) Thus, you should ensure that your application’s users cannot
inject operators into their inputs.

In some cases, you may wish to build a BSON object with a user-provided key. In these situations, keys will need
to substitute the reserved $ and . characters. Any character is sufficient, but consider using the Unicode full width
equivalents: U+FF04 (i.e. “$”) and U+FF0E (i.e. “.”).

Consider the following example:

BSONObj my_object = BSON(a_key << a_name);

The user may have supplied a $ value in the a_key value. At the same time, my_object might be { $where :
"things" }. Consider the following cases:

• Insert. Inserting this into the database does no harm. The insert process does not evaluate the object as a query.

Note: MongoDB client drivers, if properly implemented, check for reserved characters in keys on inserts.

• Update. The db.collection.update() (page 932) operation permits $ operators in the update argument
but does not support the $where (page 777) operator. Still, some users may be able to inject operators that
can manipulate a single document only. Therefore your application should escape keys, as mentioned above, if
reserved characters are possible.

• Query Generally this is not a problem for queries that resemble { x : user_obj }: dollar signs are
not top level and have no effect. Theoretically it may be possible for the user to build a query themselves.
But checking the user-submitted content for $ characters in key names may help protect against this kind of
injection.

52.12.4 Driver-Specific Issues

See the “PHP MongoDB Driver Security Notes” page in the PHP driver documentation for more information

52.13 How does MongoDB provide concurrency?

MongoDB implements a readers-writer lock. This means that at any one time, only one client may be writing or any
number of clients may be reading, but that reading and writing cannot occur simultaneously.

In standalone and replica sets the lock’s scope applies to a single mongod (page 971) instance or primary instance.
In a sharded cluster, locks apply to each individual shard, not to the whole cluster.

692 Chapter 52. FAQ: MongoDB for Application Developers

http://us.php.net/manual/en/mongo.security.php

MongoDB Documentation, Release 2.4.2

For more information, see FAQ: Concurrency (page 701).

52.14 What is the compare order for BSON types?

MongoDB permits documents within a single collection to have fields with different BSON types. For instance, the
following documents may exist within a single collection.

{ x: "string" }
{ x: 42 }

When comparing values of different BSON types, MongoDB uses the following comparison order, from lowest to
highest:

1. MinKey (internal type)

2. Null

3. Numbers (ints, longs, doubles)

4. Symbol, String

5. Object

6. Array

7. BinData

8. ObjectID

9. Boolean

10. Date, Timestamp

11. Regular Expression

12. MaxKey (internal type)

Note: MongoDB treats some types as equivalent for comparison purposes. For instance, numeric types undergo
conversion before comparison.

Consider the following mongo (page 984) example:

db.test.insert({x : 3 });
db.test.insert({x : 2.9 });
db.test.insert({x : new Date() });
db.test.insert({x : true });

db.test.find().sort({x:1});
{ "_id" : ObjectId("4b03155dce8de6586fb002c7"), "x" : 2.9 }
{ "_id" : ObjectId("4b03154cce8de6586fb002c6"), "x" : 3 }
{ "_id" : ObjectId("4b031566ce8de6586fb002c9"), "x" : true }
{ "_id" : ObjectId("4b031563ce8de6586fb002c8"), "x" : "Tue Nov 17 2009 16:28:03 GMT-0500 (EST)" }

The $type (page 774) operator provides access to BSON type comparison in the MongoDB query syntax. See the
documentation on BSON types and the $type (page 774) operator for additional information.

Warning: Storing values of the different types in the same field in a collection is strongly discouraged.

See Also:

52.14. What is the compare order for BSON types? 693

MongoDB Documentation, Release 2.4.2

• The Tailable Cursors (page 543) page for an example of a C++ use of MinKey.

52.15 How do I query for fields that have null values?

Fields in a document may store null values, as in a notional collection, test, with the following documents:

{ _id: 1, cancelDate: null }
{ _id: 2 }

Different query operators treat null values differently:

• The { cancelDate : null } query matches documents that either contains the cancelDate field
whose value is null or that do not contain the cancelDate field:

db.test.find({ cancelDate: null })

The query returns both documents:

{ "_id" : 1, "cancelDate" : null }
{ "_id" : 2 }

• The { cancelDate : { $type: 10 } } query matches documents that contains the cancelDate
field whose value is null only; i.e. the value of the cancelDate field is of BSON Type Null (i.e. 10) :

db.test.find({ cancelDate : { $type: 10 } })

The query returns only the document that contains the null value:

{ "_id" : 1, "cancelDate" : null }

• The { cancelDate : { $exists: false } } query matches documents that do not contain the
cancelDate field:

db.test.find({ cancelDate : { $exists: false } })

The query returns only the document that does not contain the cancelDate field:

{ "_id" : 2 }

See Also:

The reference documentation for the $type (page 774) and $exists (page 745) operators.

52.16 Are there any restrictions on the names of Collections?

Collection names can be any UTF-8 string with the following exceptions:

• A collection name should begin with a letter or an underscore.

• The empty string ("") is not a valid collection name.

• Collection names cannot contain the $ character. (version 2.2 only)

• Collection names cannot contain the null character: \0

• Do not name a collection using the system. prefix. MongoDB reserves system. for system collections,
such as the system.indexes collection.

694 Chapter 52. FAQ: MongoDB for Application Developers

MongoDB Documentation, Release 2.4.2

• The maximum size of a collection name is 128 characters, including the name of the database. However, for
maximum flexibility, collections should have names less than 80 characters.

If your collection name includes special characters, such as the underscore character, then to access the collection use
the db.getCollection() (page 939) method or a similar method for your driver.

Example

To create a collection _foo and insert the { a : 1 } document, use the following operation:

db.getCollection("_foo").insert({ a : 1 })

To perform a query, use the find() (page 910) find method, in as the following:

db.getCollection("_foo").find()

52.17 How do I isolate cursors from intervening write operations?

MongoDB cursors can return the same document more than once in some situations. 1 You can use the snapshot()
(page 899) method on a cursor to isolate the operation for a very specific case.

snapshot() (page 899) traverses the index on the _id field and guarantees that the query will return each document
(with respect to the value of the _id field) no more than once. 2

The snapshot() (page 899) does not guarantee that the data returned by the query will reflect a single moment in
time nor does it provide isolation from insert or delete operations..

Warning:
• You cannot use snapshot() (page 899) with sharded collections.
• You cannot use snapshot() (page 899) with sort() (page 900) or hint() (page 894) cursor methods.

As an alternative, if your collection has a field or fields that are never modified, you can use a unique index on this
field or these fields to achieve a similar result as the snapshot() (page 899). Query with hint() (page 894) to
explicitly force the query to use that index.

52.18 When should I embed documents within other documents?

When modeling data in MongoDB (page 227), embedding is frequently the choice for:

• “contains” relationships between entities.

• one-to-many relationships when the “many” objects always appear with or are viewed in the context of their
parents.

You should also consider embedding for performance reasons if you have a collection with a large number of small
documents. Nevertheless, if small, separate documents represent the natural model for the data, then you should
maintain that model.

1 As a cursor returns documents other operations may interleave with the query: if some of these operations are updates (page 213) that cause
the document to move (in the case of a table scan, caused by document growth,) or that change the indexed field on the index used by the query;
then the cursor will return the same document more than once.

2 MongoDB does not permit changes to the value of the _id field; it is not possible for a cursor that transverses this index to pass the same
document more than once.

52.17. How do I isolate cursors from intervening write operations? 695

http://api.mongodb.org/

MongoDB Documentation, Release 2.4.2

If, however, you can group these small documents by some logical relationship and you frequently retrieve the doc-
uments by this grouping, you might consider “rolling-up” the small documents into larger documents that contain an
array of subdocuments. Keep in mind that if you often only need to retrieve a subset of the documents within the
group, then “rolling-up” the documents may not provide better performance.

“Rolling up” these small documents into logical groupings means that queries to retrieve a group of documents involve
sequential reads and fewer random disk accesses.

Additionally, “rolling up” documents and moving common fields to the larger document benefit the index on these
fields. There would be fewer copies of the common fields and there would be fewer associated key entries in the
corresponding index. See Indexing Overview (page 303) for more information on indexes.

52.19 Can I manually pad documents to prevent moves during up-
dates?

An update can cause a document to move on disk if the document grows in size. To minimize document movements,
MongoDB uses padding (page 177).

You should not have to pad manually because MongoDB adds padding automatically (page 177) and can adaptively
adjust the amount of padding added to documents to prevent document relocations following updates.

You can change the default paddingFactor (page 1073) calculation by using the collMod (page 814) command
with the usePowerOf2Sizes (page 814) flag. The usePowerOf2Sizes (page 814) flag ensures that MongoDB
allocates document space in sizes that are powers of 2, which helps ensure that MongoDB can efficiently reuse free
pace created by document deletion or relocation.

However, in those exceptions where you must pad manually, you can use the strategy of first adding a temporary field
to a document and then $unset (page 777) the field, as in the following example:

var myTempPadding = ["aaa",
"aaa",
"aaa",
"aaa"];

db.myCollection.insert({ _id: 5, paddingField: myTempPadding });

db.myCollection.update({ _id: 5 },
{ $unset: { paddingField: "" } }

)

db.myCollection.update({ _id: 5 },
{ $set: { realField: "Some text that I might have needed padding for" } }

)

See Also:

Padding Factor (page 177)

696 Chapter 52. FAQ: MongoDB for Application Developers

CHAPTER 53

FAQ: The mongo Shell

Frequently Asked Questions:

• How can I enter multi-line operations in the mongo shell? (page 697)
• How can I access to different databases temporarily? (page 697)
• Does the mongo shell support tab completion and other keyboard shortcuts? (page 698)
• How can I customize the mongo shell prompt? (page 698)
• Can I edit long shell operations with an external text editor? (page 699)

53.1 How can I enter multi-line operations in the mongo shell?

If you end a line with an open parenthesis (’(’), an open brace (’{’), or an open bracket (’[’), then the subsequent
lines start with ellipsis ("...") until the you enter the corresponding closing parenthesis (’)’), the closing brace
(’}’) or the closing bracket (’]’). The mongo (page 984) shell waits for the closing parenthesis, closing brace, or
the closing bracket before evaluating the code, as in the following example:

> if (x > 0) {
... count++;
... print (x);
... }

You can exit the line continuation mode if you enter two blank lines, as in the following example:

> if (x > 0
...
...
>

53.2 How can I access to different databases temporarily?

You can use db.getSiblingDB() (page 940) method to access another database without switching databases, as
in the following example which first switches to the test database and then accesses the sampleDB database from
the test database:

697

MongoDB Documentation, Release 2.4.2

use test

db.getSiblingDB(’sampleDB’).getCollectionNames();

53.3 Does the mongo shell support tab completion and other key-
board shortcuts?

The mongo (page 984) shell supports keyboard shortcuts. For example,

• Use the up/down arrow keys to scroll through command history. See .dbshell (page 987) documentation for
more information on the .dbshell file.

• Use <Tab> to autocomplete or to list the completion possibilities, as in the following example which uses
<Tab> to complete the method name starting with the letter ’c’:

db.myCollection.c<Tab>

Because there are many collection methods starting with the letter ’c’, the <Tab> will list the various methods
that start with ’c’.

For a full list of the shortcuts, see Shell Keyboard Shortcuts (page 988)

53.4 How can I customize the mongo shell prompt?

New in version 1.9. You can change the mongo (page 984) shell prompt by setting the prompt variable. This makes
it possible to display additional information in the prompt.

Set prompt to any string or arbitrary JavaScript code that returns a string, consider the following examples:

• Set the shell prompt to display the hostname and the database issued:

var host = db.serverStatus().host;
var prompt = function() { return db+"@"+host+"> "; }

The mongo (page 984) shell prompt should now reflect the new prompt:

test@my-machine.local>

• Set the shell prompt to display the database statistics:

var prompt = function() {
return "Uptime:"+db.serverStatus().uptime+" Documents:"+db.stats().objects+" > ";

}

The mongo (page 984) shell prompt should now reflect the new prompt:

Uptime:1052 Documents:25024787 >

You can add the logic for the prompt in the .mongorc.js (page 987) file to set the prompt each time you start up the
mongo (page 984) shell.

698 Chapter 53. FAQ: The mongo Shell

MongoDB Documentation, Release 2.4.2

53.5 Can I edit long shell operations with an external text editor?

You can use your own editor in the mongo (page 984) shell by setting the EDITOR (page 987) environment variable
before starting the mongo (page 984) shell. Once in the mongo (page 984) shell, you can edit with the specified editor
by typing edit <variable> or edit <function>, as in the following example:

1. Set the EDITOR (page 987) variable from the command line prompt:

EDITOR=vim

2. Start the mongo (page 984) shell:

mongo

3. Define a function myFunction:

function myFunction () { }

4. Edit the function using your editor:

edit myFunction

The command should open the vim edit session. Remember to save your changes.

5. Type myFunction to see the function definition:

myFunction

The result should be the changes from your saved edit:

function myFunction() {
print("This was edited");

}

53.5. Can I edit long shell operations with an external text editor? 699

MongoDB Documentation, Release 2.4.2

700 Chapter 53. FAQ: The mongo Shell

CHAPTER 54

FAQ: Concurrency

Changed in version 2.2. MongoDB allows multiple clients to read and write a single corpus of data using a locking
system to ensure that all clients receive a consistent view of the data and to prevent multiple applications from modi-
fying the exact same pieces of data at the same time. Locks help guarantee that all writes to a single document occur
either in full or not at all.

Frequently Asked Questions:

• What type of locking does MongoDB use? (page 701)
• How granular are locks in MongoDB? (page 702)
• How do I see the status of locks on my mongod (page 971) instances? (page 702)
• Does a read or write operation ever yield the lock? (page 702)
• Which operations lock the database? (page 702)
• Which administrative commands lock the database? (page 703)
• Does a MongoDB operation ever lock more than one database? (page 704)
• How does sharding affect concurrency? (page 704)
• How does concurrency affect a replica set primary? (page 704)
• How does concurrency affect secondaries? (page 704)
• What kind of concurrency does MongoDB provide for JavaScript operations? (page 704)

See Also:

Presentation on Concurrency and Internals in 2.2

54.1 What type of locking does MongoDB use?

MongoDB uses a readers-writer 1 lock that allows concurrent reads access to a database but gives exclusive access to
a single write operation.

When a read lock exists, many read operations may use this lock. However, when a write lock exists, a single write
operation holds the lock exclusively, and no other read or write operations may share the lock.

Locks are “writer greedy,” which means writes have preference over reads. When both a read and write are waiting
for a lock, MongoDB grants the lock to the write.

1 You may be familiar with a “readers-writer” lock as “multi-reader” or “shared exclusive” lock. See the Wikipedia page on Readers-Writer
Locks for more information.

701

http://www.10gen.com/presentations/concurrency-internals-mongodb-2-2
http://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
http://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock

MongoDB Documentation, Release 2.4.2

54.2 How granular are locks in MongoDB?

Changed in version 2.2. Beginning with version 2.2, MongoDB implements locks on a per-database basis for most
read and write operations. Some global operations, typically short lived operations involving multiple databases, still
require a global “instance” wide lock. Before 2.2, there is only one “global” lock per mongod (page 971) instance.

For example, if you have six databases and one takes a write lock, the other five are still available for read and write.

54.3 How do I see the status of locks on my mongod instances?

For reporting on lock utilization information on locks, use any of the following methods:

• db.serverStatus() (page 945),

• db.currentOp() (page 936),

• mongotop (page 1015),

• mongostat (page 1011), and/or

• the MongoDB Monitoring Service (MMS)

Specifically, the locks (page 1053) document in the output of serverStatus (page 1052), or the locks (page 1081)
field in the current operation reporting (page 1078) provides insight into the type of locks and amount of lock con-
tention in your mongod (page 971) instance.

To terminate an operation, use db.killOp() (page 941).

54.4 Does a read or write operation ever yield the lock?

New in version 2.0. A read and write operations will yield their locks if the mongod (page 971) receives a page fault
or fetches data that is unlikely to be in memory. Yielding allows other operations that only need to access documents
that are already in memory to complete while mongod (page 971) loads documents into memory.

Additionally, write operations that affect multiple documents (i.e. update() (page 932) with the multi parameter,)
will yield periodically to allow read operations during these long write operations. Similarly, long running read locks
will yield periodically to ensure that write operations have the opportunity to complete. Changed in version 2.2: The
use of yielding expanded greatly in MongoDB 2.2. Including the “yield for page fault.” MongoDB tracks the contents
of memory and predicts whether data is available before performing a read. If MongoDB predicts that the data is not in
memory a read operation yields its lock while MongoDB loads the data to memory. Once data is available in memory,
the read will reacquire the lock to complete the operation.

54.5 Which operations lock the database?

Changed in version 2.2. The following table lists common database operations and the types of locks they use.

702 Chapter 54. FAQ: Concurrency

http://mms.10gen.com/

MongoDB Documentation, Release 2.4.2

Operation Lock Type
Issue a query Read lock
Get more data
from a cursor

Read lock

Insert data Write lock
Remove data Write lock
Update data Write lock
Map-reduce Read lock and write lock, unless operations are specified as non-atomic. Portions of

map-reduce jobs can run concurrently.
Create an index Building an index in the foreground, which is the default, locks the database for extended

periods of time.
db.eval()
(page 936)

Write lock. db.eval() (page 936) blocks all other JavaScript processes.

eval (page 826) Write lock. If used with the nolock lock option, the eval (page 826) option does not take
a write lock and cannot write data to the database.

aggregate()
(page 903)

Read lock

54.6 Which administrative commands lock the database?

Certain administrative commands can exclusively lock the database for extended periods of time. In some deploy-
ments, for large databases, you may consider taking the the mongod (page 971) instance offline so that clients are not
affected. For example, if a mongod (page 971) is part of a replica set, take the mongod (page 971) offline and let
other members of the set service load while maintenance is in progress.

The following administrative operations require an exclusive (i.e. write) lock to a the database for extended periods:

• db.collection.ensureIndex() (page 907), when issued without setting background to true,

• reIndex (page 860),

• compact (page 816),

• db.repairDatabase() (page 944),

• db.createCollection() (page 935), when creating a very large (i.e. many gigabytes) capped collection,

• db.collection.validate() (page 934), and

• db.copyDatabase() (page 934). This operation may lock all databases. See Does a MongoDB operation
ever lock more than one database? (page 704).

The following administrative commands lock the database but only hold the lock for a very short time:

• db.collection.dropIndex() (page 906),

• db.getLastError() (page 939),

• db.isMaster() (page 941),

• rs.status() (page 953) (i.e. replSetGetStatus (page 865),)

• db.serverStatus() (page 945),

• db.auth() (page 902), and

• db.addUser() (page 901).

54.6. Which administrative commands lock the database? 703

MongoDB Documentation, Release 2.4.2

54.7 Does a MongoDB operation ever lock more than one database?

The following MongoDB operations lock multiple databases:

• db.copyDatabase() (page 934) must lock the entire mongod (page 971) instance at once.

• Journaling, which is an internal operation, locks all databases for short intervals. All databases share a single
journal.

• User authentication (page 128) locks the admin database as well as the database the user is accessing.

• All writes to a replica set’s primary lock both the database receiving the writes and the local database. The
lock for the local database allows the mongod (page 971) to write to the primary’s oplog.

54.8 How does sharding affect concurrency?

Sharding improves concurrency by distributing collections over multiple mongod (page 971) instances, allowing
shard servers (i.e. mongos (page 981) processes) to perform any number of operations concurrently to the various
downstream mongod (page 971) instances.

Each mongod (page 971) instance is independent of the others in the shard cluster and uses the MongoDB readers-
writer lock (page 701)). The operations on one mongod (page 971) instance do not block the operations on any
others.

54.9 How does concurrency affect a replica set primary?

In replication, when MongoDB writes to a collection on the primary, MongoDB also writes to the primary’s oplog,
which is a special collection in the local database. Therefore, MongoDB must lock both the collection’s database
and the local database. The mongod (page 971) must lock both databases at the same time keep both data consistent
and ensure that write operations, even with replication, are “all-or-nothing” operations.

54.10 How does concurrency affect secondaries?

In replication, MongoDB does not apply writes serially to secondaries. Secondaries collect oplog entries in batches
and then apply those batches in parallel. Secondaries do not allow reads while applying the write operations, and apply
write operations in the order that they appear in the oplog.

MongoDB can apply several writes in parallel on replica set secondaries, in a two phases:

1. During the first prefer phase, under a read lock, the mongod (page 971) ensures that all documents affected by
the operations are in memory. During this phase, other clients may execute queries against this number.

2. A thread pool using write locks applies all write operations in the batch as part of a coordinated write phase.

54.11 What kind of concurrency does MongoDB provide for
JavaScript operations?

Changed in version 2.4: The V8 JavaScript engine added in 2.4 allows multiple JavaScript operations to run at the
same time. Prior to 2.4, a single mongod (page 971) could only run a single JavaScript operation at once.

704 Chapter 54. FAQ: Concurrency

CHAPTER 55

FAQ: Sharding with MongoDB

This document answers common questions about horizontal scaling using MongoDB’s sharding.

If you don’t find the answer you’re looking for, check the complete list of FAQs (page 683) or post your question to
the MongoDB User Mailing List.

Frequently Asked Questions:

• Is sharding appropriate for a new deployment? (page 706)
• How does sharding work with replication? (page 706)
• Can I change the shard key after sharding a collection? (page 706)
• What happens to unsharded collections in sharded databases? (page 706)
• How does MongoDB distribute data across shards? (page 706)
• What happens if a client updates a document in a chunk during a migration? (page 707)
• What happens to queries if a shard is inaccessible or slow? (page 707)
• How does MongoDB distribute queries among shards? (page 707)
• How does MongoDB sort queries in sharded environments? (page 707)
• How does MongoDB ensure unique _id field values when using a shard key other than _id? (page 707)
• I’ve enabled sharding and added a second shard, but all the data is still on one server. Why? (page 708)
• Is it safe to remove old files in the moveChunk directory? (page 708)
• How does mongos use connections? (page 708)
• Why does mongos hold connections open? (page 708)
• Where does MongoDB report on connections used by mongos? (page 708)
• What does writebacklisten in the log mean? (page 709)
• How should administrators deal with failed migrations? (page 709)
• What is the process for moving, renaming, or changing the number of config servers? (page 709)
• When do the mongos servers detect config server changes? (page 709)
• Is it possible to quickly update mongos servers after updating a replica set configuration? (page 709)
• What does the maxConns setting on mongos do? (page 709)
• How do indexes impact queries in sharded systems? (page 710)
• Can shard keys be randomly generated? (page 710)
• Can shard keys have a non-uniform distribution of values? (page 710)
• Can you shard on the _id field? (page 710)
• Can shard key be in ascending order, like dates or timestamps? (page 710)
• What do moveChunk commit failed errors mean? (page 711)
• How does draining a shard affect the balancing of uneven chunk distribution? (page 711)

705

https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

MongoDB Documentation, Release 2.4.2

55.1 Is sharding appropriate for a new deployment?

Sometimes.

If your data set fits on a single server, you should begin with an unsharded deployment.

Converting an unsharded database to a sharded cluster is easy and seamless, so there is little advantage in configuring
sharding while your data set is small.

Still, all production deployments should use replica sets to provide high availability and disaster recovery.

55.2 How does sharding work with replication?

To use replication with sharding, deploy each shard as a replica set.

55.3 Can I change the shard key after sharding a collection?

No.

There is no automatic support in MongoDB for changing a shard key after sharding a collection. This reality un-
derscores the important of choosing a good shard key (page 463). If you must change a shard key after sharding a
collection, the best option is to:

• dump all data from MongoDB into an external format.

• drop the original sharded collection.

• configure sharding using a more ideal shard key.

• pre-split (page 500) the shard key range to ensure initial even distribution.

• restore the dumped data into MongoDB.

See shardCollection (page 870), sh.shardCollection() (page 961), the Shard Key (page 471) section
in the Sharded Cluster Internals (page 471) document, Deploy a Sharded Cluster (page 481), and SERVER-4000 for
more information.

55.4 What happens to unsharded collections in sharded databases?

In the current implementation, all databases in a sharded cluster have a “primary shard.” All unsharded collection
within that database will reside on the same shard.

55.5 How does MongoDB distribute data across shards?

Sharding must be specifically enabled on a collection. After enabling sharding on the collection, MongoDB will assign
various ranges of collection data to the different shards in the cluster. The cluster automatically corrects imbalances
between shards by migrating ranges of data from one shard to another.

706 Chapter 55. FAQ: Sharding with MongoDB

https://jira.mongodb.org/browse/SERVER-4000

MongoDB Documentation, Release 2.4.2

55.6 What happens if a client updates a document in a chunk during
a migration?

The mongos (page 981) routes the operation to the “old” shard, where it will succeed immediately. Then the shard
mongod (page 971) instances will replicate the modification to the “new” shard before the sharded cluster updates
that chunk’s “ownership,” which effectively finalizes the migration process.

55.7 What happens to queries if a shard is inaccessible or slow?

If a shard is inaccessible or unavailable, queries will return with an error.

However, a client may set the partial query bit, which will then return results from all available shards, regardless
of whether a given shard is unavailable.

If a shard is responding slowly, mongos (page 981) will merely wait for the shard to return results.

55.8 How does MongoDB distribute queries among shards?

Changed in version 2.0. The exact method for distributing queries to shards in a cluster depends on the nature of the
query and the configuration of the sharded cluster. Consider a sharded collection, using the shard key user_id, that
has last_login and email attributes:

• For a query that selects one or more values for the user_id key:

mongos (page 981) determines which shard or shards contains the relevant data, based on the cluster metadata,
and directs a query to the required shard or shards, and returns those results to the client.

• For a query that selects user_id and also performs a sort:

mongos (page 981) can make a straightforward translation of this operation into a number of queries against the
relevant shards, ordered by user_id. When the sorted queries return from all shards, the mongos (page 981)
merges the sorted results and returns the complete result to the client.

• For queries that select on last_login:

These queries must run on all shards: mongos (page 981) must parallelize the query over the shards and perform
a merge-sort on the email of the documents found.

55.9 How does MongoDB sort queries in sharded environments?

If you call the cursor.sort() (page 900) method on a query in a sharded environment, the mongod (page 971)
for each shard will sort its results, and the mongos (page 981) merges each shard’s results before returning them to
the client.

55.10 How does MongoDB ensure unique _id field values when us-
ing a shard key other than _id?

If you do not use _id as the shard key, then your application/client layer must be responsible for keeping the _id
field unique. It is problematic for collections to have duplicate _id values.

55.6. What happens if a client updates a document in a chunk during a migration? 707

MongoDB Documentation, Release 2.4.2

If you’re not sharding your collection by the _id field, then you should be sure to store a globally unique identifier in
that field. The default BSON ObjectID (page 188) works well in this case.

55.11 I’ve enabled sharding and added a second shard, but all the
data is still on one server. Why?

First, ensure that you’ve declared a shard key for your collection. Until you have configured the shard key, MongoDB
will not create chunks, and sharding will not occur.

Next, keep in mind that the default chunk size is 64 MB. As a result, in most situations, the collection needs at least
64 MB before a migration will occur.

Additionally, the system which balances chunks among the servers attempts to avoid superfluous migrations. Depend-
ing on the number of shards, your shard key, and the amount of data, systems often require at least 10 chunks of data
to trigger migrations.

You can run db.printShardingStatus() (page 943) to see all the chunks present in your cluster.

55.12 Is it safe to remove old files in the moveChunk directory?

Yes. mongod (page 971) creates these files as backups during normal shard balancing operations.

Once these migrations are complete, you may delete these files.

55.13 How does mongos use connections?

Each client maintains a connection to a mongos (page 981) instance. Each mongos (page 981) instance maintains a
pool of connections to the members of a replica set supporting the sharded cluster. Clients use connections between
mongos (page 981) and mongod (page 971) instances one at a time. Requests are not multiplexed or pipelined.
When client requests complete, the mongos (page 981) returns the connection to the pool.

See the System Resource Utilization (page 105) section of the Linux ulimit Settings (page 105) document.

55.14 Why does mongos hold connections open?

mongos (page 981) uses a set of connection pools to communicate with each shard. These pools do not shrink when
the number of clients decreases.

This can lead to an unused mongos (page 981) with a large number of open connections. If the mongos (page 981)
is no longer in use, it is safe to restart the process to close existing connections.

55.15 Where does MongoDB report on connections used by mongos?

Connect to the mongos (page 981) with the mongo (page 984) shell, and run the following command:

db._adminCommand("connPoolStats");

708 Chapter 55. FAQ: Sharding with MongoDB

MongoDB Documentation, Release 2.4.2

55.16 What does writebacklisten in the log mean?

The writeback listener is a process that opens a long poll to relay writes back from a mongod (page 971) or mongos
(page 981) after migrations to make sure they have not gone to the wrong server. The writeback listener sends writes
back to the correct server if necessary.

These messages are a key part of the sharding infrastructure and should not cause concern.

55.17 How should administrators deal with failed migrations?

Failed migrations require no administrative intervention. Chunk moves are consistent and deterministic.

If a migration fails to complete for some reason, the cluster will retry the operation. When the migration completes
successfully, the data will reside only on the new shard.

55.18 What is the process for moving, renaming, or changing the
number of config servers?

See Sharded Cluster Administration (page 481) for information on migrating and replacing config servers.

55.19 When do the mongos servers detect config server changes?

mongos (page 981) instances maintain a cache of the config database that holds the metadata for the sharded cluster.
This metadata includes the mapping of chunks to shards.

mongos (page 981) updates its cache lazily by issuing a request to a shard and discovering that its metadata is out of
date. There is no way to control this behavior from the client, but you can run the flushRouterConfig (page 834)
command against any mongos (page 981) to force it to refresh its cache.

55.20 Is it possible to quickly update mongos servers after updating
a replica set configuration?

The mongos (page 981) instances will detect these changes without intervention over time. However, if you want
to force the mongos (page 981) to reload its configuration, run the flushRouterConfig (page 834) command
against to each mongos (page 981) directly.

55.21 What does the maxConns setting on mongos do?

The maxConns (page 1027) option limits the number of connections accepted by mongos (page 981).

If your client driver or application creates a large number of connections but allows them to time out rather than closing
them explicitly, then it might make sense to limit the number of connections at the mongos (page 981) layer.

Set maxConns (page 1027) to a value slightly higher than the maximum number of connections that the client creates,
or the maximum size of the connection pool. This setting prevents the mongos (page 981) from causing connection
spikes on the individual shards. Spikes like these may disrupt the operation and memory allocation of the sharded
cluster.

55.16. What does writebacklisten in the log mean? 709

MongoDB Documentation, Release 2.4.2

55.22 How do indexes impact queries in sharded systems?

If the query does not include the shard key, the mongos (page 981) must send the query to all shards as a “scat-
ter/gather” operation. Each shard will, in turn, use either the shard key index or another more efficient index to fulfill
the query.

If the query includes multiple sub-expressions that reference the fields indexed by the shard key and the secondary
index, the mongos (page 981) can route the queries to a specific shard and the shard will use the index that will allow
it to fulfill most efficiently. See this document for more information.

55.23 Can shard keys be randomly generated?

Shard keys can be random. Random keys ensure optimal distribution of data across the cluster.

Sharded clusters, attempt to route queries to specific shards when queries include the shard key as a parameter, because
these directed queries are more efficient. In many cases, random keys can make it difficult to direct queries to specific
shards.

55.24 Can shard keys have a non-uniform distribution of values?

Yes. There is no requirement that documents be evenly distributed by the shard key.

However, documents that have the shard key must reside in the same chunk and therefore on the same server. If
your sharded data set has too many documents with the exact same shard key you will not be able to distribute those
documents across your sharded cluster.

55.25 Can you shard on the _id field?

You can use any field for the shard key. The _id field is a common shard key.

Be aware that ObjectId() values, which are the default value of the _id field, increment as a timestamp. As a
result, when used as a shard key, all new documents inserted into the collection will initially belong to the same chunk
on a single shard. Although the system will eventually divide this chunk and migrate its contents to distribute data
more evenly, at any moment the cluster can only direct insert operations at a single shard. This can limit the throughput
of inserts. If most of your write operations are updates or read operations rather than inserts, this limitation should not
impact your performance. However, if you have a high insert volume, this may be a limitation.

55.26 Can shard key be in ascending order, like dates or timestamps?

If you insert documents with monotonically increasing shard keys, all inserts will initially belong to the same chunk on
a single shard. Although the system will eventually divide this chunk and migrate its contents to distribute data more
evenly, at any moment the cluster can only direct insert operations at a single shard. This can limit the throughput of
inserts.

If most of your write operations are updates or read operations rather than inserts, this limitation should not impact your
performance. However, if you have a high insert volume, a monotonically increasing shard key may be a limitation.

To address this issue, you can use a field with a value that stores the hash of a key with an ascending value. Changed
in version 2.4.

710 Chapter 55. FAQ: Sharding with MongoDB

http://www.mongodb.org/download/attachments/2097354/how+queries+work+with+sharding.pdf

MongoDB Documentation, Release 2.4.2

55.27 What do moveChunk commit failed errors mean?

Consider the following error message:

ERROR: moveChunk commit failed: version is at <n>|<nn> instead of <N>|<NN>" and "ERROR: TERMINATING"

mongod (page 971) issues this message if, during a chunk migration (page 476), the shard could not connect to the
config database to update chunk information at the end of the migration process. If the shard cannot update the config
database after moveChunk (page 858), the cluster will have an inconsistent view of all chunks. In these situations, the
primary member of the shard will terminate itself to prevent data inconsistency. If the secondary member can access
the config database, the shard’s data will be accessible after an election. Administrators will need to resolve the chunk
migration failure independently.

If you encounter this issue, contact the MongoDB User Group or 10gen support to address this issue.

55.28 How does draining a shard affect the balancing of uneven
chunk distribution?

The sharded cluster balancing process controls both migrating chunks from decommissioned shards (i.e. draining,) and
normal cluster balancing activities. Consider the following behaviors for different versions of MongoDB in situations
where you remove a shard in a cluster with an uneven chunk distribution:

• After MongoDB 2.2, the balancer first removes the chunks from the draining shard and then balances the re-
maining uneven chunk distribution.

• Before MongoDB 2.2, the balancer handles the uneven chunk distribution and then removes the chunks from
the draining shard.

55.27. What do moveChunk commit failed errors mean? 711

http://groups.google.com/group/mongodb-user

MongoDB Documentation, Release 2.4.2

712 Chapter 55. FAQ: Sharding with MongoDB

CHAPTER 56

FAQ: Replica Sets and Replication in
MongoDB

This document answers common questions about database replication in MongoDB.

If you don’t find the answer you’re looking for, check the complete list of FAQs (page 683) or post your question to
the MongoDB User Mailing List.

Frequently Asked Questions:

• What kinds of replication does MongoDB support? (page 713)
• What do the terms “primary” and “master” mean? (page 714)
• What do the terms “secondary” and “slave” mean? (page 714)
• How long does replica set failover take? (page 714)
• Does replication work over the Internet and WAN connections? (page 714)
• Can MongoDB replicate over a “noisy” connection? (page 714)
• What is the preferred replication method: master/slave or replica sets? (page 715)
• What is the preferred replication method: replica sets or replica pairs? (page 715)
• Why use journaling if replication already provides data redundancy? (page 715)
• Are write operations durable if write concern does not acknowledge writes? (page 715)
• How many arbiters do replica sets need? (page 716)
• What information do arbiters exchange with the rest of the replica set? (page 716)
• Which members of a replica set vote in elections? (page 716)
• Do hidden members vote in replica set elections? (page 717)
• Is it normal for replica set members to use different amounts of disk space? (page 717)

56.1 What kinds of replication does MongoDB support?

MongoDB supports master-slave replication and a variation on master-slave replication known as replica sets. Replica
sets are the recommended replication topology.

713

https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

MongoDB Documentation, Release 2.4.2

56.2 What do the terms “primary” and “master” mean?

Primary and master nodes are the nodes that can accept writes. MongoDB’s replication is “single-master:” only one
node can accept write operations at a time.

In a replica set, if a the current “primary” node fails or becomes inaccessible, the other members can autonomously
elect one of the other members of the set to be the new “primary”.

By default, clients send all reads to the primary; however, read preference is configurable at the client level on a
per-connection basis, which makes it possible to send reads to secondary nodes instead.

56.3 What do the terms “secondary” and “slave” mean?

Secondary and slave nodes are read-only nodes that replicate from the primary.

Replication operates by way of an oplog, from which secondary/slave members apply new operations to themselves.
This replication process is asynchronous, so secondary/slave nodes may not always reflect the latest writes to the
primary. But usually, the gap between the primary and secondary nodes is just few milliseconds on a local network
connection.

56.4 How long does replica set failover take?

It varies, but a replica set will select a new primary within a minute.

It may take 10-30 seconds for the members of a replica set to declare a primary inaccessible. This triggers an election.
During the election, the cluster is unavailable for writes.

The election itself may take another 10-30 seconds.

Note: Eventually consistent reads, like the ones that will return from a replica set are only possible with a write
concern that permits reads from secondary members.

56.5 Does replication work over the Internet and WAN connections?

Yes.

For example, a deployment may maintain a primary and secondary in an East-coast data center along with a secondary
member for disaster recovery in a West-coast data center.

See Also:

Deploy a Geographically Distributed Replica Set (page 407)

56.6 Can MongoDB replicate over a “noisy” connection?

Yes, but not without connection failures and the obvious latency.

Members of the set will attempt to reconnect to the other members of the set in response to networking flaps. This
does not require administrator intervention. However, if the network connections between the nodes in the replica set
are very slow, it might not be possible for the members of the node to keep up with the replication.

714 Chapter 56. FAQ: Replica Sets and Replication in MongoDB

MongoDB Documentation, Release 2.4.2

If the TCP connection between the secondaries and the primary instance breaks, a replica set the set will automatically
elect one of the secondary members of the set as primary.

56.7 What is the preferred replication method: master/slave or
replica sets?

New in version 1.8. Replica sets are the preferred replication mechanism in MongoDB. However, if your deployment
requires more than 12 nodes, you must use master/slave replication.

56.8 What is the preferred replication method: replica sets or replica
pairs?

Deprecated since version 1.6. Replica sets replaced replica pairs in version 1.6. Replica sets are the preferred replica-
tion mechanism in MongoDB.

56.9 Why use journaling if replication already provides data redun-
dancy?

Journaling facilitates faster crash recovery. Prior to journaling, crashes often required database repairs
(page 863) or full data resync. Both were slow, and the first was unreliable.

Journaling is particularly useful for protection against power failures, especially if your replica set resides in a single
data center or power circuit.

When a replica set runs with journaling, mongod (page 971) instances can safely restart without any administrator
intervention.

Note: Journaling requires some resource overhead for write operations. Journaling has no effect on read performance,
however.

Journaling is enabled by default on all 64-bit builds of MongoDB v2.0 and greater.

56.10 Are write operations durable if write concern does not acknowl-
edge writes?

Yes.

However, if you want confirmation that a given write has arrived at the server, use write concern (page 174). The
getLastError (page 837) command provides the facility for write concern. However, after the default write
concern change (page 1183), the default write concern acknowledges all write operations, and unacknowledged writes
must be explicitly configured. See the MongoDB Drivers and Client Libraries (page 529) documentation for your
driver for more information.

56.7. What is the preferred replication method: master/slave or replica sets? 715

MongoDB Documentation, Release 2.4.2

56.11 How many arbiters do replica sets need?

Some configurations do not require any arbiter instances. Arbiters vote in elections for primary but do not replicate
the data like secondary members.

Replica sets require a majority of the original nodes present to elect a primary. Arbiters allow you to construct this
majority without the overhead of adding replicating nodes to the system.

There are many possible replica set architectures (page 375).

If you have a three node replica set, you don’t need an arbiter.

But a common configuration consists of two replicating nodes, one of which is primary and the other is secondary, as
well as an arbiter for the third node. This configuration makes it possible for the set to elect a primary in the event of
a failure without requiring three replicating nodes.

You may also consider adding an arbiter to a set if it has an equal number of nodes in two facilities and network
partitions between the facilities are possible. In these cases, the arbiter will break the tie between the two facilities and
allow the set to elect a new primary.

See Also:

Replica Set Architectures and Deployment Patterns (page 375)

56.12 What information do arbiters exchange with the rest of the
replica set?

Arbiters never receive the contents of a collection but do exchange the following data with the rest of the replica set:

• Credentials used to authenticate the arbiter with the replica set. All MongoDB processes within a replica set use
keyfiles. These exchanges are encrypted.

• Replica set configuration data and voting data. This information is not encrypted. Only credential exchanges
are encrypted.

If your MongoDB deployment uses SSL, then all communications between arbiters and the other members of the
replica set are secure. See the documentation for Connect to MongoDB with SSL (page 77) for more information. Run
all arbiters on secure networks, as with all MongoDB components.

See Also:

The overview of Arbiter Members of Replica Sets (page 368).

56.13 Which members of a replica set vote in elections?

All members of a replica set, unless the value of votes (page 443) is equal to 0, vote in elections. This includes all
delayed (page 368), hidden (page 368) and secondary-only (page 368) members, as well as the arbiters (page 368).

See Also:

Elections (page 369)

716 Chapter 56. FAQ: Replica Sets and Replication in MongoDB

MongoDB Documentation, Release 2.4.2

56.14 Do hidden members vote in replica set elections?

Hidden members (page 368) of term:replica :sets do vote in elections. To exclude a member from voting in an :election,
change the value of the member’s votes (page 443) configuration to 0.

See Also:

Elections (page 369)

56.15 Is it normal for replica set members to use different amounts
of disk space?

Yes.

Factors including: different oplog sizes, different levels of storage fragmentation, and MongoDB’s data file pre-
allocation can lead to some variation in storage utilization between nodes. Storage use disparities will be most pro-
nounced when you add members at different times.

56.14. Do hidden members vote in replica set elections? 717

MongoDB Documentation, Release 2.4.2

718 Chapter 56. FAQ: Replica Sets and Replication in MongoDB

CHAPTER 57

FAQ: MongoDB Storage

This document addresses common questions regarding MongoDB’s storage system.

If you don’t find the answer you’re looking for, check the complete list of FAQs (page 683) or post your question to
the MongoDB User Mailing List.

Frequently Asked Questions:

• What are memory mapped files? (page 719)
• How do memory mapped files work? (page 719)
• How does MongoDB work with memory mapped files? (page 720)
• What are page faults? (page 720)
• What is the difference between soft and hard page faults? (page 720)
• What tools can I use to investigate storage use in MongoDB? (page 720)
• What is the working set? (page 720)
• Why are the files in my data directory larger than the data in my database? (page 721)
• How can I check the size of a collection? (page 722)
• How can I check the size of indexes? (page 722)
• How do I know when the server runs out of disk space? (page 722)

57.1 What are memory mapped files?

A memory-mapped file is a file with data that the operating system places in memory by way of the mmap() system
call. mmap() thus maps the file to a region of virtual memory. Memory-mapped files are the critical piece of the
storage engine in MongoDB. By using memory mapped files MongoDB can treat the content of its data files as if they
were in memory. This provides MongoDB with an extremely fast and simple method for accessing and manipulating
data.

57.2 How do memory mapped files work?

Memory mapping assigns files to a block of virtual memory with a direct byte-for-byte correlation. Once mapped, the
relationship between file and memory allows MongoDB to interact with the data in the file as if it were memory.

719

https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

MongoDB Documentation, Release 2.4.2

57.3 How does MongoDB work with memory mapped files?

MongoDB uses memory mapped files for managing and interacting with all data. MongoDB memory maps data files
to memory as it accesses documents. Data that isn’t accessed is not mapped to memory.

57.4 What are page faults?

Page faults will occur if you’re attempting to access part of a memory-mapped file that isn’t in memory.

If there is free memory, then the operating system can find the page on disk and load it to memory directly. However,
if there is no free memory, the operating system must:

• find a page in memory that is stale or no longer needed, and write the page to disk.

• read the requested page from disk and load it into memory.

This process, particularly on an active system can take a long time, particularly in comparison to reading a page that
is already in memory.

57.5 What is the difference between soft and hard page faults?

Page faults occur when MongoDB needs access to data that isn’t currently in active memory. A “hard” page fault
refers to situations when MongoDB must access a disk to access the data. A “soft” page fault, by contrast, merely
moves memory pages from one list to another, such as from an operating system file cache. In production, MongoDB
will rarely encounter soft page faults.

57.6 What tools can I use to investigate storage use in MongoDB?

The db.stats() (page 946) method in the mongo (page 984) shell, returns the current state of the “active” database.
The Database Statistics Reference (page 1070) document outlines the meaning of the fields in the db.stats()
(page 946) output.

57.7 What is the working set?

Working set represents the total body of data that the application uses in the course of normal operation. Often this is
a subset of the total data size, but the specific size of the working set depends on actual moment-to-moment use of the
database.

If you run a query that requires MongoDB to scan every document in a collection, the working set will expand to
include every document. Depending on physical memory size, this may cause documents in the working set to “page
out,” or removed from physical memory by the operating system. The next time MongoDB needs to access these
documents, MongoDB may incur a hard page fault.

If you run a query that requires MongoDB to scan every document in a collection, the working set includes every
active document in memory.

For best performance, the majority of your active set should fit in RAM.

720 Chapter 57. FAQ: MongoDB Storage

MongoDB Documentation, Release 2.4.2

57.8 Why are the files in my data directory larger than the data in my
database?

The data files in your data directory, which is the http://docs.mongodb.org/manual/data/db directory
in default configurations, might be larger than the data set inserted into the database. Consider the following possible
causes:

• Preallocated data files.

In the data directory, MongoDB preallocates data files to a particular size, in part to prevent file system frag-
mentation. MongoDB names first data file <databasename>.0, the next <databasename>.1, etc. The
first file mongod (page 971) allocates is 64 megabytes, the next 128 megabytes, and so on, up to 2 gigabytes, at
which point all subsequent files are 2 gigabytes. The data files include files with allocated space but that hold no
data. mongod (page 971) may allocate a 1 gigabyte data file that may be 90% empty. For most larger databases,
unused allocated space is small compared to the database.

On Unix-like systems, mongod (page 971) preallocates an additional data file and initializes the disk space to 0.
Preallocating data files in the background prevents significant delays when a new database file is next allocated.

You can disable preallocation with noprealloc (page 1031) run time option. However noprealloc
(page 1031) is not intended for use in production environments: only use noprealloc (page 1031) for testing
and with small data sets where you frequently drop databases.

On Linux systems you can use hdparm to get an idea of how costly allocation might be:

time hdparm --fallocate $((1024*1024)) testfile

• The oplog.

If this mongod (page 971) is a member of a replica set, the data directory includes the oplog.rs file, which is
a preallocated capped collection in the local database. The default allocation is approximately 5% of disk
space on a 64-bit installations, see Oplog Sizing (page 372) for more information. In most cases, you should not
need to resize the oplog. However, if you do, see Change the Size of the Oplog (page 413).

• The journal.

The data directory contains the journal files, which store write operations on disk prior to MongoDB applying
them to databases. See Journaling (page 71).

• Empty records.

MongoDB maintains lists of empty records in data files when deleting documents and collections. MongoDB
can reuse this space, but will never return this space to the operating system.

To reclaim deleted space, use either of the following:

– compact (page 816), which defragments deleted space. compact (page 816) requires up to 2 gigabytes
of extra disk space to run. Do not use compact (page 816) if you are critically low on disk space.

– repairDatabase (page 863), which rebuilds the database. Both options require additional disk space
to run. For details, see Recover MongoDB Data following Unexpected Shutdown (page 52).

Warning: repairDatabase (page 863) requires enough free disk space to hold both the old and
new database files while the repair is running. Be aware that repairDatabase (page 863) will
block all other operations and may take a long time to complete.

57.8. Why are the files in my data directory larger than the data in my database? 721

MongoDB Documentation, Release 2.4.2

57.9 How can I check the size of a collection?

To view the size of a collection and other information, use the stats() (page 931) method from the mongo
(page 984) shell. The following example issues stats() (page 931) for the orders collection:

db.orders.stats();

To view specific measures of size, use these methods:

• db.collection.dataSize() (page 905): data size for the collection.

• db.collection.storageSize() (page 931): allocation size, including unused space.

• db.collection.totalSize() (page 932): the data size plus the index size.

• db.collection.totalIndexSize() (page 932): the index size.

Also, the following scripts print the statistics for each database and collection:

db._adminCommand("listDatabases").databases.forEach(function (d) {mdb = db.getSiblingDB(d.name); printjson(mdb.stats())})

db._adminCommand("listDatabases").databases.forEach(function (d) {mdb = db.getSiblingDB(d.name); mdb.getCollectionNames().forEach(function(c) {s = mdb[c].stats(); printjson(s)})})

57.10 How can I check the size of indexes?

To view the size of the data allocated for an index, use one of the following procedures in the mongo (page 984) shell:

• Use the stats() (page 931) method using the index namespace. To retrieve a list of namespaces, issue the
following command:

db.system.namespaces.find()

• Check the value of indexSizes (page 1074) value in the output of db.collection.stats() (page 931)
command.

Example

Issue the following command to retrieve index namespaces:

db.system.namespaces.find()

The command returns a list similar to the following:

{"name" : "test.orders"}
{"name" : "test.system.indexes"}
{"name" : "test.orders.$_id_"}

View the size of the data allocated for the orders.$_id_ index with the following sequence of operations:

use test
db.orders.$_id_.stats().indexSizes

57.11 How do I know when the server runs out of disk space?

If your server runs out of disk space for data files, you will see something like this in the log:

722 Chapter 57. FAQ: MongoDB Storage

MongoDB Documentation, Release 2.4.2

Thu Aug 11 13:06:09 [FileAllocator] allocating new data file dbms/test.13, filling with zeroes...
Thu Aug 11 13:06:09 [FileAllocator] error failed to allocate new file: dbms/test.13 size: 2146435072 errno:28 No space left on device
Thu Aug 11 13:06:09 [FileAllocator] will try again in 10 seconds
Thu Aug 11 13:06:19 [FileAllocator] allocating new data file dbms/test.13, filling with zeroes...
Thu Aug 11 13:06:19 [FileAllocator] error failed to allocate new file: dbms/test.13 size: 2146435072 errno:28 No space left on device
Thu Aug 11 13:06:19 [FileAllocator] will try again in 10 seconds

The server remains in this state forever, blocking all writes including deletes. However, reads still work. To delete
some data and compact, using the compact (page 816) command, you must restart the server first.

If your server runs out of disk space for journal files, the server process will exit. By default, mongod (page 971)
creates journal files in a sub-directory of dbpath (page 1029) named journal. You may elect to put the journal
files on another storage device using a filesystem mount or a symlink.

Note: If you place the journal files on a separate storage device you will not be able to use a file system snapshot tool
to capture a consistent snapshot of your data files and journal files.

57.11. How do I know when the server runs out of disk space? 723

MongoDB Documentation, Release 2.4.2

724 Chapter 57. FAQ: MongoDB Storage

CHAPTER 58

FAQ: Indexes

This document addresses common questions regarding MongoDB indexes.

If you don’t find the answer you’re looking for, check the complete list of FAQs (page 683) or post your question to
the MongoDB User Mailing List. See also Indexing Strategies (page 315).

Frequently Asked Questions:

• Should you run ensureIndex() after every insert? (page 725)
• How do you know what indexes exist in a collection? (page 726)
• How do you determine the size of an index? (page 726)
• What happens if an index does not fit into RAM? (page 726)
• How do you know what index a query used? (page 726)
• How do you determine what fields to index? (page 726)
• How do write operations affect indexes? (page 726)
• Will building a large index affect database performance? (page 726)
• Can I use index keys to constrain query matches? (page 727)
• Using $ne and $nin in a query is slow. Why? (page 727)
• Can I use a multi-key index to support a query for a whole array? (page 727)
• How can I effectively use indexes strategy for attribute lookups? (page 727)

58.1 Should you run ensureIndex() after every insert?

No. You only need to create an index once for a single collection. After initial creation, MongoDB automatically
updates the index as data changes.

While running ensureIndex() (page 907) is usually ok, if an index doesn’t exist because of ongoing adminis-
trative work, a call to ensureIndex() (page 907) may disrupt database availability. Running ensureIndex()
(page 907) can render a replica set inaccessible as the index creation is happening. See Build Indexes on Replica Sets
(page 325).

725

https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

MongoDB Documentation, Release 2.4.2

58.2 How do you know what indexes exist in a collection?

To list a collection’s indexes, use the db.collection.getIndexes() (page 915) method or a similar method
for your driver.

58.3 How do you determine the size of an index?

To check the sizes of the indexes on a collection, use db.collection.stats() (page 931).

58.4 What happens if an index does not fit into RAM?

When an index is too large to fit into RAM, MongoDB must read the index from disk, which is a much slower operation
than reading from RAM. Keep in mind an index fits into RAM when your server has RAM available for the index
combined with the rest of the working set.

In certain cases, an index does not need to fit entirely into RAM. For details, see Indexes that Hold Only Recent Values
in RAM (page 319).

58.5 How do you know what index a query used?

To inspect how MongoDB processes a query, use the explain() (page 892) method in the mongo (page 984) shell,
or in your application driver.

58.6 How do you determine what fields to index?

A number of factors determine what fields to index, including selectivity (page 319), fitting indexes into RAM, reusing
indexes in multiple queries when possible, and creating indexes that can support all the fields in a given query. For
detailed documentation on choosing which fields to index, see Indexing Strategies (page 315).

58.7 How do write operations affect indexes?

Any write operation that alters an indexed field requires an update to the index in addition to the document itself. If
you update a document that causes the document to grow beyond the allotted record size, then MongoDB must update
all indexes that include this document as part of the update operation.

Therefore, if your application is write-heavy, creating too many indexes might affect performance.

58.8 Will building a large index affect database performance?

Building an index can be an IO-intensive operation, especially if you have a large collection. This is true on any
database system that supports secondary indexes, including MySQL. If you need to build an index on a large collection,
consider building the index in the background. See Index Creation Options (page 309).

If you build a large index without the background option, and if doing so causes the database to stop responding, do
one of the following:

726 Chapter 58. FAQ: Indexes

http://api.mongodb.org/
http://api.mongodb.org/

MongoDB Documentation, Release 2.4.2

• Wait for the index to finish building.

• Kill the current operation (see db.killOp() (page 941)). The partial index will be deleted.

58.9 Can I use index keys to constrain query matches?

You can use the min() (page 896) and max() (page 895) methods to constrain the results of the cursor returned from
find() (page 910) by using index keys.

58.10 Using $ne and $nin in a query is slow. Why?

The $ne (page 756) and $nin (page 758) operators are not selective. See Create Queries that Ensure Selectivity
(page 319). If you need to use these, it is often best to make sure that an additional, more selective criterion is part of
the query.

58.11 Can I use a multi-key index to support a query for a whole ar-
ray?

Not entirely. The index can partially support these queries because it can speed the selection of the first element of
the array; however, comparing all subsequent items in the array cannot use the index and must scan the documents
individually.

58.12 How can I effectively use indexes strategy for attribute
lookups?

For simple attribute lookups that don’t require sorted result sets or range queries, consider creating a field that contains
an array of documents where each document has a field (e.g. attrib) that holds a specific type of attribute. You can
index this attrib field.

For example, the attrib field in the following document allows you to add an unlimited number of attributes types:

{ _id : ObjectId(...),
attrib : [

{ k: "color", v: "red" },
{ k: "shape": v: "rectangle" },
{ k: "color": v: "blue" },
{ k: "avail": v: true }

]
}

Both of the following queries could use the same { "attrib.k": 1, "attrib.v": 1 } index:

db.mycollection.find({ attrib: { $elemMatch : { k: "color", v: "blue" } } })
db.mycollection.find({ attrib: { $elemMatch : { k: "avail", v: true } } })

58.9. Can I use index keys to constrain query matches? 727

MongoDB Documentation, Release 2.4.2

728 Chapter 58. FAQ: Indexes

CHAPTER 59

FAQ: MongoDB Diagnostics

This document provides answers to common diagnostic questions and issues.

If you don’t find the answer you’re looking for, check the complete list of FAQs (page 683) or post your question to
the MongoDB User Mailing List.

Frequently Asked Questions:

• Where can I find information about a mongod process that stopped running unexpectedly? (page 729)
• Does TCP keepalive time affect sharded clusters and replica sets? (page 730)
• Memory Diagnostics (page 730)

– Do I need to configure swap space? (page 730)
– Must my working set size fit RAM? (page 730)
– How do I calculate how much RAM I need for my application? (page 731)
– How do I read memory statistics in the UNIX top command (page 731)

• Sharded Cluster Diagnostics (page 731)
– In a new sharded cluster, why does all data remains on one shard? (page 732)
– Why would one shard receive a disproportion amount of traffic in a sharded cluster? (page 732)
– What can prevent a sharded cluster from balancing? (page 732)
– Why do chunk migrations affect sharded cluster performance? (page 733)

59.1 Where can I find information about a mongod process that
stopped running unexpectedly?

If mongod (page 971) shuts down unexpectedly on a UNIX or UNIX-based platform, and if mongod (page 971)
fails to log a shutdown or error message, then check your system logs for messages pertaining to MongoDB. For ex-
ample, for logs located in in http://docs.mongodb.org/manual/var/log/messages, use the following
commands:

sudo grep mongod /var/log/messages
sudo grep score /var/log/messages

729

https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

MongoDB Documentation, Release 2.4.2

59.2 Does TCP keepalive time affect sharded clusters and replica
sets?

If you experience socket errors between members of a sharded cluster or replica set, that do not have other reason-
able causes, check the TCP keep alive value, which Linux systems store as the tcp_keepalive_time value. A
common keep alive period is 7200 seconds (2 hours); however, different distributions and OS X may have different
settings. For MongoDB, you will have better experiences with shorter keepalive periods, on the order of 300 seconds
(five minutes).

On Linux systems you can use the following operation to check the value of tcp_keepalive_time:

cat /proc/sys/net/ipv4/tcp_keepalive_time

You can change the tcp_keepalive_time value with the following operation:

echo 300 > /proc/sys/net/ipv4/tcp_keepalive_time

The new tcp_keepalive_time value takes effect without requiring you to restart the mongod (page 971)
or mongos (page 981) servers. When you reboot or restart your system you will need to set the new
tcp_keepalive_time value, or see your operating system’s documentation for setting the TCP keepalive value
persistently.

For OS X systems, issue the following command to view the keep alive setting:

sysctl net.inet.tcp.keepinit

To set a shorter keep alive period use the following invocation:

sysctl -w net.inet.tcp.keepinit=300

If your replica set or sharded cluster experiences keepalive-related issues, you must must alter the
tcp_keepalive_time value on all machines hosting MongoDB processes. This includes all machines hosting
mongos (page 981) or mongod (page 971) servers.

59.3 Memory Diagnostics

59.3.1 Do I need to configure swap space?

Always configure systems to have swap space. Without swap, your system may not be reliant in some situations with
extreme memory constrains, memory leaks, or multiple programs using the same memory. Think of the swap space
as something like a steam release valve that allows the system to release extra pressure without affecting the overall
functioning of the system.

Nevertheless, systems running MongoDB do not need swap for routine operation. Database files are memory-mapped
(page 719) and should constitute most of your MongoDB memory use. Therefore, it is unlikely that mongod
(page 971) will ever use any swap space in normal operation. The operating system will release memory from the
memory mapped files without needing swap and MongoDB can write data to the data files without needing the swap
system.

59.3.2 Must my working set size fit RAM?

Your working set should stay in memory to achieve good performance. Otherwise many random disk IO’s will occur,
and unless you are using SSD, this can be quite slow.

730 Chapter 59. FAQ: MongoDB Diagnostics

MongoDB Documentation, Release 2.4.2

One area to watch specifically in managing the size of your working set is index access patterns. If you are inserting
into indexes at random locations (as would happen with id’s that are randomly generated by hashes), you will contin-
ually be updating the whole index. If instead you are able to create your id’s in approximately ascending order (for
example, day concatenated with a random id), all the updates will occur at the right side of the b-tree and the working
set size for index pages will be much smaller.

It is fine if databases and thus virtual size are much larger than RAM.

59.3.3 How do I calculate how much RAM I need for my application?

The amount of RAM you need depends on several factors, including but not limited to:

• The relationship between database storage (page 719) and working set.

• The operating system’s cache strategy for LRU (Least Recently Used)

• The impact of journaling (page 71)

• The number or rate of page faults and other MMS gauges to detect when you need more RAM

MongoDB defers to the operating system when loading data into memory from disk. It simply memory maps
(page 719) all its data files and relies on the operating system to cache data. The OS typically evicts the least-
recently-used data from RAM when it runs low on memory. For example if clients access indexes more frequently
than documents, then indexes will more likely stay in RAM, but it depends on your particular usage.

To calculate how much RAM you need, you must calculate your working set size, or the portion of your data that
clients use most often. This depends on your access patterns, what indexes you have, and the size of your documents.

If page faults are infrequent, your working set fits in RAM. If fault rates rise higher than that, you risk performance
degradation. This is less critical with SSD drives than with spinning disks.

59.3.4 How do I read memory statistics in the UNIX top command

Because mongod (page 971) uses memory-mapped files (page 719), the memory statistics in top require interpreta-
tion in a special way. On a large database, VSIZE (virtual bytes) tends to be the size of the entire database. If the
mongod (page 971) doesn’t have other processes running, RSIZE (resident bytes) is the total memory of the machine,
as this counts file system cache contents.

For Linux systems, use the vmstat command to help determine how the system uses memory. On OS X systems use
vm_stat.

59.4 Sharded Cluster Diagnostics

The two most important factors in maintaining a successful sharded cluster are:

• choosing an appropriate shard key (page 471) and

• sufficient capacity to support current and future operations (page 465).

You can prevent most issues encountered with sharding by ensuring that you choose the best possible shard key for
your deployment and ensure that you are always adding additional capacity to your cluster well before the current
resources become saturated. Continue reading for specific issues you may encounter in a production environment.

59.4. Sharded Cluster Diagnostics 731

MongoDB Documentation, Release 2.4.2

59.4.1 In a new sharded cluster, why does all data remains on one shard?

Your cluster must have sufficient data for sharding to make sense. Sharding works by migrating chunks between the
shards until each shard has roughly the same number of chunks.

The default chunk size is 64 megabytes. MongoDB will not begin migrations until the imbalance of chunks in the
cluster exceeds the migration threshold (page 475). While the default chunk size is configurable with the chunkSize
(page 1036) setting, these behaviors help prevent unnecessary chunk migrations, which can degrade the performance
of your cluster as a whole.

If you have just deployed a sharded cluster, make sure that you have enough data to make sharding effective. If you do
not have sufficient data to create more than eight 64 megabyte chunks, then all data will remain on one shard. Either
lower the chunk size (page 476) setting, or add more data to the cluster.

As a related problem, the system will split chunks only on inserts or updates, which means that if you configure
sharding and do not continue to issue insert and update operations, the database will not create any chunks. You can
either wait until your application inserts data or split chunks manually (page 499).

Finally, if your shard key has a low cardinality (page 471), MongoDB may not be able to create sufficient splits among
the data.

59.4.2 Why would one shard receive a disproportion amount of traffic in a sharded
cluster?

In some situations, a single shard or a subset of the cluster will receive a disproportionate portion of the traffic and
workload. In almost all cases this is the result of a shard key that does not effectively allow write scaling (page 472).

It’s also possible that you have “hot chunks.” In this case, you may be able to solve the problem by splitting and then
migrating parts of these chunks.

In the worst case, you may have to consider re-sharding your data and choosing a different shard key (page 473) to
correct this pattern.

59.4.3 What can prevent a sharded cluster from balancing?

If you have just deployed your sharded cluster, you may want to consider the troubleshooting suggestions for a new
cluster where data remains on a single shard (page 732).

If the cluster was initially balanced, but later developed an uneven distribution of data, consider the following possible
causes:

• You have deleted or removed a significant amount of data from the cluster. If you have added additional data, it
may have a different distribution with regards to its shard key.

• Your shard key has low cardinality (page 471) and MongoDB cannot split the chunks any further.

• Your data set is growing faster than the balancer can distribute data around the cluster. This is uncommon and
typically is the result of:

– a balancing window (page 506) that is too short, given the rate of data growth.

– an uneven distribution of write operations (page 472) that requires more data migration. You may have to
choose a different shard key to resolve this issue.

– poor network connectivity between shards, which may lead to chunk migrations that take too long to
complete. Investigate your network configuration and interconnections between shards.

732 Chapter 59. FAQ: MongoDB Diagnostics

MongoDB Documentation, Release 2.4.2

59.4.4 Why do chunk migrations affect sharded cluster performance?

If migrations impact your cluster or application’s performance, consider the following options, depending on the nature
of the impact:

1. If migrations only interrupt your clusters sporadically, you can limit the balancing window (page 506) to prevent
balancing activity during peak hours. Ensure that there is enough time remaining to keep the data from becoming
out of balance again.

2. If the balancer is always migrating chunks to the detriment of overall cluster performance:

• You may want to attempt decreasing the chunk size (page 501) to limit the size of the migration.

• Your cluster may be over capacity, and you may want to attempt to add one or two shards (page 488) to
the cluster to distribute load.

It’s also possible that your shard key causes your application to direct all writes to a single shard. This kind of activity
pattern can require the balancer to migrate most data soon after writing it. Consider redeploying your cluster with a
shard key that provides better write scaling (page 472).

59.4. Sharded Cluster Diagnostics 733

MongoDB Documentation, Release 2.4.2

734 Chapter 59. FAQ: MongoDB Diagnostics

Part XIV

Reference

735

CHAPTER 60

MongoDB Interface

60.1 Reference

60.1.1 Query, Update, Projection, and Aggregation Operators

Query, Update, and Projection Operators Quick Reference

This document contains a list of all operators used with MongoDB in version 2.4. See Core MongoDB Operations
(CRUD) (page 159) for a higher level overview of the operations that use these operators, and Query, Update, Projec-
tion, and Aggregation Operators (page 737) for a more condensed index of these operators.

Operators

• Query Selectors (page 737)
– Comparison (page 737)
– Logical (page 738)
– Element (page 738)
– JavaScript (page 738)
– Geospatial (page 739)
– Array (page 739)

• Update (page 739)
– Fields (page 739)
– Array (page 739)
– Bitwise (page 740)
– Isolation (page 740)

• Projection (page 740)

Query Selectors

Comparison
Note: To express equal to (e.g. =) in the MongoDB query language, use JSON { key:value } structure.
Consider the following prototype:

737

MongoDB Documentation, Release 2.4.2

db.collection.find({ field: value })

For example:

db.collection.find({ a: 42 })

This query selects all the documents the where the a field holds a value of 42.

• $all (page 740)

• $gt (page 749)

• $gte (page 749)

• $in (page 750)

• $lt (page 752)

• $lte (page 752)

• $ne (page 756)

• $nin (page 758)

You may combine comparison operators to specify ranges:

db.collection.find({ field: { $gt: value1, $lt: value2 } });

This statement returns all documents with field between value1 and value2.

Note: Fields containing arrays match conditional operators, if only one item matches. Therefore, the following query:

db.collection.find({ field: { $gt:0, $lt:2 } });

Will match a document that contains the following field:

{ field: [-1,3] }

Logical

• $and (page 741)

• $nor (page 759)

• $not (page 760)

• $or (page 760)

Element

• $exists (page 745)

• $mod (page 755)

• $type (page 774)

JavaScript

• $regex (page 767)

• $where (page 777)

738 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Geospatial Operators:

• $geoWithin (page 747)

• $geoIntersects (page 746)

• $near (page 756)

• $nearSphere (page 757)

Parameters:

• $geometry (page 748)

• $maxDistance (page 753)

• $center (page 743)

• $centerSphere (page 743)

• $box (page 742)

• $polygon (page 762)

• $uniqueDocs (page 776)

Array

• $elemMatch (page 745)

• $size (page 772)

Update

Fields

• $inc (page 751)

• $rename (page 768)

• $set (page 770)

• $unset (page 777)

Array

• $ (page 763)

• $addToSet (page 740)

• $pop (page 763)

• $pullAll (page 764)

• $pull (page 764)

• $pushAll (page 766)

• $push (page 765)

– $each (page 744) modifier

– $slice (page 772) modifier

– $sort (page 773) modifier

60.1. Reference 739

MongoDB Documentation, Release 2.4.2

Bitwise

• $bit (page 742)

Isolation

• $isolated (page 751)

Projection

• $ (page 781)

• $elemMatch (page 778)

• $slice (page 782)

• Query, Update, and Projection Operators Quick Reference (page 737)

• Query and update operators:

$addToSet

$addToSet
The $addToSet (page 740) operator adds a value to an array only if the value is not in the array already.
If the value is in the array, $addToSet (page 740) returns without modifying the array. Consider the
following example:

db.collection.update({ field: value }, { $addToSet: { field: value1 } });

Here, $addToSet (page 740) appends value1 to the array stored in field, only if value1 is not
already a member of this array.

Note: $addToSet (page 740) only ensures that there are no duplicate items in a set and makes no
guarantees regarding the order of the elements in the set.

See Also:

$each (page 744) and $push (page 765)

$all

$all
Syntax: { field: { $all: [<value> , <value1> ...] }

$all (page 740) selects the documents where the field holds an array and contains all elements (e.g.
<value>, <value1>, etc.) in the array.

Consider the following example:

db.inventory.find({ tags: { $all: ["appliances", "school", "book"] } })

This query selects all documents in the inventory collection where the tags field contains an array
with the elements, appliances, school, and book.

Therefore, the above query will match documents in the inventory collection that have a tags field
that hold either of the following arrays:

740 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

["school", "book", "bag", "headphone", "appliances"]
["appliances", "school", "book"]

The $all (page 740) operator exists to describe and specify arrays in MongoDB queries. However, you
may use the $all (page 740) operator to select against a non-array field, as in the following example:

db.inventory.find({ qty: { $all: [50] } })

However, use the following form to express the same query:

db.inventory.find({ qty: 50 })

Both queries will select all documents in the inventory collection where the value of the qty field
equals 50.

Note: In most cases, MongoDB does not treat arrays as sets. This operator provides a notable exception
to this approach.

In the current release queries that use the $all (page 740) operator must scan all the documents that match
the first element in the query array. As a result, even with an index to support the query, the operation may
be long running, particularly when the first element in the array is not very selective.

See Also:

find() (page 910), update() (page 932), and $set (page 770).

$and

$and
New in version 2.0. Syntax: { $and: [{ <expression1> }, { <expression2> } ,
... , { <expressionN> }] }

$and (page 741) performs a logical AND operation on an array of two or more expressions (e.g.
<expression1>, <expression2>, etc.) and selects the documents that satisfy all the expressions
in the array. The $and (page 741) operator uses short-circuit evaluation. If the first expression (e.g.
<expression1>) evaluates to false, MongoDB will not evaluate the remaining expressions.

Consider the following example:

db.inventory.find({ $and: [{ price: 1.99 }, { qty: { $lt: 20 } }, { sale: true }] })

This query will select all documents in the inventory collection where:

–price field value equals 1.99 and

–qty field value is less than 20 and

–sale field value is equal to true.

MongoDB provides an implicit AND operation when specifying a comma separated list of expressions. For
example, you may write the above query as:

db.inventory.find({ price: 1.99, qty: { $lt: 20 } , sale: true })

If, however, a query requires an AND operation on the same field such as { price: { $ne: 1.99
} } AND { price: { $exists: true } }, then either use the $and (page 741) operator
for the two separate expressions or combine the operator expressions for the field { price: { $ne:
1.99, $exists: true } }.

60.1. Reference 741

MongoDB Documentation, Release 2.4.2

Consider the following examples:

db.inventory.update({ $and: [{ price: { $ne: 1.99 } }, { price: { $exists: true } }] }, { $set: { qty: 15 } })

db.inventory.update({ price: { $ne: 1.99, $exists: true } } , { $set: { qty: 15 } })

Both update() (page 932) operations will set the value of the qty field in documents where:

–the price field value does not equal 1.99 and

–the price field exists.

See Also:

find() (page 910), update() (page 932), $ne (page 756), $exists (page 745), $set (page 770).

$bit

$bit
The $bit (page 742) operator performs a bitwise update of a field. Only use this with integer fields. For
example:

db.collection.update({ field: 1 }, { $bit: { field: { and: 5 } } });

Here, the $bit (page 742) operator updates the integer value of the field named field with a bitwise
and: 5 operation. This operator only works with number types.

$box

$box
New in version 1.4. The $box (page 742) operator specifies a rectangle for a geospatial $geoWithin
(page 747) query. The query returns documents that are within the bounds of the rectangle, according to
their point-based location data. The $box (page 742) operator returns documents based on grid coordi-
nates (page 335) and does not query for GeoJSON shapes.

The query calculates distances using flat (planar) geometry. The 2d geospatial index supports the $box
(page 742) operator.

To use the $box (page 742) operator, you must specify the bottom left and top right corners of the rectangle
in an array object. Use the following syntax:

{ <location field> : { $geoWithin : { $box :
[[<bottom left coordinates>] ,

[<upper right coordinates>]] } } }

Important: If you use longitude and latitude, specify longitude first.

The following example query returns all documents that are within the box having points at: [0 , 0
], [0 , 100], [100 , 0], and [100 , 100].

db.places.find({ loc : { $geoWithin : { $box :
[[0 , 0] ,
[100 , 100]] } } })

Changed in version 2.2.3: Applications can use this operator without having a geospatial index. However,
geospatial indexes support much faster queries than the unindexed equivalents. Before 2.2.3, a geospatial
index must exist on a field holding coordinates before using any of the geospatial query operators.

742 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

$center

$center
New in version 1.4. The $center (page 743) operator specifies a circle for a geospatial $geoWithin
(page 747) query. The query returns legacy coordinate pairs that are within the bounds of the circle. The
operator does not return GeoJSON objects.

The query calculates distances using flat (planar) geometry.

The 2d geospatial index supports the $center (page 743) operator.

To use the $center (page 743) operator, specify an array that contains:

–The grid coordinates of the circle’s center point

–The circle’s radius, as measured in the units used by the coordinate system

Important: If you use longitude and latitude, specify longitude first.

Use the following syntax:

{ <location field> : { $geoWithin : { $center : [[<x>, <y>] , <radius>] } } }

The following example query returns all documents that have coordinates that exist within the circle cen-
tered on [-74 , 40.74] and with a radius of 10:

db.places.find({ loc: { $geoWithin :
{ $center : [[-74, 40.74], 10] }

} })

Changed in version 2.2.3: Applications can use this operator without having a geospatial index. However,
geospatial indexes support much faster queries than the unindexed equivalents. Before 2.2.3, a geospatial
index must exist on a field holding coordinates before using any of the geospatial query operators.

$centerSphere

$centerSphere
New in version 1.8. The $centerSphere (page 743) operator defines a circle for a geospatial query
that uses spherical geometry. The query returns documents that are within the bounds of the circle.

You can use the $centerSphere (page 743) operator on both GeoJSON objects and legacy coordinate
pairs.

The 2d and 2dsphere geospatial indexes both support $centerSphere (page 743).

To use $centerSphere (page 743), specify an array that contains:

–The grid coordinates of the circle’s center point

–The circle’s radius measured in radians. To calculate radians, see Calculate Distances in a 2d Index
Using Spherical Geometry (page 343).

Use the following syntax:

db.<collection>.find({ <location field> :
{ $geoWithin :

{ $centerSphere : [[<x>, <y>] , <radius>] }
} })

60.1. Reference 743

MongoDB Documentation, Release 2.4.2

Important: If you use longitude and latitude, specify longitude first.

The following example queries grid coordinates and returns all documents within a 10 mile radius of lon-
gitude 88 W and latitude 30 N. The query converts the distance to radians by dividing by the approximate
radius of the earth, 3959 miles:

db.places.find({ loc : { $geoWithin :
{ $centerSphere :
[[88 , 30] , 10 / 3959]

} } })

Changed in version 2.2.3: Applications can use this operator without having a geospatial index. However,
geospatial indexes support much faster queries than the unindexed equivalents. Before 2.2.3, a geospatial
index must exist on a field holding coordinates before using any of the geospatial query operators.

$comment

$comment
The $comment (page 744) makes it possible to attach a comment to a query. Because these comments
propagate to the profile (page 860) log, adding $comment (page 744) modifiers can make your profile
data much easier to interpret and trace. Use one of the following forms:

db.collection.find({ <query> })._addSpecial("$comment", <comment>)
db.collection.find({ $query: { <query> }, $comment: <comment> })

$each

Note: The $each (page 744) modifier is only used with the $addToSet (page 740) and $push (page 765)
operators. See the documentation of $addToSet (page 740) and $push (page 765) for more information.

$each
The $each (page 744) modifier is available for use with the $addToSet (page 740) operator and the
$push (page 765) operator.

–Use the $each (page 744) modifier with the $addToSet (page 740) operator to add multiple values
to an array <field> if the values do not exist in the <field>.

db.collection.update(<query>,
{
$addToSet: { <field>: { $each: [<value1>, <value2> ...] } }

}
)

–Use the $each (page 744) modifier with the $push (page 765) operator to append multiple values
to an array <field>.

db.collection.update(<query>,
{
$push: { <field>: { $each: [<value1>, <value2> ...] } }

}
)

744 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Changed in version 2.4: MongoDB adds support for the $each (page 744) modifier to the $push
(page 765) operator.

$elemMatch (query)

See Also:

$elemMatch (projection) (page 778)

$elemMatch
New in version 1.4. The $elemMatch (page 745) operator matches more than one component within an
array element. For example,

db.collection.find({ array: { $elemMatch: { value1: 1, value2: { $gt: 1 } } } });

returns all documents in collection where the array array satisfies all of the conditions in the
$elemMatch (page 745) expression, or where the value of value1 is 1 and the value of value2 is
greater than 1. Matching arrays must have at least one element that matches all specified criteria. There-
fore, the following document would not match the above query:

{ array: [{ value1:1, value2:0 }, { value1:2, value2:2 }] }

while the following document would match this query:

{ array: [{ value1:1, value2:0 }, { value1:1, value2:2 }] }

$exists

$exists
Syntax: { field: { $exists: <boolean> } }

$exists (page 745) selects the documents that contain the field if <boolean> is true. If <boolean>
is false, the query only returns the documents that do not contain the field. Documents that contain the
field but has the value null are not returned.

MongoDB $exists does not correspond to SQL operator exists. For SQL exists, refer to the $in
(page 750) operator.

Consider the following example:

db.inventory.find({ qty: { $exists: true, $nin: [5, 15] } })

This query will select all documents in the inventory collection where the qty field exists and its value
does not equal either 5 nor 15.

See Also:

–find() (page 910)

–$nin (page 758)

–$and (page 741)

–$in (page 750)

–How do I query for fields that have null values? (page 694)

60.1. Reference 745

MongoDB Documentation, Release 2.4.2

$explain

$explain
The $explain (page 746) operator provides information on the query plan. It returns a document
(page 1086) that describes the process and indexes used to return the query. This may provide useful
insight when attempting to optimize a query.

mongo (page 984) shell also provides the explain() (page 892) method:

db.collection.find().explain()

You can also specify the option in either of the following forms:

db.collection.find()._addSpecial("$explain", 1)
db.collection.find({ $query: {}, $explain: 1 })

For details on the output, see Explain Output (page 1086).

$explain (page 746) runs the actual query to determine the result. Although there are some differences
between running the query with $explain (page 746) and running without, generally, the performance
will be similar between the two. So, if the query is slow, the $explain (page 746) operation is also slow.

Additionally, the $explain (page 746) operation reevaluates a set of candidate query plans, which may
cause the $explain (page 746) operation to perform differently than a normal query. As a result, these
operations generally provide an accurate account of how MongoDB would perform the query, but do not
reflect the length of these queries.

To determine the performance of a particular index, you can use hint() (page 894) and in conjunction
with explain() (page 892), as in the following example:

db.products.find().hint({ type: 1 }).explain()

When you run explain() (page 892) with hint() (page 894), the query optimizer does not reevaluate
the query plans.

Note: In some situations, the explain() (page 892) operation may differ from the actual query plan
used by MongoDB in a normal query.

The explain() (page 892) operation evaluates the set of query plans and reports on the winning plan for
the query. In normal operations the query optimizer caches winning query plans and uses them for similar
related queries in the future. As a result MongoDB may sometimes select query plans from the cache that
are different from the plan displayed using explain() (page 892).

See Also:

–cursor.explain() (page 892)

–Optimization Strategies for MongoDB (page 529) page for information regarding optimization strate-
gies.

–Analyze Performance of Database Operations (page 95) tutorial for information regarding the
database profile.

–Current Operation Reporting (page 1078)

$geoIntersects

$geoIntersects
New in version 2.4. The $geoIntersects (page 746) operator is a geospatial query operator that

746 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

selects all locations that intersect with a GeoJSON object. A location intersects a GeoJSON object if the
intersection is non-empty. This includes documents that have a shared edge. The $geoIntersects
(page 746) operator uses spherical geometry.

The 2dsphere geospatial index supports $geoIntersects (page 746).

To query for intersection, pass the GeoJSON object to $geoIntersects (page 746) through the
$geometry (page 748) operator. Use the following syntax:

db.<collection>.find({ <location field> :
{ $geoIntersects :

{ $geometry :
{ type : "<GeoJSON object type>" ,
coordinates : [<coordinates>]

} } } })

Important: Specify coordinates in this order: “longitude, latitude.”

The following example uses $geoIntersects (page 746) to select all indexed points and shapes that
intersect with the polygon defined by the coordinates array.

db.places.find({ loc :
{ $geoIntersects :
{ $geometry :
{ type : "Polygon" ,
coordinates: [[[0 , 0] , [3 , 6] , [6 , 1] , [0 , 0]]] }

} } } })

Note: Any geometry specified specified with GeoJSON to $geoIntersects (page 746) queries, must
fit within a single hemisphere. MongoDB interprets geometries larger than half of the sphere as queries
for the smaller complementary geometries.

$geoWithin

$geoWithin
New in version 2.4: $geoWithin (page 747) replaces $within (page 748) which is deprecated. The
$geoWithin (page 747) operator is a geospatial query operator that queries for a defined point, line or
shape that exists entirely within another defined shape. When determining inclusion, MongoDB considers
the border of a shape to be part of the shape, subject to the precision of floating point numbers.

The $geoWithin (page 747) operator queries for inclusion in a GeoJSON polygon or a shape defined
by legacy coordinate pairs.

The $geoWithin (page 747) operator does not return sorted results. As a result MongoDB can return
$geoWithin (page 747) queries more quickly than geospatial $near (page 756) or $nearSphere
(page 757) queries, which sort results.

The 2dsphere and 2d indexes both support the $geoWithin (page 747) operator. Changed in version
2.2.3: $geoWithin (page 747) does not require a geospatial index. However, a geospatial index will
improve query performance. If querying for inclusion in a GeoJSON polygon on a sphere, pass the polygon
to $geoWithin (page 747) through the $geometry (page 748) operator. Coordinates of a polygon are
an array of LinearRing coordinate arrays. The first element in the array represents the exterior ring. Any
subsequent elements represent interior rings (or holes).

For a polygon with only an exterior ring use following syntax:

60.1. Reference 747

MongoDB Documentation, Release 2.4.2

db.<collection>.find({ <location field> :
{ $geoWithin :

{ $geometry :
{ type : "Polygon" ,
coordinates : [[[<lng1>, <lat1>] , [<lng2>, <lat2>] ...]]

} } } })

Important: Specify coordinates in this order: “longitude, latitude.”

For a polygon with an exterior and interior ring use following syntax:

db.<collection>.find({ <location field> :
{ $geoWithin :

{ $geometry :
{ type : "Polygon" ,
coordinates : [[[<lng1>, <lat1>] , [<lng2>, <lat2>] ...]

[[<lngA>, <latA>] , [<lngB>, <latB>] ...]]
} } } })

The following example selects all indexed points and shapes that exist entirely within a GeoJSON polygon:

db.places.find({ loc :
{ $geoWithin :
{ $geometry :
{ type : "Polygon" ,
coordinates: [[[0 , 0] , [3 , 6] , [6 , 1] , [0 , 0]]]

} } } })

If querying for inclusion in a shape defined by legacy coordinate pairs on a plane, use the following syntax:

db.<collection>.find({ <location field> :
{ $geoWithin :

{ <shape operator> : <coordinates>
} } })

For the syntax of a shape operator, see:

–$box (page 742)

–$polygon (page 762)

–$center (page 743) (defines a circle)

–$centerSphere (page 743) (defines a circle on a sphere)

Note: Any geometry specified specified with GeoJSON to $geoWithin (page 747) queries, must fit
within a single hemisphere. MongoDB interprets geometries larger than half of the sphere as queries for
the smaller complementary geometries.

$within
Deprecated since version 2.4: $geoWithin (page 747) replaces $within (page 748) in MongoDB 2.4.

$geometry

$geometry
New in version 2.4. The $geometry (page 748) operator specifies a GeoJSON for a geospatial query
operators. For details on using $geometry (page 748) with an operator, see the operator:

748 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

–$geoWithin (page 747)

–$geoIntersects (page 746)

–$near (page 756)

$gt

$gt
Syntax: {field: {$gt: value} }

$gt (page 749) selects those documents where the value of the field is greater than (i.e. >) the specified
value.

Consider the following example:

db.inventory.find({ qty: { $gt: 20 } })

This query will select all documents in the inventory collection where the qty field value is greater
than 20.

Consider the following example which uses the $gt (page 749) operator with a field from an embedded
document:

db.inventory.update({ "carrier.fee": { $gt: 2 } }, { $set: { price: 9.99 } })

This update() (page 932) operation will set the value of the price field in the documents that contain
the embedded document carrier whose fee field value is greater than 2.

See Also:

find() (page 910), update() (page 932), $set (page 770).

$gte

$gte
Syntax: {field: {$gte: value} }

$gte (page 749) selects the documents where the value of the field is greater than or equal to (i.e. >=)
a specified value (e.g. value.)

Consider the following example:

db.inventory.find({ qty: { $gte: 20 } })

This query would select all documents in inventory where the qty field value is greater than or equal
to 20.

Consider the following example which uses the $gte (page 749) operator with a field from an embedded
document:

db.inventory.update({ "carrier.fee": { $gte: 2 } }, { $set: { price: 9.99 } })

This update() (page 932) operation will set the value of the price field that contain the embedded
document carrier whose fee field value is greater than or equal to 2.

See Also:

find() (page 910), update() (page 932), $set (page 770).

60.1. Reference 749

MongoDB Documentation, Release 2.4.2

$hint

$hint
The $hint (page 750) operator forces the query optimizer (page 168) to use a specific index to fulfill
the query. Specify the index either by the index name or by the index specification document. See Index
Specification Documents (page 186) for information on index specification documents.

Use $hint (page 750) for testing query performance and indexing strategies. The mongo (page 984)
shell provides a helper method hint() (page 894) for the $hint (page 750) operator.

Consider the following operation:

db.users.find().hint({ age: 1 })

This operation returns all documents in the collection named users using the index on the age field.

You can also specify a hint using either of the following forms:

db.users.find()._addSpecial("$hint", { age : 1 })
db.users.find({ $query: {}, $hint: { age : 1 } })

Note: To combine $explain (page 746) and $hint (page 750) operations, use the following form:

db.users.find({ $query: {}, $hint: { age : 1 } })

You must add the $explain (page 746) option to the document, as in the following:

db.users.find({ $query: {}, $hint: { age : 1 }, $explain: 1 })

$in

$in
Syntax: { field: { $in: [<value1>, <value2>, ... <valueN>] } }

$in (page 750) selects the documents where the field value equals any value in the specified array (e.g.
<value1>, <value2>, etc.)

Consider the following example:

db.inventory.find({ qty: { $in: [5, 15] } })

This query selects all documents in the inventory collection where the qty field value is either 5 or
15. Although you can express this query using the $or (page 760) operator, choose the $in (page 750)
operator rather than the $or (page 760) operator when performing equality checks on the same field.

If the field holds an array, then the $in (page 750) operator selects the documents whose field holds
an array that contains at least one element that matches a value in the specified array (e.g. <value1>,
<value2>, etc.)

Consider the following example:

db.inventory.update({ tags: { $in: ["appliances", "school"] } }, { $set: { sale:true } })

This update() (page 932) operation will set the sale field value in the inventory collection
where the tags field holds an array with at least one element matching an element in the array
["appliances", "school"].

See Also:

750 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

find() (page 910), update() (page 932), $or (page 760), $set (page 770).

$inc

$inc
The $inc (page 751) operator increments a value of a field by a specified amount. If the field does not
exist, $inc (page 751) sets the field to the specified amount. $inc (page 751) accepts positive and
negative incremental amounts.

The following example increments the value of field1 by the value of amount for the first matching
document in the collection where field equals value:

db.collection.update({ field: value },
{ $inc: { field1: amount } });

To update all matching documents in the collection, specify multi:true in the update() (page 932)
method:

db.collection.update({ age: 20 }, { $inc: { age: 1 } }, { multi: true });
db.collection.update({ name: "John" }, { $inc: { age: 2 } }, { multi: true });

The first update() (page 932) operation increments the value of the age field by 1 for all documents in
the collection that have an age field equal to 20. The second operation increments the value of the age
field by 2 for all documents in the collection with the name field equal to "John".

$isolated

$isolated
$isolated (page 751) isolation operator isolates a write operation that affects multiple documents from
other write operations.

Note: The $isolated (page 751) isolation operator does not provide “all-or-nothing” atomicity for
write operations.

Consider the following example:

db.foo.update({ field1 : 1 , $isolated : 1 }, { $inc : { field2 : 1 } } , { multi: true })

Without the $isolated (page 751) operator, multi-updates will allow other operations to interleave with
this updates. If these interleaved operations contain writes, the update operation may produce unexpected
results. By specifying $isolated (page 751) you can guarantee isolation for the entire multi-update.

Warning: $isolated (page 751) does not work with sharded clusters.

See Also:

See db.collection.update() (page 932) for more information about the
db.collection.update() (page 932) method.

$atomic
Deprecated since version 2.2: The $isolated (page 751) replaces $atomic (page 751).

60.1. Reference 751

MongoDB Documentation, Release 2.4.2

$lt

$lt
Syntax: {field: {$lt: value} }

$lt (page 752) selects the documents where the value of the field is less than (i.e. <) the specified
value.

Consider the following example:

db.inventory.find({ qty: { $lt: 20 } })

This query will select all documents in the inventory collection where the qty field value is less than
20.

Consider the following example which uses the $lt (page 752) operator with a field from an embedded
document:

db.inventory.update({ "carrier.fee": { $lt: 20 } }, { $set: { price: 9.99 } })

This update() (page 932) operation will set the price field value in the documents that contain the
embedded document carrier whose fee field value is less than 20.

See Also:

find() (page 910), update() (page 932), $set (page 770).

$lte

$lte
Syntax: { field: { $lte: value} }

$lte (page 752) selects the documents where the value of the field is less than or equal to (i.e. <=) the
specified value.

Consider the following example:

db.inventory.find({ qty: { $lte: 20 } })

This query will select all documents in the inventory collection where the qty field value is less than
or equal to 20.

Consider the following example which uses the $lt (page 752) operator with a field from an embedded
document:

db.inventory.update({ "carrier.fee": { $lte: 5 } }, { $set: { price: 9.99 } })

This update() (page 932) operation will set the price field value in the documents that contain the
embedded document carrier whose fee field value is less than or equal to 5.

See Also:

find() (page 910), update() (page 932), $set (page 770).

$max

$max
Specify a $max (page 752) value to specify the exclusive upper bound for a specific index in order to
constrain the results of find() (page 910). The mongo (page 984) shell provides the cursor.max()
(page 895) wrapper method:

752 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

db.collection.find({ <query> }).max({ field1: <max value>, ... fieldN: <max valueN> })

You can also specify the option with either of the two forms:

db.collection.find({ <query> })._addSpecial("$max", { field1: <max value1>, ... fieldN: <max valueN> })
db.collection.find({ $query: { <query> }, $max: { field1: <max value1>, ... fieldN: <max valueN> } })

The $max (page 752) specifies the upper bound for all keys of a specific index in order.

Consider the following operations on a collection named collection that has an index { age: 1
}:

db.collection.find({ <query> }).max({ age: 100 })

This operation limits the query to those documents where the field age is less than 100 using the index {
age: 1 }.

You can explicitly specify the corresponding index with cursor.hint() (page 894). Otherwise, Mon-
goDB selects the index using the fields in the indexBounds; however, if multiple indexes exist on same
fields with different sort orders, the selection of the index may be ambiguous.

Consider a collection named collection that has the following two indexes:

{ age: 1, type: -1 }
{ age: 1, type: 1 }

Without explicitly using cursor.hint() (page 894), MongoDB may select either index for the follow-
ing operation:

db.collection.find().max({ age: 50, type: ’B’ })

Use $max (page 752) alone or in conjunction with $min (page 754) to limit results to a specific range for
the same index, as in the following example:

db.collection.find().min({ age: 20 }).max({ age: 25 })

Note: Because cursor.max() (page 895) requires an index on a field, and forces the query to use
this index, you may prefer the $lt (page 752) operator for the query if possible. Consider the following
example:

db.collection.find({ _id: 7 }).max({ age: 25 })

The query uses the index on the age field, even if the index on _id may be better.

$maxDistance

$maxDistance
The $maxDistance (page 753) operator constrains the results of a geospatial $near (page 756) or
$nearSphere (page 757) query to the specified distance. The measuring units for the maximum distance
are determined by the coordinate system in use. For GeoJSON point object, specify the distance in meters,
not radians.

The 2d and 2dsphere geospatial indexes both support $maxDistance (page 753).

The following example query returns documents with location values that are 10 or fewer units from the
point [100 , 100].

60.1. Reference 753

MongoDB Documentation, Release 2.4.2

db.places.find({ loc : { $near : [100 , 100] ,
$maxDistance: 10 }

})

MongoDB orders the results by their distance from [100 , 100]. The operation returns the first 100
results, unless you modify the query with the cursor.limit() (page 894) method.

$maxScan

$maxScan
Constrains the query to only scan the specified number of documents when fulfilling the query. Use one
of the following forms:

db.collection.find({ <query> })._addSpecial("$maxScan" , <number>)
db.collection.find({ $query: { <query> }, $maxScan: <number> })

Use this modifier to prevent potentially long running queries from disrupting performance by scanning
through too much data.

$min

$min
Specify a $min (page 754) value to specify the inclusive lower bound for a specific index in order to
constrain the results of find() (page 910). The mongo (page 984) shell provides the cursor.min()
(page 896) wrapper method:

db.collection.find({ <query> }).min({ field1: <min value>, ... fieldN: <min valueN>})

You can also specify the option with either of the two forms:

db.collection.find({ <query> })._addSpecial("$min", { field1: <min value1>, ... fieldN: <min valueN> })
db.collection.find({ $query: { <query> }, $min: { field1: <min value1>, ... fieldN: <min valueN> } })

The $min (page 754) specifies the lower bound for all keys of a specific index in order.

Consider the following operations on a collection named collection that has an index { age: 1
}:

db.collection.find().min({ age: 20 })

These operations limit the query to those documents where the field age is at least 20 using the index {
age: 1 }.

You can explicitly specify the corresponding index with cursor.hint() (page 894). Otherwise, Mon-
goDB selects the index using the fields in the indexBounds; however, if multiple indexes exist on same
fields with different sort orders, the selection of the index may be ambiguous.

Consider a collection named collection that has the following two indexes:

{ age: 1, type: -1 }
{ age: 1, type: 1 }

Without explicitly using cursor.hint() (page 894), it is unclear which index the following operation
will select:

db.collection.find().min({ age: 20, type: ’C’ })

754 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

You can use $min (page 754) in conjunction with $max (page 752) to limit results to a specific range for
the same index, as in the following example:

db.collection.find().min({ age: 20 }).max({ age: 25 })

Note: Because cursor.min() (page 896) requires an index on a field, and forces the query to use
this index, you may prefer the $gte (page 749) operator for the query if possible. Consider the following
example:

db.collection.find({ _id: 7 }).min({ age: 25 })

The query will use the index on the age field, even if the index on _id may be better.

$mod

$mod
Syntax: { field: { $mod: [divisor, remainder]} }

$mod (page 755) selects the documents where the field value divided by the divisor has the specified
remainder.

Consider the following example:

db.inventory.find({ qty: { $mod: [4, 0] } })

This query will select all documents in the inventory collection where the qty field value modulo 4
equals 0, such as documents with qty value equal to 0 or 12.

In some cases, you can query using the $mod (page 755) operator rather than the more expensive $where
(page 777) operator. Consider the following example using the $mod (page 755) operator:

db.inventory.find({ qty: { $mod: [4, 0] } })

The above query is less expensive than the following query which uses the $where (page 777) operator:

db.inventory.find({ $where: "this.qty % 4 == 0" })

See Also:

find() (page 910), update() (page 932), $set (page 770).

$natural

$natural
Use the $natural (page 755) operator to use natural order for the results of a sort operation. Natural
order refers to the order of documents in the file on disk.

The $natural (page 755) operator uses the following syntax to return documents in the order they exist
on disk:

db.collection.sort({ $natural: 1 })

Use -1 to return documents in the reverse order as they occur on disk:

db.collection.sort({ $natural: -1 })

60.1. Reference 755

MongoDB Documentation, Release 2.4.2

See Also:

cursor.sort() (page 900)

$ne

$ne
Syntax: {field: {$ne: value} }

$ne (page 756) selects the documents where the value of the field is not equal (i.e. !=) to the specified
value. This includes documents that do not contain the field.

Consider the following example:

db.inventory.find({ qty: { $ne: 20 } })

This query will select all documents in the inventory collection where the qty field value does not
equal 20, including those documents that do not contain the qty field.

Consider the following example which uses the $ne (page 756) operator with a field from an embedded
document:

db.inventory.update({ "carrier.state": { $ne: "NY" } }, { $set: { qty: 20 } })

This update() (page 932) operation will set the qty field value in the documents that contains the
embedded document carrier whose state field value does not equal “NY”, or where the state field
or the carrier embedded document does not exist.

See Also:

find() (page 910), update() (page 932), $set (page 770).

$near

$near
Changed in version 2.4. The $near (page 756) operator specifies a point for which a geospatial query
returns the 100 closest documents. The query sorts the documents from nearest to farthest.

The $near (page 756) operator can query for a GeoJSON point or for a point defined by legacy coordinate
pairs.

The optional $maxDistance (page 753) operator limits a $near (page 756) query to return only those
documents that fall within a maximum distance of a point. If you query for a GeoJSON point, specify
$maxDistance (page 753) in meters. If you query for legacy coordinate pairs, specify $maxDistance
(page 753) in radians.

The $near (page 756) operator requires a geospatial index. For GeoJSON points, use a 2dsphere
index. For legacy coordinate pairs, use a 2d index.

For queries on GeoJSON data, use the following syntax:

db.<collection>.find({ <location field> :
{ $near :

{ $geometry :
{ type : "Point" ,
coordinates : [<longitude> , <latitude>] } },

$maxDistance : <distance in meters>
} })

756 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Important: Specify coordinates in this order: “longitude, latitude.”

The following example selects the 100 documents with coordinates nearest to [40 , 5] and limits
the maximum distance to 100 meters from the specified GeoJSON point:

db.places.find({ loc : { $near :
{ $geometry :

{ type : "Point" ,
coordinates: [40 , 5] } },

$maxDistance : 100
} })

For queries on legacy coordinate pairs, use the following syntax:

db.<collection>.find({ <location field> :
{ $near : [<x> , <y>] ,

$maxDistance: <distance>
} })

Important: If you use longitude and latitude, specify longitude first.

The following example selects the 100 documents with coordinates nearest to [40 , 5]:

db.places.find({ loc :
{ $near : [40 , 5] ,
$maxDistance : 10

} })

Note: You can further limit the number of results using cursor.limit() (page 894).

Specifying a batch size (i.e. batchSize() (page 891)) in conjunction with queries that use the $near
(page 756) is not defined. See SERVER-5236 for more information.

$nearSphere

$nearSphere
New in version 1.8. The $nearSphere (page 757) operator specifies a point for which a geospatial
query returns the 100 closest documents, sorted from nearest to farthest. MongoDB calculates distances
for $nearSphere (page 757) using spherical geometry.

The $nearSphere (page 757) operator queries for points defined by either GeoJSON objects or legacy
coordinate pairs.

The optional $maxDistance (page 753) operator limits a $nearSphere (page 757) query to return
only those documents that fall within a maximum distance of a point. If you use $maxDistance
(page 753) on GeoJSON points, the distance is measured in meters. If you use $maxDistance
(page 753) on legacy coordinate pairs, the distance is measured in radians.

The $nearSphere (page 757) operator requires a geospatial index. The 2dsphere and 2d indexes
both support $nearSphere (page 757). In a 2dsphere index, a grid coordinate is interpreted as a
GeoJSON point.

For queries on GeoJSON data, use the following syntax:

60.1. Reference 757

https://jira.mongodb.org/browse/SERVER-5236

MongoDB Documentation, Release 2.4.2

db.<collection>.find({ <location field> :
{ $nearSphere :

{ $geometry :
{ type : "Point" ,

coordinates : [<longitude> , <latitude>] } ,
$maxDistance : <distance in meters>

} } })

Important: If you use longitude and latitude, specify longitude first.

For queries on legacy coordinate pairs, use the following syntax:

db.<collection>.find({ <location field> :
{ $nearSphere: [<x> , <y>] ,

$maxDistance: <distance in radians>
} })

Important: If you use longitude and latitude, specify longitude first.

The following example selects the 100 documents with legacy coordinates pairs nearest to [40 , 5],
as calculated by spherical geometry:

db.places.find({ loc :
{ $nearSphere : [40 , 5]
$maxDistance : 10

} })

Changed in version 2.2.3: Applications can use this operator without having a geospatial index. However,
geospatial indexes support much faster queries than the unindexed equivalents. Before 2.2.3, a geospatial
index must exist on a field holding coordinates before using any of the geospatial query operators.

$nin

$nin
Syntax: { field: { $nin: [<value1>, <value2> ... <valueN>]} }

$nin (page 758) selects the documents where:

–the field value is not in the specified array or

–the field does not exist.

Consider the following query:

db.inventory.find({ qty: { $nin: [5, 15] } })

This query will select all documents in the inventory collection where the qty field value does not
equal 5 nor 15. The selected documents will include those documents that do not contain the qty field.

If the field holds an array, then the $nin (page 758) operator selects the documents whose field
holds an array with no element equal to a value in the specified array (e.g. <value1>, <value2>, etc.).

Consider the following query:

db.inventory.update({ tags: { $nin: ["appliances", "school"] } }, { $set: { sale: false } })

758 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

This update() (page 932) operation will set the sale field value in the inventory collection where
the tags field holds an array with no elements matching an element in the array ["appliances",
"school"] or where a document does not contain the tags field.

See Also:

find() (page 910), update() (page 932), $set (page 770).

$nor

$nor
Syntax: { $nor: [{ <expression1> }, { <expression2> }, ... {
<expressionN> }] }

$nor (page 759) performs a logical NOR operation on an array of two or more <expressions> and
selects the documents that fail all the <expressions> in the array.

Consider the following example:

db.inventory.find({ $nor: [{ price: 1.99 }, { qty: { $lt: 20 } }, { sale: true }] })

This query will select all documents in the inventory collection where:

–the price field value does not equal 1.99 and

–the qty field value is not less than 20 and

–the sale field value is not equal to true

including those documents that do not contain these field(s).

The exception in returning documents that do not contain the field in the $nor (page 759) expression is
when the $nor (page 759) operator is used with the $exists (page 745) operator.

Consider the following query which uses only the $nor (page 759) operator:

db.inventory.find({ $nor: [{ price: 1.99 }, { sale: true }] })

This query will return all documents that:

–contain the price field whose value is not equal to 1.99 and contain the sale field whose value is
not equal to true or

–contain the price field whose value is not equal to 1.99 but do not contain the sale field or

–do not contain the price field but contain the sale field whose value is not equal to true or

–do not contain the price field and do not contain the sale field

Compare that with the following query which uses the $nor (page 759) operator with the $exists
(page 745) operator:

db.inventory.find({ $nor: [{ price: 1.99 }, { price: { $exists: false } },
{ sale: true }, { sale: { $exists: false } }] })

This query will return all documents that:

–contain the price field whose value is not equal to 1.99 and contain the sale field whose value is
not equal to true

See Also:

find() (page 910), update() (page 932), $set (page 770), $exists (page 745).

60.1. Reference 759

MongoDB Documentation, Release 2.4.2

$not

$not
Syntax: { field: { $not: { <operator-expression> } } }

$not (page 760) performs a logical NOT operation on the specified <operator-expression> and
selects the documents that do not match the <operator-expression>. This includes documents that
do not contain the field.

Consider the following query:

db.inventory.find({ price: { $not: { $gt: 1.99 } } })

This query will select all documents in the inventory collection where:

–the price field value is less than or equal to 1.99 or

–the price field does not exist

{ $not: { $gt: 1.99 } } is different from the $lte (page 752) operator. { $lt: 1.99
} returns only the documents where price field exists and its value is less than or equal to 1.99.

Remember that the $not (page 760) operator only affects other operators and cannot check fields and
documents independently. So, use the $not (page 760) operator for logical disjunctions and the $ne
(page 756) operator to test the contents of fields directly.

Consider the following behaviors when using the $not (page 760) operator:

–The operation of the $not (page 760) operator is consistent with the behavior of other operators but
may yield unexpected results with some data types like arrays.

–The $not (page 760) operator does not support operations with the $regex (page 767) operator.
Instead use http://docs.mongodb.org/manual// or in your driver interfaces, use your lan-
guage’s regular expression capability to create regular expression objects.

Consider the following example which uses the pattern match expression
http://docs.mongodb.org/manual//:

db.inventory.find({ item: { $not: /^p.*/ } })

The query will select all documents in the inventory collection where the item field value does
not start with the letter p.

If you are using Python, you can write the above query with the PyMongo driver and Python’s
python:re.compile() method to compile a regular expression, as follows:

import re
for noMatch in db.inventory.find({ "item": { "$not": re.compile("^p.*") } }):

print noMatch

See Also:

find() (page 910), update() (page 932), $set (page 770), $gt (page 749), $regex (page 767),
PyMongo, driver.

$or

$or
New in version 1.6.Changed in version 2.0: You may nest $or (page 760) operations; however, these

760 Chapter 60. MongoDB Interface

http://api.mongodb.org/pythoncurrent

MongoDB Documentation, Release 2.4.2

expressions are not as efficiently optimized as top-level. Syntax: { $or: [{ <expression1>
}, { <expression2> }, ... , { <expressionN> }] }

The $or (page 760) operator performs a logical OR operation on an array of two or more
<expressions> and selects the documents that satisfy at least one of the <expressions>.

Consider the following query:

db.inventory.find({ price:1.99, $or: [{ qty: { $lt: 20 } }, { sale: true }] })

This query will select all documents in the inventory collection where:

–the price field value equals 1.99 and

–either the qty field value is less than 20 or the sale field value is true.

Consider the following example which uses the $or (page 760) operator to select fields from embedded
documents:

db.inventory.update({ $or: [{ price:10.99 }, { "carrier.state": "NY"}] }, { $set: { sale: true } })

This update() (page 932) operation will set the value of the sale field in the documents in the
inventory collection where:

–the price field value equals 10.99 or

–the carrier embedded document contains a field state whose value equals NY.

When using $or (page 760) with <expressions> that are equality checks for the value of the same
field, choose the $in (page 750) operator over the $or (page 760) operator.

Consider the query to select all documents in the inventory collection where:

–either price field value equals 1.99 or the sale field value equals true, and

–either qty field value equals 20 or qty field value equals 50,

The most effective query would be:

db.inventory.find ({ $or: [{ price: 1.99 }, { sale: true }], qty: { $in: [20, 50] } })

Consider the following behaviors when using the $or (page 760) operator:

–When using indexes with $or (page 760) queries, remember that each clause of an $or (page 760)
query will execute in parallel. These clauses can each use their own index. Consider the following
query:

db.inventory.find ({ $or: [{ price: 1.99 }, { sale: true }] })

For this query, you would create one index on price (db.inventory.ensureIndex({
price: 1 })) and another index on sale (db.inventory.ensureIndex({ sale:
1 })) rather than a compound index.

–Also, when using the $or (page 760) operator with the sort() (page 900) method in a query, the
query will not use the indexes on the $or (page 760) fields. Consider the following query which adds
a sort() (page 900) method to the above query:

db.inventory.find ({ $or: [{ price: 1.99 }, { sale: true }] }).sort({item:1})

This modified query will not use the index on price nor the index on sale.

–You cannot use the $or (page 760) with 2d geospatial queries (page 346).

60.1. Reference 761

MongoDB Documentation, Release 2.4.2

See Also:

find() (page 910), update() (page 932), $set (page 770), $and (page 741), sort() (page 900).

$orderby

$orderby
The $orderby (page 762) operator sorts the results of a query in ascending or descending order.

The mongo (page 984) shell provides the cursor.sort() (page 900) method:

db.collection.find().sort({ age: -1 })

You can also specify the option in either of the following forms:

db.collection.find()._addSpecial("$orderby", { age : -1 })
db.collection.find({ $query: {}, $orderby: { age : -1 } })

These examples return all documents in the collection named collection sorted by the age field in
descending order. Specify a value to $orderby (page 762) of negative one (e.g. -1, as above) to sort in
descending order or a positive value (e.g. 1) to sort in ascending order.

Unless you have a index for the specified key pattern, use $orderby (page 762) in conjunction with
$maxScan (page 754) and/or cursor.limit() (page 894) to avoid requiring MongoDB to perform a
large in-memory sort. The cursor.limit() (page 894) increases the speed and reduces the amount of
memory required to return this query by way of an optimized algorithm.

$polygon

$polygon
New in version 1.9. The $polygon (page 762) operator specifies a polygon for a geospatial
$geoWithin (page 747) query on legacy coordinate pairs. The query returns pairs that are within the
bounds of the polygon. The operator does not query for GeoJSON objects.

The $polygon (page 762) operator calculates distances using flat (planar) geometry.

The 2d geospatial index supports the $polygon (page 762) operator.

To define the polygon, specify an array of coordinate points. Use the following syntax:

{ <location field> : { $geoWithin : { $polygon : [[<x1> , <y1>] ,
[<x2> , <y2>] ,
[<x3> , <y3>]] } } }

Important: If you use longitude and latitude, specify longitude first.

The last point specified is always implicitly connected to the first. You can specify as many points, and
therefore sides, as you like.

The following query returns all documents that have coordinates that exist within the polygon defined by
[0 , 0], [3 , 6], and [6 , 0]:

db.places.find({ loc : { $geoWithin : { $polygon : [[0 , 0] ,
[3 , 6] ,
[6 , 0]] } } })

762 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Changed in version 2.2.3: Applications can use this operator without having a geospatial index. However,
geospatial indexes support much faster queries than the unindexed equivalents. Before 2.2.3, a geospatial
index must exist on a field holding coordinates before using any of the geospatial query operators.

$pop

$pop
The $pop (page 763) operator removes the first or last element of an array. Pass $pop (page 763) a value
of 1 to remove the last element in an array and a value of -1 to remove the first element of an array.
Consider the following syntax:

db.collection.update({field: value }, { $pop: { field: 1 } });

This operation removes the last item of the array in field in the document that matches the query state-
ment { field: value }. The following example removes the first item of the same array:

db.collection.update({field: value }, { $pop: { field: -1 } });

Be aware of the following $pop (page 763) behaviors:

–The $pop (page 763) operation fails if field is not an array.

–$pop (page 763) will successfully remove the last item in an array. field will then hold an empty
array.

New in version 1.1.

$ (query)

$
Syntax: { "<array>.$" : value }

The positional $ (page 763) operator identifies an element in an array field to update without explicitly
specifying the position of the element in the array. To project, or return, an array element from a read
operation, see the $ (page 781) projection operator.

When used with the update() (page 932) method,

–the positional $ (page 763) operator acts as a placeholder for the first element that matches the query
document (page 184), and

–the array field must appear as part of the query document.

db.collection.update({ <array>: value ... }, { <update operator>: { "<array>.$" : value } })

Consider a collection students with the following documents:

{ "_id" : 1, "grades" : [80, 85, 90] }
{ "_id" : 2, "grades" : [88, 90, 92] }
{ "_id" : 3, "grades" : [85, 100, 90] }

To update 80 to 82 in the grades array in the first document, use the positional $ (page 763) operator if
you do not know the position of the element in the array:

db.students.update({ _id: 1, grades: 80 }, { $set: { "grades.$" : 82 } })

Remember that the positional $ (page 763) operator acts as a placeholder for the first match of the update
query document (page 184).

60.1. Reference 763

MongoDB Documentation, Release 2.4.2

The positional $ (page 763) operator facilitates updates to arrays that contain embedded documents. Use
the positional $ (page 763) operator to access the fields in the embedded documents with the dot notation
(page 183) on the $ (page 763) operator.

db.collection.update({ <query selector> }, { <update operator>: { "array.$.field" : value } })

Consider the following document in the students collection whose grades field value is an array of
embedded documents:

{ "_id" : 4, "grades" : [{ grade: 80, mean: 75, std: 8 },
{ grade: 85, mean: 90, std: 5 },
{ grade: 90, mean: 85, std: 3 }] }

Use the positional $ (page 763) operator to update the value of the std field in the embedded document
with the grade of 85:

db.students.update({ _id: 4, "grades.grade": 85 }, { $set: { "grades.$.std" : 6 } })

Note:

–Do not use the positional operator $ (page 763) with upsert operations because inserts will use the $
as a field name in the inserted document.

–When used with the $unset (page 777) operator, the positional $ (page 763) operator does not
remove the matching element from the array but rather sets it to null.

See Also:

update() (page 932), $set (page 770) and $unset (page 777)

$pull

$pull
The $pull (page 764) operator removes all instances of a value from an existing array. Consider the
following example:

db.collection.update({ field: value }, { $pull: { field: value1 } });

$pull (page 764) removes the value value1 from the array in field, in the document that matches
the query statement { field: value } in collection. If value1 existed multiple times in the
field array, $pull (page 764) would remove all instances of value1 in this array.

$pullAll

$pullAll
The $pullAll (page 764) operator removes multiple values from an existing array. $pullAll
(page 764) provides the inverse operation of the $pushAll (page 766) operator. Consider the follow-
ing example:

db.collection.update({ field: value }, { $pullAll: { field1: [value1, value2, value3] } });

Here, $pullAll (page 764) removes [value1, value2, value3] from the array in field1,
in the document that matches the query statement { field: value } in collection.

764 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

$push

$push
The $push (page 765) operator appends a specified value to an array.

db.collection.update(<query>,
{ $push: { <field>: <value> } }

)

The following example appends 89 to the scores array for the first document where the name field
equals joe:

db.students.update(
{ name: "joe" },
{ $push: { scores: 89 } }

)

Note:

–If the field is absent in the document to update, $push (page 765) adds the array field with the value
as its element.

–If the field is not an array, the operation will fail.

–If the value is an array, $push (page 765) appends the whole array as a single element. To add each
element of the value separately, use $push (page 765) with the $each (page 744) modifier.

The following example appends each element of [90, 92, 85] to the scores array for the
document where the name field equals joe:

db.students.update(
{ name: "joe" },
{ $push: { scores: { $each: [90, 92, 85] } } }

)

Changed in version 2.4: MongoDB adds support for the $each (page 744) modifier to the $push
(page 765) operator. Before 2.4, use $pushAll (page 766) for similar functionality.

Changed in version 2.4: You can use the $push (page 765) operator with the following modifiers:

–$each (page 744) appends multiple values to the array field,

–$slice (page 772), which is only available with $each (page 744), limits the number of array
elements, and

–$sort (page 773), which is only available with $each (page 744), orders elements of the array.
$sort (page 773) can only order array elements that are documents.

The following example uses:

–the $each (page 744) modifier to append documents to the quizzes array,

–the $sort (page 773) modifier to sort all the elements of the modified quizzes array by the as-
cending score field, and

–the $slice (page 772) modifier to keep only the last five sorted elements of the quizzes array.

db.students.update({ name: "joe" },
{ $push: { quizzes: { $each: [{ id: 3, score: 8 },

{ id: 4, score: 7 },
{ id: 5, score: 6 }],

60.1. Reference 765

MongoDB Documentation, Release 2.4.2

$sort: { score: 1 },
$slice: -5

}
}

}
)

$pushAll

$pushAll
Deprecated since version 2.4: Use the $push (page 765) operator with $each (page 744) instead. The
$pushAll (page 766) operator is similar to the $push (page 765) but adds the ability to append several
values to an array at once.

db.collection.update({ field: value }, { $pushAll: { field1: [value1, value2, value3] } });

Here, $pushAll (page 766) appends the values in [value1, value2, value3] to the array in
field1 in the document matched by the statement { field: value } in collection.

If you specify a single value, $pushAll (page 766) will behave as $push (page 765).

$query

$query
The $query (page 766) operator provides an interface to describe queries. Consider the following oper-
ation:

db.collection.find({ $query: { age : 25 } })

This is equivalent to the following db.collection.find() (page 910) method that may be more
familiar to you:

db.collection.find({ age : 25 })

These operations return only those documents in the collection named collection where the age field
equals 25.

Note: Do not mix query forms. If you use the $query (page 766) format, do not append cursor methods
(page 882) to the find() (page 910). To modify the query use the meta-query operators (page 881), such
as $explain (page 746).

Therefore, the following two operations are equivalent:

db.collection.find({ $query: { age : 25 }, $explain: true })
db.collection.find({ age : 25 }).explain()

See Also:

For more information about queries in MongoDB see Read (page 203), Read Operations (page 161),
db.collection.find() (page 910), and Getting Started with MongoDB (page 21).

766 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

$regex

$regex
The $regex (page 767) operator provides regular expression capabilities for pattern matching strings in
queries. MongoDB uses Perl compatible regular expressions (i.e. “PCRE.”)

You can specify regular expressions using regular expression objects or using the $regex (page 767)
operator. The following examples are equivalent:

db.collection.find({ field: /acme.*corp/i });
db.collection.find({ field: { $regex: ’acme.*corp’, $options: ’i’ } });

These expressions match all documents in collection where the value of field matches the case-
insensitive regular expression acme.*corp.

$regex (page 767) uses “Perl Compatible Regular Expressions” (PCRE) as the matching engine.

$options
$regex (page 767) provides four option flags:

–i toggles case insensitivity, and allows all letters in the pattern to match upper and lower cases.
–m toggles multiline regular expression. Without this option, all regular expression match within

one line.

If there are no newline characters (e.g. \n) or no start/end of line construct, the m option has no
effect.

–x toggles an “extended” capability. When set, $regex (page 767) ignores all white space char-
acters unless escaped or included in a character class.

Additionally, it ignores characters between an un-escaped # character and the next new line, so
that you may include comments in complicated patterns. This only applies to data characters;
white space characters may never appear within special character sequences in a pattern.

The x option does not affect the handling of the VT character (i.e. code 11.)
New in version 1.9.0.

–s allows the dot (e.g. .) character to match all characters including newline characters.
$regex (page 767) only provides the i and m options for the native JavaScript regular expression
objects (e.g. http://docs.mongodb.org/manual/acme.*corp/i). To use x and s you
must use the “$regex (page 767)” operator with the “$options (page 767)” syntax.

To combine a regular expression match with other operators, you need to use the “$regex (page 767)”
operator. For example:

db.collection.find({ field: { $regex: /acme.*corp/i, $nin: [’acmeblahcorp’] });

This expression returns all instances of field in collection that match the case insensitive regular
expression acme.*corp that don’t match acmeblahcorp.

$regex (page 767) can only use an index efficiently when the regular expres-
sion has an anchor for the beginning (i.e. ^) of a string and is a case-
sensitive match. Additionally, while http://docs.mongodb.org/manual/^a/,
http://docs.mongodb.org/manual/^a.*/, and http://docs.mongodb.org/manual/^a.*$/
match equivalent strings, they have different performance characteristics. All of these expressions use
an index if an appropriate index exists; however, http://docs.mongodb.org/manual/^a.*/,
and http://docs.mongodb.org/manual/^a.*$/ are slower.
http://docs.mongodb.org/manual/^a/ can stop scanning after matching the prefix.

60.1. Reference 767

MongoDB Documentation, Release 2.4.2

$rename

$rename
New in version 1.7.2. Syntax: {$rename: { <old name1>: <new name1>, <old
name2>: <new name2>, ... } }

The $rename (page 768) operator updates the name of a field. The new field name must differ from the
existing field name.

Consider the following example:

db.students.update({ _id: 1 }, { $rename: { ’nickname’: ’alias’, ’cell’: ’mobile’ } })

This operation renames the field nickname to alias, and the field cell to mobile.

If the document already has a field with the new field name, the $rename (page 768) operator removes
that field and renames the field with the old field name to the new field name.

The $rename (page 768) operator will expand arrays and sub-documents to find a match for field names.
When renaming a field in a sub-document to another sub-document or to a regular field, the sub-document
itself remains.

Consider the following examples involving the sub-document of the following document:

{ "_id": 1,
"alias": ["The American Cincinnatus", "The American Fabius"],
"mobile": "555-555-5555",
"nmae": { "first" : "george", "last" : "washington" }

}

–To rename a sub-document, call the $rename (page 768) operator with the name of the sub-document
as you would any other field:

db.students.update({ _id: 1 }, { $rename: { "nmae": "name" } })

This operation renames the sub-document nmae to name:

{ "_id": 1,
"alias": ["The American Cincinnatus", "The American Fabius"],
"mobile": "555-555-5555",
"name": { "first" : "george", "last" : "washington" }

}

–To rename a field within a sub-document, call the $rename (page 768) operator using the dot nota-
tion (page 183) to refer to the field. Include the name of the sub-document in the new field name to
ensure the field remains in the sub-document:

db.students.update({ _id: 1 }, { $rename: { "name.first": "name.fname" } })

This operation renames the sub-document field first to fname:

{ "_id" : 1,
"alias" : ["The American Cincinnatus", "The American Fabius"],
"mobile" : "555-555-5555",
"name" : { "fname" : "george", "last" : "washington" }

}

768 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

–To rename a field within a sub-document and move it to another sub-document, call the $rename
(page 768) operator using the dot notation (page 183) to refer to the field. Include the name of the
new sub-document in the new name:

db.students.update({ _id: 1 }, { $rename: { "name.last": "contact.lname" } })

This operation renames the sub-document field last to lname and moves it to the sub-document
contact:

{ "_id" : 1,
"alias" : ["The American Cincinnatus", "The American Fabius"],
"contact" : { "lname" : "washington" },
"mobile" : "555-555-5555",
"name" : { "fname" : "george" }

}

If the new field name does not include a sub-document name, the field moves out of the subdocument
and becomes a regular document field.

Consider the following behavior when the specified old field name does not exist:

–When renaming a single field and the existing field name refers to a non-existing field, the $rename
(page 768) operator does nothing, as in the following:

db.students.update({ _id: 1 }, { $rename: { ’wife’: ’spouse’ } })

This operation does nothing because there is no field named wife.

–When renaming multiple fields and all of the old field names refer to non-existing fields, the $rename
(page 768) operator does nothing, as in the following:

db.students.update({ _id: 1 }, { $rename: { ’wife’: ’spouse’,
’vice’: ’vp’,
’office’: ’term’ } })

This operation does nothing because there are no fields named wife, vice, and office.

–When renaming multiple fields and some but not all old field names refer to non-existing fields, the
$rename (page 768) operator performs the following operations: Changed in version 2.2.

*Renames the fields that exist to the specified new field names.

*Ignores the non-existing fields.

Consider the following query that renames both an existing field mobile and a non-existing field
wife. The field named wife does not exist and $rename (page 768) sets the field to a name that
already exists alias.

db.students.update({ _id: 1 }, { $rename: { ’wife’: ’alias’,
’mobile’: ’cell’ } })

This operation renames the mobile field to cell, and has no other impact action occurs.

{ "_id" : 1,
"alias" : ["The American Cincinnatus", "The American Fabius"],
"cell" : "555-555-5555",
"name" : { "lname" : "washington" },

60.1. Reference 769

MongoDB Documentation, Release 2.4.2

"places" : { "d" : "Mt Vernon", "b" : "Colonial Beach" }
}

Note: Before version 2.2, when renaming multiple fields and only some (but not all) old field names
refer to non-existing fields:

*For the fields with the old names that do exist, the $rename (page 768) operator renames these
fields to the specified new field names.

*For the fields with the old names that do not exist:

·if no field exists with the new field name, the $rename (page 768) operator does nothing.

·if fields already exist with the new field names, the $rename (page 768) operator drops these
fields.

Consider the following operation that renames both the field mobile, which exists, and the field
wife, which does not exist. The operation tries to set the field named wife to alias, which is the
name of an existing field:

db.students.update({ _id: 1 }, { $rename: { ’wife’: ’alias’, ’mobile’: ’cell’ } })

Before 2.2, the operation renames the field mobile to cell and drops the alias field even though
the field wife does not exist:

{ "_id" : 1,
"cell" : "555-555-5555",
"name" : { "lname" : "washington" },
"places" : { "d" : "Mt Vernon", "b" : "Colonial Beach" }

}

$returnKey

$returnKey
Only return the index key or keys for the results of the query. If $returnKey (page 770) is set to true
and the query does not use an index to perform the read operation, the returned documents will not contain
any fields. Use one of the following forms:

db.collection.find({ <query> })._addSpecial("$returnKey", true)
db.collection.find({ $query: { <query> }, $returnKey: true })

$set

$set
Use the $set (page 770) operator to set a particular value. The $set (page 770) operator requires the
following syntax:

db.collection.update({ field: value1 }, { $set: { field1: value2 } });

This statement updates in the document in collection where field matches value1 by replacing
the value of the field field1 with value2. This operator will add the specified field or fields if they do
not exist in this document or replace the existing value of the specified field(s) if they already exist.

770 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

$setOnInsert

$setOnInsert
New in version 2.4. The $setOnInsert (page 771) operator assigns values to fields during an upsert
(page 932) only when using the upsert option to the update() (page 932) operation performs an insert.

db.collection.update(<query>,
{ $setOnInsert: { <field1>: <value1>, ... } },
{ upsert: true }

)

Example

A collection named products contains no documents.

Then, the following upsert (page 932) operation performs an insert and applies the $setOnInsert
(page 771) to set the field defaultQty to 100:

db.products.update(
{ _id: 1 },
{ $setOnInsert: { defaultQty: 100 } },
{ upsert: true }

)

The products collection contains the newly-inserted document:

{ "_id" : 1, "defaultQty" : 100 }

Note: The $setOnInsert (page 771) operator only affects update() (page 932) operations with the
upsert flag that perform an insert (page 195).

If the update() (page 932) has the upsert flag and performs an update (page 213), $setOnInsert
(page 771) has no effect.

Example

A collection named products has the following document:

{ "_id" : 1, "defaultQty" : 100 }

The following update() (page 932) with the upsert flag operation performs an update:

db.products.update(
{ _id: 1 },
{ $setOnInsert: { defaultQty: 500, inStock: true },
$set: { item: "apple" } },

{ upsert: true }
)

Because the update() (page 932) with upsert operation only performs an update, MongoDB ignores the
$setOnInsert (page 771) operation and only applies the $set (page 770) operation.

The products collection now contains the following modified document:

{ "_id" : 1, "defaultQty" : 100, "item" : "apple" }

60.1. Reference 771

MongoDB Documentation, Release 2.4.2

$showDiskLoc

$showDiskLoc
$showDiskLoc (page 772) option adds a field $diskLoc to the returned documents. The $diskLoc
field contains the disk location information.

The mongo (page 984) shell provides the cursor.showDiskLoc() (page 899) method:

db.collection.find().showDiskLoc()

You can also specify the option in either of the following forms:

db.collection.find({ <query> })._addSpecial("$showDiskLoc" , true)
db.collection.find({ $query: { <query> }, $showDiskLoc: true })

$size

$size
The $size (page 772) operator matches any array with the number of elements specified by the argument.
For example:

db.collection.find({ field: { $size: 2 } });

returns all documents in collection where field is an array with 2 elements. For instance, the above
expression will return { field: [red, green] } and { field: [apple, lime]
} but not { field: fruit } or { field: [orange, lemon, grapefruit] }. To
match fields with only one element within an array use $size (page 772) with a value of 1, as follows:

db.collection.find({ field: { $size: 1 } });

$size (page 772) does not accept ranges of values. To select documents based on fields with different
numbers of elements, create a counter field that you increment when you add elements to a field.

Queries cannot use indexes for the $size (page 772) portion of a query, although the other portions of a
query can use indexes if applicable.

$slice

$slice
New in version 2.4. The $slice (page 772) modifier limits the number of array elements during a $push
(page 765) operation. To project, or return, a specified number of array elements from a read operation,
see the $slice (page 782) projection operator instead.

To use the $slice (page 772) modifier, it must appear with the $each (page 744) modifier, and the
$each (page 744) modifier must be the first modifier for the $push (page 765) operation.

db.collection.update(<query>,
{ $push: {

<field>: {
$each: [<value1>, <value2>, ...],
$slice: <num>

}
}

}
)

The <num> is either a negative number or zero:

772 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

–If <num> is negative, the array <field> contains only the last <num> elements.

–If <num> is zero, the array <field> is an empty array.

db.students.update({ _id: 2 },
{ $push: { grades: {

$each: [80, 78, 86],
$slice: -5

}
}

}
)

$snapshot

$snapshot
The $snapshot (page 773) operator prevents the cursor from returning a document more than once
because an intervening write operation results in a move of the document.

Even in snapshot mode, objects inserted or deleted during the lifetime of the cursor may or may not be
returned.

The mongo (page 984) shell provides the cursor.snapshot() (page 899) method:

db.collection.find().snapshot()

You can also specify the option in either of the following forms:

db.collection.find()._addSpecial("$snapshot", true)
db.collection.find({ $query: {}, $snapshot: true })

The $snapshot (page 773) operator traverses the index on the _id field 1.

Warning:
–You cannot use $snapshot (page 773) with sharded collections.
–Do not use $snapshot (page 773) with $hint (page 750) or $orderby (page 762) (or the
corresponding cursor.hint() (page 894) and cursor.sort() (page 900) methods.)

$sort

$sort
New in version 2.4. The $sort (page 773) modifier orders the elements of an array during a $push
(page 765) operation. The elements of the array must be documents.

$sort (page 773) modifies $push (page 765) updates that use the $each (page 744) and $slice
(page 772) modifiers, where $each (page 744) is the first modifier for the $push (page 765) operation.

db.collection.update(<query>,
{ $push: {

<field>: {
$each: [<document1>,

<document2>,
...

],
$slice: <num>,

1 You can achieve the $snapshot (page 773) isolation behavior using any unique index on invariable fields.

60.1. Reference 773

MongoDB Documentation, Release 2.4.2

$sort: <sort document>,
}

}
}

)

Important: The <sort document> only accesses the fields from the elements in the array and does
not refer to the array <field>.

Consider the following example where the collection students contain the following document:

{ "_id": 3,
"name": "joe",
"quizzes": [

{ "id" : 1, "score" : 6 },
{ "id" : 2, "score" : 9 }

]
}

The following update appends additional documents to the quizzes array, sorts all the elements of the
array by ascending score field, and slices the array to keep the last five elements:

db.students.update({ name: "joe" },
{ $push: { quizzes: { $each: [{ id: 3, score: 8 },

{ id: 4, score: 7 },
{ id: 5, score: 6 }],

$sort: { score: 1 },
$slice: -5

}
}

}
)

After the update, the array elements are in order of ascending score field.:

{
"_id" : 3,
"name" : "joe",
"quizzes" : [

{ "id" : 1, "score" : 6 },
{ "id" : 5, "score" : 6 },
{ "id" : 4, "score" : 7 },
{ "id" : 3, "score" : 8 },
{ "id" : 2, "score" : 9 }

]
}

$type

$type
Syntax: { field: { $type: <BSON type> } }

$type (page 774) selects the documents where the value of the field is the specified BSON type.

Consider the following example:

774 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

db.inventory.find({ price: { $type : 1 } })

This query will select all documents in the inventory collection where the price field value is a
Double.

If the field holds an array, the $type (page 774) operator performs the type check against the array
elements and not the field.

Consider the following example where the tags field holds an array:

db.inventory.find({ tags: { $type : 4 } })

This query will select all documents in the inventory collection where the tags array contains an
element that is itself an array.

If instead you want to determine whether the tags field is an array type, use the $where (page 777)
operator:

db.inventory.find({ $where : "Array.isArray(this.tags)" })

See the SERVER-1475 for more information about the array type.

Refer to the following table for the available BSON types and their corresponding numbers.

Type Number
Double 1
String 2
Object 3
Array 4
Binary data 5
Object id 7
Boolean 8
Date 9
Null 10
Regular Expression 11
JavaScript 13
Symbol 14
JavaScript (with scope) 15
32-bit integer 16
Timestamp 17
64-bit integer 18
Min key 255
Max key 127

MinKey and MaxKey compare less than and greater than all other possible BSON element values, respec-
tively, and exist primarily for internal use.

Note: To query if a field value is a MinKey, you must use the $type (page 774) with -1 as in the
following example:

db.collection.find({ field: { $type: -1 } })

Example

Consider the following example operation sequence that demonstrates both type comparison and the spe-
cial MinKey and MaxKey values:

60.1. Reference 775

https://jira.mongodb.org/browse/SERVER-1475

MongoDB Documentation, Release 2.4.2

db.test.insert({x : 3});
db.test.insert({x : 2.9});
db.test.insert({x : new Date()});
db.test.insert({x : true });
db.test.insert({x : MaxKey })
db.test.insert({x : MinKey })

db.test.find().sort({x:1})
{ "_id" : ObjectId("4b04094b7c65b846e2090112"), "x" : { $minKey : 1 } }
{ "_id" : ObjectId("4b03155dce8de6586fb002c7"), "x" : 2.9 }
{ "_id" : ObjectId("4b03154cce8de6586fb002c6"), "x" : 3 }
{ "_id" : ObjectId("4b031566ce8de6586fb002c9"), "x" : true }
{ "_id" : ObjectId("4b031563ce8de6586fb002c8"), "x" : "Tue Jul 25 2012 18:42:03 GMT-0500 (EST)" }
{ "_id" : ObjectId("4b0409487c65b846e2090111"), "x" : { $maxKey : 1 } }

To query for the minimum value of a shard key of a sharded cluster, use the following operation when
connected to the mongos (page 981):

use config
db.chunks.find({ "min.shardKey": { $type: -1 } })

Warning: Storing values of the different types in the same field in a collection is strongly discouraged.

See Also:

find() (page 910), insert() (page 920), $where (page 777), BSON, shard key, sharded cluster .

$uniqueDocs

$uniqueDocs
New in version 2.0. The $uniqueDocs (page 776) operator returns a document only once for a geospa-
tial query if the document matches the query multiple times. A document might match a query multiple
times if the documents contains multiple coordinate values.

You can use $uniqueDocs (page 776) only with the $geoWithin (page 747) and $geoWithin
(page 747) operators. The 2d geospatial index supports $uniqueDocs (page 776).

Example

Given a collection of addresses with documents in the following form:

{ addrs : [{ name : "H" , loc : [55.5 , 42.3] } , { name : "W" , loc : [32.3 , 44.2] }] }

The following query would return the same document multiple times:

db.list.find({ addrs.loc : { $geoWithin : { $box : [[0 , 0] , [100 , 100]] } } })

The following query would return each matching document only once:

db.list.find({ addrs.loc : { $geoWithin : { $box : [[0 , 0] , [100 , 100]], $uniqueDocs: true } } })

Note: If you specify a value of false for $uniqueDocs (page 776), MongoDB will return multiple
instances of a single document.

776 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

$unset

$unset
The $unset (page 777) operator deletes a particular field. Consider the following example:

db.collection.update({ field: value1 }, { $unset: { field1: "" } });

The above example deletes field1 in collection from documents where field has a value of
value1. The value of the field in the $unset (page 777) statement (i.e. "" above) does not impact the
operation.

If documents match the initial query (e.g. { field: value1 } above) but do not have the field
specified in the $unset (page 777) operation (e.g. field1), then the statement has no effect on the
document.

$where

$where
Use the $where (page 777) operator to pass either a string containing a JavaScript expression or a full
JavaScript function to the query system. The $where (page 777) provides greater flexibility, but requires
that the database processes the JavaScript expression or function for each document in the collection.
Reference the document in the JavaScript expression or function using either this or obj .

Warning:
–Do not write to the database within the $where (page 777) JavaScript function.
–$where (page 777) evaluates JavaScript and cannot take advantage of indexes. Therefore, query

performance improves when you express your query using the standard MongoDB operators
(e.g., $gt (page 749), $in (page 750)).

–In general, you should use $where (page 777) only when you can’t express your query using
another operator. If you must use $where (page 777), try to include at least one other standard
query operator to filter the result set. Using $where (page 777) alone requires a table scan.

Consider the following examples:

db.myCollection.find({ $where: "this.credits == this.debits" });
db.myCollection.find({ $where: "obj.credits == obj.debits" });

db.myCollection.find({ $where: function() { return (this.credits == this.debits) } });
db.myCollection.find({ $where: function() { return obj.credits == obj.debits; } });

Additionally, if the query consists only of the $where (page 777) operator, you can pass in just the
JavaScript expression or JavaScript functions, as in the following examples:

db.myCollection.find("this.credits == this.debits || this.credits > this.debits");

db.myCollection.find(function() { return (this.credits == this.debits || this.credits > this.debits) });

You can include both the standard MongoDB operators and the $where (page 777) operator in your query,
as in the following examples:

db.myCollection.find({ active: true, $where: "this.credits - this.debits < 0" });
db.myCollection.find({ active: true, $where: function() { return obj.credits - obj.debits < 0; } });

Using normal non-$where (page 777) query statements provides the following performance advantages:

60.1. Reference 777

MongoDB Documentation, Release 2.4.2

–MongoDB will evaluate non-$where (page 777) components of query before $where (page 777)
statements. If the non-$where (page 777) statements match no documents, MongoDB will not
perform any query evaluation using $where (page 777).

–The non-$where (page 777) query statements may use an index.

Note: Changed in version 2.4. In MongoDB 2.4, map-reduce operations (page 851), the group
(page 840) command, and $where (page 777) operator expressions cannot access certain global functions
or properties, such as db, that are available in the mongo (page 984) shell.

When upgrading to MongoDB 2.4, you will need to refactor your code if your map-reduce
operations (page 851), group (page 840) commands, or $where (page 777) operator expressions
include any global shell functions or properties that are no longer available, such as db.

The following shell functions and properties are available to map-reduce operations (page 851),
the group (page 840) command, and $where (page 777) operator expressions in MongoDB 2.4:

Available Properties Available Functions

args

MaxKey

MinKey

assert()

BinData()

DBPointer()

DBRef()

doassert()

emit()

gc()

HexData()

hex_md5()

isNumber()

isObject()

ISODate()

isString()

Map()

MD5()

NumberInt()

NumberLong()

ObjectId()

print()

sleep()

Timestamp()

UUID()

version()

• Projection operators:

$elemMatch (projection)

See Also:

$elemMatch (query) (page 745)

$elemMatch
New in version 2.2. The $elemMatch (page 778) projection operator limits the contents of an array
field that is included in the query results to contain only the array element that matches the $elemMatch
(page 778) condition.

Note:

–The elements of the array are documents.

–If multiple elements match the $elemMatch (page 778) condition, the operator returns the first
matching element in the array.

778 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

–The $elemMatch (page 778) projection operator is similar to the positional $ (page 781) projection
operator.

The examples on the $elemMatch (page 778) projection operator assumes a collection school with
the following documents:

{
_id: 1,
zipcode: 63109,
students: [

{ name: "john", school: 102, age: 10 },
{ name: "jess", school: 102, age: 11 },
{ name: "jeff", school: 108, age: 15 }

]
}
{
_id: 2,
zipcode: 63110,
students: [

{ name: "ajax", school: 100, age: 7 },
{ name: "achilles", school: 100, age: 8 },

]
}

{
_id: 3,
zipcode: 63109,
students: [

{ name: "ajax", school: 100, age: 7 },
{ name: "achilles", school: 100, age: 8 },

]
}

{
_id: 4,
zipcode: 63109,
students: [

{ name: "barney", school: 102, age: 7 },
]

}

Example

The following find() (page 910) operation queries for all documents where the value of the zipcode
field is 63109. The $elemMatch (page 778) projection returns only the first matching element of the
students array where the school field has a value of 102:

db.schools.find({ zipcode: 63109 },
{ students: { $elemMatch: { school: 102 } } })

The operation returns the following documents:

{ "_id" : 1, "students" : [{ "name" : "john", "school" : 102, "age" : 10 }] }
{ "_id" : 3 }
{ "_id" : 4, "students" : [{ "name" : "barney", "school" : 102, "age" : 7 }] }

–For the document with _id equal to 1, the students array contains multiple elements with the
school field equal to 102. However, the $elemMatch (page 778) projection returns only the first

60.1. Reference 779

MongoDB Documentation, Release 2.4.2

matching element from the array.

–The document with _id equal to 3 does not contain the students field in the result since no element
in its students array matched the $elemMatch (page 778) condition.

The $elemMatch (page 778) projection can specify criteria on multiple fields:

Example

The following find() (page 910) operation queries for all documents where the value of the zipcode
field is 63109. The projection includes the first matching element of the students array where the
school field has a value of 102 and the age field is greater than 10:

db.schools.find({ zipcode: 63109 },
{ students: { $elemMatch: { school: 102, age: { $gt: 10} } } })

The operation returns the three documents that have zipcode equal to 63109:

{ "_id" : 1, "students" : [{ "name" : "jess", "school" : 102, "age" : 11 }] }
{ "_id" : 3 }
{ "_id" : 4 }

Documents with _id equal to 3 and _id equal to 4 do not contain the students field since no element
matched the $elemMatch (page 778) criteria.

When the find() (page 910) method includes a sort() (page 900), the find() (page 910) method
applies the sort() (page 900) to order the matching documents before it applies the projection.

If an array field contains multiple documents with the same field name and the find() (page 910) method
includes a sort() (page 900) on that repeating field, the returned documents may not reflect the sort
order because the sort() (page 900) was applied to the elements of the array before the $elemMatch
(page 778) projection.

Example

The following query includes a sort() (page 900) to order by descending students.age field:

db.schools.find(
{ zipcode: 63109 },
{ students: { $elemMatch: { school: 102 } } }

).sort({ "students.age": -1 })

The operation applies the sort() (page 900) to order the documents that have the field zipcode equal
to 63109 and then applies the projection. The operation returns the three documents in the following
order:

{ "_id" : 1, "students" : [{ "name" : "john", "school" : 102, "age" : 10 }] }
{ "_id" : 3 }
{ "_id" : 4, "students" : [{ "name" : "barney", "school" : 102, "age" : 7 }] }

See Also:

$ (projection) (page 781) operator

780 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

$ (projection)

$
The positional $ (page 781) operator limits the contents of the <array> field that is included in the query
results to contain the first matching element. To specify an array element to update, see the positional $
operator for updates (page 763).

Used in the projection document of the find() (page 910) method or the findOne() (page 914)
method:

–The $ (page 781) projection operator limits the content of the <array> field to the first element that
matches the query document (page 162).

–The <array> field must appear in the query document (page 162)

db.collection.find({ <array>: <value> ... },
{ "<array>.$": 1 })

db.collection.find({ <array.field>: <value> ...},
{ "<array>.$": 1 })

The <value> can be documents that contains query operator expressions (page 737).

–Only one positional $ (page 781) operator can appear in the projection document.

–Only one array field can appear in the query document (page 162); i.e. the following query is incor-
rect:

db.collection.find({ <array>: <value>, <someOtherArray>: <value2> },
{ "<array>.$": 1 })

Example

A collection students contains the following documents:

{ "_id" : 1, "semester" : 1, "grades" : [70, 87, 90] }
{ "_id" : 2, "semester" : 1, "grades" : [90, 88, 92] }
{ "_id" : 3, "semester" : 1, "grades" : [85, 100, 90] }
{ "_id" : 4, "semester" : 2, "grades" : [79, 85, 80] }
{ "_id" : 5, "semester" : 2, "grades" : [88, 88, 92] }
{ "_id" : 6, "semester" : 2, "grades" : [95, 90, 96] }

In the following query, the projection { "grades.$": 1 } returns only the first element greater than
or equal to 85 for the grades field.

db.students.find({ semester: 1, grades: { $gte: 85 } },
{ "grades.$": 1 })

The operation returns the following documents:

{ "_id" : 1, "grades" : [87] }
{ "_id" : 2, "grades" : [90] }
{ "_id" : 3, "grades" : [85] }

Although the array field grades may contain multiple elements that are greater than or equal to 85, the
$ (page 781) projection operator returns only the first matching element from the array.

60.1. Reference 781

MongoDB Documentation, Release 2.4.2

Important: When the find() (page 910) method includes a sort() (page 900), the find()
(page 910) method applies the sort() (page 900) to order the matching documents before it applies
the positional $ (page 781) projection operator.

If an array field contains multiple documents with the same field name and the find() (page 910) method
includes a sort() (page 900) on that repeating field, the returned documents may not reflect the sort order
because the sort was applied to the elements of the array before the $ (page 781) projection operator.

Example

A students collection contains the following documents where the grades field is an array of docu-
ments; each document contain the three field names grade, mean, and std:

{ "_id" : 7, semester: 3, "grades" : [{ grade: 80, mean: 75, std: 8 },
{ grade: 85, mean: 90, std: 5 },
{ grade: 90, mean: 85, std: 3 }] }

{ "_id" : 8, semester: 3, "grades" : [{ grade: 92, mean: 88, std: 8 },
{ grade: 78, mean: 90, std: 5 },
{ grade: 88, mean: 85, std: 3 }] }

In the following query, the projection { "grades.$": 1 } returns only the first element with the
mean greater than 70 for the grades field. The query also includes a sort() (page 900) to order by
ascending grades.grade field:

db.students.find({ "grades.mean": { $gt: 70 } },
{ "grades.$": 1 }

).sort({ "grades.grade": 1 })

The find() (page 910) method sorts the matching documents before it applies the $ (page 781) projec-
tion operator on the grades array. Thus, the results with the projected array elements do not reflect the
ascending grades.grade sort order:

{ "_id" : 8, "grades" : [{ "grade" : 92, "mean" : 88, "std" : 8 }] }
{ "_id" : 7, "grades" : [{ "grade" : 80, "mean" : 75, "std" : 8 }] }

Note: Since only one array field can appear in the query document, if the array contains documents, to
specify criteria on multiple fields of these documents, use the $elemMatch (query) (page 745) operator,
e.g.:

db.students.find({ grades: { $elemMatch: {
mean: { $gt: 70 },
grade: { $gt:90 }

} } },
{ "grades.$": 1 })

See Also:

$elemMatch (projection) (page 778)

$slice (projection)

$slice
The $slice (page 782) operator controls the number of items of an array that a query returns. For

782 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

information on limiting the size of an array during an update with $push (page 765), see the $slice
(page 772) modifier instead.

Consider the following prototype query:

db.collection.find({ field: value }, { array: {$slice: count } });

This operation selects the document collection identified by a field named field that holds value
and returns the number of elements specified by the value of count from the array stored in the array
field. If count has a value greater than the number of elements in array the query returns all elements
of the array.

$slice (page 782) accepts arguments in a number of formats, including negative values and arrays.
Consider the following examples:

db.posts.find({}, { comments: { $slice: 5 } })

Here, $slice (page 782) selects the first five items in an array in the comments field.

db.posts.find({}, { comments: { $slice: -5 } })

This operation returns the last five items in array.

The following examples specify an array as an argument to slice. Arrays take the form of [skip ,
limit], where the first value indicates the number of items in the array to skip and the second value
indicates the number of items to return.

db.posts.find({}, { comments: { $slice: [20, 10] } })

Here, the query will only return 10 items, after skipping the first 20 items of that array.

db.posts.find({}, { comments: { $slice: [-20, 10] } })

This operation returns 10 items as well, beginning with the item that is 20th from the last item of the array.

• Aggregation operators:

$add (aggregation)

$add
Takes an array of one or more numbers and adds them together, returning the sum.

$addToSet (aggregation)

$addToSet
Returns an array of all the values found in the selected field among the documents in that group. Every
unique value only appears once in the result set. There is no ordering guarantee for the output documents.

$and (aggregation)

$and
Takes an array one or more values and returns true if all of the values in the array are true. Otherwise
$and (page 783) returns false.

Note: $and (page 783) uses short-circuit logic: the operation stops evaluation after encountering the first
false expression.

60.1. Reference 783

MongoDB Documentation, Release 2.4.2

$avg (aggregation)

$avg
Returns the average of all the values of the field in all documents selected by this group.

$cmp (aggregation)

$cmp
Takes two values in an array and returns an integer. The returned value is:

–A negative number if the first value is less than the second.

–A positive number if the first value is greater than the second.

–0 if the two values are equal.

$concat (aggregation)

$concat
New in version 2.4. Takes an array of strings, concatenates the strings, and returns the concatenated string.
$concat (page 784) can only accept an array of strings.

Use $concat (page 784) with the following syntax:

{ $concat: [<string>, <string>, ...] }

If array element has a value of null or refers to a field that is missing, $concat (page 784) will return
null.

Example

Project new concatenated values.

A collection menu contains the documents that stores information on menu items separately in the
section, the category and the type fields, as in the following:

{ _id: 1, item: { sec: "dessert", category: "pie", type: "apple" } }
{ _id: 2, item: { sec: "dessert", category: "pie", type: "cherry" } }
{ _id: 3, item: { sec: "main", category: "pie", type: "shepherd’s" } }
{ _id: 4, item: { sec: "main", category: "pie", type: "chicken pot" } }

The following operation uses $concat (page 784) to concatenate the type field from the sub-document
item, a space, and the category field from the sub-document item to project a new food field:

db.menu.aggregate({ $project: { food:
{ $concat: ["$item.type",

" ",
"$item.category"

]
}

}
}

)

The operation returns the following result set where the food field contains the concatenated strings:

784 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

{
"result" : [

{ "_id" : 1, "food" : "apple pie" },
{ "_id" : 2, "food" : "cherry pie" },
{ "_id" : 3, "food" : "shepherd’s pie" },
{ "_id" : 4, "food" : "chicken pot pie" }

],
"ok" : 1

}

Example

Group by a concatenated string.

A collection menu contains the documents that stores information on menu items separately in the
section, the category and the type fields, as in the following:

{ _id: 1, item: { sec: "dessert", category: "pie", type: "apple" } }
{ _id: 2, item: { sec: "dessert", category: "pie", type: "cherry" } }
{ _id: 3, item: { sec: "main", category: "pie", type: "shepherd’s" } }
{ _id: 4, item: { sec: "main", category: "pie", type: "chicken pot" } }

The following aggregation uses $concat (page 784) to concatenate the sec field from the sub-document
item, the string ": ", and the category field from the sub-document item to group by the new
concatenated string and perform a count:

db.menu.aggregate({ $group: { _id:
{ $concat: ["$item.sec",

": ",
"$item.category"

]
},

count: { $sum: 1 }
}

}
)

The aggregation returns the following document:

{
"result" : [

{ "_id" : "main: pie", "count" : 2 },
{ "_id" : "dessert: pie", "count" : 2 }

],
"ok" : 1

}

Example

Concatenate null or missing values.

A collection menu contains the documents that stores information on menu items separately in the
section, the category and the type fields. Not all documents have the all three fields. For ex-
ample, the document with _id equal to 5 is missing the category field:

{ _id: 1, item: { sec: "dessert", category: "pie", type: "apple" } }
{ _id: 2, item: { sec: "dessert", category: "pie", type: "cherry" } }

60.1. Reference 785

MongoDB Documentation, Release 2.4.2

{ _id: 3, item: { sec: "main", category: "pie", type: "shepherd’s" } }
{ _id: 4, item: { sec: "main", category: "pie", type: "chicken pot" } }
{ _id: 5, item: { sec: "beverage", type: "coffee" } }

The following aggregation uses the $concat (page 784) to concatenate the type field from the sub-
document item, a space, and the category field from the sub-document item:

db.menu.aggregate({ $project: { food:
{ $concat: ["$item.type",

" ",
"$item.category"

]
}

}
}

)

Because the document with _id equal to 5 is missing the type field in the item sub-document,
$concat (page 784) returns the value null as the concatenated value for the document:

{
"result" : [

{ "_id" : 1, "food" : "apple pie" },
{ "_id" : 2, "food" : "cherry pie" },
{ "_id" : 3, "food" : "shepherd’s pie" },
{ "_id" : 4, "food" : "chicken pot pie" },
{ "_id" : 5, "food" : null }

],
"ok" : 1

}

To handle possible missing fields, you can use $ifNull (page 791) with $concat (page 784), as in
the following example which substitutes <unknown type> if the field type is null or missing, and
<unknown category> if the field category is null or is missing:

db.menu.aggregate({ $project: { food:
{ $concat: [{ $ifNull: ["$item.type", "<unknown type>"] },

" ",
{ $ifNull: ["$item.category", "<unknown category>"] }

]
}

}
}

)

The aggregation returns the following result set:

{
"result" : [

{ "_id" : 1, "food" : "apple pie" },
{ "_id" : 2, "food" : "cherry pie" },
{ "_id" : 3, "food" : "shepherd’s pie" },
{ "_id" : 4, "food" : "chicken pot pie" },
{ "_id" : 5, "food" : "coffee <unknown category>" }

],
"ok" : 1

}

786 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

$cond (aggregation)

$cond
Use the $cond (page 787) operator with the following syntax:

{ $cond: [<boolean-expression>, <true-case>, <false-case>] }

Takes an array with three expressions, where the first expression evaluates to a Boolean value. If the first
expression evaluates to true, $cond (page 787) returns the value of the second expression. If the first
expression evaluates to false, $cond (page 787) evaluates and returns the third expression.

$dayOfMonth (aggregation)

$dayOfMonth
Takes a date and returns the day of the month as a number between 1 and 31.

$dayOfWeek (aggregation)

$dayOfWeek
Takes a date and returns the day of the week as a number between 1 (Sunday) and 7 (Saturday.)

$dayOfYear (aggregation)

$dayOfYear
Takes a date and returns the day of the year as a number between 1 and 366.

$divide (aggregation)

$divide
Takes an array that contains a pair of numbers and returns the value of the first number divided by the
second number.

$eq (aggregation)

$eq
Takes two values in an array and returns a boolean. The returned value is:

–true when the values are equivalent.

–false when the values are not equivalent.

$first (aggregation)

$first
Returns the first value it encounters for its group .

Note: Only use $first (page 787) when the $group (page 790) follows an $sort (page 798) opera-
tion. Otherwise, the result of this operation is unpredictable.

60.1. Reference 787

MongoDB Documentation, Release 2.4.2

$geoNear (aggregation)

$geoNear
New in version 2.4. $geoNear (page 788) returns documents in order of nearest to farthest from a
specified point and pass the documents through the aggregation pipeline.

Important:

–You can only use $geoNear (page 788) as the first stage of a pipeline.

–You must include the distanceField option. The distanceField option specifies the field
that will contain the calculated distance.

–The collection must have a geospatial index (page 346).

The $geoNear (page 788) accept the following options:

Fields

– near (coordinates) – Specifies the coordinates (e.g. [x, y]) to use as the center of a
geospatial query.

– distanceField (string) – Specifies the output field that will contain the calculated distance.
You can use the dot notation to specify a field within a subdocument.

– limit (number) – Optional. Specifies the maximum number of documents to return. The
default value is 100. See also the num option.

– num (number) – Optional. Synonym for the limit option. If both num and limit are
included, the num value overrides the limit value.

– maxDistance (number) – Optional. Limits the results to the documents within the speci-
fied distance from the center coordinates.

– query (document) – Optional. Limits the results to the documents that match the query.
The query syntax is identical to the read operation query (page 162) syntax.

– spherical (boolean) – Optional. Default value is false. When true, MongoDB per-
forms calculation using spherical geometry.

– distanceMultiplier (number) – Optional. Specifies a factor to multiply all distances re-
turned by $geoNear (page 788). For example, use distanceMultiplier to convert
from spherical queries returned in radians to linear units (i.e. miles or kilometers) by
multiplying by the radius of the Earth.

– includeLocs (string) – Optional. Specifies the output field that identifies the location used
to calculate the distance. This option is useful when a location field contains multiple
locations. You can use the dot notation to specify a field within a subdocument.

– uniqueDocs (boolean) – Optional. Default value is false. If a location field contains
multiple locations, the default settings will return the document multiple times if more
than one location meets the criteria.

When true, the document will only return once even if the document has multiple loca-
tions that meet the criteria.

Example

The following aggregation finds at most 5 unique documents with a location at most .008 from the center
[40.72, -73.99] and have type equal to public:

788 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

db.places.aggregate([
{
$geoNear: {

near: [40.724, -73.997],
distanceField: "dist.calculated",
maxDistance: 0.008,
query: { type: "public" },
includeLocs: "dist.location",
uniqueDocs: true,
num: 5

}
}

])

The aggregation returns the following:

{
"result" : [

{ "_id" : 7,
"name" : "Washington Square",
"type" : "public",
"location" : [

[40.731, -73.999],
[40.732, -73.998],
[40.730, -73.995],
[40.729, -73.996]

],
"dist" : {

"calculated" : 0.0050990195135962296,
"location" : [40.729, -73.996]

}
},
{ "_id" : 8,
"name" : "Sara D. Roosevelt Park",
"type" : "public",
"location" : [

[40.723, -73.991],
[40.723, -73.990],
[40.715, -73.994],
[40.715, -73.994]

],
"dist" : {

"calculated" : 0.006082762530298062,
"location" : [40.723, -73.991]

}
}

],
"ok" : 1

}

The matching documents in the result field contain two new fields:

–dist.calculated field that contains the calculated distance, and

–dist.location field that contains the location used in the calculation.

Note: The options for $geoNear (page 788) are similar to the geoNear (page 836) command with the
following exceptions:

60.1. Reference 789

MongoDB Documentation, Release 2.4.2

–distanceField is a mandatory field for the $geoNear (page 788) pipeline operator; the option
does not exist in the geoNear (page 836) command.

–includeLocs accepts a string in the $geoNear (page 788) pipeline operator and a boolean
in the geoNear (page 836) command.

$group (aggregation)

$group
Groups documents together for the purpose of calculating aggregate values based on a collection of docu-
ments. Practically, group often supports tasks such as average page views for each page in a website on a
daily basis.

The output of $group (page 790) depends on how you define groups. Begin by specifying an identifier
(i.e. a _id field) for the group you’re creating with this pipeline. You can specify a single field from
the documents in the pipeline, a previously computed value, or an aggregate key made up from several
incoming fields. Aggregate keys may resemble the following document:

{ _id : { author: ’$author’, pageViews: ’$pageViews’, posted: ’$posted’ } }

With the exception of the _id field, $group (page 790) cannot output nested documents.

Every group expression must specify an _id field. You may specify the _id field as a dotted field path
reference, a document with multiple fields enclosed in braces (i.e. { and }), or a constant value.

Note: Use $project (page 796) as needed to rename the grouped field after an $group (page 790)
operation, if necessary.

Consider the following example:

db.article.aggregate(
{ $group : {

_id : "$author",
docsPerAuthor : { $sum : 1 },
viewsPerAuthor : { $sum : "$pageViews" }

}}
);

This groups by the author field and computes two fields, the first docsPerAuthor is a counter field
that adds one for each document with a given author field using the $sum (page 800) function. The
viewsPerAuthor field is the sum of all of the pageViews fields in the documents for each group.

Each field defined for the $group (page 790) must use one of the group aggregation function listed below
to generate its composite value:

–$addToSet (page 783)

–$first (page 787)

–$last (page 791)

–$max (page 793)

–$min (page 794)

–$avg (page 784)

–$push (page 798)

–$sum (page 800)

790 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Warning: The aggregation system currently stores $group (page 790) operations in memory, which
may cause problems when processing a larger number of groups.

$gt (aggregation)

$gt
Takes two values in an array and returns an boolean. The returned value is:

–true when the first value is greater than the second value.

–false when the first value is less than or equal to the second value.

$gte (aggregation)

$gte
Takes two values in an array and returns an boolean. The returned value is:

–true when the first value is greater than or equal to the second value.

–false when the first value is less than the second value.

$hour (aggregation)

$hour
Takes a date and returns the hour between 0 and 23.

$ifNull (aggregation)

$ifNull
Use the $ifNull (page 791) operator with the following syntax:

{ $ifNull: [<expression>, <replacement-if-null>] }

Takes an array with two expressions. $ifNull (page 791) returns the first expression if it evaluates to a
non-null value. Otherwise, $ifNull (page 791) returns the second expression’s value.

$last (aggregation)

$last
Returns the last value it encounters for its group.

Note: Only use $last (page 791) when the $group (page 790) follows an $sort (page 798) operation.
Otherwise, the result of this operation is unpredictable.

$limit (aggregation)

$limit
Restricts the number of documents that pass through the $limit (page 791) in the pipeline.

60.1. Reference 791

MongoDB Documentation, Release 2.4.2

$limit (page 791) takes a single numeric (positive whole number) value as a parameter. Once the
specified number of documents pass through the pipeline operator, no more will. Consider the following
example:

db.article.aggregate(
{ $limit : 5 }

);

This operation returns only the first 5 documents passed to it from by the pipeline. $limit (page 791)
has no effect on the content of the documents it passes.

Note: Changed in version 2.4: When a $sort (page 798) immediately precedes a $limit (page 791) in
the pipeline, the $sort (page 798) operation only maintains the top n results as it progresses, where n is
the specified limit. Before 2.4, $sort (page 798) would sort all the results in memory, and then limit the
results to n results.

$lt (aggregation)

$lt
Takes two values in an array and returns an boolean. The returned value is:

–true when the first value is less than the second value.

–false when the first value is greater than or equal to the second value.

$lte (aggregation)

$lte
Takes two values in an array and returns an boolean. The returned value is:

–true when the first value is less than or equal to the second value.

–false when the first value is greater than the second value.

$match (aggregation)

$match
$match (page 792) pipes the documents that match its conditions to the next operator in the pipeline.

The $match (page 792) query syntax is identical to the read operation query (page 162) syntax.

Example

The following operation uses $match (page 792) to perform a simple equality match:

db.articles.aggregate(
{ $match : { author : "dave" } }

);

The $match (page 792) selects the documents where the author field equals dave, and the aggregation
returns the following:

{ "result" : [
{
"_id" : ObjectId("512bc95fe835e68f199c8686"),

792 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

"author": "dave",
"score" : 80

},
{ "_id" : ObjectId("512bc962e835e68f199c8687"),
"author" : "dave",
"score" : 85

}
],

"ok" : 1 }

Example

The following example selects documents to process using the $match (page 792) pipeline operator and
then pipes the results to the $group (page 790) pipeline operator to compute a count of the documents:

db.articles.aggregate([
{ $match : { score : { $gt : 70, $lte : 90 } } },
{ $group: { _id: null, count: { $sum: 1 } } }

]);

In the aggregation pipeline, $match (page 792) selects the documents where the score is greater than
70 and less than or equal to 90. These documents are then piped to the $group (page 790) to perform a
count. The aggregation returns the following:

{
"result" : [

{
"_id" : null,
"count" : 3

}
],

"ok" : 1 }

Note:

–Place the $match (page 792) as early in the aggregation pipeline as possible. Because $match
(page 792) limits the total number of documents in the aggregation pipeline, earlier $match
(page 792) operations minimize the amount of processing down the pipe.

–If you place a $match (page 792) at the very beginning of a pipeline, the query can take advantage of
indexes like any other db.collection.find() (page 910) or db.collection.findOne()
(page 914).

New in version 2.4: $match (page 792) queries can support the geospatial $geoWithin (page 747) op-

erations.
Warning: You cannot use $where (page 777) in $match (page 792) queries as part of the aggrega-
tion pipeline.

$max (aggregation)

$max
Returns the highest value among all values of the field in all documents selected by this group.

60.1. Reference 793

MongoDB Documentation, Release 2.4.2

$millisecond (aggregation)

$millisecond
Takes a date and returns the millisecond portion of the date as an integer between 0 and 999.

$min (aggregation)

$min
The $min (page 794) operator returns the lowest non-null value of a field in the documents for a $group
(page 790) operation. Changed in version 2.4: If some, but not all, documents for the $min (page 794)
operation have either a null value for the field or are missing the field, the $min (page 794) operator only
considers the non-null and the non-missing values for the field. If all documents for the $min (page 794)
operation have null value for the field or are missing the field, the $min (page 794) operator returns
null for the minimum value. Before 2.4, if any of the documents for the $min (page 794) operation
were missing the field, the $min (page 794) operator would not return any value. If any of the documents
for the $min (page 794) had the value null, the $min (page 794) operator would return a null.

Example

The users collection contains the following documents:

{ "_id" : "abc001", "age" : 25 }
{ "_id" : "abe001", "age" : 35 }
{ "_id" : "efg001", "age" : 20 }
{ "_id" : "xyz001", "age" : 15 }

–To find the minimum value of the age field from all the documents, use the $min (page 794) operator:

db.users.aggregate([{ $group: { _id:0, minAge: { $min: "$age"} } }])

The operation returns the value of the age field in the minAge field:

{ "result" : [{ "_id" : 0, "minAge" : 15 }], "ok" : 1 }

–To find the minimum value of the age field for only those documents with _id starting with the letter
a, use the $min (page 794) operator after a $match (page 792) operation:

db.users.aggregate([{ $match: { _id: /^a/ } },
{ $group: { _id: 0, minAge: { $min: "$age"} } }

])

The operation returns the minimum value of the age field for the two documents with _id starting
with the letter a:

{ "result" : [{ "_id" : 0, "minAge" : 25 }], "ok" : 1 }

Example

The users collection contains the following documents where some of the documents are either missing
the age field or the age field contains null:

794 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

{ "_id" : "abc001", "age" : 25 }
{ "_id" : "abe001", "age" : 35 }
{ "_id" : "efg001", "age" : 20 }
{ "_id" : "xyz001", "age" : 15 }
{ "_id" : "xxx001" }
{ "_id" : "zzz001", "age" : null }

–The following operation finds the minimum value of the age field in all the documents:

db.users.aggregate([{ $group: { _id:0, minAge: { $min: "$age"} } }])

Because only some documents for the $min (page 794) operation are missing the age field or have
age field equal to null, $min (page 794) only considers the non-null and the non-missing values
and the operation returns the following document:

{ "result" : [{ "_id" : 0, "minAge" : 15 }], "ok" : 1 }

–The following operation finds the minimum value of the age field for only those documents where
the _id equals "xxx001" or "zzz001":

db.users.aggregate([{ $match: { _id: {$in: ["xxx001", "zzz001"] } } },
{ $group: { _id: 0, minAge: { $min: "$age"} } }

])

The $min (page 794) operation returns null for the minimum age since all documents for the $min
(page 794) operation have null value for the field age or are missing the field:

{ "result" : [{ "_id" : 0, "minAge" : null }], "ok" : 1 }

$minute (aggregation)

$minute
Takes a date and returns the minute between 0 and 59.

$mod (aggregation)

$mod
Takes an array that contains a pair of numbers and returns the remainder of the first number divided by the
second number.

See Also:

$mod (page 755)

$month (aggregation)

$month
Takes a date and returns the month as a number between 1 and 12.

60.1. Reference 795

MongoDB Documentation, Release 2.4.2

$multiply (aggregation)

$multiply
Takes an array of one or more numbers and multiples them, returning the resulting product.

$ne (aggregation)

$ne
Takes two values in an array returns an boolean. The returned value is:

–true when the values are not equivalent.

–false when the values are equivalent.

$not (aggregation)

$not
Returns the boolean opposite value passed to it. When passed a true value, $not (page 796) returns
false; when passed a false value, $not (page 796) returns true.

$or (aggregation)

$or
Takes an array of one or more values and returns true if any of the values in the array are true. Other-
wise $or (page 796) returns false.

Note: $or (page 796) uses short-circuit logic: the operation stops evaluation after encountering the first
true expression.

$project (aggregation)

$project
Reshapes a document stream by renaming, adding, or removing fields. Also use $project (page 796)
to create computed values or sub-objects. Use $project (page 796) to:

–Include fields from the original document.

–Insert computed fields.

–Rename fields.

–Create and populate fields that hold sub-documents.

Use $project (page 796) to quickly select the fields that you want to include or exclude from the
response. Consider the following aggregation framework operation.

db.article.aggregate(
{ $project : {

title : 1 ,
author : 1 ,

}}
);

796 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

This operation includes the title field and the author field in the document that returns from the
aggregation pipeline.

Note: The _id field is always included by default. You may explicitly exclude _id as follows:

db.article.aggregate(
{ $project : {

_id : 0 ,
title : 1 ,
author : 1

}}
);

Here, the projection excludes the _id field but includes the title and author fields.

Projections can also add computed fields to the document stream passing through the pipeline. A computed
field can use any of the expression operators (page 275). Consider the following example:

db.article.aggregate(
{ $project : {

title : 1,
doctoredPageViews : { $add:["$pageViews", 10] }

}}
);

Here, the field doctoredPageViews represents the value of the pageViews field after adding 10 to
the original field using the $add (page 783).

Note: You must enclose the expression that defines the computed field in braces, so that the expression is
a valid object.

You may also use $project (page 796) to rename fields. Consider the following example:

db.article.aggregate(
{ $project : {

title : 1 ,
page_views : "$pageViews" ,
bar : "$other.foo"

}}
);

This operation renames the pageViews field to page_views, and renames the foo field in the other
sub-document as the top-level field bar. The field references used for renaming fields are direct expres-
sions and do not use an operator or surrounding braces. All aggregation field references can use dotted
paths to refer to fields in nested documents.

Finally, you can use the $project (page 796) to create and populate new sub-documents. Consider the
following example that creates a new object-valued field named stats that holds a number of values:

db.article.aggregate(
{ $project : {

title : 1 ,
stats : {

pv : "$pageViews",
foo : "$other.foo",
dpv : { $add:["$pageViews", 10] }

}

60.1. Reference 797

MongoDB Documentation, Release 2.4.2

}}
);

This projection includes the title field and places $project (page 796) into “inclusive” mode. Then,
it creates the stats documents with the following fields:

–pv which includes and renames the pageViews from the top level of the original documents.

–foo which includes the value of other.foo from the original documents.

–dpv which is a computed field that adds 10 to the value of the pageViews field in the original
document using the $add (page 783) aggregation expression.

$push (aggregation)

$push
Returns an array of all the values found in the selected field among the documents in that group. A value
may appear more than once in the result set if more than one field in the grouped documents has that value.

$second (aggregation)

$second
Takes a date and returns the second between 0 and 59, but can be 60 to account for leap seconds.

$skip (aggregation)

$skip
Skips over the specified number of documents that pass through the $skip (page 798) in the pipeline
before passing all of the remaining input.

$skip (page 798) takes a single numeric (positive whole number) value as a parameter. Once the op-
eration has skipped the specified number of documents, it passes all the remaining documents along the
pipeline without alteration. Consider the following example:

db.article.aggregate(
{ $skip : 5 }

);

This operation skips the first 5 documents passed to it by the pipeline. $skip (page 798) has no effect on
the content of the documents it passes along the pipeline.

$sort (aggregation)

$sort
The $sort (page 798) pipeline operator sorts all input documents and returns them to the pipeline in
sorted order. Consider the following prototype form:

db.<collection-name>.aggregate(
{ $sort : { <sort-key> } }

);

This sorts the documents in the collection named <collection-name>, according to the key and
specification in the { <sort-key> } document.

798 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Specify the sort in a document with a field or fields that you want to sort by and a value of 1 or -1 to
specify an ascending or descending sort respectively, as in the following example:

db.users.aggregate(
{ $sort : { age : -1, posts: 1 } }

);

This operation sorts the documents in the users collection, in descending order according by the age
field and then in ascending order according to the value in the posts field.

When comparing values of different BSON types, MongoDB uses the following comparison order, from
lowest to highest:

1.MinKey (internal type)

2.Null

3.Numbers (ints, longs, doubles)

4.Symbol, String

5.Object

6.Array

7.BinData

8.ObjectID

9.Boolean

10.Date, Timestamp

11.Regular Expression

12.MaxKey (internal type)

Note: MongoDB treats some types as equivalent for comparison purposes. For instance, numeric types
undergo conversion before comparison.

Note: The $sort (page 798) cannot begin sorting documents until previous operators in the pipeline
have returned all output.

–$skip (page 798)

$sort (page 798) operator can take advantage of an index when placed at the beginning of the pipeline
or placed before the following aggregation operators:

–$project (page 796)

–$unwind (page 801)

–$group (page 790).

Changed in version 2.4: When a $sort (page 798) immediately precedes a $limit
(page 791) in the pipeline, the $sort (page 798) operation only maintains the
top n results as it progresses, where n is the specified limit. Before 2.4, $sort
(page 798) would sort all the results in memory, and then limit the results to n results.

60.1. Reference 799

MongoDB Documentation, Release 2.4.2

Warning: Changed in version 2.4: Sorts immediately proceeded by a limit no longer need to fit into
memory. Previously, all sorts had to fit into memory or use an index. Unless the $sort (page 798)
operator can use an index, or immediately precedes a $limit (page 791), the $sort (page 798)
operation must fit within memory.
For $sort (page 798) operations that immediately precede a $limit (page 791) stage, MongoDB
only needs to store the number of items specified by $limit (page 791) in memory.

$strcasecmp (aggregation)

$strcasecmp
Takes in two strings. Returns a number. $strcasecmp (page 800) is positive if the first string is “greater
than” the second and negative if the first string is “less than” the second. $strcasecmp (page 800)
returns 0 if the strings are identical.

Note: $strcasecmp (page 800) may not make sense when applied to glyphs outside the Roman
alphabet.

$strcasecmp (page 800) internally capitalizes strings before comparing them to provide a case-
insensitive comparison. Use $cmp (page 784) for a case sensitive comparison.

$substr (aggregation)

$substr
$substr (page 800) takes a string and two numbers. The first number represents the number of bytes in
the string to skip, and the second number specifies the number of bytes to return from the string.

Note: $substr (page 800) is not encoding aware and if used improperly may produce a result string
containing an invalid UTF-8 character sequence.

$subtract (aggregation)

$subtract
Takes an array that contains a pair of numbers and subtracts the second from the first, returning their
difference.

$sum (aggregation)

$sum
Returns the sum of all the values for a specified field in the grouped documents, as in the second use above.

Alternately, if you specify a value as an argument, $sum (page 800) will increment this field by the
specified value for every document in the grouping. Typically, as in the first use above, specify a value of
1 in order to count members of the group.

800 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

$toLower (aggregation)

$toLower
Takes a single string and converts that string to lowercase, returning the result. All uppercase letters
become lowercase.

Note: $toLower (page 801) may not make sense when applied to glyphs outside the Roman alphabet.

$toUpper (aggregation)

$toUpper
Takes a single string and converts that string to uppercase, returning the result. All lowercase letters
become uppercase.

Note: $toUpper (page 801) may not make sense when applied to glyphs outside the Roman alphabet.

$unwind (aggregation)

$unwind
Peels off the elements of an array individually, and returns a stream of documents. $unwind (page 801)
returns one document for every member of the unwound array within every source document. Take the
following aggregation command:

db.article.aggregate(
{ $project : {

author : 1 ,
title : 1 ,
tags : 1

}},
{ $unwind : "$tags" }

);

Note: The dollar sign (i.e. $) must proceed the field specification handed to the $unwind (page 801)
operator.

In the above aggregation $project (page 796) selects (inclusively) the author, title, and tags
fields, as well as the _id field implicitly. Then the pipeline passes the results of the projection to the
$unwind (page 801) operator, which will unwind the tags field. This operation may return a sequence
of documents that resemble the following for a collection that contains one document holding a tags field
with an array of 3 items.

{
"result" : [

{
"_id" : ObjectId("4e6e4ef557b77501a49233f6"),
"title" : "this is my title",
"author" : "bob",
"tags" : "fun"

},
{

"_id" : ObjectId("4e6e4ef557b77501a49233f6"),

60.1. Reference 801

MongoDB Documentation, Release 2.4.2

"title" : "this is my title",
"author" : "bob",
"tags" : "good"

},
{

"_id" : ObjectId("4e6e4ef557b77501a49233f6"),
"title" : "this is my title",
"author" : "bob",
"tags" : "fun"

}
],
"OK" : 1

}

A single document becomes 3 documents: each document is identical except for the value of the tags
field. Each value of tags is one of the values in the original “tags” array.

Note: $unwind (page 801) has the following behaviors:

–$unwind (page 801) is most useful in combination with $group (page 790).

–You may undo the effects of unwind operation with the $group (page 790) pipeline operator.

–If you specify a target field for $unwind (page 801) that does not exist in an input document, the
pipeline ignores the input document, and will generate no result documents.

–If you specify a target field for $unwind (page 801) that is not an array,
db.collection.aggregate() (page 903) generates an error.

–If you specify a target field for $unwind (page 801) that holds an empty array ([]) in an input
document, the pipeline ignores the input document, and will generates no result documents.

$week (aggregation)

$week
Takes a date and returns the week of the year as a number between 0 and 53.

Weeks begin on Sundays, and week 1 begins with the first Sunday of the year. Days preceding the first
Sunday of the year are in week 0. This behavior is the same as the “%U” operator to the strftime
standard library function.

$year (aggregation)

$year
Takes a date and returns the full year.

60.1.2 Database Commands

For an introduction to database commands and their use, see the Use Database Commands (page 803) document.
Additionally consider the Database Commands Quick Reference (page 803).

802 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Use Database Commands

The MongoDB command interface provides access to all non CRUD database operations. Fetching server stats,
initializing a replica set, and running a map-reduce job are all accomplished with commands.

See Database Commands Quick Reference (page 803) for list of all commands sorted by function, and Database
Commands (page 802) for a list of all commands sorted alphabetically.

Database Command Form

You specify a command first by constructing a standard BSON document whose first key is the name of the command.
For example, specify the isMaster (page 847) command using the following BSON document:

{ isMaster: 1 }

Issue Commands

The mongo (page 984) shell provides a helper method for running commands called db.runCommand()
(page 944). The following operation in mongo (page 984) runs the above command:

db.runCommand({ isMaster: 1 })

Many drivers (page 529) provide an equivalent for the db.runCommand() (page 944) method. Internally, running
commands with db.runCommand() (page 944) is equivalent to a special query against the $cmd collection.

Many common commands have their own shell helpers or wrappers in the mongo (page 984) shell and drivers, such
as the db.isMaster() (page 941) method in the mongo (page 984) JavaScript shell.

admin Database Commands

You must run some commands on the admin database. Normally, these operations resemble the followings:

use admin
db.runCommand({buildInfo: 1})

However, there’s also a command helper that automatically runs the command in the context of the admin database:

db._adminCommand({buildInfo: 1})

Command Responses

All commands return, at minimum, a document with an ok field indicating whether the command has succeeded:

{ ’ok’: 1 }

Failed commands return the ok field with a value of 0.

Database Commands Quick Reference

All command documentation lined below describes the commands and available parameters, provides a document
template or prototype for each command. Some command documentation also includes the relevant mongo (page 984)
shell helpers. See Database Commands (page 802) for a list of all commands.

60.1. Reference 803

MongoDB Documentation, Release 2.4.2

User Commands

Aggregation Commands

• aggregate (page 809)

• count (page 821)

• distinct (page 824)

• eval (page 826)

• findAndModify (page 829)

• group (page 840)

• mapReduce (page 851)

Replication Commands See Also:

“Replica Set Fundamental Concepts (page 367)” for more information regarding replication.

• replSetFreeze (page 864)

• replSetGetStatus (page 865)

• replSetInitiate (page 865)

• replSetReconfig (page 866)

• replSetSyncFrom (page 867)

• resync (page 868)

Sharding Commands See Also:

Sharding (page 461) for more information about MongoDB’s sharding functionality.

• addShard (page 807)

• enableSharding (page 826)

• listShards (page 849)

• removeShard (page 861)

• shardCollection (page 870)

• shardingState (page 870)

Geospatial Commands

• geoNear (page 836)

• geoSearch (page 836)

Collection Commands

• cloneCollectionAsCapped (page 813)

• cloneCollection (page 813)

• collMod (page 814)

804 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

• collStats (page 815)

• convertToCapped (page 819)

• create (page 822)

• drop (page 825)

• emptycapped (page 826)

• renameCollection (page 862)

Administration Commands

• clone (page 812)

• compact (page 816)

• copydb (page 820)

• dropDatabase (page 825)

• dropIndexes (page 825)

• fsync (page 834)

• getParameter (page 839)

• logRotate (page 850)

• logout (page 850)

• repairDatabase (page 863)

• setParameter (page 869)

• shutdown (page 871)

• touch (page 878)

Diagnostic Commands

• buildInfo (page 810)

• connPoolStats (page 819)

• cursorInfo (page 823)

• dbStats (page 823)

• forceerror (page 834)

• getCmdLineOpts (page 837)

• getLastError (page 837)

• getLog (page 838)

• getPrevError (page 839)

• isMaster (page 847)

• listCommands (page 849)

• listDatabases (page 849)

• ping (page 859)

• profile (page 860)

60.1. Reference 805

MongoDB Documentation, Release 2.4.2

• resetError (page 868)

• serverStatus (page 869)

• top (page 878)

• validate (page 879)

Other Commands

• filemd5 (page 829)

• reIndex (page 860)

mongos Commands

• flushRouterConfig (page 834)

• isdbgrid (page 848)

• movePrimary (page 859)

• split (page 872)

Internal Commands

• applyOps (page 809)

• authenticate (page 810)

• availableQueryOptions (page 810)

• captrunc (page 811)

• checkShardingIndex (page 812)

• clean (page 812)

• closeAllDatabases (page 814)

• configureFailPoint (page 818)

• connPoolSync (page 819)

• copydbgetnonce (page 821)

• dataSize (page 823)

• dbHash (page 823)

• diagLogging (page 824)

• driverOIDTest (page 825)

• emptycapped (page 826)

• features (page 828)

• geoWalk (page 837)

• getShardMap (page 839)

• getShardVersion (page 839)

• getnonce (page 839)

806 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

• getoptime (page 839)

• godinsert (page 840)

• handshake (page 844)

• _isSelf (page 848)

• mapreduce.shardedfinish (page 858)

• medianKey (page 858)

• _migrateClone (page 858)

• moveChunk (page 858)

• netstat (page 859)

• _recvChunkAbort (page 861)

• _recvChunkCommit (page 861)

• _recvChunkStart (page 861)

• _recvChunkStatus (page 861)

• replSetElect (page 864)

• replSetFresh (page 864)

• replSetGetRBID (page 864)

• replSetHeartbeat (page 865)

• replSetMaintenance (page 866)

• replSetTest (page 868)

• setShardVersion (page 870)

• _skewClockCommand (page 872)

• sleep (page 872)

• splitChunk (page 874)

• splitVector (page 875)

• _testDistLockWithSkew (page 875)

• _testDistLockWithSyncCluster (page 875)

• _transferMods (page 879)

• unsetSharding (page 879)

• whatsmyuri (page 880)

• writebacklisten (page 881)

• writeBacksQueued (page 880)

addShard

addShard

Parameters

• hostname (string) – a hostname or replica-set/hostname string.

60.1. Reference 807

MongoDB Documentation, Release 2.4.2

• name (string) – Optional. Unless specified, a name will be automatically provided to
uniquely identify the shard.

• maxSize (integer) – Optional, megabytes. Limits the maximum size of a shard. If maxSize
is 0 then MongoDB will not limit the size of the shard.

Use the addShard (page 807) command to add a database instance or replica set to a sharded cluster. You
must run this command when connected a mongos (page 981) instance.

The command takes the following form:

{ addShard: "<hostname><:port>" }

Example

db.runCommand({addShard: "mongodb0.example.net:27027"})

Replace <hostname><:port> with the hostname and port of the database instance you want to add as a
shard.

Warning: Do not use localhost for the hostname unless your configuration server is also running on
localhost.

The optimal configuration is to deploy shards across replica sets. To add a shard on a replica set you must
specify the name of the replica set and the hostname of at least one member of the replica set. You must specify
at least one member of the set, but can specify all members in the set or another subset if desired. addShard
(page 807) takes the following form:

{ addShard: "replica-set/hostname:port" }

Example

db.runCommand({ addShard: "repl0/mongodb3.example.net:27327"})

If you specify additional hostnames, all must be members of the same replica set.

Send this command to only one mongos (page 981) instance, it will store shard configuration information in
the config database.

Note: Specify a maxSize when you have machines with different disk capacities, or if you want to limit the
amount of data on some shards.

The maxSize constraint prevents the balancer from migrating chunks to the shard when the value of
mem.mapped (page 1057) exceeds the value of maxSize.

See Also:

•sh.addShard() (page 955)

•Sharded Cluster Administration (page 481)

•Add Shards to a Cluster (page 488)

•Remove Shards from an Existing Sharded Cluster (page 508)

808 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

aggregate

aggregate
New in version 2.1.0. aggregate (page 809) implements the aggregation framework. Consider the following
prototype form:

{ aggregate: "[collection]", pipeline: [pipeline] }

Where [collection] specifies the name of the collection that contains the data that you wish to aggregate.
The pipeline argument holds an array that contains the specification for the aggregation operation. Consider
the following example from the aggregation documentation (page 249).

db.runCommand(
{ aggregate : "article", pipeline : [
{ $project : {

author : 1,
tags : 1,

} },
{ $unwind : "$tags" },
{ $group : {

_id : "$tags",
authors : { $addToSet : "$author" }

} }
] }
);

More typically this operation would use the aggregate() (page 903) helper in the mongo (page 984) shell,
and would resemble the following:

db.article.aggregate(
{ $project : {

author : 1,
tags : 1,

} },
{ $unwind : "$tags" },
{ $group : {

_id : "$tags",
authors : { $addToSet : "$author" }

} }
);

Changed in version 2.4: If an error occurs, the aggregate() (page 903) helper throws an exception. In
previous versions, the helper returned a document with the error message and code, and ok status field not equal
to 1, same as the aggregate (page 809) command. For more aggregation documentation, please see:

•Aggregation Framework (page 249)

•Aggregation Framework Reference (page 265)

•Aggregation Framework Examples (page 255)

applyOps (internal)

applyOps

Parameters

• operations (array) – an array of operations to perform.

60.1. Reference 809

MongoDB Documentation, Release 2.4.2

• preCondition (array) – Optional. Defines one or more conditions that the destination must
meet applying the entries from the <operations> array. Use ns to specify a namespace,
q to specify a query and res to specify the result that the query should match. You may
specify zero, one, or many preCondition documents.

applyOps (page 809) provides a way to apply entries from an oplog created by replica set members and master
instances in a master/slave deployment. applyOps (page 809) is primarily an internal command to support
sharding functionality, and has the following prototype form:

db.runCommand({ applyOps: [<operations>], preCondition: [{ ns: <namespace>, q: <query>, res: <result> }] })

applyOps (page 809) applies oplog entries from the <operations> array, to the mongod (page 971)
instance. The preCondition array provides the ability to specify conditions that must be true in order to
apply the oplog entry.

You can specify as many preCondition sets as needed. If you specify the ns option, applyOps (page 809)
will only apply oplog entries for the collection described by that namespace. You may also specify a query in
the q field with a corresponding expected result in the res field that must match in order to apply the oplog
entry.

Warning: This command obtains a global write lock and will block other operations until it has completed.

authenticate

authenticate
Clients use authenticate (page 810) to authenticate a connection. When using the shell, use the
db.auth() (page 902) helper as follows:

db.auth("username", "password")

See Also:

db.auth() (page 902) and Security Practices and Management (page 125) for more information.

availableQueryOptions (internal)

availableQueryOptions
availableQueryOptions (page 810) is an internal command that is only available on mongos (page 981)
instances.

buildInfo

buildInfo
The buildInfo (page 810) command is an administrative command which returns a build summary for the
current mongod (page 971). buildInfo (page 810) has the following prototype form:

{ buildInfo: 1 }

In the mongo (page 984) shell, call buildInfo (page 810) in the following form:

db.runCommand({ buildInfo: 1 })

Example

The output document of buildInfo (page 810) has the following form:

810 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

{
"version" : "<string>",
"gitVersion" : "<string>",
"sysInfo" : "<string>",
"loaderFlags" : "<string>",
"compilerFlags" : "<string>",
"allocator" : "<string>",
"versionArray" : [<num>, <num>, <...>],
"javascriptEngine" : "<string>",
"bits" : <num>,
"debug" : <boolean>,
"maxBsonObjectSize" : <num>,
"ok" : <num>

}

Consider the following documentation of the output of buildInfo (page 810):

buildInfo
The document returned by the buildInfo (page 810) command.

buildInfo.gitVersion
The commit identifier that identifies the state of the code used to build the mongod (page 971).

buildInfo.sysInfo
A string that holds information about the operating system, hostname, kernel, date, and Boost version used
to compile the mongod (page 971).

buildInfo.loaderFlags
The flags passed to the loader that loads the mongod (page 971).

buildInfo.compilerFlags
The flags passed to the compiler that builds the mongod (page 971) binary.

buildInfo.allocator
Changed in version 2.2. The memory allocator that mongod (page 971) uses. By default this is
tcmalloc after version 2.2, and system before 2.2.

buildInfo.versionArray
An array that conveys version information about the mongod (page 971) instance. See version for a
more readable version of this string.

buildInfo.javascriptEngine
Changed in version 2.4. A string that reports the JavaScript engine used in the mongod (page 971)
instance. By default, this is V8 after version 2.4, and SpiderMonkey before 2.4.

buildInfo.bits
A number that reflects the target processor architecture of the mongod (page 971) binary.

buildInfo.debug
A boolean. true when built with debugging options.

buildInfo.maxBsonObjectSize
A number that reports the Maximum BSON Document Size (page 1105).

captrunc (internal)

captrunc
The captrunc (page 811) command is an internal command that truncates capped collections.

60.1. Reference 811

MongoDB Documentation, Release 2.4.2

Parameters

• collection (string) – The name of the collection to truncate.

• n (integer) – An integer that specifies the number of documents to remove from the collec-
tion

• inc (boolean) – Specifies whether to truncate the nth document.

Example

Truncate 10 older documents from the collection records:

db.runCommand({captrunc: "records" , n:10})

Truncate 100 documents and the 101st document:

db.runCommand({captrunc: "records", n:100, inc:true})

Note: captrunc (page 811) is an internal command that is not enabled by default. captrunc (page 811)
must be enabled by using --setParameter enableTestCommands=1 (page 976) on the mongod
(page 971) command line. captrunc (page 811) cannot be enabled during run-time.

checkShardingIndex (internal)

checkShardingIndex
checkShardingIndex (page 812) is an internal command that supports the sharding functionality.

clean (internal)

clean
clean (page 812) is an internal command.

Warning: This command obtains a write lock on the affected database and will block other operations until
it has completed.

clone

clone
The clone (page 812) command clone a database from a remote MongoDB instance to the current host. clone
(page 812) copies the database on the remote instance with the same name as the current database. The command
takes the following form:

{ clone: "db1.example.net:27017" }

Replace db1.example.net:27017 above with the resolvable hostname for the MongoDB instance you
wish to copy from. Note the following behaviors:

•clone (page 812) can run against a slave or a non-primary member of a replica set.

•clone (page 812) does not snapshot the database. If any clients update the database you’re copying at
any point during the clone operation, the resulting database may be inconsistent.

•You must run clone (page 812) on the destination server.

812 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

•The destination server is not locked for the duration of the clone (page 812) operation. This means that
clone (page 812) will occasionally yield to allow other operations to complete.

See copydb (page 820) for similar functionality.

Warning: This command obtains an intermittent write-lock on the destination server, that can block other
operations until it completes.

cloneCollection

cloneCollection
The cloneCollection (page 813) command copies a collection from a remote server to the server where
you run the command. cloneCollection (page 813) does not allow you to clone a collection through a
mongos (page 981): you must connect directly to the mongod (page 971) instance.

Parameters

• from – Specify a resolvable hostname, and optional port number of the remote server where
the specified collection resides.

• query – Optional. A query document, in the form of a document, that filters the docu-
ments in the remote collection that cloneCollection (page 813) will copy to the cur-
rent database. See db.collection.find() (page 910).

• copyIndexes (Boolean) – Optional. true by default. When set to false the indexes on
the originating server are not copied with the documents in the collection.

Consider the following example:

{ cloneCollection: "users.profiles", from: "mongodb.example.net:27017", query: { active: true }, copyIndexes: false }

This operation copies the profiles collection from the users database on the server at
mongodb.example.net. The operation only copies documents that satisfy the query { active: true
} and does not copy indexes. cloneCollection (page 813) copies indexes by default, but you can disable
this behavior by setting { copyIndexes: false }. The query and copyIndexes arguments are
optional.

cloneCollection (page 813) creates a collection on the current database with the same name as the ori-
gin collection. If, in the above example, the profiles collection already exists in the local database, then
MongoDB appends documents in the remote collection to the destination collection.

cloneCollectionAsCapped

cloneCollectionAsCapped
The cloneCollectionAsCapped (page 813) command creates a new capped collection from an exist-
ing, non-capped collection within the same database. The operation does not affect the original non-capped
collection.

The command has the following syntax:

{ cloneCollectionAsCapped: <existing collection>, toCollection: <capped collection>, size: <capped size> }

The command copies an existing collection and creates a new capped collection with a max-
imum size specified by the capped size in bytes. The name of the new capped collection must be distinct
and cannot be the same as that of the original existing collection. To replace the original non-capped collection
with a capped collection, use the convertToCapped (page 819) command.

During the cloning, the cloneCollectionAsCapped (page 813) command exhibit the following behavior:

60.1. Reference 813

MongoDB Documentation, Release 2.4.2

•MongoDB will transverse the documents in the original collection in natural order as they’re loaded.

•If the capped size specified for the new collection is smaller than the size of the original uncapped
collection, then MongoDB will begin overwriting earlier documents in insertion order, which is first in,
first out (e.g “FIFO”).

closeAllDatabases (internal)

closeAllDatabases
closeAllDatabases (page 814) is an internal command that invalidates all cursors and closes the open
database files. The next operation that uses the database will reopen the file.

Warning: This command obtains a global write lock and will block other operations until it has completed.

collMod

collMod
New in version 2.2. collMod (page 814) makes it possible to add flags to a collection to modify the behavior
of MongoDB. In the current release the only available flag is usePowerOf2Sizes (page 814). The command
takes the following prototype form:

db.runCommand({"collMod" : <collection> , "<flag>" : <value> })

In this command substitute <collection>with the name of a collection in the current database, and <flag>
and <value> with the flag and value you want to set.

usePowerOf2Sizes
The usePowerOf2Sizes (page 814) flag changes the method that MongoDB uses to allocate space
on disk for documents in this collection. By setting usePowerOf2Sizes (page 814), you ensure that
MongoDB will allocate space for documents in sizes that are powers of 2 (e.g. 4, 8, 16, 32, 64, 128, 256,
512...8388608). With usePowerOf2Sizes (page 814) MongoDB will be able to more effectively reuse
space.

Note: With usePowerOf2Sizes (page 814) MongoDB, allocates records that have power of 2 sizes,
until record sizes equal 4 megabytes. For records larger than 4 megabytes with usePowerOf2Sizes
(page 814) set, mongod (page 971) will allocate records in full megabytes by rounding up to the nearest
megabyte.

usePowerOf2Sizes (page 814) is useful for collections where you will be inserting and deleting large
numbers of documents to ensure that MongoDB will effectively use space on disk.

Example

To enable usePowerOf2Sizes (page 814) on the collection named products, use the following
operation:

db.runCommand({collMod: "products", usePowerOf2Sizes : true })

To disable usePowerOf2Sizes (page 814) on the collection products, use the following operation:

db.runCommand({ collMod: "products", "usePowerOf2Sizes": false })

814 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Warning: Changed in version 2.2.1: usePowerOf2Sizes (page 814) now supports documents
larger than 8 megabytes. If you enable usePowerOf2Sizes (page 814) you must use at least version
2.2.1. usePowerOf2Sizes (page 814) only affects subsequent allocations caused by document
insertion or record relocation as a result of document growth, and does not affect existing allocations.

index
The index (page 815) flag changes the expiration time of a TTL Collection (page 551).

Specify the key and new expiration time with a document of the form:

{keyPattern: <index_spec>, expireAfterSeconds: <seconds> }

where <index_spec> is an existing index in the collection and seconds is the number of seconds to
subtract from the current time.

Example

To update the expiration value for a collection named sessions indexed on a lastAccess field from
30 minutes to 60 minutes, use the following operation:

db.runCommand({collMod: "sessions",
index: {keyPattern: {lastAccess:1},
expireAfterSeconds: 3600}})

Which will return the document:

{ "expireAfterSeconds_old" : 1800, "expireAfterSeconds_new" : 3600, "ok" : 1 }

On success a document with fields expireAfterSeconds_old and expireAfterSeconds_new
set to the respective values is returned.

On failure, a document is returned with no expireAfterSeconds field to update if there is
no existing expireAfterSeconds field or cannot find index { **key**: 1.0 } for
ns **namespace** if the specified keyPattern does not exist.

collStats

collStats
The collStats (page 815) command returns a variety of storage statistics for a given collection. Use the
following syntax:

{ collStats: "collection" , scale : 1024 }

Specify the collection you want statistics for, and use the scale argument to scale the output. The above
example will display values in kilobytes.

Examine the following example output, which uses the db.collection.stats() (page 931) helper in the
mongo (page 984) shell.

> db.users.stats()
{

"ns" : "app.users", // namespace
"count" : 9, // number of documents
"size" : 432, // collection size in bytes

60.1. Reference 815

MongoDB Documentation, Release 2.4.2

"avgObjSize" : 48, // average object size in bytes
"storageSize" : 3840, // (pre)allocated space for the collection
"numExtents" : 1, // number of extents (contiguously allocated chunks of datafile space)
"nindexes" : 2, // number of indexes
"lastExtentSize" : 3840, // size of the most recently created extent
"paddingFactor" : 1, // padding can speed up updates if documents grow
"flags" : 1,
"totalIndexSize" : 16384, // total index size in bytes
"indexSizes" : { // size of specific indexes in bytes

"_id_" : 8192,
"username" : 8192

},
"ok" : 1

}

Note: The scale factor rounds values to whole numbers. This can produce unpredictable and unexpected results
in some situations.

See Also:

“Collection Statistics Reference (page 1072).”

compact

compact
New in version 2.0. The compact (page 816) command rewrites and defragments a single collection. Ad-
ditionally, the command drops all indexes at the beginning of compaction and rebuilds the indexes at the end.
compact (page 816) is conceptually similar to repairDatabase (page 863), but works on a single collec-
tion rather than an entire database.

The command has the following syntax:

{ compact: <collection name> }

You may also specify the following options:

Parameters

• force (boolean) – Changed in version 2.2: compact (page 816) blocks activities only for
the database it is compacting. The force specifies whether the compact (page 816) com-
mand can run on the primary node in a replica set. Set to true to run the compact
(page 816) command on the primary node in a replica set. Otherwise, the compact
(page 816) command returns an error when invoked on a replica set primary because the
command blocks all other activity.

• paddingFactor (number) – New in version 2.2. Default: 1.0

Minimum: 1.0 (no padding.)

Maximum: 4.0

The paddingFactor describes the record size allocated for each document as a factor
of the document size, for all records compacted during the compact (page 816) opera-
tion. paddingFactor does not affect the padding of subsequent record allocations after
compact (page 816) completes.

If your updates increase the size of the documents, padding will increase the amount of space
allocated to each document and avoid expensive document relocation operations within the

816 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

data files.

You can calculate the padding size by subtracting the document size from the record size or,
in terms of the paddingFactor, by subtracting 1 from the paddingFactor:

padding size = (paddingFactor - 1) * <document size>.

For example, a paddingFactor of 1.0 specifies a padding size of 0 whereas a
paddingFactor of 1.2 specifies a padding size of 0.2 or 20 percent (20%) of the
document size.

With the following command, you can use the paddingFactor option of the compact
(page 816) command to set the record size to 1.1 of the document size, or a padding factor
of 10 percent (10%):

db.runCommand ({ compact: ’<collection>’, paddingFactor: 1.1 })

compact (page 816) compacts existing documents, but does not reset paddingFactor
statistics for the collection. After the compact (page 816) MongoDB will use the existing
paddingFactor when allocating new records for documents in this collection.

• paddingBytes (integer) – New in version 2.2. The paddingBytes sets the padding as an
absolute number of bytes, for all records compacted during the compact (page 816) oper-
ation. After running compact (page 816), paddingBytes does not affect the padding
of subsequent record allocations.

Specifying paddingBytes can be useful if your documents start small but then increase
in size significantly. For example, if your documents are initially 40 bytes long and you
grow them by 1KB, using paddingBytes: 1024 might be reasonable since using
paddingFactor: 4.0 would specify a record size of 160 bytes (4.0 times the initial
document size), which would only provide a padding of 120 bytes (i.e. record size of 160
bytes minus the document size).

With the following command, you can use the paddingBytes option of the compact
(page 816) command to set the padding size to 100 bytes on the collection named by
<collection>:

db.runCommand ({ compact: ’<collection>’, paddingBytes: 100 })

Warning: Always have an up-to-date backup before performing server maintenance such as the compact
(page 816) operation.

Note the following behaviors:

•compact (page 816) blocks all other activity. In MongoDB 2.2, compact (page 816) blocks activities
only for its database. You may view the intermediate progress either by viewing the mongod (page 971)
log file, or by running the db.currentOp() (page 936) in another shell instance.

•compact (page 816) compacts existing documents in the collection. However, unlike
repairDatabase (page 863), compact (page 816) does not reset paddingFactor statistics for
the collection. MongoDB will use the existing paddingFactor when allocating new records for docu-
ments in this collection.

•compact (page 816) generally uses less disk space than repairDatabase (page 863) and is faster.
However,the compact (page 816) command is still slow and blocks other database use. Only use
compact (page 816) during scheduled maintenance periods.

60.1. Reference 817

MongoDB Documentation, Release 2.4.2

•If you terminate the operation with the db.killOp() (page 941) method or restart the server before the
compact (page 816) operation has finished:

–If you have journaling enabled, the data remains consistent and usable, regardless of the state of the
compact (page 816) operation. You may have to manually rebuild the indexes.

–If you do not have journaling enabled and the mongod (page 971) or compact (page 816) terminates
during the operation, it is impossible to guarantee that the data is in a consistent state.

–In either case, much of the existing free space in the collection may become un-reusable. In this
scenario, you should rerun the compaction to completion to restore the use of this free space.

•compact (page 816) may increase the total size and number of your data files, especially when run for
the first time. However, this will not increase the total collection storage space since storage size is the
amount of data allocated within the database files, and not the size/number of the files on the file system.

•compact (page 816) requires a small amount of additional disk space while running but unlike
repairDatabase (page 863) it does not free space on the file system.

•You may also wish to run the collStats (page 815) command before and after compaction to see how
the storage space changes for the collection.

•compact (page 816) commands do not replicate to secondaries in a replica set:

–Compact each member separately.

–Ideally run compact (page 816) on a secondary. See option force:true above for information
regarding compacting the primary.

Warning: If you run compact (page 816) on a secondary, the secondary will enter a RECOVERING
state to prevent clients from sending read operations during compaction. Once the operation finishes the
secondary will automatically return to SECONDARY state. See state (page 447) for more information
about replica set member states. Refer to the “partial script for automating step down and compaction”
for an example of this procedure.

•compact (page 816) is a command issued to a mongod (page 971). In a sharded environment, run
compact (page 816) on each shard separately as a maintenance operation.

Important: You cannot issue compact (page 816) against a mongos (page 981) instance.

•It is not possible to compact capped collections because they don’t have padding, and documents cannot
grow in these collections. However, the documents of a capped collection are not subject to fragmentation.

See Also:

repairDatabase (page 863)

configureFailPoint (internal)

configureFailPoint
configureFailPoint (page 818) is an internal testing command that configures failure points.

Parameters

• string – Specifies the name of the failure point.

• mode (string) – Controls behavior of failure point. Possible values are: alwaysOn and
off.

818 Chapter 60. MongoDB Interface

https://github.com/mongodb/mongo-snippets/blob/master/js/compact-example.js

MongoDB Documentation, Release 2.4.2

• mode – Specify a document {times: n} to control the number of times that MongoDB
will activate the failure point.

Note: configureFailPoint (page 818) is an internal command that is not enabled by
default. configureFailPoint (page 818) must be enabled by using --setParameter
enableTestCommands=1 (page 976) on the mongod (page 971) command line. configureFailPoint
(page 818) cannot be enabled during run-time.

connPoolStats

connPoolStats

Note: connPoolStats (page 819) only returns meaningful results for mongos (page 981) instances and
for mongod (page 971) instances in sharded clusters.

The command connPoolStats (page 819) returns information regarding the number of open connections to
the current database instance, including client connections and server-to-server connections for replication and
clustering. The command takes the following form:

{ connPoolStats: 1 }

The value of the argument (i.e. 1) does not affect the output of the command. See Connection Pool Statistics
Reference (page 1076) for full documentation of the connPoolStats (page 819) output.

connPoolSync (internal)

connPoolSync
connPoolSync (page 819) is an internal command.

convertToCapped

convertToCapped
The convertToCapped (page 819) command converts an existing, non-capped collection to a capped col-
lection within the same database.

The command has the following syntax:

{convertToCapped: <collection>, size: <capped size> }

convertToCapped (page 819) takes an existing collection (<collection>) and transforms it into a
capped collection with a maximum size in bytes, specified to the size argument (<capped size>).

During the conversion process, the convertToCapped (page 819) command exhibit the following behavior:

•MongoDB transverses the documents in the original collection in natural order and loads the documents
into a new capped collection.

•If the capped size specified for the capped collection is smaller than the size of the original uncapped
collection, then MongoDB will overwrite documents in the capped collection based on insertion order, or
first in, first out order.

•Internally, to convert the collection, MongoDB uses the following procedure

60.1. Reference 819

MongoDB Documentation, Release 2.4.2

–cloneCollectionAsCapped (page 813) command creates the capped collection and imports the
data.

–MongoDB drops the original collection.

–renameCollection (page 862) renames the new capped collection to the name of the original
collection.

Note: MongoDB does not support the convertToCapped (page 819) command in a sharded cluster.

Warning: The convertToCapped (page 819) will not recreate indexes from the original collection on
the new collection, other than the index on the _id field. If you need indexes on this collection you will
need to create these indexes after the conversion is complete.

See Also:

create (page 822)

Warning: This command obtains a global write lock and will block other operations until it has completed.

copydb

copydb
The copydb (page 820) command copies a database from a remote host to the current host. The command has
the following syntax:

{ copydb: 1:
fromhost: <hostname>,
fromdb: <db>,
todb: <db>,
slaveOk: <bool>,
username: <username>,
password: <password>,
nonce: <nonce>,
key: <key> }

All of the following arguments are optional:

•slaveOk

•username

•password

•nonce

•key

You can omit the fromhost argument, to copy one database to another database within a single MongoDB
instance.

You must run this command on the destination, or the todb server.

Be aware of the following behaviors:

•copydb (page 820) can run against a slave or a non-primary member of a replica set. In this case, you
must set the slaveOk option to true.

820 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

•copydb (page 820) does not snapshot the database. If the state of the database changes at any point during
the operation, the resulting database may be inconsistent.

•You must run copydb (page 820) on the destination server.

•The destination server is not locked for the duration of the copydb (page 820) operation. This means that
copydb (page 820) will occasionally yield to allow other operations to complete.

•If the remote server has authentication enabled, then you must include a username and password. You
must also include a nonce and a key. The nonce is a one-time password that you request from the remote
server using the copydbgetnonce (page 821) command. The key is a hash generated as follows:

hex_md5(nonce + username + hex_md5(username + ":mongo:" + pass))

If you need to copy a database and authenticate, it’s easiest to use the shell helper:

db.copyDatabase(<remote_db_name>, <local_db_name>, <from_host_name>, <username>, <password>)

copydbgetnonce (internal)

copydbgetnonce
Client libraries use copydbgetnonce (page 821) to get a one-time password for use with the copydb
(page 820) command.

Note: This command obtains a write lock on the affected database and will block other operations until it has
completed; however, the write lock for this operation is short lived.

count

count
The count (page 821) command counts the number of documents in a collection. The command returns a
document that contains the count as well as the command status. The count (page 821) command takes the
following prototype form:

{ count: <collection>, query: <query>, limit: <limit>, skip: <skip> }

The command fields are as follows:

Fields

• count (String) – The name of the collection to count.

• query (document) – Optional. Specifies the selection query to determine which documents
in the collection to count.

• limit (integer) – Optional. Specifies the limit for the documents matching the selection
query.

• skip (integer) – Optional. Specifies the number of matching documents to skip.

Consider the following examples of the count (page 821) command:

•Count the number of all documents in the orders collection:

db.runCommand({ count: ’orders’ })

In the result, the n, which represents the count, is 26 and the command status ok is 1:

60.1. Reference 821

MongoDB Documentation, Release 2.4.2

{ "n" : 26, "ok" : 1 }

•Count the number of the documents in the orders collection with the field ord_dt greater than new
Date(’01/01/2012’):

db.runCommand({ count:’orders’,
query: { ord_dt: { $gt: new Date(’01/01/2012’) } }

})

In the result, the n, which represents the count, is 13 and the command status ok is 1:

{ "n" : 13, "ok" : 1 }

•Count the number of the documents in the orders collection with the field ord_dt greater than new
Date(’01/01/2012’) skipping the first 10 matching records:

db.runCommand({ count:’orders’,
query: { ord_dt: { $gt: new Date(’01/01/2012’) } },
skip: 10 })

In the result, the n, which represents the count, is 3 and the command status ok is 1:

{ "n" : 3, "ok" : 1 }

Note: MongoDB also provides the cursor.count() (page 891) method and the shell wrapper
db.collection.count() (page 904) method.

create

create
The create command explicitly creates a collection. The command uses the following syntax:

{ create: <collection_name> }

To create a capped collection limited to 40 KB, issue command in the following form:

{ create: "collection", capped: true, size: 40 * 1024 }

The options for creating capped collections are:

Options

• capped – Specify true to create a capped collection.

• autoIndexId – Specify false to disable the automatic index created on the _id field.
Before 2.2, the default value for autoIndexId was false. See _id Fields and Indexes
on Capped Collections (page 1160) for more information.

• size – The maximum size for the capped collection. Once a capped collection reaches its
max size, MongoDB will drop old documents from the database to make way for the new
documents. You must specify a size argument for all capped collections.

• max – The maximum number of documents to preserve in the capped collection. This limit
is subject to the overall size of the capped collection. If a capped collection reaches its
maximum size before it contains the maximum number of documents, the database will
remove old documents. Thus, if you use this option, ensure that the total size for the capped
collection is sufficient to contain the max.

822 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

The db.createCollection() (page 935) provides a wrapper function that provides access to this func-
tionality.

Note: This command obtains a write lock on the affected database and will block other operations until it
has completed. The write lock for this operation is typically short lived; however, allocations for large capped
collections may take longer.

cursorInfo

cursorInfo
The cursorInfo (page 823) command returns information about current cursor allotment and use. Use the
following form:

{ cursorInfo: 1 }

The value (e.g. 1 above,) does not affect the output of the command.

cursorInfo (page 823) returns the total number of open cursors (totalOpen,) the size of client cursors
in current use (clientCursors_size,) and the number of timed out cursors since the last server restart
(timedOut.)

dataSize

dataSize
For internal use.

The dataSize (page 823) command returns the size data size for a set of data within a certain range:

{ dataSize: "database.collection", keyPattern: { field: 1 }, min: { field: 10 }, max: { field: 100 } }

This will return a document that contains the size of all matching documents. Replace
database.collection value with database and collection from your deployment. The keyPattern,
min, and max parameters are options.

The amount of time required to return dataSize (page 823) depends on the amount of data in the collection.

dbHash (internal)

dbHash
dbHash (page 823) is an internal command.

dbStats

dbStats
The dbStats (page 823) command returns storage statistics for a given database. The command takes the
following syntax:

{ dbStats: 1, scale: 1 }

The value of the argument (e.g. 1 above) to dbStats does not affect the output of the command. The scale
option allows you to specify how to scale byte values. For example, a scale value of 1024 will display the
results in kilobytes rather than in bytes.

60.1. Reference 823

MongoDB Documentation, Release 2.4.2

The time required to run the command depends on the total size of the database. Because the command has to
touch all data files, the command may take several seconds to run.

In the mongo (page 984) shell, the db.stats() (page 946) function provides a wrapper around this function-
ality. See the “Database Statistics Reference (page 1070)” document for an overview of this output.

diagLogging (internal)

diagLogging
diagLogging (page 824) is an internal command.

Warning: This command obtains a write lock on the affected database and will block other operations until
it has completed.

distinct

distinct
The distinct (page 824) command finds the distinct values for a specified field across a single collection.
The command returns a document that contains an array of the distinct values as well as the query plan and
status. The command takes the following prototype form:

{ distinct: collection, key: <field>, query: <query> }

The command fields are as follows:

Fields

• collection (String) – The name of the collection to query for distinct values.

• field (string) – Specifies the field for which to return the distinct values.

• query (document) – Optional. Specifies the selection query to determine the subset of
documents from which to retrieve the distinct values.

Consider the following examples of the distinct (page 824) command:

•Return an array of the distinct values of the field ord_dt from all documents in the orders collection:

db.runCommand ({ distinct: ’orders’, key: ’ord_dt’ })

•Return an array of the distinct values of the field sku in the subdocument item from all documents in the
orders collection:

db.runCommand ({ distinct: ’orders’, key: ’item.sku’ })

•Return an array of the distinct values of the field ord_dt from the documents in the orders collection
where the price is greater than 10:

db.runCommand ({ distinct: ’orders’,
key: ’ord_dt’,
query: { price: { $gt: 10 } }

})

Note:

•MongoDB also provides the shell wrapper method db.collection.distinct() (page 905) for the
distinct (page 824) command. Additionally, many MongoDB drivers also provide a wrapper method.
Refer to the specific driver documentation.

824 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

•When possible, the distinct (page 824) command will use an index to find the documents in the query
as well as to return the data.

driverOIDTest (internal)

driverOIDTest
driverOIDTest (page 825) is an internal command.

drop

drop
The drop (page 825) command removes an entire collection from a database. The command has following
syntax:

{ drop: <collection_name> }

The mongo (page 984) shell provides the equivalent helper method:

db.collection.drop();

Note that this command also removes any indexes associated with the dropped collection.

Warning: This command obtains a write lock on the affected database and will block other operations until
it has completed.

dropDatabase

dropDatabase
The dropDatabase (page 825) command drops a database, deleting the associated data files.
dropDatabase (page 825) operates on the current database.

In the shell issue the use <database> command, replacing <database> with the name of the database
you wish to delete. Then use the following command form:

{ dropDatabase: 1 }

The mongo (page 984) shell also provides the following equivalent helper method:

db.dropDatabase();

Warning: This command obtains a global write lock and will block other operations until it has completed.

dropIndexes

dropIndexes
The dropIndexes (page 825) command drops one or all indexes from the current collection. To drop all
indexes, issue the command like so:

{ dropIndexes: "collection", index: "*" }

To drop a single, issue the command by specifying the name of the index you want to drop. For example, to
drop the index named age_1, use the following command:

60.1. Reference 825

MongoDB Documentation, Release 2.4.2

{ dropIndexes: "collection", index: "age_1" }

The shell provides a useful command helper. Here’s the equivalent command:

db.collection.dropIndex("age_1");

Warning: This command obtains a write lock on the affected database and will block other operations until
it has completed.

emptycapped (internal)

emptycapped
The emptycapped command removes all documents from a capped collection. Use the following syntax:

{ emptycapped: "events" }

This command removes all records from the capped collection named events.

Warning: This command obtains a write lock on the affected database and will block other operations until
it has completed.

Note: emptycapped (page 826) is an internal command that is not enabled by default. emptycapped
(page 826) must be enabled by using --setParameter enableTestCommands=1 (page 976) on the
mongod (page 971) command line. emptycapped (page 826) cannot be enabled during run-time.

enableSharding

enableSharding
The enableSharding (page 826) command enables sharding on a per-database level. Use the following
command form:

{ enableSharding: "<database name>" }

Once you’ve enabled sharding in a database, you can use the shardCollection (page 870) command to
begin the process of distributing data among the shards.

eval

eval
The eval (page 826) command evaluates JavaScript functions on the database server and has the following
form:

{
eval: <function>,
args: [<arg1>, <arg2> ...],
nolock: <boolean>

}

The command contains the following fields:

Fields

826 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

• eval (function) – A JavaScript function.

The function need not take any arguments, as in the first example, or may take arguments as
in the second:

function () {
// ...

}

function (arg1, arg2) {
// ...

}

• args (array) – An array of corresponding arguments to pass to the specified JavaScript
function if the function accepts arguments. Omit if the function does not take arguments.

• nolock (boolean) – Optional.

By default, eval (page 826) takes a global write lock before evaluating the JavaScript
function. As a result, eval (page 826) blocks all other read and write operations to the
database while the eval (page 826) operation runs. Set nolock to true on the eval
(page 826) command to prevent the eval (page 826) command from taking the global write
lock before evaluating the JavaScript. nolock does not impact whether operations within
the JavaScript code itself takes a write lock.

Consider the following example which uses eval (page 826) to perform an increment and calculate the average
on the server:

db.runCommand({
eval: function(name, incAmount) {

var doc = db.myCollection.findOne({ name : name });

doc = doc || { name : name , num : 0 , total : 0 , avg : 0 };

doc.num++;
doc.total += incAmount;
doc.avg = doc.total / doc.num;

db.myCollection.save(doc);
return doc;

},
args: ["eliot", 5]

}
);

The db in the function refers to the current database.

The mongo (page 984) shell provides a helper method db.eval() (page 936) 2, so you can express the above
as follows:

db.eval(function(name, incAmount) {
var doc = db.myCollection.findOne({ name : name });

doc = doc || { name : name , num : 0 , total : 0 , avg : 0 };

doc.num++;

2 The helper db.eval() (page 936) in the mongo (page 984) shell wraps the eval (page 826) command. Therefore, the helper method shares
the characteristics and behavior of the underlying command with one exception: db.eval() (page 936) method does not support the nolock
option.

60.1. Reference 827

MongoDB Documentation, Release 2.4.2

doc.total += incAmount;
doc.avg = doc.total / doc.num;

db.myCollection.save(doc);
return doc;

},
"eliot", 5);

If you want to use the server’s interpreter, you must run eval (page 826). Otherwise, the mongo (page 984)
shell’s JavaScript interpreter evaluates functions entered directly into the shell.

If an error occurs, eval (page 826) throws an exception. Consider the following invalid function that uses the
variable x without declaring it as an argument:

db.runCommand(
{
eval: function() { return x + x; },
args: [3]

}
)

The statement will result in the following exception:

{
"errmsg" : "exception: JavaScript execution failed: ReferenceError: x is not defined near ’{ return x + x; }’ ",
"code" : 16722,
"ok" : 0

}

Warning:
•By default, eval (page 826) takes a global write lock before evaluating the JavaScript function. As
a result, eval (page 826) blocks all other read and write operations to the database while the eval
(page 826) operation runs. Set nolock to true on the eval (page 826) command to prevent
the eval (page 826) command from taking the global write lock before evaluating the JavaScript.
nolock does not impact whether operations within the JavaScript code itself takes a write lock.

•Do not use eval (page 826) for long running operations as eval (page 826) blocks all other opera-
tions. Consider using other server side code execution options (page 534).

•You can not use eval (page 826) with sharded data. In general, you should avoid using eval
(page 826) in sharded cluster; nevertheless, it is possible to use eval (page 826) with non-sharded
collections and databases stored in a sharded cluster.

•With authentication (page 1029) enabled, eval (page 826) will fail during the operation if you
do not have the permission to perform a specified task. Changed in version 2.4: You must have full
admin access to run.

Changed in version 2.4: The V8 JavaScript engine, which became the default in 2.4, allows multiple JavaScript
operations to execute at the same time. Prior to 2.4, eval (page 826) executed in a single thread.

See Also:

Server-side JavaScript (page 534)

features (internal)

features
features (page 828) is an internal command that returns the build-level feature settings.

828 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

filemd5

filemd5
The filemd5 (page 829) command returns the md5 hashes for a single files stored using the GridFS specifi-
cation. Client libraries use this command to verify that files are correctly written to MongoDB. The command
takes the files_id of the file in question and the name of the GridFS root collection as arguments. For
example:

{ filemd5: ObjectId("4f1f10e37671b50e4ecd2776"), root: "fs" }

findAndModify

findAndModify
The findAndModify (page 829) command atomically modifies and returns a single document. By default,
the returned document does not include the modifications made on the update. To return the document with the
modifications made on the update, use the new option.

The command has the following syntax:

{
findAndModify: <string>,
query: <document>,
sort: <document>,
remove: <boolean>,
update: <document>,
new: <boolean>,
fields: <document>,
upsert: <boolean>

}

The findAndModify (page 829) command takes the following fields:

Fields

• findAndModify (string) – Required. The collection against which to run the command.

• query (document) – Optional. Specifies the selection criteria for the modifica-
tion. The query field employs the same query selectors (page 737) as used in the
db.collection.find() (page 910) method. Although the query may match multi-
ple documents, findAndModify (page 829) will only select one document to modify.

• sort (document) – Optional. Determines which document the operation will modify if the
query selects multiple documents. findAndModify (page 829) will modify the first doc-
ument in the sort order specified by this argument.

• remove (boolean) – Optional if update field exists. When true, removes the selected
document. The default is false.

• update (document) – Optional if remove field exists. Performs an update of the selected
document. The update field employs the same update operators (page 739) or field:
value specifications to modify the selected document.

• new (boolean) – Optional. When true, returns the modified document rather than the
original. The findAndModify (page 829) method ignores the new option for remove
operations. The default is false.

• fields (document) – Optional. A subset of fields to return. The fields document specifies
an inclusion of a field with 1, as in the following:

60.1. Reference 829

MongoDB Documentation, Release 2.4.2

fields: { <field1>: 1, <field2>: 1, ... }

See projection (page 165).

• upsert (boolean) – Optional. Used in conjunction with the update field. When true, the
findAndModify (page 829) command creates a new document if the query returns no
documents. The default is false.

The findAndModify (page 829) command returns a document, similar to the following:

{
lastErrorObject: {

updatedExisting: <boolean>,
upserted: <boolean>,
n: <num>,
connectionId: <num>,
err: <string>,
ok: <num>

}
value: <document>,
ok: <num>

}

The return document contains the following fields:

•The lastErrorObject field that returns the details of the command:

–The updatedExisting field only appears if the command is either an update or an upsert.

–The upserted field only appears if the command is an upsert.

•The value field that returns either:

–the original (i.e. pre-modification) document if new is false, or

–the modified or inserted document if new: true.

•The ok field that returns the status of the command.

Note: If the findAndModify (page 829) finds no matching document, then:

•for update or remove operations, lastErrorObject does not appear in the return document and
the value field holds a null.

{ "value" : null, "ok" : 1 }

•for an upsert operation that performs an insert, when new is false, and includes a sort option, the
return document has lastErrorObject, value, and ok fields, but the value field holds an empty
document {}.

•for an upsert that performs an insert, when new is false without a specified sort the return docu-
ment has lastErrorObject, value, and ok fields, but the value field holds a null. Changed in
version 2.2: Previously, the command returned an empty document (e.g. {}) in the value field. See the
2.2 release notes (page 1158) for more information.

Consider the following examples:

•The following command updates an existing document in the people collection where the document
matches the query criteria:

830 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

db.runCommand(
{
findAndModify: "people",
query: { name: "Tom", state: "active", rating: { $gt: 10 } },
sort: { rating: 1 },
update: { $inc: { score: 1 } }

}
)

This command performs the following actions:

1.The query finds a document in the people collection where the name field has the value Tom, the
state field has the value active and the rating field has a value greater than (page 749)
10.

2.The sort orders the results of the query in ascending order. If multiple documents meet the query
condition, the command will select for modification the first document as ordered by this sort.

3.The update increments (page 751) the value of the score field by 1.

4.The command returns a document with the following fields:

–The lastErrorObject field that contains the details of the command, including the field
updatedExisting which is true, and

–The value field that contains the original (i.e. pre-modification) document selected for this
update:

{
"lastErrorObject" : {

"updatedExisting" : true,
"n" : 1,
"connectionId" : 1,
"err" : null,
"ok" : 1

},
"value" : {

"_id" : ObjectId("50f1d54e9beb36a0f45c6452"),
"name" : "Tom",
"state" : "active",
"rating" : 100,
"score" : 5

},
"ok" : 1

}

To return the modified document in the value field, add the new:true option to the command.

If no document match the query condition, the command returns a document that contains null in
the value field:

{ "value" : null, "ok" : 1 }

The mongo (page 984) shell and many drivers provide a findAndModify() (page 911) helper method.
Using the shell helper, this previous operation can take the following form:

db.people.findAndModify({
query: { name: "Tom", state: "active", rating: { $gt: 10 } },
sort: { rating: 1 },

60.1. Reference 831

MongoDB Documentation, Release 2.4.2

update: { $inc: { score: 1 } }
});

However, the findAndModify() (page 911) shell helper method returns just the unmodified document,
or the modified document when new is true.

{
"_id" : ObjectId("50f1d54e9beb36a0f45c6452"),
"name" : "Tom",
"state" : "active",
"rating" : 100,
"score" : 5

}

•The following findAndModify (page 829) command includes the upsert: true option to insert
a new document if no document matches the query condition:

db.runCommand(
{
findAndModify: "people",
query: { name: "Gus", state: "active", rating: 100 },
sort: { rating: 1 },
update: { $inc: { score: 1 } },
upsert: true

}
)

If the command does not find a matching document, the command performs an upsert and returns a docu-
ment with the following fields:

–The lastErrorObject field that contains the details of the command, including the field
upserted that contains the ObjectId of the newly inserted document, and

–The value field that contains an empty document {} as the original document because the command
included the sort option:

{
"lastErrorObject" : {

"updatedExisting" : false,
"upserted" : ObjectId("50f2329d0092b46dae1dc98e"),
"n" : 1,
"connectionId" : 1,
"err" : null,
"ok" : 1

},
"value" : {

},
"ok" : 1

}

If the command did not include the sort option, the value field would contain null:

{
"value" : null,
"lastErrorObject" : {

"updatedExisting" : false,
"n" : 1,
"upserted" : ObjectId("5102f7540cb5c8be998c2e99")

},

832 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

"ok" : 1
}

•The following findAndModify (page 829) command includes both upsert: true option and the
new:true option to return the newly inserted document in the value field if a document matching the
query is not found:

db.runCommand(
{
findAndModify: "people",
query: { name: "Pascal", state: "active", rating: 25 },
sort: { rating: 1 },
update: { $inc: { score: 1 } },
upsert: true,
new: true

}
)

The command returns the newly inserted document in the value field:

{
"lastErrorObject" : {

"updatedExisting" : false,
"upserted" : ObjectId("50f47909444c11ac2448a5ce"),
"n" : 1,
"connectionId" : 1,
"err" : null,
"ok" : 1

},
"value" : {

"_id" : ObjectId("50f47909444c11ac2448a5ce"),
"name" : "Pascal",
"rating" : 25,
"score" : 1,
"state" : "active"

},
"ok" : 1

}

When the findAndModify (page 829) command includes the upsert: true option and the query
field(s) is not uniquely indexed, the method could insert a document multiple times in certain circumstances. For
instance, if multiple clients issue the findAndModify (page 829) command and these commands complete
the find phase before any one starts the modify phase, these commands could insert the same document.

Consider an example where no document with the name Andy exists and multiple clients issue the following
command:

db.runCommand(
{
findAndModify: "people",
query: { name: "Andy" },
sort: { rating: 1 },
update: { $inc: { score: 1 } },
upsert: true

}
)

If all the commands finish the query phase before any command starts the modify phase, and there is no
unique index on the name field, the commands may all perform an upsert. To prevent this condition, create a

60.1. Reference 833

MongoDB Documentation, Release 2.4.2

unique index (page 308) on the name field. With the unique index in place, then the multiple findAndModify
(page 829) commands would observe one of the following behaviors:

•Exactly one findAndModify (page 829) would successfully insert a new document.

•Zero or more findAndModify (page 829) commands would update the newly inserted document.

•Zero or more findAndModify (page 829) commands would fail when they attempted to insert a dupli-
cate. If the command fails due to a unique index constraint violation, you can retry the command. Absent
a delete of the document, the retry should not fail.

Warning: When using findAndModify (page 829) in a sharded environment, the query must contain
the shard key for all operations against the shard cluster. findAndModify (page 829) operations issued
against mongos (page 981) instances for non-sharded collections function normally.

Note: This command obtains a write lock on the affected database and will block other operations until it has
completed; however, typically the write lock is short lived and equivalent to other similar update() (page 932)
operations.

flushRouterConfig

flushRouterConfig
flushRouterConfig (page 834) clears the current cluster information cached by a mongos (page 981)
instance and reloads all sharded cluster metadata from the config database.

This forces an update when the configuration database holds data that is newer than the data cached in the
mongos (page 981) process.

Warning: Do not modify the config data, except as explicitly documented. A config database cannot
typically tolerate manual manipulation.

flushRouterConfig (page 834) is an administrative command that is only available for mongos
(page 981) instances. New in version 1.8.2.

forceerror (internal)

forceerror
The forceerror (page 834) command is for testing purposes only. Use forceerror (page 834) to force a
user assertion exception. This command always returns an ok value of 0.

fsync

fsync
The fsync (page 834) command forces the mongod (page 971) process to flush all pending writes to the
storage layer. mongod (page 971) is always writing data to the storage layer as applications write more data
to the database. MongoDB guarantees that it will write all data to disk within the syncdelay (page 1032)
interval, which is 60 seconds by default.

{ fsync: 1 }

The fsync (page 834) operation is synchronous by default, to run fsync (page 834) asynchronously, use the
following form:

834 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

{ fsync: 1, async: true }

The connection will return immediately. You can check the output of db.currentOp() (page 936) for the
status of the fsync (page 834) operation.

The primary use of fsync (page 834) is to lock the database during backup operations. This will flush all data
to the data storage layer and block all write operations until you unlock the database. Consider the following
command form:

{ fsync: 1, lock: true }

Note: You may continue to perform read operations on a database that has a fsync (page 834) lock. However,
following the first write operation all subsequent read operations wait until you unlock the database.

To check on the current state of the fsync lock, use db.currentOp() (page 936). Use the following
JavaScript function in the shell to test if the database is currently locked:

serverIsLocked = function () {
var co = db.currentOp();
if (co && co.fsyncLock) {

return true;
}
return false;

}

After loading this function into your mongo (page 984) shell session you can call it as follows:

serverIsLocked()

This function will return true if the database is currently locked and false if the database is not locked. To
unlock the database, make a request for an unlock using the following command:

db.getSiblingDB("admin").$cmd.sys.unlock.findOne();

New in version 1.9.0: The db.fsyncLock() (page 938) and db.fsyncUnlock() (page 938) helpers
in the shell. In the mongo (page 984) shell, you may use the db.fsyncLock() (page 938) and
db.fsyncUnlock() (page 938) wrappers for the fsync (page 834) lock and unlock process:

db.fsyncLock();
db.fsyncUnlock();

Note: fsync (page 834) lock is only possible on individual shards of a sharded cluster, not on the en-
tire sharded cluster. To backup an entire sharded cluster, please read Sharded Cluster Backup Considerations
(page 42).

If your mongod (page 971) has journaling enabled, consider using another method (page 47) to back up your
database.

Note: The database cannot be locked with db.fsyncLock() (page 938) while profiling is enabled. You
must disable profiling before locking the database with db.fsyncLock() (page 938). Disable profiling using
db.setProfilingLevel() (page 945) as follows in the mongo (page 984) shell:

db.setProfilingLevel(0)

60.1. Reference 835

MongoDB Documentation, Release 2.4.2

geoNear

geoNear
The geoNear (page 836) command provides an alternative to the $near (page 756) operator. In addition to
the functionality of $near (page 756), geoNear (page 836) returns additional diagnostic information.

The geoNear (page 836) command can use either a GeoJSON point or legacy coordinate pairs.

For a GeoJSON point, use the following syntax:

db.runCommand({ geoNear : <collection> ,
near : { type : "Point" ,

coordinates: [<coordinates>] } ,
spherical : true })

For legacy coordinate pairs, use:

{ geoNear : <collection> , near : [<coordinates>] }

The geoNear (page 836) command provides the following options. Specify all distances in the same units as
the document coordinate system:

Fields

• near – Can use either a GeoJSON point or legacy points, as shown above.

• limit – Optional. Specifies the maximum number of documents to return. The default value
is 100. See also the num option.

• num – Optional. Synonym for the limit option. If both num and limit are included,
the num value overrides the limit value.

• maxDistance – Optional. Limits the results to those falling within a given distance of the
center coordinate. For GeoJSON data distance is in meters. For grid coordinate (page 335)
data distance is in radians.

• query – Optional. Further narrows the results using any standard MongoDB query oper-
ator or selection. See db.collection.find() (page 910) and “Query, Update, and
Projection Operators Quick Reference (page 737)” for more information.

• spherical – Optional. Default: false. When true MongoDB will return the query as if
the coordinate system references points on a spherical plane rather than a plane.

• distanceMultiplier – Optional. Specifies a factor to multiply all distances returned by
geoNear (page 836). For example, use distanceMultiplier to convert from spher-
ical queries returned in radians to linear units (i.e. miles or kilometers) by multiplying by
the radius of the Earth.

• includeLocs – Optional. Default: false. When specified true, the query will return the
location of the matching documents in the result.

• uniqueDocs – Optional. Default true. The default settings will only return a matching
document once, even if more than one of its location fields match the query. When false
the query will return documents with multiple matching location fields more than once. See
$uniqueDocs (page 776) for more information on this option

geoSearch

geoSearch
The geoSearch (page 836) command provides an interface to MongoDB’s haystack index functionality. These

836 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

indexes are useful for returning results based on location coordinates after collecting results based on some other
query (i.e. a “haystack.”) Consider the following example:

{ geoSearch : "places", near : [33, 33], maxDistance : 6, search : { type : "restaurant" }, limit : 30 }

The above command returns all documents with a type of restaurant having a maximum distance of 6
units from the coordinates [30,33] in the collection places up to a maximum of 30 results.

Unless specified otherwise, the geoSearch (page 836) command limits results to 50 documents.

geoWalk

geoWalk
geoWalk (page 837) is an internal command.

getCmdLineOpts

getCmdLineOpts
The getCmdLineOpts (page 837) command returns a document containing command line options used to
start the given mongod (page 971):

{ getCmdLineOpts: 1 }

This command returns a document with two fields, argv and parsed. The argv field contains an array
with each item from the command string used to invoke mongod (page 971). The document in the parsed
field includes all runtime options, including those parsed from the command line and those specified in the
configuration file, if specified.

Consider the following example output of getCmdLineOpts (page 837):

{
"argv" : [

"/usr/bin/mongod",
"--config",
"/etc/mongodb.conf",
"--fork"

],
"parsed" : {

"bind_ip" : "127.0.0.1",
"config" : "/etc/mongodb/mongodb.conf",
"dbpath" : "/srv/mongodb",
"fork" : true,
"logappend" : "true",
"logpath" : "/var/log/mongodb/mongod.log",
"quiet" : "true"

},
"ok" : 1

}

http://docs.mongodb.org/manual/administration/import-export/

getLastError

getLastError
The getLastError (page 837) command returns the error status of the last operation on the current connec-
tion. By default MongoDB does not provide a response to confirm the success or failure of a write operation,

60.1. Reference 837

http://docs.mongodb.org/manual/administration/import-export/

MongoDB Documentation, Release 2.4.2

clients typically use getLastError (page 837) in combination with write operations to ensure that the write
succeeds.

Consider the following prototype form.

{ getLastError: 1 }

The following options are available:

Parameters

• j (boolean) – If true, wait for the next journal commit before returning, rather than a full
disk flush. If mongod (page 971) does not have journaling enabled, this option has no
effect.

• w – When running with replication, this is the number of servers to replicate to before
returning. A w value of 1 indicates the primary only. A w value of 2 includes the primary
and at least one secondary, etc. In place of a number, you may also set w to majority
to indicate that the command should wait until the latest write propagates to a majority of
replica set members. If using w, you should also use wtimeout. Specifying a value for
w without also providing a wtimeout may cause getLastError (page 837) to block
indefinitely.

• fsync (boolean) – If true, wait for mongod (page 971) to write this data to disk before
returning. Defaults to false. In most cases, use the j option to ensure durability and consis-
tency of the data set.

• wtimeout (integer) – Optional. Milliseconds. Specify a value in milliseconds to control
how long to wait for write propagation to complete. If replication does not complete in
the given timeframe, the getLastError (page 837) command will return with an error
status.

See Also:

Write Concern (page 174), Replica Set Write Concern (page 378), and db.getLastError() (page 939).

getLog

getLog
The getLog (page 838) command returns a document with a log array that contains recent messages from the
mongod (page 971) process log. The getLog (page 838) command has the following syntax:

{ getLog: <log> }

Replace <log> with one of the following values:

•global - returns the combined output of all recent log entries.

•rs - if the mongod (page 971) is part of a replica set, getLog (page 838) will return recent notices
related to replica set activity.

•startupWarnings - will return logs that may contain errors or warnings from MongoDB’s log from
when the current process started. If mongod (page 971) started without warnings, this filter may return an
empty array.

You may also specify an asterisk (e.g. *) as the <log> value to return a list of available log filters. The
following interaction from the mongo (page 984) shell connected to a replica set:

db.adminCommand({getLog: "*" })
{ "names" : ["global", "rs", "startupWarnings"], "ok" : 1 }

838 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

getLog (page 838) returns events from a RAM cache of the mongod (page 971) events and does not read log
data from the log file.

getParameter

getParameter
getParameter (page 839) is an administrative command for retrieving the value of options normally set on
the command line. Issue commands against the admin database as follows:

{ getParameter: 1, <option>: 1 }

The values specified for getParameter and <option> do not affect the output. The command works with
the following options:

•quiet

•notablescan

•logLevel

•syncdelay

See Also:

setParameter (page 869) for more about these parameters.

getPrevError

getPrevError
The getPrevError (page 839) command returns the errors since the last resetError (page 868) com-
mand.

See Also:

db.getPrevError() (page 940)

getShardMap (internal)

getShardMap
getShardMap (page 839) is an internal command that supports the sharding functionality.

getShardVersion (internal)

getShardVersion
getShardVersion (page 839) is an internal command that supports sharding functionality.

getnonce (internal)

getnonce
Client libraries use getnonce (page 839) to generate a one-time password for authentication.

getoptime (internal)

getoptime
getoptime (page 839) is an internal command.

60.1. Reference 839

MongoDB Documentation, Release 2.4.2

godinsert (internal)

godinsert
godinsert (page 840) is an internal command for testing purposes only.

Note: This command obtains a write lock on the affected database and will block other operations until it has
completed.

Note: godinsert (page 840) is an internal command that is not enabled by default. godinsert (page 840)
must be enabled by using --setParameter enableTestCommands=1 (page 976) on the mongod
(page 971) command line. godinsert (page 840) cannot be enabled during run-time.

group

group
The group (page 840) command groups documents in a collection by the specified key and performs simple
aggregation functions such as computing counts and sums. The command is analogous to a SELECT ...
GROUP BY statement in SQL. The command returns a document with the grouped records as well as the com-
mand meta-data.

The group (page 840) command takes the following prototype form:

{ group: { ns: <namespace>,
key: <key>,
$reduce: <reduce function>,
$keyf: <key function>,
cond: <query>,
finalize: <finalize function> } }

The command fields are as follows:

Fields

• ns – Specifies the collection from which to perform the group by operation.

• key – Specifies one or more document fields to group. Returns a “key object” for use as the
grouping key.

• $reduce – Specifies an aggregation function that operates on the documents during the
grouping operation, such as compute a sum or a count. The aggregation function takes
two arguments: the current document and an aggregation result document for that group.

• initial – Initializes the aggregation result document.

• $keyf – Optional. Alternative to the key field. Specifies a function that creates a “key
object” for use as the grouping key. Use the keyf instead of key to group by calculated
fields rather than existing document fields.

• cond – Optional. Specifies the selection criteria to determine which documents in the collec-
tion to process. If the cond field is omitted, the db.collection.group() (page 917)
processes all the documents in the collection for the group operation.

• finalize – Optional. Specifies a function that runs each item in the result set before
db.collection.group() (page 917) returns the final value. This function can either
modify the result document or replace the result document as a whole.

840 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Note: Unlike the $keyf and the $reduce fields that specify a function, the field name is
finalize and not $finalize.

Warning: The group (page 840) command does not work with sharded clusters. Use the aggregation
framework or map-reduce in sharded environments.

Note:

•The result set must fit within the maximum BSON document size (page 1105).

•Additionally, in version 2.2, the returned array can contain at most 20,000 elements; i.e. at most 20,000
unique groupings. For group by operations that results in more than 20,000 unique groupings, use
mapReduce (page 851). Previous versions had a limit of 10,000 elements.

Changed in version 2.4.

•In MongoDB 2.4, map-reduce operations (page 851), the group (page 840) command, and
$where (page 777) operator expressions cannot access certain global functions or properties, such as
db, that are available in the mongo (page 984) shell.

When upgrading to MongoDB 2.4, you will need to refactor your code if your map-reduce
operations (page 851), group (page 840) commands, or $where (page 777) operator expressions
include any global shell functions or properties that are no longer available, such as db.

The following shell functions and properties are available to map-reduce operations (page 851),
the group (page 840) command, and $where (page 777) operator expressions in MongoDB 2.4:

Available Properties Available Functions

args

MaxKey

MinKey

assert()

BinData()

DBPointer()

DBRef()

doassert()

emit()

gc()

HexData()

hex_md5()

isNumber()

isObject()

ISODate()

isString()

Map()

MD5()

NumberInt()

NumberLong()

ObjectId()

print()

sleep()

Timestamp()

UUID()

version()

•Prior to 2.4, the group (page 840) command took the mongod (page 971) instance’s JavaScript lock,
which blocked all other JavaScript execution.

For the shell, MongoDB provides a wrapper method db.collection.group() (page 917); however, the
db.collection.group() (page 917) method takes the keyf field and the reduce field whereas the
group (page 840) command takes the $keyf field and the $reduce field.

Consider the following examples of the db.collection.group() (page 917) method:

The examples assume an orders collection with documents of the following prototype:

60.1. Reference 841

MongoDB Documentation, Release 2.4.2

{
_id: ObjectId("5085a95c8fada716c89d0021"),
ord_dt: ISODate("2012-07-01T04:00:00Z"),
ship_dt: ISODate("2012-07-02T04:00:00Z"),
item: { sku: "abc123",

price: 1.99,
uom: "pcs",
qty: 25 }

}

•The following example groups by the ord_dt and item.sku fields those documents that have ord_dt
greater than 01/01/2012:

db.runCommand({ group:
{
ns: ’orders’,
key: { ord_dt: 1, ’item.sku’: 1 },
cond: { ord_dt: { $gt: new Date(’01/01/2012’) } },
$reduce: function (curr, result) { },
initial: { }

}
})

The result is a documents that contain the retval field which contains the group by records, the count
field which contains the total number of documents grouped, the keys field which contains the number of
unique groupings (i.e. number of elements in the retval), and the ok field which contains the command
status:

{ "retval" :
[{ "ord_dt" : ISODate("2012-07-01T04:00:00Z"), "item.sku" : "abc123"},
{ "ord_dt" : ISODate("2012-07-01T04:00:00Z"), "item.sku" : "abc456"},
{ "ord_dt" : ISODate("2012-07-01T04:00:00Z"), "item.sku" : "bcd123"},
{ "ord_dt" : ISODate("2012-07-01T04:00:00Z"), "item.sku" : "efg456"},
{ "ord_dt" : ISODate("2012-06-01T04:00:00Z"), "item.sku" : "abc123"},
{ "ord_dt" : ISODate("2012-06-01T04:00:00Z"), "item.sku" : "efg456"},
{ "ord_dt" : ISODate("2012-06-01T04:00:00Z"), "item.sku" : "ijk123"},
{ "ord_dt" : ISODate("2012-05-01T04:00:00Z"), "item.sku" : "abc123"},
{ "ord_dt" : ISODate("2012-05-01T04:00:00Z"), "item.sku" : "abc456"},
{ "ord_dt" : ISODate("2012-06-08T04:00:00Z"), "item.sku" : "abc123"},
{ "ord_dt" : ISODate("2012-06-08T04:00:00Z"), "item.sku" : "abc456"}

],
"count" : 13,
"keys" : 11,
"ok" : 1 }

The method call is analogous to the SQL statement:

SELECT ord_dt, item_sku
FROM orders
WHERE ord_dt > ’01/01/2012’
GROUP BY ord_dt, item_sku

•The following example groups by the ord_dt and item.sku fields, those documents that have ord_dt
greater than 01/01/2012 and calculates the sum of the qty field for each grouping:

db.runCommand({ group:
{
ns: ’orders’,
key: { ord_dt: 1, ’item.sku’: 1 },

842 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

cond: { ord_dt: { $gt: new Date(’01/01/2012’) } },
$reduce: function (curr, result) {

result.total += curr.item.qty;
},

initial: { total : 0 }
}

})

The retval field of the returned document is an array of documents that contain the group by fields and
the calculated aggregation field:

{ "retval" :
[{ "ord_dt" : ISODate("2012-07-01T04:00:00Z"), "item.sku" : "abc123", "total" : 25 },
{ "ord_dt" : ISODate("2012-07-01T04:00:00Z"), "item.sku" : "abc456", "total" : 25 },
{ "ord_dt" : ISODate("2012-07-01T04:00:00Z"), "item.sku" : "bcd123", "total" : 10 },
{ "ord_dt" : ISODate("2012-07-01T04:00:00Z"), "item.sku" : "efg456", "total" : 10 },
{ "ord_dt" : ISODate("2012-06-01T04:00:00Z"), "item.sku" : "abc123", "total" : 25 },
{ "ord_dt" : ISODate("2012-06-01T04:00:00Z"), "item.sku" : "efg456", "total" : 15 },
{ "ord_dt" : ISODate("2012-06-01T04:00:00Z"), "item.sku" : "ijk123", "total" : 20 },
{ "ord_dt" : ISODate("2012-05-01T04:00:00Z"), "item.sku" : "abc123", "total" : 45 },
{ "ord_dt" : ISODate("2012-05-01T04:00:00Z"), "item.sku" : "abc456", "total" : 25 },
{ "ord_dt" : ISODate("2012-06-08T04:00:00Z"), "item.sku" : "abc123", "total" : 25 },
{ "ord_dt" : ISODate("2012-06-08T04:00:00Z"), "item.sku" : "abc456", "total" : 25 }

],
"count" : 13,
"keys" : 11,
"ok" : 1 }

The method call is analogous to the SQL statement:

SELECT ord_dt, item_sku, SUM(item_qty) as total
FROM orders
WHERE ord_dt > ’01/01/2012’
GROUP BY ord_dt, item_sku

•The following example groups by the calculated day_of_week field, those documents that have
ord_dt greater than 01/01/2012 and calculates the sum, count, and average of the qty field for
each grouping:

db.runCommand({ group:
{
ns: ’orders’,
$keyf: function(doc) {

return { day_of_week: doc.ord_dt.getDay() } ; },
cond: { ord_dt: { $gt: new Date(’01/01/2012’) } },
$reduce: function (curr, result) {

result.total += curr.item.qty;
result.count++;

},
initial: { total : 0, count: 0 },
finalize: function(result) {

var weekdays = ["Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday",
"Friday", "Saturday"];

result.day_of_week = weekdays[result.day_of_week];
result.avg = Math.round(result.total / result.count);

}

60.1. Reference 843

MongoDB Documentation, Release 2.4.2

}
})

The retval field of the returned document is an array of documents that contain the group by fields and
the calculated aggregation field:

{ "retval" :
[{ "day_of_week" : "Sunday", "total" : 70, "count" : 4, "avg" : 18 },
{ "day_of_week" : "Friday", "total" : 110, "count" : 6, "avg" : 18 },
{ "day_of_week" : "Tuesday", "total" : 70, "count" : 3, "avg" : 23 }

],
"count" : 13,
"keys" : 3,
"ok" : 1 }

See Also:

Aggregation Framework (page 249)

handshake (internal)

handshake
handshake (page 844) is an internal command.

_hashBSONElement (internal)

_hashBSONElement
New in version 2.4. _hashBSONElement (page 844) is an internal command that computes the MD5 hash of
a BSON element. _hashBSONElement (page 844) returns 8 bytes from the 16 byte MD5 hash.

Parameters

• key (BSONElement) – Specifies the BSON element to hash.

• seed (integer) – Specifies a seed to use to compute the hash.

Returns A document consisting of key, seed, out and ok fields.

Fields

• key (BSONType) – The original BSON element.

• seed (integer) – The seed used for the hash, defaults to 0.

• out (NumberLong) – The decimal result of the hash.

• ok (integer) – Holds the 1 if the function returns successfully, and 0 if the operation en-
countered an error.

Note: _hashBSONElement (page 844) is an internal command that is not enabled by
default. _hashBSONElement (page 844) must be enabled by using --setParameter
enableTestCommands=1 (page 976) on the mongod (page 971) command line. _hashBSONElement
(page 844) cannot be enabled during run-time.

Example

844 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

mongod --setParameter=enableTestCommands=1

Example

Hash an ISODate string:

db.runCommand({_hashBSONElement: ISODate("2013-02-12T22:12:57.211Z")})

Which returns the following document:

{
"key" : ISODate("2013-02-12T22:12:57.211Z"),
"seed" : 0,
"out" : NumberLong("-4185544074338741873"),
"ok" : 1

}

Hash the same ISODate string but specify a seed value:

db.runCommand({_hashBSONElement: ISODate("2013-02-12T22:12:57.211Z"), seed:2013})

Which returns the following document:

{
"key" : ISODate("2013-02-12T22:12:57.211Z"),
"seed" : 2013,
"out" : NumberLong("7845924651247493302"),
"ok" : 1

}

hostInfo

hostInfo
New in version 2.2.

Returns A document with information about the underlying system that the mongod (page 971) or
mongos (page 981) runs on. Some of the returned fields are only included on some platforms.

You must run the hostInfo (page 845) command, which takes no arguments, against the admin database.
Consider the following invocations of hostInfo (page 845):

db.hostInfo()
db.adminCommand({ "hostInfo" : 1 })

In the mongo (page 984) shell you can use db.hostInfo() (page 940) as a helper to access hostInfo
(page 845). The output of hostInfo (page 845) on a Linux system will resemble the following:

{
"system" : {

"currentTime" : ISODate("<timestamp>"),
"hostname" : "<hostname>",
"cpuAddrSize" : <number>,
"memSizeMB" : <number>,
"numCores" : <number>,
"cpuArch" : "<identifier>",
"numaEnabled" : <boolean>

},

60.1. Reference 845

MongoDB Documentation, Release 2.4.2

"os" : {
"type" : "<string>",
"name" : "<string>",
"version" : "<string>"

},
"extra" : {

"versionString" : "<string>",
"libcVersion" : "<string>",
"kernelVersion" : "<string>",
"cpuFrequencyMHz" : "<string>",
"cpuFeatures" : "<string>",
"pageSize" : <number>,
"numPages" : <number>,
"maxOpenFiles" : <number>

},
"ok" : <return>

}

Consider the following documentation of these fields:

hostInfo
The document returned by the hostInfo (page 845).

hostInfo.system
A sub-document about the underlying environment of the system running the mongod (page 971) or
mongos (page 981)

hostInfo.system.currentTime
A time stamp of the current system time.

hostInfo.system.hostname
The system name, which should correspond to the output of hostname -f on Linux systems.

hostInfo.system.cpuAddrSize
A number reflecting the architecture of the system. Either 32 or 64.

hostInfo.system.memSizeMB
The total amount of system memory (RAM) in megabytes.

hostInfo.system.numCores
The total number of available logical processor cores.

hostInfo.system.cpuArch
A string that represents the system architecture. Either x86 or x86_64.

hostInfo.system.numaEnabled
A boolean value. false if NUMA is interleaved (i.e. disabled,) otherwise true.

hostInfo.os
A sub-document that contains information about the operating system running the mongod (page 971)
and mongos (page 981).

hostInfo.os.type
A string representing the type of operating system, such as Linux or Windows.

hostInfo.os.name
If available, returns a display name for the operating system.

hostInfo.os.version
If available, returns the name of the distribution or operating system.

846 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

hostInfo.extra
A sub-document with extra information about the operating system and the underlying hardware. The
content of the extra (page 846) sub-document depends on the operating system.

hostInfo.extra.versionString
A complete string of the operating system version and identification. On Linux and OS X systems, this
contains output similar to uname -a.

hostInfo.extra.libcVersion
The release of the system libc.

libcVersion (page 847) only appears on Linux systems.

hostInfo.extra.kernelVersion
The release of the Linux kernel in current use.

kernelVersion (page 847) only appears on Linux systems.

hostInfo.extra.alwaysFullSync
alwaysFullSync (page 847) only appears on OS X systems.

hostInfo.extra.nfsAsync
nfsAsync (page 847) only appears on OS X systems.

hostInfo.extra.cpuFrequencyMHz
Reports the clock speed of the system’s processor in megahertz.

hostInfo.extra.cpuFeatures
Reports the processor feature flags. On Linux systems this the same information that
http://docs.mongodb.org/manual/proc/cpuinfo includes in the flags fields.

hostInfo.extra.pageSize
Reports the default system page size in bytes.

hostInfo.extra.numPages
numPages (page 847) only appears on Linux systems.

hostInfo.extra.maxOpenFiles
Reports the current system limits on open file handles. See Linux ulimit Settings (page 105) for more
information.

maxOpenFiles (page 847) only appears on Linux systems.

hostInfo.extra.scheduler
Reports the active I/O scheduler. scheduler (page 847) only appears on OS X systems.

isMaster

isMaster
The isMaster (page 847) command provides a basic overview of the current replication configuration. Mon-
goDB drivers and clients use this command to determine what kind of member they’re connected to and to
discover additional members of a replica set. The db.isMaster() (page 941) method provides a wrapper
around this database command.

The command takes the following form:

{ isMaster: 1 }

This command returns a document containing the following fields:

isMaster.setname
The name of the current replica set, if applicable.

60.1. Reference 847

MongoDB Documentation, Release 2.4.2

isMaster.ismaster
A boolean value that reports when this node is writable. If true, then the current node is either a primary
in a replica set, a master in a master-slave configuration, or a standalone mongod (page 971).

isMaster.secondary
A boolean value that, when true, indicates that the current member is a secondary member of a replica
set.

isMaster.hosts
An array of strings in the format of “[hostname]:[port]” listing all members of the replica set that
are not “hidden”.

isMaster.arbiter
An array of strings in the format of “[hostname]:[port]” listing all members of the replica set that
are arbiters

Only appears in the isMaster (page 847) response for replica sets that have arbiter members.

isMaster.arbiterOnly
A boolean value that, when true indicates that the current instance is an arbiter.

arbiterOnly (page 848) only appears in the isMaster (page 847) response from arbiters.

isMaster.primary
The [hostname]:[port] for the current replica set primary, if applicable.

isMaster.me
The [hostname]:[port] of the node responding to this command.

isMaster.maxBsonObjectSize
The maximum permitted size of a BSON object in bytes for this mongod (page 971) process. If not
provided, clients should assume a max size of “4 * 1024 * 1024”.

isMaster.localTime
New in version 2.1.1. Returns the local server time in UTC. This value is a ISOdate. You can use the
toString() JavaScript method to convert this value to a local date string, as in the following example:

db.isMaster().localTime.toString();

isSelf (internal)

_isSelf
_isSelf (page 848) is an internal command.

isdbgrid

isdbgrid
This command verifies that a process is a mongos (page 981).

If you issue the isdbgrid (page 848) command when connected to a mongos (page 981), the response
document includes the isdbgrid field set to 1. The returned document is similar to the following:

{ "isdbgrid" : 1, "hostname" : "app.example.net", "ok" : 1 }

If you issue the isdbgrid (page 848) command when connected to a mongod (page 971), MongoDB returns
an error document. The isdbgrid (page 848) command is not available to mongod (page 971). The error
document, however, also includes a line that reads "isdbgrid" : 1, just as in the document returned for a
mongos (page 981). The error document is similar to the following:

848 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

{
"errmsg" : "no such cmd: isdbgrid",
"bad cmd" : {

"isdbgrid" : 1
},
"ok" : 0

}

You can instead use the isMaster (page 847) command to determine connection to a mongos (page 981).
When connected to a mongos (page 981), the isMaster (page 847) command returns a document that con-
tains the string isdbgrid in the msg field.

journalLatencyTest

journalLatencyTest
journalLatencyTest (page 849) is an administrative command that tests the length of time required
to write and perform a file system sync (e.g. fsync) for a file in the journal directory. You must issue the
journalLatencyTest (page 849) command against the admin database in the form:

{ journalLatencyTest: 1 }

The value (i.e. 1 above), does not affect the operation of the command.

Note: journalLatencyTest (page 849) is an internal command that is not enabled by
default. journalLatencyTest (page 849) must be enabled by using --setParameter
enableTestCommands=1 (page 976) on the mongod (page 971) command line. journalLatencyTest
(page 849) cannot be enabled during run-time.

listCommands

listCommands
The listCommands (page 849) command generates a list of all database commands implemented for the
current mongod (page 971) instance.

listDatabases

listDatabases
The listDatabases (page 849) command provides a list of existing databases along with basic statistics
about them:

{ listDatabases: 1 }

The value (e.g. 1) does not affect the output of the command. listDatabases (page 849) returns a document
for each database Each document contains a name field with the database name, a sizeOnDisk field with the
total size of the database file on disk in bytes, and an empty field specifying whether the database has any data.

listShards

listShards
Use the listShards (page 849) command to return a list of configured shards. The command takes the
following form:

60.1. Reference 849

MongoDB Documentation, Release 2.4.2

{ listShards: 1 }

logRotate

logRotate
The logRotate (page 850) command is an administrative command that allows you to rotate the Mon-
goDB logs to prevent a single logfile from consuming too much disk space. You must issue the logRotate
(page 850) command against the admin database in the form:

{ logRotate: 1 }

Note: Your mongod (page 971) instance needs to be running with the --logpath [file] (page 972)
option.

You may also rotate the logs by sending a SIGUSR1 signal to the mongod (page 971) process. If your mongod
(page 971) has a process ID of 2200, here’s how to send the signal on Linux:

kill -SIGUSR1 2200

logRotate (page 850) renames the existing log file by appending the current timestamp to the filename. The
appended timestamp has the following form:

<YYYY>-<mm>-<DD>T<HH>-<MM>-<SS>

Then logRotate (page 850) creates a new log file with the same name as originally specified by the logpath
(page 1028) setting to mongod (page 971) or mongos (page 981).

Note: New in version 2.0.3: The logRotate (page 850) command is available to mongod (page 971) in-
stances running on Windows systems with MongoDB release 2.0.3 and higher.

logout

logout
The logout (page 850) command terminates the current authenticated session:

{ logout: 1 }

Note: If you’re not logged in and using authentication, logout (page 850) has no effect. Changed in version
2.4: Because MongoDB now allows users defined in one database to have privileges on another database,
you must call logout (page 850) while using the same database context that you authenticated to. If you
authenticated to a database such as users or $external, you must issue logout (page 850) against this
database in order to successfully log out.

Example

Use the use <database-name> helper in the interactive mongo (page 984) shell, or the following
db.getSiblingDB() (page 940) in the interactive shell or in mongo (page 984) shell scripts to change
the db object:

db = db.getSiblingDB(’<database-name>’)

850 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

When you have set the database context and db object, you can use the logout (page 850) to log out of
database as in the following operation:

db.runCommand({ logout: 1 })

mapReduce

mapReduce
The mapReduce (page 851) command allows you to run map-reduce aggregation operations over a collection.
The mapReduce (page 851) command has the following prototype form:

db.runCommand(
{
mapReduce: <collection>,
map: <function>,
reduce: <function>,
out: <output>,
query: <document>,
sort: <document>,
limit: <number>,
finalize: <function>,
scope: <document>,
jsMode: <boolean>,
verbose: <boolean>

}
)

Pass the name of the collection to the mapReduce command (i.e. <collection>) to use as the source
documents to perform the map reduce operation. The command also accepts the following parameters:

Parameters

• map – A JavaScript function that associates or “maps” a value with a key and emits the
key and value pair.

The map function processes every input document for the map-reduce operation. The map-
reduce operation groups the emitted value objects by the key and passes these groupings
to the reduce function.

• reduce – A JavaScript function that “reduces” to a single object all the values associated
with a particular key.

The reduce function accepts two arguments: key and values. The values argument
is an array whose elements are the value objects that are “mapped” to the key.

• out – New in version 1.8. Specifies the location of the result of the map-reduce operation.
You can output to a collection, output to a collection with an action, or output inline. You
may output to a collection when performing map reduce operations on the primary members
of the set; on secondary members you may only use the inline output.

• query – Optional. Specifies the selection criteria using query operators (page 737) for
determining the documents input to the map function.

• sort – Optional. Sorts the input documents. This option is useful for optimization. For
example, specify the sort key to be the same as the emit key so that there are fewer reduce
operations.

• limit – Optional. Specifies a maximum number of documents to return from the collection.

60.1. Reference 851

MongoDB Documentation, Release 2.4.2

• finalize – Optional. A JavaScript function that follows the reduce method and modifies
the output.

The finalize function receives two arguments: key and reducedValue. The
reducedValue is the value returned from the reduce function for the key.

• scope (document) – Optional. Specifies global variables that are accessible in the map ,
reduce and the finalize functions.

• jsMode (Boolean) – New in version 2.0. Optional. Specifies whether to convert intermedi-
ate data into BSON format between the execution of the map and reduce functions.

If false:

– Internally, MongoDB converts the JavaScript objects emitted by the map function to
BSON objects. These BSON objects are then converted back to JavaScript objects when
calling the reduce function.

– The map-reduce operation places the intermediate BSON objects in temporary, on-disk
storage. This allows the map-reduce operation to execute over arbitrarily large data sets.

If true:

– Internally, the JavaScript objects emitted during map function remain as JavaScript ob-
jects. There is no need to convert the objects for the reduce function, which can result
in faster execution.

– You can only use jsMode for result sets with fewer than 500,000 distinct key arguments
to the mapper’s emit() function.

The jsMode defaults to false.

• verbose (Boolean) – Optional. Specifies whether to include the timing information in the
result information. The verbose defaults to true to include the timing information.

The following is a prototype usage of the mapReduce (page 851) command:

var mapFunction = function() { ... };
var reduceFunction = function(key, values) { ... };

db.runCommand(
{
mapReduce: ’orders’,
map: mapFunction,
reduce: reduceFunction,
out: { merge: ’map_reduce_results’, db: ’test’ },
query: { ord_date: { $gt: new Date(’01/01/2012’) } }

}
)

Note: Changed in version 2.4. In MongoDB 2.4, map-reduce operations (page 851), the group (page 840)
command, and $where (page 777) operator expressions cannot access certain global functions or properties, such as
db, that are available in the mongo (page 984) shell.

When upgrading to MongoDB 2.4, you will need to refactor your code if your map-reduce operations
(page 851), group (page 840) commands, or $where (page 777) operator expressions include any global shell
functions or properties that are no longer available, such as db.

The following shell functions and properties are available to map-reduce operations (page 851), the group
(page 840) command, and $where (page 777) operator expressions in MongoDB 2.4:

852 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Available Properties Available Functions

args

MaxKey

MinKey

assert()

BinData()

DBPointer()

DBRef()

doassert()

emit()

gc()

HexData()

hex_md5()

isNumber()

isObject()

ISODate()

isString()

Map()

MD5()

NumberInt()

NumberLong()

ObjectId()

print()

sleep()

Timestamp()

UUID()

version()

Requirements for the map Function

The map function has the following prototype:

function() {
...
emit(key, value);

}

The map function exhibits the following behaviors:

• In the map function, reference the current document as this within the function.

• The map function should not access the database for any reason.

• The map function should be pure, or have no impact outside of the function (i.e. side effects.)

• The emit(key,value) function associates the key with a value.

– A single emit can only hold half of MongoDB’s maximum BSON document size (page 1105).

– There is no limit to the number of times you may call the emit function per document.

• The map function can access the variables defined in the scope parameter.

Requirements for the reduce Function

The reduce function has the following prototype:

function(key, values) {
...
return result;

}

The reduce function exhibits the following behaviors:

• The reduce function should not access the database, even to perform read operations.

• The reduce function should not affect the outside system.

60.1. Reference 853

MongoDB Documentation, Release 2.4.2

• MongoDB will not call the reduce function for a key that has only a single value.

• The reduce function can access the variables defined in the scope parameter.

Because it is possible to invoke the reduce function more than once for the same key, the following properties need
to be true:

• the type of the return object must be identical to the type of the value emitted by the map function to ensure
that the following operations is true:

reduce(key, [C, reduce(key, [A, B])]) == reduce(key, [C, A, B])

• the reduce function must be idempotent. Ensure that the following statement is true:

reduce(key, [reduce(key, valuesArray)]) == reduce(key, valuesArray)

• the order of the elements in the valuesArray should not affect the output of the reduce function, so that
the following statement is true:

reduce(key, [A, B]) == reduce(key, [B, A])

out Options

You can specify the following options for the out parameter:

Output to a Collection
out: <collectionName>

Output to a Collection with an Action This option is only available when passing out a collection that already
exists. This option is not available on secondary members of replica sets.

out: { <action>: <collectionName>
[, db: <dbName>]
[, sharded: <boolean>]
[, nonAtomic: <boolean>] }

When you output to a collection with an action, the out has the following parameters:

• <action>: Specify one of the following actions:

– replace

Replace the contents of the <collectionName> if the collection with the <collectionName> ex-
ists.

– merge

Merge the new result with the existing result if the output collection already exists. If an existing document
has the same key as the new result, overwrite that existing document.

– reduce

Merge the new result with the existing result if the output collection already exists. If an existing document
has the same key as the new result, apply the reduce function to both the new and the existing documents
and overwrite the existing document with the result.

• db:

Optional.The name of the database that you want the map-reduce operation to write its output. By default
this will be the same database as the input collection.

854 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

• sharded:

Optional. If true and you have enabled sharding on output database, the map-reduce operation will
shard the output collection using the _id field as the shard key.

• nonAtomic: New in version 2.2. Optional. Specify output operation as non-atomic and is valid only for
merge and reduce output modes which may take minutes to execute.

If nonAtomic is true, the post-processing step will prevent MongoDB from locking the database; however,
other clients will be able to read intermediate states of the output collection. Otherwise the map reduce operation
must lock the database during post-processing.

Output Inline Perform the map-reduce operation in memory and return the result. This option is the only available
option for out on secondary members of replica sets.

out: { inline: 1 }

The result must fit within the maximum size of a BSON document (page 1105).

Requirements for the finalize Function

The finalize function has the following prototype:

function(key, reducedValue) {
...
return modifiedObject;

}

The finalize function receives as its arguments a key value and the reducedValue from the reduce function.
Be aware that:

• The finalize function should not access the database for any reason.

• The finalize function should be pure, or have no impact outside of the function (i.e. side effects.)

• The finalize function can access the variables defined in the scope parameter.

Examples

In the mongo (page 984) shell, the db.collection.mapReduce() (page 921) method is a wrapper around the
mapReduce (page 851) command. The following examples use the db.collection.mapReduce() (page 921)
method:

Consider the following map-reduce operations on a collection orders that contains documents of the following
prototype:

{
_id: ObjectId("50a8240b927d5d8b5891743c"),
cust_id: "abc123",
ord_date: new Date("Oct 04, 2012"),
status: ’A’,
price: 250,
items: [{ sku: "mmm", qty: 5, price: 2.5 },

{ sku: "nnn", qty: 5, price: 2.5 }]
}

60.1. Reference 855

MongoDB Documentation, Release 2.4.2

Return the Total Price Per Customer Id Perform map-reduce operation on the orders collection to group by the
cust_id, and for each cust_id, calculate the sum of the price for each cust_id:

1. Define the map function to process each input document:

• In the function, this refers to the document that the map-reduce operation is processing.

• The function maps the price to the cust_id for each document and emits the cust_id and price
pair.

var mapFunction1 = function() {
emit(this.cust_id, this.price);

};

2. Define the corresponding reduce function with two arguments keyCustId and valuesPrices:

• The valuesPrices is an array whose elements are the price values emitted by the map function and
grouped by keyCustId.

• The function reduces the valuesPrice array to the sum of its elements.

var reduceFunction1 = function(keyCustId, valuesPrices) {
return Array.sum(valuesPrices);

};

3. Perform the map-reduce on all documents in the orders collection using the mapFunction1 map function
and the reduceFunction1 reduce function.

db.orders.mapReduce(
mapFunction1,
reduceFunction1,
{ out: "map_reduce_example" }

)

This operation outputs the results to a collection named map_reduce_example. If the
map_reduce_example collection already exists, the operation will replace the contents with the re-
sults of this map-reduce operation:

Calculate the Number of Orders, Total Quantity, and Average Quantity Per Item In this example you will
perform a map-reduce operation on the orders collection, for all documents that have an ord_date value greater
than 01/01/2012. The operation groups by the item.sku field, and for each sku calculates the number of orders
and the total quantity ordered. The operation concludes by calculating the average quantity per order for each sku
value:

1. Define the map function to process each input document:

• In the function, this refers to the document that the map-reduce operation is processing.

• For each item, the function associates the sku with a new object value that contains the count of 1
and the item qty for the order and emits the sku and value pair.

var mapFunction2 = function() {
for (var idx = 0; idx < this.items.length; idx++) {

var key = this.items[idx].sku;
var value = {

count: 1,
qty: this.items[idx].qty

};
emit(key, value);

856 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

}
};

2. Define the corresponding reduce function with two arguments keySKU and valuesCountObjects:

• valuesCountObjects is an array whose elements are the objects mapped to the grouped keySKU
values passed by map function to the reducer function.

• The function reduces the valuesCountObjects array to a single object reducedValue that also
contains the count and the qty fields.

• In reducedValue, the count field contains the sum of the count fields from the individual array
elements, and the qty field contains the sum of the qty fields from the individual array elements.

var reduceFunction2 = function(keySKU, valuesCountObjects) {
reducedValue = { count: 0, qty: 0 };

for (var idx = 0; idx < valuesCountObjects.length; idx++) {
reducedValue.count += valuesCountObjects[idx].count;
reducedValue.qty += valuesCountObjects[idx].qty;

}

return reducedValue;
};

3. Define a finalize function with two arguments key and reducedValue. The function modifies the
reducedValue object to add a computed field named average and returns the modified object:

var finalizeFunction2 = function (key, reducedValue) {

reducedValue.average = reducedValue.qty/reducedValue.count;

return reducedValue;
};

4. Perform the map-reduce operation on the orders collection using the mapFunction2,
reduceFunction2, and finalizeFunction2 functions.

db.orders.mapReduce(mapFunction2,
reduceFunction2,
{
out: { merge: "map_reduce_example" },
query: { ord_date: { $gt: new Date(’01/01/2012’) } },
finalize: finalizeFunction2

}
)

This operation uses the query field to select only those documents with ord_date greater than new
Date(01/01/2012). Then it output the results to a collection map_reduce_example. If the
map_reduce_example collection already exists, the operation will merge the existing contents with the
results of this map-reduce operation:

For more information and examples, see the Map-Reduce (page 285) page and Perform Incremental Map-Reduce
(page 287).

See Also:

• Troubleshoot the Map Function (page 291)

• Troubleshoot the Reduce Function (page 292)

• db.collection.mapReduce() (page 921)

60.1. Reference 857

MongoDB Documentation, Release 2.4.2

• Aggregation Framework (page 249)

mapreduce.shardedfinish (internal)

mapreduce.shardedfinish
Provides internal functionality to support map-reduce in sharded environments.

See Also:

“mapReduce (page 851)“

medianKey (internal)

medianKey
medianKey (page 858) is an internal command.

migrateClone (internal)

_migrateClone
_migrateClone (page 858) is an internal command. Do not call directly.

moveChunk

moveChunk
moveChunk (page 858) is an internal administrative command that moves chunks between shards. You must
issue the moveChunk (page 858) command via a mongos (page 981) instance while using the admin database
in the following form:

db.runCommand({ moveChunk : <namespace> ,
find : <query> ,
to : <destination>,
<options> })

Parameters

• moveChunk (string) – The name of the collection where the chunk exists. Specify the
collection’s full namespace, including the database name.

• find (document) – A document that specifies an equality match on the shard key that will
move the chunk that contains the specified shard-key value.

You may specify either bounds or find but not both.

• bounds (array) – Specify the bounds of a specific chunk to move. The array must consist
of two documents specifying the lower and upper shard key values of a chunk to move.

You may specify either bounds or find but not both.

Use bounds to move chunks in collections partitioned using a hashed shard key.

• to (string) – The name of the destination shard for the chunk.

• _secondaryThrottle (boolean) – Optional; true by default. When true, the balancer
waits for replication to secondaries while copying and deleting data during migrations. For
details, see Require Replication before Chunk Migration (Secondary Throttle) (page 505).

858 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

The chunk migration (page 476) section describes how chunks move between shards on MongoDB.

moveChunk (page 858) returns the following message if another metadata operation is in progress chunks
(page 1095) collection:

errmsg: "The collection’s metadata lock is already taken."

If another process, such as a balancer process, changes meta data while moveChunk (page 858) is running, you
may see this error. You may retry the moveChunk (page 858) operation without side effects.

Note: Only use the moveChunk (page 858) in special circumstances such as preparing your sharded cluster
for an initial ingestion of data, or a large bulk import operation. In most cases allow the balancer to create and
balance chunks in sharded clusters. See Create Chunks (Pre-Splitting) (page 500) for more information.

See Also:

split (page 872), sh.moveChunk() (page 960), sh.splitAt() (page 961), and sh.splitFind()
(page 962).

movePrimary

movePrimary
In a sharded cluster, this command reassigns the database’s primary shard, which holds all un-sharded col-
lections in the database. movePrimary (page 859) is an administrative command that is only available for
mongos (page 981) instances. Only use movePrimary (page 859) when removing a shard from a sharded
cluster.

Important: Only use movePrimary (page 859) when:

•the database does not contain any collections with data, or

•you have drained all sharded collections using the removeShard (page 861) command.

See Remove Shards from an Existing Sharded Cluster (page 508) for a complete procedure.

movePrimary (page 859) changes the primary shard for this database in the cluster metadata, and migrates
all un-sharded collections to the specified shard. Use the command with the following form:

{ movePrimary : "test", to : "shard0001" }

When the command returns, the database’s primary location will shift to the designated shard. To fully decom-
mission a shard, use the removeShard (page 861) command.

netstat (internal)

netstat
netstat (page 859) is an internal command that is only available on mongos (page 981) instances.

ping

ping
The ping (page 859) command is a no-op used to test whether a server is responding to commands. This
command will return immediately even if the server is write-locked:

60.1. Reference 859

MongoDB Documentation, Release 2.4.2

{ ping: 1 }

The value (e.g. 1 above,) does not impact the behavior of the command.

profile

profile
Use the profile (page 860) command to enable, disable, or change the query profiling level. This allows
administrators to capture data regarding performance. The database profiling system can impact performance
and can allow the server to write the contents of queries to the log. Your deployment should carefully consider
the security implications of this. Consider the following prototype syntax:

{ profile: <level> }

The following profiling levels are available:

Level Setting
0 Off. No profiling.
1 On. Only includes slow operations.
2 On. Includes all operations.

You may optionally set a threshold in milliseconds for profiling using the slowms option, as follows:

{ profile: 1, slowms: 200 }

mongod (page 971) writes the output of the database profiler to the system.profile collection.

mongod (page 971) records queries that take longer than the slowms (page 1032) to the server log even when
the database profiler is not active.

See Also:

Additional documentation regarding database profiling Database Profiling (page 92).

See Also:

“db.getProfilingStatus() (page 940)” and “db.setProfilingLevel() (page 945)” provide
wrappers around this functionality in the mongo (page 984) shell.

Note: The database cannot be locked with db.fsyncLock() (page 938) while profiling is enabled. You
must disable profiling before locking the database with db.fsyncLock() (page 938). Disable profiling using
db.setProfilingLevel() (page 945) as follows in the mongo (page 984) shell:

db.setProfilingLevel(0)

Note: This command obtains a write lock on the affected database and will block other operations until it has
completed. However, the write lock is only held while enabling or disabling the profiler. This is typically a short
operation.

reIndex

reIndex
The reIndex (page 860) command rebuilds all indexes for a specified collection. Use the following syntax:

860 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

{ reIndex: "collection" }

Normally, MongoDB compacts indexes during routine updates. For most users, the reIndex (page 860)
command is unnecessary. However, it may be worth running if the collection size has changed significantly or
if the indexes are consuming a disproportionate amount of disk space.

Call reIndex (page 860) using the following form:

db.collection.reIndex();

Warning: This command obtains a write lock on the affected database and will block other operations until
it has completed.

Note: For replica sets, reIndex (page 860) will not propagate from the primary to secondaries. reIndex
(page 860) will only affect a single mongod (page 971) instance.

recvChunkAbort (internal)

_recvChunkAbort
_recvChunkAbort (page 861) is an internal command. Do not call directly.

recvChunkCommit (internal)

_recvChunkCommit
_recvChunkCommit (page 861) is an internal command. Do not call directly.

recvChunkStart (internal)

_recvChunkStart
_recvChunkStart (page 861) is an internal command. Do not call directly.

Warning: This command obtains a write lock on the affected database and will block other operations until
it has completed.

recvChunkStatus (internal)

_recvChunkStatus
_recvChunkStatus (page 861) is an internal command. Do not call directly.

removeShard

removeShard
Starts the process of removing a shard from a cluster. This is a multi-stage process. Begin by issuing the
following command:

{ removeShard : "[shardName]" }

60.1. Reference 861

MongoDB Documentation, Release 2.4.2

The balancer will then migrate chunks from the shard specified by [shardName]. This process happens
slowly to avoid placing undue load on the overall cluster.

The command returns immediately, with the following message:

{ msg : "draining started successfully" , state: "started" , shard: "shardName" , ok : 1 }

If you run the command again, you’ll see the following progress output:

{ msg: "draining ongoing" , state: "ongoing" , remaining: { chunks: 23 , dbs: 1 }, ok: 1 }

The remaining document specifies how many chunks and databases remain on the shard. Use
db.printShardingStatus() (page 943) to list the databases that you must move from the shard.

Each database in a sharded cluster has a primary shard. If the shard you want to remove is also the primary of
one of the cluster’s databases, then you must manually move the database to a new shard. This can be only after
the shard is empty. See the movePrimary (page 859) command for details.

After removing all chunks and databases from the shard, you may issue the command again, to return:

{ msg: "remove shard completed successfully", stage: "completed", host: "shardName", ok : 1 }

renameCollection

renameCollection
The renameCollection (page 862) command is an administrative command that changes the name of
an existing collection. You specify collections to renameCollection (page 862) in the form of a com-
plete namespace, which includes the database name. To rename a collection, issue the renameCollection
(page 862) command against the admin database in the form:

{ renameCollection: <source-namespace>, to: <target-namespace>[, dropTarget: <boolean>] }

The dropTarget argument is optional.

If you specify a collection to the to argument in a different database, the renameCollection (page 862)
command will copy the collection to the new database and then drop the source collection.

Parameters

• source-namespace – Specifies the complete namespace of the collection to rename.

• to (string) – Specifies the new namespace of the collection.

• dropTarget (boolean) – Optional. If true, mongod (page 971) will drop the target of
renameCollection (page 862) prior to renaming the collection.

Exception

• 10026 – Raised if the source namespace does not exist.

• 10027 – Raised if the target namespace exists and dropTarget is either false or
unspecified.

• 15967 – Raised if the target namespace is an invalid collection name.

You can use renameCollection (page 862) in production environments; however:

•renameCollection (page 862) will block all database activity for the duration of the operation.

•renameCollection (page 862) is incompatible with sharded collections.

862 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Warning: renameCollection (page 862) will fail if target is the name of an existing collection and
you do not specify dropTarget: true.
If the renameCollection (page 862) operation does not complete the target collection and indexes
will not be usable and will require manual intervention to clean up.

The shell helper db.collection.renameCollection() (page 929) provides a simpler interface to us-
ing this command within a database. The following is equivalent to the previous example:

db.source-namespace.renameCollection("target")

Warning: You cannot use renameCollection (page 862) with sharded collections.

Warning: This command obtains a global write lock and will block other operations until it has completed.

repairDatabase

repairDatabase

Warning: In general, if you have an intact copy of your data, such as would exist on a very recent backup
or an intact member of a replica set, do not use repairDatabase (page 863) or related options like
db.repairDatabase() (page 944) in the mongo (page 984) shell or mongod --repair (page 975).
Restore from an intact copy of your data.

Note: When using journaling, there is almost never any need to run repairDatabase (page 863). In the
event of an unclean shutdown, the server will be able restore the data files to a pristine state automatically.

The repairDatabase (page 863) command checks and repairs errors and inconsistencies with the data
storage. The command is analogous to a fsck command for file systems.

If your mongod (page 971) instance is not running with journaling the system experiences an unexpected
system restart or crash, and you have no other intact replica set members with this data, you should run the
repairDatabase (page 863) command to ensure that there are no errors in the data storage.

As a side effect, the repairDatabase (page 863) command will compact the database, as the compact
(page 816) command, and also reduces the total size of the data files on disk. The repairDatabase
(page 863) command will also recreate all indexes in the database.

Use the following syntax:

{ repairDatabase: 1 }

Be aware that this command can take a long time to run if your database is large. In addition, it requires a
quantity of free disk space equal to the size of your database. If you lack sufficient free space on the same
volume, you can mount a separate volume and use that for the repair. In this case, you must run the command
line and use the --repairpath (page 976) switch to specify the folder in which to store the temporary repair
files.

Warning: This command obtains a global write lock and will block other operations until it has completed.

This command is accessible via a number of different avenues. You may:

•Use the shell to run the above command, as above.

60.1. Reference 863

MongoDB Documentation, Release 2.4.2

•Use the db.repairDatabase() (page 944) in the mongo (page 984) shell.

•Run mongod (page 971) directly from your system’s shell. Make sure that mongod (page 971) isn’t
already running, and that you issue this command as a user that has access to MongoDB’s data files. Run
as:

$ mongod --repair

To add a repair path:

$ mongod --repair --repairpath /opt/vol2/data

Note: This command will fail if your database is not a master or primary. In most cases, you should
recover a corrupt secondary using the data from an existing intact node. If you must repair a secondary
or slave node, first restart the node as a standalone mongod by omitting the --replSet (page 977) or
--slave (page 978) options, as necessary.

replSetElect (internal)

replSetElect
replSetElect (page 864) is an internal command that support replica set functionality.

replSetFreeze

replSetFreeze
The replSetFreeze (page 864) command prevents a replica set member from seeking election for the speci-
fied number of seconds. Use this command in conjunction with the replSetStepDown (page 867) command
to make a different node in the replica set a primary.

The replSetFreeze (page 864) command uses the following syntax:

{ replSetFreeze: <seconds> }

If you want to unfreeze a replica set member before the specified number of seconds has elapsed, you can issue
the command with a seconds value of 0:

{ replSetFreeze: 0 }

Restarting the mongod (page 971) process also unfreezes a replica set member.

replSetFreeze (page 864) is an administrative command, and you must issue it against the admin database.

replSetFresh (internal)

replSetFresh
replSetFresh (page 864) is an internal command that supports replica set functionality.

replSetGetRBID (internal)

replSetGetRBID
replSetGetRBID (page 864) is an internal command that supports replica set functionality.

864 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

replSetGetStatus

replSetGetStatus
The replSetGetStatus command returns the status of the replica set from the point of view of the current
server. You must run the command against the admin database. The command has the following prototype
format:

{ replSetGetStatus: 1 }

However, you can also run this command from the shell like so:

rs.status()

See Also:

“Replica Set Status Reference (page 446)” and “Replica Set Fundamental Concepts (page 367)“

replSetHeartbeat (internal)

replSetHeartbeat
replSetHeartbeat (page 865) is an internal command that supports replica set functionality.

replSetInitiate

replSetInitiate
The replSetInitiate (page 865) command initializes a new replica set. Use the following syntax:

{ replSetInitiate : <config_document> }

The <config_document> is a document that specifies the replica set’s configuration. For instance, here’s a
config document for creating a simple 3-member replica set:

{
_id : <setname>,
members : [

{_id : 0, host : <host0>},
{_id : 1, host : <host1>},
{_id : 2, host : <host2>},

]
}

A typical way of running this command is to assign the config document to a variable and then to pass the
document to the rs.initiate() (page 951) helper:

config = {
_id : "my_replica_set",
members : [

{_id : 0, host : "rs1.example.net:27017"},
{_id : 1, host : "rs2.example.net:27017"},
{_id : 2, host : "rs3.example.net", arbiterOnly: true},

]
}

rs.initiate(config)

Notice that omitting the port cause the host to use the default port of 27017. Notice also that you can specify
other options in the config documents such as the arbiterOnly setting in this example.

60.1. Reference 865

MongoDB Documentation, Release 2.4.2

See Also:

“Replica Set Configuration (page 441),” “Replica Set Administration (page 397),” and “Replica Set Reconfigu-
ration (page 445).”

replSetMaintenance

replSetMaintenance
The replSetMaintenance (page 866) admin command enables or disables the maintenance mode for a
secondary member of a replica set.

The command has the following prototype form:

{ replSetMaintenance: <boolean> }

Consider the following behavior when running the replSetMaintenance (page 866) command:

•You cannot run the command on the Primary.

•You must run the command against the admin database.

•When enabled replSetMaintenance: 1, the member enters the RECOVERING state. While the
secondary is RECOVERING:

–The member is not accessible for read operations.

–The member continues to sync its oplog from the Primary.

replSetReconfig

replSetReconfig
The replSetReconfig (page 866) command modifies the configuration of an existing replica set. You can
use this command to add and remove members, and to alter the options set on existing members. Use the
following syntax:

{ replSetReconfig: <new_config_document>, force: false }

You may also run the command using the shell’s rs.reconfig() (page 951) method.

Be aware of the following replSetReconfig (page 866) behaviors:

•You must issue this command against the admin database of the current primary member of the replica
set.

•You can optionally force the replica set to accept the new configuration by specifying force: true.
Use this option if the current member is not primary or if a majority of the members of the set are not
accessible.

Warning: Forcing the replSetReconfig (page 866) command can lead to a rollback situation.
Use with caution.

Use the force option to restore a replica set to new servers with different hostnames. This works even if
the set members already have a copy of the data.

•A majority of the set’s members must be operational for the changes to propagate properly.

•This command can cause downtime as the set renegotiates primary-status. Typically this is 10-20 seconds,
but could be as long as a minute or more. Therefore, you should attempt to reconfigure only during
scheduled maintenance periods.

866 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

•In some cases, replSetReconfig (page 866) forces the current primary to step down, initiating an
election for primary among the members of the replica set. When this happens, the set will drop all current
connections.

Note: replSetReconfig (page 866) obtains a special mutually exclusive lock to prevent more than one
replSetReconfig (page 866) operation from occurring at the same time.

replSetStepDown

replSetStepDown

Options

• force (boolean) – Forces the primary to step down even if there aren’t any secondary mem-
bers within 10 seconds of the primary’s latest optime. This option is not available in versions
of mongod (page 971) before 2.0.

The replSetStepDown (page 867) command forces the primary of the replica set to relinquish its status as
primary. This initiates an election for primary (page 388). You may specify a number of seconds for the node
to avoid election to primary:

{ replSetStepDown: <seconds> }

If you do not specify a value for <seconds>, replSetStepDown (page 867) will attempt to avoid reelection
to primary for 60 seconds.

Warning: This will force all clients currently connected to the database to disconnect. This help to ensure
that clients maintain an accurate view of the replica set.

New in version 2.0: If there is no secondary, within 10 seconds of the primary, replSetStepDown (page 867)
will not succeed to prevent long running elections.

replSetSyncFrom

replSetSyncFrom
New in version 2.2.

Options

• host – Specifies the name and port number of the replica set member that this member
replicates from. Use the [hostname]:[port] form.

replSetSyncFrom (page 867) allows you to explicitly configure which host the current mongod (page 971)
will poll oplog entries from. This operation may be useful for testing different patterns and in situations where
a set member is not replicating from the host you want. The member to replicate from must be a valid source
for data in the set.

A member cannot replicate from:

•itself.

•an arbiter, because arbiters do not hold data.

•a member that does not build indexes.

•an unreachable member.

•a mongod (page 971) instance that is not a member of the same replica set.

60.1. Reference 867

MongoDB Documentation, Release 2.4.2

If you attempt to replicate from a member that is more than 10 seconds behind the current member, mongod
(page 971) will return and log a warning, but it still will replicate from the member that is behind.

If you run rs.syncFrom() (page 953) during initial sync, MongoDB produces no error messages, but the
sync target will not change until after the initial sync operation.

The command has the following prototype form:

{ replSetSyncFrom: "[hostname]:[port]" }

To run the command in the mongo (page 984) shell, use the following invocation:

db.adminCommand({ replSetSyncFrom: "[hostname]:[port]" })

You may also use the rs.syncFrom() (page 953) helper in the mongo (page 984) shell, in an operation with
the following form:

rs.syncFrom("[hostname]:[port]")

Note: replSetSyncFrom (page 867) and rs.syncFrom() (page 953) provide a temporary override of
default behavior. If:

•the mongod (page 971) instance restarts,

•the connection to the sync target closes, or

•Changed in version 2.4: The sync target falls more than 30 seconds behind another member of the replica
set;

then, the mongod (page 971) instance will revert to the default sync logic and target.

replSetTest (internal)

replSetTest
replSetTest (page 868) is internal diagnostic command used for regression tests that supports replica set
functionality.

Note: replSetTest (page 868) is an internal command that is not enabled by default. replSetTest
(page 868) must be enabled by using --setParameter enableTestCommands=1 (page 976) on the
mongod (page 971) command line. replSetTest (page 868) cannot be enabled during run-time.

resetError

resetError
The resetError (page 868) command resets the last error status.

See Also:

db.resetError() (page 944)

resync

resync
The resync (page 868) command forces an out-of-date slave mongod (page 971) instance to re-synchronize
itself. Note that this command is relevant to master-slave replication only. It does not apply to replica sets.

868 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Warning: This command obtains a global write lock and will block other operations until it has completed.

serverStatus

serverStatus
The serverStatus (page 869) command returns a document that provides an overview of the database
process’s state. Most monitoring applications run this command at a regular interval to collection statistics
about the instance:

{ serverStatus: 1 }

The value (i.e. 1 above), does not affect the operation of the command. Changed in version 2.4: In 2.4 you
can dynamically suppress portions of the serverStatus (page 869) output, or include suppressed sections
by adding fields to the command document as in the following examples:

db.runCommand({ serverStatus: 1, repl: 0, indexCounters: 0 })
db.runCommand({ serverStatus: 1, workingSet: 1, metrics: 0, locks: 0 })

serverStatus (page 869) includes all fields by default, except workingSet (page 1066), by default.

Note: You may only dynamically include top-level fields from the serverStatus (page 1052) document that are
not included by default. You can exclude any field that serverStatus (page 869) includes by default.

See Also:

db.serverStatus() (page 945) and “Server Status Reference (page 1052)“

setParameter

setParameter
setParameter (page 869) is an administrative command for modifying options normally set on the command
line. You must issue the setParameter (page 869) command against the admin database in the form:

{ setParameter: 1, <option>: <value> }

Replace the <option> with one of the supported setParameter (page 869) options:

•journalCommitInterval (page 1040)

•logLevel (page 1040)

•logUserIds (page 1040)

•notablescan (page 1040)

•quiet (page 1041)

•replApplyBatchSize (page 1040)

•replIndexPrefetch (page 1040)

•syncdelay (page 1041)

•traceExceptions (page 1041)

•textSearchEnabled (page 1041)

60.1. Reference 869

MongoDB Documentation, Release 2.4.2

setShardVersion

setShardVersion
setShardVersion (page 870) is an internal command that supports sharding functionality.

shardCollection

shardCollection
The shardCollection (page 870) command marks a collection for sharding and will allow data to begin
distributing among shards. You must run enableSharding (page 826) on a database before running the
shardCollection (page 870) command.

{ shardCollection: "<database>.<collection>", key: <shardkey> }

This enables sharding for the collection specified by <collection> in the database named <database>,
using the key <shardkey> to distribute documents among the shard. <shardkey> is a document and takes
the same form as an index specification document (page 186).

Parameters

• shardCollection (string) – Specify the namespace of a collection to shard in the form
<database>.<collection>.

• key (document) – Specify the index specification to use as the shard key. The index must
exist prior to the shardCollection (page 870) command unless the collection is empty.
If the collection is empty, then MongoDB will create the index prior to sharding the collec-
tion. New in version 2.4: The key may be in the form { field : "hashed" } which
will use the specified field as a hashed shard key (page 474) .

• unique (boolean) – When true, the unique option ensures that the underlying index en-
forces a unique constraint. Hashed shard keys do not support unique constraints.

• numInitialChunks (integer) – New in version 2.4. Specify the number of chunks to create
upon sharding the collection. The collection will then be pre-split and balanced across the
specified number of chunks.

You can specify no more than 8192 chunks using numInitialChunks.

Choosing the right shard key to effectively distribute load among your shards requires some planning. Also
review Shard Keys (page 463) regarding choosing a shard key.

Warning: MongoDB provides no method to deactivate sharding for a collection after calling
shardCollection (page 870). Additionally, after shardCollection (page 870), you cannot change
shard keys or modify the value of any field used in your shard key index.

See Also:

Sharding (page 461), Sharded Cluster Overview (page 463), and Deploy a Sharded Cluster (page 481).

shardingState

shardingState
shardingState (page 870) is an admin command that reports if mongod (page 971) is a member of a
sharded cluster. shardingState (page 870) has the following prototype form:

{ shardingState: 1 }

870 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

For shardingState (page 870) to detect that a mongod (page 971) is a member of a sharded cluster, the
mongod (page 971) must satisfy the following conditions:

1.the mongod (page 971) is a primary member of a replica set, and

2.the mongod (page 971) instance is a member of a sharded cluster.

If shardingState (page 870) detects that a mongod (page 971) is a member of a sharded cluster,
shardingState (page 870) returns a document that resembles the following prototype:

{
"enabled" : true,
"configServer" : "<configdb-string>",
"shardName" : "<string>",
"shardHost" : "string:",
"versions" : {

"<database>.<collection>" : Timestamp(<...>),
"<database>.<collection>" : Timestamp(<...>)

},
"ok" : 1

}

Otherwise, shardingState (page 870) will return the following document:

{ "note" : "from execCommand", "ok" : 0, "errmsg" : "not master" }

The response from shardingState (page 870) when used with a config server is:

{ "enabled": false, "ok": 1 }

Note: mongos (page 981) instances do not provide the shardingState (page 870).

Warning: This command obtains a write lock on the affected database and will block other operations until
it has completed; however, the operation is typically short lived.

shutdown

shutdown
The shutdown (page 871) command cleans up all database resources and then terminates the process. You
must issue the shutdown (page 871) command against the admin database in the form:

{ shutdown: 1 }

Note: Run the shutdown (page 871) against the admin database. When using shutdown (page 871), the
connection must originate from localhost or use an authenticated connection.

If the node you’re trying to shut down is a replica set (page 367) primary, then the command will succeed only
if there exists a secondary node whose oplog data is within 10 seconds of the primary. You can override this
protection using the force option:

{ shutdown: 1, force: true }

Alternatively, the shutdown (page 871) command also supports a timeoutSecs argument which allows
you to specify a number of seconds to wait for other members of the replica set to catch up:

60.1. Reference 871

MongoDB Documentation, Release 2.4.2

{ shutdown: 1, timeoutSecs: 60 }

The equivalent mongo (page 984) shell helper syntax looks like this:

db.shutdownServer({timeoutSecs: 60});

skewClockCommand (internal)

_skewClockCommand
_skewClockCommand (page 872) is an internal command. Do not call directly.

Note: _skewClockCommand (page 872) is an internal command that is not enabled by
default. _skewClockCommand (page 872) must be enabled by using --setParameter
enableTestCommands=1 (page 976) on the mongod (page 971) command line. _skewClockCommand
(page 872) cannot be enabled during run-time.

sleep (internal)

sleep
sleep (page 872) is an internal command for testing purposes. The sleep (page 872) command forces the
database to block all operations. It takes the following options:

Parameters

• w (boolean) – If true, obtain a global write lock. Otherwise obtains a read lock.

• secs (integer) – Specifies the number of seconds to sleep.

{ sleep: { w: true, secs: <seconds> } }

The above command places the mongod (page 971) instance in a “write-lock” state for a specified (i.e.
<seconds>) number of seconds. Without arguments, sleep (page 872), causes a “read lock” for 100 sec-
onds.

Warning: sleep (page 872) claims the lock specified in the w argument and blocks all operations on the
mongod (page 971) instance for the specified amount of time.

Note: sleep (page 872) is an internal command that is not enabled by default. sleep (page 872) must be
enabled by using --setParameter enableTestCommands=1 (page 976) on the mongod (page 971)
command line. sleep (page 872) cannot be enabled during run-time.

split

split
The split (page 872) command creates new chunks in a sharded environment. While splitting is typically
managed automatically by the mongos (page 981) instances, this command makes it possible for administrators
to manually create splits.

In most clusters, MongoDB will manage all chunk creation and distribution operations without manual inter-
vention.

872 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

You must issue the split (page 872) command while connected to the admin database of a mongos
(page 981) instance.

db.runCommand({ split: <database>.<collection>, find: <document> })

Or:

db.runCommand({ split: <database>.<collection>, middle: <document> })

Or:

db.runCommand({ split: <database>.<collection>, bounds: [lower, upper] })

Parameters

• split (string) – The name of the collection where the chunk exists. Specify the collection’s
full namespace, including the database name.

• find (document) – A document that specifies an equality match on the shard key that will
select the chunk that contains the specified document. You must specify only one of: find,
bounds, or middle.

• bounds (array) – New in version 2.4. Specify the bounds of a specific chunk to split in half.
The array must consist of two documents specifying the lower and upper shard key values of
a chunk to split. The values must match the minimum and maximum values of an existing
chunk. You must specify only one of: find, bounds, or middle.

Use bounds to move chunks in collections partitioned using a hashed shard key.

• middle (document) – Specify a document to use as the split point to create two chunks.
split (page 872) requires one of the following options: find, bounds, or middle.

If you need to create a split for a collection that uses a hashed shard key use the bounds parameter with split
(page 872), not middle.

Warning: Be careful when splitting data in a sharded collection to create new chunks. When you shard a
collection that has existing data, MongoDB automatically creates chunks to evenly distribute the collection.
To split data effectively in a sharded cluster you must consider the number of documents in a chunk and the
average document size to create a uniform chunk size. When chunks have irregular sizes, shards may have
an equal number of chunks but have very different data sizes. Avoid creating splits that lead to a collection
with differently sized chunks.

Example

db.runCommand({ split : "test.people" , find : { _id : 99 } })

This command inserts a new split in the collection named people in the test database. This will split the
chunk that contains the document that matches the query { _id : 99 } in half. If the document specified
by the query does not (yet) exist, the split (page 872) will divide the chunk where that document would exist.

The split divides the chunk in half, and does not split the chunk using the identified document as the middle.

Example

To define an arbitrary split point, use the following form:

60.1. Reference 873

MongoDB Documentation, Release 2.4.2

db.runCommand({ split : "test.people" , middle : { _id : 99 } })

This form is typically used when pre-splitting data in a collection.

Example

To split a specific chunk using the minimum and maximum values of the hashed shard key of that chunk use the
following:

db.runCommand({ split: "test.people" ,
bounds : [NumberLong("-5838464104018346494"),

NumberLong("-5557153028469814163")] })

The chunk migration (page 476) section describes how chunks move between shards on MongoDB.

If another process, such as a balancer process, changes meta data while split (page 872) is running, you may
see this error. You may retry the split (page 872) operation without side effects.

errmsg: "The collection’s metadata lock is already taken."

split (page 872) is an administrative command that is only available for mongos (page 981) instances.

If another process, such as a balancer process, changes meta data while split (page 872) is running, you may
see this error. You may retry the split (page 872) operation without side effects.

See Also:

moveChunk (page 858), sh.moveChunk() (page 960), sh.splitAt() (page 961), and
sh.splitFind() (page 962).

splitChunk (internal)

splitChunk
splitChunk (page 874) is an internal administrative command. Use the sh.splitFind() (page 962) and
sh.splitAt() (page 961) functions in the mongo (page 984) shell to split chunks.

Warning: Be careful when splitting data in a sharded collection to create new chunks. When you shard a
collection that has existing data, MongoDB automatically creates chunks to evenly distribute the collection.
To split data effectively in a sharded cluster you must consider the number of documents in a chunk and the
average document size to create a uniform chunk size. When chunks have irregular sizes, shards may have
an equal number of chunks but have very different data sizes. Avoid creating splits that lead to a collection
with differently sized chunks.

Parameters

• ns (string) – A string with the complete namespace of the chunk to split.

• keyPattern (document) – Specifies the shard key.

• min (document) – Specifies the lower bound of the shard key for the chunk to split.

• max (document) – Specifies the upper bound of the shard key for the chunk to split.

• from (string) – Specifies the shard that owns the chunk to split.

• splitKeys (document) – Specifies the split point for the chunk.

• shardId (document) – Specifies the shard.

874 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

See Also:

moveChunk (page 858), sh.moveChunk() (page 960), sh.splitAt() (page 961), and
sh.splitFind() (page 962).

splitVector

splitVector
Is an internal command that supports meta-data operations in sharded clusters.

testDistLockWithSkew (internal)

_testDistLockWithSkew
_testDistLockWithSkew (page 875) is an internal command. Do not call directly.

Note: _testDistLockWithSkew (page 875) is an internal command that is not en-
abled by default. _testDistLockWithSkew (page 875) must be enabled by using
--setParameter enableTestCommands=1 (page 976) on the mongod (page 971) command
line. _testDistLockWithSkew (page 875) cannot be enabled during run-time.

testDistLockWithSyncCluster (internal)

_testDistLockWithSyncCluster
_testDistLockWithSyncCluster (page 875) is an internal command. Do not call directly.

Note: _testDistLockWithSyncCluster (page 875) is an internal command that is not en-
abled by default. _testDistLockWithSyncCluster (page 875) must be enabled by using
--setParameter enableTestCommands=1 (page 976) on the mongod (page 971) command line.
_testDistLockWithSyncCluster (page 875) cannot be enabled during run-time.

text

text
New in version 2.4. The text (page 875) command provides an interface to search text content stored in the text
index (page 312). By default, the command limits the matches to the top 100 scoring documents, in descending
score order, but you can specify a different limit. The text (page 875) command is case-insensitive.

The text (page 875) has the following syntax:

db.collection.runCommand("text", { search: <string>,
filter: <document>,
project: <document>,
limit: <number>,
language: <string> })

The text (page 875) command has the following parameters:

Parameters

• search (string) – A string of terms that MongoDB parses and uses to query the text index.
The text (page 875) command returns all documents that contain any of the terms; i.e. it
performs a logical OR search.

60.1. Reference 875

MongoDB Documentation, Release 2.4.2

Enclose the string of terms in escaped double quotes to match on the phrase.

Additionally, the text (page 875) command treats most punctuation as delimiters, except
when a hyphen ‘-‘ is used to negate terms.

Prefixing a word with a minus sign (-) negates a word:

– The negated word excludes documents that contain the negated word from the result set.

– A search string that only contains negated words returns no match.

– A hyphenated word, such as pre-market, is not a negation. The text command treats
the hyphen as a delimiter.

• filter (document) – Optional. A query document (page 184) to further limit the results of
the query using another database field. You can use any valid MongoDB query in the filter
document, except if the index includes an ascending or descending index field as a prefix.

If the index includes an ascending or descending index field as a prefix, the filter is
required and the filter query must be an equality match.

• project (document) – Optional. Allows you to limit the fields returned by the query to only
those specified.

By default, the _id field returns as part of the result set unless you explicitly exclude the
field in the project document.

• limit (number) – Optional. Specify the maximum number of documents to include in the
response. The text (page 875) sorts the results before applying the limit.

The default limit is 100.

• language (string) – Optional. Specify the language that determines for the search the list
of stop words and the rules for the stemmer and tokenizer. If not specified, the search uses
the default language of the index. See Text Search Languages (page 361) for the supported
languages. Specify the language in lowercase.

Returns

A document that contains a field results that contains an array of the highest scoring docu-
ments, in descending order by score. See Text Search Output (page 360) for details.

The returned document must fit within the BSON Document Size (page 1105). Other-
wise, the command will return as many results as not to exceed the BSON Document Size
(page 1105). Use the limit and the project parameters to limit the size of the result set.

Note:

•If the search string includes phrases, the search performs an AND with any other terms in the
search string; e.g. search for "\"twinkle twinkle\" little star" searches for "twinkle
twinkle" and ("little" or "star").

•text (page 875) adds all negations to the query with the logical AND operator.

•The text (page 875) command ignores stop words for the search language, such as the and and in
English.

•The text (page 875) command matches on the complete stemmed word. So if a document field con-
tains the word blueberry, a search on the term blue will not match. However, blueberry or
blueberries will match.

For the following examples, assume a collection articles has a text index on the field subject:

876 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

db.articles.ensureIndex({ subject: "text" })

Example

Search for a Single Word

db.articles.runCommand("text", { search: "coffee" })

This query returns documents that contain the word coffee, case-insensitive, in the indexed subject field.

Example

Search for Multiple Words

The following command searches for bake or coffee or cake:

db.articles.runCommand("text", { search: "bake coffee cake" })

This query returns documents that contain either bake or coffee or cake in the indexed subject field.

Example

Search for a Phrase

db.articles.runCommand("text", { search: "\"bake coffee cake\"" })

This query returns documents that contain the phrase bake coffee cake.

Example

Exclude a Term from the Result Set

Use the hyphen (-) as a prefix to exclude documents that contain a term. Search for documents that contain the
words bake or coffee but do not contain cake:

db.articles.runCommand("text", { search: "bake coffee -cake" })

Example

Search with Additional Query Conditions

Use the filter option to include additional query conditions.

Search for a single word coffee with an additional filter on the about field, but limit the results to 2 docu-
ments with the highest score and return only the subject field in the matching documents:

db.articles.runCommand("text", {
search: "coffee",
filter: { about: /desserts/ },
limit: 2,
project: { subject: 1, _id: 0 }

}
)

•The filter query document (page 184) may use any of the available query operators (page 737).

60.1. Reference 877

MongoDB Documentation, Release 2.4.2

•Because the _id field is implicitly included, in order to return only the subject field, you must explicitly
exclude (0) the _id field. Within the project document, you cannot mix inclusions (i.e. <fieldA>:
1) and exclusions (i.e. <fieldB>: 0), except for the _id field.

Example

Search a Different Language

Use the language option to specify Spanish as the language that determines the list of stop words and the
rules for the stemmer and tokenizer:

db.articles.runCommand("text", {
search: "leche",
language: "spanish"

}
)

See Text Search Languages (page 361) for the supported languages.

Important: Specify the language in lowercase.

top

top
The top (page 878) command is an administrative command which returns raw usage of each database, and
provides amount of time, in microseconds, used and a count of operations for the following event types:

•total

•readLock

•writeLock

•queries

•getmore

•insert

•update

•remove

•commands

You must issue the top (page 878) command against the admin database in the form:

{ top: 1 }

touch

touch
New in version 2.2. The touch (page 878) command loads data from the data storage layer into memory.
touch (page 878) can load the data (i.e. documents,) indexes or both documents and indexes. Use this com-
mand to ensure that a collection, and/or its indexes, are in memory before another operation. By loading the

878 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

collection or indexes into memory, mongod (page 971) will ideally be able to perform subsequent operations
more efficiently. The touch (page 878) command has the following prototypical form:

{ touch: [collection], data: [boolean], index: [boolean] }

By default, data and index are false, and touch (page 878) will perform no operation. For example, to load
both the data and the index for a collection named records, you would use the following command in the
mongo (page 984) shell:

db.runCommand({ touch: "records", data: true, index: true })

touch (page 878) will not block read and write operations on a mongod (page 971), and can run on secondary
members of replica sets.

Note: Using touch (page 878) to control or tweak what a mongod (page 971) stores in memory may displace
other records data in memory and hinder performance. Use with caution in production systems.

Warning: If you run touch (page 878) on a secondary, the secondary will enter a RECOVERING state
to prevent clients from sending read operations during the touch (page 878) operation. When touch
(page 878) finishes the secondary will automatically return to SECONDARY state. See state (page 447)
for more information on replica set member states.

transferMods (internal)

_transferMods
_transferMods (page 879) is an internal command. Do not call directly.

unsetSharding (internal)

unsetSharding
unsetSharding (page 879) is an internal command that supports sharding functionality.

validate

validate
The validate command checks the contents of a namespace by scanning a collection’s data and indexes for
correctness. The command can be slow, particularly on larger data sets:

{ validate: "users" }

This command will validate the contents of the collection named users. You may also specify one of the
following options:

•full: true provides a more thorough scan of the data.

•scandata: false skips the scan of the base collection without skipping the scan of the index.

The mongo (page 984) shell also provides a wrapper:

db.collection.validate();

Use one of the following forms to perform the full collection validation:

60.1. Reference 879

MongoDB Documentation, Release 2.4.2

db.collection.validate(true)
db.runCommand({ validate: "collection", full: true })

Warning: This command is resource intensive and may have an impact on the performance of your Mon-
goDB instance.

whatsmyuri (internal)

whatsmyuri
whatsmyuri (page 880) is an internal command.

writeBacksQueued (internal)

writeBacksQueued
writeBacksQueued (page 880) is an internal command that returns a document reporting there are opera-
tions in the write back queue for the given mongos (page 981) and information about the queues.

writeBacksQueued.hasOpsQueued
Boolean.

hasOpsQueued (page 880) is true if there are write Back operations queued.

writeBacksQueued.totalOpsQueued
Integer.

totalOpsQueued (page 880) reflects the number of operations queued.

writeBacksQueued.queues
Document.

queues (page 880) holds a sub-document where the fields are all write back queues. These field hold a
document with two fields that reports on the state of the queue. The fields in these documents are:

writeBacksQueued.queues.n
n (page 880) reflects the size, by number of items, in the queues.

writeBacksQueued.queues.minutesSinceLastCall
The number of minutes since the last time the mongos (page 981) touched this queue.

The command document has the following prototype form:

{writeBacksQueued: 1}

To call writeBacksQueued (page 880) from the mongo (page 984) shell, use the following
db.runCommand() (page 944) form:

db.runCommand({writeBacksQueued: 1})

Consider the following example output:

{
"hasOpsQueued" : true,
"totalOpsQueued" : 7,
"queues" : {

"50b4f09f6671b11ff1944089" : { "n" : 0, "minutesSinceLastCall" : 1 },
"50b4f09fc332bf1c5aeaaf59" : { "n" : 0, "minutesSinceLastCall" : 0 },
"50b4f09f6671b1d51df98cb6" : { "n" : 0, "minutesSinceLastCall" : 0 },
"50b4f0c67ccf1e5c6effb72e" : { "n" : 0, "minutesSinceLastCall" : 0 },

880 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

"50b4faf12319f193cfdec0d1" : { "n" : 0, "minutesSinceLastCall" : 4 },
"50b4f013d2c1f8d62453017e" : { "n" : 0, "minutesSinceLastCall" : 0 },
"50b4f0f12319f193cfdec0d1" : { "n" : 0, "minutesSinceLastCall" : 1 }

},
"ok" : 1

}

writebacklisten (internal)

writebacklisten
writebacklisten (page 881) is an internal command.

60.1.3 JavaScript Methods

Meta Query Operator Quick Reference

Introduction

In addition to the MongoDB Query Operators (page 737), there are a number of “meta” operators that you can modify
the output or behavior of a query. On the server, MongoDB treats the query and the options as a single object. The
mongo (page 984) shell and driver interfaces may provide cursor methods (page 882) that wrap these options. When
possible, use these methods; otherwise, you can add these options using either of the following syntax:

db.collection.find({ <query> })._addSpecial(<option>)
db.collection.find({ $query: { <query> }, <option> })

Modifiers

Many of these operators have corresponding methods in the shell (page 882). These methods provide a straightforward
and user-friendly interface and are the preferred way to add these options.

• $comment (page 744)

• $explain (page 746)

• $hint (page 750)

• $maxScan (page 754)

• $max (page 752)

• $min (page 754)

• $orderby (page 762)

• $returnKey (page 770)

• $showDiskLoc (page 772)

• $snapshot (page 773)

mongo Shell JavaScript Quick Reference

60.1. Reference 881

MongoDB Documentation, Release 2.4.2

Methods

• Data Manipulation (page 882)
– Query and Update Methods (page 882)
– Cursor Methods (page 882)
– Data Aggregation Methods (page 883)

• Administrative Functions (page 883)
– Database Methods (page 883)
– Collection Methods (page 884)
– Sharding Methods (page 885)
– Replica Set Methods (page 885)

• Native Shell Methods (page 886)
• Non-User Functions and Methods (page 887)

– Deprecated Methods (page 887)
– Native Methods (page 887)
– Internal Methods (page 887)

Data Manipulation

Query and Update Methods

• db.collection.find() (page 910)

• db.collection.findAndModify() (page 911)

• db.collection.findOne() (page 914)

• db.collection.insert() (page 920)

• db.collection.save() (page 930)

• db.collection.update() (page 932)

Cursor Methods Call cursor methods on cursors to modify how MongoDB returns objects to the cursor.

• cursor.count() (page 891)

• cursor.explain() (page 892)

• cursor.forEach() (page 893)

• cursor.hasNext() (page 893)

• cursor.hint() (page 894)

• cursor.limit() (page 894)

• cursor.map() (page 894)

• cursor.next() (page 898)

• cursor.objsLeftInBatch() (page 898)

• cursor.readPref() (page 898)

• cursor.showDiskLoc() (page 899)

• cursor.size() (page 899)

• cursor.skip() (page 899)

882 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

• cursor.snapshot() (page 899)

• cursor.sort() (page 900)

Data Aggregation Methods

• db.collection.aggregate() (page 903)

• db.collection.group() (page 917)

• db.collection.mapReduce() (page 921)

Administrative Functions

Database Methods

• db.addUser() (page 901)

• db.auth() (page 902)

• db.cloneDatabase() (page 903)

• db.commandHelp() (page 934)

• db.copyDatabase() (page 934)

• db.createCollection() (page 935)

• db.currentOp() (page 936)

• db.dropDatabase() (page 936)

• db.eval() (page 936)

• db.fsyncLock() (page 938)

• db.fsyncUnlock() (page 938)

• db.getCollection() (page 939)

• db.getCollectionNames() (page 939)

• db.getLastError() (page 939)

• db.getLastErrorObj() (page 939)

• db.getMongo() (page 939)

• db.getName() (page 939)

• db.getProfilingLevel() (page 940)

• db.getProfilingStatus() (page 940)

• db.getSiblingDB() (page 940)

• db.hostInfo() (page 940)

• db.killOp() (page 941)

• db.listCommands() (page 942)

• db.loadServerScripts() (page 942)

• db.logout() (page 942)

• db.printCollectionStats() (page 942)

60.1. Reference 883

MongoDB Documentation, Release 2.4.2

• db.removeUser() (page 944)

• db.repairDatabase() (page 944)

• db.runCommand() (page 944)

• db.serverBuildInfo() (page 944)

• db.serverStatus() (page 945)

• db.setProfilingLevel() (page 945)

• db.shutdownServer() (page 946)

• db.stats() (page 946)

• db.version() (page 946)

Collection Methods These methods operate on collection objects. Also consider the “Query and Update Methods
(page 882)” and “Cursor Methods (page 882)” documentation for additional methods that you may use with collection
objects.

Note: Call these methods on a collection object in the shell (i.e. db.collection.[method](), where
collection is the name of the collection) to produce the documented behavior.

• db.collection.dataSize() (page 905)

• db.collection.distinct() (page 905)

• db.collection.drop() (page 906)

• db.collection.dropIndex() (page 906)

• db.collection.dropIndexes() (page 907)

• db.collection.ensureIndex() (page 907)

• db.collection.getIndexes() (page 915)

• db.collection.getShardDistribution() (page 915)

• db.collection.getShardVersion() (page 917)

• db.collection.reIndex() (page 928)

• db.collection.remove() (page 928)

• db.collection.renameCollection() (page 929)

• db.collection.stats() (page 931)

• db.collection.storageSize() (page 931)

• db.collection.totalIndexSize() (page 932)

• db.collection.totalSize() (page 932)

• db.collection.validate() (page 934)

• Mongo.getDB() (page 888)

884 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Sharding Methods See Also:

The “Sharded Cluster Overview (page 463)” page for more information on the sharding technology and using Mon-
goDB’s sharded clusters.

• db.printShardingStatus() (page 943)

• sh.addShard() (page 955)

• sh.addShardTag() (page 956)

• sh.addTagRange() (page 956)

• sh._adminCommand() (page 954)

• sh._checkMongos() (page 954)

• sh._checkFullName() (page 954)

• sh.disableBalancing() (page 957)

• sh.enableBalancing() (page 958)

• sh.enableSharding() (page 958)

• sh.getBalancerHost() (page 958)

• sh.help() (page 959)

• sh._lastMigration() (page 954)

• sh.isBalancerRunning() (page 959)

• sh.moveChunk() (page 960)

• sh.removeShardTag() (page 960)

• sh.setBalancerState() (page 960)

• sh.shardCollection() (page 961)

• sh.splitAt() (page 961)

• sh.splitFind() (page 962)

• sh.startBalancer() (page 962)

• sh.status() (page 962)

• sh.stopBalancer() (page 963)

• sh.waitForBalancerOff() (page 964)

• sh.waitForBalancer() (page 963)

• sh.waitForDLock() (page 964)

• sh.waitForPingChange() (page 964)

Replica Set Methods See Also:

Replica Set Fundamental Concepts (page 367) for more information regarding replication.

• db.getReplicationInfo() (page 940)

• db.isMaster() (page 941)

• db.printReplicationInfo() (page 943)

• db.printSlaveReplicationInfo() (page 943)

60.1. Reference 885

MongoDB Documentation, Release 2.4.2

• mongo.setSlaveOk() (page 948)

• rs.add() (page 949)

• rs.addArb() (page 950)

• rs.conf() (page 950)

• rs.freeze() (page 951)

• rs.help() (page 951)

• rs.initiate() (page 951)

• rs.reconfig() (page 951)

• rs.remove() (page 952)

• rs.slaveOk() (page 952)

• rs.status() (page 953)

• rs.stepDown() (page 953)

• rs.syncFrom() (page 953)

Native Shell Methods

These methods provide a number of low level and internal functions that may be useful in the context of some advanced
operations in the shell. The JavaScript standard library is accessible in the mongo (page 984) shell.

• Date() (page 887)

• cat()

• cd()

• fuzzFile() (page 946)

• getHostName() (page 946)

• getMemInfo() (page 947)

• hostname()

• listFiles() (page 947)

• load()

• ls()

• md5sumFile() (page 948)

• mkdir()

• pwd()

• quit()

• removeFile() (page 949)

886 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Non-User Functions and Methods

Deprecated Methods

• db.getPrevError() (page 940)

• db.resetError() (page 944)

Native Methods

• _isWindows() (page 947)

• rand()

• srand()

Internal Methods These methods are accessible in the shell but exist to support other functionality in the environ-
ment. Do not call these methods directly.

• _startMongoProgram() (page 965)

• clearRawMongoProgramOutput() (page 890)

• copyDbpath() (page 890)

• rawMongoProgramOutput() (page 949)

• resetDbpath() (page 949)

• run()

• runMongoProgram() (page 953)

• runProgram() (page 954)

• stopMongoProgram() (page 965)

• stopMongoProgramByPid() (page 965)

• stopMongod() (page 965)

• waitMongoProgramOnPort() (page 965)

• waitProgram() (page 965)

Date()

Date()

Returns Current date, as a string.

Mongo()

Mongo()
JavaScript constructor to instantiate a database connection from the mongo (page 984) shell or from a JavaScript
file.

Parameters

• host (string) – Optional. Either in the form of <host> or <host><:port>.

60.1. Reference 887

MongoDB Documentation, Release 2.4.2

– Pass the <host> parameter to the constructor to instantiate a connection to the <host>
and the default port.

– Pass the <host><:port> parameter to the constructor to instantiate a connection to
the <host> and the <port>.

Use the constructor without a parameter to instantiate a connection to the localhost interface
on the default port.

See Also:

Mongo.getDB() (page 888)

Mongo.getDB()

Mongo.getDB(<database>)
Mongo.getDB() (page 888) provides access to database objects from the mongo (page 984) shell or from a
JavaScript file.

Parameters

• database (string) – The name of the database to access.

The following example instantiates a new connection to the MongoDB instance running on the localhost inter-
face and returns a reference to "myDatabase":

db = new Mongo().getDB("myDatabase");

See Also:

Mongo() (page 887) and connect() (page 890)

ObjectId.getTimestamp()

ObjectId.getTimestamp()

Returns The timestamp portion of the ObjectId() (page 188) object as a Date.

In the following example, call the getTimestamp() (page 888) method on an ObjectId (e.g.
ObjectId("507c7f79bcf86cd7994f6c0e")):

ObjectId("507c7f79bcf86cd7994f6c0e").getTimestamp()

This will return the following output:

ISODate("2012-10-15T21:26:17Z")

ObjectId.toString()

ObjectId.toString()

Returns The string representation of the ObjectId() (page 188) object. This value has the format of
ObjectId(...).

Changed in version 2.2: In previous versions ObjectId.toString() (page 888) returns the value of the
ObjectId as a hexadecimal string. In the following example, call the toString() (page 888) method on an
ObjectId (e.g. ObjectId("507c7f79bcf86cd7994f6c0e")):

888 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

ObjectId("507c7f79bcf86cd7994f6c0e").toString()

This will return the following string:

ObjectId("507c7f79bcf86cd7994f6c0e")

You can confirm the type of this object using the following operation:

typeof ObjectId("507c7f79bcf86cd7994f6c0e").toString()

ObjectId.valueOf()

ObjectId.valueOf()

Returns The value of the ObjectId() (page 188) object as a lowercase hexadecimal string. This value
is the str attribute of the ObjectId() object.

Changed in version 2.2: In previous versions ObjectId.valueOf() (page 889) returns the ObjectId()
object. In the following example, call the valueOf() (page 889) method on an ObjectId (e.g.
ObjectId("507c7f79bcf86cd7994f6c0e")):

ObjectId("507c7f79bcf86cd7994f6c0e").valueOf()

This will return the following string:

507c7f79bcf86cd7994f6c0e

You can confirm the type of this object using the following operation:

typeof ObjectId("507c7f79bcf86cd7994f6c0e").valueOf()

UUID()

UUID(<string>)

Parameters

• hex (string) – Specify a 32-byte hexadecimal string to convert to the UUID BSON subtype.

Returns A BSON UUID object.

Example

Create a 32 byte hexadecimal string:

var myuuid = ’0123456789abcdeffedcba9876543210’

Convert it to the BSON UUID subtype:

UUID(myuuid)
BinData(3,"ASNFZ4mrze/+3LqYdlQyEA==")

cat()

cat(filename)

Parameters

60.1. Reference 889

MongoDB Documentation, Release 2.4.2

• filename (string) – Specify a path and file name on the local file system.

Returns the contents of the specified file.

This function returns with output relative to the current shell session, and does not impact the server.

cd()

cd(path)

Parameters

• path (string) – Specify a path on the local file system.

Changes the current working directory to the specified path.

This function returns with output relative to the current shell session, and does not impact the server.

clearRawMongoProgramOutput()

clearRawMongoProgramOutput()
For internal use.

connect()

connect(<hostname><:port>/<database>)
The connect()method creates a connection to a MongoDB instance. However, use the Mongo() (page 887)
object and its getDB() (page 888) method in most cases.

connect() accepts a string <hostname><:port>/<database> parameter to connect to the MongoDB
instance on the <hostname><:port> and return the reference to the database <database>.

The following example instantiates a new connection to the MongoDB instance running on the localhost inter-
face and returns a reference to myDatabase:

db = connect("localhost:27017/myDatabase")

See Also:

Mongo.getDB() (page 888)

copyDbpath()

copyDbpath()
For internal use.

cursor.addOption()

cursor.addOption(<flag>)
Use the cursor.addOption() (page 890) method on a cursor to add OP_QUERY wire protocol flags, such
as the tailable flag, to change the behavior of queries.

Parameters

890 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

• flag – OP_QUERY wire protocol flag. See MongoDB wire protocol for more information on
MongoDB Wire Protocols and the OP_QUERY flags.

For the mongo (page 984) shell, you can use the cursor flags listed in the Cursor Flags
(page 172) section. For the driver-specific list, see your driver documentation (page 529).

The following example in the mongo (page 984) shell adds the DBQuery.Option.tailable flag and the
DBQuery.Option.awaitData flag to ensure that the query returns a tailable cursor:

var t = db.myCappedCollection;
var cursor = t.find().addOption(DBQuery.Option.tailable).

addOption(DBQuery.Option.awaitData)

This sequence of operations creates a cursor that will wait for few seconds after returning the full result set so
that it can capture and return additional data added during the query.

Warning: Adding incorrect wire protocol flags can cause problems and/or extra server load.

cursor.batchSize()

cursor.batchSize()
The batchSize() (page 891) method specifies the number of documents to return in each batch of the
response from the MongoDB instance. In most cases, modifying the batch size will not affect the user or the
application since the mongo (page 984) shell and most drivers (page 529) return results as if MongoDB returned
a single batch.

The batchSize() (page 891) method takes the following parameter:

Parameters

• size – The number of documents to return per batch. Do not use a batch size of 1.

Note: Specifying 1 or a negative number is analogous to using the limit() (page 894) method.

Consider the following example of the batchSize() (page 891) method in the mongo (page 984) shell:

db.inventory.find().batchSize(10)

This operation will set the batch size for the results of a query (i.e. find() (page 910)) to 10. The effects
of this operation do not affect the output in the mongo (page 984) shell, which always iterates over the first 20
documents.

cursor.count()

cursor.count()
The count() (page 891) method counts the number of documents referenced by a cursor. Append the
count() (page 891) method to a find() (page 910) query to return the number of matching documents,
as in the following prototype:

db.collection.find().count()

This operation does not actually perform the find() (page 910); instead, the operation counts the results that
would be returned by the find() (page 910).

The count() (page 891) can accept the following argument:

Parameters

60.1. Reference 891

http://docs.mongodb.org/meta-driver/latest/legacy/mongodb-wire-protocol/?pageVersion=106#op-query

MongoDB Documentation, Release 2.4.2

• applySkipLimit (boolean) – Optional. Specifies whether to consider the effects of the
cursor.skip() (page 899) and cursor.limit() (page 894) methods in the count.
By default, the count() (page 891) method ignores the effects of the cursor.skip()
(page 899) and cursor.limit() (page 894). Set applySkipLimit to true to con-
sider the effect of these methods.

See Also:

cursor.size() (page 899)

MongoDB also provides the shell wrapper db.collection.count() (page 904) for the
db.collection.find().count() construct.

Consider the following examples of the count() (page 891) method:

•Count the number of all documents in the orders collection:

db.orders.find().count()

•Count the number of the documents in the orders collection with the field ord_dt greater than new
Date(’01/01/2012’):

db.orders.find({ ord_dt: { $gt: new Date(’01/01/2012’) } }).count()

•Count the number of the documents in the orders collection with the field ord_dt greater than new
Date(’01/01/2012’) taking into account the effect of the limit(5):

db.orders.find({ ord_dt: { $gt: new Date(’01/01/2012’) } }).limit(5).count(true)

cursor.explain()

cursor.explain()
The cursor.explain() (page 892) method provides information on the query plan. The query plan is the
plan the server uses to find the matches for a query. This information may be useful when optimizing a query.

Parameters

• verbose (boolean) – Specifies the level of detail to include in the output. If true or 1,
include the allPlans and oldPlan fields in the output document (page 1086).

Returns A document (page 1086) that describes the process used to return the query results.

Retrieve the query plan by appending explain() (page 892) to a find() (page 910) query, as in the follow-
ing example:

db.products.find().explain()

For details on the output, see Explain Output (page 1086).

explain (page 892) runs the actual query to determine the result. Although there are some differences between
running the query with explain (page 892) and running without, generally, the performance will be similar
between the two. So, if the query is slow, the explain (page 892) operation is also slow.

Additionally, the explain (page 892) operation reevaluates a set of candidate query plans, which may cause
the explain (page 892) operation to perform differently than a normal query. As a result, these operations
generally provide an accurate account of how MongoDB would perform the query, but do not reflect the length
of these queries.

To determine the performance of a particular index, you can use hint() (page 894) and in conjunction with
explain() (page 892), as in the following example:

892 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

db.products.find().hint({ type: 1 }).explain()

When you run explain (page 892) with hint() (page 894), the query optimizer does not reevaluate the
query plans.

Note: In some situations, the explain() (page 892) operation may differ from the actual query plan used by
MongoDB in a normal query.

The explain() (page 892) operation evaluates the set of query plans and reports on the winning plan for the
query. In normal operations the query optimizer caches winning query plans and uses them for similar related
queries in the future. As a result MongoDB may sometimes select query plans from the cache that are different
from the plan displayed using explain (page 892).

See Also:

•$explain (page 746)

•Optimization Strategies for MongoDB (page 529) page for information regarding optimization strategies.

•Analyze Performance of Database Operations (page 95) tutorial for information regarding the database
profile.

•Current Operation Reporting (page 1078)

cursor.forEach()

cursor.forEach(<function>)
The forEach() (page 893) method iterates the cursor to apply a JavaScript <function> to each document
from the cursor.

The forEach() (page 893) method accepts the following argument:

Parameters

• <function> – JavaScript function to apply to each document from the cursor. The
<function> signature includes a single argument that is passed the current document
to process.

The following example invokes the forEach() (page 893) method on the cursor returned by find()
(page 910) to print the name of each user in the collection:

db.users.find().forEach(function(myDoc) { print("user: " + myDoc.name); });

See Also:

cursor.map() (page 894) for similar functionality.

cursor.hasNext()

cursor.hasNext()

Returns Boolean.

cursor.hasNext() (page 893) returns true if the cursor returned by the db.collection.find()
(page 910) query can iterate further to return more documents.

60.1. Reference 893

MongoDB Documentation, Release 2.4.2

cursor.hint()

cursor.hint(index)

Arguments

• index – The index to “hint” or force MongoDB to use when performing the query.

Specify the index either by the index name or by the index specification document. See Index
Specification Documents (page 186) for information on index specification documents.

Call this method on a query to override MongoDB’s default index selection and query optimization process.
Use db.collection.getIndexes() (page 915) to return the list of current indexes on a collection.

Consider the following operation:

db.users.find().hint({ age: 1 })

This operation returns all documents in the collection named users using the index on the age field.

You can also specify the index using the index name:

db.users.find().hint("age_1")

See Also:

$hint (page 750)

cursor.limit()

cursor.limit()
Use the cursor.limit() (page 894) method on a cursor to specify the maximum number of documents a
the cursor will return. cursor.limit() (page 894) is analogous to the LIMIT statement in a SQL database.

Note: You must apply cursor.limit() (page 894) to the cursor before retrieving any documents from the
database.

Use cursor.limit() (page 894) to maximize performance and prevent MongoDB from returning more
results than required for processing.

A cursor.limit() (page 894) value of 0 (e.g. “.limit(0) (page 894)”) is equivalent to setting no limit.

cursor.map()

cursor.map(function)

Parameters

• function – function to apply to each document visited by the cursor.

Apply function to each document visited by the cursor, and collect the return values from successive application
into an array. Consider the following example:

db.users.find().map(function(u) { return u.name; });

See Also:

cursor.forEach() (page 893) for similar functionality.

894 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

cursor.max()

cursor.max()
The max() (page 895) method specifies the exclusive upper bound for a specific index in order to constrain the
results of find() (page 910). max() (page 895) provides a way to specify an upper bound on compound key
indexes.

max() (page 895) takes the following parameter:

Parameters

• indexBounds (document) – Specifies the exclusive upper bound for the index keys. The
indexBounds parameter has the following prototype form:

{ field1: <max value>, field2: <max value2> ... fieldN:<max valueN>}

The fields correspond to all the keys of a particular index in order. You can explicitly specify
the particular index with the hint() (page 894) method. Otherwise, mongod (page 971)
selects the index using the fields in the indexBounds; however, if multiple indexes exist
on same fields with different sort orders, the selection of the index may be ambiguous.

See Also:

min() (page 896).

Consider the following example of max() (page 895), which assumes a collection named products that
holds the following documents:

{ "_id" : 6, "item" : "apple", "type" : "cortland", "price" : 1.29 }
{ "_id" : 2, "item" : "apple", "type" : "fuji", "price" : 1.99 }
{ "_id" : 1, "item" : "apple", "type" : "honey crisp", "price" : 1.99 }
{ "_id" : 3, "item" : "apple", "type" : "jonagold", "price" : 1.29 }
{ "_id" : 4, "item" : "apple", "type" : "jonathan", "price" : 1.29 }
{ "_id" : 5, "item" : "apple", "type" : "mcintosh", "price" : 1.29 }
{ "_id" : 7, "item" : "orange", "type" : "cara cara", "price" : 2.99 }
{ "_id" : 10, "item" : "orange", "type" : "navel", "price" : 1.39 }
{ "_id" : 9, "item" : "orange", "type" : "satsuma", "price" : 1.99 }
{ "_id" : 8, "item" : "orange", "type" : "valencia", "price" : 0.99 }

The collection has the following indexes:

{ "_id" : 1 }
{ "item" : 1, "type" : 1 }
{ "item" : 1, "type" : -1 }
{ "price" : 1 }

•Using the ordering of { item: 1, type: 1 } index, max() (page 895) limits the query to the
documents that are below the bound of item equal to apple and type equal to jonagold:

db.products.find().max({ item: ’apple’, type: ’jonagold’ }).hint({ item: 1, type: 1 })

The query returns the following documents:

{ "_id" : 6, "item" : "apple", "type" : "cortland", "price" : 1.29 }
{ "_id" : 2, "item" : "apple", "type" : "fuji", "price" : 1.99 }
{ "_id" : 1, "item" : "apple", "type" : "honey crisp", "price" : 1.99 }

If the query did not explicitly specify the index with the hint() (page 894) method, it is ambiguous as
to whether mongod (page 971) would select the { item: 1, type: 1 } index ordering or the {
item: 1, type: -1 } index ordering.

60.1. Reference 895

MongoDB Documentation, Release 2.4.2

•Using the ordering of the index { price: 1 }, max() (page 895) limits the query to the documents
that are below the index key bound of price equal to 1.99 and min() (page 896) limits the query to
the documents that are at or above the index key bound of price equal to 1.39:

db.products.find().min({ price: 1.39 }).max({ price: 1.99 }).hint({ price: 1 })

The query returns the following documents:

{ "_id" : 6, "item" : "apple", "type" : "cortland", "price" : 1.29 }
{ "_id" : 4, "item" : "apple", "type" : "jonathan", "price" : 1.29 }
{ "_id" : 5, "item" : "apple", "type" : "mcintosh", "price" : 1.29 }
{ "_id" : 3, "item" : "apple", "type" : "jonagold", "price" : 1.29 }
{ "_id" : 10, "item" : "orange", "type" : "navel", "price" : 1.39 }

Note:

•Because max() (page 895) requires an index on a field, and forces the query to use this index, you may
prefer the $lt (page 752) operator for the query if possible. Consider the following example:

db.products.find({ _id: 7 }).max({ price: 1.39 })

The query will use the index on the price field, even if the index on _id may be better.

•max() (page 895) exists primarily to support the mongos (page 981) (sharding) process.

•If you use max() (page 895) with min() (page 896) to specify a range, the index bounds specified in
min() (page 896) and max() (page 895) must both refer to the keys of the same index.

•max() (page 895) is a shell wrapper around the special operator $max (page 752).

cursor.min()

cursor.min()
The min() (page 896) method specifies the inclusive lower bound for a specific index in order to constrain the
results of find() (page 910). min() (page 896) provides a way to specify lower bounds on compound key
indexes.

min() (page 896) takes the following parameter:

Parameters

• indexBounds (document) – Specifies the inclusive lower bound for the index keys. The
indexBounds parameter has the following prototype form:

{ field1: <min value>, field2: <min value2>, fieldN:<min valueN> }

The fields correspond to all the keys of a particular index in order. You can explicitly specify
the particular index with the hint() (page 894) method. Otherwise, MongoDB selects the
index using the fields in the indexBounds; however, if multiple indexes exist on same
fields with different sort orders, the selection of the index may be ambiguous.

See Also:

max() (page 895).

Consider the following example of min() (page 896), which assumes a collection named products that
holds the following documents:

896 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

{ "_id" : 6, "item" : "apple", "type" : "cortland", "price" : 1.29 }
{ "_id" : 2, "item" : "apple", "type" : "fuji", "price" : 1.99 }
{ "_id" : 1, "item" : "apple", "type" : "honey crisp", "price" : 1.99 }
{ "_id" : 3, "item" : "apple", "type" : "jonagold", "price" : 1.29 }
{ "_id" : 4, "item" : "apple", "type" : "jonathan", "price" : 1.29 }
{ "_id" : 5, "item" : "apple", "type" : "mcintosh", "price" : 1.29 }
{ "_id" : 7, "item" : "orange", "type" : "cara cara", "price" : 2.99 }
{ "_id" : 10, "item" : "orange", "type" : "navel", "price" : 1.39 }
{ "_id" : 9, "item" : "orange", "type" : "satsuma", "price" : 1.99 }
{ "_id" : 8, "item" : "orange", "type" : "valencia", "price" : 0.99 }

The collection has the following indexes:

{ "_id" : 1 }
{ "item" : 1, "type" : 1 }
{ "item" : 1, "type" : -1 }
{ "price" : 1 }

•Using the ordering of { item: 1, type: 1 } index, min() (page 896) limits the query to
the documents that are at or above the index key bound of item equal to apple and type equal to
jonagold, as in the following:

db.products.find().min({ item: ’apple’, type: ’jonagold’ }).hint({ item: 1, type: 1 })

The query returns the following documents:

{ "_id" : 3, "item" : "apple", "type" : "jonagold", "price" : 1.29 }
{ "_id" : 4, "item" : "apple", "type" : "jonathan", "price" : 1.29 }
{ "_id" : 5, "item" : "apple", "type" : "mcintosh", "price" : 1.29 }
{ "_id" : 7, "item" : "orange", "type" : "cara cara", "price" : 2.99 }
{ "_id" : 10, "item" : "orange", "type" : "navel", "price" : 1.39 }
{ "_id" : 9, "item" : "orange", "type" : "satsuma", "price" : 1.99 }
{ "_id" : 8, "item" : "orange", "type" : "valencia", "price" : 0.99 }

If the query did not explicitly specify the index with the hint() (page 894) method, it is ambiguous as
to whether mongod (page 971) would select the { item: 1, type: 1 } index ordering or the {
item: 1, type: -1 } index ordering.

•Using the ordering of the index { price: 1 }, min() (page 896) limits the query to the documents
that are at or above the index key bound of price equal to 1.39 and max() (page 895) limits the query
to the documents that are below the index key bound of price equal to 1.99:

db.products.find().min({ price: 1.39 }).max({ price: 1.99 }).hint({ price: 1 })

The query returns the following documents:

{ "_id" : 6, "item" : "apple", "type" : "cortland", "price" : 1.29 }
{ "_id" : 4, "item" : "apple", "type" : "jonathan", "price" : 1.29 }
{ "_id" : 5, "item" : "apple", "type" : "mcintosh", "price" : 1.29 }
{ "_id" : 3, "item" : "apple", "type" : "jonagold", "price" : 1.29 }
{ "_id" : 10, "item" : "orange", "type" : "navel", "price" : 1.39 }

Note:

•Because min() (page 896) requires an index on a field, and forces the query to use this index, you may
prefer the $gte (page 749) operator for the query if possible. Consider the following example:

60.1. Reference 897

MongoDB Documentation, Release 2.4.2

db.products.find({ _id: 7 }).min({ price: 1.39 })

The query will use the index on the price field, even if the index on _id may be better.

•min() (page 896) exists primarily to support the mongos (page 981) (sharding) process.

•If you use min() (page 896) with max() (page 895) to specify a range, the index bounds specified in
min() (page 896) and max() (page 895) must both refer to the keys of the same index.

•min() (page 896) is a shell wrapper around the special operator $min (page 754).

cursor.next()

cursor.next()

Returns The next document in the cursor returned by the db.collection.find() (page 910)
method. See cursor.hasNext() (page 893) related functionality.

cursor.objsLeftInBatch()

cursor.objsLeftInBatch()
cursor.objsLeftInBatch() (page 898) returns the number of documents remaining in the current batch.

The MongoDB instance returns response in batches. To retrieve all the documents from a cursor may require
multiple batch responses from the MongoDB instance. When there are no more documents remaining in the
current batch, the cursor will retrieve another batch to get more documents until the cursor exhausts.

cursor.readPref()

cursor.readPref()

Parameters

• mode (string) – Read preference mode

• tagSet (array) – Optional. Array of tag set objects

Append the readPref() (page 898) to a cursor to control how the client will route the query will route to
members of the replica set.

The mode string should be one of:

•primary (page 382)

•primaryPreferred (page 382)

•secondary (page 382)

•secondaryPreferred (page 382)

•nearest (page 383)

The tagSet parameter, if given, should consist of an array of tag set objects for filtering secondary read
operations. For example, a secondary member tagged { dc: ’ny’, rack: 2, size: ’large’
} will match the tag set { dc: ’ny’, rack: 2 }. Clients match tag sets first in the order they appear
in the read preference specification. You may specify an empty tag set {} as the last element to default to any
available secondary. See the tag sets (page 383) documentation for more information.

898 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Note: You must apply cursor.readPref() (page 898) to the cursor before retrieving any documents from
the database.

cursor.showDiskLoc()

cursor.showDiskLoc()

Returns A modified cursor object that contains documents with appended information that describes
the on-disk location of the document.

See Also:

$showDiskLoc (page 772) for related functionality.

cursor.size()

cursor.size()

Returns A count of the number of documents that match the db.collection.find()
(page 910) query after applying any cursor.skip() (page 899) and cursor.limit()
(page 894) methods.

cursor.skip()

cursor.skip()
Call the cursor.skip() (page 899) method on a cursor to control where MongoDB begins returning results.
This approach may be useful in implementing “paged” results.

Note: You must apply cursor.skip() (page 899) to the cursor before retrieving any documents from the
database.

Consider the following JavaScript function as an example of the sort function:

function printStudents(pageNumber, nPerPage) {
print("Page: " + pageNumber);
db.students.find().skip((pageNumber-1)*nPerPage).limit(nPerPage).forEach(function(student) { print(student.name + "<p>"); });

}

The cursor.skip() (page 899) method is often expensive because it requires the server to walk from the
beginning of the collection or index to get the offset or skip position before beginning to return result. As
offset (e.g. pageNumber above) increases, cursor.skip() (page 899) will become slower and more CPU
intensive. With larger collections, cursor.skip() (page 899) may become IO bound.

Consider using range-based pagination for these kinds of tasks. That is, query for a range of objects, using logic
within the application to determine the pagination rather than the database itself. This approach features better
index utilization, if you do not need to easily jump to a specific page.

cursor.snapshot()

cursor.snapshot()
Append the cursor.snapshot() (page 899) method to a cursor to toggle the “snapshot” mode. This ensures
that the query will not return a document multiple times, even if intervening write operations result in a move of
the document due to the growth in document size.

60.1. Reference 899

MongoDB Documentation, Release 2.4.2

Warning:
•You must apply cursor.snapshot() (page 899) to the cursor before retrieving any documents
from the database.

•You can only use snapshot() (page 899) with unsharded collections.

The snapshot() (page 899) does not guarantee isolation from insertion or deletions.

The cursor.snapshot() (page 899) traverses the index on the _id field. As such, snapshot()
(page 899) cannot be used with sort() (page 900) or hint() (page 894).

Queries with results of less than 1 megabyte are effectively implicitly snapshotted.

cursor.sort()

cursor.sort(sort)

Parameters

• sort – A document whose fields specify the attributes on which to sort the result set.

Append the sort() (page 900) method to a cursor to control the order that the query returns matching docu-
ments. For each field in the sort document, if the field’s corresponding value is positive, then sort() (page 900)
returns query results in ascending order for that attribute: if the field’s corresponding value is negative, then
sort() (page 900) returns query results in descending order.

Note: You must apply cursor.limit() (page 894) to the cursor before retrieving any documents from the
database.

Consider the following example:

db.collection.find().sort({ age: -1 });

Here, the query returns all documents in collection sorted by the age field in descending order. Specify
a value of negative one (e.g. -1), as above, to sort in descending order or a positive value (e.g. 1) to sort in
ascending order.

Unless you have a index for the specified key pattern, use cursor.sort() (page 900) in conjunction
with cursor.limit() (page 894) to avoid requiring MongoDB to perform a large, in-memory sort.
cursor.limit() (page 894) increases the speed and reduces the amount of memory required to return
this query by way of an optimized algorithm.

Warning: The sort function requires that the entire sort be able to complete within 32 megabytes. When
the sort option consumes more than 32 megabytes, MongoDB will return an error. Use cursor.limit()
(page 894), or create an index on the field that you’re sorting to avoid this error.

The $natural (page 755) parameter returns items according to their order on disk. Consider the following
query:

db.collection.find().sort({ $natural: -1 })

This will return documents in the reverse of the order on disk. Typically, the order of documents on disks reflects
insertion order, except when documents move internal because of document growth due to update operations.

When comparing values of different BSON types, MongoDB uses the following comparison order, from lowest
to highest:

1.MinKey (internal type)

900 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

2.Null

3.Numbers (ints, longs, doubles)

4.Symbol, String

5.Object

6.Array

7.BinData

8.ObjectID

9.Boolean

10.Date, Timestamp

11.Regular Expression

12.MaxKey (internal type)

Note: MongoDB treats some types as equivalent for comparison purposes. For instance, numeric types undergo
conversion before comparison.

cursor.toArray()

cursor.toArray()
The toArray() (page 901) method returns an array that contains all the documents from a cursor. The method
iterates completely the cursor, loading all the documents into RAM and exhausting the cursor.

Returns An array of documents.

Consider the following example that applies toArray() (page 901) to the cursor returned from the find()
(page 910) method:

var allProductsArray = db.products.find().toArray();

if (allProductsArray.length > 0) { printjson (allProductsArray[0]); }

The variable allProductsArray holds the array of documents returned by toArray() (page 901).

db.addUser()

db.addUser()
Use db.addUser() (page 901) to add privilege documents to the system.users (page 154) collec-
tion in a database, which creates database credentials in MongoDB. Changed in version 2.4: The schema of
system.users (page 154) changed in 2.4 to accommodate a more sophisticated privilege model (page 149).
In 2.4 db.addUser() (page 901) supports both forms of privilege documents. In MongoDB 2.4 you must pass
db.addUser() (page 901) a document that contains a well-formed system.users (page 154) document.
In MongoDB 2.2 pass arguments to db.addUser() (page 901) that describe user credentials (page 902).

See system.users Privilege Documents (page 153) for more information about the form of the 2.4 privilege
documents.

Consider the following prototypes form for a db.addUser() (page 901) operations:

db.addUser({ user: "<user>", pwd: "<password>", roles: [<roles>] })

60.1. Reference 901

MongoDB Documentation, Release 2.4.2

This operation creates a system.users (page 154) document with a password using the pwd (page 154) field

In the following prototype, rather than specify a password directly, you can delegated the credential to another
database using the userSource (page 155) field:

db.addUser({ user: "<user>", userSource: "<database>", roles: [<roles>] })

Example

To create and add a 2.4-style privilege document to system.users (page 154) to grant readWrite
(page 150) privileges to a user named “author” with privileges, use the following operation:

db.addUser({ user: "author", pwd: "pass", roles: ["readWrite"] })

If you want to store user credentials in a single users database, you can use delegated credentials (page 155),
as in the following example:

db.addUser({ user: "author", userSource: "users", roles: ["readWrite"] })

See Also:

User Privilege Roles in MongoDB (page 149), and system.users Privilege Documents (page 153).

To create legacy (2.2. and earlier) privilege documents, db.addUser() (page 901) provides accepts the
following parameters:

Parameters

• user (string) – Specifies the username.

• password (string) – Specifies the corresponding password.

• readOnly (boolean) – Optional. Defaults to false. Grants users a restricted privilege set
that only allows the user to read the this database.

Consider the following syntax:

db.addUser("<username>", "<password>", { readOnly: <boolean> })

Example

To create and add a legacy (2.2. and earlier) privilege document with a user named guest and the password
pass that has only readOnly privileges, use the following operation:

db.addUser("guest", "pass", { readOnly: true })

Note: The mongo (page 984) shell excludes all db.addUser() (page 901) operations from the saved history.

Deprecated since version 2.4: The roles parameter replaces the readOnly parameter for db.addUser()
(page 901). 2.4 also adds the otherDBRoles (page 155) and userSource (page 155) fields to documents
in the system.users (page 154) collection.

db.auth()

db.auth(“username”, “password”)

Parameters

902 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

• username (string) – Specifies an existing username with access privileges for this database.

• password (string) – Specifies the corresponding password.

Allows a user to authenticate to the database from within the shell. Alternatively use mongo --username
(page 985) and --password (page 985) to specify authentication credentials.

Note: The mongo (page 984) shell excludes all db.auth() (page 902) operations from the saved history.

db.cloneCollection()

db.cloneCollection(from, collection, query)
db.cloneCollection() (page 903) provides a wrapper around cloneCollection (page 813) for
copying data directly between MongoDB instances. db.cloneCollection() (page 903) does not allow
you to clone a collection through a mongos (page 981): you must connect directly to the mongod (page 971)
instance.

Parameters

• from (string) – A host name, of the MongoDB instance that holds the collection you wish
to copy

• collection (string) – A collection in the MongoDB instance that you want to copy.
db.cloneCollection() (page 903) will only copy the collection with this name
from database of the same name as the current database the remote MongoDB instance.
If you want to copy a collection from a different database name you must use the
cloneCollection (page 813) directly.

• query (document) – Optional. A standard MongoDB query document (page 184) to limit
the documents copied as part of the db.cloneCollection() (page 903) operation.

db.cloneDatabase()

db.cloneDatabase(“hostname”)

Parameters

• hostname (string) – Specifies the hostname to copy the current instance.

Use this function to copy a database from a remote to the current database. The command assumes that the
remote database has the same name as the current database. For example, to clone a database named importdb
on a host named hostname, do

use importdb
db.cloneDatabase("hostname");

New databases are implicitly created, so the current host does not need to have a database named importdb
for this command to succeed.

This function provides a wrapper around the MongoDB database command “clone (page 812).” The copydb
(page 820) database command provides related functionality.

db.collection.aggregate()

db.collection.aggregate(pipeline)
New in version 2.2. Always call the db.collection.aggregate() (page 903) method on a collection
object.

60.1. Reference 903

MongoDB Documentation, Release 2.4.2

Arguments

• pipeline – Specifies a sequence of data aggregation processes. See the aggregation reference
(page 265) for documentation of these operators.

Returns

A document with two fields:

• result which holds an array of documents returned by the pipeline

• ok which holds the value 1, indicating success.

Throws exception Changed in version 2.4: If an error occurs, the aggregate() (page 903) helper
throws an exception. In previous versions, the helper returned a document with the error message
and code, and ok status field not equal to 1, same as the aggregate (page 809) command.

Consider the following example from the aggregation documentation (page 249).

db.article.aggregate(
{ $project : {

author : 1,
tags : 1,

} },
{ $unwind : "$tags" },
{ $group : {

_id : { tags : 1 },
authors : { $addToSet : "$author" }

} }
);

See Also:

“aggregate (page 809),” “Aggregation Framework (page 249),” and “Aggregation Framework Reference
(page 265).”

db.collection.count()

db.collection.count()
The db.collection.count() (page 904) method is a shell wrapper that returns the count of documents
that would match a find() (page 910) query; i.e., db.collection.count() (page 904) method is equiv-
alent to:

db.collection.find(<query>).count();

This operation does not actually perform the find() (page 910); instead, the operation counts the results that
would be returned by the find() (page 910).

The db.collection.count() (page 904) method can accept the following argument:

Parameters

• query (document) – Specifies the selection query criteria.

Consider the following examples of the db.collection.count() (page 904) method

•Count the number of all documents in the orders collection:

db.orders.count()

The query is equivalent to the following:

904 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

db.orders.find().count()

•Count the number of the documents in the orders collection with the field ord_dt greater than new
Date(’01/01/2012’):

db.orders.count({ ord_dt: { $gt: new Date(’01/01/2012’) } })

The query is equivalent to the following:

db.orders.find({ ord_dt: { $gt: new Date(’01/01/2012’) } }).count()

See Also:

cursor.count() (page 891)

db.collection.createIndex()

db.collection.createIndex(keys, options)
Deprecated since version 1.8.

Parameters

• keys (document) – A document that contains pairs with the name of the field or fields to
index and order of the index. A 1 specifies ascending and a -1 specifies descending.

• options (document) – A document that controls the creation of the index. This argument is
optional.

The ensureIndex() (page 907) method is the preferred way to create indexes on collections.

See Also:

Indexes (page 301), db.collection.createIndex() (page 905), db.collection.dropIndex()
(page 906), db.collection.dropIndexes() (page 907), db.collection.getIndexes()
(page 915), db.collection.reIndex() (page 928), and db.collection.totalIndexSize()
(page 932)

db.collection.dataSize()

db.collection.dataSize()

Returns The size of the collection. This method provides a wrapper around the size (page 1073)
output of the collStats (page 815) (i.e. db.collection.stats() (page 931)) com-
mand.

db.collection.distinct()

db.collection.distinct()
The db.collection.distinct() (page 905) method finds the distinct values for a specified field across
a single collection and returns the results in an array. The method accepts the following argument:

Parameters

• field (string) – Specifies the field for which to return the distinct values.

• query (document) – Specifies the selection query to determine the subset of documents
from which to retrieve the distinct values.

60.1. Reference 905

MongoDB Documentation, Release 2.4.2

Note:

•The db.collection.distinct() (page 905) method provides a wrapper around the distinct
(page 824) command. Results must not be larger than the maximum BSON size (page 1105).

•When possible to use covered indexes, the db.collection.distinct() (page 905) method will
use an index to find the documents in the query as well as to return the data.

Consider the following examples of the db.collection.distinct() (page 905) method:

•Return an array of the distinct values of the field ord_dt from all documents in the orders collection:

db.orders.distinct(’ord_dt’)

•Return an array of the distinct values of the field sku in the subdocument item from all documents in the
orders collection:

db.orders.distinct(’item.sku’)

•Return an array of the distinct values of the field ord_dt from the documents in the orders collection
where the price is greater than 10:

db.orders.distinct(’ord_dt’,
{ price: { $gt: 10 } }

)

db.collection.drop()

db.collection.drop()
Call the db.collection.drop() (page 906) method on a collection to drop it from the database.

db.collection.drop() (page 906) takes no arguments and will produce an error if called with any argu-
ments.

db.collection.dropIndex()

db.collection.dropIndex(index)
Drops or removes the specified index from a collection. The db.collection.dropIndex() (page 906)
method provides a wrapper around the dropIndexes (page 825) command.

The db.collection.dropIndex() (page 906) method takes the following parameter:

Parameters

• index – Specifies either the name or the key of the index to drop. You must use the name of
the index if you specified a name during the index creation.

The db.collection.dropIndex() (page 906) method cannot drop the _id index. Use the
db.collection.getIndexes() (page 915) method to view all indexes on a collection.

Consider the following examples of the db.collection.dropIndex() (page 906) method that assumes
the following indexes on the collection pets:

> db.pets.getIndexes()
[

{ "v" : 1,
"key" : { "_id" : 1 },

906 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

"ns" : "test.pets",
"name" : "_id_"

},
{

"v" : 1,
"key" : { "cat" : -1 },
"ns" : "test.pets",
"name" : "catIdx"

},
{

"v" : 1,
"key" : { "cat" : 1, "dog" : -1 },
"ns" : "test.pets",
"name" : "cat_1_dog_-1"

}
]

•To drop the index on the field cat, you must use the index name catIdx:

db.pets.dropIndex(’catIdx’)

•To drop the index on the fields cat and dog, you use either the index name cat_1_dog_-1 or the key
{ "cat" : 1, "dog" : -1 }:

db.pets.dropIndex(’cat_1_dog_-1’)

db.pets.dropIndex({ cat : 1, dog : -1 })

db.collection.dropIndexes()

db.collection.dropIndexes()
Drops all indexes other than the required index on the _id field. Only call dropIndexes() (page 907) as a
method on a collection object.

db.collection.ensureIndex()

db.collection.ensureIndex(keys, options)
Creates an index on the field specified, if that index does not already exist.

Parameters

• keys (document) – For ascending/descending indexes, a document (page 186) that contains
pairs with the name of the field or fields to index and order of the index. A 1 specifies
ascending and a -1 specifies descending.

MongoDB supports several different index types including text (page 312), geospatial
(page 333), and hashed (page 309) indexes.

• options (document) – A document that controls the creation of the index. This argument is
optional.

Warning: Index names, including their full namespace (i.e. database.collection) cannot be longer
than 128 characters. See the db.collection.getIndexes() (page 915) field name (page 915) for
the names of existing indexes.

60.1. Reference 907

MongoDB Documentation, Release 2.4.2

Example

Create an Ascending Index on a Single Field

The following example creates an ascending index on the field orderDate.

db.collection.ensureIndex({ orderDate: 1 })

If the keys document specifies more than one field, then db.collection.ensureIndex() (page 907)
creates a compound index.

Example

Create an Index on a Multiple Fields

The following example creates a compound index on the orderDate field (in ascending order) and the
zipcode field (in descending order.)

db.collection.ensureIndex({ orderDate: 1, zipcode: -1 })

A compound index cannot include a hashed index (page 309) component.

Note: The order of an index is important for supporting cursor.sort() (page 900) operations using the
index.

See Also:

•The Indexes (page 301) section of this manual for full documentation of indexes and indexing in Mon-
goDB.

•The Create a text Index (page 350) section for more information and examples on creating text indexes.

ensureIndex() (page 907) provides the following options:

Option Value Default Index Type
background true or false false All
unique true or false false Ascending/Descending
name string none All
dropDups true or false false Scalar
sparse true or false false Ascending/Descending
expireAfterSeconds integer none TTL
v index version 1 All
weights document 1 Text
default_language string english Text
language_override string “language” Text

Options

• background (boolean) – Specify true to build the index in the background so that building
an index will not block other database activities.

• unique (boolean) – Specify true to create a unique index so that the collection will not
accept insertion of documents where the index key or keys matches an existing value in the
index.

• name (string) – Specify the name of the index. If unspecified, MongoDB will generate an
index name by concatenating the names of the indexed fields and the sort order.

908 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

• dropDups (boolean) – Specify true when creating a unique index, on a field that may
have duplicate to index only the first occurrence of a key, and remove all documents from
the collection that contain subsequent occurrences of that key.

• sparse (boolean) – If true, the index only references documents with the specified field.
These indexes use less space, but behave differently in some situations (particularly sorts.)

• expireAfterSeconds (integer) – Specify a value, in seconds, as a TTL to control how long
MongoDB will retain documents in this collection. See Expire Data from Collections by
Setting TTL (page 551) for more information on this functionality.

• v – Only specify a different index version in unusual situations. The latest index version
(version 1) provides a smaller and faster index format.

• weights (document) – For text index only. The document contains field and weight pairs.
The weight is a number ranging from 1 to 99,999.

The weight of the index field denote the significance of the field relative to the other indexed
fields in terms of the score. You can specify weights for some or all the indexed fields. See
Control Results of Text Search with Weights (page 353) to adjust the scores.

• default_language (string) – For text index only. Specify the language that determines the
list of stop words and the rules for the stemmer and tokenizer. The default language for the
indexed data is english.

See Text Search Languages (page 361) for the available languages and Specify a Language
for Text Index (page 351) for more information and example.

• language_override (string) – For text index only.

Specify the name of the field in the document that contains, for that document, the language
to override the default language.

See Create a text Index on a Multi-language Collection (page 352).

Please be aware of the following behaviors of ensureIndex() (page 907):

•To add or change index options you must drop the index using the dropIndex() (page 906) method and
issue another ensureIndex() (page 907) operation with the new options.

If you create an index with one set of options, and then issue the ensureIndex() (page 907) method
with the same index fields and different options without first dropping the index, ensureIndex()
(page 907) will not rebuild the existing index with the new options.

•If you call multiple ensureIndex() (page 907) methods with the same index specification at the same
time, only the first operation will succeed, all other operations will have no effect.

•Non-background indexing operations will block all other operations on a database.

See Also:

In addition to the ascending/descending indexes, MongoDB provides the following index types to provide addi-
tional functionalities:

•TTL Indexes (page 311) to support expiration of data,

•Geospatial Indexes (page 312) and Geohaystack Indexes (page 312) to support geospatial queries, and

•text Indexes (page 312) to support text searches.

60.1. Reference 909

MongoDB Documentation, Release 2.4.2

db.collection.find()

db.collection.find(query, projection)
The find() (page 910) method selects documents in a collection and returns a cursor to the selected docu-
ments.

The find() (page 910) method takes the following parameters.

Parameters

• query (document) – Optional. Specifies the selection criteria using query operators
(page 737). Omit the query parameter or pass an empty document (e.g. {}) to return
all documents in the collection.

• projection (document) – Optional. Controls the fields to return, or the projection. The
projection argument will resemble the following prototype:

{ field1: boolean, field2: boolean ... }

The boolean can take the following include or exclude values:

– 1 or true to include. The find() (page 910) method always includes the _id field
even if the field is not explicitly stated to return in the projection parameter.

– 0 or false to exclude.

The projection cannot contain both include and exclude specifications except for the
exclusion of the _id field.

Omit the projection parameter to return all the fields in the matching documents.

Returns A cursor to the documents that match the query criteria. If the projection argument
is specified, the matching documents contain only the projection fields, and the _id field if
you do not explicitly exclude the _id field.

Note: In the mongo (page 984) shell, you can access the returned documents directly without explicitly using
the JavaScript cursor handling method. Executing the query directly on the mongo (page 984) shell prompt
automatically iterates the cursor to display up to the first 20 documents. Type it to continue iteration.

Consider the following examples of the find() (page 910) method:

•To select all documents in a collection, call the find() (page 910) method with no parameters:

db.products.find()

This operation returns all the documents with all the fields from the collection products. By default, in
the mongo (page 984) shell, the cursor returns the first batch of 20 matching documents. In the mongo
(page 984) shell, iterate through the next batch by typing it. Use the appropriate cursor handling mecha-
nism for your specific language driver.

•To select the documents that match a selection criteria, call the find() (page 910) method with the
query criteria:

db.products.find({ qty: { $gt: 25 } })

This operation returns all the documents from the collection products where qty is greater than 25,
including all fields.

•To select the documents that match a selection criteria and return, or project only certain fields into the
result set, call the find() (page 910) method with the query criteria and the projection parameter,
as in the following example:

910 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

db.products.find({ qty: { $gt: 25 } }, { item: 1, qty: 1 })

This operation returns all the documents from the collection products where qty is greater than 25.
The documents in the result set only include the _id, item, and qty fields using “inclusion” projection.
find() (page 910) always returns the _id field, even when not explicitly included:

{ "_id" : 11, "item" : "pencil", "qty" : 50 }
{ "_id" : ObjectId("50634d86be4617f17bb159cd"), "item" : "bottle", "qty" : 30 }
{ "_id" : ObjectId("50634dbcbe4617f17bb159d0"), "item" : "paper", "qty" : 100 }

•To select the documents that match a query criteria and exclude a set of fields from the resulting documents,
call the find() (page 910) method with the query criteria and the projection parameter using the
exclude syntax:

db.products.find({ qty: { $gt: 25 } }, { _id: 0, qty: 0 })

The query will return all the documents from the collection products where qty is greater than 25.
The documents in the result set will contain all fields except the _id and qty fields, as in the following:

{ "item" : "pencil", "type" : "no.2" }
{ "item" : "bottle", "type" : "blue" }
{ "item" : "paper" }

db.collection.findAndModify()

db.collection.findAndModify()
The findAndModify() (page 911) method atomically modifies and returns a single document. By default,
the returned document does not include the modifications made on the update. To return the document with the
modifications made on the update, use the new option. The findAndModify() (page 911) method is a shell
helper around the findAndModify (page 829) command.

db.collection.findAndModify({
query: <document>,
sort: <document>,
remove: <boolean>,
update: <document>,
new: <boolean>,
fields: <document>,
upsert: <boolean>

});

The db.collection.findAndModify() (page 911) method takes a document parameter with the fol-
lowing subdocument fields:

Fields

• query (document) – Optional. Specifies the selection criteria for the modifica-
tion. The query field employs the same query selectors (page 737) as used in the
db.collection.find() (page 910) method. Although the query may match multi-
ple documents, findAndModify() (page 911) will only select one document to modify.

• sort (document) – Optional. Determines which document the operation will modify if the
query selects multiple documents. findAndModify() (page 911) will modify the first
document in the sort order specified by this argument.

• remove (boolean) – Optional if update field exists. When true, removes the selected
document. The default is false.

60.1. Reference 911

MongoDB Documentation, Release 2.4.2

• update (document) – Optional if remove field exists. Performs an update of the selected
document. The update field employs the same update operators (page 739) or field:
value specifications to modify the selected document.

• new (boolean) – Optional. When true, returns the modified document rather than the
original. The findAndModify() (page 911) method ignores the new option for remove
operations. The default is false.

• fields (document) – Optional. A subset of fields to return. The fields document specifies
an inclusion of a field with 1, as in the following:

fields: { <field1>: 1, <field2>: 1, ... }

See projection (page 165).

• upsert (boolean) – Optional. Used in conjunction with the update field. When true,
findAndModify() (page 911) creates a new document if the query returns no docu-
ments. The default is false.

The findAndModify() (page 911) method returns either:

•the pre-modification document or,

•if the new: true option is set, the modified document.

Note:

•If no document is found for the update or remove, the the method returns null.

•If no document is found for an upsert, which means the command performs an insert, and new is
false, and the sort option is NOT specified, the method returns null. Changed in version 2.2:
Previously returned an empty document {}. See the 2.2 release notes (page 1158) for more information.

•If no document is found for an upsert, which means the command performs an insert, and new is
false, and a sort option is specified, the method returns an empty document {}.

Consider the following examples:

•The following method updates an existing document in the people collection where the document matches
the query criteria:

db.people.findAndModify({
query: { name: "Tom", state: "active", rating: { $gt: 10 } },
sort: { rating: 1 },
update: { $inc: { score: 1 } }

})

This method performs the following actions:

1.The query finds a document in the people collection where the name field has the value Tom, the
state field has the value active and the rating field has a value greater than (page 749)
10.

2.The sort orders the results of the query in ascending order. If multiple documents meet the query
condition, the method will select for modification the first document as ordered by this sort.

3.The update increments (page 751) the value of the score field by 1.

4.The method returns the original (i.e. pre-modification) document selected for this update:

912 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

{
"_id" : ObjectId("50f1e2c99beb36a0f45c6453"),
"name" : "Tom",
"state" : "active",
"rating" : 100,
"score" : 5

}

To return the modified document, add the new:true option to the method.

If no document matched the query condition, the method returns null:

null

•The following method includes the upsert: true option to insert a new document if no document
matches the query condition:

db.people.findAndModify({
query: { name: "Gus", state: "active", rating: 100 },
sort: { rating: 1 },
update: { $inc: { score: 1 } },
upsert: true

})

If the method does not find a matching document, the method performs an upsert. Because the method
included the sort option, it returns an empty document { } as the original (pre-modification) document:

{ }

If the method did not include a sort option, the method returns null.

null

•The following method includes both the upsert: true option and the new:true option to return
the newly inserted document if a document matching the query is not found:

db.people.findAndModify({
query: { name: "Pascal", state: "active", rating: 25 },
sort: { rating: 1 },
update: { $inc: { score: 1 } },
upsert: true,
new: true

}
)

The method returns the newly inserted document:

{
"_id" : ObjectId("50f49ad6444c11ac2448a5d6"),
"name" : "Pascal",
"rating" : 25,
"score" : 1,
"state" : "active"

}

When findAndModify() (page 911) includes the upsert: true option and the query field(s) is not
uniquely indexed, the method could insert a document multiple times in certain circumstances. For instance, if
multiple clients each invoke the method with the same query condition and these methods complete the find
phase before any of methods perform the modify phase, these methods could insert the same document.

60.1. Reference 913

MongoDB Documentation, Release 2.4.2

Consider an example where no document with the name Andy exists and multiple clients issue the following
command:

db.people.findAndModify(
{
query: { name: "Andy" },
sort: { rating: 1 },
update: { $inc: { score: 1 } },
upsert: true

}
)

If all the methods finish the query phase before any command starts the modify phase, and there is no unique
index on the name field, the commands may all perform an upsert. To prevent this condition, create a unique
index (page 308) on the name field. With the unique index in place, the multiple methods would observe one of
the following behaviors:

•Exactly one findAndModify() (page 911) would successfully insert a new document.

•Zero or more findAndModify() (page 911) methods would update the newly inserted document.

•Zero or more findAndModify() (page 911) methods would fail when they attempted to insert a du-
plicate. If the method fails due to a unique index constraint violation, you can retry the method. Absent a
delete of the document, the retry should not fail.

Warning:
•When using findAndModify (page 829) in a sharded environment, the query must contain the
shard key for all operations against the shard cluster. findAndModify (page 829) operations issued
against mongos (page 981) instances for non-sharded collections function normally.

db.collection.findOne()

db.collection.findOne(query, projection)

Parameters

• query (document) – Optional. A document that specifies the query using the JSON-like
syntax and query operators (page 737).

• projection (document) – Optional. Controls the fields to return, or the projection. The
projection argument will resemble the following prototype:

{ field1: boolean, field2: boolean ... }

The boolean can take the following include or exclude values:

– 1 or true to include. The findOne() (page 914) method always includes the _id field
even if the field is not explicitly stated to return in the projection parameter.

– 0 or false to exclude.

The projection cannot contain both include and exclude specifications except for the
exclusion of the _id field.

Omit the projection parameter to return all the fields in the matching documents.

Returns One document that satisfies the query specified as the argument to this method. If the
projection argument is specified, the returned document contains only the projection
fields, and the _id field if you do not explicitly exclude the _id field.

914 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Returns only one document that satisfies the specified query. If multiple documents satisfy the query, this method
returns the first document according to the natural order which reflects the order of documents on the disc. In
capped collections, natural order is the same as insertion order.

db.collection.getIndexes()

db.collection.getIndexes()
Returns an array that holds a list of documents that identify and describe the existing indexes on the collection.
You must call the db.collection.getIndexes() (page 915) on a collection. For example:

db.collection.getIndexes()

Change collection to the name of the collection whose indexes you want to learn.

The db.collection.getIndexes() (page 915) items consist of the following fields:

system.indexes.v
Holds the version of the index.

The index version depends on the version of mongod (page 971) that created the index. Before version
2.0 of MongoDB, the this value was 0; versions 2.0 and later use version 1.

system.indexes.key
Contains a document holding the keys held in the index, and the order of the index. Indexes may be either
descending or ascending order. A value of negative one (e.g. -1) indicates an index sorted in descending
order while a positive value (e.g. 1) indicates an index sorted in an ascending order.

system.indexes.ns
The namespace context for the index.

system.indexes.name
A unique name for the index comprised of the field names and orders of all keys.

db.collection.getShardDistribution()

db.collection.getShardDistribution()

Returns

Prints the data distribution statistics for a sharded collection. You must call the
getShardDistribution() (page 915) method on a sharded collection, as in the following
example:

db.myShardedCollection.getShardDistribution()

In the following example, the collection has two shards. The output displays both the individual shard distribu-
tion information as well the total shard distribution:

Shard <shard-a> at <host-a>
data : <size-a> docs : <count-a> chunks : <number of chunks-a>
estimated data per chunk : <size-a>/<number of chunks-a>
estimated docs per chunk : <count-a>/<number of chunks-a>

Shard <shard-b> at <host-b>
data : <size-b> docs : <count-b> chunks : <number of chunks-b>
estimated data per chunk : <size-b>/<number of chunks-b>
estimated docs per chunk : <count-b>/<number of chunks-b>

60.1. Reference 915

MongoDB Documentation, Release 2.4.2

Totals
data : <stats.size> docs : <stats.count> chunks : <calc total chunks>
Shard <shard-a> contains <estDataPercent-a>% data, <estDocPercent-a>% docs in cluster, avg obj size on shard : stats.shards[<shard-a>].avgObjSize
Shard <shard-b> contains <estDataPercent-b>% data, <estDocPercent-b>% docs in cluster, avg obj size on shard : stats.shards[<shard-b>].avgObjSize

The output information displays:

•<shard-x> is a string that holds the shard name.

•<host-x> is a string that holds the host name(s).

•<size-x> is a number that includes the size of the data, including the unit of measure (e.g. b, Mb).

•<count-x> is a number that reports the number of documents in the shard.

•<number of chunks-x> is a number that reports the number of chunks in the shard.

•<size-x>/<number of chunks-x> is a calculated value that reflects the estimated data size per
chunk for the shard, including the unit of measure (e.g. b, Mb).

•<count-x>/<number of chunks-x> is a calculated value that reflects the estimated number of
documents per chunk for the shard.

•<stats.size> is a value that reports the total size of the data in the sharded collection, including the
unit of measure.

•<stats.count> is a value that reports the total number of documents in the sharded collection.

•<calc total chunks> is a calculated number that reports the number of chunks from all shards, for
example:

<calc total chunks> = <number of chunks-a> + <number of chunks-b>

•<estDataPercent-x> is a calculated value that reflects, for each shard, the data size as the percentage
of the collection’s total data size, for example:

<estDataPercent-x> = <size-x>/<stats.size>

•<estDocPercent-x> is a calculated value that reflects, for each shard, the number of documents as
the percentage of the total number of documents for the collection, for example:

<estDocPercent-x> = <count-x>/<stats.count>

•stats.shards[<shard-x>].avgObjSize is a number that reflects the average object size,
including the unit of measure, for the shard.

For example, the following is a sample output for the distribution of a sharded collection:

Shard shard-a at shard-a/MyMachine.local:30000,MyMachine.local:30001,MyMachine.local:30002
data : 38.14Mb docs : 1000003 chunks : 2
estimated data per chunk : 19.07Mb
estimated docs per chunk : 500001

Shard shard-b at shard-b/MyMachine.local:30100,MyMachine.local:30101,MyMachine.local:30102
data : 38.14Mb docs : 999999 chunks : 3
estimated data per chunk : 12.71Mb
estimated docs per chunk : 333333

Totals
data : 76.29Mb docs : 2000002 chunks : 5
Shard shard-a contains 50% data, 50% docs in cluster, avg obj size on shard : 40b
Shard shard-b contains 49.99% data, 49.99% docs in cluster, avg obj size on shard : 40b

916 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

See Also:

Sharding (page 461)

db.collection.getShardVersion()

db.collection.getShardVersion()
This method returns information regarding the state of data in a sharded cluster that is useful when diagnosing
underlying issues with a sharded cluster.

For internal and diagnostic use only.

db.collection.group()

db.collection.group({ key, reduce, initial, [keyf,] [cond,] finalize })
The db.collection.group() (page 917) method groups documents in a collection by the specified keys
and performs simple aggregation functions such as computing counts and sums. The method is analogous to a
SELECT .. GROUP BY statement in SQL. The group() (page 917) method returns an array.

The db.collection.group() (page 917) accepts a single document that contains the following:

Fields

• key – Specifies one or more document fields to group by.

• reduce – Specifies a function for the group operation perform on the documents during the
grouping operation, such as compute a sum or a count. The aggregation function takes two
arguments: the current document and the aggregate result for the previous documents in the.

• initial – Initializes the aggregation result document.

• keyf – Optional. Alternative to the key field. Specifies a function that creates a “key object”
for use as the grouping key. Use the keyf instead of key to group by calculated fields rather
than existing document fields.

• cond – Optional. Specifies the selection criteria to determine which documents in the col-
lection to process. If you omit the cond field, db.collection.group() (page 917)
processes all the documents in the collection for the group operation.

• finalize – Optional. Specifies a function that runs each item in the result set before
db.collection.group() (page 917) returns the final value. This function can either
modify the result document or replace the result document as a whole.

The db.collection.group() (page 917) method is a shell wrapper for the group (page 840) command;
however, the db.collection.group() (page 917) method takes the keyf field and the reduce field
whereas the group (page 840) command takes the $keyf field and the $reduce field.

Warning: The db.collection.group() (page 917) method does not work with sharded clusters.
Use the aggregation framework or map-reduce in sharded environments.

Note:

•The result set must fit within the maximum BSON document size (page 1105).

•In version 2.2, the returned array can contain at most 20,000 elements; i.e. at most 20,000 unique group-
ings. For group by operations that results in more than 20,000 unique groupings, use mapReduce
(page 851). Previous versions had a limit of 10,000 elements.

60.1. Reference 917

MongoDB Documentation, Release 2.4.2

Changed in version 2.4.

•In MongoDB 2.4, map-reduce operations (page 851), the group (page 840) command, and
$where (page 777) operator expressions cannot access certain global functions or properties, such as
db, that are available in the mongo (page 984) shell.

When upgrading to MongoDB 2.4, you will need to refactor your code if your map-reduce
operations (page 851), group (page 840) commands, or $where (page 777) operator expressions
include any global shell functions or properties that are no longer available, such as db.

The following shell functions and properties are available to map-reduce operations (page 851),
the group (page 840) command, and $where (page 777) operator expressions in MongoDB 2.4:

Available Properties Available Functions

args

MaxKey

MinKey

assert()

BinData()

DBPointer()

DBRef()

doassert()

emit()

gc()

HexData()

hex_md5()

isNumber()

isObject()

ISODate()

isString()

Map()

MD5()

NumberInt()

NumberLong()

ObjectId()

print()

sleep()

Timestamp()

UUID()

version()

•Prior to 2.4, the db.collection.group() (page 917) method took the mongod (page 971) instance’s
JavaScript lock, which blocked all other JavaScript execution.

Consider the following examples of the db.collection.group() (page 917) method:

The examples assume an orders collection with documents of the following prototype:

{
_id: ObjectId("5085a95c8fada716c89d0021"),
ord_dt: ISODate("2012-07-01T04:00:00Z"),
ship_dt: ISODate("2012-07-02T04:00:00Z"),
item: { sku: "abc123",

price: 1.99,
uom: "pcs",
qty: 25 }

}

• The following example groups by the ord_dt and item.sku fields those documents that have ord_dt
greater than 01/01/2011:

db.orders.group({
key: { ord_dt: 1, ’item.sku’: 1 },
cond: { ord_dt: { $gt: new Date(’01/01/2012’) } },
reduce: function (curr, result) { },
initial: { }

})

918 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

The result is an array of documents that contain the group by fields:

[{ "ord_dt" : ISODate("2012-07-01T04:00:00Z"), "item.sku" : "abc123"},
{ "ord_dt" : ISODate("2012-07-01T04:00:00Z"), "item.sku" : "abc456"},
{ "ord_dt" : ISODate("2012-07-01T04:00:00Z"), "item.sku" : "bcd123"},
{ "ord_dt" : ISODate("2012-07-01T04:00:00Z"), "item.sku" : "efg456"},
{ "ord_dt" : ISODate("2012-06-01T04:00:00Z"), "item.sku" : "abc123"},
{ "ord_dt" : ISODate("2012-06-01T04:00:00Z"), "item.sku" : "efg456"},
{ "ord_dt" : ISODate("2012-06-01T04:00:00Z"), "item.sku" : "ijk123"},
{ "ord_dt" : ISODate("2012-05-01T04:00:00Z"), "item.sku" : "abc123"},
{ "ord_dt" : ISODate("2012-05-01T04:00:00Z"), "item.sku" : "abc456"},
{ "ord_dt" : ISODate("2012-06-08T04:00:00Z"), "item.sku" : "abc123"},
{ "ord_dt" : ISODate("2012-06-08T04:00:00Z"), "item.sku" : "abc456"}]

The method call is analogous to the SQL statement:

SELECT ord_dt, item_sku
FROM orders
WHERE ord_dt > ’01/01/2012’
GROUP BY ord_dt, item_sku

• The following example groups by the ord_dt and item.sku fields, those documents that have ord_dt
greater than 01/01/2011 and calculates the sum of the qty field for each grouping:

db.orders.group({
key: { ord_dt: 1, ’item.sku’: 1 },
cond: { ord_dt: { $gt: new Date(’01/01/2012’) } },
reduce: function (curr, result) {

result.total += curr.item.qty;
},

initial: { total : 0 }
})

The result is an array of documents that contain the group by fields and the calculated aggregation field:

[{ "ord_dt" : ISODate("2012-07-01T04:00:00Z"), "item.sku" : "abc123", "total" : 25 },
{ "ord_dt" : ISODate("2012-07-01T04:00:00Z"), "item.sku" : "abc456", "total" : 25 },
{ "ord_dt" : ISODate("2012-07-01T04:00:00Z"), "item.sku" : "bcd123", "total" : 10 },
{ "ord_dt" : ISODate("2012-07-01T04:00:00Z"), "item.sku" : "efg456", "total" : 10 },
{ "ord_dt" : ISODate("2012-06-01T04:00:00Z"), "item.sku" : "abc123", "total" : 25 },
{ "ord_dt" : ISODate("2012-06-01T04:00:00Z"), "item.sku" : "efg456", "total" : 15 },
{ "ord_dt" : ISODate("2012-06-01T04:00:00Z"), "item.sku" : "ijk123", "total" : 20 },
{ "ord_dt" : ISODate("2012-05-01T04:00:00Z"), "item.sku" : "abc123", "total" : 45 },
{ "ord_dt" : ISODate("2012-05-01T04:00:00Z"), "item.sku" : "abc456", "total" : 25 },
{ "ord_dt" : ISODate("2012-06-08T04:00:00Z"), "item.sku" : "abc123", "total" : 25 },
{ "ord_dt" : ISODate("2012-06-08T04:00:00Z"), "item.sku" : "abc456", "total" : 25 }]

The method call is analogous to the SQL statement:

SELECT ord_dt, item_sku, SUM(item_qty) as total
FROM orders
WHERE ord_dt > ’01/01/2012’
GROUP BY ord_dt, item_sku

• The following example groups by the calculated day_of_week field, those documents that have ord_dt
greater than 01/01/2011 and calculates the sum, count, and average of the qty field for each grouping:

db.orders.group({
keyf: function(doc) {

return { day_of_week: doc.ord_dt.getDay() } ; },

60.1. Reference 919

MongoDB Documentation, Release 2.4.2

cond: { ord_dt: { $gt: new Date(’01/01/2012’) } },
reduce: function (curr, result) {

result.total += curr.item.qty;
result.count++;

},
initial: { total : 0, count: 0 },
finalize: function(result) {

var weekdays = ["Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday",
"Friday", "Saturday"];

result.day_of_week = weekdays[result.day_of_week];
result.avg = Math.round(result.total / result.count);

}
})

The result is an array of documents that contain the group by fields and the calculated aggregation field:

[{ "day_of_week" : "Sunday", "total" : 70, "count" : 4, "avg" : 18 },
{ "day_of_week" : "Friday", "total" : 110, "count" : 6, "avg" : 18 },
{ "day_of_week" : "Tuesday", "total" : 70, "count" : 3, "avg" : 23 }]

See Also:

Aggregation Framework (page 249)

db.collection.insert()

db.collection.insert(document)
The insert() (page 920) method inserts a document or documents into a collection. Changed in version 2.2:
The insert() (page 920) method can accept an array of documents to perform a bulk insert of the documents
into the collection. Consider the following behaviors of the insert() (page 920) method:

•If the collection does not exist, then the insert() (page 920) method will create the collection.

•If the document does not specify an _id field, then MongoDB will add the _id field and assign a unique
ObjectId for the document before inserting. Most drivers create an ObjectId and insert the _id field, but
the mongod (page 971) will create and populate the _id if the driver or application does not.

•If the document specifies a new field, then the insert() (page 920) method inserts the document with
the new field. This requires no changes to the data model for the collection or the existing documents.

The insert() (page 920) method takes one of the following parameters:

Parameters

• document – A document to insert into the collection.

• documents (array) – New in version 2.2. An array of documents to insert into the collection.

Consider the following examples of the insert() (page 920) method:

•To insert a single document and have MongoDB generate the unique _id, omit the _id field in the
document and pass the document to the insert() (page 920) method as in the following:

db.products.insert({ item: "card", qty: 15 })

This operation inserts a new document into the products collection with the item field set to card,
the qty field set to 15, and the _id field set to a unique ObjectId:

920 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

{ "_id" : ObjectId("5063114bd386d8fadbd6b004"), "item" : "card", "qty" : 15 }

Note: Most MongoDB driver clients will include the _id field and generate an ObjectId before
sending the insert operation to MongoDB; however, if the client sends a document without an _id field,
the mongod (page 971) will add the _id field and generate the ObjectId.

•To insert a single document, with a custom _id field, include the _id field set to a unique identifier and
pass the document to the insert() (page 920) method as follows:

db.products.insert({ _id: 10, item: "box", qty: 20 })

This operation inserts a new document in the products collection with the _id field set to 10, the item
field set to box, the qty field set to 20:

{ "_id" : 10, "item" : "box", "qty" : 20 }

Note: Most MongoDB driver clients will include the _id field and generate an ObjectId before
sending the insert operation to MongoDB; however, if the client sends a document without an _id field,
the mongod (page 971) will add the _id field and generate the ObjectId.

•To insert multiple documents, pass an array of documents to the insert() (page 920) method as in the
following:

db.products.insert([{ _id: 11, item: "pencil", qty: 50, type: "no.2" },
{ item: "pen", qty: 20 },
{ item: "eraser", qty: 25 }])

The operation will insert three documents into the products collection:

–A document with the fields _id set to 11, item set to pencil, qty set to 50, and the type set to
no.2.

–A document with the fields _id set to a unique objectid, item set to pen, and qty set to 20.

–A document with the fields _id set to a unique objectid, item set to eraser, and qty set to
25.

{ "_id" : 11, "item" : "pencil", "qty" : 50, "type" : "no.2" }
{ "_id" : ObjectId("50631bc0be4617f17bb159ca"), "item" : "pen", "qty" : 20 }
{ "_id" : ObjectId("50631bc0be4617f17bb159cb"), "item" : "eraser", "qty" : 25 }

db.collection.isCapped()

db.collection.isCapped()

Returns Returns true if the collection is a capped collection, otherwise returns false.

See Also:

Capped Collections (page 532)

db.collection.mapReduce()

db.collection.mapReduce(map, reduce, {<out>, <query>, <sort>, <limit>, <finalize>, <scope>,
<jsMode>, <verbose>})

The db.collection.mapReduce() (page 921) method provides a wrapper around the mapReduce

60.1. Reference 921

MongoDB Documentation, Release 2.4.2

(page 851) command.

db.collection.mapReduce(
<map>,
<reduce>,
{
out: <collection>,
query: <document>,
sort: <document>,
limit: <number>,
finalize: <function>,
scope: <document>,
jsMode: <boolean>,
verbose: <boolean>

}
)

db.collection.mapReduce() (page 921) takes the following parameters:

Parameters

• map – A JavaScript function that associates or “maps” a value with a key and emits the
key and value pair.

The map function processes every input document for the map-reduce operation. The map-
reduce operation groups the emitted value objects by the key and passes these groupings
to the reduce function.

• reduce – A JavaScript function that “reduces” to a single object all the values associated
with a particular key.

The reduce function accepts two arguments: key and values. The values argument
is an array whose elements are the value objects that are “mapped” to the key.

• out – New in version 1.8. Specifies the location of the result of the map-reduce operation.
You can output to a collection, output to a collection with an action, or output inline. You
may output to a collection when performing map reduce operations on the primary members
of the set; on secondary members you may only use the inline output.

• query – Optional. Specifies the selection criteria using query operators (page 737) for
determining the documents input to the map function.

• sort – Optional. Sorts the input documents. This option is useful for optimization. For
example, specify the sort key to be the same as the emit key so that there are fewer reduce
operations.

• limit – Optional. Specifies a maximum number of documents to return from the collection.

• finalize – Optional. A JavaScript function that follows the reduce method and modifies
the output.

The finalize function receives two arguments: key and reducedValue. The
reducedValue is the value returned from the reduce function for the key.

• scope (document) – Optional. Specifies global variables that are accessible in the map ,
reduce and the finalize functions.

• jsMode (Boolean) – New in version 2.0. Optional. Specifies whether to convert intermedi-
ate data into BSON format between the execution of the map and reduce functions.

If false:

922 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

– Internally, MongoDB converts the JavaScript objects emitted by the map function to
BSON objects. These BSON objects are then converted back to JavaScript objects when
calling the reduce function.

– The map-reduce operation places the intermediate BSON objects in temporary, on-disk
storage. This allows the map-reduce operation to execute over arbitrarily large data sets.

If true:

– Internally, the JavaScript objects emitted during map function remain as JavaScript ob-
jects. There is no need to convert the objects for the reduce function, which can result
in faster execution.

– You can only use jsMode for result sets with fewer than 500,000 distinct key arguments
to the mapper’s emit() function.

The jsMode defaults to false.

• verbose (Boolean) – Optional. Specifies whether to include the timing information in the
result information. The verbose defaults to true to include the timing information.

Note: Changed in version 2.4. In MongoDB 2.4, map-reduce operations (page 851), the group
(page 840) command, and $where (page 777) operator expressions cannot access certain global functions
or properties, such as db, that are available in the mongo (page 984) shell.

When upgrading to MongoDB 2.4, you will need to refactor your code if your map-reduce operations
(page 851), group (page 840) commands, or $where (page 777) operator expressions include any global shell
functions or properties that are no longer available, such as db.

The following shell functions and properties are available to map-reduce operations (page 851), the
group (page 840) command, and $where (page 777) operator expressions in MongoDB 2.4:

Available Properties Available Functions

args

MaxKey

MinKey

assert()

BinData()

DBPointer()

DBRef()

doassert()

emit()

gc()

HexData()

hex_md5()

isNumber()

isObject()

ISODate()

isString()

Map()

MD5()

NumberInt()

NumberLong()

ObjectId()

print()

sleep()

Timestamp()

UUID()

version()

Requirements for the map Function

The map function has the following prototype:

60.1. Reference 923

MongoDB Documentation, Release 2.4.2

function() {
...
emit(key, value);

}

The map function exhibits the following behaviors:

• In the map function, reference the current document as this within the function.

• The map function should not access the database for any reason.

• The map function should be pure, or have no impact outside of the function (i.e. side effects.)

• The emit(key,value) function associates the key with a value.

– A single emit can only hold half of MongoDB’s maximum BSON document size (page 1105).

– There is no limit to the number of times you may call the emit function per document.

• The map function can access the variables defined in the scope parameter.

Requirements for the reduce Function

The reduce function has the following prototype:

function(key, values) {
...
return result;

}

The reduce function exhibits the following behaviors:

• The reduce function should not access the database, even to perform read operations.

• The reduce function should not affect the outside system.

• MongoDB will not call the reduce function for a key that has only a single value.

• The reduce function can access the variables defined in the scope parameter.

Because it is possible to invoke the reduce function more than once for the same key, the following properties need
to be true:

• the type of the return object must be identical to the type of the value emitted by the map function to ensure
that the following operations is true:

reduce(key, [C, reduce(key, [A, B])]) == reduce(key, [C, A, B])

• the reduce function must be idempotent. Ensure that the following statement is true:

reduce(key, [reduce(key, valuesArray)]) == reduce(key, valuesArray)

• the order of the elements in the valuesArray should not affect the output of the reduce function, so that
the following statement is true:

reduce(key, [A, B]) == reduce(key, [B, A])

out Options

You can specify the following options for the out parameter:

924 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Output to a Collection
out: <collectionName>

Output to a Collection with an Action This option is only available when passing out a collection that already
exists. This option is not available on secondary members of replica sets.

out: { <action>: <collectionName>
[, db: <dbName>]
[, sharded: <boolean>]
[, nonAtomic: <boolean>] }

When you output to a collection with an action, the out has the following parameters:

• <action>: Specify one of the following actions:

– replace

Replace the contents of the <collectionName> if the collection with the <collectionName> ex-
ists.

– merge

Merge the new result with the existing result if the output collection already exists. If an existing document
has the same key as the new result, overwrite that existing document.

– reduce

Merge the new result with the existing result if the output collection already exists. If an existing document
has the same key as the new result, apply the reduce function to both the new and the existing documents
and overwrite the existing document with the result.

• db:

Optional.The name of the database that you want the map-reduce operation to write its output. By default
this will be the same database as the input collection.

• sharded:

Optional. If true and you have enabled sharding on output database, the map-reduce operation will
shard the output collection using the _id field as the shard key.

• nonAtomic: New in version 2.2. Optional. Specify output operation as non-atomic and is valid only for
merge and reduce output modes which may take minutes to execute.

If nonAtomic is true, the post-processing step will prevent MongoDB from locking the database; however,
other clients will be able to read intermediate states of the output collection. Otherwise the map reduce operation
must lock the database during post-processing.

Output Inline Perform the map-reduce operation in memory and return the result. This option is the only available
option for out on secondary members of replica sets.

out: { inline: 1 }

The result must fit within the maximum size of a BSON document (page 1105).

Requirements for the finalize Function

The finalize function has the following prototype:

60.1. Reference 925

MongoDB Documentation, Release 2.4.2

function(key, reducedValue) {
...
return modifiedObject;

}

The finalize function receives as its arguments a key value and the reducedValue from the reduce function.
Be aware that:

• The finalize function should not access the database for any reason.

• The finalize function should be pure, or have no impact outside of the function (i.e. side effects.)

• The finalize function can access the variables defined in the scope parameter.

Map-Reduce Examples

Consider the following map-reduce operations on a collection orders that contains documents of the following
prototype:

{
_id: ObjectId("50a8240b927d5d8b5891743c"),
cust_id: "abc123",
ord_date: new Date("Oct 04, 2012"),
status: ’A’,
price: 250,
items: [{ sku: "mmm", qty: 5, price: 2.5 },

{ sku: "nnn", qty: 5, price: 2.5 }]
}

Return the Total Price Per Customer Id Perform map-reduce operation on the orders collection to group by the
cust_id, and for each cust_id, calculate the sum of the price for each cust_id:

1. Define the map function to process each input document:

• In the function, this refers to the document that the map-reduce operation is processing.

• The function maps the price to the cust_id for each document and emits the cust_id and price
pair.

var mapFunction1 = function() {
emit(this.cust_id, this.price);

};

2. Define the corresponding reduce function with two arguments keyCustId and valuesPrices:

• The valuesPrices is an array whose elements are the price values emitted by the map function and
grouped by keyCustId.

• The function reduces the valuesPrice array to the sum of its elements.

var reduceFunction1 = function(keyCustId, valuesPrices) {
return Array.sum(valuesPrices);

};

3. Perform the map-reduce on all documents in the orders collection using the mapFunction1 map function
and the reduceFunction1 reduce function.

926 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

db.orders.mapReduce(
mapFunction1,
reduceFunction1,
{ out: "map_reduce_example" }

)

This operation outputs the results to a collection named map_reduce_example. If the
map_reduce_example collection already exists, the operation will replace the contents with the re-
sults of this map-reduce operation:

Calculate the Number of Orders, Total Quantity, and Average Quantity Per Item In this example you will
perform a map-reduce operation on the orders collection, for all documents that have an ord_date value greater
than 01/01/2012. The operation groups by the item.sku field, and for each sku calculates the number of orders
and the total quantity ordered. The operation concludes by calculating the average quantity per order for each sku
value:

1. Define the map function to process each input document:

• In the function, this refers to the document that the map-reduce operation is processing.

• For each item, the function associates the sku with a new object value that contains the count of 1
and the item qty for the order and emits the sku and value pair.

var mapFunction2 = function() {
for (var idx = 0; idx < this.items.length; idx++) {

var key = this.items[idx].sku;
var value = {

count: 1,
qty: this.items[idx].qty

};
emit(key, value);

}
};

2. Define the corresponding reduce function with two arguments keySKU and valuesCountObjects:

• valuesCountObjects is an array whose elements are the objects mapped to the grouped keySKU
values passed by map function to the reducer function.

• The function reduces the valuesCountObjects array to a single object reducedValue that also
contains the count and the qty fields.

• In reducedValue, the count field contains the sum of the count fields from the individual array
elements, and the qty field contains the sum of the qty fields from the individual array elements.

var reduceFunction2 = function(keySKU, valuesCountObjects) {
reducedValue = { count: 0, qty: 0 };

for (var idx = 0; idx < valuesCountObjects.length; idx++) {
reducedValue.count += valuesCountObjects[idx].count;
reducedValue.qty += valuesCountObjects[idx].qty;

}

return reducedValue;
};

3. Define a finalize function with two arguments key and reducedValue. The function modifies the
reducedValue object to add a computed field named average and returns the modified object:

60.1. Reference 927

MongoDB Documentation, Release 2.4.2

var finalizeFunction2 = function (key, reducedValue) {

reducedValue.average = reducedValue.qty/reducedValue.count;

return reducedValue;
};

4. Perform the map-reduce operation on the orders collection using the mapFunction2,
reduceFunction2, and finalizeFunction2 functions.

db.orders.mapReduce(mapFunction2,
reduceFunction2,
{
out: { merge: "map_reduce_example" },
query: { ord_date: { $gt: new Date(’01/01/2012’) } },
finalize: finalizeFunction2

}
)

This operation uses the query field to select only those documents with ord_date greater than new
Date(01/01/2012). Then it output the results to a collection map_reduce_example. If the
map_reduce_example collection already exists, the operation will merge the existing contents with the
results of this map-reduce operation:

For more information and examples, see the Map-Reduce (page 285) page and Perform Incremental Map-Reduce
(page 287).

See Also:

• Troubleshoot the Map Function (page 291)

• Troubleshoot the Reduce Function (page 292)

• mapReduce (page 851) command

• Aggregation Framework (page 249)

db.collection.reIndex()

db.collection.reIndex()
This method drops all indexes and recreates them. This operation may be expensive for collections that have a
large amount of data and/or a large number of indexes.

Call this method, which takes no arguments, on a collection object. For example:

db.collection.reIndex()

Change collection to the name of the collection that you want to rebuild the index.

db.collection.remove()

db.collection.remove(query, justOne)
The remove (page 928) method removes documents from a collection.

The remove() (page 928) method can take the following parameters:

Parameters

928 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

• query (document) – Optional. Specifies the deletion criteria using query operators
(page 737). Omit the query parameter or pass an empty document (e.g. {}) to delete
all documents in the collection.

• justOne (boolean) – Optional. A boolean that limits the deletion to just one document. The
default value is false. Set to true to delete only the first result.

Note: You cannot use the remove() (page 928) method with a capped collection.

Consider the following examples of the remove (page 928) method.

•To remove all documents in a collection, call the remove (page 928) method with no parameters:

db.products.remove()

This operation will remove all the documents from the collection products.

•To remove the documents that match a deletion criteria, call the remove (page 928) method with the
query criteria:

db.products.remove({ qty: { $gt: 20 } })

This operation removes all the documents from the collection products where qty is greater than 20.

•To remove the first document that match a deletion criteria, call the remove (page 928) method with the
query criteria and the justOne parameter set to true or 1:

db.products.remove({ qty: { $gt: 20 } }, true)

This operation removes all the documents from the collection products where qty is greater than 20.

Note: If the query argument to the remove() (page 928) method matches multiple documents in the
collection, the delete operation may interleave with other write operations to that collection. For an unsharded
collection, you have the option to override this behavior with the $isolated (page 751) isolation operator,
effectively isolating the delete operation and blocking other write operations during the delete. To isolate the
query, include $isolated: 1 in the query parameter as in the following example:

db.products.remove({ qty: { $gt: 20 }, $isolated: 1 })

db.collection.renameCollection()

db.collection.renameCollection()
db.collection.renameCollection() (page 929) provides a helper for the renameCollection
(page 862) database command in the mongo (page 984) shell to rename existing collections.

Parameters

• target (string) – Specifies the new name of the collection. Enclose the string in quotes.

• dropTarget (boolean) – Optional. If true, mongod (page 971) will drop the target of
renameCollection (page 862) prior to renaming the collection.

Call the db.collection.renameCollection() (page 929) method on a collection object, to rename a
collection. Specify the new name of the collection as an argument. For example:

db.rrecord.renameCollection("record")

60.1. Reference 929

MongoDB Documentation, Release 2.4.2

This operation will rename the rrecord collection to record. If the target name (i.e. record) is the name
of an existing collection, then the operation will fail.

Consider the following limitations:

•db.collection.renameCollection() (page 929) cannot move a collection between databases.
Use renameCollection (page 862) for these rename operations.

•db.collection.renameCollection() (page 929) cannot operation on sharded collections.

The db.collection.renameCollection() (page 929) method operates within a collection by chang-
ing the metadata associated with a given collection.

Refer to the documentation renameCollection (page 862) for additional warnings and messages.

Warning: The db.collection.renameCollection() (page 929) method and
renameCollection (page 862) command will invalidate open cursors which interrupts queries
that are currently returning data.

db.collection.save()

db.collection.save(document)
The save() (page 930) method updates an existing document or inserts a document depending on the param-
eter.

The save() (page 930) method takes the following parameter:

Parameters

• document – Specify a document to save to the collection.

If the document does not contain an _id field, then the save() (page 930) method performs
an insert with the specified fields in the document as well as an _id field with a unique
objectid value.

If the document contains an _id field, then the save() (page 930) method performs an
upsert querying the collection on the _id field:

– If a document does not exist with the specified _id value, the save() (page 930)
method performs an insert with the specified fields in the document.

– If a document exists with the specified _id value, the save() (page 930) method per-
forms an update, replacing all field in the existing record with the fields from the docu-
ment.

Consider the following examples of the save() (page 930) method:

•Pass to the save() (page 930) method a document without an _id field, so that to insert the document
into the collection and have MongoDB generate the unique _id as in the following:

db.products.save({ item: "book", qty: 40 })

This operation inserts a new document into the products collection with the item field set to book,
the qty field set to 40, and the _id field set to a unique ObjectId:

{ "_id" : ObjectId("50691737d386d8fadbd6b01d"), "item" : "book", "qty" : 40 }

Note: Most MongoDB driver clients will include the _id field and generate an ObjectId before
sending the insert operation to MongoDB; however, if the client sends a document without an _id field,
the mongod (page 971) will add the _id field and generate the ObjectId.

930 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

•Pass to the save() (page 930) method a document with an _id field that holds a value that does not
exist in the collection to insert the document with that value in the _id value into the collection, as in the
following:

db.products.save({ _id: 100, item: "water", qty: 30 })

This operation inserts a new document into the products collection with the _id field set to 100, the
item field set to water, and the field qty set to 30:

{ "_id" : 100, "item" : "water", "qty" : 30 }

Note: Most MongoDB driver clients will include the _id field and generate an ObjectId before
sending the insert operation to MongoDB; however, if the client sends a document without an _id field,
the mongod (page 971) will add the _id field and generate the ObjectId.

•Pass to the save() (page 930) method a document with the _id field set to a value in the collection
to replace all fields and values of the matching document with the new fields and values, as in the following:

db.products.save({ _id:100, item:"juice" })

This operation replaces the existing document with a value of 100 in the _id field. The updated document
will resemble the following:

{ "_id" : 100, "item" : "juice" }

db.collection.stats()

db.collection.stats(scale)

Parameters

• scale – Optional. Specifies the scale to deliver results. Unless specified, this command
returns all sizes in bytes.

Returns A document containing statistics that reflecting the state of the specified collection.

This function provides a wrapper around the database command collStats (page 815). The scale option
allows you to configure how the mongo (page 984) shell scales the sizes of things in the output. For example,
specify a scale value of 1024 to display kilobytes rather than bytes.

Call the db.collection.stats() (page 931) method on a collection object, to return statistics regarding
that collection. For example, the following operation returns stats on the people collection:

db.people.stats()

See Also:

“Collection Statistics Reference (page 1072)” for an overview of the output of this command.

db.collection.storageSize()

db.collection.storageSize()

Returns The total amount of storage allocated to this collection for document storage. Provides
a wrapper around the storageSize (page 1073) field of the collStats (page 815) (i.e.
db.collection.stats() (page 931)) output.

60.1. Reference 931

MongoDB Documentation, Release 2.4.2

db.collection.totalIndexSize()

db.collection.totalIndexSize()

Returns The total size of all indexes for the collection. This method provides a wrapper
around the totalIndexSize (page 1073) output of the collStats (page 815) (i.e.
db.collection.stats() (page 931)) operation.

db.collection.totalSize()

db.collection.totalSize()

Returns The total size of the data in the collection plus the size of every indexes on the collection.

db.collection.update()

db.collection.update(query, update[, options])
The update() (page 932) method modifies an existing document or documents in a collection. By default the
update() (page 932) method updates a single document. To update all documents in the collection that match
the update query criteria, specify the multi option. To insert a document if no document matches the update
query criteria, specify the upsert option. Changed in version 2.2: The mongo (page 984) shell provides
an updated interface that accepts the options parameter in a document format to specify multi and upsert
options. Prior to version 2.2, in the mongo (page 984) shell, upsert and multi were positional boolean
options:

db.collection.update(query, update, <upsert>, <multi>)

The update() (page 932) method takes the following parameters:

Parameters

• query (document) – Specifies the selection criteria for the update. The query parameter
employs the same query selectors (page 737) as used in the db.collection.find()
(page 910) method.

• update (document) – Specifies the modifications to apply.

If the update parameter contains any update operators (page 739) expressions such as the
$set (page 770) operator expression, then:

– the update parameter must contain only update operators expressions.

– the update() (page 932) method updates only the corresponding fields in the document.

If the update parameter consists only of field: value expressions, then:

– the update() (page 932) method replaces the document with the updates document.
If the updates document is missing the _id field, MongoDB will add the _id field and
assign to it a unique objectid .

– the update() (page 932) method updates cannot update multiple documents.

• options (document) – New in version 2.2. Optional. Specifies whether to perform an upsert
and/or a multiple update. Use the options parameter instead of the individual upsert
and multi parameters.

• upsert (boolean) – Optional. Specifies an upsert operation

The default value is false. When true, the update() (page 932) method will update
an existing document that matches the query selection criteria or if no document matches

932 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

the criteria, insert a new document with the fields and values of the update parameter and
if the update included only update operators, the query parameter as well .

In version 2.2 of the mongo (page 984) shell, you may also specify upsert in the
options parameter.

Note: With upsert update() (page 932) inserts a single document.

• multi (boolean) – Optional. Specifies whether to update multiple documents that meet the
query criteria.

When not specified, the default value is false and the update() (page 932) method
updates a single document that meet the query criteria.

When true, the update() (page 932) method updates all documents that meet the
query criteria.

In version 2.2 of the mongo (page 984) shell, you may also specify multi in the options
parameter.

Note: The multi update operation may interleave with other write operations. For un-
sharded collections, you can override this behavior with the $isolated (page 751) isola-
tion operator, which isolates the update operation and blocks other write operations during
the update. See the isolation operator (page 751).

Although the update operation may apply mostly to updating the values of the fields, the update() (page 932)
method can also modify the name of the field in a document using the $rename (page 768) operator.

Consider the following examples of the update() (page 932) method. These examples all use the 2.2 interface
to specify options in the document form.

•To update specific fields in a document, call the update() (page 932) method with an update parameter
using field: value pairs and expressions using update operators (page 739) as in the following:

db.products.update({ item: "book", qty: { $gt: 5 } }, { $set: { x: 6 }, $inc: { y: 5} })

This operation updates a document in the products collection that matches the query criteria and sets
the value of the field x to 6, and increment the value of the field y by 5. All other fields of the document
remain the same.

•To replace all the fields in a document with the document as specified in the update parameter, call
the update() (page 932) method with an update parameter that consists of only key: value
expressions, as in the following:

db.products.update({ item: "book", qty: { $gt: 5 } }, { x: 6, y: 15 })

This operation selects a document from the products collection that matches the query criteria sets the
value of the field x to 6 and the value of the field y to 15. All other fields of the matched document are
removed, except the _id field.

•To update multiple documents, call the update() (page 932) method and specify the multi option in
the options argument, as in the following:

db.products.update({ item: "book", qty: { $gt: 5 } }, { $set: { x: 6, y: 15 } }, { multi: true })

This operation updates all documents in the products collection that match the query criteria by setting
the value of the field x to 6 and the value of the field y to 15. This operation does not affect any other
fields in documents in the products collection.

60.1. Reference 933

MongoDB Documentation, Release 2.4.2

You can perform the same operation by calling the update() (page 932) method with the multi pa-
rameter:

db.products.update({ item: "book", qty: { $gt: 5 } }, { $set: { x: 6, y: 15 } }, false, true)

•To update a document or to insert a new document if no document matches the query criteria, call the
update() (page 932) and specify the upsert option in the options argument, as in the following:

db.products.update({ item: "magazine", qty: { $gt: 5 } }, { $set: { x: 25, y: 50 } }, { upsert: true })

This operation will:

–update a single document in the products collection that matches the query criteria, setting the
value of the field x to 25 and the value of the field y to 50, or

–if no matching document exists, insert a document in the products collection, with the field item
set to magazine, the field x set to 25, and the field y set to 50.

db.collection.validate()

db.collection.validate()

Parameters

• full (Boolean) – Optional. Specify true to enable a full validation. MongoDB disables full
validation by default because it is a potentially resource intensive operation.

Provides a wrapper around the validate (page 879) database command. Call the
db.collection.validate() (page 934) method on a collection object, to validate the collection
itself. Specify the full option to return full statistics.

The validation (page 879) operation scans all of the data structures for correctness and returns a single
document that describes the relationship between the logical collection and the physical representation of that
data.

The output can provide a more in depth view of how the collection uses storage. Be aware that this command is
potentially resource intensive, and may impact the performance of your MongoDB instance.

See Also:

Collection Validation Data (page 1074)

db.commandHelp()

db.commandHelp(command)

Parameters

• command – Specifies a database command name (page 803).

Returns Help text for the specified database command. See the database command reference
(page 803) for full documentation of these commands.

db.copyDatabase()

db.copyDatabase(origin, destination, hostname)

Parameters

• origin (database) – Specifies the name of the database on the origin system.

934 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

• destination (database) – Specifies the name of the database that you wish to copy the origin
database into.

• hostname (origin) – Indicate the hostname of the origin database host. Omit the hostname
to copy from one name to another on the same server.

Use this function to copy a specific database, named origin running on the system accessible via hostname
into the local database named destination. The command creates destination databases implicitly when
they do not exist. If you omit the hostname, MongoDB will copy data from one database into another on the
same instance.

This function provides a wrapper around the MongoDB database command “copydb (page 820).” The clone
(page 812) database command provides related functionality.

db.createCollection()

db.createCollection(name[, {capped: <boolean>, size: <value>, max <bytes>}])
Parameters

• name (string) – Specifies the name of a collection to create.

• capped (boolean) – Optional. If this document is present, this command creates a capped
collection. The capped argument is a document that contains the following three fields:

• capped – Enables a collection cap. False by default. If enabled, you must specify a size
parameter.

• size (bytes) – If capped is true, size specifies a maximum size in bytes for the capped
collection. When capped is false, you may use size to preallocate space.

• max (int) – Optional. Specifies a maximum “cap,” in number of documents for capped
collections. You must also specify size when specifying max.

Options

• autoIndexId – If capped is true you can specify false to disable the automatic index
created on the _id field. Before 2.2, the default value for autoIndexId was false. See
_id Fields and Indexes on Capped Collections (page 1160) for more information.

Explicitly creates a new collection. Because MongoDB creates collections implicitly when referenced, this
command is primarily used for creating new capped collections. In some circumstances, you may use this
command to pre-allocate space for an ordinary collection.

Capped collections have maximum size or document counts that prevent them from growing beyond maximum
thresholds. All capped collections must specify a maximum size, but may also specify a maximum document
count. MongoDB will remove older documents if a collection reaches the maximum size limit before it reaches
the maximum document count. Consider the following example:

db.createCollection("log", { capped : true, size : 5242880, max : 5000 })

This command creates a collection named log with a maximum size of 5 megabytes and a maximum of 5000
documents.

The following command simply pre-allocates a 2 gigabyte, uncapped collection named people:

db.createCollection("people", { size: 2147483648 })

This command provides a wrapper around the database command create (page 822). See Capped Collections
(page 532) for more information about capped collections.

60.1. Reference 935

MongoDB Documentation, Release 2.4.2

db.currentOp()

db.currentOp()

Returns A document that contains an array named inprog.

The inprog array reports the current operation in progress for the database instance. See Current Operation
Reporting (page 1078) for full documentation of the output of db.currentOp() (page 936).

db.currentOp() (page 936) is only available for users with administrative privileges.

Consider the following JavaScript operations for the mongo (page 984) shell that you can use to filter the output
of identify specific types of operations:

•Return all pending write operations:

db.currentOp().inprog.forEach(
function(d){
if(d.waitingForLock && d.lockType != "read")

printjson(d)
})

•Return the active write operation:

db.currentOp().inprog.forEach(
function(d){
if(d.active && d.lockType == "write")

printjson(d)
})

•Return all active read operations:

db.currentOp().inprog.forEach(
function(d){
if(d.active && d.lockType == "read")

printjson(d)
})

Warning: Terminate running operations with extreme caution. Only use db.killOp() (page 941) to
terminate operations initiated by clients and do not terminate internal database operations.

db.dropDatabase()

db.dropDatabase()
Removes the current database. Does not change the current database, so the insertion of any documents in this
database will allocate a fresh set of data files.

db.eval()

db.eval(function, arguments)
The db.eval() (page 936) provides the ability to run JavaScript code on the MongoDB server.

The helper db.eval() (page 936) in the mongo (page 984) shell wraps the eval (page 826) command.
Therefore, the helper method shares the characteristics and behavior of the underlying command with one ex-
ception: db.eval() (page 936) method does not support the nolock option.

The method accepts the following parameters:

936 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Parameters

• function (JavaScript) – A JavaScript function.

The function need not take any arguments, as in the first example, or may take arguments as
in the second:

function () {
// ...

}

function (arg1, arg2) {
// ...

}

• arguments – A list of corresponding arguments to pass to the specified JavaScript function
if the function accepts arguments. Omit if the function does not take arguments.

Consider the following example of the db.eval() (page 936) method:

db.eval(function(name, incAmount) {
var doc = db.myCollection.findOne({ name : name });

doc = doc || { name : name , num : 0 , total : 0 , avg : 0 };

doc.num++;
doc.total += incAmount;
doc.avg = doc.total / doc.num;

db.myCollection.save(doc);
return doc;

},
"eliot", 5);

•The db in the function refers to the current database.

•"eliot" is the argument passed to the function, and corresponds to the name argument.

•5 is an argument to the function and corresponds to the incAmount field.

If you want to use the server’s interpreter, you must run db.eval() (page 936). Otherwise, the mongo
(page 984) shell’s JavaScript interpreter evaluates functions entered directly into the shell.

If an error occurs, db.eval() (page 936) throws an exception. Consider the following invalid function that
uses the variable x without declaring it as an argument:

db.eval(function() { return x + x; }, 3);

The statement will result in the following exception:

{
"errmsg" : "exception: JavaScript execution failed: ReferenceError: x is not defined near ’{ return x + x; }’ ",
"code" : 16722,
"ok" : 0

}

60.1. Reference 937

MongoDB Documentation, Release 2.4.2

Warning:
•By default, db.eval() (page 936) takes a global write lock before evaluating the JavaScript func-
tion. As a result, db.eval() (page 936) blocks all other read and write operations to the database
while the db.eval() (page 936) operation runs. Set nolock to true on the eval (page 826)
command to prevent the eval (page 826) command from taking the global write lock before evalu-
ating the JavaScript. nolock does not impact whether operations within the JavaScript code itself
takes a write lock.

•Do not use db.eval() (page 936) for long running operations as db.eval() (page 936) blocks
all other operations. Consider using other server side code execution options (page 534).

•You can not use db.eval() (page 936) with sharded data. In general, you should avoid using
db.eval() (page 936) in sharded cluster; nevertheless, it is possible to use db.eval() (page 936)
with non-sharded collections and databases stored in a sharded cluster.

•With authentication (page 1029) enabled, db.eval() (page 936) will fail during the operation
if you do not have the permission to perform a specified task. Changed in version 2.4: You must have
full admin access to run.

Changed in version 2.4: The V8 JavaScript engine, which became the default in 2.4, allows multiple JavaScript
operations to execute at the same time. Prior to 2.4, db.eval() (page 936) executed in a single thread.

See Also:

Server-side JavaScript (page 534)

db.fsyncLock()

db.fsyncLock()
Forces the mongod (page 971) to flush pending all write operations to the disk and locks the entire mongod
(page 971) instance to prevent additional writes until the user releases the lock with the db.fsyncUnlock()
(page 938) command. db.fsyncLock() (page 938) is an administrative command.

This command provides a simple wrapper around a fsync (page 834) database command with the following
syntax:

{ fsync: 1, lock: true }

This function locks the database and create a window for backup operations (page 41).

Note: The database cannot be locked with db.fsyncLock() (page 938) while profiling is enabled. You
must disable profiling before locking the database with db.fsyncLock() (page 938). Disable profiling using
db.setProfilingLevel() (page 945) as follows in the mongo (page 984) shell:

db.setProfilingLevel(0)

db.fsyncUnlock()

db.fsyncUnlock()
Unlocks a mongod (page 971) instance to allow writes and reverses the operation of a db.fsyncLock()
(page 938) operation. Typically you will use db.fsyncUnlock() (page 938) following a database backup
operation (page 41).

db.fsyncUnlock() (page 938) is an administrative command.

938 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

db.getCollection()

db.getCollection(name)

Parameters

• name – The name of a collection.

Returns A collection.

Use this command to obtain a handle on a collection whose name might interact with the shell itself, including
collections with names that begin with _ or mirror the database commands (page 803).

db.getCollectionNames()

db.getCollectionNames()

Returns An array containing all collections in the existing database.

db.getLastError()

db.getLastError()

Returns The last error message string.

Sets the level of write concern for confirming the success of write operations.

See Also:

getLastError (page 837) for all options, Write Concern (page 174) for a conceptual overview, Write Op-
erations (page 173) for information about all write operations in MongoDB, and Replica Set Write Concern
(page 378) for special considerations related to write concern for replica sets.

db.getLastErrorObj()

db.getLastErrorObj()

Returns A full document with status information.

db.getMongo()

db.getMongo()

Returns The current database connection.

db.getMongo() (page 939) runs when the shell initiates. Use this command to test that the mongo
(page 984) shell has a connection to the proper database instance.

db.getName()

db.getName()

Returns the current database name.

60.1. Reference 939

MongoDB Documentation, Release 2.4.2

db.getPrevError()

db.getPrevError()

Returns A status document, containing the errors.

Deprecated since version 1.6. This output reports all errors since the last time the database received a
resetError (page 868) (also db.resetError() (page 944)) command.

This method provides a wrapper around the getPrevError (page 839) command.

db.getProfilingLevel()

db.getProfilingLevel()
This method provides a wrapper around the database command “profile (page 860)” and returns the current
profiling level. Deprecated since version 1.8.4: Use db.getProfilingStatus() (page 940) for related
functionality.

db.getProfilingStatus()

db.getProfilingStatus()

Returns The current profile (page 860) level and slowms (page 1032) setting.

db.getReplicationInfo()

db.getReplicationInfo()

Returns A status document.

The output reports statistics related to replication.

See Also:

“Replication Info Reference (page 448)” for full documentation of this output.

db.getSiblingDB()

db.getSiblingDB()
Used to return another database without modifying the db variable in the shell environment.

db.help()

db.help()

Returns Text output listing common methods on the db object.

db.hostInfo()

db.hostInfo()
New in version 2.2.

Returns A document with information about the underlying system that the mongod (page 971) or
mongos (page 981) runs on. Some of the returned fields are only included on some platforms.

940 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

db.hostInfo() (page 940) provides a helper in the mongo (page 984) shell around the hostInfo
(page 845) The output of db.hostInfo() (page 940) on a Linux system will resemble the following:

{
"system" : {

"currentTime" : ISODate("<timestamp>"),
"hostname" : "<hostname>",
"cpuAddrSize" : <number>,
"memSizeMB" : <number>,
"numCores" : <number>,
"cpuArch" : "<identifier>",
"numaEnabled" : <boolean>

},
"os" : {

"type" : "<string>",
"name" : "<string>",
"version" : "<string>"

},
"extra" : {

"versionString" : "<string>",
"libcVersion" : "<string>",
"kernelVersion" : "<string>",
"cpuFrequencyMHz" : "<string>",
"cpuFeatures" : "<string>",
"pageSize" : <number>,
"numPages" : <number>,
"maxOpenFiles" : <number>

},
"ok" : <return>

}

See hostInfo (page 846) for full documentation of the output of db.hostInfo() (page 940).

db.isMaster()

db.isMaster()
Returns a status document with fields that includes the ismaster field that reports if the current node is the
primary node, as well as a report of a subset of current replica set configuration.

This function provides a wrapper around the database command isMaster (page 847)

db.killOp()

db.killOp(opid)

Parameters

• opid – Specify an operation ID.

Terminates the specified operation. Use db.currentOp() (page 936) to find operations and their cor-
responding ids. See Current Operation Reporting (page 1078) for full documentation of the output of
db.currentOp() (page 936).

Warning: Terminate running operations with extreme caution. Only use db.killOp() (page 941) to
terminate operations initiated by clients and do not terminate internal database operations.

60.1. Reference 941

MongoDB Documentation, Release 2.4.2

db.listCommands()

db.listCommands()
Provides a list of all database commands. See the “Database Commands Quick Reference (page 803)” document
for a more extensive index of these options.

db.loadServerScripts()

db.loadServerScripts()
db.loadServerScripts() (page 942) loads all scripts in the system.js collection for the current
database into the mongo (page 984) shell session.

Documents in the system.js collection have the following prototype form:

{ _id : "<name>" , value : <function> } }

The documents in the system.js collection provide functions that your applications can use in any JavaScript
context with MongoDB in this database. These contexts include $where (page 777) clauses and mapReduce
(page 851) operations.

db.logout()

db.logout()
Ends the current authentication session. This function has no effect if the current session is not authenticated.

Note: If you’re not logged in and using authentication, db.logout() (page 942) has no effect. Changed in
version 2.4: Because MongoDB now allows users defined in one database to have privileges on another database,
you must call db.logout() (page 942) while using the same database context that you authenticated to. If
you authenticated to a database such as users or $external, you must issue db.logout() (page 942)
against this database in order to successfully log out.

Example

Use the use <database-name> helper in the interactive mongo (page 984) shell, or the following
db.getSiblingDB() (page 940) in the interactive shell or in mongo (page 984) shell scripts to change
the db object:

db = db.getSiblingDB(’<database-name>’)

When you have set the database context and db object, you can use the db.logout() (page 942) to log out
of database as in the following operation:

db.logout()

db.logout() (page 942) function provides a wrapper around the database command logout (page 850).

db.printCollectionStats()

db.printCollectionStats()
Provides a wrapper around the db.collection.stats() (page 931) method. Returns statistics from every
collection separated by three hyphen characters.

942 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

Note: The db.printCollectionStats() (page 942) in the mongo (page 984) shell does
not return JSON. Use db.printCollectionStats() (page 942) for manual inspection, and
db.collection.stats() (page 931) in scripts.

See Also:

“Collection Statistics Reference (page 1072)“

db.printReplicationInfo()

db.printReplicationInfo()
Provides a formatted report of the status of a replica set from the perspective of the primary set member. See
the “Replica Set Status Reference (page 446)” for more information regarding the contents of this output.

This function will return db.printSlaveReplicationInfo() (page 943) if issued against a secondary
set member.

Note: The db.printReplicationInfo() (page 943) in the mongo (page 984) shell does not re-
turn JSON. Use db.printReplicationInfo() (page 943) for manual inspection, and rs.status()
(page 953) in scripts.

db.printShardingStatus()

db.printShardingStatus()
Provides a formatted report of the sharding configuration and the information regarding existing chunks in a
sharded cluster.

Only use db.printShardingStatus() (page 943) when connected to a mongos (page 981) instance.

Note: The db.printCollectionStats() (page 942) in the mongo (page 984) shell does not return
JSON. Use db.printCollectionStats() (page 942) for manual inspection, and Config Database Con-
tents (page 1093) in scripts.

See Also:

sh.status() (page 962)

db.printSlaveReplicationInfo()

db.printSlaveReplicationInfo()
Provides a formatted report of the status of a replica set from the perspective of the secondary set member. See
the “Replica Set Status Reference (page 446)” for more information regarding the contents of this output.

Note: The db.printSlaveReplicationInfo() (page 943) in the mongo (page 984) shell does
not return JSON. Use db.printSlaveReplicationInfo() (page 943) for manual inspection, and
rs.status() (page 953) in scripts.

60.1. Reference 943

MongoDB Documentation, Release 2.4.2

db.removeUser()

db.removeUser(username)

Parameters

• username – Specify a database username.

Removes the specified username from the database.

db.repairDatabase()

db.repairDatabase()

Warning: In general, if you have an intact copy of your data, such as would exist on a very recent backup
or an intact member of a replica set, do not use repairDatabase (page 863) or related options like
db.repairDatabase() (page 944) in the mongo (page 984) shell or mongod --repair (page 975).
Restore from an intact copy of your data.

Note: When using journaling, there is almost never any need to run repairDatabase (page 863). In the
event of an unclean shutdown, the server will be able restore the data files to a pristine state automatically.

db.repairDatabase() (page 944) provides a wrapper around the database command repairDatabase
(page 863), and has the same effect as the run-time option mongod --repair (page 975) option, limited to
only the current database. See repairDatabase (page 863) for full documentation.

db.resetError()

db.resetError()
Deprecated since version 1.6. Resets the error message returned by db.getPrevError (page 940) or
getPrevError (page 839). Provides a wrapper around the resetError (page 868) command.

db.runCommand()

db.runCommand(command)

Parameters

• command (string) – Specifies a database command in the form of a document.

• command – When specifying a command (page 803) as a string, db.runCommand()
(page 944) transforms the command into the form { command: 1 }.

Provides a helper to run specified database commands (page 803). This is the preferred method to issue database
commands, as it provides a consistent interface between the shell and drivers.

db.serverBuildInfo()

db.serverBuildInfo()
Provides a wrapper around the buildInfo (page 810) database command. buildInfo (page 810) returns a
document that contains an overview of parameters used to compile this mongod (page 971) instance.

944 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

db.serverStatus()

db.serverStatus()
Returns a document that provides an overview of the database process’s state.

This command provides a wrapper around the database command serverStatus (page 869). Changed in
version 2.4: In 2.4 you can dynamically suppress portions of the db.serverStatus() (page 945) output,
or include suppressed sections in a document passed to the db.serverStatus() (page 945) method, as in
the following example:

db.serverStatus({ repl: 0, indexCounters: 0, locks: 0 })
db.serverStatus({ workingSet: 1, metrics: 0, locks: 0 })

db.serverStatus() (page 945) includes all fields by default, except workingSet (page 1066), by de-
fault.

Note: You may only dynamically include top-level fields from the serverStatus (page 1052) document that are
not included by default. You can exclude any field that db.serverStatus() (page 945) includes by default.

See Also:

“Server Status Reference (page 1052)” for complete documentation of the output of this function.

db.setProfilingLevel()

db.setProfilingLevel(level[, slowms])
Parameters

• level – Specifies a profiling level, see list of possible values below.

• slowms – Optionally modify the threshold for the profile to consider a query or operation
“slow.”

Modifies the current database profiler level. This allows administrators to capture data regarding performance.
The database profiling system can impact performance and can allow the server to write the contents of queries
to the log, which might have information security implications for your deployment.

The following profiling levels are available:

Level Setting
0 Off. No profiling.
1 On. Only includes slow operations.
2 On. Includes all operations.

Also configure the slowms (page 1032) option to set the threshold for the profiler to consider a query “slow.”
Specify this value in milliseconds to override the default.

This command provides a wrapper around the database command profile (page 860).

mongod (page 971) writes the output of the database profiler to the system.profile collection.

mongod (page 971) prints information about queries that take longer than the slowms (page 1032) to the log
even when the database profiler is not active.

Note: The database cannot be locked with db.fsyncLock() (page 938) while profiling is enabled. You
must disable profiling before locking the database with db.fsyncLock() (page 938). Disable profiling using
db.setProfilingLevel() (page 945) as follows in the mongo (page 984) shell:

60.1. Reference 945

MongoDB Documentation, Release 2.4.2

db.setProfilingLevel(0)

db.shutdownServer()

db.shutdownServer()
Shuts down the current mongod (page 971) or mongos (page 981) process cleanly and safely.

This operation fails when the current database is not the admin database.

This command provides a wrapper around the shutdown (page 871).

db.stats()

db.stats(scale)

Parameters

• scale – Optional. Specifies the scale to deliver results. Unless specified, this command
returns all data in bytes.

Returns A document that contains statistics reflecting the database system’s state.

This function provides a wrapper around the database command “dbStats (page 823)”. The scale option
allows you to configure how the mongo (page 984) shell scales the sizes of things in the output. For example,
specify a scale value of 1024 to display kilobytes rather than bytes.

See the “Database Statistics Reference (page 1070)” document for an overview of this output.

Note: The scale factor rounds values to whole numbers. This can produce unpredictable and unexpected results
in some situations.

db.version()

db.version()

Returns The version of the mongod (page 971) instance.

fuzzFile()

fuzzFile(“filename”)

Parameters

• filename (string) – Specify a filename or path to a local file.

Returns null

For internal use.

getHostName()

getHostName()

Returns The hostname of the system running the mongo (page 984) shell process.

946 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

getMemInfo()

getMemInfo()
Returns a document with two fields that report the amount of memory used by the JavaScript shell process. The
fields returned are resident and virtual.

hostname()

hostname()

Returns The hostname of the system running the mongo (page 984) shell process.

_isWindows()

_isWindows()

Returns boolean.

Returns “true” if the mongo (page 984) shell is running on a system that is Windows, or “false” if the server is
running on a Unix or Linux systems.

listFiles()

listFiles()
Returns an array, containing one document per object in the directory. This function operates in the context of
the mongo (page 984) process. The included fields are:

name
Returns a string which contains the name of the object.

isDirectory
Returns true or false if the object is a directory.

size
Returns the size of the object in bytes. This field is only present for files.

load()

load(<file>)

Parameters

• file (string) – Specify a path and file name containing JavaScript.

This native function loads and runs a JavaScript file into the current shell environment. To run JavaScript with
the mongo shell, you can either:

•use the “--eval (page 985)” option when invoking the shell to evaluate a small amount of JavaScript
code, or

•specify a file name with “mongo (page 987)”. mongo (page 984) will execute the script and then exit. Add
the --shell (page 985) option to return to the shell after running the command.

Specify files loaded with the load() function in relative terms to the current directory of the mongo (page 984)
shell session. Check the current directory using the “pwd()” function.

60.1. Reference 947

MongoDB Documentation, Release 2.4.2

ls()

ls()
Returns a list of the files in the current directory.

This function returns with output relative to the current shell session, and does not impact the server.

md5sumFile()

md5sumFile(“filename”)

Parameters

• filename (string) – a file name.

Returns The md5 hash of the specified file.

Note: The specified filename must refer to a file located on the system running the mongo (page 984) shell.

mkdir()

mkdir(“path”)

Parameters

• path (string) – A path on the local filesystem.

Creates a directory at the specified path. This command will create the entire path specified, if the enclosing
directory or directories do not already exit.

Equivalent to mkdir -p with BSD or GNU utilities.

mongo.setSlaveOk()

mongo.setSlaveOk()
For the current session, this command permits read operations from non-master (i.e. slave or secondary) in-
stances. Practically, use this method in the following form:

db.getMongo().setSlaveOk()

Indicates that “eventually consistent” read operations are acceptable for the current application. This function
provides the same functionality as rs.slaveOk() (page 952).

See the readPref() (page 898) method for more fine-grained control over read preference (page 381) in the
mongo (page 984) shell.

pwd()

pwd()
Returns the current directory.

This function returns with output relative to the current shell session, and does not impact the server.

948 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

quit()

quit()
Exits the current shell session.

rand()

_rand()

Returns A random number between 0 and 1.

This function provides functionality similar to the Math.rand() function from the standard library.

rawMongoProgramOutput()

rawMongoProgramOutput()
For internal use.

removeFile()

removeFile(“filename”)

Parameters

• filename (string) – Specify a filename or path to a local file.

Returns boolean.

Removes the specified file from the local file system.

resetDbpath()

resetDbpath()
For internal use.

rs.add()

rs.add(hostspec, arbiterOnly)
Specify one of the following forms:

Parameters

• host (string,document) – Either a string or a document. If a string, specifies a host (and
optionally port-number) for a new host member for the replica set; MongoDB will add this
host with the default configuration. If a document, specifies any attributes about a member
of a replica set.

• arbiterOnly (boolean) – Optional. If true, this host is an arbiter. If the second argument
evaluates to true, as is the case with some documents, then this instance will become an
arbiter.

Provides a simple method to add a member to an existing replica set. You can specify new hosts in one of two
ways:

1.as a “hostname” with an optional port number to use the default configuration as in the Add a Member to
an Existing Replica Set (page 403) example.

60.1. Reference 949

MongoDB Documentation, Release 2.4.2

2.as a configuration document, as in the Add a Member to an Existing Replica Set (Alternate Procedure)
(page 404) example.

This function will disconnect the shell briefly and forces a reconnection as the replica set renegotiates which
node will be primary. As a result, the shell will display an error even if this command succeeds.

rs.add() (page 949) provides a wrapper around some of the functionality of the “replSetReconfig
(page 866)” database command and the corresponding shell helper rs.reconfig() (page 951). See the
Replica Set Configuration (page 441) document for full documentation of all replica set configuration options.

Example

To add a mongod (page 971) accessible on the default port 27017 running on the host
mongodb3.example.net, use the following rs.add() (page 949) invocation:

rs.add(’mongodb3.example.net:27017’)

If mongodb3.example.net is an arbiter, use the following form:

rs.add(’mongodb3.example.net:27017’, true)

To add mongodb3.example.net as a secondary-only (page 368) member of set, use the following form of
rs.add() (page 949):

rs.add({ "_id": "3", "host": "mongodbd3.example.net:27017", "priority": 0 })

Replace, 3 with the next unused _id value in the replica set. See rs.conf() (page 950) to see the existing
_id values in the replica set configuration document.

See the Replica Set Configuration (page 441) and Replica Set Administration (page 397) documents for more
information.

rs.addArb()

rs.addArb(hostname)

Parameters

• host (string) – Specifies a host (and optionally port-number) for a arbiter member for the
replica set.

Adds a new arbiter to an existing replica set.

This function will disconnect the shell briefly and forces a reconnection as the replica set renegotiates which
node will be primary. As a result, the shell will display an error even if this command succeeds.

rs.conf()

rs.conf()

Returns a document that contains the current replica set configuration object.

rs.config()
rs.config() (page 950) is an alias of rs.conf() (page 950).

950 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

rs.freeze()

rs.freeze(seconds)

Parameters

• seconds (init) – Specify the duration of this operation.

Forces the current node to become ineligible to become primary for the period specified.

rs.freeze() (page 951) provides a wrapper around the database command replSetFreeze (page 864).

rs.help()

rs.help()
Returns a basic help text for all of the replication (page 367) related shell functions.

rs.initiate()

rs.initiate(configuration)

Parameters

• configuration – Optional. A document that specifies the configuration of a replica set. If
not specified, MongoDB will use a default configuration.

Initiates a replica set. Optionally takes a configuration argument in the form of a document that holds the
configuration of a replica set. Consider the following model of the most basic configuration for a 3-member
replica set:

{
_id : <setname>,
members : [

{_id : 0, host : <host0>},
{_id : 1, host : <host1>},
{_id : 2, host : <host2>},

]
}

This function provides a wrapper around the “replSetInitiate (page 865)” database command.

rs.reconfig()

rs.reconfig(configuration[, force])
Parameters

• configuration – A document that specifies the configuration of a replica set.

• force – Optional. Specify { force: true } as the force parameter to force the replica
set to accept the new configuration even if a majority of the members are not accessible. Use
with caution, as this can lead to rollback situations.

Initializes a new replica set configuration. This function will disconnect the shell briefly and forces a reconnec-
tion as the replica set renegotiates which node will be primary. As a result, the shell will display an error even
if this command succeeds.

rs.reconfig() (page 951) provides a wrapper around the “replSetReconfig (page 866)” database
command.

60.1. Reference 951

MongoDB Documentation, Release 2.4.2

rs.reconfig() (page 951) overwrites the existing replica set configuration. Retrieve the current configura-
tion object with rs.conf() (page 950), modify the configuration as needed and then use rs.reconfig()
(page 951) to submit the modified configuration object.

To reconfigure a replica set, use the following sequence of operations:

conf = rs.conf()

// modify conf to change configuration

rs.reconfig(conf)

If you want to force the reconfiguration if a majority of the set isn’t connected to the current member, or you’re
issuing the command against a secondary, use the following form:

conf = rs.conf()

// modify conf to change configuration

rs.reconfig(conf, { force: true })

Warning: Forcing a rs.reconfig() (page 951) can lead to rollback situations and other difficult to
recover from situations. Exercise caution when using this option.

See Also:

“Replica Set Configuration (page 441)” and “Replica Set Administration (page 397)”.

rs.remove()

rs.remove(hostname)

Parameters

• hostname – Specify one of the existing hosts to remove from the current replica set.

Removes the node described by the hostname parameter from the current replica set. This function will
disconnect the shell briefly and forces a reconnection as the replica set renegotiates negotiates which node will
be primary. As a result, the shell will display an error even if this command succeeds.

Note: Before running the rs.remove() (page 952) operation, you must shut down the replica set member
that you’re removing. Changed in version 2.2: This procedure is no longer required when using rs.remove()
(page 952), but it remains good practice.

rs.slaveOk()

rs.slaveOk()
Provides a shorthand for the following operation:

db.getMongo().setSlaveOk()

This allows the current connection to allow read operations to run on secondary nodes. See the readPref()
(page 898) method for more fine-grained control over read preference (page 381) in the mongo (page 984) shell.

952 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

rs.status()

rs.status()

Returns A document with status information.

This output reflects the current status of the replica set, using data derived from the heartbeat packets sent by the
other members of the replica set.

This method provides a wrapper around the replSetGetStatus (page 865) database command.

See Also:

“Replica Set Status Reference (page 446)” for documentation of this output.

rs.stepDown()

rs.stepDown(seconds)

Parameters

• seconds (init) – Specify the duration of this operation. If not specified the command uses
the default value of 60 seconds.

Returns disconnects shell.

Forces the current replica set member to step down as primary and then attempt to avoid election as primary for
the designated number of seconds. Produces an error if the current node is not primary.

This function will disconnect the shell briefly and forces a reconnection as the replica set renegotiates which
node will be primary. As a result, the shell will display an error even if this command succeeds.

rs.stepDown() (page 953) provides a wrapper around the database command replSetStepDown
(page 867).

rs.syncFrom()

rs.syncFrom()
New in version 2.2. Provides a wrapper around the replSetSyncFrom (page 867), which allows administra-
tors to configure the member of a replica set that the current member will pull data from. Specify the name of
the member you want to replicate from in the form of [hostname]:[port].

See replSetSyncFrom (page 867) for more details.

run()

run()
For internal use.

runMongoProgram()

runMongoProgram()
For internal use.

60.1. Reference 953

MongoDB Documentation, Release 2.4.2

runProgram()

runProgram()
For internal use.

sh._adminCommand()

sh._adminCommand(cmd, checkMongos)

Parameters

• dbcommand (string) – A database command to run against the admin database.

• checkMongos (Boolean) – Verify whether or not the shell is connected to a mongos
(page 981) instance.

The sh._adminCommand (page 954) method runs a database command against the admin database of a
mongos (page 981) instance.

See Also:

db.runCommand() (page 944)

sh._checkFullName()

sh._checkFullName(namespace)

Parameters

• namespace (string) – Specify a complete namespace.

Throws “name needs to be fully qualified <db>.<collection>”

The sh._checkFullName() (page 954) method verifies that a namespace name is well-formed. If the name
has a period . then the sh._checkFullName() (page 954) method exits, otherwise it throws an error.

sh._checkMongos()

sh._checkMongos()

Returns nothing

Throws “not connected to a mongos”

The sh._checkMongos() (page 954) method throws an error message if the mongo (page 984) shell is not
connected to a mongos (page 981) instance. Otherwise it exits (no return document or return code).

sh._lastMigration()

sh._lastMigration(namespace)

Parameters

• namespace (string) – The name of a database or collection within the current database.

Returns A document with fields detailing the most recent migration in the specified namespace.

954 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

sh._lastMigration() (page 954) returns a document with details about the last migration performed on
the database or collection you specify.

Document details:

Fields

• _id (string) – The id of the migration task

• server (string) – The name of the server

• clientAddr (string) – The IP address and port number of the server.

• time (ISODate) – The time of the last migration.

• what (string) – The specific type of migration.

• ns (string) – The complete namespace of the collection affected by the migration.

• details (document) – A document containing details about the migrated chunk. Includes
min and max sub-documents with the bounds of the migrated chunk.

sh.addShard()

sh.addShard(host)

Parameters

• host (string) – Specify the hostname of a database instance or a replica set configuration.

Use this method to add a database instance or replica set to a sharded cluster. This method must be run on a
mongos (page 981) instance. The host parameter can be in any of the following forms:

[hostname]
[hostname]:[port]
[set]/[hostname]
[set]/[hostname],[hostname]:port

You can specify shards using the hostname, or a hostname and port combination if the shard is running on a
non-standard port.

Warning: Do not use localhost for the hostname unless your configuration server is also running on
localhost.

The optimal configuration is to deploy shards across replica sets. To add a shard on a replica set you must specify
the name of the replica set and the hostname of at least one member of the replica set. You must specify at least
one member of the set, but can specify all members in the set or another subset if desired. sh.addShard()
(page 955) takes the following form:

If you specify additional hostnames, all must be members of the same replica set.

sh.addShard("set-name/seed-hostname")

Example

sh.addShard("repl0/mongodb3.example.net:27327")

The sh.addShard() (page 955) method is a helper for the addShard (page 807) command. The
addShard (page 807) command has additional options which are not available with this helper.

See Also:

60.1. Reference 955

MongoDB Documentation, Release 2.4.2

•addShard (page 807)

•Sharded Cluster Administration (page 481)

•Add Shards to a Cluster (page 488)

•Remove Shards from an Existing Sharded Cluster (page 508)

sh.addShardTag()

sh.addShardTag(shard, tag)
New in version 2.2.

Parameters

• shard (string) – Specifies the name of the shard that you want to give a specific tag.

• tag (string) – Specifies the name of the tag that you want to add to the shard.

sh.addShardTag() (page 956) associates a shard with a tag or identifier. MongoDB uses these identifiers
to direct chunks that fall within a tagged range to specific shards.

sh.addTagRange() (page 956) associates chunk ranges with tag ranges.

Always issue sh.addShardTag() (page 956) when connected to a mongos (page 981) instance.

Example

The following example adds three tags, NYC, LAX, and NRT, to three shards:

sh.addShardTag("shard0000", "NYC")
sh.addShardTag("shard0001", "LAX")
sh.addShardTag("shard0002", "NRT")

See Also:

•sh.addTagRange() (page 956) and

•sh.removeShardTag() (page 960)

sh.addTagRange()

sh.addTagRange(namespace, minimum, maximum, tag)
New in version 2.2.

Parameters

• namespace (string) – Specifies the namespace, in the form of
<database>.<collection> of the sharded collection that you would like to
tag.

• minimum (document) – Specifies the minimum value of the shard key range to include in
the tag. Specify the minimum value in the form of <fieldname>:<value>. This value
must be of the same BSON type or types as the shard key.

• maximum (document) – Specifies the maximum value of the shard key range to include in
the tag. Specify the maximum value in the form of <fieldname>:<value>. This value
must be of the same BSON type or types as the shard key.

956 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

• tag (string) – Specifies the name of the tag to attach the range specified by the minimum
and maximum arguments to.

sh.addTagRange() (page 956) attaches a range of values of the shard key to a shard tag created using the
sh.addShardTag() (page 956) method. Use this operation to ensure that the documents that exist within
the specified range exist on shards that have a matching tag.

Always issue sh.addTagRange() (page 956) when connected to a mongos (page 981) instance.

Note: If you add a tag range to a collection using sh.addTagRange() (page 956), and then later drop the
collection or its database, MongoDB does not remove tag association. If you later create a new collection with
the same name, the old tag association will apply to the new collection.

Example

Given a shard key of {STATE:1,ZIP:1}, create a tag range covering ZIP codes in New York State:

sh.addTagRange("exampledb.collection",
{STATE: "NY", ZIP: {minKey:1}},
{STATE:"NY", ZIP: {maxKey:1}},
"NY"
)

See Also:

sh.addShardTag() (page 956), sh.removeShardTag() (page 960)

sh.disableBalancing()

sh.disableBalancing(collection)

Parameters

• collection (string) – The name of a collection.

sh.disableBalancing() (page 957) disables the balancer for the specified sharded collection.

See Also:

• sh.enableBalancing() (page 958)

• sh.getBalancerHost() (page 958)

• sh.getBalancerState() (page 959)

• sh.isBalancerRunning() (page 959)

• sh.setBalancerState() (page 960)

• sh.startBalancer() (page 962)

• sh.stopBalancer() (page 963)

• sh.waitForBalancer() (page 963)

• sh.waitForBalancerOff() (page 964)

60.1. Reference 957

MongoDB Documentation, Release 2.4.2

sh.enableBalancing()

sh.enableBalancing(collection)

Parameters

• collection (string) – The name of a collection.

sh.enableBalancing() (page 958) enables the balancer for the specified sharded collection.

See Also:

• sh.disableBalancing() (page 957)

• sh.getBalancerHost() (page 958)

• sh.getBalancerState() (page 959)

• sh.isBalancerRunning() (page 959)

• sh.setBalancerState() (page 960)

• sh.startBalancer() (page 962)

• sh.stopBalancer() (page 963)

• sh.waitForBalancer() (page 963)

• sh.waitForBalancerOff() (page 964)

sh.enableSharding()

sh.enableSharding(database)

Parameters

• database (string) – Specify a database name to shard.

Enables sharding on the specified database. This does not automatically shard any collections, but makes it
possible to begin sharding collections using sh.shardCollection() (page 961).

See Also:

sh.shardCollection() (page 961)

sh.getBalancerHost()

sh.getBalancerHost()

Returns String in form hostname:port

sh.getBalancerHost() (page 958) returns the name of the server that is running the balancer.

See Also:

• sh.enableBalancing() (page 958)

• sh.disableBalancing() (page 957)

• sh.getBalancerState() (page 959)

• sh.isBalancerRunning() (page 959)

• sh.setBalancerState() (page 960)

• sh.startBalancer() (page 962)

958 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

• sh.stopBalancer() (page 963)

• sh.waitForBalancer() (page 963)

• sh.waitForBalancerOff() (page 964)

sh.getBalancerState()

sh.getBalancerState()

Returns boolean

sh.getBalancerState() (page 959) returns true when the balancer is enabled and false if the balancer
is disabled. This does not reflect the current state of balancing operations: use sh.isBalancerRunning()
(page 959) to check the balancer’s current state.

See Also:

• sh.enableBalancing() (page 958)

• sh.disableBalancing() (page 957)

• sh.getBalancerHost() (page 958)

• sh.isBalancerRunning() (page 959)

• sh.setBalancerState() (page 960)

• sh.startBalancer() (page 962)

• sh.stopBalancer() (page 963)

• sh.waitForBalancer() (page 963)

• sh.waitForBalancerOff() (page 964)

sh.help()

sh.help()

Returns a basic help text for all sharding related shell functions.

sh.isBalancerRunning()

sh.isBalancerRunning()

Returns boolean

Returns true if the balancer process is currently running and migrating chunks and false if the balancer process is
not running. Use sh.getBalancerState() (page 959) to determine if the balancer is enabled or disabled.

See Also:

• sh.enableBalancing() (page 958)

• sh.disableBalancing() (page 957)

• sh.getBalancerHost() (page 958)

• sh.getBalancerState() (page 959)

• sh.setBalancerState() (page 960)

• sh.startBalancer() (page 962)

60.1. Reference 959

MongoDB Documentation, Release 2.4.2

• sh.stopBalancer() (page 963)

• sh.waitForBalancer() (page 963)

• sh.waitForBalancerOff() (page 964)

sh.moveChunk()

sh.moveChunk(collection, query, destination)

Parameters

• collection (string) – Specifies the sharded collection containing the chunk to migrate.

• query (document) – A document that specifies an equality match on the shard key, which
selects the chunk to move.

• destination (string) – Specifies the name of the shard that you wish to move the designated
chunk to.

Moves the chunk containing the document specified by the query to the shard described by destination.

This method provides a wrapper around the moveChunk (page 858). In most circumstances, allow the balancer
to automatically migrate chunks, and avoid calling sh.moveChunk() (page 960) directly.

See Also:

moveChunk (page 858), sh.splitAt() (page 961), sh.splitFind() (page 962), Sharding (page 461),
and chunk migration (page 476).

sh.removeShardTag()

sh.removeShardTag(shard, tag)
New in version 2.2.

Parameters

• shard (string) – Specifies the name of the shard that you want to remove a tag from.

• tag (string) – Specifies the name of the tag that you want to remove from the shard.

Removes the association between a tag and a shard.

Always issue sh.removeShardTag() (page 960) when connected to a mongos (page 981) instance.

See Also:

sh.addShardTag() (page 956), sh.addTagRange() (page 956)

sh.setBalancerState()

sh.setBalancerState(state)

Parameters

• state (boolean) – true enables the balancer if disabled, and false disables the balancer.

Enables or disables the balancer. Use sh.getBalancerState() (page 959) to determine if the balancer is
currently enabled or disabled and sh.isBalancerRunning() (page 959) to check its current state.

See Also:

• sh.enableBalancing() (page 958)

960 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

• sh.disableBalancing() (page 957)

• sh.getBalancerHost() (page 958)

• sh.getBalancerState() (page 959)

• sh.isBalancerRunning() (page 959)

• sh.startBalancer() (page 962)

• sh.stopBalancer() (page 963)

• sh.waitForBalancer() (page 963)

• sh.waitForBalancerOff() (page 964)

sh.shardCollection()

sh.shardCollection(collection, key, unique)

Parameters

• collection (string) – The namespace of the collection to shard.

• key (document) – A document containing a shard key that the sharding system uses to par-
tition and distribute objects among the shards.

• unique (boolean) – When true, the unique option ensures that the underlying index en-
forces a unique constraint. Hashed shard keys do not support unique constraints.

Shards the named collection, according to the specified shard key. Specify shard keys in the form
of a document. Shard keys may refer to a single document field, or more typically several doc-
ument fields to form a “compound shard key.” New in version 2.4: Use the form {field:
"hashed"} to create a hashed shard key. Hashed shard keys may not be compound indexes.

Warning: MongoDB provides no method to deactivate sharding for a collection after calling
shardCollection (page 870). Additionally, after shardCollection (page 870), you cannot change
shard keys or modify the value of any field used in your shard key index.

See Also:

shardCollection (page 870) for additional options, Sharding (page 461), Sharded Cluster Overview
(page 463) for an overview of sharding with MongoDB and Deploy a Sharded Cluster (page 481) for a tu-
torial. Also review Shard Keys (page 463) regarding choosing a shard key.

sh.splitAt()

sh.splitAt(namespace, query)

Parameters

• namespace (string) – Specify the namespace (i.e. “<database>.<collection>”) of
the sharded collection that contains the chunk to split.

• query (document) – Specify a query to identify a document in a specific chunk. Typically
specify the shard key for a document as the query.

Splits the chunk containing the document specified by the query as if that document were at the “middle” of
the collection, even if the specified document is not the actual median of the collection. Use this command
to manually split chunks unevenly. Use the “sh.splitFind() (page 962)” function to split a chunk at the
actual median.

60.1. Reference 961

MongoDB Documentation, Release 2.4.2

In most circumstances, you should leave chunk splitting to the automated processes within MongoDB. However,
when initially deploying a sharded cluster it is necessary to perform some measure of pre-splitting using manual
methods including sh.splitAt() (page 961).

sh.splitFind()

sh.splitFind(namespace, query)

Parameters

• namespace (string) – Specify the namespace (i.e. “<database>.<collection>”) of
the sharded collection that contains the chunk to split.

• query – Specify a query to identify a document in a specific chunk. Typically specify the
shard key for a document as the query.

Splits the chunk containing the document specified by the query at its median point, creating two roughly
equal chunks. Use sh.splitAt() (page 961) to split a collection in a specific point.

In most circumstances, you should leave chunk splitting to the automated processes. However, when initially
deploying a sharded cluster it is necessary to perform some measure of pre-splitting using manual methods
including sh.splitFind() (page 962).

sh.startBalancer()

sh.startBalancer(timeout, interval)

Parameters

• timeout (integer) – Milliseconds to wait.

• interval (integer) – Milliseconds to sleep each cycle of waiting.

The sh.startBalancer() (page 962) enables the balancer in a sharded cluster and waits for balancing to
initiate.

See Also:

• sh.enableBalancing() (page 958)

• sh.disableBalancing() (page 957)

• sh.getBalancerHost() (page 958)

• sh.getBalancerState() (page 959)

• sh.isBalancerRunning() (page 959)

• sh.setBalancerState() (page 960)

• sh.stopBalancer() (page 963)

• sh.waitForBalancer() (page 963)

• sh.waitForBalancerOff() (page 964)

sh.status()

sh.status()

Returns a formatted report of the status of the sharded cluster, including data regarding the distri-
bution of chunks.

962 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

sh.stopBalancer()

sh.stopBalancer(timeout, interval)

Parameters

• timeout (integer) – Milliseconds to wait.

• interval (integer) – Milliseconds to sleep each cycle of waiting.

The sh.stopBalancer() (page 963) disables the balancer in a sharded cluster and waits for balancing to
complete.

See Also:

• sh.enableBalancing() (page 958)

• sh.disableBalancing() (page 957)

• sh.getBalancerHost() (page 958)

• sh.getBalancerState() (page 959)

• sh.isBalancerRunning() (page 959)

• sh.setBalancerState() (page 960)

• sh.startBalancer() (page 962)

• sh.waitForBalancer() (page 963)

• sh.waitForBalancerOff() (page 964)

sh.waitForBalancer()

sh.waitForBalancer(onOrNot, timeout, interval)

Parameters

• onOrNot (Boolean) – Whether to wait for the lock to be on (true) or off (false).

• timeout (integer) – Milliseconds to wait.

• interval (integer) – Milliseconds to sleep.

sh.waitForBalancer() (page 963) is an internal method that waits for a change in the state of the balancer.

See Also:

• sh.enableBalancing() (page 958)

• sh.disableBalancing() (page 957)

• sh.getBalancerHost() (page 958)

• sh.getBalancerState() (page 959)

• sh.isBalancerRunning() (page 959)

• sh.setBalancerState() (page 960)

• sh.startBalancer() (page 962)

• sh.stopBalancer() (page 963)

• sh.waitForBalancerOff() (page 964)

60.1. Reference 963

MongoDB Documentation, Release 2.4.2

sh.waitForBalancerOff()

sh.waitForBalancerOff()

Parameters

• timeout (integer) – Milliseconds to wait.

• interval (integer) – Milliseconds to sleep.

sh.waitForBalancerOff() (page 964) is an internal method that waits until the balancer is not running.

See Also:

• sh.enableBalancing() (page 958)

• sh.disableBalancing() (page 957)

• sh.getBalancerHost() (page 958)

• sh.getBalancerState() (page 959)

• sh.isBalancerRunning() (page 959)

• sh.setBalancerState() (page 960)

• sh.startBalancer() (page 962)

• sh.stopBalancer() (page 963)

• sh.waitForBalancer() (page 963)

sh.waitForDLock()

sh.waitForDLock(lockId, onOrNot, timeout, interval)

Parameters

• lockId (string) – The name of the distributed lock.

• onOrNot (Boolean) – Optional, whether to wait for the lock to be on (true) or off
(false).

• timeout (integer) – Milliseconds to wait.

• interval (integer) – Milliseconds to sleep in each waiting cycle.

sh.waitForDLock() (page 964) is an internal method that waits until the specified distributed lock is
changes state.

sh.waitForPingChange()

sh.waitForPingChange(activepings, timeout, interval)

Parameters

• activepings (array) – An array of active pings from the config.mongos collection.

• timeout (integer) – Milliseconds to wait for a change in ping state.

• interval (integer) – Milliseconds to sleep in each waiting cycle.

sh.waitForPingChange() (page 964) waits for a change in ping state of the one of the activepings.

964 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

_srand()

_srand()
For internal use.

startMongoProgram()

_startMongoProgram()
For internal use.

stopMongoProgram()

stopMongoProgram()
For internal use.

stopMongoProgramByPid()

stopMongoProgramByPid()
For internal use.

stopMongod()

stopMongod()
For internal use.

version()

version()

Returns The version of the mongo (page 984) shell as a string.

Changed in version 2.4: In previous versions of the shell, version() would print the version instead of
returning a string.

waitMongoProgramOnPort()

waitMongoProgramOnPort()
For internal use.

waitProgram()

waitProgram()
For internal use.

60.1.4 SQL to MongoDB Mapping Chart

In addition to the charts that follow, you might want to consider the Frequently Asked Questions (page 683) section for
a selection of common questions about MongoDB.

60.1. Reference 965

MongoDB Documentation, Release 2.4.2

Executables

The following table presents the MySQL/Oracle executables and the corresponding MongoDB executables.

MySQL/Oracle MongoDB
Database Server mysqld/oracle mongod (page 971)
Database Client mysql/sqlplus mongo (page 984)

Terminology and Concepts

The following table presents the various SQL terminology and concepts and the corresponding MongoDB terminology
and concepts.

SQL Terms/Concepts MongoDB Terms/Concepts
database database
table collection
row document or BSON document
column field
index index
table joins embedded documents and linking
primary key
Specify any unique column or column combination
as primary key.

primary key
In MongoDB, the primary key is automatically set to the
_id field.

aggregation (e.g. group by) aggregation framework
See the SQL to Aggregation Framework Mapping Chart
(page 281).

Examples

The following table presents the various SQL statements and the corresponding MongoDB statements. The examples
in the table assume the following conditions:

• The SQL examples assume a table named users.

• The MongoDB examples assume a collection named users that contain documents of the following prototype:

{
_id: ObjectID("509a8fb2f3f4948bd2f983a0"),
user_id: "abc123",
age: 55,
status: ’A’

}

Create and Alter

The following table presents the various SQL statements related to table-level actions and the corresponding MongoDB
statements.

966 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

SQL Schema Statements MongoDB Schema Statements Reference

CREATE TABLE users (
id MEDIUMINT NOT NULL

AUTO_INCREMENT,
user_id Varchar(30),
age Number,
status char(1),
PRIMARY KEY (id)

)

Implicitly created on first insert
(page 920) operation. The primary
key _id is automatically added if
_id field is not specified.
db.users.insert({

user_id: "abc123",
age: 55,
status: "A"

})
However, you can also explicitly cre-
ate a collection:
db.createCollection("users")

See insert() (page 920)
and createCollection()
(page 935) for more information.

ALTER TABLE users
ADD join_date DATETIME

Collections do not describe or en-
force the structure of its documents;
i.e. there is no structural alteration at
the collection level.
However, at the document level,
update() (page 932) operations
can add fields to existing documents
using the $set (page 770) operator.
db.users.update(

{ },
{ $set: { join_date: new Date() } },
{ multi: true }

)

See the Data Modeling Consider-
ations for MongoDB Applications
(page 227), update() (page 932),
and $set (page 770) for more infor-
mation on changing the structure of
documents in a collection.

ALTER TABLE users
DROP COLUMN join_date

Collections do not describe or en-
force the structure of its documents;
i.e. there is no structural alteration at
the collection level.
However, at the document level,
update() (page 932) operations
can remove fields from documents
using the $unset (page 777) oper-
ator.
db.users.update(

{ },
{ $unset: { join_date: "" } },
{ multi: true }

)

See Data Modeling Considera-
tions for MongoDB Applications
(page 227), update() (page 932),
and $unset (page 777) for more in-
formation on changing the structure
of documents in a collection.

CREATE INDEX idx_user_id_asc
ON users(user_id)

db.users.ensureIndex({ user_id: 1 })
See ensureIndex() (page 907)
and indexes (page 303) for more in-
formation.

CREATE INDEX
idx_user_id_asc_age_desc

ON users(user_id, age DESC)

db.users.ensureIndex({ user_id: 1, age: -1 })
See ensureIndex() (page 907)
and indexes (page 303) for more in-
formation.

DROP TABLE users db.users.drop()
See drop() (page 906) for more in-
formation.

60.1. Reference 967

MongoDB Documentation, Release 2.4.2

Insert

The following table presents the various SQL statements related to inserting records into tables and the corresponding
MongoDB statements.

SQL INSERT Statements MongoDB insert() Statements Reference

INSERT INTO users(user_id,
age,
status)

VALUES ("bcd001",
45,
"A")

db.users.insert({
user_id: "bcd001",
age: 45,
status: "A"

})

See insert() (page 920) for more
information.

Select

The following table presents the various SQL statements related to reading records from tables and the corresponding
MongoDB statements.

968 Chapter 60. MongoDB Interface

MongoDB Documentation, Release 2.4.2

SQL SELECT Statements MongoDB find() Statements Reference

SELECT *
FROM users

db.users.find()
See find() (page 910) for more in-
formation.

SELECT id, user_id, status
FROM users

db.users.find(
{ },
{ user_id: 1, status: 1 }

)

See find() (page 910) for more in-
formation.

SELECT user_id, status
FROM users

db.users.find(
{ },
{ user_id: 1, status: 1, _id: 0 }

)

See find() (page 910) for more in-
formation.

SELECT *
FROM users
WHERE status = "A"

db.users.find(
{ status: "A" }

)

See find() (page 910) for more in-
formation.

SELECT user_id, status
FROM users
WHERE status = "A"

db.users.find(
{ status: "A" },
{ user_id: 1, status: 1, _id: 0 }

)

See find() (page 910) for more in-
formation.

SELECT *
FROM users
WHERE status != "A"

db.users.find(
{ status: { $ne: "A" } }

)

See find() (page 910) and $ne
(page 756) for more information.

SELECT *
FROM users
WHERE status = "A"
AND age = 50

db.users.find(
{ status: "A",
age: 50 }

)

See find() (page 910) and $and
(page 741) for more information.

SELECT *
FROM users
WHERE status = "A"
OR age = 50

db.users.find(
{ $or: [{ status: "A" } ,

{ age: 50 }] }
)

See find() (page 910) and $or
(page 760) for more information.

SELECT *
FROM users
WHERE age > 25

db.users.find(
{ age: { $gt: 25 } }

)

See find() (page 910) and $gt
(page 749) for more information.

SELECT *
FROM users
WHERE age < 25

db.users.find(
{ age: { $lt: 25 } }

)

See find() (page 910) and $lt
(page 752) for more information.

SELECT *
FROM users
WHERE age > 25
AND age <= 50

db.users.find(
{ age: { $gt: 25, $lte: 50 } }

)

See find() (page 910), $gt
(page 749), and $lte (page 752) for
more information.

SELECT *
FROM users
WHERE user_id like "%bc%"

db.users.find(
{ user_id: /bc/ }

)

See find() (page 910) and
$regex (page 767) for more
information.

SELECT *
FROM users
WHERE user_id like "bc%"

db.users.find(
{ user_id: /^bc/ }

)

See find() (page 910) and
$regex (page 767) for more
information.

SELECT *
FROM users
WHERE status = "A"
ORDER BY user_id ASC

db.users.find({ status: "A" }).sort({ user_id: 1 })
See find() (page 910) and
sort() (page 900) for more
information.

SELECT *
FROM users
WHERE status = "A"
ORDER BY user_id DESC

db.users.find({ status: "A" }).sort({ user_id: -1 })
See find() (page 910) and
sort() (page 900) for more
information.

SELECT COUNT(*)
FROM users

db.users.count()
or
db.users.find().count()

See find() (page 910) and
count() (page 891) for more
information.

SELECT COUNT(user_id)
FROM users

db.users.count({ user_id: { $exists: true } })
or
db.users.find({ user_id: { $exists: true } }).count()

See find() (page 910), count()
(page 891), and $exists
(page 745) for more information.

SELECT COUNT(*)
FROM users
WHERE age > 30

db.users.count({ age: { $gt: 30 } })
or
db.users.find({ age: { $gt: 30 } }).count()

See find() (page 910), count()
(page 891), and $gt (page 749) for
more information.

SELECT DISTINCT(status)
FROM users

db.users.distinct("status")
See find() (page 910) and
distinct() (page 905) for more
information.

SELECT *
FROM users
LIMIT 1

db.users.findOne()
or
db.users.find().limit(1)

See find() (page 910),
findOne() (page 914), and
limit() (page 894) for more
information.

SELECT *
FROM users
LIMIT 5
SKIP 10

db.users.find().limit(5).skip(10)
See find() (page 910), limit()
(page 894), and skip() (page 899)
for more information.

EXPLAIN SELECT *
FROM users
WHERE status = "A"

db.users.find({ status: "A" }).explain()
See find() (page 910) and
explain() (page 892) for more
information.

60.1. Reference 969

MongoDB Documentation, Release 2.4.2

Update Records

The following table presents the various SQL statements related to updating existing records in tables and the corre-
sponding MongoDB statements.

SQL Update Statements MongoDB update() Statements Reference

UPDATE users
SET status = "C"
WHERE age > 25

db.users.update(
{ age: { $gt: 25 } },
{ $set: { status: "C" } },
{ multi: true }

)

See update() (page 932), $gt
(page 749), and $set (page 770) for
more information.

UPDATE users
SET age = age + 3
WHERE status = "A"

db.users.update(
{ status: "A" } ,
{ $inc: { age: 3 } },
{ multi: true }

)

See update() (page 932), $inc
(page 751), and $set (page 770) for
more information.

Delete Records

The following table presents the various SQL statements related to deleting records from tables and the corresponding
MongoDB statements.

SQL Delete Statements MongoDB remove() Statements Reference

DELETE FROM users
WHERE status = "D"

db.users.remove({ status: "D" })
See remove() (page 928) for more
information.

DELETE FROM users db.users.remove()
See remove() (page 928) for more
information.

970 Chapter 60. MongoDB Interface

CHAPTER 61

Architecture and Components

61.1 MongoDB Package Components

61.1.1 Core Processes

The core components in the MongoDB package are: mongod (page 971), the core database process; mongos
(page 981) the controller and query router for sharded clusters; and mongo (page 984) the interactive MongoDB
Shell.

mongod

Synopsis

mongod (page 971) is the primary daemon process for the MongoDB system. It handles data requests, manages data
format, and performs background management operations.

This document provides a complete overview of all command line options for mongod (page 971). These options are
primarily useful for testing purposes. In common operation, use the configuration file options (page 1026) to control
the behavior of your database, which is fully capable of all operations described below.

Options

mongod

--help, -h
Returns a basic help and usage text.

--version
Returns the version of the mongod (page 971) daemon.

--config <filename>, -f <filename>
Specifies a configuration file, that you can use to specify runtime-configurations. While the options are equiv-
alent and accessible via the other command line arguments, the configuration file is the preferred method for
runtime configuration of mongod. See the “Configuration File Options (page 1026)” document for more infor-
mation about these options.

971

MongoDB Documentation, Release 2.4.2

--verbose, -v
Increases the amount of internal reporting returned on standard output or in the log file specified by --logpath
(page 972). Use the -v form to control the level of verbosity by including the option multiple times, (e.g.
-vvvvv.)

--quiet
Runs the mongod (page 971) instance in a quiet mode that attempts to limit the amount of output. This option
suppresses:

•output from database commands, including drop (page 825), dropIndexes (page 825),
diagLogging (page 824), validate (page 879), and clean (page 812).

•replication activity.

•connection accepted events.

•connection closed events.

--port <port>
Specifies a TCP port for the mongod (page 971) to listen for client connections. By default mongod (page 971)
listens for connections on port 27017.

UNIX-like systems require root privileges to use ports with numbers lower than 1024.

--bind_ip <ip address>
The IP address that the mongod (page 971) process will bind to and listen for connections. By default mongod
(page 971) listens for connections all interfaces. You may attach mongod (page 971) to any interface; however,
when attaching mongod (page 971) to a publicly accessible interface ensure that you have implemented proper
authentication and/or firewall restrictions to protect the integrity of your database.

--maxConns <number>
Specifies the maximum number of simultaneous connections that mongod (page 971) will accept. This set-
ting will have no effect if it is higher than your operating system’s configured maximum connection tracking
threshold.

Note: You cannot set maxConns (page 1027) to a value higher than 20000.

--objcheck
Forces the mongod (page 971) to validate all requests from clients upon receipt to ensure that clients never insert
invalid documents into the database. For objects with a high degree of sub-document nesting, --objcheck
(page 972) can have a small impact on performance. You can set --noobjcheck (page 972) to disable object
checking at run-time. Changed in version 2.4: MongoDB enables --objcheck (page 972) by default, to
prevent any client from inserting malformed or invalid BSON into a MongoDB database.

--noobjcheck
New in version 2.4. Disables the default document validation that MongoDB performs on all incoming BSON
documents.

--logpath <path>
Specify a path for the log file that will hold all diagnostic logging information.

Unless specified, mongod (page 971) will output all log information to the standard output. Additionally, unless
you also specify --logappend (page 972), the logfile will be overwritten when the process restarts.

Note: The behavior of the logging system may change in the near future in response to the SERVER-4499
case.

972 Chapter 61. Architecture and Components

https://jira.mongodb.org/browse/SERVER-4499

MongoDB Documentation, Release 2.4.2

--logappend
When specified, this option ensures that mongod (page 971) appends new entries to the end of the logfile rather
than overwriting the content of the log when the process restarts.

--syslog
New in version 2.1.0. Sends all logging output to the host’s syslog system rather than to standard output or a log
file as with --logpath (page 972).

Warning: You cannot use --syslog (page 973) with --logpath (page 972).

--pidfilepath <path>
Specify a file location to hold the “PID” or process ID of the mongod (page 971) process. Useful for tracking
the mongod (page 971) process in combination with the mongod --fork (page 973) option.

Without a specified --pidfilepath (page 973) option, mongos (page 981) creates no PID file.

--keyFile <file>
Specify the path to a key file to store authentication information. This option is only useful for the connection
between replica set members.

See Also:

“Replica Set Security (page 373)” and “Replica Set Administration (page 397).”

--nounixsocket
Disables listening on the UNIX socket. Unless set to false, mongod (page 971) and mongos (page 981) provide
a UNIX-socket.

--unixSocketPrefix <path>
Specifies a path for the UNIX socket. Unless this option has a value, mongod (page 971) and mongos
(page 981), create a socket with the http://docs.mongodb.org/manual/tmp as a prefix.

--fork
Enables a daemon mode for mongod (page 971) that runs the process to the background. This is the normal
mode of operation, in production and production-like environments, but may not be desirable for testing.

--auth
Enables database authentication for users connecting from remote hosts. Configure users via the mongo shell
(page 984). If no users exist, the localhost interface will continue to have access to the database until the you
create the first user.

See the Security and Authentication (page 125) page for more information regarding this functionality.

--cpu
Forces mongod (page 971) to report the percentage of CPU time in write lock. mongod (page 971) generates
output every four seconds. MongoDB writes this data to standard output or the logfile if using the logpath
(page 1028) option.

--dbpath <path>
Specify a directory for the mongod (page 971) instance to store its data. Typ-
ical locations include: http://docs.mongodb.org/manual/srv/mongodb,
http://docs.mongodb.org/manual/var/lib/mongodb or http://docs.mongodb.org/manual/opt/mongodb

Unless specified, mongod (page 971) will look for data files in the default
http://docs.mongodb.org/manual/data/db directory. (Windows systems use the
\data\db directory.) If you installed using a package management system. Check the
http://docs.mongodb.org/manual/etc/mongodb.conf file provided by your packages to
see the configuration of the dbpath (page 1029).

61.1. MongoDB Package Components 973

MongoDB Documentation, Release 2.4.2

--diaglog <value>
Creates a very verbose, diagnostic log for troubleshooting and recording various errors. MongoDB writes these
log files in the dbpath (page 1029) directory in a series of files that begin with the string diaglog and end
with the initiation time of the logging as a hex string.

The specified value configures the level of verbosity. Possible values, and their impact are as follows.

Value Setting
0 off. No logging.
1 Log write operations.
2 Log read operations.
3 Log both read and write operations.
7 Log write and some read operations.

You can use the mongosniff (page 1019) tool to replay this output for investigation. Given a typical diaglog
file, located at http://docs.mongodb.org/manual/data/db/diaglog.4f76a58c, you might
use a command in the following form to read these files:

mongosniff --source DIAGLOG /data/db/diaglog.4f76a58c

--diaglog (page 973) is for internal use and not intended for most users.

Warning: Setting the diagnostic level to 0 will cause mongod (page 971) to stop writing data to the
diagnostic log file. However, the mongod (page 971) instance will continue to keep the file open, even if
it is no longer writing data to the file. If you want to rename, move, or delete the diagnostic log you must
cleanly shut down the mongod (page 971) instance before doing so.

--directoryperdb
Alters the storage pattern of the data directory to store each database’s files in a distinct folder. This option will
create directories within the --dbpath (page 973) named for each directory.

Use this option in conjunction with your file system and device configuration so that MongoDB will store data
on a number of distinct disk devices to increase write throughput or disk capacity.

--journal
Enables operation journaling to ensure write durability and data consistency. mongod (page 971) enables
journaling by default on 64-bit builds of versions after 2.0.

--journalOptions <arguments>
Provides functionality for testing. Not for general use, and may affect database integrity.

--journalCommitInterval <value>
Specifies the maximum amount of time for mongod (page 971) to allow between journal operations. The default
value is 100 milliseconds, while possible values range from 2 to 300 milliseconds. Lower values increase the
durability of the journal, at the expense of disk performance.

To force mongod (page 971) to commit to the journal more frequently, you can specify j:true. When a write
operation with j:true pending, mongod (page 971) will reduce journalCommitInterval (page 1030)
to a third of the set value.

--ipv6
Specify this option to enable IPv6 support. This will allow clients to connect to mongod (page 971) using IPv6
networks. mongod (page 971) disables IPv6 support by default in mongod (page 971) and all utilities.

--jsonp
Permits JSONP access via an HTTP interface. Consider the security implications of allowing this activity before
enabling this option.

--noauth
Disable authentication. Currently the default. Exists for future compatibility and clarity.

974 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

--nohttpinterface
Disables the HTTP interface.

--nojournal
Disables the durability journaling. By default, mongod (page 971) enables journaling in 64-bit versions after
v2.0.

--noprealloc
Disables the preallocation of data files. This will shorten the start up time in some cases, but can cause significant
performance penalties during normal operations.

--noscripting
Disables the scripting engine.

--notablescan
Forbids operations that require a table scan.

--nssize <value>
Specifies the default size for namespace files (i.e .ns). This option has no impact on the size of existing
namespace files. The maximum size is 2047 megabytes.

The default value is 16 megabytes; this provides for approximately 24,000 namespaces. Each collection, as well
as each index, counts as a namespace.

--profile <level>
Changes the level of database profiling, which inserts information about operation performance into output of
mongod (page 971) or the log file. The following levels are available:

Level Setting
0 Off. No profiling.
1 On. Only includes slow operations.
2 On. Includes all operations.

Profiling is off by default. Database profiling can impact database performance. Enable this option only after
careful consideration.

--quota
Enables a maximum limit for the number data files each database can have. When running with --quota
(page 975), there are a maximum of 8 data files per database. Adjust the quota with the --quotaFiles
(page 975) option.

--quotaFiles <number>
Modify limit on the number of data files per database. This option requires the --quota (page 975) setting.
The default value for --quotaFiles (page 975) is 8.

--rest
Enables the simple REST API.

--repair
Runs a repair routine on all databases. This is equivalent to shutting down and running the repairDatabase
(page 863) database command on all databases.

Warning: In general, if you have an intact copy of your data, such as would exist on a very recent backup
or an intact member of a replica set, do not use repairDatabase (page 863) or related options like
db.repairDatabase() (page 944) in the mongo (page 984) shell or mongod --repair (page 975).
Restore from an intact copy of your data.

Note: When using journaling, there is almost never any need to run repairDatabase (page 863). In the
event of an unclean shutdown, the server will be able restore the data files to a pristine state automatically.

61.1. MongoDB Package Components 975

MongoDB Documentation, Release 2.4.2

Changed in version 2.1.2. If you run the repair option and have data in a journal file, mongod (page 971) will
refuse to start. In these cases you should start mongod (page 971) without the --repair (page 975) option
to allow mongod (page 971) to recover data from the journal. This will complete more quickly and will result
in a more consistent and complete data set.

To continue the repair operation despite the journal files, shut down mongod (page 971) cleanly and restart with
the --repair (page 975) option.

Note: --repair (page 975) copies data from the source data files into new data files in the repairpath
(page 1032), and then replaces the original data files with the repaired data files. If repairpath (page 1032)
is on the same device as dbpath (page 1029), you may interrupt a mongod (page 971) running --repair
(page 975) without affecting the integrity of the data set.

--repairpath <path>
Specifies the root directory containing MongoDB data files, to use for the --repair (page 975) operation.
Defaults to a _tmp directory within the dbpath (page 1029).

--setParameter <options>
New in version 2.4. Specifies an option to configure on startup. Specify multiple options with multiple
--setParameter (page 976) options. See mongod Parameters (page 1039) for full documentation of these
parameters. The setParameter (page 869) database command provides access to many of these parameters.
--setParameter (page 976) supports the following options:

•enableLocalhostAuthBypass (page 1039)

•enableTestCommands (page 1039)

•journalCommitInterval (page 1040)

•logLevel (page 1040)

•logUserIds (page 1040)

•notablescan (page 1040)

•quiet (page 1041)

•replApplyBatchSize (page 1040)

•replIndexPrefetch (page 1040)

•supportCompatibilityFormPrivilegeDocuments (page 1040)

•syncdelay (page 1041)

•textSearchEnabled (page 1041)

•traceExceptions (page 1041)

--slowms <value>
Defines the value of “slow,” for the --profile (page 975) option. The database logs all slow queries to the
log, even when the profiler is not turned on. When the database profiler is on, mongod (page 971) the profiler
writes to the system.profile collection. See the profile (page 860) command for more information on
the database profiler.

--smallfiles
Enables a mode where MongoDB uses a smaller default file size. Specifically, --smallfiles (page 976)
reduces the initial size for data files and limits them to 512 megabytes. --smallfiles (page 976) also
reduces the size of each journal files from 1 gigabyte to 128 megabytes.

976 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

Use --smallfiles (page 976) if you have a large number of databases that each holds a small quantity of
data. --smallfiles (page 976) can lead your mongod (page 971) to create a large number of files, which
may affect performance for larger databases.

--shutdown
Used in control scripts, the --shutdown (page 977) will cleanly and safely terminate the mongod (page 971)
process. When invoking mongod (page 971) with this option you must set the --dbpath (page 973) option
either directly or by way of the configuration file (page 1026) and the --config (page 971) option.

--shutdown (page 977) is only available on Linux systems.

--syncdelay <value>
mongod (page 971) writes data very quickly to the journal, and lazily to the data files. --syncdelay
(page 977) controls how much time can pass before MongoDB flushes data to the database files via an fsync
operation. The default setting is 60 seconds. In almost every situation you should not set this value and use the
default setting.

The serverStatus (page 869) command reports the background flush thread’s status via the
backgroundFlushing (page 1059) field.

syncdelay (page 1032) has no effect on the journal (page 1030) files or journaling (page 71).

Warning: If you set --syncdelay (page 977) to 0, MongoDB will not sync the memory mapped files
to disk. Do not set this value on production systems.

--sysinfo
Returns diagnostic system information and then exits. The information provides the page size, the number of
physical pages, and the number of available physical pages.

--upgrade
Upgrades the on-disk data format of the files specified by the --dbpath (page 973) to the latest version, if
needed.

This option only affects the operation of mongod (page 971) if the data files are in an old format.

Note: In most cases you should not set this value, so you can exercise the most control over your upgrade
process. See the MongoDB release notes (on the download page) for more information about the upgrade
process.

--traceExceptions
For internal diagnostic use only.

Replication Options
--replSet <setname>

Use this option to configure replication with replica sets. Specify a setname as an argument to this set. All hosts
must have the same set name.

See Also:

“Replication (page 365),” “Replica Set Administration (page 397),” and “Replica Set Configuration (page 441)“
--oplogSize <value>

Specifies a maximum size in megabytes for the replication operation log (e.g. oplog.) By mongod (page 971)
creates an oplog based on the maximum amount of space available. For 64-bit systems, the op log is typically
5% of available disk space.

Once the mongod (page 971) has created the oplog for the first time, changing --oplogSize (page 977) will
not affect the size of the oplog.

61.1. MongoDB Package Components 977

http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.4.2

--fastsync
In the context of replica set replication, set this option if you have seeded this member with a snapshot of the
dbpath of another member of the set. Otherwise the mongod (page 971) will attempt to perform an initial sync,
as though the member were a new member.

Warning: If the data is not perfectly synchronized and mongod (page 971) starts with fastsync
(page 1034), then the secondary or slave will be permanently out of sync with the primary, which may
cause significant consistency problems.

--replIndexPrefetch
New in version 2.2. You must use --replIndexPrefetch (page 978) in conjunction with replSet
(page 1034). The default value is all and available options are:

•none

•all

•_id_only

By default secondary members of a replica set will load all indexes related to an operation into memory before
applying operations from the oplog. You can modify this behavior so that the secondaries will only load the _id
index. Specify _id_only or none to prevent the mongod (page 971) from loading any index into memory.

Master-Slave Replication These options provide access to conventional master-slave database replication. While
this functionality remains accessible in MongoDB, replica sets are the preferred configuration for database replication.

--master
Configures mongod (page 971) to run as a replication master.

--slave
Configures mongod (page 971) to run as a replication slave.

--source <host><:port>
For use with the --slave (page 978) option, the --source option designates the server that this instance
will replicate.

--only <arg>
For use with the --slave (page 978) option, the --only option specifies only a single database to replicate.

--slavedelay <value>
For use with the --slave (page 978) option, the --slavedelay option configures a “delay” in seconds, for
this slave to wait to apply operations from the master node.

--autoresync
For use with the --slave (page 978) option. When set, --autoresync (page 978) option allows this slave
to automatically resync if it is more than 10 seconds behind the master. This setting may be problematic if the
--oplogSize (page 977) specifies a too small oplog. If the oplog is not large enough to store the difference
in changes between the master’s current state and the state of the slave, this instance will forcibly resync itself
unnecessarily. When you set the autoresync (page 1035) option to false, the slave will not attempt an
automatic resync more than once in a ten minute period.

Sharding Cluster Options
--configsvr

Declares that this mongod (page 971) instance serves as the config database of a sharded cluster. When running
with this option, clients will not be able to write data to any database other than config and admin. The
default port for a mongod (page 971) with this option is 27019 and the default --dbpath (page 973) directory

978 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

is http://docs.mongodb.org/manual/data/configdb, unless specified. Changed in version 2.2:
--configsvr (page 978) also sets --smallfiles (page 976).Changed in version 2.4: --configsvr
(page 978) creates a local oplog. Do not use --configsvr (page 978) with --replSet (page 977) or
--shardsvr (page 979). Config servers cannot be a shard server or part of a replica set.

--shardsvr
Configures this mongod (page 971) instance as a shard in a partitioned cluster. The default port for these
instances is 27018. The only effect of --shardsvr (page 979) is to change the port number.

SSL Options See Also:

Connect to MongoDB with SSL (page 77) for full documentation of MongoDB’s support.

--sslOnNormalPorts
New in version 2.2.

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

Enables SSL for mongod (page 971). With --sslOnNormalPorts (page 979), a mongod (page 971)
requires SSL encryption for all connections on the default MongoDB port, or the port specified by --port
(page 972). By default, --sslOnNormalPorts (page 979) is disabled.

--sslPEMKeyFile <filename>
New in version 2.2.

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

Specifies the .pem file that contains both the SSL certificate and key. Specify the file name of the .pem file
using relative or absolute paths

When using --sslOnNormalPorts (page 979), you must specify --sslPEMKeyFile (page 979).

--sslPEMKeyPassword <value>
New in version 2.2.

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

Specifies the password to de-crypt the certificate-key file (i.e. --sslPEMKeyFile (page 979)). Only
use --sslPEMKeyPassword (page 979) if the certificate-key file is encrypted. In all cases, mongod
(page 971) will redact the password from all logging and reporting output. Changed in version 2.4:
--sslPEMKeyPassword (page 979) is only needed when the private key is encrypted. In ear-
lier versions mongod (page 971) would require --sslPEMKeyPassword (page 979) whenever using
--sslOnNormalPorts (page 979), even when the private key was not encrypted.

--sslCAFile <filename>
New in version 2.4.

61.1. MongoDB Package Components 979

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.4.2

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

Specifies the .pem file that contains the root certificate chain from the Certificate Authority. Specify the file
name of the .pem file using relative or absolute paths

--sslCRLFile <filename>
New in version 2.4.

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

Specifies the .pem file that contains the Certificate Revocation List. Specify the file name of the .pem file
using relative or absolute paths

--sslWeakCertificateValidation
New in version 2.4.

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

Disables the requirement for SSL certificate validation, that --sslCAFile (page 979) enables. With
--sslWeakCertificateValidation (page 980), mongod (page 971) will accept connections if the
client does not present a certificate when establishing the connection.

If the client presents a certificate and mongod (page 971) has --sslWeakCertificateValidation
(page 980) enabled, mongod (page 971) will validate the certificate using the root certificate chain specified by
--sslCAFile (page 979), and reject clients with invalid certificates.

Use --sslWeakCertificateValidation (page 980) if you have a mixed deployment that includes
clients that do not or cannot present certificates to mongod (page 971).

--sslFIPSMode
New in version 2.4.

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

When specified, mongod (page 971) will use the FIPS mode of the installed OpenSSL library. Your system
must have a FIPS compliant OpenSSL library to use --sslFIPSMode (page 980).

Usage

In common usage, the invocation of mongod (page 971) will resemble the following in the context of an initialization
or control script:

mongod --config /etc/mongodb.conf

See the “Configuration File Options (page 1026)” for more information on how to configure mongod (page 971)
using the configuration file.

980 Chapter 61. Architecture and Components

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.4.2

mongos

Synopsis

mongos (page 981) for “MongoDB Shard,” is a routing service for MongoDB shard configurations that processes
queries from the application layer, and determines the location of this data in the sharded cluster, in order to complete
these operations. From the perspective of the application, a mongos (page 981) instance behaves identically to any
other MongoDB instance.

Note: Changed in version 2.1. Some aggregation operations using the aggregate (page 809) will cause mongos
(page 981) instances to require more CPU resources than in previous versions. This modified performance profile may
dictate alternate architecture decisions if you use the aggregation framework extensively in a sharded environment.

See Also:

Sharding (page 461) and Sharded Cluster Overview (page 463).

Options

mongos

--help, -h
Returns a basic help and usage text.

--version
Returns the version of the mongod (page 971) daemon.

--config <filename>, -f <filename>
Specifies a configuration file, that you can use to specify runtime-configurations. While the options are equiv-
alent and accessible via the other command line arguments, the configuration file is the preferred method for
runtime configuration of mongod. See the “Configuration File Options (page 1026)” document for more infor-
mation about these options.

Not all configuration options for mongod (page 971) make sense in the context of mongos (page 981).

--verbose, -v
Increases the amount of internal reporting returned on standard output or in the log file specified by --logpath
(page 982). Use the -v form to control the level of verbosity by including the option multiple times, (e.g.
-vvvvv.)

--quiet
Runs the mongos (page 981) instance in a quiet mode that attempts to limit the amount of output.

--port <port>
Specifies a TCP port for the mongos (page 981) to listen for client connections. By default mongos (page 981)
listens for connections on port 27017.

UNIX-like systems require root access to access ports with numbers lower than 1024.

--bind_ip <ip address>
The IP address that the mongos (page 981) process will bind to and listen for connections. By default mongos
(page 981) listens for connections all interfaces. You may attach mongos (page 981) to any interface; however,
when attaching mongos (page 981) to a publicly accessible interface ensure that you have implemented proper
authentication and/or firewall restrictions to protect the integrity of your database.

--maxConns <number>
Specifies the maximum number of simultaneous connections that mongos (page 981) will accept. This setting

61.1. MongoDB Package Components 981

MongoDB Documentation, Release 2.4.2

will have no effect if the value of this setting is higher than your operating system’s configured maximum
connection tracking threshold.

This is particularly useful for mongos (page 981) if you have a client that creates a number of collections but
allows them to timeout rather than close the collections. When you set maxConns (page 1027), ensure the value
is slightly higher than the size of the connection pool or the total number of connections to prevent erroneous
connection spikes from propagating to the members of a shard cluster.

Note: You cannot set maxConns (page 1027) to a value higher than 20000.

--objcheck
Forces the mongos (page 981) to validate all requests from clients upon receipt to ensure that invalid objects
are never inserted into the database. This option has a performance impact, and is not enabled by default.

--logpath <path>
Specify a path for the log file that will hold all diagnostic logging information.

Unless specified, mongos (page 981) will output all log information to the standard output. Additionally, unless
you also specify --logappend (page 982), the logfile will be overwritten when the process restarts.

--logappend
Specify to ensure that mongos (page 981) appends additional logging data to the end of the logfile rather than
overwriting the content of the log when the process restarts.

--syslog
New in version 2.1.0. Sends all logging output to the host’s syslog system rather than to standard output or a log
file as with --logpath (page 982).

Warning: You cannot use --syslog (page 982) with --logpath (page 982).

--pidfilepath <path>
Specify a file location to hold the “PID” or process ID of the mongos (page 981) process. Useful for tracking
the mongos (page 981) process in combination with the mongos --fork (page 982) option.

Without a specified --pidfilepath (page 982) option, mongos (page 981) creates no PID file.

--keyFile <file>
Specify the path to a key file to store authentication information. This option is only useful for the connection
between mongos (page 981) instances and components of the sharded cluster.

See Also:

Security Practices for Sharded Clusters (page 470)

--nounixsocket
Disables listening on the UNIX socket. Without this option mongos (page 981) creates a UNIX socket.

--unixSocketPrefix <path>
Specifies a path for the UNIX socket. Unless specified, mongos (page 981) creates a socket in the
http://docs.mongodb.org/manual/tmp path.

--fork
Enables a daemon mode for mongod (page 971) which forces the process to the background. This is the normal
mode of operation, in production and production-like environments, but may not be desirable for testing.

--configdb <config1>,<config2><:port>,<config3>
Set this option to specify a configuration database (i.e. config database) for the sharded cluster. You must
specify either 1 configuration server or 3 configuration servers, in a comma separated list.

982 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

Note: mongos (page 981) instances read from the first config server in the list provided. All mongos
(page 981) instances must specify the hosts to the --configdb (page 982) setting in the same order.

If your configuration databases reside in more that one data center, order the hosts in the --configdb
(page 982) argument so that the config database that is closest to the majority of your mongos (page 981)
instances is first servers in the list.

Warning: Never remove a config server from the --configdb (page 982) parameter, even if the config
server or servers are not available, or offline.

--test
This option is for internal testing use only, and runs unit tests without starting a mongos (page 981) instance.

--upgrade
This option updates the meta data format used by the config database.

--chunkSize <value>
The value of the --chunkSize (page 983) determines the size of each chunk, in megabytes, of data distributed
around the sharded cluster. The default value is 64 megabytes, which is the ideal size for chunks in most
deployments: larger chunk size can lead to uneven data distribution, smaller chunk size often leads to inefficient
movement of chunks between nodes. However, in some circumstances it may be necessary to set a different
chunk size.

This option only sets the chunk size when initializing the cluster for the first time. If you modify the run-time
option later, the new value will have no effect. See the “Modify Chunk Size (page 501)” procedure if you need
to change the chunk size on an existing sharded cluster.

--ipv6
Enables IPv6 support to allow clients to connect to mongos (page 981) using IPv6 networks. MongoDB
disables IPv6 support by default in mongod (page 971) and all utilities.

--jsonp
Permits JSONP access via an HTTP interface. Consider the security implications of allowing this activity before
enabling this option.

--noscripting
Disables the scripting engine.

--nohttpinterface
New in version 2.1.2. Disables the HTTP interface.

--localThreshold
New in version 2.2. --localThreshold (page 983) affects the logic that mongos (page 981) uses when
selecting replica set members to pass read operations to from clients. Specify a value to --localThreshold
(page 983) in milliseconds. The default value is 15, which corresponds to the default value in all of the client
drivers (page 529).

When mongos (page 981) receives a request that permits reads to secondary members, the mongos (page 981)
will:

•find the member of the set with the lowest ping time.

•construct a list of replica set members that is within a ping time of 15 milliseconds of the nearest suitable
member of the set.

If you specify a value for --localThreshold (page 983), mongos (page 981) will construct the list
of replica members that are within the latency allowed by this value.

•The mongos (page 981) will select a member to read from at random from this list.

61.1. MongoDB Package Components 983

MongoDB Documentation, Release 2.4.2

The ping time used for a set member compared by the --localThreshold (page 983) setting is a moving
average of recent ping times, calculated, at most, every 10 seconds. As a result, some queries may reach
members above the threshold until the mongos (page 981) recalculates the average.

See the Member Selection (page 385) section of the read preference (page 381) documentation for more infor-
mation.

--noAutoSplit
New in version 2.0.7. --noAutoSplit (page 984) prevents mongos (page 981) from automatically inserting
metadata splits in a sharded collection. If set on all mongos (page 981), this will prevent MongoDB from
creating new chunks as the data in a collection grows.

Because any mongos (page 981) in a cluster can create a split, to totally disable splitting in a cluster you must
set --noAutoSplit (page 984) on all mongos (page 981).

Warning: With --noAutoSplit (page 984) enabled, the data in your sharded cluster may become
imbalanced over time. Enable with caution.

SSL Options See Also:

Connect to MongoDB with SSL (page 77) for full documentation of MongoDB’s support.

--authenticationDatabase <dbname>
New in version 2.4. Specifies the database that holds the user’s (e.g --username) credentials.

By default, mongos (page 981) assumes that the database specified to the --db argument holds the user’s
credentials, unless you specify |binary-name| --authenticationDatabase.

See userSource (page 155), system.users Privilege Documents (page 153) and User Privilege Roles in Mon-
goDB (page 149) for more information about delegated authentication in MongoDB.

--authenticationMechanism <name>
New in version 2.4. Specifies the authentication mechanism. By default, the authentication mechanism is
MONGODB-CR, which is the MongoDB challenge/response authentication mechanism. In MongoDB Enterprise,
mongos (page 981) also includes support for GSSAPI to handle Kerberos authentication.

See Deploy MongoDB with Kerberos Authentication (page 141) for more information about Kerberos authenti-
cation.

mongo

Description

mongo

mongo (page 984) is an interactive JavaScript shell interface to MongoDB, which provides a powerful interface for
systems administrators as well as a way for developers to test queries and operations directly with the database. mongo
(page 984) also provides a fully functional JavaScript environment for use with a MongoDB. This document addresses
the basic invocation of the mongo (page 984) shell and an overview of its usage.

See Also:

In additional to this page, also consider the documentation in the The mongo Shell (page 555) section of the manual.

Synopsis

mongo [-shell] [-nodb] [-norc] [-quiet] [-port <port>] [-host <host>] [-eval <JavaScript>] [-u <username>] [-username <username>] [-p <password>] [-password <password>] [-help] [-h] [-version] [--verbose] [--ipv6] [database] [file.js]

984 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

Interface

Options
--shell

Enables the shell interface after evaluating a JavaScript file. If you invoke the mongo (page 984) command and
specify a JavaScript file as an argument, or use --eval (page 985) to specify JavaScript on the command line,
the --shell (page 985) option provides the user with a shell prompt after the file finishes executing.

--nodb
Prevents the shell from connecting to any database instances. Later, to connect to a database within the shell,
see Opening New Connections (page 569).

--norc
Prevents the shell from sourcing and evaluating ~/.mongorc.js on start up.

--quiet
Silences output from the shell during the connection process.

--port <port>
Specifies the port where the mongod (page 971) or mongos (page 981) instance is listening. Unless specified
mongo (page 984) connects to mongod (page 971) instances on port 27017, which is the default mongod
(page 971) port.

--host <hostname>
specifies the host where the mongod (page 971) or mongos (page 981) is running to connect to as
<hostname>. By default mongo (page 984) will attempt to connect to a MongoDB process running on
the localhost.

--eval <javascript>
Evaluates a JavaScript expression specified as an argument to this option. mongo (page 984) does not load its
own environment when evaluating code: as a result many options of the shell environment are not available.

--username <username>, -u <username>
Specifies a username to authenticate to the MongoDB instance. Use in conjunction with the --password
(page 985) option to supply a password. If you specify a username and password but the default database or the
specified database do not require authentication, mongo (page 984) will exit with an exception.

--password <password>, -p <password>
Specifies a password to authenticate to the MongoDB instance. Use in conjunction with the --username
(page 985) option to supply a username. If you specify a --username (page 985) without the --password
(page 985) option, mongo (page 984) will prompt for a password interactively, if the mongod (page 971) or
mongos (page 981) requires authentication.

--authenticationDatabase <dbname>
New in version 2.4. Specifies the database that holds the user’s (e.g --username) credentials.

By default, mongo (page 984) assumes that the database name specified in the db address (page 986) holds the
user’s credentials, unless you specify --authenticationDatabase (page 985).

See userSource (page 155), system.users Privilege Documents (page 153) and User Privilege Roles in Mon-
goDB (page 149) for more information about delegated authentication in MongoDB.

--authenticationMechanism <name>
New in version 2.4. Specifies the authentication mechanism. By default, the authentication mechanism is
MONGODB-CR, which is the MongoDB challenge/response authentication mechanism. In MongoDB Enterprise,
mongo (page 984) also includes support for GSSAPI to handle Kerberos authentication.

See Deploy MongoDB with Kerberos Authentication (page 141) for more information about Kerberos authenti-
cation.

61.1. MongoDB Package Components 985

MongoDB Documentation, Release 2.4.2

--ssl
Enable connection to a mongod (page 971) or mongos (page 981) that has SSL encryption.

--sslPEMKeyFile <filename>
New in version 2.4.

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

Specifies the .pem file that contains both the SSL certificate and key. Specify the file name of the .pem file
using relative or absolute paths

Required when using the --ssl (page 985) option if the mongod (page 971) or mongos (page 981) has
sslCAFile (page 1038) enabled without sslWeakCertificateValidation (page 1038).

--sslPEMKeyPassword <value>
New in version 2.4.

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

Specifies the password to decrypt the root certificate chain specified by --sslPEMKeyFile (page 986).

Only required if the certificate-key file is encrypted.

--sslCAFile <filename>
New in version 2.4.

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

Specifies the .pem file that contains the certificate from the Certificate Authority. Specify the file name of the
.pem file using relative or absolute paths

--help, -h
Returns a basic help and usage text.

--version
Returns the version of the shell.

--verbose
Increases the verbosity of the output of the shell during the connection process.

--ipv6
Enables IPv6 support that allows mongo (page 984) to connect to the MongoDB instance using an IPv6 network.
All MongoDB programs and processes, including mongo (page 984), disable IPv6 support by default.

<db address>
Specifies the “database address” of the database to connect to. For example:

mongo admin

The above command will connect the mongo (page 984) shell to the admin database on the local machine.
You may specify a remote database instance, with the resolvable hostname or IP address. Separate the database

986 Chapter 61. Architecture and Components

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.4.2

name from the hostname using a http://docs.mongodb.org/manual/ character. See the following
examples:

mongo mongodb1.example.net
mongo mongodb1/admin
mongo 10.8.8.10/test

<file.js>
Specifies a JavaScript file to run and then exit. Must be the last option specified. Use the --shell (page 985)
option to return to a shell after the file finishes running.

Files ~/.dbshell

mongo (page 984) maintains a history of commands in the .dbshell file.

Note: mongo (page 984) does not recorded interaction related to authentication in the history file,
including authenticate (page 810) and db.addUser() (page 901).

Warning: Versions of Windows mongo.exe earlier than 2.2.0 will save the .dbshell file in the
mongo.exe working directory.

~/.mongorc.js

mongo (page 984) will read the .mongorc.js file from the home directory of the user invoking mongo
(page 984). In the file, users can define variables, customize the mongo (page 984) shell prompt, or update
information that they would like updated every time they launch a shell. If you use the shell to evaluate a
JavaScript file or expression either on the command line with --eval (page 985) or by specifying a .js
file to mongo (page 987), mongo (page 984) will read the .mongorc.js file after the JavaScript has
finished processing.

Specify the --norc (page 985) option to disable reading .mongorc.js.

http://docs.mongodb.org/manual/tmp/mongo_edit<time_t>.js

Created by mongo (page 984) when editing a file. If the file exists mongo (page 984) will append an
integer from 1 to 10 to the time value to attempt to create a unique file.

%TEMP%mongo_edit<time_t>.js

Created by mongo.exe on Windows when editing a file. If the file exists mongo (page 984) will append
an integer from 1 to 10 to the time value to attempt to create a unique file.

Environment
EDITOR

Specifies the path to an editor to use with the edit shell command. A JavaScript variable EDITORwill override
the value of EDITOR (page 987).

HOME
Specifies the path to the home directory where mongo (page 984) will read the .mongorc.js file and write
the .dbshell file.

HOMEDRIVE
On Windows systems, HOMEDRIVE (page 987) specifies the path the directory where mongo (page 984) will
read the .mongorc.js file and write the .dbshell file.

HOMEPATH
Specifies the Windows path to the home directory where mongo (page 984) will read the .mongorc.js file
and write the .dbshell file.

61.1. MongoDB Package Components 987

MongoDB Documentation, Release 2.4.2

Keyboard Shortcuts

The mongo (page 984) shell supports the following keyboard shortcuts: 1

Keybinding Function
Up arrow Retrieve previous command from history
Down-arrow Retrieve next command from history
Home Go to beginning of the line
End Go to end of the line
Tab Autocomplete method/command
Left-arrow Go backward one character
Right-arrow Go forward one character
Ctrl-left-arrow Go backward one word
Ctrl-right-arrow Go forward one word
Meta-left-arrow Go backward one word
Meta-right-arrow Go forward one word
Ctrl-A Go to the beginning of the line
Ctrl-B Go backward one character
Ctrl-C Exit the mongo (page 984) shell
Ctrl-D Delete a char (or exit the mongo (page 984) shell)
Ctrl-E Go to the end of the line
Ctrl-F Go forward one character
Ctrl-G Abort
Ctrl-J Accept/evaluate the line
Ctrl-K Kill/erase the line
Ctrl-L or type cls Clear the screen
Ctrl-M Accept/evaluate the line
Ctrl-N Retrieve next command from history
Ctrl-P Retrieve previous command from history
Ctrl-R Reverse-search command history
Ctrl-S Forward-search command history
Ctrl-T Transpose characters
Ctrl-U Perform Unix line-discard
Ctrl-W Perform Unix word-rubout
Ctrl-Y Yank
Ctrl-Z Suspend (job control works in linux)
Ctrl-H Backward-delete a character
Ctrl-I Complete, same as Tab
Meta-B Go backward one word
Meta-C Capitalize word
Meta-D Kill word
Meta-F Go forward one word
Meta-L Change word to lowercase
Meta-U Change word to uppercase
Meta-Y Yank-pop
Meta-Backspace Backward-kill word
Meta-< Retrieve the first command in command history
Meta-> Retrieve the last command in command history

1 MongoDB accommodates multiple keybinding. Since 2.0, mongo (page 984) includes support for basic emacs keybindings.

988 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

Use

Typically users invoke the shell with the mongo (page 984) command at the system prompt. Consider the following
examples for other scenarios.

To connect to a database on a remote host using authentication and a non-standard port, use the following form:

mongo --username <user> --password <pass> --hostname <host> --port 28015

Alternatively, consider the following short form:

mongo -u <user> -p <pass> --host <host> --port 28015

Replace <user>, <pass>, and <host> with the appropriate values for your situation and substitute or omit the
--port (page 985) as needed.

To execute a JavaScript file without evaluating the ~/.mongorc.js file before starting a shell session, use the
following form:

mongo --shell --norc alternate-environment.js

To print return a query as JSON, from the system prompt using the --eval (page 985) option, use the following
form:

mongo --eval ’db.collection.find().forEach(printjson)’

Use single quotes (e.g. ’) to enclose the JavaScript, as well as the additional JavaScript required to generate this
output.

61.1.2 Windows Services

The mongod.exe (page 989) and mongos.exe (page 991) describe the options available for configuring MongoDB
when running as a Windows Service. The mongod.exe (page 989) and mongos.exe (page 991) binaries provide
a superset of the mongod (page 971) and mongos (page 981) options.

mongod.exe

Synopsis

mongod.exe (page 989) is the build of the MongoDB daemon (i.e. mongod (page 971)) for the Windows platform.
mongod.exe (page 989) has all of the features of mongod (page 971) on Unix-like platforms and is completely
compatible with the other builds of mongod (page 971). In addition, mongod.exe (page 989) provides several
options for interacting with the Windows platform itself.

This document only references options that are unique to mongod.exe (page 989). All mongod (page 971) options
are available. See the “mongod (page 971)” and the “Configuration File Options (page 1026)” documents for more
information regarding mongod.exe (page 989).

To install and use mongod.exe (page 989), read the “Install MongoDB on Windows (page 16)” document.

Options

mongod.exe

--install
Installs mongod.exe (page 989) as a Windows Service and exits.

61.1. MongoDB Package Components 989

MongoDB Documentation, Release 2.4.2

--remove
Removes the mongod.exe (page 989) Windows Service. If mongod.exe (page 989) is running, this opera-
tion will stop and then remove the service.

Note: --remove (page 990) requires the --serviceName (page 990) if you configured a non-default
--serviceName (page 990) during the --install (page 989) operation.

--reinstall
Removes mongod.exe (page 989) and reinstalls mongod.exe (page 989) as a Windows Service.

--serviceName <name>
Default: “MongoDB”

Set the service name of mongod.exe (page 989) when running as a Windows Service. Use this name with the
net start <name> and net stop <name> operations.

You must use --serviceName (page 990) in conjunction with either the --install (page 989) or
--remove (page 990) install option.

--serviceDisplayName <name>
Default: “Mongo DB”

Sets the name listed for MongoDB on the Services administrative application.

--serviceDescription <description>
Default: “MongoDB Server”

Sets the mongod.exe (page 989) service description.

You must use --serviceDescription (page 990) in conjunction with the --install (page 989) option.

Note: For descriptions that contain spaces, you must enclose the description in quotes.

--serviceUser <user>
Runs the mongod.exe (page 989) service in the context of a certain user. This user must have “Log on as a
service” privileges.

You must use --serviceUser (page 990) in conjunction with the --install (page 989) option.

--servicePassword <password>
Sets the password for <user> for mongod.exe (page 989) when running with the --serviceUser
(page 990) option.

You must use --servicePassword (page 990) in conjunction with the --install (page 989) option.

mongos.exe

Synopsis

mongos.exe (page 991) is the build of the MongoDB Shard (i.e. mongos (page 981)) for the Windows platform.
mongos.exe (page 991) has all of the features of mongos (page 981) on Unix-like platforms and is completely
compatible with the other builds of mongos (page 981). In addition, mongos.exe (page 991) provides several
options for interacting with the Windows platform itself.

This document only references options that are unique to mongos.exe (page 991). All mongos (page 981) options
are available. See the “mongos (page 981)” and the “Configuration File Options (page 1026)” documents for more
information regarding mongos.exe (page 991).

990 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

To install and use mongos.exe (page 991), read the “Install MongoDB on Windows (page 16)” document.

Options

mongos.exe

--install
Installs mongos.exe (page 991) as a Windows Service and exits.

--remove
Removes the mongos.exe (page 991) Windows Service. If mongos.exe (page 991) is running, this opera-
tion will stop and then remove the service.

Note: --remove (page 991) requires the --serviceName (page 991) if you configured a non-default
--serviceName (page 991) during the --install (page 991) operation.

--reinstall
Removes mongos.exe (page 991) and reinstalls mongos.exe (page 991) as a Windows Service.

--serviceName <name>
Default: “MongoS”

Set the service name of mongos.exe (page 991) when running as a Windows Service. Use this name with the
net start <name> and net stop <name> operations.

You must use --serviceName (page 991) in conjunction with either the --install (page 991) or
--remove (page 991) install option.

--serviceDisplayName <name>
Default: “Mongo DB Router”

Sets the name listed for MongoDB on the Services administrative application.

--serviceDescription <description>
Default: “Mongo DB Sharding Router”

Sets the mongos.exe (page 991) service description.

You must use --serviceDescription (page 991) in conjunction with the --install (page 991) option.

Note: For descriptions that contain spaces, you must enclose the description in quotes.

--serviceUser <user>
Runs the mongos.exe (page 991) service in the context of a certain user. This user must have “Log on as a
service” privileges.

You must use --serviceUser (page 991) in conjunction with the --install (page 991) option.

--servicePassword <password>
Sets the password for <user> for mongos.exe (page 991) when running with the --serviceUser
(page 991) option.

You must use --servicePassword (page 991) in conjunction with the --install (page 991) option.

61.1. MongoDB Package Components 991

MongoDB Documentation, Release 2.4.2

61.1.3 Binary Import and Export Tools

mongodump (page 992) provides a method for creating BSON dump files from the mongod (page 971) instances,
while mongorestore (page 996) makes it possible to restore these dumps. bsondump (page 999) converts BSON
dump files into JSON. The mongooplog (page 1001) utility provides the ability to stream oplog entries outside of
normal replication.

mongodump

Synopsis

mongodump (page 992) is a utility for creating a binary export of the contents of a database. Consider using this utility
as part an effective backup strategy (page 41). Use mongodump (page 992) in conjunction with mongorestore
(page 996) to restore databases.

mongodump (page 992) can read data from either mongod or mongos (page 981) instances, in addition to reading
directly from MongoDB data files without an active mongod (page 971).

Note: The format of data created by mongodump (page 992) tool from the 2.2 distribution or later is different and
incompatible with earlier versions of mongod (page 971).

See Also:

mongorestore (page 996), Create Backup of a Sharded Cluster with Database Dumps (page 57) and Backup
Strategies for MongoDB Systems (page 41).

Options

mongodump

--help
Returns a basic help and usage text.

--verbose, -v
Increases the amount of internal reporting returned on the command line. Increase the verbosity with the -v
form by including the option multiple times, (e.g. -vvvvv.)

--version
Returns the version of the mongodump (page 992) utility and exits.

--host <hostname><:port>
Specifies a resolvable hostname for the mongod (page 971) that you wish to use to create the database dump.
By default mongodump (page 992) will attempt to connect to a MongoDB process ruining on the localhost port
number 27017.

Optionally, specify a port number to connect a MongoDB instance running on a port other than 27017.

To connect to a replica set, use the --host (page 992) argument with a setname, followed by a slash and a
comma-separated list of host names and port numbers. The mongodump (page 992) utility will, given the seed
of at least one connected set member, connect to the primary member of that set. This option would resemble:

mongodump --host repl0/mongo0.example.net,mongo0.example.net:27018,mongo1.example.net,mongo2.example.net

You can always connect directly to a single MongoDB instance by specifying the host and port number directly.

992 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

--port <port>
Specifies the port number, if the MongoDB instance is not running on the standard port. (i.e. 27017) You may
also specify a port number using the --host (page 992) option.

--ipv6
Enables IPv6 support that allows mongodump (page 992) to connect to the MongoDB instance using an IPv6
network. All MongoDB programs and processes, including mongodump (page 992), disable IPv6 support by
default.

--ssl
New in version 2.4: MongoDB added support for SSL connections to mongod (page 971) instances in mongo-
dump.

Note: SSL support in mongodump is not compiled into the default distribution of MongoDB. See Connect to
MongoDB with SSL (page 77) for more information on SSL and MongoDB.

Additionally, mongodump does not support connections to mongod (page 971) instances that require client
certificate validation.

Allows mongodump (page 992) to connect to mongod (page 971) instance over an SSL connection.

--username <username>, -u <username>
Specifies a username to authenticate to the MongoDB instance, if your database requires authentication. Use in
conjunction with the --password (page 993) option to supply a password.

--password <password>, -p <password>
Specifies a password to authenticate to the MongoDB instance. Use in conjunction with the --username
(page 993) option to supply a username.

If you specify a --username (page 993) without the --password (page 993) option, mongodump
(page 992) will prompt for a password interactively.

--authenticationDatabase <dbname>
New in version 2.4. Specifies the database that holds the user’s (e.g --username) credentials.

By default, mongodump (page 992) assumes that the database specified to the --db (page 994) argument holds
the user’s credentials, unless you specify |binary-name| --authenticationDatabase.

See userSource (page 155), system.users Privilege Documents (page 153) and User Privilege Roles in Mon-
goDB (page 149) for more information about delegated authentication in MongoDB.

--authenticationMechanism <name>
New in version 2.4. Specifies the authentication mechanism. By default, the authentication mechanism is
MONGODB-CR, which is the MongoDB challenge/response authentication mechanism. In MongoDB Enterprise,
mongodump (page 992) also includes support for GSSAPI to handle Kerberos authentication.

See Deploy MongoDB with Kerberos Authentication (page 141) for more information about Kerberos authenti-
cation.

--dbpath <path>
Specifies the directory of the MongoDB data files. If used, the --dbpath (page 993) option enables
mongodump (page 992) to attach directly to local data files and copy the data without the mongod (page 971).
To run with --dbpath (page 993), mongodump (page 992) needs to restrict access to the data directory: as a
result, no mongod (page 971) can access the same path while the process runs.

--directoryperdb
Use the --directoryperdb (page 993) in conjunction with the corresponding option to mongod
(page 971). This option allows mongodump (page 992) to read data files organized with each database lo-
cated in a distinct directory. This option is only relevant when specifying the --dbpath (page 993) option.

61.1. MongoDB Package Components 993

MongoDB Documentation, Release 2.4.2

--journal
Allows mongodump (page 992) operations to use the durability journal to ensure that the export is in a consis-
tent state. This option is only relevant when specifying the --dbpath (page 993) option.

--db <db>, -d <db>
Use the --db (page 994) option to specify a database for mongodump (page 992) to backup. If you do not
specify a DB, mongodump (page 992) copies all databases in this instance into the dump files. Use this option
to backup or copy a smaller subset of your data.

--collection <collection>, -c <collection>
Use the --collection (page 994) option to specify a collection for mongodump (page 992) to backup. If
you do not specify a collection, this option copies all collections in the specified database or instance to the
dump files. Use this option to backup or copy a smaller subset of your data.

--out <path>, -o <path>
Specifies a directory where mongodump (page 992) will save the output of the database dump. To output the
database dump to standard output, specify a - rather than a path. By default, mongodump (page 992) will save
output files in a directory named dump in the current working directory.

--query <json>, -q <json>
Provides a query to limit (optionally) the documents included in the output of mongodump (page 992).

--oplog
Use this option to ensure that mongodump (page 992) creates a dump of the database that includes an oplog, to
create a point-in-time snapshot of the state of a mongod (page 971) instance. To restore to a specific point-in-
time backup, use the output created with this option in conjunction with mongorestore --oplogReplay
(page 998).

Without --oplog (page 994), if there are write operations during the dump operation, the dump will not reflect
a single moment in time. Changes made to the database during the update process can affect the output of the
backup.

--oplog (page 994) has no effect when running mongodump (page 992) against a mongos (page 981)
instance to dump the entire contents of a sharded cluster. However, you can use --oplog (page 994) to dump
individual shards.

Note: --oplog (page 994) only works against nodes that maintain a oplog. This includes all members of a
replica set, as well as master nodes in master/slave replication deployments.

--repair
Use this option to run a repair option in addition to dumping the database. The repair option attempts to repair a
database that may be in an inconsistent state as a result of an improper shutdown or mongod (page 971) crash.

--forceTableScan
Forces mongodump (page 992) to scan the data store directly: typically, mongodump (page 992) saves entries
as they appear in the index of the _id field. Use --forceTableScan (page 994) to skip the index and scan
the data directly. Typically there are two cases where this behavior is preferable to the default:

1.If you have key sizes over 800 bytes that would not be present in the _id index.

2.Your database uses a custom _id field.

When you run with --forceTableScan (page 994), mongodump (page 992) does not use $snapshot
(page 773). As a result, the dump produced by mongodump (page 992) can reflect the state of the database at
many different points in time.

Warning: Use --forceTableScan (page 994) with extreme caution and consideration.

994 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

Warning: Changed in version 2.2: When used in combination with fsync (page 834) or
db.fsyncLock() (page 938), mongod (page 971) may block some reads, including those from
mongodump (page 992), when queued write operation waits behind the fsync (page 834) lock.

Behavior

When running mongodump (page 992) against a mongos (page 981) instance where the sharded cluster consists of
replica sets, the read preference of the operation will prefer reads from secondary members of the set.

Usage

See the Use mongodump and mongorestore to Backup and Restore MongoDB Databases (page 43) for a larger
overview of mongodump (page 992) usage. Also see the “mongorestore (page 995)” document for an overview
of the mongorestore (page 996), which provides the related inverse functionality.

The following command, creates a dump file that contains only the collection named collection in the database
named test. In this case the database is running on the local interface on port 27017:

mongodump --collection collection --db test

In the next example, mongodump (page 992) creates a backup of the database instance stored in the
http://docs.mongodb.org/manual/srv/mongodb directory on the local machine. This requires that no
mongod (page 971) instance is using the http://docs.mongodb.org/manual/srv/mongodb directory.

mongodump --dbpath /srv/mongodb

In the final example, mongodump (page 992) creates a database dump located at
http://docs.mongodb.org/manual/opt/backup/mongodump-2011-10-24, from a database
running on port 37017 on the host mongodb1.example.net and authenticating using the username user and
the password pass, as follows:

mongodump --host mongodb1.example.net --port 37017 --username user --password pass --out /opt/backup/mongodump-2011-10-24

mongorestore

Synopsis

The mongorestore (page 996) program writes data from a binary database dump created by mongodump
(page 992) to a MongoDB instance. mongorestore (page 996) can create a new database or add data to an ex-
isting database.

mongorestore (page 996) can write data to either mongod or mongos (page 981) instances, in addition to writing
directly to MongoDB data files without an active mongod (page 971).

If you restore to an existing database, mongorestore (page 996) will only insert into the existing database, and
does not perform updates of any kind. If existing documents have the same value _id field in the target database and
collection, mongorestore (page 996) will not overwrite those documents.

Remember the following properties of mongorestore (page 996) behavior:

• mongorestore (page 996) recreates indexes recorded by mongodump (page 992).

• all operations are inserts, not updates.

61.1. MongoDB Package Components 995

MongoDB Documentation, Release 2.4.2

• mongorestore (page 996) does not wait for a response from a mongod (page 971) to ensure that the Mon-
goDB process has received or recorded the operation.

The mongod (page 971) will record any errors to its log that occur during a restore operation, but
mongorestore (page 996) will not receive errors.

Note: The format of data created by mongodump (page 992) tool from the 2.2 distribution or later is different and
incompatible with earlier versions of mongod (page 971).

Options

mongorestore

--help
Returns a basic help and usage text.

--verbose, -v
Increases the amount of internal reporting returned on the command line. Increase the verbosity with the -v
form by including the option multiple times (e.g. -vvvvv).

--version
Returns the version of the mongorestore (page 996) tool.

--host <hostname><:port>
Specifies a resolvable hostname for the mongod (page 971) to which you want to restore the database. By
default mongorestore (page 996) will attempt to connect to a MongoDB process running on the localhost
port number 27017. For an example of --host (page 996), see Restore a Database with mongorestore
(page 45).

Optionally, specify a port number to connect a MongoDB instance running on a port other than 27017.

To connect to a replica set, you can specify the replica set seed name, and a seed list of set members, in the
following format:

<replica_set_name>/<hostname1><:port>,<hostname2:<port>,...

--port <port>
Specifies the port number, if the MongoDB instance is not running on the standard port (i.e. 27017). You may
also specify a port number using the --host (page 996) command. For an example of --port (page 996),
see Restore a Database with mongorestore (page 45).

--ipv6
Enables IPv6 support that allows mongorestore (page 996) to connect to the MongoDB instance using an
IPv6 network. All MongoDB programs and processes, including mongorestore (page 996), disable IPv6
support by default.

--ssl
New in version 2.4: MongoDB added support for SSL connections to mongod (page 971) instances in mon-
gorestore.

Note: SSL support in mongorestore is not compiled into the default distribution of MongoDB. See Connect to
MongoDB with SSL (page 77) for more information on SSL and MongoDB.

Additionally, mongorestore does not support connections to mongod (page 971) instances that require client
certificate validation.

Allows mongorestore (page 996) to connect to mongod (page 971) instance over an SSL connection.

996 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

--username <username>, -u <username>
Specifies a username to authenticate to the MongoDB instance, if your database requires authentication. Use in
conjunction with the --password (page 997) option to supply a password. For an example of --username
(page 996), see Restore a Database with mongorestore (page 45).

--password <password>, -p <password>
Specifies a password to authenticate to the MongoDB instance. Use in conjunction with the --username
(page 996) option to supply a username. For an example of --password (page 997), see Restore a Database
with mongorestore (page 45).

If you specify a --username (page 996) without the --password (page 997) option, mongorestore
(page 996) will prompt for a password interactively.

--authenticationDatabase <dbname>
New in version 2.4. Specifies the database that holds the user’s (e.g --username) credentials.

By default, mongorestore (page 996) assumes that the database specified to the --db (page 997) argument
holds the user’s credentials, unless you specify |binary-name| --authenticationDatabase.

See userSource (page 155), system.users Privilege Documents (page 153) and User Privilege Roles in Mon-
goDB (page 149) for more information about delegated authentication in MongoDB.

--authenticationMechanism <name>
New in version 2.4. Specifies the authentication mechanism. By default, the authentication mechanism is
MONGODB-CR, which is the MongoDB challenge/response authentication mechanism. In MongoDB Enterprise,
mongorestore (page 996) also includes support for GSSAPI to handle Kerberos authentication.

See Deploy MongoDB with Kerberos Authentication (page 141) for more information about Kerberos authenti-
cation.

--dbpath <path>
Specifies the directory of the MongoDB data files. If used, the --dbpath (page 997) option enables
mongorestore (page 996) to attach directly to local data files and insert the data without the mongod
(page 971). To run with --dbpath (page 997), mongorestore (page 996) needs to lock access to the
data directory: as a result, no mongod (page 971) can access the same path while the process runs. For an
example of --dbpath (page 997), see Restore without a Running mongod (page 46).

--directoryperdb
Use the --directoryperdb (page 997) in conjunction with the corresponding option to mongod
(page 971), which allows mongorestore (page 996) to import data into MongoDB instances that have ev-
ery database’s files saved in discrete directories on the disk. This option is only relevant when specifying the
--dbpath (page 997) option.

--journal
Allows mongorestore (page 996) write to the durability journal to ensure that the data files will remain in a
consistent state during the write process. This option is only relevant when specifying the --dbpath (page 997)
option. For an example of --journal (page 997), see Restore without a Running mongod (page 46).

--db <db>, -d <db>
Use the --db (page 997) option to specify a database for mongorestore (page 996) to restore data into.
If the database doesn’t exist, mongorestore (page 996) will create the specified database. If you do not
specify a <db>, mongorestore (page 996) creates new databases that correspond to the databases where
data originated and data may be overwritten. Use this option to restore data into a MongoDB instance that
already has data.

--db (page 997) does not control which BSON files mongorestore (page 996) restores. You must use the
mongorestore (page 996) path option (page 998) to limit that restored data.

--collection <collection>, -c <collection>
Use the --collection (page 997) option to specify a collection for mongorestore (page 996) to restore.

61.1. MongoDB Package Components 997

MongoDB Documentation, Release 2.4.2

If you do not specify a <collection>, mongorestore (page 996) imports all collections created. Existing
data may be overwritten. Use this option to restore data into a MongoDB instance that already has data, or to
restore only some data in the specified imported data set.

--objcheck
Forces the mongorestore (page 996) to validate all requests from clients upon receipt to ensure that clients
never insert invalid documents into the database. For objects with a high degree of sub-document nesting,
--objcheck (page 998) can have a small impact on performance. You can set --noobjcheck (page 998)
to disable object checking at run-time. Changed in version 2.4: MongoDB enables --objcheck (page 998)
by default, to prevent any client from inserting malformed or invalid BSON into a MongoDB database.

--noobjcheck
New in version 2.4. Disables the default document validation that MongoDB performs on all incoming BSON
documents.

--filter ’<JSON>’
Limits the documents that mongorestore (page 996) imports to only those documents that match the JSON
document specified as ’<JSON>’. Be sure to include the document in single quotes to avoid interaction with
your system’s shell environment. For an example of --filter (page 998), see Restore a Subset of data from
a Binary Database Dump (page 45).

--drop
Modifies the restoration procedure to drop every collection from the target database before restoring the collec-
tion from the dumped backup.

--oplogReplay
Replays the oplog after restoring the dump to ensure that the current state of the database reflects the point-
in-time backup captured with the “mongodump --oplog (page 994)” command. For an example of
--oplogReplay (page 998), see Restore Point in Time Oplog Backup (page 45).

--keepIndexVersion
Prevents mongorestore (page 996) from upgrading the index to the latest version during the restoration
process.

--w <number of replicas per write>
New in version 2.2. Specifies the write concern for each write operation that mongorestore (page 996)
writes to the target database. By default, mongorestore (page 996) does not wait for a response for write
acknowledgment (page 174).

--noOptionsRestore
New in version 2.2. Prevents mongorestore (page 996) from setting the collection options, such as those
specified by the collMod (page 814) database command, on restored collections.

--noIndexRestore
New in version 2.2. Prevents mongorestore (page 996) from restoring and building indexes as specified in
the corresponding mongodump (page 992) output.

--oplogLimit <timestamp>
New in version 2.2. Prevents mongorestore (page 996) from applying oplog entries newer than the
<timestamp>. Specify <timestamp> values in the form of <time_t>:<ordinal>, where <time_t>
is the seconds since the UNIX epoch, and <ordinal> represents a counter of operations in the oplog that
occurred in the specified second.

You must use --oplogLimit (page 998) in conjunction with the --oplogReplay (page 998) option.

<path>
The final argument of the mongorestore (page 996) command is a directory path. This argument specifies
the location of the database dump from which to restore.

998 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

Usage

See Use mongodump and mongorestore to Backup and Restore MongoDB Databases (page 43) for a larger overview
of mongorestore (page 996) usage. Also see the “mongodump (page 992)” document for an overview of the
mongodump (page 992), which provides the related inverse functionality.

Consider the following example:

mongorestore --collection people --db accounts dump/accounts/people.bson

Here, mongorestore (page 996) reads the database dump in the dump/ sub-directory of the current directory, and
restores only the documents in the collection named people from the database named accounts. mongorestore
(page 996) restores data to the instance running on the localhost interface on port 27017.

In the next example, mongorestore (page 996) restores a backup of the database instance located in
dump to a database instance stored in the http://docs.mongodb.org/manual/srv/mongodb on
the local machine. This requires that there are no active mongod (page 971) instances attached to
http://docs.mongodb.org/manual/srv/mongodb data directory.

mongorestore --dbpath /srv/mongodb

In the final example, mongorestore (page 996) restores a database dump located at
http://docs.mongodb.org/manual/opt/backup/mongodump-2011-10-24, from a database
running on port 37017 on the host mongodb1.example.net. mongorestore (page 996) authenticates to the
this MongoDB instance using the username user and the password pass, as follows:

mongorestore --host mongodb1.example.net --port 37017 --username user --password pass /opt/backup/mongodump-2011-10-24

bsondump

Synopsis

The bsondump (page 999) converts BSON files into human-readable formats, including JSON. For example,
bsondump (page 999) is useful for reading the output files generated by mongodump (page 992).

Important: bsondump (page 999) is a diagnostic tool for inspecting BSON files, not a tool for data ingestion or
other application use.

Options

bsondump

--help
Returns a basic help and usage text.

--verbose, -v
Increases the amount of internal reporting returned on the command line. Increase the verbosity with the -v
form by including the option multiple times, (e.g. -vvvvv.)

--version
Returns the version of the bsondump (page 999) utility.

--objcheck
Validates each BSON object before outputting it in JSON format. By default, bsondump (page 999) enables
--objcheck (page 999) by default. For objects with a high degree of sub-document nesting, --objcheck

61.1. MongoDB Package Components 999

MongoDB Documentation, Release 2.4.2

(page 999) can have a small impact on performance. You can set --noobjcheck (page 1000) to disable
object checking. Changed in version 2.4: MongoDB enables --objcheck (page 999) by default, to prevent
any client from inserting malformed or invalid BSON into a MongoDB database.

--noobjcheck
New in version 2.4. Disables the default document validation that bsondump (page 999) performs on all BSON
documents.

--filter ’<JSON>’
Limits the documents that bsondump (page 999) exports to only those documents that match the JSON docu-
ment specified as ’<JSON>’. Be sure to include the document in single quotes to avoid interaction with your
system’s shell environment.

--type <=json|=debug>
Changes the operation of bsondump (page 999) from outputting “JSON” (the default) to a debugging format.

<bsonfilename>
The final argument to bsondump (page 999) is a document containing BSON. This data is typically generated
by mongodump (page 992) or by MongoDB in a rollback operation.

Usage

By default, bsondump (page 999) outputs data to standard output. To create corresponding JSON files, you will need
to use the shell redirect. See the following command:

bsondump collection.bson > collection.json

Use the following command (at the system shell) to produce debugging output for a BSON file:

bsondump --type=debug collection.bson

mongooplog

New in version 2.2.

Synopsis

mongooplog (page 1001) is a simple tool that polls operations from the replication oplog of a remote server, and
applies them to the local server. This capability supports certain classes of real-time migrations that require that the
source server remain online and in operation throughout the migration process.

Typically this command will take the following form:

mongooplog --from mongodb0.example.net --host mongodb1.example.net

This command copies oplog entries from the mongod (page 971) instance running on the host
mongodb0.example.net and duplicates operations to the host mongodb1.example.net. If you do
not need to keep the --from (page 1002) host running during the migration, consider using mongodump (page 992)
and mongorestore (page 996) or another backup (page 41) operation, which may be better suited to your operation.

Note: If the mongod (page 971) instance specified by the --from (page 1002) argument is running with
authentication (page 1029), then mongooplog (page 1001) will not be able to copy oplog entries.

See Also:

1000 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

mongodump (page 992), mongorestore (page 996), “Backup Strategies for MongoDB Systems (page 41)”, “Oplog
Internals Overview (page 387)”, and “Replica Set Oplog Sizing (page 372)”.

Options

mongooplog

--help
Returns a basic help and usage text.

--verbose, -v
Increases the amount of internal reporting returned on the command line. Increase the verbosity with the -v
form by including the option multiple times, (e.g. -vvvvv.)

--version
Returns the version of the mongooplog (page 1001) utility.

--host <hostname><:port>, -h
Specifies a resolvable hostname for the mongod (page 971) instance to which mongooplog (page 1001) will
apply oplog operations retrieved from the serve specified by the --from (page 1002) option.

mongooplog (page 1001) assumes that all target mongod (page 971) instances are accessible by way of port
27017. You may, optionally, declare an alternate port number as part of the hostname argument.

You can always connect directly to a single mongod (page 971) instance by specifying the host and port number
directly.

To connect to a replica set, you can specify the replica set seed name, and a seed list of set members, in the
following format:

<replica_set_name>/<hostname1><:port>,<hostname2:<port>,...

--port
Specifies the port number of the mongod (page 971) instance where mongooplog (page 1001) will apply
oplog entries. Only specify this option if the MongoDB instance that you wish to connect to is not running on
the standard port. (i.e. 27017) You may also specify a port number using the --host (page 1001) command.

--ipv6
Enables IPv6 support that allows mongooplog (page 1001) to connect to the MongoDB instance using an IPv6
network. All MongoDB programs and processes, including mongooplog (page 1001), disable IPv6 support
by default.

--ssl
New in version 2.4: MongoDB added support for SSL connections to mongod (page 971) instances in mon-
gooplog.

Note: SSL support in mongooplog is not compiled into the default distribution of MongoDB. See Connect to
MongoDB with SSL (page 77) for more information on SSL and MongoDB.

Additionally, mongooplog does not support connections to mongod (page 971) instances that require client
certificate validation.

Allows mongooplog (page 1001) to connect to mongod (page 971) instance over an SSL connection.

--username <username>, -u <username>
Specifies a username to authenticate to the MongoDB instance, if your database requires authentication. Use in
conjunction with the --password (page 1001) option to supply a password.

61.1. MongoDB Package Components 1001

MongoDB Documentation, Release 2.4.2

--password <password>, -p <password>
Specifies a password to authenticate to the MongoDB instance. Use in conjunction with the --username
(page 1001) option to supply a username.

If you specify a --username (page 1001) without the --password (page 1001) option, mongooplog
(page 1001) will prompt for a password interactively.

--authenticationDatabase <dbname>
New in version 2.4. Specifies the database that holds the user’s (e.g --username) credentials.

By default, mongooplog (page 1001) assumes that the database specified to the --db argument holds the
user’s credentials, unless you specify |binary-name| --authenticationDatabase.

See userSource (page 155), system.users Privilege Documents (page 153) and User Privilege Roles in Mon-
goDB (page 149) for more information about delegated authentication in MongoDB.

--authenticationMechanism <name>
New in version 2.4. Specifies the authentication mechanism. By default, the authentication mechanism is
MONGODB-CR, which is the MongoDB challenge/response authentication mechanism. In MongoDB Enterprise,
mongooplog (page 1001) also includes support for GSSAPI to handle Kerberos authentication.

See Deploy MongoDB with Kerberos Authentication (page 141) for more information about Kerberos authenti-
cation.

--dbpath <path>
Specifies a directory, containing MongoDB data files, to which mongooplog (page 1001) will apply operations
from the oplog of the database specified with the --from (page 1002) option. When used, the --dbpath
(page 1002) option enables mongo (page 984) to attach directly to local data files and write data without a
running mongod (page 971) instance. To run with --dbpath (page 1002), mongooplog (page 1001) needs
to restrict access to the data directory: as a result, no mongod (page 971) can be access the same path while the
process runs.

--directoryperdb
Use the --directoryperdb (page 1002) in conjunction with the corresponding option to mongod
(page 971). This option allows mongooplog (page 1001) to write to data files organized with each database
located in a distinct directory. This option is only relevant when specifying the --dbpath (page 1002) option.

--journal
Allows mongooplog (page 1001) operations to use the durability journal to ensure that the data files will
remain in a consistent state during the writing process. This option is only relevant when specifying the
--dbpath (page 1002) option.

--fields [field1[,field2]], -f [field1[,field2]]
Specify a field or number fields to constrain which data mongooplog (page 1001) will migrate. All other fields
will be excluded from the migration. Comma separate a list of fields to limit the applied fields.

--fieldFile <file>
As an alternative to “--fields (page 1002)” the --fieldFile (page 1002) option allows you to specify a
file (e.g. <file>) that holds a list of field names to include in the migration. All other fields will be excluded
from the migration. Place one field per line.

--seconds <number>, -s <number>
Specify a number of seconds of operations for mongooplog (page 1001) to pull from the remote host
(page 1002). Unless specified the default value is 86400 seconds, or 24 hours.

--from <host[:port]>
Specify the host for mongooplog (page 1001) to retrieve oplog operations from. mongooplog (page 1001)
requires this option.

Unless you specify the --host (page 1001) option, mongooplog (page 1001) will apply the operations
collected with this option to the oplog of the mongod (page 971) instance running on the localhost interface

1002 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

connected to port 27017.

--oplogns <namespace>
Specify a namespace in the --from (page 1002) host where the oplog resides. The default value is
local.oplog.rs, which is the where replica set members store their operation log. However, if you’ve
copied oplog entries into another database or collection, use this option to copy oplog entries stored in another
location.

Namespaces take the form of [database].[collection].

Usage Consider the following prototype mongooplog (page 1001) command:

mongooplog --from mongodb0.example.net --host mongodb1.example.net

Here, entries from the oplog of the mongod (page 971) running on port 27017. This only pull entries from the last
24 hours.

In the next command, the parameters limit this operation to only apply operations to the database people in the
collection usage on the target host (i.e. mongodb1.example.net):

mongooplog --from mongodb0.example.net --host mongodb1.example.net --database people --collection usage

This operation only applies oplog entries from the last 24 hours. Use the --seconds (page 1002) argument to
capture a greater or smaller amount of time. Consider the following example:

mongooplog --from mongodb0.example.net --seconds 172800

In this operation, mongooplog (page 1001) captures 2 full days of operations. To migrate 12 hours of oplog entries,
use the following form:

mongooplog --from mongodb0.example.net --seconds 43200

For the previous two examples, mongooplog (page 1001) migrates entries to the mongod (page 971) process run-
ning on the localhost interface connected to the 27017 port. mongooplog (page 1001) can also operate directly on
MongoDB’s data files if no mongod (page 971) is running on the target host. Consider the following example:

mongooplog --from mongodb0.example.net --dbpath /srv/mongodb --journal

Here, mongooplog (page 1001) imports oplog operations from the mongod (page 971) host
connected to port 27017. This migrates operations to the MongoDB data files stored in the
http://docs.mongodb.org/manual/srv/mongodb directory. Additionally mongooplog (page 1001)
will use the durability journal to ensure that the data files remain in a consistent state.

61.1.4 Data Import and Export Tools

mongoimport (page 1004) provides a method for taking data in JSON, CSV , or TSV and importing it into a mongod
(page 971) instance. mongoexport (page 1007) provides a method to export data from a mongod (page 971)
instance into JSON, CSV, or TSV.

Note: The conversion between BSON and other formats lacks full type fidelity. Therefore you cannot use
mongoimport (page 1004) and mongoexport (page 1007) for round-trip import and export operations.

61.1. MongoDB Package Components 1003

MongoDB Documentation, Release 2.4.2

mongoimport

Synopsis

The mongoimport (page 1004) tool provides a route to import content from a JSON, CSV, or TSV export created
by mongoexport (page 1007), or potentially, another third-party export tool. See the “Import and Export MongoDB
Data (page 101)” document for a more in depth usage overview, and the “mongoexport (page 1007)” document for
more information regarding mongoexport (page 1007), which provides the inverse “importing” capability.

Note: Do not use mongoimport (page 1004) and mongoexport (page 1007) for full instance, production backups
because they will not reliably capture data type information. Use mongodump (page 992) and mongorestore
(page 996) as described in “Backup Strategies for MongoDB Systems (page 41)” for this kind of functionality.

Options

mongoimport

--help
Returns a basic help and usage text.

--verbose, -v
Increases the amount of internal reporting returned on the command line. Increase the verbosity with the -v
form by including the option multiple times, (e.g. -vvvvv.)

--version
Returns the version of the mongoimport (page 1004) program.

--host <hostname><:port>, -h
Specifies a resolvable hostname for the mongod (page 971) to which you want to restore the database. By
default mongoimport (page 1004) will attempt to connect to a MongoDB process ruining on the localhost
port numbered 27017.

Optionally, specify a port number to connect a MongoDB instance running on a port other than 27017.

To connect to a replica set, use the --host (page 1004) argument with a setname, followed by a slash and a
comma-separated list of host and port names. mongoimport (page 1004) will, given the seed of at least one
connected set member, connect to primary node of that set. This option would resemble:

--host repl0/mongo0.example.net,mongo0.example.net:27018,mongo1.example.net,mongo2.example.net

You can always connect directly to a single MongoDB instance by specifying the host and port number directly.

--port <port>
Specifies the port number, if the MongoDB instance is not running on the standard port. (i.e. 27017) You may
also specify a port number using the mongoimport --host (page 1004) command.

--ipv6
Enables IPv6 support that allows mongoimport (page 1004) to connect to the MongoDB instance using an
IPv6 network. All MongoDB programs and processes, including mongoimport (page 1004), disable IPv6
support by default.

--ssl
New in version 2.4: MongoDB added support for SSL connections to mongod (page 971) instances in mon-
goimport.

1004 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

Note: SSL support in mongoimport is not compiled into the default distribution of MongoDB. See Connect to
MongoDB with SSL (page 77) for more information on SSL and MongoDB.

Additionally, mongoimport does not support connections to mongod (page 971) instances that require client
certificate validation.

Allows mongoimport (page 1004) to connect to mongod (page 971) instance over an SSL connection.

--username <username>, -u <username>
Specifies a username to authenticate to the MongoDB instance, if your database requires authentication. Use in
conjunction with the mongoimport --password (page 1005) option to supply a password.

--password <password>, -p <password>
Specifies a password to authenticate to the MongoDB instance. Use in conjunction with the mongoimport
--username (page 1005) option to supply a username.

If you specify a --username (page 1005) without the --password (page 1005) option, mongoimport
(page 1004) will prompt for a password interactively.

--authenticationDatabase <dbname>
New in version 2.4. Specifies the database that holds the user’s (e.g --username) credentials.

By default, mongoimport (page 1004) assumes that the database specified to the --db (page 1005) argument
holds the user’s credentials, unless you specify |binary-name| --authenticationDatabase.

See userSource (page 155), system.users Privilege Documents (page 153) and User Privilege Roles in Mon-
goDB (page 149) for more information about delegated authentication in MongoDB.

--authenticationMechanism <name>
New in version 2.4. Specifies the authentication mechanism. By default, the authentication mechanism is
MONGODB-CR, which is the MongoDB challenge/response authentication mechanism. In MongoDB Enterprise,
mongoimport (page 1004) also includes support for GSSAPI to handle Kerberos authentication.

See Deploy MongoDB with Kerberos Authentication (page 141) for more information about Kerberos authenti-
cation.

--dbpath <path>
Specifies the directory of the MongoDB data files. If used, the --dbpath (page 1005) option enables
mongoimport (page 1004) to attach directly to local data files and insert the data without the mongod
(page 971). To run with --dbpath, mongoimport (page 1004) needs to lock access to the data directory: as
a result, no mongod (page 971) can access the same path while the process runs.

--directoryperdb
Use the --directoryperdb (page 1005) in conjunction with the corresponding option to mongod
(page 971), which allows mongoimport (page 1004) to import data into MongoDB instances that have ev-
ery database’s files saved in discrete directories on the disk. This option is only relevant when specifying the
--dbpath (page 1005) option.

--journal
Allows mongoexport (page 1007) write to the durability journal to ensure that the data files will remain
in a consistent state during the write process. This option is only relevant when specifying the --dbpath
(page 1005) option.

--db <db>, -d <db>
Use the --db (page 1005) option to specify a database for mongoimport (page 1004) to restore data. If you
do not specify a <db>, mongoimport (page 1004) creates new databases that correspond to the databases
where data originated and data may be overwritten. Use this option to restore data into a MongoDB instance
that already has data, or to restore only some data in the specified backup.

--collection <collection>, -c <collection>
Use the --collection (page 1005) option to specify a collection for mongorestore (page 996) to restore.

61.1. MongoDB Package Components 1005

MongoDB Documentation, Release 2.4.2

If you do not specify a <collection>, mongoimport (page 1004) imports all collections created. Existing
data may be overwritten. Use this option to restore data into a MongoDB instance that already has data, or to
restore only some data in the specified imported data set.

--fields <field1<,filed2>>, -f <field1[,filed2]>
Specify a comma separated list of field names when importing csv or tsv files that do not have field names in the
first (i.e. header) line of the file.

--fieldFile <filename>
As an alternative to --fields (page 1006) the --fieldFile (page 1006) option allows you to specify a
file (e.g. <file>) to that holds a list of field names if your csv or tsv file does not include field names in the
first (i.e. header) line of the file. Place one field per line.

--ignoreBlanks
In csv and tsv exports, ignore empty fields. If not specified, mongoimport (page 1004) creates fields without
values in imported documents.

--type <json|csv|tsv>
Declare the type of export format to import. The default format is JSON, but it’s possible to import csv and tsv
files.

--file <filename>
Specify the location of a file containing the data to import. mongoimport (page 1004) will read data from
standard input (e.g. “stdin.”) if you do not specify a file.

--drop
Modifies the importation procedure so that the target instance drops every collection before restoring the collec-
tion from the dumped backup.

--headerline
If using “--type csv (page 1006)” or “--type tsv (page 1006),” use the first line as field names. Other-
wise, mongoimport (page 1004) will import the first line as a distinct document.

--upsert
Modifies the import process to update existing objects in the database if they match an imported object, while
inserting all other objects.

If you do not specify a field or fields using the --upsertFields (page 1006) mongoimport (page 1004)
will upsert on the basis of the _id field.

--upsertFields <field1[,field2]>
Specifies a list of fields for the query portion of the upsert. Use this option if the _id fields in the existing
documents don’t match the field in the document, but another field or field combination can uniquely identify
documents as a basis for performing upsert operations.

To ensure adequate performance, indexes should exist for this field or fields.

--stopOnError
New in version 2.2. Forces mongoimport (page 1004) to halt the import operation at the first error rather than
continuing the operation despite errors.

--jsonArray
Changed in version 2.2: The limit on document size increased from 4MB to 16MB. Accept import of data
expressed with multiple MongoDB document within a single JSON array.

Use in conjunction with mongoexport --jsonArray (page 1009) to import data written as a single JSON
array. Limited to imports of 16 MB or smaller.

1006 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

Usage

In this example, mongoimport (page 1004) imports the csv formatted data in the
http://docs.mongodb.org/manual/opt/backups/contacts.csv into the collection contacts in
the users database on the MongoDB instance running on the localhost port numbered 27017.

mongoimport --db users --collection contacts --type csv --file /opt/backups/contacts.csv

In the following example, mongoimport (page 1004) imports the data in the JSON formatted file contacts.json
into the collection contacts on the MongoDB instance running on the localhost port number 27017. Journaling is
explicitly enabled.

mongoimport --collection contacts --file contacts.json --journal

In the next example, mongoimport (page 1004) takes data passed to it on standard input (i.e. with a |
pipe.) and imports it into the collection contacts in the sales database is the MongoDB datafiles located
at http://docs.mongodb.org/manual/srv/mongodb/. if the import process encounters an error, the
mongoimport (page 1004) will halt because of the --stopOnError (page 1006) option.

mongoimport --db sales --collection contacts --stopOnError --dbpath /srv/mongodb/

In the final example, mongoimport (page 1004) imports data from the file
http://docs.mongodb.org/manual/opt/backups/mdb1-examplenet.json into the collection
contacts within the database marketing on a remote MongoDB database. This mongoimport (page 1004)
accesses the mongod (page 971) instance running on the host mongodb1.example.net over port 37017, which
requires the username user and the password pass.

mongoimport --host mongodb1.example.net --port 37017 --username user --password pass --collection contacts --db marketing --file /opt/backups/mdb1-examplenet.json

mongoexport

Synopsis

mongoexport (page 1007) is a utility that produces a JSON or CSV export of data stored in a MongoDB instance.
See the “Import and Export MongoDB Data (page 101)” document for a more in depth usage overview, and the
“mongoimport (page 1004)” document for more information regarding the mongoimport (page 1004) utility, which
provides the inverse “importing” capability.

Note: Do not use mongoimport (page 1004) and mongoexport (page 1007) for full-scale backups because they
may not reliably capture data type information. Use mongodump (page 992) and mongorestore (page 996) as
described in “Backup Strategies for MongoDB Systems (page 41)” for this kind of functionality.

Options

mongoexport

--help
Returns a basic help and usage text.

--verbose, -v
Increases the amount of internal reporting returned on the command line. Increase the verbosity with the -v
form by including the option multiple times, (e.g. -vvvvv.)

61.1. MongoDB Package Components 1007

MongoDB Documentation, Release 2.4.2

--version
Returns the version of the mongoexport (page 1007) utility.

--host <hostname><:port>
Specifies a resolvable hostname for the mongod (page 971) from which you want to export data. By default
mongoexport (page 1007) attempts to connect to a MongoDB process ruining on the localhost port number
27017.

Optionally, specify a port number to connect a MongoDB instance running on a port other than 27017.

To connect to a replica set, you can specify the replica set seed name, and a seed list of set members, in the
following format:

<replica_set_name>/<hostname1><:port>,<hostname2:<port>,...

--port <port>
Specifies the port number, if the MongoDB instance is not running on the standard port. (i.e. 27017) You may
also specify a port number using the mongoexport --host (page 1008) command.

--ipv6
Enables IPv6 support that allows mongoexport (page 1007) to connect to the MongoDB instance using an
IPv6 network. All MongoDB programs and processes, including mongoexport (page 1007), disable IPv6
support by default.

--ssl
New in version 2.4: MongoDB added support for SSL connections to mongod (page 971) instances in mongo-
export.

Note: SSL support in mongoexport is not compiled into the default distribution of MongoDB. See Connect to
MongoDB with SSL (page 77) for more information on SSL and MongoDB.

Additionally, mongoexport does not support connections to mongod (page 971) instances that require client
certificate validation.

Allows mongoexport (page 1007) to connect to mongod (page 971) instance over an SSL connection.

--username <username>, -u <username>
Specifies a username to authenticate to the MongoDB instance, if your database requires authentication. Use in
conjunction with the mongoexport --password (page 1008) option to supply a password.

--password <password>, -p <password>
Specifies a password to authenticate to the MongoDB instance. Use in conjunction with the --username
(page 1008) option to supply a username.

If you specify a --username (page 1008) without the --password (page 1008) option, mongoexport
(page 1007) will prompt for a password interactively.

--authenticationDatabase <dbname>
New in version 2.4. Specifies the database that holds the user’s (e.g --username) credentials.

By default, mongoexport (page 1007) assumes that the database specified to the --db (page 1009) argument
holds the user’s credentials, unless you specify |binary-name| --authenticationDatabase.

See userSource (page 155), system.users Privilege Documents (page 153) and User Privilege Roles in Mon-
goDB (page 149) for more information about delegated authentication in MongoDB.

--authenticationMechanism <name>
New in version 2.4. Specifies the authentication mechanism. By default, the authentication mechanism is
MONGODB-CR, which is the MongoDB challenge/response authentication mechanism. In MongoDB Enterprise,
mongoexport (page 1007) also includes support for GSSAPI to handle Kerberos authentication.

1008 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

See Deploy MongoDB with Kerberos Authentication (page 141) for more information about Kerberos authenti-
cation.

--dbpath <path>
Specifies the directory of the MongoDB data files. If used, the --dbpath option enables mongoexport
(page 1007) to attach directly to local data files and insert the data without the mongod (page 971). To run with
--dbpath, mongoexport (page 1007) needs to lock access to the data directory: as a result, no mongod
(page 971) can access the same path while the process runs.

--directoryperdb
Use the --directoryperdb (page 1009) in conjunction with the corresponding option to mongod
(page 971), which allows mongoexport (page 1007) to export data into MongoDB instances that have ev-
ery database’s files saved in discrete directories on the disk. This option is only relevant when specifying the
--dbpath (page 1009) option.

--journal
Allows mongoexport (page 1007) operations to access the durability journal to ensure that the export is in a
consistent state. This option is only relevant when specifying the --dbpath (page 1009) option.

--db <db>, -d <db>
Use the --db (page 1009) option to specify the name of the database that contains the collection you want to
export.

--collection <collection>, -c <collection>
Use the --collection (page 1009) option to specify the collection that you want mongoexport
(page 1007) to export.

--fields <field1[,field2]>, -f <field1[,field2]>
Specify a field or fields to include in the export. Use a comma separated list of fields to specify multiple fields.

For --csv (page 1009) output formats, mongoexport (page 1007) includes only the specified field(s), and
the specified field(s) can be a field within a sub-document.

For JSON output formats, mongoexport (page 1007) includes only the specified field(s) and the _id field,
and if the specified field(s) is a field within a sub-document, the mongoexport (page 1007) includes the
sub-document with all its fields, not just the specified field within the document.

--fieldFile <file>
As an alternative to --fields (page 1009), the --fieldFile (page 1009) option allows you to specify in
a file the field or fields to include in the export and is only valid with the --csv (page 1009) option. The file
must have only one field per line, and the line(s) must end with the LF character (0x0A).

mongoexport (page 1007) includes only the specified field(s). The specified field(s) can be a field within a
sub-document.

--query <JSON>
Provides a JSON document as a query that optionally limits the documents returned in the export.

--csv
Changes the export format to a comma separated values (CSV) format. By default mongoexport (page 1007)
writes data using one JSON document for every MongoDB document.

If you specify --csv (page 1009), then you must also use either the --fields (page 1009) or the
--fieldFile (page 1009) option to declare the fields to export from the collection.

--jsonArray
Modifies the output of mongoexport (page 1007) to write the entire contents of the export as a single JSON
array. By default mongoexport (page 1007) writes data using one JSON document for every MongoDB
document.

61.1. MongoDB Package Components 1009

MongoDB Documentation, Release 2.4.2

--slaveOk, -k
Allows mongoexport (page 1007) to read data from secondary or slave nodes when using mongoexport
(page 1007) with a replica set. This option is only available if connected to a mongod (page 971) or mongos
(page 981) and is not available when used with the “mongoexport --dbpath (page 1009)” option.

This is the default behavior.

--out <file>, -o <file>
Specify a file to write the export to. If you do not specify a file name, the mongoexport (page 1007) writes
data to standard output (e.g. stdout).

--forceTableScan
New in version 2.2. Forces mongoexport (page 1007) to scan the data store directly: typi-
cally, mongoexport (page 1007) saves entries as they appear in the index of the _id field. Use
--forceTableScan (page 1010) to skip the index and scan the data directly. Typically there are two cases
where this behavior is preferable to the default:

1.If you have key sizes over 800 bytes that would not be present in the _id index.

2.Your database uses a custom _id field.

When you run with --forceTableScan (page 1010), mongoexport (page 1007) does not use
$snapshot (page 773). As a result, the export produced by mongoexport (page 1007) can reflect the
state of the database at many different points in time.

Warning: Use --forceTableScan (page 1010) with extreme caution and consideration.

Usage

In the following example, mongoexport (page 1007) exports the collection contacts from
the users database from the mongod (page 971) instance running on the localhost port num-
ber 27017. This command writes the export data in CSV format into a file located at
http://docs.mongodb.org/manual/opt/backups/contacts.csv. The fields.txt file con-
tains a line-separated list of fields to export.

mongoexport --db users --collection contacts --csv --fieldFile fields.txt --out /opt/backups/contacts.csv

The next example creates an export of the collection contacts from the MongoDB instance running on the localhost
port number 27017, with journaling explicitly enabled. This writes the export to the contacts.json file in JSON
format.

mongoexport --db sales --collection contacts --out contacts.json --journal

The following example exports the collection contacts from the sales database located in the MongoDB data
files located at http://docs.mongodb.org/manual/srv/mongodb/. This operation writes the export to
standard output in JSON format.

mongoexport --db sales --collection contacts --dbpath /srv/mongodb/

Warning: The above example will only succeed if there is no mongod (page 971) connected to the data files
located in the http://docs.mongodb.org/manual/srv/mongodb/ directory.

The final example exports the collection contacts from the database marketing . This data resides on the
MongoDB instance located on the host mongodb1.example.net running on port 37017, which requires the
username user and the password pass.

1010 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

mongoexport --host mongodb1.example.net --port 37017 --username user --password pass --collection contacts --db marketing --out mdb1-examplenet.json

61.1.5 Diagnostic Tools

mongostat (page 1011), mongotop (page 1016), and mongosniff (page 1019) provide diagnostic information
related to the current operation of a mongod (page 971) instance.

Note: Because mongosniff (page 1019) depends on libpcap, most distributions of MongoDB do not include
mongosniff (page 1019).

mongostat

Synopsis

The mongostat (page 1011) utility provides a quick overview of the status of a currently running mongod
(page 971) or mongos (page 981) instance. mongostat (page 1011) is functionally similar to the UNIX/Linux
file system utility vmstat, but provides data regarding mongod (page 971) and mongos (page 981) instances.

See Also:

For more information about monitoring MongoDB, see Monitoring for MongoDB (page 87).

For more background on various other MongoDB status outputs see:

• Server Status Reference (page 1052)

• Replica Set Status Reference (page 446)

• Database Statistics Reference (page 1070)

• Collection Statistics Reference (page 1072)

For an additional utility that provides MongoDB metrics see “mongotop (page 1015).”

mongostat (page 1011) connects to the mongod (page 971) instance running on the local host interface on TCP
port 27017; however, mongostat (page 1011) can connect to any accessible remote mongod (page 971) instance.

Options

mongostat

--help
Returns a basic help and usage text.

--verbose, -v
Increases the amount of internal reporting returned on the command line. Increase the verbosity with the -v
form by including the option multiple times, (e.g. -vvvvv.)

--version
Returns the version of the mongostat (page 1011) utility.

--host <hostname><:port>
Specifies a resolvable hostname for the mongod (page 971) from which you want to export data. By default
mongostat (page 1011) attempts to connect to a MongoDB instance running on the localhost port number
27017.

61.1. MongoDB Package Components 1011

MongoDB Documentation, Release 2.4.2

Optionally, specify a port number to connect a MongoDB instance running on a port other than 27017.

To connect to a replica set, you can specify the replica set seed name, and a seed list of set members, in the
following format:

<replica_set_name>/<hostname1><:port>,<hostname2:<port>,...

--port <port>
Specifies the port number, if the MongoDB instance is not running on the standard port. (i.e. 27017) You may
also specify a port number using the mongostat --host (page 1011) command.

--ipv6
Enables IPv6 support that allows mongostat (page 1011) to connect to the MongoDB instance using an IPv6
network. All MongoDB programs and processes, including mongostat (page 1011), disable IPv6 support by
default.

--ssl
New in version 2.4: MongoDB added support for SSL connections to mongod (page 971) instances in mongo-
stat.

Note: SSL support in mongostat is not compiled into the default distribution of MongoDB. See Connect to
MongoDB with SSL (page 77) for more information on SSL and MongoDB.

Additionally, mongostat does not support connections to mongod (page 971) instances that require client cer-
tificate validation.

Allows mongostat (page 1011) to connect to mongod (page 971) instance over an SSL connection.

--username <username>, -u <username>
Specifies a username to authenticate to the MongoDB instance, if your database requires authentication. Use in
conjunction with the mongostat --password (page 1012) option to supply a password.

--password <password>, -p <password>
Specifies a password to authenticate to the MongoDB instance. Use in conjunction with the mongostat
--username (page 1012) option to supply a username.

If you specify a --username (page 1012) without the --password (page 1012) option, mongostat
(page 1011) will prompt for a password interactively.

--authenticationDatabase <dbname>
New in version 2.4. Specifies the database that holds the user’s (e.g --username) credentials.

By default, mongostat (page 1011) assumes that the database specified to the --db argument holds the user’s
credentials, unless you specify |binary-name| --authenticationDatabase.

See userSource (page 155), system.users Privilege Documents (page 153) and User Privilege Roles in Mon-
goDB (page 149) for more information about delegated authentication in MongoDB.

--authenticationMechanism <name>
New in version 2.4. Specifies the authentication mechanism. By default, the authentication mechanism is
MONGODB-CR, which is the MongoDB challenge/response authentication mechanism. In MongoDB Enterprise,
mongostat (page 1011) also includes support for GSSAPI to handle Kerberos authentication.

See Deploy MongoDB with Kerberos Authentication (page 141) for more information about Kerberos authenti-
cation.

--noheaders
Disables the output of column or field names.

1012 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

--rowcount <number>, -n <number>
Controls the number of rows to output. Use in conjunction with the sleeptime argument to control the
duration of a mongostat (page 1011) operation.

Unless --rowcount (page 1012) is specified, mongostat (page 1011) will return an infinite number of rows
(e.g. value of 0.)

--http
Configures mongostat (page 1011) to collect data using the HTTP interface rather than a raw database con-
nection.

--discover
With this option mongostat (page 1011) discovers and reports on statistics from all members of a replica set
or sharded cluster. When connected to any member of a replica set, --discover (page 1013) all non-hidden
members of the replica set. When connected to a mongos (page 981), mongostat (page 1011) will return data
from all shards in the cluster. If a replica set provides a shard in the sharded cluster, mongostat (page 1011)
will report on non-hidden members of that replica set.

The mongostat --host (page 1011) option is not required but potentially useful in this case.

--all
Configures mongostat (page 1011) to return all optional fields (page 1013).

<sleeptime>
The final argument is the length of time, in seconds, that mongostat (page 1011) waits in between calls. By
default mongostat (page 1011) returns one call every second.

mongostat (page 1011) returns values that reflect the operations over a 1 second period. For values of
<sleeptime> greater than 1, mongostat (page 1011) averages data to reflect average operations per sec-
ond.

Fields

mongostat (page 1011) returns values that reflect the operations over a 1 second period. When mongostat <sleep-
time> has a value greater than 1, mongostat (page 1011) averages the statistics to reflect average operations per
second.

mongostat (page 1011) outputs the following fields:

inserts
The number of objects inserted into the database per second. If followed by an asterisk (e.g. *), the datum refers
to a replicated operation.

query
The number of query operations per second.

update
The number of update operations per second.

delete
The number of delete operations per second.

getmore
The number of get more (i.e. cursor batch) operations per second.

command
The number of commands per second. On slave and secondary systems, mongostat (page 1011) presents two
values separated by a pipe character (e.g. |), in the form of local|replicated commands.

flushes
The number of fsync operations per second.

61.1. MongoDB Package Components 1013

MongoDB Documentation, Release 2.4.2

mapped
The total amount of data mapped in megabytes. This is the total data size at the time of the last mongostat
(page 1011) call.

size
The amount of (virtual) memory in megabytes used by the process at the time of the last mongostat
(page 1011) call.

res
The amount of (resident) memory in megabytes used by the process at the time of the last mongostat
(page 1011) call.

faults
Changed in version 2.1. The number of page faults per second.

Before version 2.1 this value was only provided for MongoDB instances running on Linux hosts.

locked
The percent of time in a global write lock. Changed in version 2.2: The locked db field replaces the locked
% field to more appropriate data regarding the database specific locks in version 2.2.

locked db
New in version 2.2. The percent of time in the per-database context-specific lock. mongostat (page 1011)
will report the database that has spent the most time since the last mongostat (page 1011) call with a write
lock.

This value represents the amount of time that the listed database spent in a locked state combined with the time
that the mongod (page 971) spent in the global lock. Because of this, and the sampling method, you may see
some values greater than 100%.

idx miss
The percent of index access attempts that required a page fault to load a btree node. This is a sampled value.

qr
The length of the queue of clients waiting to read data from the MongoDB instance.

qw
The length of the queue of clients waiting to write data from the MongoDB instance.

ar
The number of active clients performing read operations.

aw
The number of active clients performing write operations.

netIn
The amount of network traffic, in bytes, received by the MongoDB instance.

This includes traffic from mongostat (page 1011) itself.

netOut
The amount of network traffic, in bytes, sent by the MongoDB instance.

This includes traffic from mongostat (page 1011) itself.

conn
The total number of open connections.

set
The name, if applicable, of the replica set.

repl
The replication status of the node.

1014 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

Value Replication Type
M master
SEC secondary
REC recovering
UNK unknown
SLV slave

Usage

In the first example, mongostat (page 1011) will return data every second for 20 seconds. mongostat (page 1011)
collects data from the mongod (page 971) instance running on the localhost interface on port 27017. All of the
following invocations produce identical behavior:

mongostat --rowcount 20 1
mongostat --rowcount 20
mongostat -n 20 1
mongostat -n 20

In the next example, mongostat (page 1011) returns data every 5 minutes (or 300 seconds) for as long as the program
runs. mongostat (page 1011) collects data from the mongod (page 971) instance running on the localhost interface
on port 27017. Both of the following invocations produce identical behavior.

mongostat --rowcount 0 300
mongostat -n 0 300
mongostat 300

In the following example, mongostat (page 1011) returns data every 5 minutes for an hour (12 times.) mongostat
(page 1011) collects data from the mongod (page 971) instance running on the localhost interface on port 27017. Both
of the following invocations produce identical behavior.

mongostat --rowcount 12 300
mongostat -n 12 300

In many cases, using the --discover (page 1013) will help provide a more complete snapshot of the state of an
entire group of machines. If a mongos (page 981) process connected to a sharded cluster is running on port 27017
of the local machine, you can use the following form to return statistics from all members of the cluster:

mongostat --discover

mongotop

Synopsis

mongotop (page 1016) provides a method to track the amount of time a MongoDB instance spends reading and
writing data. mongotop (page 1016) provides statistics on a per-collection level. By default, mongotop (page 1016)
returns values every second.

See Also:

For more information about monitoring MongoDB, see Monitoring for MongoDB (page 87).

For additional background on various other MongoDB status outputs see:

• Server Status Reference (page 1052)

• Replica Set Status Reference (page 446)

61.1. MongoDB Package Components 1015

MongoDB Documentation, Release 2.4.2

• Database Statistics Reference (page 1070)

• Collection Statistics Reference (page 1072)

For an additional utility that provides MongoDB metrics see “mongostat (page 1011).”

Options

mongotop

--help
Returns a basic help and usage text.

--verbose, -v
Increases the amount of internal reporting returned on the command line. Increase the verbosity with the -v
form by including the option multiple times, (e.g. -vvvvv.)

--version
Print the version of the mongotop (page 1016) utility and exit.

--host <hostname><:port>
Specifies a resolvable hostname for the mongod from which you want to export data. By default mongotop
(page 1016) attempts to connect to a MongoDB process running on the localhost port number 27017.

Optionally, specify a port number to connect a MongoDB instance running on a port other than 27017.

To connect to a replica set, you can specify the replica set seed name, and a seed list of set members, in the
following format:

<replica_set_name>/<hostname1><:port>,<hostname2:<port>,...

--port <port>
Specifies the port number, if the MongoDB instance is not running on the standard port. (i.e. 27017) You may
also specify a port number using the mongotop --host (page 1016) command.

--ipv6
Enables IPv6 support that allows mongotop (page 1016) to connect to the MongoDB instance using an IPv6
network. All MongoDB programs and processes, including mongotop (page 1016), disable IPv6 support by
default.

--username <username>, -u <username>
Specifies a username to authenticate to the MongoDB instance, if your database requires authentication. Use in
conjunction with the mongotop (page 1016) option to supply a password.

--password <password>, -p <password>
Specifies a password to authenticate to the MongoDB instance. Use in conjunction with the --username
(page 1016) option to supply a username.

If you specify a --username (page 1016) without the --password (page 1016) option, mongotop
(page 1016) will prompt for a password interactively.

--authenticationDatabase <dbname>
New in version 2.4. Specifies the database that holds the user’s (e.g --username) credentials.

By default, mongotop (page 1016) assumes that the database specified to the --db argument holds the user’s
credentials, unless you specify |binary-name| --authenticationDatabase.

See userSource (page 155), system.users Privilege Documents (page 153) and User Privilege Roles in Mon-
goDB (page 149) for more information about delegated authentication in MongoDB.

1016 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

--authenticationMechanism <name>
New in version 2.4. Specifies the authentication mechanism. By default, the authentication mechanism is
MONGODB-CR, which is the MongoDB challenge/response authentication mechanism. In MongoDB Enterprise,
mongotop (page 1016) also includes support for GSSAPI to handle Kerberos authentication.

See Deploy MongoDB with Kerberos Authentication (page 141) for more information about Kerberos authenti-
cation.

--locks
New in version 2.2. Toggles the mode of mongotop (page 1016) to report on use of per-database locks
(page 1053). These data are useful for measuring concurrent operations and lock percentage.

<sleeptime>
The final argument is the length of time, in seconds, that mongotop (page 1016) waits in between calls. By
default mongotop (page 1016) returns data every second.

Fields

mongotop (page 1016) returns time values specified in milliseconds (ms.)

mongotop (page 1016) only reports active namespaces or databases, depending on the --locks (page 1017) option.
If you don’t see a database or collection, it has received no recent activity. You can issue a simple operation in the
mongo (page 984) shell to generate activity to affect the output of mongotop (page 1016).

mongotop.ns
Contains the database namespace, which combines the database name and collection. Changed in version 2.2:
If you use the --locks (page 1017), the ns (page 1017) field does not appear in the mongotop (page 1016)
output.

mongotop.db
New in version 2.2. Contains the name of the database. The database named . refers to the global lock, rather
than a specific database.

This field does not appear unless you have invoked mongotop (page 1016) with the --locks (page 1017)
option.

mongotop.total
Provides the total amount of time that this mongod (page 971) spent operating on this namespace.

mongotop.read
Provides the amount of time that this mongod (page 971) spent performing read operations on this namespace.

mongotop.write
Provides the amount of time that this mongod (page 971) spent performing write operations on this namespace.

mongotop.<timestamp>
Provides a time stamp for the returned data.

Use

By default mongotop (page 1016) connects to the MongoDB instance running on the localhost port 27017. How-
ever, mongotop (page 1016) can optionally connect to remote mongod (page 971) instances. See the mongotop
options (page 1016) for more information.

To force mongotop (page 1016) to return less frequently specify a number, in seconds at the end of the command. In
this example, mongotop (page 1016) will return every 15 seconds.

61.1. MongoDB Package Components 1017

MongoDB Documentation, Release 2.4.2

mongotop 15

This command produces the following output:

connected to: 127.0.0.1

ns total read write 2012-08-13T15:45:40
test.system.namespaces 0ms 0ms 0ms

local.system.replset 0ms 0ms 0ms
local.system.indexes 0ms 0ms 0ms
admin.system.indexes 0ms 0ms 0ms

admin. 0ms 0ms 0ms

ns total read write 2012-08-13T15:45:55
test.system.namespaces 0ms 0ms 0ms

local.system.replset 0ms 0ms 0ms
local.system.indexes 0ms 0ms 0ms
admin.system.indexes 0ms 0ms 0ms

admin. 0ms 0ms 0ms

To return a mongotop (page 1016) report every 5 minutes, use the following command:

mongotop 300

To report the use of per-database locks, use mongotop --locks (page 1017), which produces the following output:

$ mongotop --locks
connected to: 127.0.0.1

db total read write 2012-08-13T16:33:34
local 0ms 0ms 0ms
admin 0ms 0ms 0ms

. 0ms 0ms 0ms

mongosniff

Synopsis

mongosniff (page 1019) provides a low-level operation tracing/sniffing view into database activity in real time.
Think of mongosniff (page 1019) as a MongoDB-specific analogue of tcpdump for TCP/IP network traffic.
Typically, mongosniff (page 1019) is most frequently used in driver development.

Note: mongosniff (page 1019) requires libpcap and is only available for Unix-like systems. Furthermore,
the version distributed with the MongoDB binaries is dynamically linked against aversion 0.9 of libpcap. If your
system has a different version of libpcap, you will need to compile mongosniff (page 1019) yourself or create
a symbolic link pointing to libpcap.so.0.9 to your local version of libpcap. Use an operation that resembles
the following:

ln -s /usr/lib/libpcap.so.1.1.1 /usr/lib/libpcap.so.0.9

Change the path’s and name of the shared library as needed.

As an alternative to mongosniff (page 1019), Wireshark, a popular network sniffing tool is capable of inspecting
and parsing the MongoDB wire protocol.

1018 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

Options

mongosniff

--help
Returns a basic help and usage text.

--forward <host><:port>
Declares a host to forward all parsed requests that the mongosniff (page 1019) intercepts to another mongod
(page 971) instance and issue those operations on that database instance.

Specify the target host name and port in the <host><:port> format.

To connect to a replica set, you can specify the replica set seed name, and a seed list of set members, in the
following format:

<replica_set_name>/<hostname1><:port>,<hostname2:<port>,...

--source <NET [interface]>, <FILE [filename]>, <DIAGLOG [filename]>
Specifies source material to inspect. Use --source NET [interface] to inspect traffic from a network
interface (e.g. eth0 or lo.) Use --source FILE [filename] to read captured packets in pcap format.

You may use the --source DIAGLOG [filename] option to read the output files produced by the
--diaglog (page 973) option.

--objcheck
Modifies the behavior to only display invalid BSON objects and nothing else. Use this option for troubleshoot-
ing driver development. This option has some performance impact on the performance of mongosniff
(page 1019).

<port>
Specifies alternate ports to sniff for traffic. By default, mongosniff (page 1019) watches for MongoDB traffic
on port 27017. Append multiple port numbers to the end of mongosniff (page 1019) to monitor traffic on
multiple ports.

Usage

Use the following command to connect to a mongod (page 971) or mongos (page 981) running on port 27017 and
27018 on the localhost interface:

mongosniff --source NET lo 27017 27018

Use the following command to only log invalid BSON objects for the mongod (page 971) or mongos (page 981)
running on the localhost interface and port 27018, for driver development and troubleshooting:

mongosniff --objcheck --source NET lo 27018

Build mongosniff

To build mongosniff yourself, Linux users can use the following procedure:

1. Obtain prerequisites using your operating systems package management software. Dependencies include:

• libpcap - to capture network packets.

• git - to download the MongoDB source code.

• scons and a C++ compiler - to build mongosniff (page 1019).

61.1. MongoDB Package Components 1019

MongoDB Documentation, Release 2.4.2

2. Download a copy of the MongoDB source code using git:

git clone git://github.com/mongodb/mongo.git

3. Issue the following sequence of commands to change to the mongo/ directory and build mongosniff
(page 1019):

cd mongo
scons mongosniff

Note: If you run scons mongosniff before installing libpcap you must run scons clean before you can
build mongosniff (page 1019).

mongoperf

Synopsis

mongoperf (page 1020) is a utility to check disk I/O performance independently of MongoDB.

It times tests of random disk I/O and presents the results. You can use mongoperf (page 1020) for any case apart
from MongoDB. The mmf (page 1021) true mode is completely generic. In that mode is it somewhat analogous to
tools such as bonnie++ (albeit mongoperf is simpler).

Specify options to mongoperf (page 1020) using a JavaScript document.

See Also:

• bonnie

• bonnie++

• Output from an example run

• Checking Disk Performance with the mongoperf Utility

Options

mongoperf

--help
Displays the options to mongoperf (page 1020). Specify options to mongoperf (page 1020) with a JSON
document described in the Configuration Fields (page 1021) section.

<jsonconfig>
mongoperf (page 1020) accepts configuration options in the form of a file that holds a JSON document. You
must stream the content of this file into mongoperf (page 1020), as in the following operation:

mongoperf < config

In this example config is the name of a file that holds a JSON document that resembles the following example:

{
nThreads:<n>,
fileSizeMB:<n>,
sleepMicros:<n>,
mmf:<bool>,
r:<bool>,

1020 Chapter 61. Architecture and Components

http://sourceforge.net/projects/bonnie/
http://www.textuality.com/bonnie/
http://sourceforge.net/projects/bonnie/
https://gist.github.com/1694664
http://blog.mongodb.org/post/40769806981/checking-disk-performance-with-the-mongoperf-utility

MongoDB Documentation, Release 2.4.2

w:<bool>,
recSizeKB:<n>,
syncDelay:<n>

}

See the Configuration Fields (page 1021) section for documentation of each of these fields.

Configuration Fields

mongoperf.nThreads
Type: Integer.

Default: 1

Defines the number of threads mongoperf (page 1020) will use in the test. To saturate your system’s storage
system you will need multiple threads. Consider setting nThreads (page 1021) to 16.

mongoperf.fileSizeMB
Type: Integer.

Default: 1 megabyte (i.e. 10242 bytes)

Test file size.

mongoperf.sleepMicros
Type: Integer.

Default: 0

mongoperf (page 1020) will pause for the number of specified sleepMicros (page 1021) divided by the
nThreads (page 1021) between each operation.

mongoperf.mmf
Type: Boolean.

Default: false

Set mmf (page 1021) to true to use memory mapped files for the tests.

Generally:

•when mmf (page 1021) is false, mongoperf (page 1020) tests direct, physical, I/O, without caching.
Use a large file size to test heavy random I/O load and to avoid I/O coalescing.

•when mmf (page 1021) is true, mongoperf (page 1020) runs tests of the caching system, and can
use normal file system cache. Use mmf (page 1021) in this mode to test file system cache behavior with
memory mapped files.

mongoperf.r
Type: Boolean.

Default: false

Set r (page 1021) to true to perform reads as part of the tests.

Either r (page 1021) or w (page 1021) must be true.

mongoperf.w
Type: Boolean.

Default: false

Set w (page 1021) to true to perform writes as part of the tests.

61.1. MongoDB Package Components 1021

MongoDB Documentation, Release 2.4.2

Either r (page 1021) or w (page 1021) must be true.

mongoperf.recSizeKB
New in version 2.4. Type: Integer.

Default: 4 kb

The size of each write operation.

mongoperf.syncDelay
Type: Integer.

Default: 0

Seconds between disk flushes. mongoperf.syncDelay (page 1022) is similar to --syncdelay
(page 977) for mongod (page 971).

The syncDelay (page 1022) controls how frequently mongoperf (page 1020) performs an asynchronous
disk flush the memory mapped file used for testing. By default, mongod (page 971) performs this operation ev-
ery every 60 seconds. Use syncDelay (page 1022) to test basic system performance of this type of operation.

Only use syncDelay (page 1022) in conjunction with mmf (page 1021) set to true.

The default value of 0 disables this

Use

mongoperf < jsonconfigfile

Replace jsonconfigfile with the path to the mongoperf (page 1020) configuration. You may also invoke
mongoperf (page 1020) in the following form:

echo "{nThreads:16,fileSizeMB:1000,r:true}" | ./mongoperf

In this operation:

• mongoperf (page 1020) tests direct physical random read io’s, using 16 concurrent reader threads.

• mongoperf (page 1020) uses a 1 gigabyte test file.

Consider using iostat, as invoked in the following example to monitor I/O performance during the test.

iostat -xm 2

61.1.6 GridFS

mongofiles (page 1023) provides a command-line interact to a MongoDB GridFS storage system.

mongofiles

Synopsis

The mongofiles (page 1023) utility makes it possible to manipulate files stored in your MongoDB instance in
GridFS objects from the command line. It is particularly useful as it provides an interface between objects stored in
your file system and GridFS.

All mongofiles (page 1023) commands take arguments in three groups:

1022 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

1. Options (page 1023). You may use one or more of these options to control the behavior of mongofiles
(page 1023).

2. Commands (page 1023). Use one of these commands to determine the action of mongofiles (page 1023).

3. A file name representing either the name of a file on your system’s file system, a GridFS object.

mongofiles (page 1023), like mongodump (page 992), mongoexport (page 1007), mongoimport
(page 1004), and mongorestore (page 996), can access data stored in a MongoDB data directory without requiring
a running mongod (page 971) instance, if no other mongod (page 971) is running.

Note: For replica sets, mongofiles (page 1023) can only read from the set’s ‘primary.

Commands

mongofiles

list <prefix>
Lists the files in the GridFS store. The characters specified after list (e.g. <prefix>) optionally limit the
list of returned items to files that begin with that string of characters.

search <string>
Lists the files in the GridFS store with names that match any portion of <string>.

put <filename>
Copy the specified file from the local file system into GridFS storage.

Here, <filename> refers to the name the object will have in GridFS, and mongofiles (page 1023) as-
sumes that this reflects the name the file has on the local file system. If the local filename is different use the
mongofiles --local (page 1025) option.

get <filename>
Copy the specified file from GridFS storage to the local file system.

Here, <filename> refers to the name the object will have in GridFS, and mongofiles (page 1023) as-
sumes that this reflects the name the file has on the local file system. If the local filename is different use the
mongofiles --local (page 1025) option.

delete <filename>
Delete the specified file from GridFS storage.

Options

--help
Returns a basic help and usage text.

--verbose, -v
Increases the amount of internal reporting returned on the command line. Increase the verbosity with the -v
form by including the option multiple times, (e.g. -vvvvv.)

--version
Returns the version of the mongofiles (page 1023) utility.

--host <hostname><:port>
Specifies a resolvable hostname for the mongod (page 971) that holds your GridFS system. By default
mongofiles (page 1023) attempts to connect to a MongoDB process ruining on the localhost port number
27017.

61.1. MongoDB Package Components 1023

MongoDB Documentation, Release 2.4.2

Optionally, specify a port number to connect a MongoDB instance running on a port other than 27017.

--port <port>
Specifies the port number, if the MongoDB instance is not running on the standard port. (i.e. 27017) You may
also specify a port number using the mongofiles --host (page 1023) command.

--ipv6
Enables IPv6 support that allows mongofiles (page 1023) to connect to the MongoDB instance using an IPv6
network. All MongoDB programs and processes, including mongofiles (page 1023), disable IPv6 support
by default.

--ssl
New in version 2.4: MongoDB added support for SSL connections to mongod (page 971) instances in mon-
gofiles.

Note: SSL support in mongofiles is not compiled into the default distribution of MongoDB. See Connect to
MongoDB with SSL (page 77) for more information on SSL and MongoDB.

Additionally, mongofiles does not support connections to mongod (page 971) instances that require client cer-
tificate validation.

Allows mongofiles (page 1023) to connect to mongod (page 971) instance over an SSL connection.

--username <username>, -u <username>
Specifies a username to authenticate to the MongoDB instance, if your database requires authentication. Use in
conjunction with the mongofiles --password (page 1024) option to supply a password.

--password <password>, -p <password>
Specifies a password to authenticate to the MongoDB instance. Use in conjunction with the mongofiles
--username (page 1024) option to supply a username.

If you specify a --username (page 1024) without the --password (page 1024) option, mongofiles
(page 1023) will prompt for a password interactively.

--authenticationDatabase <dbname>
New in version 2.4. Specifies the database that holds the user’s (e.g --username) credentials.

By default, mongofiles (page 1023) assumes that the database specified to the --db (page 1025) argument
holds the user’s credentials, unless you specify |binary-name| --authenticationDatabase.

See userSource (page 155), system.users Privilege Documents (page 153) and User Privilege Roles in Mon-
goDB (page 149) for more information about delegated authentication in MongoDB.

--authenticationMechanism <name>
New in version 2.4. Specifies the authentication mechanism. By default, the authentication mechanism is
MONGODB-CR, which is the MongoDB challenge/response authentication mechanism. In MongoDB Enterprise,
mongofiles (page 1023) also includes support for GSSAPI to handle Kerberos authentication.

See Deploy MongoDB with Kerberos Authentication (page 141) for more information about Kerberos authenti-
cation.

--dbpath <path>
Specifies the directory of the MongoDB data files. If used, the --dbpath (page 1024) option enables
mongofiles (page 1023) to attach directly to local data files interact with the GridFS data without the
mongod (page 971). To run with --dbpath (page 1024), mongofiles (page 1023) needs to lock access to
the data directory: as a result, no mongod (page 971) can access the same path while the process runs.

--directoryperdb
Use the --directoryperdb (page 1024) in conjunction with the corresponding option to mongod
(page 971), which allows mongofiles (page 1023) when running with the --dbpath (page 1024) option

1024 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

and MongoDB uses an on-disk format where every database has a distinct directory. This option is only relevant
when specifying the --dbpath (page 1024) option.

--journal
Allows mongofiles (page 1023) operations to use the durability journal when running with --dbpath
(page 1024) to ensure that the database maintains a recoverable state. This forces mongofiles (page 1023)
to record all data on disk regularly.

--db <db>, -d <db>
Use the --db (page 1025) option to specify the MongoDB database that stores or will store the GridFS files.

--collection <collection>, -c <collection>
This option has no use in this context and a future release may remove it. See SERVER-4931 for more informa-
tion.

--local <filename>, -l <filename>
Specifies the local filesystem name of a file for get and put operations.

In the mongofiles put and mongofiles get commands the required <filename> modifier refers to the name
the object will have in GridFS. mongofiles (page 1023) assumes that this reflects the file’s name on the local
file system. This setting overrides this default.

--type <MIME>, t <MIME>
Provides the ability to specify a MIME type to describe the file inserted into GridFS storage. mongofiles
(page 1023) omits this option in the default operation.

Use only with mongofiles put operations.

--replace, -r
Alters the behavior of mongofiles put to replace existing GridFS objects with the specified local file, rather than
adding an additional object with the same name.

In the default operation, files will not be overwritten by a mongofiles put option.

Use

To return a list of all files in a GridFS collection in the records database, use the following invocation at the system
shell:

mongofiles -d records list

This mongofiles (page 1023) instance will connect to the mongod (page 971) instance running on the 27017
localhost interface to specify the same operation on a different port or hostname, and issue a command that resembles
one of the following:

mongofiles --port 37017 -d records list
mongofiles --hostname db1.example.net -d records list
mongofiles --hostname db1.example.net --port 37017 -d records list

Modify any of the following commands as needed if you’re connecting the mongod (page 971) instances on different
ports or hosts.

To upload a file named 32-corinth.lp to the GridFS collection in the records database, you can use the
following command:

mongofiles -d records put 32-corinth.lp

To delete the 32-corinth.lp file from this GridFS collection in the records database, you can use the following
command:

61.1. MongoDB Package Components 1025

https://jira.mongodb.org/browse/SERVER-4931

MongoDB Documentation, Release 2.4.2

mongofiles -d records delete 32-corinth.lp

To search for files in the GridFS collection in the records database that have the string corinth in their names,
you can use following command:

mongofiles -d records search corinth

To list all files in the GridFS collection in the records database that begin with the string 32, you can use the
following command:

mongofiles -d records list 32

To fetch the file from the GridFS collection in the records database named 32-corinth.lp, you can use the
following command:

mongofiles -d records get 32-corinth.lp

61.2 Configuration and Use

61.2.1 Configuration

Configuration File Options

Synopsis

Administrators and users can control mongod (page 971) or mongos (page 981) instances at runtime either directly
from mongod’s command line arguments (page 971) or using a configuration file.

While both methods are functionally equivalent and all settings are similar, the configuration file method is preferable.
If you installed from a package and have started MongoDB using your system’s control script, you’re already using a
configuration file.

To start mongod (page 971) or mongos (page 981) using a config file, use one of the following forms:

mongod --config /etc/mongodb.conf
mongod -f /etc/mongodb.conf
mongos --config /srv/mongodb/mongos.conf
mongos -f /srv/mongodb/mongos.conf

Declare all settings in this file using the following form:

<setting> = <value>

New in version 2.0: Before version 2.0, Boolean (i.e. true|false) or “flag” parameters, register as true, if they
appear in the configuration file, regardless of their value.

Settings

verbose
Default: false

Increases the amount of internal reporting returned on standard output or in the log file generated by logpath
(page 1028). To enable verbose (page 1026) or to enable increased verbosity with vvvv (page 1027), set
these options as in the following example:

1026 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

verbose = true
vvvv = true

MongoDB has the following levels of verbosity:

v
Default: false

Alternate form of verbose (page 1026).

vv
Default: false

Additional increase in verbosity of output and logging.

vvv
Default: false

Additional increase in verbosity of output and logging.

vvvv
Default: false

Additional increase in verbosity of output and logging.

vvvvv
Default: false

Additional increase in verbosity of output and logging.

port
Default: 27017

Specifies a TCP port for the mongod (page 971) or mongos (page 981) instance to listen for client connections.
UNIX-like systems require root access for ports with numbers lower than 1024.

bind_ip
Default: All interfaces.

Set this option to configure the mongod (page 971) or mongos (page 981) process to bind to and listen for
connections from applications on this address. You may attach mongod (page 971) or mongos (page 981)
instances to any interface; however, if you attach the process to a publicly accessible interface, implement
proper authentication or firewall restrictions to protect the integrity of your database.

You may concatenate a list of comma separated values to bind mongod (page 971) to multiple IP addresses.

maxConns
Default: depends on system (i.e. ulimit and file descriptor) limits. Unless set, MongoDB will not limit its own
connections.

Specifies a value to set the maximum number of simultaneous connections that mongod (page 971) or mongos
(page 981) will accept. This setting has no effect if it is higher than your operating system’s configured maximum
connection tracking threshold.

This is particularly useful for mongos (page 981) if you have a client that creates a number of collections but
allows them to timeout rather than close the collections. When you set maxConns (page 1027), ensure the value
is slightly higher than the size of the connection pool or the total number of connections to prevent erroneous
connection spikes from propagating to the members of a shard cluster.

Note: You cannot set maxConns (page 1027) to a value higher than 20000.

61.2. Configuration and Use 1027

MongoDB Documentation, Release 2.4.2

objcheck
Default: true Changed in version 2.4: The default setting for objcheck (page 1027) became true in 2.4.
In earlier versions objcheck (page 1027) was false by default. Forces the mongod (page 971) to validate
all requests from clients upon receipt to ensure that clients never insert invalid documents into the database.
For objects with a high degree of sub-document nesting, objcheck (page 1027) can have a small impact on
performance. You can set noobjcheck (page 1028) to disable object checking at run-time.

noobjcheck
New in version 2.4. Default: false

Disables the default object validation that MongoDB performs on all incoming BSON documents.

logpath
Default: None. (i.e. http://docs.mongodb.org/manual/dev/stdout)

Specify the path to a file name for the log file that will hold all diagnostic logging information.

Unless specified, mongod (page 971) will output all log information to the standard output. Unless
logappend (page 1028) is true, the logfile will be overwritten when the process restarts.

Note: Currently, MongoDB will overwrite the contents of the log file if the logappend (page 1028) is not
used. This behavior may change in the future depending on the outcome of SERVER-4499.

logappend
Default: false

Set to true to add new entries to the end of the logfile rather than overwriting the content of the log when the
process restarts.

If this setting is not specified, then MongoDB will overwrite the existing logfile upon start up.

Note: The behavior of the logging system may change in the near future in response to the SERVER-4499
case.

syslog
New in version 2.1.0. Sends all logging output to the host’s syslog system rather than to standard output or a log
file as with logpath (page 1028).

Warning: You cannot use syslog (page 1028) with logpath (page 1028).

pidfilepath
Default: None.

Specify a file location to hold the “PID” or process ID of the mongod (page 971) process. Useful for tracking
the mongod (page 971) process in combination with the fork (page 1029) setting.

Without a specified pidfilepath (page 1028), mongos (page 981) creates no PID file.

Without this option, mongod (page 971) creates no PID file.

keyFile
Default: None.

Specify the path to a key file to store authentication information. This option is only useful for the connection
between replica set members.

See Also:

“Replica Set Security (page 373)” and “Replica Set Administration (page 397).”

1028 Chapter 61. Architecture and Components

https://jira.mongodb.org/browse/SERVER-4499
https://jira.mongodb.org/browse/SERVER-4499

MongoDB Documentation, Release 2.4.2

nounixsocket
Default: false

Set to true to disable listening on the UNIX socket. Unless set to false, mongod (page 971) and mongos
(page 981) provide a UNIX-socket.

unixSocketPrefix
Default: http://docs.mongodb.org/manual/tmp

Specifies a path for the UNIX socket. Unless this option has a value, mongod (page 971) and mongos
(page 981), create a socket with the http://docs.mongodb.org/manual/tmp as a prefix.

fork
Default: false

Set to true to enable a daemon mode for mongod (page 971) that runs the process in the background.

auth
Default: false

Set to true to enable database authentication for users connecting from remote hosts. Configure users via the
mongo shell (page 984). If no users exist, the localhost interface will continue to have access to the database
until the you create the first user.

cpu
Default: false

Set to true to force mongod (page 971) to report every four seconds CPU utilization and the amount of time
that the processor waits for I/O operations to complete (i.e. I/O wait.) MongoDB writes this data to standard
output, or the logfile if using the logpath (page 1028) option.

dbpath
Default: http://docs.mongodb.org/manual/data/db/

Set this value to designate a directory for the mongod (page 971) instance to store its
data. Typical locations include: http://docs.mongodb.org/manual/srv/mongodb,
http://docs.mongodb.org/manual/var/lib/mongodb or http://docs.mongodb.org/manual/opt/mongodb

Unless specified, mongod (page 971) will look for data files in the default
http://docs.mongodb.org/manual/data/db directory. (Windows systems use the
\data\db directory.) If you installed using a package management system. Check the
http://docs.mongodb.org/manual/etc/mongodb.conf file provided by your packages to
see the configuration of the dbpath (page 1029).

diaglog
Default: 0

Creates a very verbose, diagnostic log for troubleshooting and recording various errors. MongoDB writes these
log files in the dbpath (page 1029) directory in a series of files that begin with the string diaglog with the
time logging was initiated appended as a hex string.

The value of this setting configures the level of verbosity. Possible values, and their impact are as follows.

Value Setting
0 off. No logging.
1 Log write operations.
2 Log read operations.
3 Log both read and write operations.
7 Log write and some read operations.

You can use the mongosniff (page 1019) tool to replay this output for investigation. Given a typical diaglog
file, located at http://docs.mongodb.org/manual/data/db/diaglog.4f76a58c, you might

61.2. Configuration and Use 1029

MongoDB Documentation, Release 2.4.2

use a command in the following form to read these files:

mongosniff --source DIAGLOG /data/db/diaglog.4f76a58c

diaglog (page 1029) is for internal use and not intended for most users.

Warning: Setting the diagnostic level to 0 will cause mongod (page 971) to stop writing data to the
diagnostic log file. However, the mongod (page 971) instance will continue to keep the file open, even if
it is no longer writing data to the file. If you want to rename, move, or delete the diagnostic log you must
cleanly shut down the mongod (page 971) instance before doing so.

directoryperdb
Default: false

Set to true to modify the storage pattern of the data directory to store each database’s files in a distinct folder.
This option will create directories within the dbpath (page 1029) named for each directory.

Use this option in conjunction with your file system and device configuration so that MongoDB will store data
on a number of distinct disk devices to increase write throughput or disk capacity.

journal
Default: (on 64-bit systems) true

Default: (on 32-bit systems) false

Set to true to enable operation journaling to ensure write durability and data consistency.

Set to false to prevent the overhead of journaling in situations where durability is not required. To reduce the
impact of the journaling on disk usage, you can leave journal (page 1030) enabled, and set smallfiles
(page 1032) to true to reduce the size of the data and journal files.

journalCommitInterval
Default: 100

Set this value to specify the maximum amount of time for mongod (page 971) to allow between journal opera-
tions. The default value is 100 milliseconds. Lower values increase the durability of the journal, at the possible
expense of disk performance.

This option accepts values between 2 and 300 milliseconds.

To force mongod (page 971) to commit to the journal more frequently, you can specify j:true. When a write
operation with j:true pending, mongod (page 971) will reduce journalCommitInterval (page 1030)
to a third of the set value.

ipv6
Default: false

Set to true to IPv6 support to allow clients to connect to mongod (page 971) using IPv6 networks. mongod
(page 971) disables IPv6 support by default in mongod (page 971) and all utilities.

jsonp
Default: false

Set to true to permit JSONP access via an HTTP interface. Consider the security implications of allowing this
activity before setting this option.

noauth
Default: true

Disable authentication. Currently the default. Exists for future compatibility and clarity.

For consistency use the auth (page 1029) option.

1030 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

nohttpinterface
Default: false

Set to true to disable the HTTP interface. This command will override the rest (page 1032) and disable the
HTTP interface if you specify both. Changed in version 2.1.2: The nohttpinterface (page 1030) option
is not available for mongos (page 981) instances before 2.1.2

nojournal
Default: (on 64-bit systems) false

Default: (on 32-bit systems) true

Set nojournal = true to disable durability journaling. By default, mongod (page 971) enables journaling
in 64-bit versions after v2.0.

noprealloc
Default: false

Set noprealloc = true to disable the preallocation of data files. This will shorten the start up time in
some cases, but can cause significant performance penalties during normal operations.

noscripting
Default: false

Set noscripting = true to disable the scripting engine.

notablescan
Default: false

Set notablescan = true to forbid operations that require a table scan.

nssize
Default: 16

Specify this value in megabytes. The maximum size is 2047 megabytes.

Use this setting to control the default size for all newly created namespace files (i.e .ns). This option has no
impact on the size of existing namespace files.

See Limits on namespaces (page 1105).

profile
Default: 0

Modify this value to changes the level of database profiling, which inserts information about operation perfor-
mance into output of mongod (page 971) or the log file if specified by logpath (page 1028). The following
levels are available:

Level Setting
0 Off. No profiling.
1 On. Only includes slow operations.
2 On. Includes all operations.

By default, mongod (page 971) disables profiling. Database profiling can impact database performance because
the profiler must record and process all database operations. Enable this option only after careful consideration.

quota
Default: false

Set to true to enable a maximum limit for the number data files each database can have. The default quota is
8 data files, when quota is true. Adjust the quota size with the with the quotaFiles (page 1031) setting.

quotaFiles
Default: 8

61.2. Configuration and Use 1031

MongoDB Documentation, Release 2.4.2

Modify limit on the number of data files per database. This option requires the quota (page 1031) setting.

rest
Default: false

Set to true to enable a simple REST interface.

repair
Default: false

Set to true to run a repair routine on all databases following start up. In general you should set this option on
the command line and not in the configuration file (page 35) or in a control script.

Use the mongod --repair (page 975) option to access this functionality.

Note: Because mongod (page 971) rewrites all of the database files during the repair routine, if you do not run
repair (page 1032) under the same user account as mongod (page 971) usually runs, you will need to run
chown on your database files to correct the permissions before starting mongod (page 971) again.

repairpath
Default: A _tmp directory in the dbpath (page 1029).

Specify the path to the directory containing MongoDB data files, to use in conjunction with the repair
(page 1032) setting or mongod --repair (page 975) operation. Defaults to a _tmp directory within the
dbpath (page 1029).

slowms
Default: 100

Specify values in milliseconds.

Sets the threshold for mongod (page 971) to consider a query “slow” for the database profiler. The database logs
all slow queries to the log, even when the profiler is not turned on. When the database profiler is on, mongod
(page 971) the profiler writes to the system.profile collection.

See Also:

“profile (page 1031)“

smallfiles
Default: false

Set to true to modify MongoDB to use a smaller default data file size. Specifically, smallfiles (page 1032)
reduces the initial size for data files and limits them to 512 megabytes. The smallfiles (page 1032) setting
also reduces the size of each journal files from 1 gigabyte to 128 megabytes.

Use the smallfiles (page 1032) setting if you have a large number of databases that each hold a small
quantity of data. The smallfiles (page 1032) setting can lead mongod (page 971) to create many files,
which may affect performance for larger databases.

syncdelay
Default: 60

mongod (page 971) writes data very quickly to the journal, and lazily to the data files. syncdelay (page 1032)
controls how much time can pass before MongoDB flushes data to the database files via an fsync operation. The
default setting is 60 seconds. In almost every situation you should not set this value and use the default setting.

The serverStatus (page 869) command reports the background flush thread’s status via the
backgroundFlushing (page 1059) field.

syncdelay (page 1032) has no effect on the journal (page 1030) files or journaling (page 71).

1032 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

Warning: If you set syncdelay (page 1032) to 0, MongoDB will not sync the memory mapped files to
disk. Do not set this value on production systems.

sysinfo
Default: false

When set to true, mongod (page 971) returns diagnostic system information regarding the page size, the
number of physical pages, and the number of available physical pages to standard output.

More typically, run this operation by way of the mongod --sysinfo (page 977) command. When running
with the sysinfo (page 1033), only mongod (page 971) only outputs the page information and no database
process will start.

upgrade
Default: false

When set to true this option upgrades the on-disk data format of the files specified by the dbpath (page 1029)
to the latest version, if needed.

This option only affects the operation of mongod (page 971) if the data files are in an old format.

When specified for a mongos (page 981) instance, this option updates the meta data format used by the config
database.

Note: In most cases you should not set this value, so you can exercise the most control over your upgrade
process. See the MongoDB release notes (on the download page) for more information about the upgrade
process.

traceExceptions
Default: false

For internal diagnostic use only.

quiet
Default: false

Runs the mongod (page 971) or mongos (page 981) instance in a quiet mode that attempts to limit the amount
of output. This option suppresses:

•output from database commands, including drop (page 825), dropIndexes (page 825),
diagLogging (page 824), validate (page 879), and clean (page 812).

•replication activity.

•connection accepted events.

•connection closed events.

Note: For production systems this option is not recommended as it may make tracking problems during
particular connections much more difficult.

setParameter
New in version 2.4. Specifies an option to configure on startup. Specify multiple options with multiple
setParameter (page 1033) options. See mongod Parameters (page 1039) for full documentation of these
parameters. The setParameter (page 869) database command provides access to many of these parameters.
setParameter (page 1033) supports the following options:

•enableLocalhostAuthBypass (page 1039)

61.2. Configuration and Use 1033

http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.4.2

•enableTestCommands (page 1039)

•journalCommitInterval (page 1040)

•logLevel (page 1040)

•logUserIds (page 1040)

•notablescan (page 1040)

•quiet (page 1041)

•replApplyBatchSize (page 1040)

•replIndexPrefetch (page 1040)

•supportCompatibilityFormPrivilegeDocuments (page 1040)

•syncdelay (page 1041)

•textSearchEnabled (page 1041)

•traceExceptions (page 1041)

Replication Options
replSet

Default: <none>

Form: <setname>

Use this setting to configure replication with replica sets. Specify a replica set name as an argument to this set.
All hosts must have the same set name.

See Also:

“Replication (page 365),” “Replica Set Administration (page 397),” and “Replica Set Configuration (page 441)“
oplogSize

Specifies a maximum size in megabytes for the replication operation log (e.g. oplog.) mongod (page 971)
creates an oplog based on the maximum amount of space available. For 64-bit systems, the oplog is typically
5% of available disk space.

Once the mongod (page 971) has created the oplog for the first time, changing oplogSize (page 1034) will
not affect the size of the oplog.

fastsync
Default: false

In the context of replica set replication, set this option to true if you have seeded this member with a snapshot
of the dbpath of another member of the set. Otherwise the mongod (page 971) will attempt to perform an initial
sync, as though the member were a new member.

Warning: If the data is not perfectly synchronized and mongod (page 971) starts with fastsync
(page 1034), then the secondary or slave will be permanently out of sync with the primary, which may
cause significant consistency problems.

replIndexPrefetch
New in version 2.2. Default: all

Values: all, none, and _id_only

You can only use replIndexPrefetch (page 1034) in conjunction with replSet (page 1034).

1034 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

By default secondary members of a replica set will load all indexes related to an operation into memory before
applying operations from the oplog. You can modify this behavior so that the secondaries will only load the _id
index. Specify _id_only or none to prevent the mongod (page 971) from loading any index into memory.

Master/Slave Replication
master

Default: false

Set to true to configure the current instance to act as master instance in a replication configuration.
slave

Default: false

Set to true to configure the current instance to act as slave instance in a replication configuration.

source
Default: <>

Form: <host><:port>

Used with the slave (page 1035) setting to specify the master instance from which this slave instance will
replicate

only
Default: <>

Used with the slave (page 1035) option, only (page 1035) specifies only a single database to replicate.

slaveDelay
Default: 0

Used with the slave (page 1035) setting, slaveDelay (page 1035) configures a “delay” in seconds, for this
slave to wait to apply operations from the master instance.

autoresync
Default: false

Used with the slave (page 1035) setting, set autoresync (page 1035) to true to force the slave to au-
tomatically resync if it is more than 10 seconds behind the master. This setting may be problematic if the
oplogSize (page 1034) of the oplog is too small. If the oplog is not large enough to store the difference in
changes between the master’s current state and the state of the slave, this instance will forcibly resync itself
unnecessarily. When you set the autoresync (page 1035) option to false, the slave will not attempt an
automatic resync more than once in a ten minute period.

Sharded Cluster Options
configsvr

Default: false

Set this value to true to configure this mongod (page 971) instance to operate as the config database of
a shard cluster. When running with this option, clients will not be able to write data to any database other
than config and admin. The default port for a mongod (page 971) with this option is 27019 and the de-
fault dbpath (page 1029) directory is http://docs.mongodb.org/manual/data/configdb, un-
less specified. Changed in version 2.2: configsvr (page 1035) also sets smallfiles (page 1032).Changed
in version 2.4: configsvr (page 1035) creates a local oplog. Do not use configsvr (page 1035) with
replSet (page 1034) or shardsvr (page 1036). Config servers cannot be a shard server or part of a replica
set.

default port for mongod (page 971) with this option is 27019 and mongod (page 971) writes all data files to the
http://docs.mongodb.org/manual/configdb sub-directory of the dbpath (page 1029) directory.

61.2. Configuration and Use 1035

MongoDB Documentation, Release 2.4.2

shardsvr
Default: false

Set this value to true to configure this mongod (page 971) instance as a shard in a partitioned cluster. The
default port for these instances is 27018. The only affect of shardsvr (page 1036) is to change the port
number.

configdb
Default: None.

Format: <config1>,<config2><:port>,<config3>

Set this option to specify a configuration database (i.e. config database) for the sharded cluster. You must
specify either 1 configuration server or 3 configuration servers, in a comma separated list.

This setting only affects mongos (page 981) processes.

Note: mongos (page 981) instances read from the first config server in the list provided. All mongos
(page 981) instances must specify the hosts to the configdb (page 1036) setting in the same order.

If your configuration databases reside in more that one data center, order the hosts in the configdb (page 1036)
setting so that the config database that is closest to the majority of your mongos (page 981) instances is first
servers in the list.

Warning: Never remove a config server from the configdb (page 1036) parameter, even if the config
server or servers are not available, or offline.

test
Default: false

Only runs unit tests and does not start a mongos (page 981) instance.

This setting only affects mongos (page 981) processes and is for internal testing use only.

chunkSize
Default: 64

The value of this option determines the size of each chunk of data distributed around the sharded cluster. The
default value is 64 megabytes. Larger chunks may lead to an uneven distribution of data, while smaller chunks
may lead to frequent and unnecessary migrations. However, in some circumstances it may be necessary to set a
different chunk size.

This setting only affects mongos (page 981) processes. Furthermore, chunkSize (page 1036) only sets the
chunk size when initializing the cluster for the first time. If you modify the run-time option later, the new value
will have no effect. See the “Modify Chunk Size (page 501)” procedure if you need to change the chunk size on
an existing sharded cluster.

localThreshold
New in version 2.2. localThreshold (page 1036) affects the logic that program:mongos uses when selecting
replica set members to pass reads operations to from clients. Specify a value to localThreshold (page 1036)
in milliseconds. The default value is 15, which corresponds to the default value in all of the client drivers
(page 529).

This setting only affects mongos (page 981) processes.

When mongos (page 981) receives a request that permits reads to secondary members, the mongos (page 981)
will:

•find the member of the set with the lowest ping time.

1036 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

•construct a list of replica set members that is within a ping time of 15 milliseconds of the nearest suitable
member of the set.

If you specify a value for localThreshold (page 1036), mongos (page 981) will construct the list of
replica members that are within the latency allowed by this value.

•The mongos (page 981) will select a member to read from at random from this list.

The ping time used for a set member compared by the --localThreshold (page 983) setting is a moving
average of recent ping times, calculated, at most, every 10 seconds. As a result, some queries may reach
members above the threshold until the mongos (page 981) recalculates the average.

See the Member Selection (page 385) section of the read preference (page 381) documentation for more infor-
mation.

noAutoSplit
noAutoSplit (page 1037) is for internal use and is only available on mongos (page 981) instances. New in
version 2.0.7. noAutoSplit (page 1037) prevents mongos (page 981) from automatically inserting metadata
splits in a sharded collection. If set on all mongos (page 981), this will prevent MongoDB from creating new
chunks as the data in a collection grows.

Because any mongos (page 981) in a cluster can create a split, to totally disable splitting in a cluster you must
set noAutoSplit (page 1037) on all mongos (page 981).

Warning: With noAutoSplit (page 1037) enabled, the data in your sharded cluster may become imbal-
anced over time. Enable with caution.

SSL Options
sslOnNormalPorts

New in version 2.2.

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

Enables SSL for mongod (page 971) or mongos (page 981). With sslOnNormalPorts (page 1037), a
mongod (page 971) or mongos (page 981) requires SSL encryption for all connections on the default Mon-
goDB port, or the port specified by port (page 1027). By default, sslOnNormalPorts (page 1037) is
disabled.

sslPEMKeyFile
New in version 2.2.

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

Specifies the .pem file that contains both the SSL certificate and key. Specify the file name of the .pem file
using relative or absolute paths

When using sslOnNormalPorts (page 1037), you must specify sslPEMKeyFile (page 1037).

sslPEMKeyPassword
New in version 2.2.

61.2. Configuration and Use 1037

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.4.2

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

Specifies the password to de-crypt the certificate-key file (i.e. sslPEMKeyFile (page 1037)). Only use
sslPEMKeyPassword (page 1037) if the certificate-key file is encrypted. In all cases, mongod (page 971)
or mongos (page 981) will redact the password from all logging and reporting output. Changed in version
2.4: sslPEMKeyPassword (page 1037) is only needed when the private key is encrypted. In earlier versions
mongod (page 971) or mongos (page 981) would require sslPEMKeyPassword (page 1037) whenever
using sslOnNormalPorts (page 1037), even when the private key was not encrypted.

sslCAFile
New in version 2.4.

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

Specifies the .pem file that contains the root certificate chain from the Certificate Authority. Specify the file
name of the .pem file using relative or absolute paths

sslCRLFile
New in version 2.4.

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

Specifies the .pem file that contains the Certificate Revocation List. Specify the file name of the .pem file
using relative or absolute paths

sslWeakCertificateValidation
New in version 2.4.

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

Disables the requirement for SSL certificate validation, that sslCAFile (page 1038) enables. With
sslWeakCertificateValidation (page 1038), mongod (page 971) or mongos (page 981) will ac-
cept connections if the client does not present a certificate when establishing the connection.

If the client presents a certificate and mongod (page 971) or mongos (page 981) has
sslWeakCertificateValidation (page 1038) enabled, mongod (page 971) or mongos (page 981)
will validate the certificate using the root certificate chain specified by sslCAFile (page 1038), and reject
clients with invalid certificates.

Use sslWeakCertificateValidation (page 1038) if you have a mixed deployment that includes clients
that do not or cannot present certificates to mongod (page 971) or mongos (page 981).

sslFIPSMode
New in version 2.4.

1038 Chapter 61. Architecture and Components

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.4.2

Note: The default distribution of MongoDB does not contain support for SSL. To use SSL you can either com-
pile MongoDB with SSL support or use MongoDB Enterprise. See Connect to MongoDB with SSL (page 77)
for more information about SSL and MongoDB.

When specified, mongod (page 971) or mongos (page 981) will use the FIPS mode of the installed OpenSSL
library. Your system must have a FIPS compliant OpenSSL library to use sslFIPSMode (page 1038).

mongod Parameters

Changed in version 2.4.

Synopsis

MongoDB provides a number of configuration options that are accessible via the --setParameter (page 976)
option to mongod (page 971). This document documents all of these options.

For additional run time configuration options, see Configuration File Options (page 1026) and Manual Page for mon-
god (page 971).

Parameters

enableLocalhostAuthBypass
New in version 2.4. Specify 0 to disable localhost authentication bypass. Enabled by default.

enableLocalhostAuthBypass (page 1039) is not available using setParameter (page 869) database
command. Use the setParameter (page 1033) option in the configuration file or the --setParameter
(page 976) option on the command line.

enableTestCommands
New in version 2.4. enableTestCommands (page 1039) enables a set of internal commands useful for
internal testing operations. enableTestCommands (page 1039) is only available when starting mongod
(page 971) and you cannot use setParameter (page 869) to modify this parameter. Consider the following
mongod (page 971) innovation, which sets enableTestCommands (page 1039):

mongod --setParameter enableTestCommands=1

enableTestCommands (page 1039) provides access to the following internal commands:

•captrunc (page 811)

•configureFailPoint (page 818)

•emptycapped (page 826)

•godinsert (page 840)

•_hashBSONElement (page 844)

•journalLatencyTest (page 849)

•replSetTest (page 868)

•_skewClockCommand (page 872)

•sleep (page 872)

•_testDistLockWithSkew (page 875)

•_testDistLockWithSyncCluster (page 875)

61.2. Configuration and Use 1039

http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.4.2

journalCommitInterval
Specify an integer between 1 and 500 signifying the number of milliseconds (ms) between journal commits.

Consider the following example which sets the journalCommitInterval (page 1040) to 200 ms:

use admin
db.runCommand({ setParameter: 1, journalCommitInterval: 200 })

See Also:

journalCommitInterval (page 1030).

logUserIds
New in version 2.4. Specify 1 to enable logging of userids.

Disabled by default.

logLevel
Specify an integer between 0 and 5 signifying the verbosity of the logging, where 5 is the most verbose.

Consider the following example which sets the logLevel (page 1040) to 2:

use admin
db.runCommand({ setParameter: 1, logLevel: 2 })

See Also:

verbose (page 1026).

notablescan
Specify whether queries must use indexes. If 1, queries that perform a table scan instead of using an index will
fail.

Consider the following example which sets notablescan (page 1040) to true:

use admin
db.runCommand({ setParameter: 1, notablescan: 1 })

See Also:

notablescan (page 1031)

replIndexPrefetch

replApplyBatchSize
New in version 2.4. Specify the number of oplog entries to apply as a single batch. replApplyBatchSize
(page 1040) must be an integer between 1 and 1024. Only specify this option on secondary members of replica
sets.

Batch sizes must be 1 for members with slaveDelay (page 1035) configured.

saslHostName
New in version 2.4. saslHostName (page 1040) overrides MongoDB’s default hostname detection for the
purpose of configuring SASL and Kerberos authentication.

saslHostName (page 1040) does not affect the hostname of the mongod (page 971) or mongos (page 981)
instance for any purpose beyond the configuration of SASL and Kerberos.

You can only set saslHostName (page 1040) during start-up, and cannot change this setting using the
setParameter (page 869) database command.

Note: saslHostName (page 1040) supports Kerberos authentication and is only included in MongoDB
Enterprise. See Deploy MongoDB with Kerberos Authentication (page 141) for more information.

1040 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

supportCompatibilityFormPrivilegeDocuments
New in version 2.4. supportCompatibilityFormPrivilegeDocuments (page 1040) is not available
using setParameter (page 869) database command. Use the setParameter (page 1033) option in the
configuration file or the --setParameter (page 976) option on the command line.

syncdelay
Specify the interval in seconds between fsync operations where mongod (page 971) flushes its working memory
to disk. By default, mongod (page 971) flushes memory to disk every 60 seconds. Do not change this value
unless you see a background flush average greater than 60 seconds.

Consider the following example which sets the syncdelay to 60 seconds:

db = db.getSiblingDB("admin")
db.runCommand({ setParameter: 1, syncdelay: 60 })

See Also:

syncdelay (page 1032).

traceExceptions
New in version 2.2. Configures mongod (page 971) log full stack traces on assertions or errors. If 1, mongod
(page 971) will log full stack traces on assertions or errors.

Consider the following example which sets the traceExceptions to 1:

use admin
db.runCommand({ setParameter: 1, traceExceptions: 1 })

See Also:

traceExceptions (page 1033)

quiet
Sets quiet logging mode. If 1, mongod (page 971) will go into a quiet logging mode which will not log the
following events/activities:

•connection events;

•the drop (page 825) command, the dropIndexes (page 825) command, the diagLogging
(page 824) command, the validate (page 879) command, and the clean (page 812) command; and

•replication synchronization activities.

Consider the following example which sets the quiet to 1:

db = db.getSiblingDB("admin")
db.runCommand({ setParameter: 1, quiet: 1 })

See Also:

quiet (page 1033)

textSearchEnabled

New in version 2.4.

Warning:
•Do not enable or use text search on production systems.

•Text indexes have significant storage requirements and performance costs. See text Indexes (page 312)
for more information.

Enables the text search (page 349) feature. You must enable the feature before creating or accessing a text index.

mongod --setParameter textSearchEnabled=true

61.2. Configuration and Use 1041

MongoDB Documentation, Release 2.4.2

If the flag is not enabled, you cannot create new text indexes, and you cannot perform text searches. However,
existing text indexes will still be updated.

61.2.2 Process Management

See Manage mongod Processes (page 1042) for an introduction to running mongod (page 971) instances.

Manage mongod Processes

MongoDB runs as a standard program. You can start MongoDB from a command line by issuing the mongod
(page 971) command and specifying options. For a list of options, see mongod (page 971). MongoDB can also
run as a Windows service. For details, see MongoDB as a Windows Service (page 19). To install MongoDB, see
Install MongoDB (page 3).

The following examples assume the directory containing the mongod (page 971) process is in your system paths. The
mongod (page 971) process is the primary database process that runs on an individual server. mongos (page 981)
provides a coherent MongoDB interface equivalent to a mongod (page 971) from the perspective of a client. The
mongo (page 984) binary provides the administrative shell.

This document page discusses the mongod (page 971) process; however, some portions of this document may be
applicable to mongos (page 981) instances.

See Also:

Run-time Database Configuration (page 35), mongod (page 971), mongos (page 981), and Configuration File Options
(page 1026).

Start mongod

By default, MongoDB stores data in the http://docs.mongodb.org/manual/data/db directory. On Win-
dows, MongoDB stores data in C:\data\db. On all platforms, MongoDB listens for connections from clients on
port 27017.

To start MongoDB using all defaults, issue the following command at the system shell:

mongod

Specify a Data Directory If you want mongod (page 971) to store data files at a path other than
http://docs.mongodb.org/manual/data/db you can specify a dbpath (page 1029). The dbpath
(page 1029) must exist before you start mongod (page 971). If it does not exist, create the directory and the per-
missions so that mongod (page 971) can read and write data to this path. For more information on permissions, see
the security operations documentation (page 128).

To specify a dbpath (page 1029) for mongod (page 971) to use as a data directory, use the --dbpath
(page 973) option. The following invocation will start a mongod (page 971) instance and store data in the
http://docs.mongodb.org/manual/srv/mongodb path

mongod --dbpath /srv/mongodb/

Specify a TCP Port Only a single process can listen for connections on a network interface at a time. If you run
multiple mongod (page 971) processes on a single machine, or have other processes that must use this port, you must
assign each a different port to listen on for client connections.

1042 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

To specify a port to mongod (page 971), use the --port (page 972) option on the command line. The following
command starts mongod (page 971) listening on port 12345:

mongod --port 12345

Use the default port number when possible, to avoid confusion.

Start mongod as a Daemon To run a mongod (page 971) process as a daemon (i.e. fork (page 1029),) and write
its output to a log file, use the --fork (page 973) and --logpath (page 972) options. You must create the log
directory; however, mongod (page 971) will create the log file if it does not exist.

The following command starts mongod (page 971) as a daemon and records log output to
http://docs.mongodb.org/manual/var/log/mongodb.log.

mongod --fork --logpath /var/log/mongodb.log

Additional Configuration Options For an overview of common configurations and common configuration deploy-
ments. configurations for common use cases, see Run-time Database Configuration (page 35).

Stop mongod

To stop a mongod (page 971) instance not running as a daemon, press Control+C. MongoDB stops when all
ongoing operations are complete and does a clean exit, flushing and closing all data files.

To stop a mongod (page 971) instance running in the background or foreground, issue the shutdownServer()
(page 946) helper in the mongo (page 984) shell. Use the following sequence:

1. To open the mongo (page 984) shell for a mongod (page 971) instance running on the default port of 27017,
issue the following command:

mongo

2. To switch to the admin database and shutdown the mongod (page 971) instance, issue the following com-
mands:

use admin
db.shutdownServer()

You may only use db.shutdownServer() (page 946) when connected to the mongod (page 971) when authen-
ticated to the admin database or on systems without authentication connected via the localhost interface.

Alternately, you can shut down the mongod (page 971) instance:

• using the --shutdown (page 977) option

• from a driver using the shutdown (page 871). For details, see the drivers documentation (page 529) for your
driver.

mongod Shutdown and Replica Sets If the mongod (page 971) is the primary in a replica set, the shutdown
process for these mongod (page 971) instances has the following steps:

1. Check how up-to-date the secondaries are.

2. If no secondary is within 10 seconds of the primary, mongod (page 971) will return a message that it will
not shut down. You can pass the shutdown (page 871) command a timeoutSecs argument to wait for a
secondary to catch up.

61.2. Configuration and Use 1043

MongoDB Documentation, Release 2.4.2

3. If there is a secondary within 10 seconds of the primary, the primary will step down and wait for the secondary
to catch up.

4. After 60 seconds or once the secondary has caught up, the primary will shut down.

If there is no up-to-date secondary and you want the primary to shut down, issue the shutdown (page 871) command
with the force argument, as in the following mongo (page 984) shell operation:

db.adminCommand({shutdown : 1, force : true})

To keep checking the secondaries for a specified number of seconds if none are immediately up-to-date, issue
shutdown (page 871) with the timeoutSecs argument. MongoDB will keep checking the secondaries for the
specified number of seconds if none are immediately up-to-date. If any of the secondaries catch up within the allotted
time, the primary will shut down. If no secondaries catch up, it will not shut down.

The following command issues shutdown (page 871) with timeoutSecs set to 5:

db.adminCommand({shutdown : 1, timeoutSecs : 5})

Alternately you can use the timeoutSecs argument with the shutdownServer() (page 946) method:

db.shutdownServer({timeoutSecs : 5})

Sending a UNIX INT or TERM Signal

You can cleanly stop mongod (page 971) using a SIGINT or SIGTERM signal on UNIX-like systems. Either ^C for
a non-daemon mongod (page 971) instance, kill -2 <pid>, or kill -15 <pid> will cleanly terminate the
mongod (page 971) instance.

Terminating a mongod (page 971) instance that is not running with journaling with kill -9 <pid> (i.e.
SIGKILL) will probably cause data corruption.

To recover data in situations where mongod (page 971) instances have not terminated cleanly without journaling see
Recover MongoDB Data following Unexpected Shutdown (page 52).

Rotate Log Files

Overview

Log rotation archives the current log file and starts a new one. Specifically, log rotation renames the current log file by
appending the filename with a timestamp, 2 opens a new log file, and finally closes the old log. MongoDB will only
rotate logs, when you use the logRotate (page 850) command, or issue the process a SIGUSR1 signal as described
in this procedure.

See Also:

For information on logging, see the Process Logging (page 90) section.

Procedure

The following steps create and rotate a log file:

1. Start a mongod (page 971) with verbose logging, with appending enabled, and with the following log file:

2 MongoDB renders this timestamp in UTC (GMT) and formatted as ISODate.

1044 Chapter 61. Architecture and Components

MongoDB Documentation, Release 2.4.2

mongod -v --logpath /var/log/mongodb/server1.log --logappend

2. In a separate terminal, list the matching files:

ls /var/log/mongodb/server1.log*

For results, you get:

server1.log

3. Rotate the log file using one of the following methods.

• From the mongo (page 984) shell, issue the logRotate (page 850) command from the admin database:

use admin
db.runCommand({ logRotate : 1 })

This is the only available method to rotate log files on Windows systems.

• From the UNIX shell, rotate logs for a single process by issuing the following command:

kill -SIGUSR1 <mongod process id>

• From the UNIX shell, rotate logs for all mongod (page 971) processes on a machine by issuing the
following command:

killall -SIGUSR1 mongod

4. List the matching files again:

ls /var/log/mongodb/server1.log*

For results you get something similar to the following. The timestamps will be different.

server1.log server1.log.2011-11-24T23-30-00

The example results indicate a log rotation performed at exactly 11:30 pm on November 24th, 2011
UTC, which is the local time offset by the local time zone. The original log file is the one with the timestamp.
The new log is server1.log file.

If you issue a second logRotate (page 850) command an hour later, then an additional file would appear
when listing matching files, as in the following example:

server1.log server1.log.2011-11-24T23-30-00 server1.log.2011-11-25T00-30-00

This operation does not modify the server1.log.2011-11-24T23-30-00 file created earlier, while
server1.log.2011-11-25T00-30-00 is the previous server1.log file, renamed. server1.log
is a new, empty file that receives all new log output.

61.2. Configuration and Use 1045

MongoDB Documentation, Release 2.4.2

1046 Chapter 61. Architecture and Components

CHAPTER 62

Status and Reporting

62.1 Server Status Output Index

This document provides a quick overview and example of the serverStatus (page 869) command. The helper
db.serverStatus() (page 945) in the mongo (page 984) shell provides access to this output. For full documen-
tation of the content of this output, see Server Status Reference (page 1052).

Note: The fields included in this output vary slightly depending on the version of MongoDB, underlying operating
system platform, and the kind of node, including mongos (page 981), mongod (page 971) or replica set member.

The “Instance Information (page 1053)” section displays information regarding the specific mongod (page 971) and
mongos (page 981) and its state.

{
"host" : "<hostname>",
"version" : "<version>",
"process" : "<mongod|mongos>",
"pid" : <num>,
"uptime" : <num>,
"uptimeMillis" : <num>,
"uptimeEstimate" : <num>,
"localTime" : ISODate(""),

The “locks (page 1053)” section reports data that reflect the state and use of both global (i.e. .) and database specific
locks:

"locks" : {
"." : {

"timeLockedMicros" : {
"R" : <num>,
"W" : <num>

},
"timeAcquiringMicros" : {

"R" : <num>,
"W" : <num>

}
},
"admin" : {

1047

MongoDB Documentation, Release 2.4.2

"timeLockedMicros" : {
"r" : <num>,
"w" : <num>

},
"timeAcquiringMicros" : {

"r" : <num>,
"w" : <num>

}
},
"local" : {

"timeLockedMicros" : {
"r" : <num>,
"w" : <num>

},
"timeAcquiringMicros" : {

"r" : <num>,
"w" : <num>

}
},
"<database>" : {

"timeLockedMicros" : {
"r" : <num>,
"w" : <num>

},
"timeAcquiringMicros" : {

"r" : <num>,
"w" : <num>

}
}

},

The “globalLock (page 1055)” field reports on MongoDB’s global system lock. In most cases the locks (page 1053)
document provides more fine grained data that reflects lock use:

"globalLock" : {
"totalTime" : <num>,
"lockTime" : <num>,
"currentQueue" : {

"total" : <num>,
"readers" : <num>,
"writers" : <num>

},
"activeClients" : {

"total" : <num>,
"readers" : <num>,
"writers" : <num>

}
},

The “mem (page 1057)” field reports on MongoDB’s current memory use:

"mem" : {
"bits" : <num>,
"resident" : <num>,
"virtual" : <num>,
"supported" : <boolean>,
"mapped" : <num>,
"mappedWithJournal" : <num>

},

1048 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

The “connections (page 1057)” field reports on MongoDB’s current memory use by the MongoDB process:

"connections" : {
"current" : <num>,
"available" : <num>

},

The fields in the “extra_info (page 1058)” document provide platform specific information. The following example
block is from a Linux-based system:

"extra_info" : {
"note" : "fields vary by platform",
"heap_usage_bytes" : <num>,
"page_faults" : <num>

},

The “indexCounters (page 1058)” document reports on index use:

"indexCounters" : {
"accesses" : <num>,
"hits" : <num>,
"misses" : <num>,
"resets" : <num>,
"missRatio" : <num>

},

The “backgroundFlushing (page 1059)” document reports on the process MongoDB uses to write data to disk:

"backgroundFlushing" : {
"flushes" : <num>,
"total_ms" : <num>,
"average_ms" : <num>,
"last_ms" : <num>,
"last_finished" : ISODate("")

},

The “cursors (page 1060)” document reports on current cursor use and state:

"cursors" : {
"totalOpen" : <num>,
"clientCursors_size" : <num>,
"timedOut" : <num>

},

The “network (page 1060)” document reports on network use and state:

"network" : {
"bytesIn" : <num>,
"bytesOut" : <num>,
"numRequests" : <num>

},

The “repl (page 1061)” document reports on the state of replication and the replica set. This document only appears
for replica sets.

"repl" : {
"setName" : "<string>",
"ismaster" : <boolean>,
"secondary" : <boolean>,
"hosts" : [

<hostname>,

62.1. Server Status Output Index 1049

MongoDB Documentation, Release 2.4.2

<hostname>,
<hostname>

],
"primary" : <hostname>,
"me" : <hostname>

The “opcountersRepl (page 1061)” document reports the number of replicated operations:

"opcountersRepl" : {
"insert" : <num>,
"query" : <num>,
"update" : <num>,
"delete" : <num>,
"getmore" : <num>,
"command" : <num>

},

The “opcounters (page 1062)” document reports the number of operations this MongoDB instance has processed:

"opcounters" : {
"insert" : <num>,
"query" : <num>,
"update" : <num>,
"delete" : <num>,
"getmore" : <num>,
"command" : <num>

},

The “asserts (page 1063)” document reports the number of assertions or errors produced by the server:

"asserts" : {
"regular" : <num>,
"warning" : <num>,
"msg" : <num>,
"user" : <num>,
"rollovers" : <num>

},

The “writeBacksQueued (page 1063)” document reports the number of writebacks:

"writeBacksQueued" : <num>,

The “Journaling (dur) (page 1064)” document reports on data that reflect this mongod (page 971) instance’s
journaling-related operations and performance during a journal group commit interval (page 73):

"dur" : {
"commits" : <num>,
"journaledMB" : <num>,
"writeToDataFilesMB" : <num>,
"compression" : <num>,
"commitsInWriteLock" : <num>,
"earlyCommits" : <num>,
"timeMs" : {

"dt" : <num>,
"prepLogBuffer" : <num>,
"writeToJournal" : <num>,
"writeToDataFiles" : <num>,
"remapPrivateView" : <num>

}
},

1050 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

The “recordStats (page 1065)” document reports data on MongoDB’s ability to predict page faults and yield write
operations when required data isn’t in memory:

"recordStats" : {
"accessesNotInMemory" : <num>,
"pageFaultExceptionsThrown" : <num>,
"local" : {

"accessesNotInMemory" : <num>,
"pageFaultExceptionsThrown" : <num>

},
"<database>" : {

"accessesNotInMemory" : <num>,
"pageFaultExceptionsThrown" : <num>

}
},

The “workingSet (page 1066)” document provides an estimated size of the MongoDB instance’s working set. This
data may not exactly reflect the size of the working set in all cases. Additionally, the workingSet (page 1066)
document is only present in the output of serverStatus (page 869) when explicitly enabled. New in version 2.4.

"workingSet" : {
"note" : "thisIsAnEstimate",
"pagesInMemory" : <num>,
"computationTimeMicros" : <num>,
"overSeconds" : num

},

The “metrics (page 1067)” document contains a number of operational metrics that are useful for monitoring the state
and workload of a mongod (page 971) instance. New in version 2.4.

"metrics" : {
"document" : {

"deleted" : NumberLong(<num>),
"inserted" : NumberLong(<num>),
"returned" : NumberLong(<num>),
"updated" : NumberLong(<num>)

},
"getLastError" : {

"wtime" : {
"num" : <num>,
"totalMillis" : <num>

},
"wtimeouts" : NumberLong(<num>)

},
"operation" : {

"fastmod" : NumberLong(<num>),
"idhack" : NumberLong(<num>),
"scanAndOrder" : NumberLong(<num>)

},
"queryExecutor": {

"scanned" : NumberLong(<num>)
},
"record" : {

"moves" : NumberLong(<num>)
},
"repl" : {

"apply" : {
"batches" : {

"num" : <num>,

62.1. Server Status Output Index 1051

MongoDB Documentation, Release 2.4.2

"totalMillis" : <num>
},
"ops" : NumberLong(<num>)

},
"buffer" : {

"count" : NumberLong(<num>),
"maxSizeBytes" : <num>,
"sizeBytes" : NumberLong(<num>)

},
"network" : {

"bytes" : NumberLong(<num>),
"getmores" : {

"num" : <num>,
"totalMillis" : <num>

},
"ops" : NumberLong(<num>),
"readersCreated" : NumberLong(<num>)

},
"oplog" : {

"insert" : {
"num" : <num>,
"totalMillis" : <num>

},
"insertBytes" : NumberLong(<num>)

},
"preload" : {

"docs" : {
"num" : <num>,
"totalMillis" : <num>

},
"indexes" : {

"num" : <num>,
"totalMillis" : <num>

}
}

},
"ttl" : {

"deletedDocuments" : NumberLong(<num>),
"passes" : NumberLong(<num>)

}
},

The final ok field holds the return status for the serverStatus (page 869) command:

"ok" : 1
}

62.2 Server Status Reference

The serverStatus (page 869) command returns a collection of information that reflects the database’s status.
These data are useful for diagnosing and assessing the performance of your MongoDB instance. This reference
catalogs each datum included in the output of this command and provides context for using this data to more effectively
administer your database.

See Also:

1052 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

Much of the output of serverStatus (page 869) is also displayed dynamically by mongostat (page 1011). See
the mongostat (page 1011) command for more information.

For examples of the serverStatus (page 869) output, see Server Status Output Index (page 1047).

62.2.1 Instance Information

Example

output of the instance information fields (page 1047).

serverStatus.host
The host (page 1053) field contains the system’s hostname. In Unix/Linux systems, this should be the same
as the output of the hostname command.

serverStatus.version
The version (page 1053) field contains the version of MongoDB running on the current mongod (page 971)
or mongos (page 981) instance.

serverStatus.process
The process (page 1053) field identifies which kind of MongoDB instance is running. Possible values are:

•mongos (page 981)

•mongod (page 971)

serverStatus.uptime
The value of the uptime (page 1053) field corresponds to the number of seconds that the mongos (page 981)
or mongod (page 971) process has been active.

serverStatus.uptimeEstimate
uptimeEstimate (page 1053) provides the uptime as calculated from MongoDB’s internal course-grained
time keeping system.

serverStatus.localTime
The localTime (page 1053) value is the current time, according to the server, in UTC specified in an ISODate
format.

62.2.2 locks

New in version 2.1.2: All locks (page 1053) statuses first appeared in the 2.1.2 development release for the 2.2
series.

Example

output of the locks fields (page 1047).

serverStatus.locks
The locks (page 1053) document contains sub-documents that provides a granular report on MongoDB
database-level lock use. All values are of the NumberLong() type.

Generally, fields named:

•R refer to the global read lock,

•W refer to the global write lock,

62.2. Server Status Reference 1053

MongoDB Documentation, Release 2.4.2

•r refer to the database specific read lock, and

•w refer to the database specific write lock.

If a document does not have any fields, it means that no locks have existed with this context since the last time
the mongod (page 971) started.

serverStatus.locks..
A field named . holds the first document in locks (page 1053) that contains information about the global lock.

serverStatus.locks...timeLockedMicros
The timeLockedMicros (page 1054) document reports the amount of time in microseconds that a lock has
existed in all databases in this mongod (page 971) instance.

serverStatus.locks...timeLockedMicros.R
The R field reports the amount of time in microseconds that any database has held the global read lock.

serverStatus.locks...timeLockedMicros.W
The W field reports the amount of time in microseconds that any database has held the global write lock.

serverStatus.locks...timeLockedMicros.r
The r field reports the amount of time in microseconds that any database has held the local read lock.

serverStatus.locks...timeLockedMicros.w
The w field reports the amount of time in microseconds that any database has held the local write lock.

serverStatus.locks...timeAcquiringMicros
The timeAcquiringMicros (page 1054) document reports the amount of time in microseconds that oper-
ations have spent waiting to acquire a lock in all databases in this mongod (page 971) instance.

serverStatus.locks...timeAcquiringMicros.R
The R field reports the amount of time in microseconds that any database has spent waiting for the global read
lock.

serverStatus.locks...timeAcquiringMicros.W
The W field reports the amount of time in microseconds that any database has spent waiting for the global write
lock.

serverStatus.locks.admin
The admin (page 1054) document contains two sub-documents that report data regarding lock use in the admin
database.

serverStatus.locks.admin.timeLockedMicros
The timeLockedMicros (page 1054) document reports the amount of time in microseconds that locks have
existed in the context of the admin database.

serverStatus.locks.admin.timeLockedMicros.r
The r field reports the amount of time in microseconds that the admin database has held the read lock.

serverStatus.locks.admin.timeLockedMicros.w
The w field reports the amount of time in microseconds that the admin database has held the write lock.

serverStatus.locks.admin.timeAcquiringMicros
The timeAcquiringMicros (page 1054) document reports on the amount of field time in microseconds
that operations have spent waiting to acquire a lock for the admin database.

serverStatus.locks.admin.timeAcquiringMicros.r
The r field reports the amount of time in microseconds that operations have spent waiting to acquire a read lock
on the admin database.

serverStatus.locks.admin.timeAcquiringMicros.w
The w field reports the amount of time in microseconds that operations have spent waiting to acquire a write
lock on the admin database.

1054 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

serverStatus.locks.local
The local (page 1054) document contains two sub-documents that report data regarding lock use in the local
database. The local database contains a number of instance specific data, including the oplog for replication.

serverStatus.locks.local.timeLockedMicros
The timeLockedMicros (page 1055) document reports on the amount of time in microseconds that locks
have existed in the context of the local database.

serverStatus.locks.local.timeLockedMicros.r
The r field reports the amount of time in microseconds that the local database has held the read lock.

serverStatus.locks.local.timeLockedMicros.w
The w field reports the amount of time in microseconds that the local database has held the write lock.

serverStatus.locks.local.timeAcquiringMicros
The timeAcquiringMicros (page 1055) document reports on the amount of time in microseconds that
operations have spent waiting to acquire a lock for the local database.

serverStatus.locks.local.timeAcquiringMicros.r
The r field reports the amount of time in microseconds that operations have spent waiting to acquire a read lock
on the local database.

serverStatus.locks.local.timeAcquiringMicros.w
The w field reports the amount of time in microseconds that operations have spent waiting to acquire a write
lock on the local database.

serverStatus.locks.<database>
For each additional database locks (page 1053) includes a document that reports on the lock use for this
database. The names of these documents reflect the database name itself.

serverStatus.locks.<database>.timeLockedMicros
The timeLockedMicros (page 1055) document reports on the amount of time in microseconds that locks
have existed in the context of the <database> database.

serverStatus.locks.<database>.timeLockedMicros.r
The r field reports the amount of time in microseconds that the <database> database has held the read lock.

serverStatus.locks.<database>.timeLockedMicros.w
The w field reports the amount of time in microseconds that the <database> database has held the write lock.

serverStatus.locks.<database>.timeAcquiringMicros
The timeAcquiringMicros (page 1055) document reports on the amount of time in microseconds that
operations have spent waiting to acquire a lock for the <database> database.

serverStatus.locks.<database>.timeAcquiringMicros.r
The r field reports the amount of time in microseconds that operations have spent waiting to acquire a read lock
on the <database> database.

serverStatus.locks.<database>.timeAcquiringMicros.w
The w field reports the amount of time in microseconds that operations have spent waiting to acquire a write
lock on the <database> database.

62.2.3 globalLock

Example

output of the globalLock fields (page 1048).

62.2. Server Status Reference 1055

MongoDB Documentation, Release 2.4.2

serverStatus.globalLock
The globalLock (page 1055) data structure contains information regarding the database’s current lock state,
historical lock status, current operation queue, and the number of active clients.

serverStatus.globalLock.totalTime
The value of totalTime (page 1056) represents the time, in microseconds, since the database last started and
creation of the globalLock (page 1055). This is roughly equivalent to total server uptime.

serverStatus.globalLock.lockTime
The value of lockTime (page 1056) represents the time, in microseconds, since the database last started, that
the globalLock (page 1055) has been held.

Consider this value in combination with the value of totalTime (page 1056). MongoDB aggregates these
values in the ratio (page 1056) value. If the ratio (page 1056) value is small but totalTime (page 1056)
is high the globalLock (page 1055) has typically been held frequently for shorter periods of time, which
may be indicative of a more normal use pattern. If the lockTime (page 1056) is higher and the totalTime
(page 1056) is smaller (relatively,) then fewer operations are responsible for a greater portion of server’s use
(relatively.)

serverStatus.globalLock.ratio
Changed in version 2.2: ratio (page 1056) was removed. See locks (page 1053). The value of ratio
(page 1056) displays the relationship between lockTime (page 1056) and totalTime (page 1056).

Low values indicate that operations have held the globalLock (page 1055) frequently for shorter periods of
time. High values indicate that operations have held globalLock (page 1055) infrequently for longer periods
of time.

serverStatus.globalLock.currentQueue
The currentQueue (page 1056) data structure value provides more granular information concerning the
number of operations queued because of a lock.

serverStatus.globalLock.currentQueue.total
The value of total (page 1056) provides a combined total of operations queued waiting for the lock.

A consistently small queue, particularly of shorter operations should cause no concern. Also, consider this
value in light of the size of queue waiting for the read lock (e.g. readers (page 1056)) and write-lock (e.g.
writers (page 1056)) individually.

serverStatus.globalLock.currentQueue.readers
The value of readers (page 1056) is the number of operations that are currently queued and waiting for the
read-lock. A consistently small read-queue, particularly of shorter operations should cause no concern.

serverStatus.globalLock.currentQueue.writers
The value of writers (page 1056) is the number of operations that are currently queued and waiting for the
write-lock. A consistently small write-queue, particularly of shorter operations is no cause for concern.

globalLock.activeClients

serverStatus.globalLock.activeClients
The activeClients (page 1056) data structure provides more granular information about the number of
connected clients and the operation types (e.g. read or write) performed by these clients.

Use this data to provide context for the currentQueue (page 1056) data.

serverStatus.globalLock.activeClients.total
The value of total (page 1056) is the total number of active client connections to the database. This combines
clients that are performing read operations (e.g. readers (page 1056)) and clients that are performing write
operations (e.g. writers (page 1057)).

1056 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

serverStatus.globalLock.activeClients.readers
The value of readers (page 1056) contains a count of the active client connections performing read operations.

serverStatus.globalLock.activeClients.writers
The value of writers (page 1057) contains a count of active client connections performing write operations.

62.2.4 mem

Example

output of the memory fields (page 1048).

serverStatus.mem
The mem (page 1057) data structure holds information regarding the target system architecture of mongod
(page 971) and current memory use.

serverStatus.mem.bits
The value of bits (page 1057) is either 64 or 32, depending on which target architecture specified during the
mongod (page 971) compilation process. In most instances this is 64, and this value does not change over time.

serverStatus.mem.resident
The value of resident (page 1057) is roughly equivalent to the amount of RAM, in megabytes (MB), cur-
rently used by the database process. In normal use this value tends to grow. In dedicated database servers this
number tends to approach the total amount of system memory.

serverStatus.mem.virtual
virtual (page 1057) displays the quantity, in megabytes (MB), of virtual memory used by the mongod
(page 971) process. In typical deployments this value is slightly larger than mapped (page 1057). If this value
is significantly (i.e. gigabytes) larger than mapped (page 1057), this could indicate a memory leak.

With journaling enabled, the value of virtual (page 1057) is twice the value of mapped (page 1057).

serverStatus.mem.supported
supported (page 1057) is true when the underlying system supports extended memory information. If this
value is false and the system does not support extended memory information, then other mem (page 1057) values
may not be accessible to the database server.

serverStatus.mem.mapped
The value of mapped (page 1057) provides the amount of mapped memory, in megabytes (MB), by the
database. Because MongoDB uses memory-mapped files, this value is likely to be to be roughly equivalent
to the total size of your database or databases.

serverStatus.mem.mappedWithJournal
mappedWithJournal (page 1057) provides the amount of mapped memory, in megabytes (MB), including
the memory used for journaling. This value will always be twice the value of mapped (page 1057). This field
is only included if journaling is enabled.

62.2.5 connections

Example

output of the connections fields (page 1049).

62.2. Server Status Reference 1057

MongoDB Documentation, Release 2.4.2

serverStatus.connections
The connections (page 1057) sub document data regarding the current connection status and availability of
the database server. Use these values to asses the current load and capacity requirements of the server.

serverStatus.connections.current
The value of current (page 1058) corresponds to the number of connections to the database server from
clients. This number includes the current shell session. Consider the value of available (page 1058) to add
more context to this datum.

This figure will include the current shell connection as well as any inter-node connections to support a replica
set or sharded cluster.

serverStatus.connections.available
available (page 1058) provides a count of the number of unused available connections that the database
can provide. Consider this value in combination with the value of current (page 1058) to understand the
connection load on the database, and the Linux ulimit Settings (page 105) document for more information about
system thresholds on available connections.

62.2.6 extra_info

Example

output of the extra_info fields (page 1049).

serverStatus.extra_info
The extra_info (page 1058) data structure holds data collected by the mongod (page 971) instance about
the underlying system. Your system may only report a subset of these fields.

serverStatus.extra_info.note
The field note (page 1058) reports that the data in this structure depend on the underlying platform, and has
the text: “fields vary by platform.”

serverStatus.extra_info.heap_usage_bytes
The heap_usage_bytes (page 1058) field is only available on Unix/Linux systems, and reports the total
size in bytes of heap space used by the database process.

serverStatus.extra_info.page_faults
The page_faults (page 1058) field is only available on Unix/Linux systems, and reports the total number
of page faults that require disk operations. Page faults refer to operations that require the database server to
access data which isn’t available in active memory. The page_faults (page 1058) counter may increase
dramatically during moments of poor performance and may correlate with limited memory environments and
larger data sets. Limited and sporadic page faults do not necessarily indicate an issue.

62.2.7 indexCounters

Example

output of the indexCounters fields (page 1049).

serverStatus.indexCounters
Changed in version 2.2: Previously, data in the indexCounters (page 1058) document reported sampled
data, and were only useful in relative comparison to each other, because they could not reflect absolute index use.
In 2.2 and later, these data reflect actual index use.Changed in version 2.4: Fields previously in the btree sub-
document of indexCounters (page 1058) are now fields in the indexCounters (page 1058) document.

1058 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

The indexCounters (page 1058) data structure reports information regarding the state and use of indexes in
MongoDB.

serverStatus.indexCounters.accesses
accesses (page 1059) reports the number of times that operations have accessed indexes. This value is the
combination of the hits (page 1059) and misses (page 1059). Higher values indicate that your database has
indexes and that queries are taking advantage of these indexes. If this number does not grow over time, this
might indicate that your indexes do not effectively support your use.

serverStatus.indexCounters.hits
The hits (page 1059) value reflects the number of times that an index has been accessed and mongod
(page 971) is able to return the index from memory.

A higher value indicates effective index use. hits (page 1059) values that represent a greater proportion of the
accesses (page 1059) value, tend to indicate more effective index configuration.

serverStatus.indexCounters.misses
The misses (page 1059) value represents the number of times that an operation attempted to access an index
that was not in memory. These “misses,” do not indicate a failed query or operation, but rather an inefficient use
of the index. Lower values in this field indicate better index use and likely overall performance as well.

serverStatus.indexCounters.resets
The resets (page 1059) value reflects the number of times that the index counters have been reset since the
database last restarted. Typically this value is 0, but use this value to provide context for the data specified by
other indexCounters (page 1058) values.

serverStatus.indexCounters.missRatio
The missRatio (page 1059) value is the ratio of hits (page 1059) to misses (page 1059) misses. This
value is typically 0 or approaching 0.

62.2.8 backgroundFlushing

Example

output of the backgroundFlushing fields (page 1049).

serverStatus.backgroundFlushing
mongod (page 971) periodically flushes writes to disk. In the default configuration, this happens every 60
seconds. The backgroundFlushing (page 1059) data structure contains data regarding these operations.
Consider these values if you have concerns about write performance and journaling (page 1064).

serverStatus.backgroundFlushing.flushes
flushes (page 1059) is a counter that collects the number of times the database has flushed all writes to disk.
This value will grow as database runs for longer periods of time.

serverStatus.backgroundFlushing.total_ms
The total_ms (page 1059) value provides the total number of milliseconds (ms) that the mongod (page 971)
processes have spent writing (i.e. flushing) data to disk. Because this is an absolute value, consider the value of
flushes (page 1059) and average_ms (page 1059) to provide better context for this datum.

serverStatus.backgroundFlushing.average_ms
The average_ms (page 1059) value describes the relationship between the number of flushes and the total
amount of time that the database has spent writing data to disk. The larger flushes (page 1059) is, the more
likely this value is likely to represent a “normal,” time; however, abnormal data can skew this value.

Use the last_ms (page 1059) to ensure that a high average is not skewed by transient historical issue or a
random write distribution.

62.2. Server Status Reference 1059

MongoDB Documentation, Release 2.4.2

serverStatus.backgroundFlushing.last_ms
The value of the last_ms (page 1059) field is the amount of time, in milliseconds, that the last flush operation
took to complete. Use this value to verify that the current performance of the server and is in line with the
historical data provided by average_ms (page 1059) and total_ms (page 1059).

serverStatus.backgroundFlushing.last_finished
The last_finished (page 1060) field provides a timestamp of the last completed flush operation in the
ISODate format. If this value is more than a few minutes old relative to your server’s current time and accounting
for differences in time zone, restarting the database may result in some data loss.

Also consider ongoing operations that might skew this value by routinely block write operations.

62.2.9 cursors

Example

output of the cursors (page 1049) fields.

serverStatus.cursors
The cursors (page 1060) data structure contains data regarding cursor state and use.

serverStatus.cursors.totalOpen
totalOpen (page 1060) provides the number of cursors that MongoDB is maintaining for clients. Because
MongoDB exhausts unused cursors, typically this value small or zero. However, if there is a queue, stale tailable
cursors, or a large number of operations this value may rise.

serverStatus.cursors.clientCursors_size
Deprecated since version 1.x: See totalOpen (page 1060) for this datum.

serverStatus.cursors.timedOut
timedOut (page 1060) provides a counter of the total number of cursors that have timed out since the server
process started. If this number is large or growing at a regular rate, this may indicate an application error.

62.2.10 network

Example

output of the network fields (page 1049).

serverStatus.network
The network (page 1060) data structure contains data regarding MongoDB’s network use.

serverStatus.network.bytesIn
The value of the bytesIn (page 1060) field reflects the amount of network traffic, in bytes, received by this
database. Use this value to ensure that network traffic sent to the mongod (page 971) process is consistent with
expectations and overall inter-application traffic.

serverStatus.network.bytesOut
The value of the bytesOut (page 1060) field reflects the amount of network traffic, in bytes, sent from this
database. Use this value to ensure that network traffic sent by the mongod (page 971) process is consistent with
expectations and overall inter-application traffic.

serverStatus.network.numRequests
The numRequests (page 1060) field is a counter of the total number of distinct requests that the server has

1060 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

received. Use this value to provide context for the bytesIn (page 1060) and bytesOut (page 1060) values
to ensure that MongoDB’s network utilization is consistent with expectations and application use.

62.2.11 repl

Example

output of the repl fields (page 1049).

serverStatus.repl
The repl (page 1061) data structure contains status information for MongoDB’s replication (i.e. “replica set”)
configuration. These values only appear when the current host has replication enabled.

See Replica Set Fundamental Concepts (page 367) for more information on replication.

serverStatus.repl.setName
The setName (page 1061) field contains a string with the name of the current replica set. This value reflects
the --replSet (page 977) command line argument, or replSet (page 1034) value in the configuration file.

See Replica Set Fundamental Concepts (page 367) for more information on replication.

serverStatus.repl.ismaster
The value of the ismaster (page 1061) field is either true or false and reflects whether the current node
is the master or primary node in the replica set.

See Replica Set Fundamental Concepts (page 367) for more information on replication.

serverStatus.repl.secondary
The value of the secondary (page 1061) field is either true or false and reflects whether the current node
is a secondary node in the replica set.

See Replica Set Fundamental Concepts (page 367) for more information on replication.

serverStatus.repl.hosts
hosts (page 1061) is an array that lists the other nodes in the current replica set. Each member of the replica
set appears in the form of hostname:port.

See Replica Set Fundamental Concepts (page 367) for more information on replication.

62.2.12 opcountersRepl

Example

output of the opcountersRepl fields (page 1050).

serverStatus.opcountersRepl
The opcountersRepl (page 1061) data structure, similar to the opcounters (page 1062) data structure,
provides an overview of database replication operations by type and makes it possible to analyze the load on the
replica in more granular manner. These values only appear when the current host has replication enabled.

These values will differ from the opcounters (page 1062) values because of how MongoDB serializes opera-
tions during replication. See Replica Set Fundamental Concepts (page 367) for more information on replication.

These numbers will grow over time in response to database use. Analyze these values over time to track database
utilization.

62.2. Server Status Reference 1061

MongoDB Documentation, Release 2.4.2

serverStatus.opcountersRepl.insert
insert (page 1061) provides a counter of the total number of replicated insert operations since the mongod
(page 971) instance last started.

serverStatus.opcountersRepl.query
query (page 1062) provides a counter of the total number of replicated queries since the mongod (page 971)
instance last started.

serverStatus.opcountersRepl.update
update (page 1062) provides a counter of the total number of replicated update operations since the mongod
(page 971) instance last started.

serverStatus.opcountersRepl.delete
delete (page 1062) provides a counter of the total number of replicated delete operations since the mongod
(page 971) instance last started.

serverStatus.opcountersRepl.getmore
getmore (page 1062) provides a counter of the total number of “getmore” operations since the mongod
(page 971) instance last started. This counter can be high even if the query count is low. Secondary nodes send
getMore operations as part of the replication process.

serverStatus.opcountersRepl.command
command (page 1062) provides a counter of the total number of replicated commands issued to the database
since the mongod (page 971) instance last started.

62.2.13 opcounters

Example

output of the opcounters fields (page 1050).

serverStatus.opcounters
The opcounters (page 1062) data structure provides an overview of database operations by type and makes
it possible to analyze the load on the database in more granular manner.

These numbers will grow over time and in response to database use. Analyze these values over time to track
database utilization.

Note: The data in opcounters (page 1062) treats operations that affect multiple documents, such as bulk in-
sert or multi-update operations, as a single operation. See document (page 1067) for more granular document-
level operation tracking.

serverStatus.opcounters.insert
insert (page 1062) provides a counter of the total number of insert operations since the mongod (page 971)
instance last started.

serverStatus.opcounters.query
query (page 1062) provides a counter of the total number of queries since the mongod (page 971) instance
last started.

serverStatus.opcounters.update
update (page 1062) provides a counter of the total number of update operations since the mongod (page 971)
instance last started.

1062 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

serverStatus.opcounters.delete
delete (page 1062) provides a counter of the total number of delete operations since the mongod (page 971)
instance last started.

serverStatus.opcounters.getmore
getmore (page 1063) provides a counter of the total number of “getmore” operations since the mongod
(page 971) instance last started. This counter can be high even if the query count is low. Secondary nodes send
getMore operations as part of the replication process.

serverStatus.opcounters.command
command (page 1063) provides a counter of the total number of commands issued to the database since the
mongod (page 971) instance last started.

62.2.14 asserts

Example

output of the asserts fields (page 1050).

serverStatus.asserts
The asserts (page 1063) document reports the number of asserts on the database. While assert errors are
typically uncommon, if there are non-zero values for the asserts (page 1063), you should check the log file
for the mongod (page 971) process for more information. In many cases these errors are trivial, but are worth
investigating.

serverStatus.asserts.regular
The regular (page 1063) counter tracks the number of regular assertions raised since the server process
started. Check the log file for more information about these messages.

serverStatus.asserts.warning
The warning (page 1063) counter tracks the number of warnings raised since the server process started. Check
the log file for more information about these warnings.

serverStatus.asserts.msg
The msg (page 1063) counter tracks the number of message assertions raised since the server process started.
Check the log file for more information about these messages.

serverStatus.asserts.user
The user (page 1063) counter reports the number of “user asserts” that have occurred since the last time the
server process started. These are errors that user may generate, such as out of disk space or duplicate key. You
can prevent these assertions by fixing a problem with your application or deployment. Check the MongoDB log
for more information.

serverStatus.asserts.rollovers
The rollovers (page 1063) counter displays the number of times that the rollover counters have rolled over
since the last time the server process started. The counters will rollover to zero after 230 assertions. Use this
value to provide context to the other values in the asserts (page 1063) data structure.

62.2.15 writeBacksQueued

Example

output of the writeBacksQueued fields (page 1050).

62.2. Server Status Reference 1063

MongoDB Documentation, Release 2.4.2

serverStatus.writeBacksQueued
The value of writeBacksQueued (page 1063) is truewhen there are operations from a mongos (page 981)
instance queued for retrying. Typically this option is false.

See Also:

writeBacks

62.2.16 Journaling (dur)

New in version 1.8.

Example

output of the journaling fields (page 1050).

serverStatus.dur
The dur (page 1064) (for “durability”) document contains data regarding the mongod (page 971)‘s journaling-
related operations and performance. mongod (page 971) must be running with journaling for these data to
appear in the output of “serverStatus (page 869)”.

Note: The data values are not cumulative but are reset on a regular basis as determined by the journal group
commit interval (page 73). This interval is ~100 milliseconds (ms) by default (or 30ms if the journal file is on
the same file system as your data files) and is cut by 1/3 when there is a getLastError (page 837) command
pending. The interval is configurable using the --journalCommitInterval option.

See Also:

“Journaling (page 71)” for more information about journaling operations.

serverStatus.dur.commits
The commits (page 1064) provides the number of transactions written to the journal during the last journal
group commit interval (page 73).

serverStatus.dur.journaledMB
The journaledMB (page 1064) provides the amount of data in megabytes (MB) written to journal during the
last journal group commit interval (page 74).

serverStatus.dur.writeToDataFilesMB
The writeToDataFilesMB (page 1064) provides the amount of data in megabytes (MB) written from jour-
nal to the data files during the last journal group commit interval (page 74).

serverStatus.dur.compression
New in version 2.0. The compression (page 1064) represents the compression ratio of the data written to the
journal:

(journaled_size_of_data / uncompressed_size_of_data)

serverStatus.dur.commitsInWriteLock
The commitsInWriteLock (page 1064) provides a count of the commits that occurred while a write lock
was held. Commits in a write lock indicate a MongoDB node under a heavy write load and call for further
diagnosis.

serverStatus.dur.earlyCommits
The earlyCommits (page 1064) value reflects the number of times MongoDB requested a commit before the
scheduled journal group commit interval (page 74). Use this value to ensure that your journal group commit
interval (page 73) is not too long for your deployment.

1064 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

serverStatus.dur.timeMS
The timeMS (page 1064) document provides information about the performance of the mongod (page 971)
instance during the various phases of journaling in the last journal group commit interval (page 73).

serverStatus.dur.timeMS.dt
The dt (page 1065) value provides, in milliseconds, the amount of time over which MongoDB collected the
timeMS (page 1064) data. Use this field to provide context to the other timeMS (page 1064) field values.

serverStatus.dur.timeMS.prepLogBuffer
The prepLogBuffer (page 1065) value provides, in milliseconds, the amount of time spent preparing to
write to the journal. Smaller values indicate better journal performance.

serverStatus.dur.timeMS.writeToJournal
The writeToJournal (page 1065) value provides, in milliseconds, the amount of time spent actually writing
to the journal. File system speeds and device interfaces can affect performance.

serverStatus.dur.timeMS.writeToDataFiles
The writeToDataFiles (page 1065) value provides, in milliseconds, the amount of time spent writing to
data files after journaling. File system speeds and device interfaces can affect performance.

serverStatus.dur.timeMS.remapPrivateView
The remapPrivateView (page 1065) value provides, in milliseconds, the amount of time spent remapping
copy-on-write memory mapped views. Smaller values indicate better journal performance.

62.2.17 recordStats

Example

output of the recordStats (page 1051) fields.

serverStatus.recordStats
The recordStats (page 1065) document provides fine grained reporting on page faults on a per database
level.

serverStatus.recordStats.accessesNotInMemory
accessesNotInMemory (page 1065) reflects the number of times mongod (page 971) needed to access a
memory page that was not resident in memory for all databases managed by this mongod (page 971) instance.

serverStatus.recordStats.pageFaultExceptionsThrown
pageFaultExceptionsThrown (page 1065) reflects the number of page fault exceptions thrown by
mongod (page 971) when accessing data for all databases managed by this mongod (page 971) instance.

serverStatus.recordStats.local.accessesNotInMemory
accessesNotInMemory (page 1065) reflects the number of times mongod (page 971) needed to access a
memory page that was not resident in memory for the local database.

serverStatus.recordStats.local.pageFaultExceptionsThrown
pageFaultExceptionsThrown (page 1065) reflects the number of page fault exceptions thrown by
mongod (page 971) when accessing data for the local database.

serverStatus.recordStats.admin.accessesNotInMemory
accessesNotInMemory (page 1065) reflects the number of times mongod (page 971) needed to access a
memory page that was not resident in memory for the admin database.

serverStatus.recordStats.admin.pageFaultExceptionsThrown
pageFaultExceptionsThrown (page 1065) reflects the number of page fault exceptions thrown by
mongod (page 971) when accessing data for the admin database.

62.2. Server Status Reference 1065

MongoDB Documentation, Release 2.4.2

serverStatus.recordStats.<database>.accessesNotInMemory
accessesNotInMemory (page 1065) reflects the number of times mongod (page 971) needed to access a
memory page that was not resident in memory for the <database> database.

serverStatus.recordStats.<database>.pageFaultExceptionsThrown
pageFaultExceptionsThrown (page 1066) reflects the number of page fault exceptions thrown by
mongod (page 971) when accessing data for the <database> database.

62.2.18 workingSet

New in version 2.4.

Example

output of the workingSet (page 1051) fields.

Note: The workingSet (page 1066) data is only included in the output of serverStatus (page 869) if explicitly
enabled. To return the workingSet (page 1066) use one of the following commands:

db.serverStatus({ workingSet: 1 })
db.runCommand({ serverStatus: 1, workingSet: 1 })

serverStatus.workingSet
workingSet (page 1066) is a document that contains values useful for estimating the size of the working
set, which is the amount of data that MongoDB uses actively. workingSet (page 1066) uses an internal data
structure that tracks pages accessed by mongod (page 971).

serverStatus.workingSet.note
note (page 1066) is a field that holds a string warning that the workingSet (page 1066) document is an
estimate.

serverStatus.workingSet.pagesInMemory
pagesInMemory (page 1066) contains a count of the total number of pages accessed by mongod (page 971)
over the period displayed in overSeconds (page 1066). The default page size is 4 kilobytes: to convert this
value to the amount of data in memory multiply this value by 4 kilobytes.

If your total working set is less than the size of physical memory, over time the value of pagesInMemory
(page 1066) will reflect your data size. Conversely, if your data set is greater than the size of the physical RAM,
this number will reflect the total size of physical RAM.

Use pagesInMemory (page 1066) in conjunction with overSeconds (page 1066) to help estimate the
actual size of the working set.

serverStatus.workingSet.computationTimeMicros
computationTimeMicros (page 1066) reports the amount of time the mongod (page 971) instance used
to compute the other fields in the workingSet (page 1066) section.

Reporting on workingSet (page 1066) may impact the performance of other operations on the mongod
(page 971) instance because MongoDB must collect some data within the context of a lock. Ensure that auto-
mated monitoring tools consider this metric when determining the frequency of collection for workingSet
(page 1066).

serverStatus.workingSet.overSeconds
overSeconds (page 1066) returns the amount of time elapsed between the newest and oldest pages tracked
in the pagesInMemory (page 1066) data point.

1066 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

If overSeconds (page 1066) is decreasing, or if pagesInMemory (page 1066) equals physical RAM and
overSeconds (page 1066) is very small, the working set may be much larger than physical RAM.

When overSeconds (page 1066) is large, MongoDB’s data set is equal to or smaller than physical RAM.

62.2.19 metrics

Example

output of the metrics (page 1051) fields.

New in version 2.4.

serverStatus.metrics
The metrics (page 1067) document holds a number of statistics that reflect the current use and state of a
running mongod (page 971) instance.

serverStatus.metrics.document
The document (page 1067) holds a document of that reflect document access and modification patterns and
data use. Compare these values to the data in the opcounters (page 1062) document, which track total
number of operations.

serverStatus.metrics.document.deleted
deleted (page 1067) reports the total number of documents deleted.

serverStatus.metrics.document.inserted
inserted (page 1067) reports the total number of documents inserted.

serverStatus.metrics.document.returned
returned (page 1067) reports the total number of documents returned by queries.

serverStatus.metrics.document.updated
updated (page 1067) reports the total number of documents updated.

serverStatus.metrics.getLastError
getLastError (page 1067) is a document that reports on getLastError (page 837) use.

serverStatus.metrics.getLastError.wtime
wtime (page 1067) is a sub-document that reports getLastError (page 837) operation counts with a w
argument greater than 1.

serverStatus.metrics.getLastError.wtime.num
num (page 1067) reports the total number of getLastError (page 837) operations without a specified write
concern (i.e. w) that wait for one or more members of a replica set to acknowledge the write operation (i.e.
greater than 1.)

serverStatus.metrics.getLastError.wtime.totalMillis
totalMillis (page 1067) reports the total amount of time in milliseconds that the mongod (page 971) has
spent performing getLastError (page 837) operations with write concern (i.e. w) that wait for one or more
members of a replica set to acknowledge the write operation (i.e. greater than 1.)

serverStatus.metrics.getLastError.wtimeouts
wtimeouts (page 1067) reports the number of times that write concern operations have timed out as a result
of the wtimeout threshold to getLastError (page 837).

serverStatus.metrics.operation
operation (page 1067) is a sub-document that holds counters for several types of update and query operations
that MongoDB handles using special operation types.

62.2. Server Status Reference 1067

MongoDB Documentation, Release 2.4.2

serverStatus.metrics.operation.fastmod
fastmod (page 1067) reports the number of update (page 213) operations that neither cause documents to
grow nor require updates to the index. For example, this counter would record an update operation that use the
$inc (page 751) operator to increment the value of a field that is not indexed.

serverStatus.metrics.operation.idhack
idhack (page 1068) reports the number of queries that contain the _id field. For these queries, MongoDB
will use default index on the _id field and skip all query plan analysis.

serverStatus.metrics.operation.scanAndOrder
scanAndOrder (page 1068) reports the total number of queries that return sorted numbers that cannot perform
the sort operation using an index.

serverStatus.metrics.queryExecutor
queryExecutor (page 1068) is a document that reports data from the query execution system.

serverStatus.metrics.queryExecutor.scanned
scanned (page 1068) reports the total number of index items scanned during queries and query-plan evalua-
tion. This counter is the same as nscanned (page 1088) in the output of explain() (page 892).

serverStatus.metrics.record
record (page 1068) is a document that reports data related to record allocation in the on-disk memory files.

serverStatus.metrics.record.moves
moves (page 1068) reports the total number of times documents move within the on-disk representation of the
MongoDB data set. Documents move as a result of operations that increase the size of the document beyond
their allocated record size.

serverStatus.metrics.repl
repl (page 1068) holds a sub-document that reports metrics related to the replication process. repl
(page 1068) document appears on all mongod (page 971) instances, even those that aren’t members of replica
sets.

serverStatus.metrics.repl.apply
apply (page 1068) holds a sub-document that reports on the application of operations from the replication
oplog.

serverStatus.metrics.repl.apply.batches
batches (page 1068) reports on the oplog application process on secondaries members of replica sets. See
Multithreaded Replication (page 390) for more information on the oplog application processes

serverStatus.metrics.repl.apply.batches.num
num (page 1068) reports the total number of batches applied across all databases.

serverStatus.metrics.repl.apply.batches.totalMillis
totalMillis (page 1068) reports the total amount of time the mongod (page 971) has spent applying oper-
ations from the oplog.

serverStatus.metrics.repl.apply.ops
ops (page 1068) reports the total number of oplog operations applied.

serverStatus.metrics.repl.buffer
MongoDB buffers oplog operations from the replication sync source buffer before applying oplog entries in a
batch. buffer (page 1068) provides a way to track the oplog buffer. See Multithreaded Replication (page 390)
for more information on the oplog application process.

serverStatus.metrics.repl.buffer.count

count (page 1068) reports the current number of operations in the oplog buffer.

1068 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

serverStatus.metrics.repl.buffer.maxSizeBytes
maxSizeBytes (page 1068) reports the maximum size of the buffer. This value is a constant setting in the
mongod (page 971), and is not configurable.

serverStatus.metrics.repl.buffer.sizeBytes
sizeBytes (page 1069) reports the current size of the contents of the oplog buffer.

serverStatus.metrics.repl.network
network (page 1069) reports network use by the replication process.

serverStatus.metrics.repl.network.bytes
bytes (page 1069) reports the total amount of data read from the replication sync source.

serverStatus.metrics.repl.network.getmores
getmores (page 1069) reports on the getmore operations,which are requests for additional results from the
oplog cursor as part of the oplog replication process.

serverStatus.metrics.repl.network.getmores.num
num (page 1069) reports the total number of getmore operations, which are operations that request an addi-
tional set of operations from the replication sync source.

serverStatus.metrics.repl.network.getmores.totalMillis
totalMillis (page 1069) reports the total amount of time required to collect data from getmore operations.

Note: This number can be quite large, as MongoDB will wait for more data even if the getmore operation
does not initial return data.

serverStatus.metrics.repl.network.ops
ops (page 1069) reports the total number of operations read from the replication source.

serverStatus.metrics.repl.network.readersCreated
readersCreated (page 1069) reports the total number of oplog query processes created. MongoDB will
create a new oplog query any time an error occurs in the connection, including a timeout, or a network operation.
Furthermore, readersCreated (page 1069) will increment every time MongoDB selects a new source fore
replication.

serverStatus.metrics.repl.oplog
oplog (page 1069) is a document that reports on the size and use of the oplog by this mongod (page 971)
instance.

serverStatus.metrics.repl.oplog.insert
insert (page 1069) is a document that reports insert operations into the oplog.

serverStatus.metrics.repl.oplog.insert.num

num (page 1069) reports the total number of items inserted into the oplog.

serverStatus.metrics.repl.oplog.insert.totalMillis
totalMillis (page 1069) reports the total amount of time spent for the mongod (page 971) to insert data
into the oplog.

serverStatus.metrics.repl.oplog.insertBytes
insertBytes (page 1069) the total size of documents inserted into the oplog.

serverStatus.metrics.repl.preload
preload (page 1069) reports on the “pre-fetch” stage, where MongoDB loads documents and indexes into
RAM to improve replication throughput.

See Multithreaded Replication (page 390) for more information about the pre-fetch stage of the replication
process.

62.2. Server Status Reference 1069

MongoDB Documentation, Release 2.4.2

serverStatus.metrics.repl.preload.docs
docs (page 1069) is a sub-document that reports on the documents loaded into memory during the pre-fetch
stage.

serverStatus.metrics.repl.preload.docs.num
num (page 1070) reports the total number of documents loaded during the pre-fetch stage of replication.

serverStatus.metrics.repl.preload.docs.totalMillis
totalMillis (page 1070) reports the total amount of time spent loading documents as part of the pre-fetch
stage of replication.

serverStatus.metrics.repl.preload.indexes
indexes (page 1070) is a sub-document that reports on the index items loaded into memory during the pre-
fetch stage of replication.

See Multithreaded Replication (page 390) for more information about the pre-fetch stage of replication.

serverStatus.metrics.repl.preload.indexes.num
num (page 1070) reports the total number of index entries loaded by members before updating documents as
part of the pre-fetch stage of replication.

serverStatus.metrics.repl.preload.indexes.totalMillis
totalMillis (page 1070) reports the total amount of time spent loading index entries as part of the pre-fetch
stage of replication.

serverStatus.metrics.ttl
ttl (page 1070) is a sub-document that reports on the operation of the resource use of the ttl index (page 551)
process.

serverStatus.metrics.ttl.deletedDocuments
deletedDocuments (page 1070) reports the total number of documents deleted from collections with a ttl
index (page 551).

serverStatus.metrics.ttl.passes
passes (page 1070) reports the number of times the background process removes documents from collections
with a ttl index (page 551).

62.3 Database Statistics Reference

62.3.1 Synopsis

MongoDB can report data that reflects the current state of the “active” database. In this context “database,” refers to a
single MongoDB database. To run dbStats (page 823) issue this command in the shell:

db.runCommand({ dbStats: 1 })

The mongo (page 984) shell provides the helper function db.stats() (page 946). Use the following form:

db.stats()

The above commands are equivalent. Without any arguments, db.stats() (page 946) returns values in bytes. To
convert the returned values to kilobytes, use the scale argument:

db.stats(1024)

Or:

db.runCommand({ dbStats: 1, scale: 1024 })

1070 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

Note: Because scaling rounds values to whole numbers, scaling may return unlikely or unexpected results.

The above commands are equivalent. See the dbStats (page 823) database command and the db.stats()
(page 946) helper for the mongo (page 984) shell for additional information.

62.3.2 Fields

dbStats.db
Contains the name of the database.

dbStats.collections
Contains a count of the number of collections in that database.

dbStats.objects
Contains a count of the number of objects (i.e. documents) in the database across all collections.

dbStats.avgObjSize
The average size of each document in bytes. This is the dataSize (page 1071) divided by the number of
documents.

dbStats.dataSize
The total size of the data held in this database including the padding factor. The scale argument affects this
value. The dataSize (page 1071) will not decrease when documents shrink, but will decrease when you
remove documents.

dbStats.storageSize
The total amount of space allocated to collections in this database for document storage. The scale argument
affects this value. The storageSize (page 1071) does not decrease as you remove or shrink documents.

dbStats.numExtents
Contains a count of the number of extents in the database across all collections.

dbStats.indexes
Contains a count of the total number of indexes across all collections in the database.

dbStats.indexSize
The total size of all indexes created on this database. The scale arguments affects this value.

dbStats.fileSize
The total size of the data files that hold the database. This value includes preallocated space and the padding
factor. The value of fileSize (page 1071) only reflects the size of the data files for the database and not the
namespace file.

The scale argument affects this value.

dbStats.nsSizeMB
The total size of the namespace files (i.e. that end with .ns) for this database. You cannot change the size of
the namespace file after creating a database, but you can change the default size for all new namespace files with
the nssize (page 1031) runtime option.

See Also:

The nssize (page 1031) option, and Maximum Namespace File Size (page 1105)

dbStats.dataFileVersion
New in version 2.4. Document that contains information about the on-disk format of the data files for the
database.

62.3. Database Statistics Reference 1071

MongoDB Documentation, Release 2.4.2

dbStats.dataFileVersion.major
New in version 2.4. The major version number for the on-disk format of the data files for the database.

dbStats.dataFileVersion.minor
New in version 2.4. The minor version number for the on-disk format of the data files for the database.

62.4 Collection Statistics Reference

62.4.1 Synopsis

To fetch collection statistics, call the db.collection.stats() (page 931) method on a collection object in the
mongo (page 984) shell:

db.collection.stats()

You may also use the literal command format:

db.runCommand({ collStats: "collection" })

Replace collection in both examples with the name of the collection you want statistics for. By default, the return
values will appear in terms of bytes. You can, however, enter a scale argument. For example, you can convert the
return values to kilobytes like so:

db.collection.stats(1024)

Or:

db.runCommand({ collStats: "collection", scale: 1024 })

Note: The scale argument rounds values to whole numbers. This can produce unpredictable and unexpected results
in some situations.

See Also:

The documentation of the “collStats (page 815)” command and the “db.collection.stats() (page 931),”
method in the mongo (page 984) shell.

62.4.2 Example Document

The output of db.collection.stats() (page 931) resembles the following:

{
"ns" : "<database>.<collection>",
"count" : <number>,
"size" : <number>,
"avgObjSize" : <number>,
"storageSize" : <number>,
"numExtents" : <number>,
"nindexes" : <number>,
"lastExtentSize" : <number>,
"paddingFactor" : <number>,
"systemFlags" : <bit>,
"userFlags" : <bit>,
"totalIndexSize" : <number>,
"indexSizes" : {

1072 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

"_id_" : <number>,
"a_1" : <number>

},
"ok" : 1

}

62.4.3 Fields

collStats.ns
The namespace of the current collection, which follows the format [database].[collection].

collStats.count
The number of objects or documents in this collection.

collStats.size
The size of the data stored in this collection. This value does not include the size of any indexes associated with
the collection, which the totalIndexSize (page 1073) field reports.

The scale argument affects this value.

collStats.avgObjSize
The average size of an object in the collection. The scale argument affects this value.

collStats.storageSize
The total amount of storage allocated to this collection for document storage. The scale argument affects this
value. The storageSize (page 1073) does not decrease as you remove or shrink documents.

collStats.numExtents
The total number of contiguously allocated data file regions.

collStats.nindexes
The number of indexes on the collection. All collections have at least one index on the _id field. Changed in
version 2.2: Before 2.2, capped collections did not necessarily have an index on the _id field, and some capped
collections created with pre-2.2 versions of mongod (page 971) may not have an _id index.

collStats.lastExtentSize
The size of the last extent allocated. The scale argument affects this value.

collStats.paddingFactor
The amount of space added to the end of each document at insert time. The document padding provides a small
amount of extra space on disk to allow a document to grow slightly without needing to move the document.
mongod (page 971) automatically calculates this padding factor

collStats.flags
Changed in version 2.2: Removed in version 2.2 and replaced with the userFlags (page 1073) and
systemFlags (page 1073) fields. Indicates the number of flags on the current collection. In version 2.0,
the only flag notes the existence of an index on the _id field.

collStats.systemFlags
New in version 2.2. Reports the flags on this collection that reflect internal server options. Typically this value
is 1 and reflects the existence of an index on the _id field.

collStats.userFlags
New in version 2.2. Reports the flags on this collection set by the user. In version 2.2 the only user flag is
usePowerOf2Sizes (page 814). If usePowerOf2Sizes (page 814) is enabled, userFlags (page 1073)
will be set to 1, otherwise userFlags (page 1073) will be 0.

See the collMod (page 814) command for more information on setting user flags and usePowerOf2Sizes
(page 814).

62.4. Collection Statistics Reference 1073

MongoDB Documentation, Release 2.4.2

collStats.totalIndexSize
The total size of all indexes. The scale argument affects this value.

collStats.indexSizes
This field specifies the key and size of every existing index on the collection. The scale argument affects this
value.

62.5 Collection Validation Data

62.5.1 Synopsis

The collection validation command checks all of the structures within a name space for correctness and returns a
document containing information regarding the on-disk representation of the collection.

Warning: The validate (page 879) process may consume significant system resources and impede application
performance because it must scan all data in the collection.

Run the validation command in the mongo (page 984) shell using the following form to validate a collection named
people:

db.people.validate()

Alternatively you can use the command prototype and the db.runCommand() (page 944) shell helper in the fol-
lowing form:

db.runCommand({ validate: "people", full: true })
db.people.validate(true)

See Also:

validate (page 879) and validate() (page 934).

62.5.2 Values

validate.ns
The full namespace name of the collection. Namespaces include the database name and the collection name in
the form database.collection.

validate.firstExtent
The disk location of the first extent in the collection. The value of this field also includes the namespace.

validate.lastExtent
The disk location of the last extent in the collection. The value of this field also includes the namespace.

validate.extentCount
The number of extents in the collection.

validate.extents
validate (page 879) returns one instance of this document for every extent in the collection. This sub-
document is only returned when you specify the full option to the command.

validate.extents.loc
The disk location for the beginning of this extent.

validate.extents.xnext
The disk location for the extent following this one. “null” if this is the end of the linked list of extents.

1074 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

validate.extents.xprev
The disk location for the extent preceding this one. “null” if this is the head of the linked list of extents.

validate.extents.nsdiag
The namespace this extent belongs to (should be the same as the namespace shown at the beginning of the
validate listing).

validate.extents.size
The number of bytes in this extent.

validate.extents.firstRecord
The disk location of the first record in this extent.

validate.extents.lastRecord
The disk location of the last record in this extent.

validate.datasize
The number of bytes in all data records. This value does not include deleted records, nor does it include extent
headers, nor record headers, nor space in a file unallocated to any extent. datasize (page 1075) includes
record padding.

validate.nrecords
The number of documents in the collection.

validate.lastExtentSize
The size of the last new extent created in this collection. This value determines the size of the next extent created.

validate.padding
A floating point value between 1 and 2.

When MongoDB creates a new record it uses the padding factor to determine how much additional space to add
to the record. The padding factor is automatically adjusted by mongo when it notices that update operations are
triggering record moves.

validate.firstExtentDetails
The size of the first extent created in this collection. This data is similar to the data provided by the extents
(page 1074) sub-document; however, the data reflects only the first extent in the collection and is always re-
turned.

validate.firstExtentDetails.loc
The disk location for the beginning of this extent.

validate.firstExtentDetails.xnext
The disk location for the extent following this one. “null” if this is the end of the linked list of extents,
which should only be the case if there is only one extent.

validate.firstExtentDetails.xprev
The disk location for the extent preceding this one. This should always be “null.”

validate.firstExtentDetails.nsdiag
The namespace this extent belongs to (should be the same as the namespace shown at the beginning of the
validate listing).

validate.firstExtentDetails.size
The number of bytes in this extent.

validate.firstExtentDetails.firstRecord
The disk location of the first record in this extent.

validate.firstExtentDetails.lastRecord
The disk location of the last record in this extent.

62.5. Collection Validation Data 1075

MongoDB Documentation, Release 2.4.2

validate.objectsFound
The number of records actually encountered in a scan of the collection. This field should have the same value
as the nrecords (page 1075) field.

validate.invalidObjects
The number of records containing BSON documents that do not pass a validation check.

Note: This field is only included in the validation output when you specify the full option.

validate.bytesWithHeaders
This is similar to datasize, except that bytesWithHeaders (page 1076) includes the record headers. In
version 2.0, record headers are 16 bytes per document.

Note: This field is only included in the validation output when you specify the full option.

validate.bytesWithoutHeaders
bytesWithoutHeaders (page 1076) returns data collected from a scan of all records. The value should be
the same as datasize (page 1075).

Note: This field is only included in the validation output when you specify the full option.

validate.deletedCount
The number of deleted or “free” records in the collection.

validate.deletedSize
The size of all deleted or “free” records in the collection.

validate.nIndexes
The number of indexes on the data in the collection.

validate.keysPerIndex
A document containing a field for each index, named after the index’s name, that contains the number of keys,
or documents referenced, included in the index.

validate.valid
Boolean. true, unless validate (page 879) determines that an aspect of the collection is not valid. When
false, see the errors (page 1076) field for more information.

validate.errors
Typically empty; however, if the collection is not valid (i.e valid (page 1076) is false,) this field will contain
a message describing the validation error.

validate.ok
Set to 1 when the command succeeds. If the command fails the ok (page 1076) field has a value of 0.

62.6 Connection Pool Statistics Reference

62.6.1 Synopsis

mongos (page 981) instances maintain a pool of connections for interacting with constituent members of the sharded
cluster. Additionally, mongod (page 971) instances maintain connection with other shards in the cluster for mi-
grations. The connPoolStats (page 819) command returns statistics regarding these connections between the
mongos (page 981) and mongod (page 971) instances or between the mongod (page 971) instances in a shard
cluster.

1076 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

Note: connPoolStats (page 819) only returns meaningful results for mongos (page 981) instances and for
mongod (page 971) instances in sharded clusters.

62.6.2 Output

connPoolStats.hosts
The sub-documents of the hosts (page 1077) document report connections between the mongos (page 981)
or mongod (page 971) instance and each component mongod (page 971) of the sharded cluster.

connPoolStats.hosts.[host].available
available (page 1077) reports the total number of connections that the mongos (page 981) or mongod
(page 971) could use to connect to this mongod (page 971).

connPoolStats.hosts.[host].created
created (page 1077) reports the number of connections that this mongos (page 981) or mongod
(page 971) has ever created for this host.

connPoolStats.replicaSets
replicaSets (page 1077) is a document that contains replica set information for the sharded cluster.

connPoolStats.replicaSets.shard
The shard (page 1077) document reports on each shard within the sharded cluster

connPoolStats.replicaSets.[shard].host
The host (page 1077) field holds an array of document that reports on each host within the shard in the
replica set.

These values derive from the replica set status (page 446) values.

connPoolStats.replicaSets.[shard].host[n].addr
addr (page 1077) reports the address for the host in the sharded cluster in the format of
“[hostname]:[port]”.

connPoolStats.replicaSets.[shard].host[n].ok
ok (page 1077) reports false when:

•the mongos (page 981) or mongod (page 971) cannot connect to instance.
•the mongos (page 981) or mongod (page 971) received a connection exception or error.

This field is for internal use.

connPoolStats.replicaSets.[shard].host[n].ismaster
ismaster (page 1077) reports true if this host (page 1077) is the primary member of the replica
set.

connPoolStats.replicaSets.[shard].host[n].hidden
hidden (page 1077) reports true if this host (page 1077) is a hidden member of the replica set.

connPoolStats.replicaSets.[shard].host[n].secondary
secondary (page 1077) reports true if this host (page 1077) is a secondary member of the
replica set.

connPoolStats.replicaSets.[shard].host[n].pingTimeMillis
pingTimeMillis (page 1077) reports the ping time in milliseconds from the mongos (page 981)
or mongod (page 971) to this host (page 1077).

connPoolStats.replicaSets.[shard].host[n].tags
New in version 2.2. tags (page 1077) reports the tags (page 443), if this member of the set has
tags configured.

62.6. Connection Pool Statistics Reference 1077

MongoDB Documentation, Release 2.4.2

connPoolStats.replicaSets.[shard].master
master (page 1077) reports the ordinal identifier of the host in the host (page 1077) array that is the
primary of the replica set.

connPoolStats.replicaSets.[shard].nextSlave
Deprecated since version 2.2. nextSlave (page 1078) reports the secondary member that the mongos
(page 981) will use to service the next request for this replica set.

connPoolStats.createdByType
createdByType (page 1078) document reports the number of each type of connection that mongos
(page 981) or mongod (page 971) has created in all connection pools.

mongos (page 981) connect to mongod (page 971) instances using one of three types of connections. The
following sub-document reports the total number of connections by type.

connPoolStats.createdByType.master
master (page 1078) reports the total number of connections to the primary member in each cluster.

connPoolStats.createdByType.set
set (page 1078) reports the total number of connections to a replica set member.

connPoolStats.createdByType.sync
sync (page 1078) reports the total number of config database connections.

connPoolStats.totalAvailable
totalAvailable (page 1078) reports the running total of connections from the mongos (page 981) or
mongod (page 971) to all mongod (page 971) instances in the sharded cluster available for use.

connPoolStats.totalCreated
totalCreated (page 1078) reports the total number of connections ever created from the mongos (page 981)
or mongod (page 971) to all mongod (page 971) instances in the sharded cluster.

connPoolStats.numDBClientConnection
numDBClientConnection (page 1078) reports the total number of connections from the mongos
(page 981) or mongod (page 971) to all of the mongod (page 971) instances in the sharded cluster.

connPoolStats.numAScopedConnection
numAScopedConnection (page 1078) reports the number of exception safe connections created from
mongos (page 981) or mongod (page 971) to all mongod (page 971) in the sharded cluster. The mongos
(page 981) or mongod (page 971) releases these connections after receiving a socket exception from the
mongod (page 971).

62.7 Current Operation Reporting

Changed in version 2.2.

62.7.1 Example Output

The db.currentOp() (page 936) helper in the mongo (page 984) shell reports on the current operations running
on the mongod (page 971) instance. The operation returns the inprog array, which contains a document for each in
progress operation. Consider the following example output:

{
"inprog": [

{
"opid" : 3434473,
"active" : <boolean>,

1078 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

"secs_running" : 0,
"op" : "<operation>",
"ns" : "<database>.<collection>",
"query" : {
},
"client" : "<host>:<outgoing>",
"desc" : "conn57683",
"threadId" : "0x7f04a637b700",
"connectionId" : 57683,
"locks" : {

"^" : "w",
"^local" : "W",
"^<database>" : "W"

},
"waitingForLock" : false,
"msg": "<string>"
"numYields" : 0,
"progress" : {

"done" : <number>,
"total" : <number>

}
"lockStats" : {

"timeLockedMicros" : {
"R" : NumberLong(),
"W" : NumberLong(),
"r" : NumberLong(),
"w" : NumberLong()

},
"timeAcquiringMicros" : {

"R" : NumberLong(),
"W" : NumberLong(),
"r" : NumberLong(),
"w" : NumberLong()

}
}

},
]

}

Optional

You may specify the true argument to db.currentOp() (page 936) to return a more verbose output including
idle connections and system operations. For example:

db.currentOp(true)

Furthermore, active operations (i.e. where active (page 1080) is true) will return additional fields.

62.7.2 Operations

You can use the db.killOp() (page 941) in conjunction with the opid (page 1080) field to terminate a currently
running operation. The following JavaScript operations for the mongo (page 984) shell filter the output of specific
types of operations:

• Return all pending write operations:

62.7. Current Operation Reporting 1079

MongoDB Documentation, Release 2.4.2

db.currentOp().inprog.forEach(
function(d){
if(d.waitingForLock && d.lockType != "read")

printjson(d)
})

• Return the active write operation:

db.currentOp().inprog.forEach(
function(d){
if(d.active && d.lockType == "write")

printjson(d)
})

• Return all active read operations:

db.currentOp().inprog.forEach(
function(d){
if(d.active && d.lockType == "read")

printjson(d)
})

62.7.3 Output Reference

Some fields may not appear in all current operation documents, depending on the kind of operation and its state.

currentOp.opid
Holds an identifier for the operation. You can pass this value to db.killOp() (page 941) in the mongo
(page 984) shell to terminate the operation.

currentOp.active
A boolean value, that is true if the operation has started or false if the operation is queued and waiting for
a lock to run. active (page 1080) may be true even if the operation has yielded to another operation.

currentOp.secs_running
The duration of the operation in seconds. MongoDB calculates this value by subtracting the current time from
the start time of the operation.

If the operation is not running, (i.e. if active (page 1080) is false,) this field may not appear in the output
of db.currentOp() (page 936).

currentOp.op
A string that identifies the type of operation. The possible values are:

•insert

•query

•update

•remove

•getmore

•command

currentOp.ns
The namespace the operation targets. MongoDB forms namespaces using the name of the database and the
name of the collection.

1080 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

currentOp.query
A document containing the current operation’s query. The document is empty for operations that do not have
queries: getmore, insert, and command.

currentOp.client
The IP address (or hostname) and the ephemeral port of the client connection where the operation originates. If
your inprog array has operations from many different clients, use this string to relate operations to clients.

For some commands, including findAndModify (page 829) and db.eval() (page 936), the client will be
0.0.0.0:0, rather than an actual client.

currentOp.desc
A description of the client. This string includes the connectionId (page 1081).

currentOp.threadId
An identifier for the thread that services the operation and its connection.

currentOp.connectionId
An identifier for the connection where the operation originated.

currentOp.locks
New in version 2.2. The locks (page 1081) document reports on the kinds of locks the operation currently
holds. The following kinds of locks are possible:

currentOp.locks.^
^ (page 1081) reports on the use of the global lock :for the program:mongod instance. All operations must
hold the :global lock for some phases of operation.

currentOp.locks.^local
^local (page 1081) reports on the lock for the local database. MongoDB uses the local database
for a number of operations, but the most frequent use of the local database is for the oplog used in
replication.

currentOp.locks.^<database>
locks.^<database> (page 1081) reports on the lock state for the database that this operation targets.

locks (page 1081) replaces lockType in earlier versions.

currentOp.lockType
Changed in version 2.2: The locks (page 1081) replaced the lockType (page 1081) field in 2.2. Identifies
the type of lock the operation currently holds. The possible values are:

•read

•write

currentOp.waitingForLock
Returns a boolean value. waitingForLock (page 1081) is true if the operation is waiting for a lock and
false if the operation has the required lock.

currentOp.msg
The msg (page 1081) provides a message that describes the status and progress of the operation. In the case of
indexing or mapReduce operations, the field reports the completion percentage.

currentOp.progress
Reports on the progress of mapReduce or indexing operations. The progress (page 1081) fields corresponds
to the completion percentage in the msg (page 1081) field. The progress (page 1081) specifies the following
information:

currentOp.progress.done
Reports the number completed.

62.7. Current Operation Reporting 1081

MongoDB Documentation, Release 2.4.2

currentOp.progress.total
Reports the total number.

currentOp.killed
Returns true if mongod (page 971) instance is in the process of killing the operation.

currentOp.numYields
numYields (page 1082) is a counter that reports the number of times the operation has yielded to allow other
operations to complete.

Typically, operations yield when they need access to data that MongoDB has not yet fully read into memory.
This allows other operations that have data in memory to complete quickly while MongoDB reads in data for
the yielding operation.

currentOp.lockStats
New in version 2.2. The lockStats (page 1082) document reflects the amount of time the operation has spent
both acquiring and holding locks. lockStats (page 1082) reports data on a per-lock type, with the following
possible lock types:

•R represents the global read lock,

•W represents the global write lock,

•r represents the database specific read lock, and

•w represents the database specific write lock.

currentOp.timeLockedMicros
The timeLockedMicros (page 1082) document reports the amount of time the operation has
spent holding a specific lock.

For operations that require more than one lock, like those that lock the local database to update
the oplog, then the values in this document can be longer than this value may be longer than the
total length of the operation (i.e. secs_running (page 1080).)

currentOp.timeLockedMicros.R
Reports the amount of time in microseconds the operation has held the global read lock.

currentOp.timeLockedMicros.W
Reports the amount of time in microseconds the operation has held the global write lock.

currentOp.timeLockedMicros.r
Reports the amount of time in microseconds the operation has held the database specific
read lock.

currentOp.timeLockedMicros.w
Reports the amount of time in microseconds the operation has held the database specific
write lock.

currentOp.timeAcquiringMicros
The timeAcquiringMicros (page 1082) document reports the amount of time the operation has spent
waiting to acquire a specific lock.

currentOp.timeAcquiringMicros.R
Reports the mount of time in microseconds the operation has waited for the global read lock.

currentOp.timeAcquiringMicros.W
Reports the mount of time in microseconds the operation has waited for the global write lock.

currentOp.timeAcquiringMicros.r
Reports the mount of time in microseconds the operation has waited for the database specific read
lock.

1082 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

currentOp.timeAcquiringMicros.w
Reports the mount of time in microseconds the operation has waited for the database specific write
lock.

62.8 Database Profiler Output

The database profiler captures data information about read and write operations, cursor operations, and database com-
mands. To configure the database profile and set the thresholds for capturing profile data, see the Analyze Performance
of Database Operations (page 95) section.

The database profiler writes data in the system.profile (page 1101) collection, which is a capped collection. To
view the profiler’s output, use normal MongoDB queries on the system.profile (page 1101) collection.

Note: Because the database profiler writes data to the system.profile (page 1101) collection in a database, the
profiler will profile some write activity, even for databases that are otherwise read-only.

62.8.1 Example system.profile Document

The documents in the system.profile (page 1101) collection have the following form. This example document
reflects an update operation:

{
"ts" : ISODate("2012-12-10T19:31:28.977Z"),
"op" : "update",
"ns" : "social.users",
"query" : {

"name" : "jane"
},
"updateobj" : {

"$set" : {
"likes" : [

"basketball",
"trekking"

]
}

},
"nscanned" : 8,
"moved" : true,
"nmoved" : 1,
"nupdated" : 1,
"keyUpdates" : 0,
"numYield" : 0,
"lockStats" : {

"timeLockedMicros" : {
"r" : NumberLong(0),
"w" : NumberLong(258)

},
"timeAcquiringMicros" : {

"r" : NumberLong(0),
"w" : NumberLong(7)

}
},
"millis" : 0,
"client" : "127.0.0.1",

62.8. Database Profiler Output 1083

MongoDB Documentation, Release 2.4.2

"user" : ""
}

62.8.2 Output Reference

For any single operation, the documents created by the database profiler will include a subset of the following fields.
The precise selection of fields in these documents depends on the type of operation.

system.profile.ts
The timestamp of the operation.

system.profile.op
The type of operation. The possible values are:

•insert

•query

•update

•remove

•getmore

•command

system.profile.ns
The namespace the operation targets. Namespaces in MongoDB take the form of the database, followed by a
dot (.), followed by the name of the collection.

system.profile.query
The query document used. See Query Specification Documents (page 184) for more information on these
documents, and Meta Query Operator Quick Reference (page 881) for more information.

system.profile.command
The command operation.

system.profile.updateobj
The update document (page 185) passed in during an update (page 213) operation.

system.profile.cursorid
The ID of the cursor accessed by a getmore operation.

system.profile.ntoreturn
Changed in version 2.2: In 2.0, MongoDB includes this field for query and command operations. In 2.2,
this information MongoDB also includes this field for getmore operations. The number of documents the
operation specified to return. For example, the profile (page 860) command would return one document (a
results document) so the ntoreturn (page 1084) value would be 1. The limit(5) (page 894) command
would return five documents so the ntoreturn (page 1084) value would be 5.

If the ntoreturn (page 1084) value is 0, the command did not specify a number of documents to return, as
would be the case with a simple find() (page 910) command with no limit specified.

system.profile.ntoskip
New in version 2.2. The number of documents the skip() (page 899) method specified to skip.

system.profile.nscanned
The number of documents that MongoDB scans in the index (page 301) in order to carry out the operation.

In general, if nscanned (page 1084) is much higher than nreturned (page 1085), the database is scanning
many objects to find the target objects. Consider creating an index to improve this.

1084 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

system.profile.moved
If moved (page 1084) has a value of true indicates that the update operation moved one or more documents
to a new location on disk. These operations take more time than in-place updates, and typically occur when
documents grow as a result of document growth.

system.profile.nmoved
New in version 2.2. The number of documents moved on disk by the operation.

system.profile.nupdated
New in version 2.2. The number of documents updated by the operation.

system.profile.keyUpdates
New in version 2.2. The number of index (page 301) keys the update changed in the operation. Changing an
index key carries a small performance cost because the database must remove the old key and inserts a new key
into the B-tree index.

system.profile.numYield
New in version 2.2. The number of times the operation yielded to allow other operations to complete. Typically,
operations yield when they need access to data that MongoDB has not yet fully read into memory. This allows
other operations that have data in memory to complete while MongoDB reads in data for the yielding operation.
For more information, see the FAQ on when operations yield (page 702).

system.profile.lockStats
New in version 2.2. The time in microseconds the operation spent acquiring and holding locks. This field reports
data for the following lock types:

•R - global read lock

•W - global write lock

•r - database-specific read lock

•w - database-specific write lock

system.profile.lockStats.timeLockedMicros
The time in microseconds the operation held a specific lock. For operations that require more than one
lock, like those that lock the local database to update the oplog, then this value may be longer than the
total length of the operation (i.e. millis (page 1085).)

system.profile.lockStats.timeAcquiringMicros
The time in microseconds the operation spent waiting to acquire a specific lock.

system.profile.nreturned
The number of documents returned by the operation.

system.profile.responseLength
The length in bytes of the operation’s result document. A large responseLength (page 1085) can affect
performance. To limit the size of a the result document for a query operation, you can use any of the following:

•Projections (page 165)

•The limit() method (page 894)

•The batchSize() method (page 891)

system.profile.millis
The time in milliseconds for the server to perform the operation. This time does not include network time nor
time to acquire the lock.

system.profile.client
The IP address or hostname of the client connection where the operation originates.

For some operations, such as db.eval() (page 936), the client is 0.0.0.0:0 instead of an actual client.

62.8. Database Profiler Output 1085

MongoDB Documentation, Release 2.4.2

system.profile.user
The authenticated user who ran the operation.

62.9 Explain Output

This document explains the output of the $explain (page 746) operator and the mongo (page 984) shell method
explain() (page 892).

62.9.1 Explain Output

The Core Explain Output (page 1088) fields display information for queries on non-sharded collections. For queries
on sharded collections, explain() (page 892) returns this information for each shard the query accesses.

{
"cursor" : "<Cursor Type and Index>",
"isMultiKey" : <boolean>,
"n" : <num>,
"nscannedObjects" : <num>,
"nscanned" : <num>,
"nscannedObjectsAllPlans" : <num>,
"nscannedAllPlans" : <num>,
"scanAndOrder" : <boolean>,
"indexOnly" : <boolean>,
"nYields" : <num>,
"nChunkSkips" : <num>,
"millis" : <num>,
"indexBounds" : { <index bounds> },
"allPlans" : [

{ "cursor" : "<Cursor Type and Index>",
"n" : <num>,
"nscannedObjects" : <num>,
"nscanned" : <num>,
"indexBounds" : { <index bounds> }

},
...

],
"oldPlan" : {

"cursor" : "<Cursor Type and Index>",
"indexBounds" : { <index bounds> }

}
"server" : "<host:port>",

}

62.9.2 $or Queries

Queries with $or (page 760) operator execute each clause of the $or (page 760) expression in parallel and can use
separate indexes on the individual clauses. If the query uses indexes on any or all of the query’s clause, explain()
(page 892) contains output (page 1088) for each clause as well as the cumulative data for the entire query:

{
"clauses" : [

{
<core explain output>

},

1086 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

{
<core explain output>

},
...

],
"n" : <num>,
"nscannedObjects" : <num>,
"nscanned" : <num>,
"nscannedObjectsAllPlans" : <num>,
"nscannedAllPlans" : <num>,
"millis" : <num>,
"server" : "<host:port>"

}

62.9.3 Sharded Collections

For queries on a sharded collection, the output contains the Core Explain Output (page 1088) for each accessed shard
and cumulative shard information (page 1089):

{
"clusteredType" : "<Shard Access Type>",
"shards" : {

"<shard1>" : [
{
<core explain output>

}
],

"<shard2>" : [
{
<core explain output>

}
],

...
},

"millisShardTotal" : <num>,
"millisShardAvg" : <num>,
"numQueries" : <num>,
"numShards" : <num>,
"cursor" : "<Cursor Type and Index>",
"n" : <num>,
"nChunkSkips" : <num>,
"nYields" : <num>,
"nscanned" : <num>,
"nscannedAllPlans" : <num>,
"nscannedObjects" : <num>,
"nscannedObjectsAllPlans" : <num>,
"millis" : <num>

}

62.9. Explain Output 1087

MongoDB Documentation, Release 2.4.2

62.9.4 Fields

Core Explain Output

explain.cursor
cursor (page 1088) is a string that reports the type of cursor used by the query operation:

•BasicCursor indicates a full collection scan.

•BtreeCursor indicates that the query used an index. The cursor includes name of the index. When a
query uses an index, the output of explain() (page 892) includes indexBounds (page 1089) details.

•GeoSearchCursor indicates that the query used a geospatial index.

explain.isMultiKey
isMultiKey (page 1088) is a boolean. When true, the query uses a multikey index (page 307), where one
of the fields in the index holds an array.

explain.n
n (page 1088) is a number that reflects the number of documents that match the query selection criteria.

explain.nscannedObjects
Specifies the total number of documents scanned during the query. The nscannedObjects (page 1088)
may be lower than nscanned (page 1088), such as if the index covers (page 316) a query. See indexOnly
(page 1088). Additionally, the nscannedObjects (page 1088) may be lower than nscanned (page 1088)
in the case of multikey index on an array field with duplicate documents.

explain.nscanned
Specifies the total number of documents or index entries scanned during the database operation. You want n
(page 1088) and nscanned (page 1088) to be close in value as possible. The nscanned (page 1088) value
may be higher than the nscannedObjects (page 1088) value, such as if the index covers (page 316) a query.
See indexOnly (page 1088).

explain.nscannedObjectsAllPlans
New in version 2.2. nscannedObjectsAllPlans (page 1088) is a number that reflects the total number of
documents scanned for all query plans during the database operation.

explain.nscannedAllPlans
New in version 2.2. nscannedAllPlans (page 1088) is a number that reflects the total number of documents
or index entries scanned for all query plans during the database operation.

explain.scanAndOrder
scanAndOrder (page 1088) is a boolean that is true when the query cannot use the index for returning
sorted results.

When true, MongoDB must sort the documents after it retrieves them from either an index cursor or a cursor
that scans the entire collection.

explain.indexOnly
indexOnly (page 1088) is a boolean value that returns true when the query is covered (page 316) by the
index indicated in the cursor (page 1088) field. When an index covers a query, MongoDB can both match the
query conditions (page 162) and return the results using only the index because:

•all the fields in the query (page 162) are part of that index, and

•all the fields returned in the results set are in the same index.

explain.nYields
nYields (page 1088) is a number that reflects the number of times this query yielded the read lock to allow
waiting writes execute.

1088 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

explain.nChunkSkips
nChunkSkips (page 1088) is a number that reflects the number of documents skipped because of active chunk
migrations in a sharded system. Typically this will be zero. A number greater than zero is ok, but indicates a
little bit of inefficiency.

explain.millis
millis (page 1089) is a number that reflects the time in milliseconds to complete the query.

explain.indexBounds
indexBounds (page 1089) is a document that contains the lower and upper index key bounds. This field
resembles one of the following:

"indexBounds" : {
"start" : { <index key1> : <value>, ... },
"end" : { <index key1> : <value>, ... }

},

"indexBounds" : { "<field>" : [[<lower bound>, <upper bound>]],
...

}

explain.allPlans
allPlans (page 1089) is an array that holds the list of plans the query optimizer runs in order to select the
index for the query. Displays only when the <verbose> parameter to explain() (page 892) is true or 1.

explain.oldPlan
New in version 2.2. oldPlan (page 1089) is a document value that contains the previous plan selected by the
query optimizer for the query. Displays only when the <verbose> parameter to explain() (page 892) is
true or 1.

explain.server
New in version 2.2. server (page 1089) is a string that reports the MongoDB server.

$or Query Output

explain.clauses
clauses (page 1089) is an array that holds the Core Explain Output (page 1088) information for each clause of
the $or (page 760) expression. clauses (page 1089) is only included when the clauses in the $or (page 760)
expression use indexes.

Sharded Collections Output

explain.clusteredType
clusteredType (page 1089) is a string that reports the access pattern for shards. The value is:

•ParallelSort, if the mongos (page 981) queries shards in parallel.

•SerialServer, if the mongos (page 981) queries shards sequentially.

explain.shards
shards (page 1089) contains fields for each shard in the cluster accessed during the query. Each field holds
the Core Explain Output (page 1088) for that shard.

explain.millisShardTotal
millisShardTotal (page 1089) is a number that reports the total time in milliseconds for the query to run
on the shards.

62.9. Explain Output 1089

MongoDB Documentation, Release 2.4.2

explain.millisShardAvg
millisShardAvg (page 1089) is a number that reports the average time in millisecond for the query to run
on each shard.

explain.numQueries
numQueries (page 1090) is a number that reports the total number of queries executed.

explain.numShards
numShards (page 1090) is a number that reports the total number of shards queried.

62.10 Exit Codes and Statuses

MongoDB will return one of the following codes and statuses when exiting. Use this guide to interpret logs and when
troubleshooting issues with mongod (page 971) and mongos (page 981) instances.

0
Returned by MongoDB applications upon successful exit.

2
The specified options are in error or are incompatible with other options.

3
Returned by mongod (page 971) if there is a mismatch between hostnames specified on the command line
and in the local.sources (page 1100) collection. mongod (page 971) may also return this status if oplog
collection in the local database is not readable.

4
The version of the database is different from the version supported by the mongod (page 971) (or mongod.exe
(page 989)) instance. The instance exits cleanly. Restart mongod (page 971) with the --upgrade (page 977)
option to upgrade the database to the version supported by this mongod (page 971) instance.

5
Returned by mongod (page 971) if a moveChunk (page 858) operation fails to confirm a commit.

12
Returned by the mongod.exe (page 989) process on Windows when it receives a Control-C, Close, Break or
Shutdown event.

14
Returned by MongoDB applications which encounter an unrecoverable error, an uncaught exception or uncaught
signal. The system exits without performing a clean shut down.

20
Message: ERROR: wsastartup failed <reason>

Returned by MongoDB applications on Windows following an error in the WSAStartup function.

Message: NT Service Error

Returned by MongoDB applications for Windows due to failures installing, starting or removing the NT Service
for the application.

45
Returned when a MongoDB application cannot open a file or cannot obtain a lock on a file.

47
MongoDB applications exit cleanly following a large clock skew (32768 milliseconds) event.

1090 Chapter 62. Status and Reporting

MongoDB Documentation, Release 2.4.2

48
mongod (page 971) exits cleanly if the server socket closes. The server socket is on port 27017 by default, or
as specified to the --port (page 972) run-time option.

49
Returned by mongod.exe (page 989) or mongos.exe (page 991) on Windows when either receives a shut-
down message from the Windows Service Control Manager.

100
Returned by mongod (page 971) when the process throws an uncaught exception.

62.10. Exit Codes and Statuses 1091

MongoDB Documentation, Release 2.4.2

1092 Chapter 62. Status and Reporting

CHAPTER 63

Internal Metadata

63.1 Config Database Contents

The config database supports sharded cluster operation. See the Sharding (page 461) section of this manual for full
documentation of sharded clusters.

Warning: Consider the schema of the config database internal and may change between releases of MongoDB.
The config database is not a dependable API, and users should not write data to the config database in the
course of normal operation or maintenance. Modification of the config database on a functioning system may
lead to instability or inconsistent data sets.

To access a the config database, connect to a mongos (page 981) instance in a sharded cluster, and use the following
helper:

use config

You can return a list of the collections, with the following helper:

show collections

63.1.1 Collections

config

config.changelog

Internal MongoDB Metadata

The config (page 1093) database is internal: applications and administrators should not modify or depend
upon its content in the course of normal operation.

The changelog (page 1093) collection stores a document for each change to the metadata of a sharded col-
lection.

Example

1093

MongoDB Documentation, Release 2.4.2

The following example displays a single record of a chunk split from a changelog (page 1093) collection:

{
"_id" : "<hostname>-<timestamp>-<increment>",
"server" : "<hostname><:port>",
"clientAddr" : "127.0.0.1:63381",
"time" : ISODate("2012-12-11T14:09:21.039Z"),
"what" : "split",
"ns" : "<database>.<collection>",
"details" : {

"before" : {
"min" : {

"<database>" : { $minKey : 1 }
},
"max" : {

"<database>" : { $maxKey : 1 }
},
"lastmod" : Timestamp(1000, 0),
"lastmodEpoch" : ObjectId("000000000000000000000000")

},
"left" : {

"min" : {
"<database>" : { $minKey : 1 }

},
"max" : {

"<database>" : "<value>"
},
"lastmod" : Timestamp(1000, 1),
"lastmodEpoch" : ObjectId(<...>)

},
"right" : {

"min" : {
"<database>" : "<value>"

},
"max" : {

"<database>" : { $maxKey : 1 }
},
"lastmod" : Timestamp(1000, 2),
"lastmodEpoch" : ObjectId("<...>")

}
}
}

Each document in the changelog (page 1093) collection contains the following fields:

config.changelog._id
The value of changelog._id is: <hostname>-<timestamp>-<increment>.

config.changelog.server
The hostname of the server that holds this data.

config.changelog.clientAddr
A string that holds the address of the client, a mongos (page 981) instance that initiates this change.

config.changelog.time
A ISODate timestamp that reflects when the change occurred.

config.changelog.what
Reflects the type of change recorded. Possible values are:

1094 Chapter 63. Internal Metadata

MongoDB Documentation, Release 2.4.2

•dropCollection

•dropCollection.start

•dropDatabase

•dropDatabase.start

•moveChunk.start

•moveChunk.commit

•split

•multi-split

config.changelog.ns
Namespace where the change occurred.

config.changelog.details
A document that contains additional details regarding the change. The structure of the details
(page 1095) document depends on the type of change.

config.chunks

Internal MongoDB Metadata

The config (page 1093) database is internal: applications and administrators should not modify or depend
upon its content in the course of normal operation.

The chunks (page 1095) collection stores a document for each chunk in the cluster. Consider the following
example of a document for a chunk named records.pets-animal_\"cat\":

{
"_id" : "mydb.foo-a_\"cat\"",
"lastmod" : Timestamp(1000, 3),
"lastmodEpoch" : ObjectId("5078407bd58b175c5c225fdc"),
"ns" : "mydb.foo",
"min" : {

"animal" : "cat"
},
"max" : {

"animal" : "dog"
},
"shard" : "shard0004"

}

These documents store the range of values for the shard key that describe the chunk in the min and max fields.
Additionally the shard field identifies the shard in the cluster that “owns” the chunk.

config.collections

Internal MongoDB Metadata

The config (page 1093) database is internal: applications and administrators should not modify or depend
upon its content in the course of normal operation.

63.1. Config Database Contents 1095

MongoDB Documentation, Release 2.4.2

The collections (page 1095) collection stores a document for each sharded collection in the cluster. Given
a collection named pets in the records database, a document in the collections (page 1095) collection
would resemble the following:

{
"_id" : "records.pets",
"lastmod" : ISODate("1970-01-16T15:00:58.107Z"),
"dropped" : false,
"key" : {

"a" : 1
},
"unique" : false,
"lastmodEpoch" : ObjectId("5078407bd58b175c5c225fdc")

}

config.databases

Internal MongoDB Metadata

The config (page 1093) database is internal: applications and administrators should not modify or depend
upon its content in the course of normal operation.

The databases (page 1096) collection stores a document for each database in the cluster, and tracks if the
database has sharding enabled. databases (page 1096) represents each database in a distinct document.
When a databases have sharding enabled, the primary field holds the name of the primary shard.

{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "mydb", "partitioned" : true, "primary" : "shard0000" }

config.lockpings

Internal MongoDB Metadata

The config (page 1093) database is internal: applications and administrators should not modify or depend
upon its content in the course of normal operation.

The lockpings (page 1096) collection keeps track of the active components in the sharded cluster. Given
a cluster with a mongos (page 981) running on example.com:30000, the document in the lockpings
(page 1096) collection would resemble:

{ "_id" : "example.com:30000:1350047994:16807", "ping" : ISODate("2012-10-12T18:32:54.892Z") }

config.locks

Internal MongoDB Metadata

The config (page 1093) database is internal: applications and administrators should not modify or depend
upon its content in the course of normal operation.

The locks (page 1096) collection stores a distributed lock. This ensures that only one mongos (page 981)
instance can perform administrative tasks on the cluster at once. The mongos (page 981) acting as balancer
takes a lock by inserting a document resembling the following into the locks collection.

1096 Chapter 63. Internal Metadata

MongoDB Documentation, Release 2.4.2

{
"_id" : "balancer",
"process" : "example.net:40000:1350402818:16807",
"state" : 2,
"ts" : ObjectId("507daeedf40e1879df62e5f3"),
"when" : ISODate("2012-10-16T19:01:01.593Z"),
"who" : "example.net:40000:1350402818:16807:Balancer:282475249",
"why" : "doing balance round"

}

If a mongos (page 981) holds the balancer lock, the state field has a value of 2, which means that balancer
is active. The when field indicates when the balancer began the current operation. Changed in version 2.0: The
value of the state field was 1 before MongoDB 2.0.

config.mongos

Internal MongoDB Metadata

The config (page 1093) database is internal: applications and administrators should not modify or depend
upon its content in the course of normal operation.

The mongos (page 1097) collection stores a document for each mongos (page 981) instance affiliated with the
cluster. mongos (page 981) instances send pings to all members of the cluster every 30 seconds so the cluster
can verify that the mongos (page 981) is active. The ping field shows the time of the last ping, while the up
field reports the uptime of the mongos (page 981) as of the last ping. The cluster maintains this collection for
reporting purposes.

The following document shows the status of the mongos (page 981) running on example.com:30000.

{ "_id" : "example.com:30000", "ping" : ISODate("2012-10-12T17:08:13.538Z"), "up" : 13699, "waiting" : true }

config.settings

Internal MongoDB Metadata

The config (page 1093) database is internal: applications and administrators should not modify or depend
upon its content in the course of normal operation.

The settings (page 1097) collection holds the following sharding configuration settings:

•Chunk size. To change chunk size, see Modify Chunk Size (page 501).

•Balancer status. To change status, see Disable the Balancer (page 507).

The following is an example settings collection:

{ "_id" : "chunksize", "value" : 64 }
{ "_id" : "balancer", "stopped" : false }

config.shards

Internal MongoDB Metadata

The config (page 1093) database is internal: applications and administrators should not modify or depend
upon its content in the course of normal operation.

63.1. Config Database Contents 1097

MongoDB Documentation, Release 2.4.2

The shards (page 1097) collection represents each shard in the cluster in a separate document. If the shard
is a replica set, the host field displays the name of the replica set, then a slash, then the hostname, as in the
following example:

{ "_id" : "shard0000", "host" : "shard1/localhost:30000" }

If the shard has tags (page 510) assigned, this document has a tags field, that holds an array of the tags, as in
the following example:

{ "_id" : "shard0001", "host" : "localhost:30001", "tags": ["NYC"] }

config.tags

Internal MongoDB Metadata

The config (page 1093) database is internal: applications and administrators should not modify or depend
upon its content in the course of normal operation.

The tags (page 1098) collection holds documents for each tagged shard key range in the cluster. The docu-
ments in the tags (page 1098) collection resemble the following:

{
"_id" : { "ns" : "records.users", "min" : { "zipcode" : "10001" } },
"ns" : "records.users",
"min" : { "zipcode" : "10001" },
"max" : { "zipcode" : "10281" },
"tag" : "NYC"

}

config.version

Internal MongoDB Metadata

The config (page 1093) database is internal: applications and administrators should not modify or depend
upon its content in the course of normal operation.

The version (page 1098) collection holds the current metadata version number. This collection contains only
one document:

To access the version (page 1098) collection you must use the db.getCollection() (page 939) method.
For example, to display the collection’s document:

mongos> db.getCollection("version").find()
{ "_id" : 1, "version" : 3 }

Note: Like all databases in MongoDB, the config database contains a system.indexes (page 1101) collection
contains metadata for all indexes in the database for information on indexes, see Indexes (page 301).

1098 Chapter 63. Internal Metadata

MongoDB Documentation, Release 2.4.2

63.2 The local Database

63.2.1 Overview

Every mongod (page 971) instance has its own local database, which stores data used in the replication process,
and other instance-specific data. The local database is invisible to replication: collections in the local database
are not replicated.

When running with authentication (i.e. auth (page 1029)), authenticating against the local database is equivalent
to authenticating against the admin database. This authentication gives access to all databases.

In replication, the local database store stores internal replication data for each member of a replica set. The local
stores the following collections:

63.2.2 Collection on all mongod Instances

local.startup_log
On startup, each mongod (page 971) instance inserts a document into startup_log (page 1099) with di-
agnostic information about the mongod (page 971) instance itself and host information. startup_log
(page 1099) is a capped collection. This information is primarily useful for diagnostic purposes.

Example

Consider the following prototype of a document from the startup_log (page 1099) collection:

{
"_id" : "<string>",
"hostname" : "<string>",
"startTime" : ISODate("<date>"),
"startTimeLocal" : "<string>",
"cmdLine" : {

"dbpath" : "<path>",
"<option>" : <value>

},
"pid" : <number>,
"buildinfo" : {

"version" : "<string>",
"gitVersion" : "<string>",
"sysInfo" : "<string>",
"loaderFlags" : "<string>",
"compilerFlags" : "<string>",
"allocator" : "<string>",
"versionArray" : [<num>, <num>, <...>],
"javascriptEngine" : "<string>",
"bits" : <number>,
"debug" : <boolean>,
"maxBsonObjectSize" : <number>

}
}

Documents in the startup_log (page 1099) collection contain the following fields:

local.startup_log._id
Includes the system hostname and a millisecond epoch value.

local.startup_log.hostname
The system’s hostname.

63.2. The local Database 1099

MongoDB Documentation, Release 2.4.2

local.startup_log.startTime
A UTC ISODate value that reflects when the server started.

local.startup_log.startTimeLocal
A string that reports the startTime (page 1099) in the system’s local time zone.

local.startup_log.cmdLine
A sub-document that reports the mongod (page 971) runtime options and their values.

local.startup_log.pid
The process identifier for this process.

local.startup_log.buildinfo
A sub-document that reports information about the build environment and settings used to compile this
mongod (page 971). This is the same output as buildInfo (page 810). See buildInfo (page 811).

63.2.3 Collections on Replica Set Members

local.system.replset
local.system.replset (page 1100) holds the replica set’s configuration object as its single document. To
view the object’s configuration information, issue rs.conf() (page 950) from the mongo (page 984) shell.
You can also query this collection directly.

local.oplog.rs
local.oplog.rs (page 1100) is the capped collection that holds the oplog. You set its size at creation using
the oplogSize (page 1034) setting. To resize the oplog after replica set initiation, use the Change the Size
of the Oplog (page 413) procedure. For additional information, see the Oplog Internals (page 387) topic in this
document and the Oplog (page 372) topic in the Replica Set Fundamental Concepts (page 367) document.

local.replset.minvalid
This contains an object used internally by replica sets to track replication status.

local.slaves
This contains information about each member of the set and the latest point in time that this member has synced
to. If this collection becomes out of date, you can refresh it by dropping the collection and allowing MongoDB
to automatically refresh it during normal replication:

db.getSiblingDB("local").slaves.drop()

63.2.4 Collections used in Master/Slave Replication

In master/slave replication, the local database contains the following collections:

• On the master:

local.oplog.$main
This is the oplog for the master-slave configuration.

local.slaves
This contains information about each slave.

• On each slave:

local.sources
This contains information about the slave’s master server.

1100 Chapter 63. Internal Metadata

MongoDB Documentation, Release 2.4.2

63.3 System Collections

63.3.1 Synopsis

MongoDB stores system information in collections that use the <database>.system.* namespace, which Mon-
goDB reserves for internal use. Do not create collections that begin with system..

MongoDB also stores some additional instance-local metadata in the local database (page 1099), specifically for
replication purposes.

63.3.2 Collections

System collections include these collections stored directly in the database:

<database>.system.namespaces
The <database>.system.namespaces (page 1101) collection contains information about all of the
database’s collections. Additional namespace metadata exists in the database.ns files and is opaque to
database users.

<database>.system.indexes
The <database>.system.indexes (page 1101) collection lists all the indexes in the database. Add and
remove data from this collection via the ensureIndex() (page 907) and dropIndex() (page 906)

<database>.system.profile
The <database>.system.profile (page 1101) collection stores database profiling information. For
information on profiling, see Database Profiling (page 92).

<database>.system.users
The <database>.system.users (page 154) collection stores credentials for users who have access to the
database. For more information on this collection, see Authentication (page 128).

<database>.system.js
The <database>.system.js (page 1101) collection holds special JavaScript code for use in server side
JavaScript (page 534). See Store a JavaScript Function on the Server (page 535) for more information.

63.4 GridFS Reference

GridFS stores files in two collections:

• chunks stores the binary chunks. For details, see The chunks Collection (page 1102).

• files stores the file’s metadata. For details, see The files Collection (page 1102).

GridFS places the collections in a common bucket by prefixing each with the bucket name. By default, GridFS uses
two collections with names prefixed by fs bucket:

• fs.files

• fs.chunks

You can choose a different bucket name than fs, and create multiple buckets in a single database.

See Also:

GridFS (page 190) for more information about GridFS.

63.3. System Collections 1101

MongoDB Documentation, Release 2.4.2

63.4.1 The chunks Collection

Each document in the chunks collection represents a distinct chunk of a file as represented in the GridFS store. The
following is a prototype document from the chunks collection.:

{
"_id" : <string>,
"files_id" : <string>,
"n" : <num>,
"data" : <binary>

}

A document from the chunks collection contains the following fields:

chunks._id
The unique ObjectID of the chunk.

chunks.files_id
The _id of the “parent” document, as specified in the files collection.

chunks.n
The sequence number of the chunk. GridFS numbers all chunks, starting with 0.

chunks.data
The chunk’s payload as a BSON binary type.

The chunks collection uses a compound index on files_id and n, as described in GridFS Index (page 191).

63.4.2 The files Collection

Each document in the files collection represents a file in the GridFS store. Consider the following prototype of a
document in the files collection:

{
"_id" : <ObjectID>,
"length" : <num>,
"chunkSize" : <num>
"uploadDate" : <timestamp>
"md5" : <hash>

"filename" : <string>,
"contentType" : <string>,
"aliases" : <string array>,
"metadata" : <dataObject>,

}

Documents in the files collection contain some or all of the following fields. Applications may create additional
arbitrary fields:

files._id
The unique ID for this document. The _id is of the data type you chose for the original document. The default
type for MongoDB documents is BSON ObjectID.

files.length
The size of the document in bytes.

files.chunkSize
The size of each chunk. GridFS divides the document into chunks of the size specified here. The default size is
256 kilobytes.

1102 Chapter 63. Internal Metadata

MongoDB Documentation, Release 2.4.2

files.uploadDate
The date the document was first stored by GridFS. This value has the Date type.

files.md5
An MD5 hash returned from the filemd5 API. This value has the String type.

files.filename
Optional. A human-readable name for the document.

files.contentType
Optional. A valid MIME type for the document.

files.aliases
Optional. An array of alias strings.

files.metadata
Optional. Any additional information you want to store.

63.4. GridFS Reference 1103

MongoDB Documentation, Release 2.4.2

1104 Chapter 63. Internal Metadata

CHAPTER 64

General Reference

64.1 MongoDB Limits and Thresholds

64.1.1 Synopsis

This document provides a collection of hard and soft limitations of the MongoDB system.

64.1.2 Limits

BSON Documents

BSON Document Size
The maximum BSON document size is 16 megabytes.

The maximum document size helps ensure that a single document cannot use excessive amount of RAM or, dur-
ing transmission, excessive amount of bandwidth. To store documents larger than the maximum size, MongoDB
provides the GridFS API. See mongofiles (page 1023) and the documentation for your driver (page 529) for
more information about GridFS.

Nested Depth for BSON Documents
Changed in version 2.2. MongoDB supports no more than 100 levels of nesting for BSON documents.

Namespaces

Namespace Length
Each namespace, including database and collection name, must be shorter than 123 bytes.

Number of Namespaces
The limitation on the number of namespaces is the size of the namespace file divided by 628.

A 16 megabyte namespace file can support approximately 24,000 namespaces. Each index also counts as a
namespace.

Size of Namespace File
Namespace files can be no larger than 2047 megabytes.

By default namespace files are 16 megabytes. You can configure the size using the nssize (page 1031).

1105

MongoDB Documentation, Release 2.4.2

Indexes

Index Size
Indexed items can be no larger than 1024 bytes.

Number of Indexes per Collection
A single collection can have no more than 64 indexes.

Index Name Length
The names of indexes, including their namespace (i.e database and collection name) cannot be longer than 128
characters. The default index name is the concatenation of the field names and index directions.

You can explicitly specify an index name to the ensureIndex() (page 907) helper if the default index name
is too long.

Unique Indexes in Sharded Collections
MongoDB does not support unique indexes across shards, except when the unique index contains the full shard
key as a prefix of the index. In these situations MongoDB will enforce uniqueness across the full key, not a
single field.

See Also:

Enforce Unique Keys for Sharded Collections (page 511) for an alternate approach.

Number of Indexed Fields in a Compound Index
There can be no more than 31 fields in a compound index.

Capped Collections

Maximum Number of Documents in a Capped Collection
Changed in version 2.4. If you specify a maximum number of documents for a capped collection using the max
parameter to create (page 822), the limit must be less than 232 documents. If you do not specify a maximum
number of documents when creating a capped collection, there is no limit on the number of documents.

Replica Sets

Number of Members of a Replica Set
Replica sets can have no more than 12 members.

Number of Voting Members of a Replica Set
Only 7 members of a replica set can have votes at any given time. See can vote Non-Voting Members (page 369)
for more information

Sharded Clusters

Operations Unavailable in Sharded Environments
The group (page 840) does not work with sharding. Use mapReduce (page 851) or aggregate (page 809)
instead.

db.eval() (page 936) is incompatible with sharded collections. You may use db.eval() (page 936) with
un-sharded collections in a shard cluster.

$where (page 777) does not permit references to the db object from the $where (page 777) function. This is
uncommon in un-sharded collections.

The $isolated (page 751) update modifier does not work in sharded environments.

$snapshot (page 773) queries do not work in sharded environments.

1106 Chapter 64. General Reference

MongoDB Documentation, Release 2.4.2

Sharding Existing Collection Data Size
MongoDB only allows sharding an existing collection that holds fewer than 256 gigabytes of data.

Note: This limitation only applies to sharding collections that have existing data sets, and is not a limit on the
size of a sharded collection.

See Also:

Unique Indexes in Sharded Collections (page 1106)

Operations

Sorted Documents
MongoDB will only return sorted results on fields without an index if the sort operation uses less than 32
megabytes of memory.

2d Geospatial queries cannot use the $or operator

See Also:

$or (page 760) and Geospatial Index Internals (page 346).

Spherical Polygons must fit within a hemisphere.
Any geometry specified specified with GeoJSON to $geoIntersects (page 746) or $geoWithin
(page 747) queries, must fit within a single hemisphere. MongoDB interprets geometries larger than half of
the sphere as queries for the smaller complementary geometries.

Naming Restrictions

Restrictions on Database Names
The dot (i.e. .) character is not permissible in database names.

Database names are case sensitive even if the underlying file system is case insensitive. Changed in version 2.2:
For MongoDB instances running on Windows. In 2.2 the following characters are not permissible in database
names:

/\. "*<>:|?

See Restrictions on Database Names for Windows (page 1160) for more information.

Restriction on Collection Names
New in version 2.2. Collection names should begin with an underscore or a letter character, and cannot:

•contain the $.

•be an empty string (e.g. "").

•contain the null character.

•begin with the system. prefix. (Reserved for internal use.)

See Are there any restrictions on the names of Collections? (page 694) and Restrictions on Collection Names
(page 1159) for more information.

Restrictions on Field Names
Field names cannot contain dots (i.e. .), dollar signs (i.e. $), or null characters. See Dollar Sign Operator
Escaping (page 692) for an alternate approach.

64.1. MongoDB Limits and Thresholds 1107

MongoDB Documentation, Release 2.4.2

64.2 Connection String URI Format

This document describes the URI format for defining connections between applications and MongoDB instances in
the official MongoDB drivers (page 529).

64.2.1 Standard Connection String Format

This section describes the standard format of the MongoDB connection URI used to connect to a MongoDB database
server. The format is the same for all official MongoDB drivers. For a list of drivers and links to driver documentation,
see MongoDB Drivers and Client Libraries (page 529).

The following is the standard URI connection scheme:

mongodb://[username:password@]host1[:port1][,host2[:port2],...[,hostN[:portN]]][/[database][?options]]

The components of this string are:

1. mongodb://

A required prefix to identify that this is a string in the standard connection format.

2. username:password@

Optional. If specified, the client will attempt to log in to the specific database using these credentials after
connecting to the mongod (page 971) instance.

3. host1

This the only required part of the URI. It identifies a server address to connect to. It identifies either a hostname,
IP address, or UNIX domain socket.

4. :port1

Optional. The default value is :27017 if not specified.

5. hostX

Optional. You can specify as many hosts as necessary. You would specify multiple hosts, for example, for
connections to replica sets.

6. :portX

Optional. The default value is :27017 if not specified.

7. http://docs.mongodb.org/manual/database

Optional. The name of the database to authenticate if the connection string includes authentication credentials
in the form of username:password@. If http://docs.mongodb.org/manual/database is not
specified and the connection string includes credentials, the driver will authenticate to the admin database.

8. ?options

Connection specific options. See Connection String Options (page 1109) for a full description of these options.

If the connection string does not specify a database/ you must specify a slash (i.e.
http://docs.mongodb.org/manual/) between the last hostN and the question mark that be-
gins the string of options.

Example

To describe a connection to a replica set named test, with the following mongod (page 971) hosts:

• db1.example.net on port 27017 and

1108 Chapter 64. General Reference

MongoDB Documentation, Release 2.4.2

• db2.example.net on port 2500.

You would use a connection string that resembles the following:

mongodb://db1.example.net,db2.example.net:2500/?replicaSet=test

64.2.2 Connection String Options

This section lists all connection options used in the Standard Connection String Format (page 1108).The options are
not case-sensitive.

Connection options are pairs in the following form: name=value. Separate options with the ampersand (i.e. &)
character. In the following example, a connection uses the replicaSet and connectTimeoutMS options:

mongodb://db1.example.net,db2.example.net:2500/?replicaSet=test&connectTimeoutMS=300000

Semi-colon separator for connection string arguments

To provide backwards compatibility, drivers currently accept semi-colons (i.e. ;) as option separators.

Replica Set Option

uri.replicaSet
Specifies the name of the replica set, if the mongod (page 971) is a member of a replica set.

When connecting to a replica set it is important to give a seed list of at least two mongod (page 971) instances.
If you only provide the connection point of a single mongod (page 971) instance, and omit the replicaSet
(page 1109), the client will create a standalone connection.

Connection Options

uri.ssl
true: Initiate the connection with SSL.

false: Initiate the connection without SSL.

The default value is false.

Note: The ssl (page 1109) option is not supported by all drivers. See your driver (page 529) documentation
and the Connect to MongoDB with SSL (page 77) document.

uri.connectTimeoutMS
The time in milliseconds to attempt a connection before timing out. The default is never to timeout, though
different drivers might vary. See the driver (page 529) documentation.

uri.socketTimeoutMS
The time in milliseconds to attempt a send or receive on a socket before the attempt times out. The default is
never to timeout, though different drivers might vary. See the driver (page 529) documentation.

64.2. Connection String URI Format 1109

MongoDB Documentation, Release 2.4.2

Connection Pool Options

Most drivers implement some kind of connection pooling handle this for you behind the scenes. Some drivers do not
support connection pools. See your driver (page 529) documentation for more information on the connection pooling
implementation. These options allow applications to configure the connection pool when connecting to the MongoDB
deployment.

uri.maxPoolSize
The maximum number of connections in the connection pool. The default value is 100.

uri.minPoolSize
The minimum number of connections in the connection pool. The default value is 0.

Note: The minPoolSize (page 1110) option is not supported by all drivers. For information on your driver,
see the drivers (page 529) documentation.

uri.maxIdleTimeMS
The maximum number of milliseconds that a connection can remain idle in the pool before being removed and
closed.

This option is not supported by all drivers.

uri.waitQueueMultiple
A number that the driver multiples the maxPoolSize (page 1110) value to, to provide the maximum number
of threads allowed to wait for a connection to become available from the pool. For default values, see the
MongoDB Drivers and Client Libraries (page 529) documentation.

uri.waitQueueTimeoutMS
The maximum time in milliseconds that a thread can wait for a connection to become available. For default
values, see the MongoDB Drivers and Client Libraries (page 529) documentation.

Write Concern Options

Write concern (page 174) describes the kind of assurances that the program:mongod and the driver provide to the
application regarding the success and durability of the write operation. For a full explanation of write concern and
write operations in general see the: Write Operations (page 173):

uri.w
Defines the level and kind of write concern, that the driver uses when calling getLastError (page 837). This
option can take either a number or a string as a value.

Options

• -1 – The driver will not acknowledge write operations and will suppress all network or
socket errors.

• 0 – The driver will not acknowledge write operations, but will pass or handle any network
and socket errors that it receives to the client.

If you disable write concern but enable the getLastError (page 837) command’s
journal option, journal overrides this w option.

• 1 – Provides basic acknowledgment of write operations.

By specifying 1, you require that a standalone mongod (page 971) instance, or the primary
for replica sets, acknowledge all write operations. For drivers released after the default write
concern change (page 1183), this is the default write concern setting.

1110 Chapter 64. General Reference

MongoDB Documentation, Release 2.4.2

• majority (string) – For replica sets, if you specify the special majority value to w
(page 1110) option, write operations will only return successfully after a majority of the
configured replica set members have acknowledged the write operation.

• n (number) – For replica sets, if you specify a number greater than 1, operations with this
write concern will only return after this many members of the set have acknowledged the
write.

If you set w to a number that is greater than the number of available set members, or members
that hold data, MongoDB will wait, potentially indefinitely, for these members to become
available.

• tags (string) – For replica sets, you can specify a tag set (page 433) to require that all
members of the set that have these tags configured return confirmation of the write operation.

See Replica Set Tag Set Configuration (page 433) for more information.

uri.wtimeoutMS
The time in milliseconds to wait for replication to succeed, as specified in the w (page 1110) option, before
timing out.

uri.journal
Controls whether write operations will wait till the mongod (page 971) acknowledges the write operations and
commits the data to the on disk journal.

Options

• true (boolean) – Enables journal commit acknowledgment write concern. Equivalent to
specifying the getLastError (page 837) command with the j option enabled.

• false (boolean) –

Does not require that mongod (page 971) commit write operations to the journal be-
fore acknowledging the write operation. This is the default option for the journal
(page 1111) parameter.

If you set journal (page 1111) to true, and specify a w (page 1110) value less than 1,
journal (page 1111) prevails.

If you set journal (page 1111) to true, and the mongod (page 971) does not have jour-
naling enabled, as with nojournal (page 1031), then getLastError (page 837) will
provide basic receipt acknowledgment (i.e. w:1), and will include a jnote field in its
return document.

Read Preference Options

Read preferences (page 381) describe the behavior of read operations with regards to replica sets. These parameters
allow you to specify read preferences on a per-connection basis in the connection string:

uri.readPreference
Specifies the replica set read preference for this connection. This setting overrides any slaveOk value. The
read preference values are the following:

•primary (page 382)

•primaryPreferred (page 382)

•secondary (page 382)

•secondaryPreferred (page 382)

•nearest (page 383)

64.2. Connection String URI Format 1111

MongoDB Documentation, Release 2.4.2

For descriptions of each value, see Read Preference Modes (page 381).

The default value is primary (page 382), which sends all read operations to the replica set’s primary.

uri.readPreferenceTags
Specifies a tag set as a comma-separated list of colon-separated key-value pairs. For example:

dc:ny,rack:1

To specify a list of tag sets, use multiple readPreferenceTags. The following specifies two tag sets and
an empty tag set:

readPreferenceTags=dc:ny,rack:1&readPreferenceTags=dc:ny&readPreferenceTags=

Order matters when using multiple readPreferenceTags.

Miscellaneous Configuration

uri.uuidRepresentation

Parameters

• standard – The standard binary representation.

• csharpLegacy – The default representation for the C# driver.

• javaLegacy – The default representation for the Java driver.

• pythonLegacy – The default representation for the Python driver.

For the default, see the drivers (page 529) documentation for your driver.

Note: Not all drivers support the uuidRepresentation (page 1112) option. For information on your
driver, see the drivers (page 529) documentation.

64.2.3 Examples

Consider the following example MongoDB URI strings, that specify common connections:

• Connect to a database server running locally on the default port:

mongodb://localhost

• Connect and log in to the admin database as user sysop with the password moon:

mongodb://sysop:moon@localhost

• Connect and log in to the records database as user sysop with the password moon:

mongodb://sysop:moon@localhost/records

• Connect to a UNIX domain socket:

mongodb:///tmp/mongodb-27017.sock

Note: Not all drivers support UNIX domain sockets. For information on your driver, see the drivers (page 529)
documentation.

1112 Chapter 64. General Reference

MongoDB Documentation, Release 2.4.2

• Connect to a replica set with two members, one on db1.example.net and the other on
db2.example.net:

mongodb://db1.example.net,db2.example.com

• Connect to a replica set with three members running on localhost, on ports 27017, 27018, and 27019:

mongodb://localhost,localhost:27018,localhost:27019

• Connect to a replica set with three members. Send all writes to the primary and distribute reads to the secon-
daries:

mongodb://example1.com,example2.com,example3.com/?readPreference=secondary

• Connect to a replica set with write concern configured to wait for replication to succeed on at least two members,
with a two-second timeout.

mongodb://example1.com,example2.com,example3.com/?w=2&wtimeoutMS=2000

64.3 MongoDB Extended JSON

MongoDB import and export utilities (page 101) (i.e. mongoimport (page 1004) and mongoexport (page 1007))
and MongoDB REST Interfaces render an approximation of MongoDB BSON documents in JSON format.

The REST interface supports three different modes for document output:

• Strict mode that produces output that conforms to the JSON RFC specifications.

• JavaScript mode that produces output that most JavaScript interpreters can process (via the --jsonp option)

• mongo (page 984) Shell mode produces output that the mongo (page 984) shell can process. This is “extended”
JavaScript format.

MongoDB can process of these representations in REST input.

Special representations of BSON data in JSON format make it possible to render information that have no obvious cor-
responding JSON. In some cases MongoDB supports multiple equivalent representations of the same type information.
Consider the following table:

64.3. MongoDB Extended JSON 1113

http://docs.mongodb.org/ecosystem/tools/http-interfaces
http://www.json.org

MongoDB Documentation, Release 2.4.2

BSON Data Type Strict Mode JavaScript Mode
(via JSONP)

mongo Shell Mode Notes

data_binary {
"$binary": "<bindata>",
"$type": "<t>"

}

{
"$binary": "<bindata>",
"$type": "<t>"

}

BinData (<t>, <bindata>)
<bindata> is the
base64 representation
of a binary string.
<t> is the hexadeci-
mal representation of
a single byte that indi-
cates the data type.

data_date {
"$date": <date>

}

new Date(<date>)new Date (<date>)
<date> is the JSON
representation of a
64-bit signed integer
for milliseconds since
epoch UTC (unsigned
before version 1.9.1).

data_timestamp {
"$timestamp":

{
"t": <t>,
"i": <i>

}
}

{
"$timestamp":

{
"t": <t>,
"i": <i>

}
}

Timestamp(<t>, <i>)
<t> is the JSON rep-
resentation of a 32-bit
unsigned integer for
seconds since epoch.
<i> is a 32-bit un-
signed integer for the
increment.

data_regex {
"$regex": "<sRegex>",
"$options": "<sOptions>"

}

/<jRegex>/<jOptions>/<jRegex>/<jOptions>
<sRegex> is a string
of valid JSON charac-
ters.
<jRegex> is a
string that may con-
tain valid JSON
characters and un-
escaped double quote
(") characters, but
may not contain un-
escaped forward slash
(http://docs.mongodb.org/manual/)
characters.
<sOptions> is a
string containing the
regex options repre-
sented by the letters
of the alphabet.
<jOptions> is
a string that may
contain only the
characters ‘g’, ‘i’,
‘m’ and ‘s’ (added
in v1.9). Because
the JavaScript
and mongo Shell
representations sup-
port a limited range
of options, any non-
conforming options
will be dropped when
converting to this
representation.

data_oid {
"$oid": "<id>"

}

{
"$oid": "<id>"

}

ObjectId("<id>")
<id> is a 24-
character hexadecimal
string.

data_ref {
"$ref": "<name>",
"$id": "<id>"

}

{
"$ref" : "<name>",
"$id" : "<id>"

}

DBRef("<name>", "<id>")
<name> is a string
of valid JSON charac-
ters.
<id> is any valid
etended JSON type.

data_undefined {
"$undefined": true

}

undefined undefined
The representation for
the JavaScript/BSON
undefined type.

data_minkey {
"$minKey": 1

}

{
"$minKey": 1

}

MinKey
The representation of
the MinKey BSON
data type that com-
pares lower than all
other types. See
What is the compare
order for BSON
types? (page 693) for
more information on
comparison order for
BSON types.

data_maxkey {
"$maxKey": 1

}

{
"$maxKey": 1

}

MaxKey
The representation of
the MaxKey BSON
data type that com-
pares higher than
all other types. See
What is the compare
order for BSON
types? (page 693) for
more information on
comparison order for
BSON types.

1114 Chapter 64. General Reference

MongoDB Documentation, Release 2.4.2

64.4 Database References

MongoDB does not support joins. In MongoDB some data is denormalized, or stored with related data in documents to
remove the need for joins. However, in some cases it makes sense to store related information in separate documents,
typically in different collections or databases.

MongoDB applications use one of two methods for relating documents:

1. Manual references (page 1115) where you save the _id field of one document in another document as a refer-
ence. Then your application can run a second query to return the embedded data. These references are simple
and sufficient for most use cases.

2. DBRefs (page 1116) are references from one document to another using the value of the first document’s _id
field collection, and optional database name. To resolve DBRefs, your application must perform additional
queries to return the referenced documents. Many drivers (page 529) have helper methods that form the query
for the DBRef automatically. The drivers 1 do not automatically resolve DBRefs into documents.

Use a DBRef when you need to embed documents from multiple collections in documents from one collection.
DBRefs also provide a common format and type to represent these relationships among documents. The DBRef
format provides common semantics for representing links between documents if your database must interact
with multiple frameworks and tools.

Unless you have a compelling reason for using a DBRef, use manual references.

64.4.1 Manual References

Background

Manual references refers to the practice of including one document’s _id field in another document. The application
can then issue a second query to resolve the referenced fields as needed.

Process

Consider the following operation to insert two documents, using the _id field of the first document as a reference in
the second document:

original_id = ObjectId()

db.places.insert({
"_id": original_id
"name": "Broadway Center"
"url": "bc.example.net"

})

db.people.insert({
"name": "Erin"
"places_id": original_id
"url": "bc.example.net/Erin"

})

Then, when a query returns the document from the people collection you can, if needed, make a second query for
the document referenced by the places_id field in the places collection.

1 Some community supported drivers may have alternate behavior and may resolve a DBRef into a document automatically.

64.4. Database References 1115

MongoDB Documentation, Release 2.4.2

Use

For nearly every case where you want to store a relationship between two documents, use manual references
(page 1115). The references are simple to create and your application can resolve references as needed.

The only limitation of manual linking is that these references do not convey the database and collection name. If you
have documents in a single collection that relate to documents in more than one collection, you may need to consider
using DBRefs (page 1116).

64.4.2 DBRefs

Background

DBRefs are a convention for representing a document, rather than a specific reference “type.” They include the name
of the collection, and in some cases the database, in addition to the value from the _id field.

Format

DBRefs have the following fields:

$ref
The $ref field holds the name of the collection where the referenced document resides.

$id
The $id field contains the value of the _id field in the referenced document.

$db
Optional.

Contains the name of the database where the referenced document resides.

Only some drivers support $db references.

Example

DBRef document would resemble the following:

{ "$ref" : <value>, "$id" : <value>, "$db" : <value> }

Consider a document from a collection that stored a DBRef in a creator field:

{
"_id" : ObjectId("5126bbf64aed4daf9e2ab771"),
// .. application fields
"creator" : {

"$ref" : "creators",
"$id" : ObjectId("5126bc054aed4daf9e2ab772"),
"$db" : "users"

}
}

The DBRef in this example, points to a document in the creators collection of the users database that has
ObjectId("5126bc054aed4daf9e2ab772") in its _id field.

Note: The order of fields in the DBRef matters, and you must use the above sequence when using a DBRef.

1116 Chapter 64. General Reference

MongoDB Documentation, Release 2.4.2

Support

C++ The C++ driver contains no support for DBRefs. You can transverse references manually.

C# The C# driver provides access to DBRef objects with the MongoDBRef Class and supplies the FetchDBRef
Method for accessing these objects.

Java The DBRef class provides supports for DBRefs from Java.

JavaScript The mongo (page 984) shell’s JavaScript (page 881) interface provides a DBRef.

Perl The Perl driver contains no support for DBRefs. You can transverse references manually or use the Mon-
goDBx::AutoDeref CPAN module.

PHP The PHP driver does support DBRefs, including the optional $db reference, through The MongoDBRef class.

Python The Python driver provides the DBRef class, and the dereference method for interacting with DBRefs.

Ruby The Ruby Driver supports DBRefs using the DBRef class and the deference method.

Use

In most cases you should use the manual reference (page 1115) method for connecting two or more related documents.
However, if you need to reference documents from multiple collections, consider a DBRef.

64.5 Glossary

$cmd A virtual collection that exposes MongoDB‘s database commands.

_id A field containing a unique ID, typically a BSON ObjectId. If not specified, this value is automatically assigned
upon the creation of a new document. You can think of the _id as the document’s primary key.

accumulator An expression in the aggregation framework that maintains state between documents in the aggregation
pipeline. See: $group (page 790) for a list of accumulator operations.

admin database A privileged database named admin. Users must have access to this database to run certain ad-
ministrative commands. See administrative commands (page 803) for more information and Administration
Commands (page 805) for a list of these commands.

aggregation Any of a variety of operations that reduce and summarize large sets of data. SQL’s GROUP and Mon-
goDB’s map-reduce are two examples of aggregation functions.

aggregation framework The MongoDB aggregation framework provides a means to calculate aggregate values
without having to use map-reduce.

See Also:

Aggregation Framework (page 249).

arbiter A member of a replica set that exists solely to vote in elections. Arbiters do not replicate data.

See Also:

Delayed Members (page 368)

balancer An internal MongoDB process that runs in the context of a sharded cluster and manages the migration of
chunks. Administrators must disable the balancer for all maintenance operations on a sharded cluster.

BSON A serialization format used to store documents and make remote procedure calls in MongoDB. “BSON” is a
portmanteau of the words “binary” and “JSON”. Think of BSON as a binary representation of JSON (JavaScript
Object Notation) documents. For a detailed spec, see bsonspec.org.

64.5. Glossary 1117

http://api.mongodb.org/csharp/current/html/46c356d3-ed06-a6f8-42fa-e0909ab64ce2.htm
http://api.mongodb.org/csharp/current/html/1b0b8f48-ba98-1367-0a7d-6e01c8df436f.htm
http://api.mongodb.org/csharp/current/html/1b0b8f48-ba98-1367-0a7d-6e01c8df436f.htm
http://api.mongodb.org/java/current/com/mongodb/DBRef.html
http://search.cpan.org/dist/MongoDBx-AutoDeref/
http://search.cpan.org/dist/MongoDBx-AutoDeref/
http://www.php.net/manual/en/class.mongodbref.php/
http://api.mongodb.org/python/current/api/bson/dbref.html
http://api.mongodb.org//python/current/api/pymongo/database.html#pymongo.database.Database.dereference
http://api.mongodb.org//ruby/current/BSON/DBRef.html
http://api.mongodb.org//ruby/current/Mongo/DB.html#dereference
http://bsonspec.org/

MongoDB Documentation, Release 2.4.2

See Also:

The Data Type Fidelity (page 101) section.

BSON types The set of types supported by the BSON serialization format. The following types are available:

Type Number
Double 1
String 2
Object 3
Array 4
Binary data 5
Object id 7
Boolean 8
Date 9
Null 10
Regular Expression 11
JavaScript 13
Symbol 14
JavaScript (with scope) 15
32-bit integer 16
Timestamp 17
64-bit integer 18
Min key 255
Max key 127

btree A data structure used by most database management systems for to store indexes. MongoDB uses b-trees for
its indexes.

CAP Theorem Given three properties of computing systems, consistency, availability, and partition tolerance, a
distributed computing system can provide any two of these features, but never all three.

capped collection A fixed-sized collection. Once they reach their fixed size, capped collections automatically over-
write their oldest entries. MongoDB’s oplog replication mechanism depends on capped collections. Developers
may also use capped collections in their applications.

See Also:

The Capped Collections (page 532) page.

checksum A calculated value used to ensure data integrity. The md5 algorithm is sometimes used as a checksum.

chunk In the context of a sharded cluster, a chunk is a contiguous range of shard key values assigned to a particular
shard. Chunk ranges are inclusive of the lower boundary and exclusive of the upper boundary. By default,
chunks are 64 megabytes or less. When they grow beyond the configured chunk size, a mongos (page 981)
splits the chunk into two chunks.

client The application layer that uses a database for data persistence and storage. Drivers provide the interface level
between the application layer and the database server.

cluster A set of mongod (page 971) instances running in conjunction to increase database availability and perfor-
mance. See sharding and replication for more information on the two different approaches to clustering with
MongoDB.

collection Collections are groupings of BSON documents. Collections do not enforce a schema, but they are other-
wise mostly analogous to RDBMS tables.

The documents within a collection may not need the exact same set of fields, but typically all documents in a
collection have a similar or related purpose for an application.

All collections exist within a single database. The namespace within a database for collections are flat.

1118 Chapter 64. General Reference

MongoDB Documentation, Release 2.4.2

See What is a namespace in MongoDB? (page 688) and BSON Documents (page 181) for more information.

compound index An index consisting of two or more keys. See Indexing Overview (page 303) for more information.

config database One of three mongod (page 971) instances that store all of the metadata associated with a sharded
cluster.

control script A simple shell script, typically located in the http://docs.mongodb.org/manual/etc/rc.d
or http://docs.mongodb.org/manual/etc/init.d directory and used by the system’s initializa-
tion process to start, restart and stop a daemon process.

control script A script used by a UNIX-like operating system to start, stop, or restart a daemon process. On
most systems, you can find these scripts in the http://docs.mongodb.org/manual/etc/init.d/
or http://docs.mongodb.org/manual/etc/rc.d/ directories.

CRUD Create, read, update, and delete. The fundamental operations of any database.

CSV A text-based data format consisting of comma-separated values. This format is commonly used to exchange
database between relational databases, since the format is well-suited to tabular data. You can import CSV files
using mongoimport (page 1004).

cursor In MongoDB, a cursor is a pointer to the result set of a query, that clients can iterate through to retrieve
results. By default, cursors will timeout after 10 minutes of inactivity.

daemon The conventional name for a background, non-interactive process.

data-center awareness A property that allows clients to address members in a system to based upon their location.

Replica sets implement data-center awareness using tagging. See Data Center Awareness (page 61) for more
information.

database A physical container for collections. Each database gets its own set of files on the file system. A single
MongoDB server typically servers multiple databases.

database command Any MongoDB operation other than an insert, update, remove, or query. MongoDB ex-
poses commands as queries against the special $cmd collection. For example, the implementation of count
(page 821) for MongoDB is a command.

See Also:

Database Commands Quick Reference (page 803) for a full list of database commands in MongoDB

database profiler A tool that, when enabled, keeps a record on all long-running operations in a database’s
system.profile collection. The profiler is most often used to diagnose slow queries.

See Also:

Monitoring Database Systems (page 92).

datum A datum is a set of values used to define measurements on the earth. MongoDB uses the WGS84 datum.

dbpath Refers to the location of MongoDB’s data file storage. The default dbpath
(page 1029) is http://docs.mongodb.org/manual/data/db. Other com-
mon data paths include http://docs.mongodb.org/manual/srv/mongodb and
http://docs.mongodb.org/manual/var/lib/mongodb.

See Also:

dbpath (page 1029) or --dbpath (page 973).

delayed member A member of a replica set that cannot become primary and applies operations at a specified delay.
This delay is useful for protecting data from human error (i.e. unintentionally deleted databases) or updates that
have unforeseen effects on the production database.

See Also:

64.5. Glossary 1119

MongoDB Documentation, Release 2.4.2

Delayed Members (page 368)

diagnostic log mongod (page 971) can create a verbose log of operations with the mongod --diaglog
(page 973) option or through the diagLogging (page 824) command. The mongod (page 971) creates
this log in the directory specified to mongod --dbpath (page 973). The name of the is diaglog.<time
in hex>, where “<time-in-hex>” reflects the initiation time of logging as a hexadecimal string.

Warning: Setting the diagnostic level to 0 will cause mongod (page 971) to stop writing data to the
diagnostic log file. However, the mongod (page 971) instance will continue to keep the file open, even if
it is no longer writing data to the file. If you want to rename, move, or delete the diagnostic log you must
cleanly shut down the mongod (page 971) instance before doing so.

See Also:

mongod --diaglog (page 973), diaglog (page 1029), and diagLogging (page 824).

document A record in a MongoDB collection, and the basic unit of data in MongoDB. Documents are analogous to
JSON objects, but exist in the database in a more type-rich format known as BSON.

dot notation MongoDB uses the dot notation to access the elements of an array and to access the fields of a subdoc-
ument.

To access an element of an array by the zero-based index position, you concatenate the array name with the dot
(.) and zero-based index position:

’<array>.<index>’

To access a field of a subdocument with dot-notation, you concatenate the subdocument name with the dot (.)
and the field name:

’<subdocument>.<field>’

draining The process of removing or “shedding” chunks from one shard to another. Administrators must drain shards
before removing them from the cluster.

See Also:

removeShard (page 861), sharding.

driver A client implementing the communication protocol required for talking to a server. The MongoDB drivers
provide language-idiomatic methods for interfacing with MongoDB.

See Also:

MongoDB Drivers and Client Libraries (page 529)

election In the context of replica sets, an election is the process by which members of a replica set select primaries
on startup and in the event of failures.

See Also:

Replica Set Elections (page 369) and priority.

eventual consistency A property of a distributed system allowing changes to the system to propagate gradually. In
a database system, this means that readable members are not required to reflect the latest writes at all times. In
MongoDB, reads to a primary have strict consistency; reads to secondaries have eventual consistency.

expression In the context of the aggregation framework, expressions are the stateless transformations that operate on
the data that passes through the pipeline.

See Also:

Aggregation Framework (page 249).

1120 Chapter 64. General Reference

MongoDB Documentation, Release 2.4.2

failover The process that allows one of the secondary members in a replica set to become primary in the event of a
failure.

See Also:

Replica Set Failover (page 369).

field A name-value pair in a document. Documents have zero or more fields. Fields are analogous to columns in
relational databases.

firewall A system level networking filter that restricts access based on, among other things, IP address. Firewalls
form part of effective network security strategy.

fsync A system call that flushes all dirty, in-memory pages to disk. MongoDB calls fsync() on its database files
at least every 60 seconds.

Geohash A value is a binary representation of the location on a coordinate grid.

GeoJSON GeoJSON is a geospatial data interchange format based on JavaScript Object Notation (JSON) and is used
in geospatial queries. For supported GeoJSON objects, see Location Data (page 333). For the GeoJSON format
specification, see http://geojson.org/geojson-spec.html

geospatial Data that relates to geographical location. In MongoDB, you may index or store geospatial data according
to geographical parameters and reference specific coordinates in queries. See Geospatial Indexes and Queries
(page 333).

GridFS A convention for storing large files in a MongoDB database. All of the official MongoDB drivers support
this convention, as does the mongofiles program.

See Also:

mongofiles (page 1022) and GridFS (page 190).

hashed shard key A hashed shard key (page 309) is a special type of shard key that uses a hash of the value in the
shard key field is uses to distribute documents among members of the sharded cluster.

haystack index In the context of geospatial queries, haystack indexes enhance searches by creating “bucket” of
objects grouped by a second criterion. For example, you might want all geospatial searches to first select along
a non-geospatial dimension and then match on location. See Haystack Indexes (page 341) for more information.

hidden member A member of a replica set that cannot become primary and is not advertised as part of the set in the
database command isMaster (page 847), which prevents it from receiving read-only queries depending on
read preference.

See Also:

Hidden Member (page 368), isMaster (page 847), db.isMaster (page 941), and
local.system.replset.members[n].hidden (page 442).

idempotent When calling an idempotent operation on a value or state, the operation only affects the value once.
Thus, the operation can safely run multiple times without unwanted side effects. In the context of MongoDB,
oplog entries must be idempotent to support initial synchronization and recovery from certain failure situations.
Thus, MongoDB can safely apply oplog entries more than once without any ill effects.

index A data structure that optimizes queries. See Indexing Overview (page 303) for more information.

initial sync The replica set operation that replicates data from an existing replica set member to a new or restored
replica set member.

IPv6 A revision to the IP (Internet Protocol) standard that provides a significantly larger address space to more
effectively support the number of hosts on the contemporary Internet.

ISODate The international date format used by mongo (page 984). to display dates. E.g. YYYY-MM-DD
HH:MM.SS.milis.

64.5. Glossary 1121

http://geojson.org/geojson-spec.html

MongoDB Documentation, Release 2.4.2

JavaScript A popular scripting language original designed for web browsers. The MongoDB shell and certain
server-side functions use a JavaScript interpreter.

journal A sequential, binary transaction used to bring the database into a consistent state in the event of a hard
shutdown. MongoDB enables journaling by default for 64-bit builds of MongoDB version 2.0 and newer.
Journal files are pre-allocated and will exist as three 1GB file in the data directory. To make journal files
smaller, use smallfiles (page 1032).

When enabled, MongoDB writes data first to the journal and after to the core data files. MongoDB commits to
the journal every 100ms and this is configurable using the journalCommitInterval (page 1030) runtime
option.

To force mongod (page 971) to commit to the journal more frequently, you can specify j:true. When a write
operation with j:true pending, mongod (page 971) will reduce journalCommitInterval (page 1030)
to a third of the set value.

See Also:

The Journaling (page 71) page.

JSON JavaScript Object Notation. A human-readable, plain text format for expressing structured data with support
in many programming languages.

JSON document A JSON document is a collection of fields and values in a structured format. The following is a
sample JSON document with two fields:

{ name: "MongoDB",
type: "database" }

JSONP JSON with Padding. Refers to a method of injecting JSON into applications. Presents potential security
concerns.

legacy coordinate pairs The format used for geospatial data prior to MongoDB version 2.4. This format stores
geospatial data as points on a planar coordinate system.

LVM Logical volume manager. LVM is a program that abstracts disk images from physical devices, and provides a
number of raw disk manipulation and snapshot capabilities useful for system management.

map-reduce A data and processing and aggregation paradigm consisting of a “map” phase that selects data, and
a “reduce” phase that transforms the data. In MongoDB, you can run arbitrary aggregations over data using
map-reduce.

See Also:

The Map-Reduce (page 285) page for more information regarding MongoDB’s map-reduce implementation,
and Aggregation Framework (page 249) for another approach to data aggregation in MongoDB.

master In conventional master/slave replication, the master database receives all writes. The slave instances replicate
from the master instance in real time.

md5 md5 is a hashing algorithm used to efficiently provide reproducible unique strings to identify and checksum
data. MongoDB uses md5 to identify chunks of data for GridFS.

MIME “Multipurpose Internet Mail Extensions.” A standard set of type and encoding definitions used to declare the
encoding and type of data in multiple data storage, transmission, and email contexts.

mongo The MongoDB Shell. mongo connects to mongod (page 971) and mongos (page 981) instances, allowing
administration, management, and testing. mongo (page 984) has a JavaScript interface.

See Also:

mongo (page 984) and mongo Shell JavaScript Quick Reference (page 881).

1122 Chapter 64. General Reference

MongoDB Documentation, Release 2.4.2

mongod The program implementing the MongoDB database server. This server typically runs as a daemon.

See Also:

mongod (page 971).

MongoDB The document-based database server described in this manual.

mongos The routing and load balancing process that acts an interface between an application and a MongoDB
sharded cluster.

See Also:

mongos (page 981).

multi-master replication A replication method where multiple database instances can accept write operations to
the same data set at any time. Multi-master replication exchanges increased concurrency and availability for
a relaxed consistency semantic. MongoDB ensures consistency and, therefore, does not provide multi-master
replication.

namespace The canonical name for a collection or index in MongoDB. The namespace is
a combination of the database name and the name of the collection or index, like so:
[database-name].[collection-or-index-name]. All documents belong to a namespace.

natural order The order in which a database stores documents on disk. Typically, the order of documents on disks
reflects insertion order, except when documents move internal because of document growth due to update oper-
ations. However, Capped collections guarantee that insertion order and natural order are identical.

When you execute find() (page 910) with no parameters, the database returns documents in forward nat-
ural order. When you execute find() (page 910) and include sort() (page 900) with a parameter of
$natural:-1, the database returns documents in reverse natural order.

ObjectId A special 12-byte BSON type that has a high probability an ObjectId represent the time of the ObjectId’s
creation. MongoDB uses ObjectId values as the default values for _id fields.

operator A keyword beginning with a $ used to express a complex query, update, or data transformation. For
example, $gt is the query language’s “greater than” operator. See the Query, Update, and Projection Operators
Quick Reference (page 737) for more information about the available operators.

oplog A capped collection that stores an ordered history of logical writes to a MongoDB database. The oplog is the
basic mechanism enabling replication in MongoDB.

See Also:

Oplog Sizes (page 372) and Change the Size of the Oplog (page 413).

ordered query plan Query plan that returns results in the order consistent with the sort() (page 900) order.

See Also:

Query Optimization (page 168)

padding The extra space allocated to document on the disk to prevent moving a document when it grows as the result
of update() (page 932) operations.

padding factor An automatically-calibrated constant used to determine how much extra space MongoDB should
allocate per document container on disk. A padding factor of 1 means that MongoDB will allocate only the
amount of space needed for the document. A padding factor of 2 means that MongoDB will allocate twice the
amount of space required by the document.

page fault The event that occurs when a process requests stored data (i.e. a page) from memory that the operating
system has moved to disk.

See Also:

64.5. Glossary 1123

MongoDB Documentation, Release 2.4.2

Storage FAQ: What are page faults? (page 720)

partition A distributed system architecture that splits data into ranges. Sharding is a kind of partitioning.

pcap A packet capture format used by mongosniff (page 1019) to record packets captured from network interfaces
and display them as human-readable MongoDB operations.

PID A process identifier. On UNIX-like systems, a unique integer PID is assigned to each running process. You can
use a PID to inspect a running process and send signals to it.

pipe A communication channel in UNIX-like systems allowing independent processes to send and receive data. In
the UNIX shell, piped operations allow users to direct the output of one command into the input of another.

pipeline The series of operations in the aggregation process.

See Also:

Aggregation Framework (page 249).

powerOf2Sizes A per-collection setting that changes and normalizes the way that MongoDB allocates space for each
document in an effort to maximize storage reuse reduce fragmentation. This is the default for TTL Collections
(page 551). See collMod (page 814) and usePowerOf2Sizes (page 814) for more information. New in
version 2.2.

pre-splitting An operation, performed before inserting data that divides the range of possible shard key values into
chunks to facilitate easy insertion and high write throughput. When deploying a sharded cluster, in some
cases pre-splitting will expedite the initial distribution of documents among shards by manually dividing the
collection into chunks rather than waiting for the MongoDB balancer to create chunks during the course of
normal operation.

primary In a replica set, the primary member is the current master instance, which receives all write operations.

primary key A record’s unique, immutable identifier. In an RDBMS, the primary key is typically an integer stored
in each row’s id field. In MongoDB, the _id field holds a document’s primary key which is usually a BSON
ObjectId.

primary shard For a database where sharding is enabled, the primary shard holds all un-sharded collections.

priority In the context of replica sets, priority is a configurable value that helps determine which members in a
replica set are most likely to become primary.

See Also:

Replica Set Member Priority (page 370)

projection A document given to a query that specifies which fields MongoDB will return from the documents in the
result set.

query A read request. MongoDB queries use a JSON-like query language that includes a variety of query operators
with names that begin with a $ character. In the mongo (page 984) shell, you can issue queries using the
db.collection.find() (page 910) and db.collection.findOne() (page 914) methods.

query optimizer For each query, the MongoDB query optimizer generates a query plan that matches the query to the
index that produces the fastest results. The optimizer then uses the query plan each time the mongod (page 971)
receives the query. If a collection changes significantly, the optimizer creates a new query plan.

See Also:

Query Optimization (page 168)

RDBMS Relational Database Management System. A database management system based on the relational model,
typically using SQL as the query language.

1124 Chapter 64. General Reference

MongoDB Documentation, Release 2.4.2

read preference A setting on the MongoDB drivers (page 529) that determines how the clients direct read operations.
Read preference affects all replica sets including shards. By default, drivers direct all reads to primaries for strict
consistency. However, you may also direct reads to secondaries for eventually consistent reads.

See Also:

Read Preference (page 381)

read-lock In the context of a reader-writer lock, a lock that while held allows concurrent readers, but no writers.

record size The space allocated for a document including the padding.

recovering A replica set member status indicating that a member is not ready to begin normal activities of a secondary
or primary. Recovering members are unavailable for reads.

replica pairs The precursor to the MongoDB replica sets. Deprecated since version 1.6.

replica set A cluster of MongoDB servers that implements master-slave replication and automated failover. Mon-
goDB’s recommended replication strategy.

See Also:

Replication (page 365) and Replica Set Fundamental Concepts (page 367).

replication A feature allowing multiple database servers to share the same data, thereby ensuring redundancy and
facilitating load balancing. MongoDB supports two flavors of replication: master-slave replication and replica
sets.

See Also:

replica set, sharding, Replication (page 365). and Replica Set Fundamental Concepts (page 367).

replication lag The length of time between the last operation in the primary’s oplog last operation applied to a
particular secondary or slave. In general, you want to keep replication lag as small as possible.

See Also:

Replication Lag (page 422)

resident memory The subset of an application’s memory currently stored in physical RAM. Resident memory is a
subset of virtual memory, which includes memory mapped to physical RAM and to disk.

REST An API design pattern centered around the idea of resources and the CRUD operations that apply to them.
Typically implemented over HTTP. MongoDB provides a simple HTTP REST interface that allows HTTP clients
to run commands against the server.

rollback A process that, in certain replica set situations, reverts writes operations to ensure the consistency of all
replica set members.

secondary In a replica set, the secondary members are the current slave instances that replicate the contents of
the master database. Secondary members may handle read requests, but only the primary members can handle
write operations.

secondary index A database index that improves query performance by minimizing the amount of work that the
query engine must perform to fulfill a query.

set name In the context of a replica set, the set name refers to an arbitrary name given to a replica set when it’s
first configured. All members of a replica set must have the same name specified with the replSet (page 1034)
setting (or --replSet (page 977) option for mongod (page 971).)

See Also:

replication, Replication (page 365) and Replica Set Fundamental Concepts (page 367).

64.5. Glossary 1125

MongoDB Documentation, Release 2.4.2

shard A single mongod (page 971) instance or a replica set that stores some portion of a sharded cluster’s total data
set. In production, all shards should be replica sets. See sharding.

See Also:

The documents in the Sharding (page 461) section of manual.

shard key In a sharded collection, a shard key is the field that MongoDB uses to distribute documents among mem-
bers of the sharded cluster.

sharded cluster The set of nodes comprising a sharded MongoDB deployment. A sharded cluster consists of three
config processes, one or more replica sets, and one or more mongos (page 981) routing processes.

See Also:

The documents in the Sharding (page 461) section of manual.

sharding A database architecture that enable horizontal scaling by splitting data into key ranges among two or more
replica sets. This architecture is also known as “range-based partitioning.” See shard.

See Also:

The documents in the Sharding (page 461) section of manual.

shell helper A number of database commands (page 803) have “helper” methods in the mongo shell that provide a
more concise syntax and improve the general interactive experience.

See Also:

mongo (page 984) and mongo Shell JavaScript Quick Reference (page 881).

single-master replication A replication topology where only a single database instance accepts writes. Single-
master replication ensures consistency and is the replication topology employed by MongoDB.

slave In conventional master/slave replication, slaves are read-only instances that replicate operations from the mas-
ter database. Data read from slave instances may not be completely consistent with the master. Therefore,
applications requiring consistent reads must read from the master database instance.

split The division between chunks in a sharded cluster.

SQL Structured Query Language (SQL) is a common special-purpose programming language used for interaction
with a relational database including access control as well as inserting, updating, querying, and deleting data.
There are some similar elements in the basic SQL syntax supported by different database vendors, but most
implementations have their own dialects, data types, and interpretations of proposed SQL standards. Complex
SQL is generally not directly portable between major RDBMS products. SQL is often used as metonym for
relational databases.

SSD Solid State Disk. A high-performance disk drive that uses solid state electronics for persistence, as opposed to
the rotating platters and movable read/write heads used by traditional mechanical hard drives.

standalone In MongoDB, a standalone is an instance of mongod (page 971) that is running as a single server and
not as part of a replica set.

strict consistency A property of a distributed system requiring that all members always reflect the latest changes to
the system. In a database system, this means that any system that can provide data must reflect the latest writes
at all times. In MongoDB, reads to a primary have strict consistency; reads to secondary members have eventual
consistency.

sync The replica set operation where members replicate data from the primary. Replica sets synchronize data at two
different points:

• Initial sync occurs when MongoDB creates new databases on a new or restored replica set member, popu-
lating the member with the replica set’s data.

1126 Chapter 64. General Reference

MongoDB Documentation, Release 2.4.2

• “Replication” occurs continually after initial sync and keeps the member updated with changes to the
replica set’s data.

syslog On UNIX-like systems, a logging process that provides a uniform standard for servers and processes to submit
logging information.

tag One or more labels applied to a given replica set member that clients may use to issue data-center aware opera-
tions.

TSV A text-based data format consisting of tab-separated values. This format is commonly used to exchange database
between relational databases, since the format is well-suited to tabular data. You can import TSV files using
mongoimport (page 1004).

TTL Stands for “time to live,” and represents an expiration time or period for a given piece of information to remain
in a cache or other temporary storage system before the system deletes it or ages it out.

unique index An index that enforces uniqueness for a particular field across a single collection.

unordered query plan Query plan that returns results in an order inconsistent with the sort() (page 900) order.

See Also:

Query Optimization (page 168)

upsert A kind of update that either updates the first document matched in the provided query selector or, if no
document matches, inserts a new document having the fields implied by the query selector and the update
operation.

virtual memory An application’s working memory, typically residing on both disk an in physical RAM.

WGS84 The default datum MongoDB uses to calculate geometry over an Earth-like sphere. MongoDB uses the
WGS84 datum for geospatial queries on GeoJSON objects. See http://spatialreference.org/ref/epsg/4326/.

working set The collection of data that MongoDB uses regularly. This data is typically (or preferably) held in RAM.

write concern Specifies whether a write operation has succeeded. Write concern allows your application to detect
insertion errors or unavailable mongod (page 971) instances. For replica sets, you can configure write concern
to confirm replication to a specified number of members.

See Also:

Write Concern (page 174), Write Operations (page 173), and Write Concern for Replica Sets (page 378).

write-lock A lock on the database for a given writer. When a process writes to the database, it takes an exclusive
write-lock to prevent other processes from writing or reading.

writeBacks The process within the sharding system that ensures that writes issued to a shard that isn’t responsible
for the relevant chunk, get applied to the proper shard.

See Also:

The genindex may provide useful insight into the reference material in this manual.

64.5. Glossary 1127

http://spatialreference.org/ref/epsg/4326/

MongoDB Documentation, Release 2.4.2

1128 Chapter 64. General Reference

Part XV

Release Notes

1129

MongoDB Documentation, Release 2.4.2

Always install the latest, stable version of MongoDB. See Version Numbers (page 1185) for more information.

See the following release notes for an account of the changes in major versions. Release notes also include instructions
for upgrade.

1131

MongoDB Documentation, Release 2.4.2

1132

CHAPTER 65

Current Stable Release

(2.4-series)

65.1 Release Notes for MongoDB 2.4

See the full index of this page for a complete list of changes included in 2.4.

• Platform Support (page 1135)
• Upgrade Process (page 1135)
• Changes (page 1143)

– Major Features (page 1143)
– Security Improvements (page 1143)
– Administration Changes (page 1144)
– Indexing Changes (page 1145)
– Interface Changes (page 1146)

• Additional Resources (page 1153)

MongoDB 2.4 was released on March 19, 2013.

65.1.1 What’s New in MongoDB 2.4

MongoDB 2.4 represents hundreds of improvements and features driven by user requests. MongoDB 2.4 builds on the
momentum of 2.2 by introducing new features that enable greater developer productivity, easier operations, improved
performance and enhanced security. MongoDB 2.4 is available for download on MongoDB.org.

Developer Productivity

• Aggregation Framework refinements include an overhaul of the underlying engine introduced in MongoDB
2.2 making it easier to leverage real-time, in-place analytics. MongoDB 2.4 includes significant performance
improvements, additional support for binary data, support for $geoWithin (page 747) and $near (page 756)
geospatial queries, improved string concatenation with the new $concat (page 784) operator, and improved
date calculation semantics.

1133

http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.4.2

• Geospatial enhancements support new use cases with support for polygon intersection queries (with
$geoIntersects (page 746)), support for GeoJSON, and an improved spherical model. Learn more about
geospatial improvements in 2 (page 1143).

• Text Search provides a simplified, integrated approach to incorporating search functionality into apps with
support for language specific stemming and stop words in 15 languages and real time indexes. Text search is
beta for 2.4 and is not recommended for production use. Learn more about text search (page 1143).

• New update semantics for arrays with the $push (page 765) update operator. Applications can now use
$slice (page 772) to maintain fixed size arrays, and use $sort (page 773) to maintain sorted arrays. Learn
more about capped arrays (page 1146).

• New $setOnInsert (page 771) update operator supports specifying fields to add only on insert and upsert
operations.

Ease of Operations

• Hashed indexes and shard keys provide simple, even distribution for reads and writes. Learn more about hashed
indexes and shard keys (page 1143).

• New serverStatus (page 869) metrics including a working set analysis tool makes capacity planning easier
for operations teams. Learn more about the new serverStatus metrics (page 1145) including the working set
analyzer (page 1066).

• More control for operators with the ability to terminate indexing operations with automatic resource cleanup.

Improved Performance

• V8 JavaScript engine offers better performance and concurrency with JavaScript based actions including those
using the $where (page 777) query operator as well as mapReduce (page 851) and eval (page 826). Learn
more about MongoDB on V8 (page 1147), and JavaScript Changes in MongoDB 2.4 (page 1147).

• Improvements to count (page 821) provide dramatically faster count operations. Counting is now up to 20
times faster for low cardinality index based counts.

• Significant optimizations to $elemMatch (page 745) when using a multi-key index.

More Robust Security

• Role-Based privileges allow organizations to assign more granular security policies for server, database and
cluster administration. Learn more about role based access control in MongoDB (page 149).

• Kerberos authentication mechanism in MongoDB Enterprise.

MongoDB Enterprise

MongoDB Enterprise is a commercial edition of MongoDB that includes enterprise-grade capabilities, such as ad-
vanced security features, management tools, software integrations and certifications. Available as part of the Mon-
goDB Enterprise Subscription, this edition includes 10gen’s most comprehensive SLA and a commercial license.
Continue reading for more information on MongoDB Enterprise

1134 Chapter 65. Current Stable Release

http://www.10gen.com/products/mongodb-enterprise

MongoDB Documentation, Release 2.4.2

Learning More

These features represent only a small portion of the improvements made in MongoDB 2.4. For more details see the
MongoDB 2.4 release notes (page 1133) and Jira for a complete list of all cases closed for MongoDB 2.4 sorted by
user votes

65.1.2 Platform Support

For OS X, MongoDB 2.4 only supports OS X versions 10.6 (Snow Leopard) and later. There are no other platform
support changes in MongoDB 2.4. See the downloads page for more information on platform support.

65.1.3 Upgrade Process

Upgrade MongoDB to 2.4

In the general case, the upgrade from MongoDB 2.2 to 2.4 is a binary-compatible “drop-in” upgrade: shut down the
mongod (page 971) instances and replace them with mongod (page 971) instances running 2.4. However, before
you attempt any upgrade please familiarize yourself with the content of this document, particularly the procedure for
upgrading sharded clusters (page 1136) and the considerations for reverting to 2.2 after running 2.4 (page 1140).

Content

• Upgrade Recommendations and Checklist (page 1135)
• Upgrade Standalone mongod Instance to MongoDB 2.4 (page 1135)
• Upgrade a Replica Set from MongoDB 2.2 to MongoDB 2.4 (page 1136)
• Upgrade a Sharded Cluster from MongoDB 2.2 to MongoDB 2.4 (page 1136)
• Rolling Upgrade Limitation for 2.2.0 Deployments Running with auth Enabled (page 1140)
• Upgrade from 2.3 to 2.4 (page 1140)
• Downgrade MongoDB from 2.4 to Previous Versions (page 1140)

Upgrade Recommendations and Checklist

When upgrading, consider the following:

• For all deployments using authentication, upgrade the drivers (i.e. client libraries), before upgrading the
mongod (page 971) instance or instances.

• To upgrade to 2.4 sharded clusters must upgrade following the meta-data upgrade procedure (page 1136).

• If you’re using 2.2.0 and running with auth (page 1029) enabled, you will need to upgrade first to 2.2.1 and then
upgrade to 2.4. See Rolling Upgrade Limitation for 2.2.0 Deployments Running with auth Enabled (page 1140).

• If you have system.users (page 154) documents (i.e. for auth (page 1029)) that you created before 2.4 you
must ensure that there are no duplicate values for the user field in the system.users (page 154) collection
in any database. If you do have documents with duplicate user fields, you must remove them before upgrading.

See Compatibility Change: User Uniqueness Enforced (page 1144) for more information.

Upgrade Standalone mongod Instance to MongoDB 2.4

1. Download binaries of the latest release in the 2.4 series from the MongoDB Download Page. See Install Mon-
goDB (page 3) for more information.

65.1. Release Notes for MongoDB 2.4 1135

https://jira.mongodb.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+SERVER+AND+fixVersion+in+%28%222.3.2%22,+%222.3.1%22,+%222.3.0%22,+%222.4.0-rc0%22,+%222.4.0-rc1%22,+%222.4.0-rc2%22,+%222.4.0-rc3%22%29+ORDER+BY+votes+DESC,+status+DESC,+priority+DESC
https://jira.mongodb.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+SERVER+AND+fixVersion+in+%28%222.3.2%22,+%222.3.1%22,+%222.3.0%22,+%222.4.0-rc0%22,+%222.4.0-rc1%22,+%222.4.0-rc2%22,+%222.4.0-rc3%22%29+ORDER+BY+votes+DESC,+status+DESC,+priority+DESC
http://www.mongodb.org/downloads/
http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.4.2

2. Shutdown your mongod (page 971) instance. Replace the existing binary with the 2.4 mongod (page 971)
binary and restart mongod (page 971).

Upgrade a Replica Set from MongoDB 2.2 to MongoDB 2.4

You can upgrade to 2.4 by performing a “rolling” upgrade of the set by upgrading the members individually while the
other members are available to minimize downtime. Use the following procedure:

1. Upgrade the secondary members of the set one at a time by shutting down the mongod (page 971) and re-
placing the 2.2 binary with the 2.4 binary. After upgrading a mongod (page 971) instance, wait for the mem-
ber to recover to SECONDARY state before upgrading the next instance. To check the member’s state, issue
rs.status() (page 953) in the mongo (page 984) shell.

2. Use the mongo (page 984) shell method rs.stepDown() (page 953) to step down the primary to allow the
normal failover (page 369) procedure. rs.stepDown() (page 953) expedites the failover procedure and is
preferable to shutting down the primary directly.

Once the primary has stepped down and another member has assumed PRIMARY state, as observed in the output
of rs.status() (page 953), shut down the previous primary and replace mongod (page 971) binary with
the 2.4 binary and start the new process.

Note: Replica set failover is not instant but will render the set unavailable to read or accept writes until the
failover process completes. Typically this takes 10 seconds or more. You may wish to plan the upgrade during
a predefined maintenance window.

Upgrade a Sharded Cluster from MongoDB 2.2 to MongoDB 2.4

Important: Only upgrade sharded clusters to 2.4 if all members of the cluster are currently running instances of 2.2.
The only supported upgrade path for sharded clusters running 2.0 is via 2.2.

Upgrading a sharded cluster from MongoDB version 2.2 to 2.4 (or 2.3) requires that you run a 2.4 mongos (page 981)
with the --upgrade (page 983) option, described in this procedure. The upgrade process does not require downtime.

The upgrade to MongoDB 2.4 adds epochs to the meta-data for all collections and chunks in the existing cluster.
MongoDB 2.2 processes are capable of handling epochs, even though 2.2 did not require them.

This procedure applies only to upgrades from version 2.2. Earlier versions of MongoDB do not correctly handle
epochs.

1136 Chapter 65. Current Stable Release

MongoDB Documentation, Release 2.4.2

Warning:
• Before you start the upgrade, ensure that the amount of free space on the filesystem for the config database

(page 1093) is 4 to 5 times the amount of space currently used by the config database (page 1093) data files.
• While the upgrade is in progress, you cannot make changes to the collection meta-data. For example, during

the upgrade, do not perform:
– sh.enableSharding() (page 958),
– sh.shardCollection() (page 961),
– sh.addShard() (page 955),
– db.createCollection() (page 935),
– db.collection.drop() (page 906),
– db.dropDatabase() (page 936),
– any operation that creates a database, or
– any other operation that modifies the cluster meta-data in any way. See Sharding Commands (page 515)

for a complete list of sharding commands. Note, however, that not all commands on the Sharding
Commands (page 515) page modifies the cluster meta-data.

• Once you upgrade to 2.4 and complete the upgrade procedure do not use 2.0 mongod (page 971) and
mongos (page 981) processes in your cluster. 2.0 process may re-introduce old meta-data formats into
cluster meta-data.

Note: The upgraded config database will require more storage space than before, to make backup and working copies
of the config.chunks (page 1095) and config.collections (page 1095) collections. As always, if storage
requirements increase, the mongod (page 971) might need to pre-allocate additional data files. See What tools can I
use to investigate storage use in MongoDB? (page 720) for more information.

Meta-Data Upgrade Procedure Changes to the meta-data format for sharded clusters, stored in the config database
(page 1093), require a special meta-data upgrade procedure when moving to 2.4.

Do not perform operations that modify meta-data while performing this procedure. See Upgrade a Sharded Cluster
from MongoDB 2.2 to MongoDB 2.4 (page 1136) for examples of prohibited operations.

1. Before you start the upgrade, ensure that the amount of free space on the filesystem for the config database
(page 1093) is 4 to 5 times the amount of space currently used by the config database (page 1093) data files.

2. Turn off the balancer (page 475) in the sharded cluster, as described in Disable the Balancer (page 507).

Optional

For additional security during the upgrade, you can make a backup of the config database using mongodump
(page 992) or other backup tools.

3. Ensure there are no version 2.0 mongod (page 971) or mongos (page 981) processes still active in the sharded
cluster. The automated upgrade process checks for 2.0 processes, but network availability can prevent a defini-
tive check. Wait 5 minutes after stopping or upgrading version 2.0 mongos (page 981) processes to confirm
that none are still active.

4. Start a single 2.4 mongos (page 981) process with configdb (page 1036) pointing to the sharded cluster’s
config servers (page 478) and with the --upgrade (page 983) option. The upgrade process happens before
the process becomes a daemon (i.e. before --fork (page 982).)

You can upgrade an existing mongos (page 981) instance to 2.4 or you can start a new mongos instance that
can reach all config servers if you need to avoid reconfiguring a production mongos (page 981).

Start the mongos (page 981) with a command that resembles the following:

65.1. Release Notes for MongoDB 2.4 1137

MongoDB Documentation, Release 2.4.2

mongos --configdb <config server> --upgrade

Without the --upgrade (page 983) option 2.4 mongos (page 981) processes will fail to start until the upgrade
process is complete.

The upgrade will prevent any chunk moves or splits from occurring during the upgrade process. If there are
very many sharded collections or there are stale locks held by other failed processes, acquiring the locks for all
collections can take seconds or minutes. See the log for progress updates.

5. When the mongos (page 981) process starts successfully, the upgrade is complete. If the mongos (page 981)
process fails to start, check the log for more information.

If the mongos (page 981) terminates or loses its connection to the config servers during the upgrade, you may
always safely retry the upgrade.

However, if the upgrade failed during the short critical section, the mongos (page 981) will exit and report that
the upgrade will require manual intervention. To continue the upgrade process, you must follow the Resync
after an Interruption of the Critical Section (page 1138) procedure.

Optional

If the mongos (page 981) logs show the upgrade waiting for the upgrade lock, a previous upgrade process may
still be active or may have ended abnormally. After 15 minutes of no remote activity mongos (page 981) will
force the upgrade lock. If you can verify that there are no running upgrade processes, you may connect to a 2.2
mongos (page 981) process and force the lock manually:

mongo <mongos.example.net>

db.getMongo().getCollection("config.locks").findOne({ _id : "configUpgrade" })

If the process specified in the process field of this document is verifiably offline, run the following operation
to force the lock.

db.getMongo().getCollection("config.locks").update({ _id : "configUpgrade" }, { $set : { state : 0 } })

It is always more safe to wait for the mongos (page 981) to verify that the lock is inactive, if you have any
doubts about the activity of another upgrade operation. In addition to the configUpgrade, the mongos
(page 981) may need to wait for specific collection locks. Do not force the specific collection locks.

6. Upgrade and restart other mongos (page 981) processes in the sharded cluster, without the --upgrade
(page 983) option.

See Complete Sharded Cluster Upgrade (page 1139) for more information.

7. Re-enable the balancer (page 507). You can now perform operations that modify cluster meta-data.

Once you have upgraded, do not introduce version 2.0 MongoDB processes into the sharded cluster. This can rein-
troduce old meta-data formats into the config servers. The meta-data change made by this upgrade process will help
prevent errors caused by cross-version incompatibilities in future versions of MongoDB.

Resync after an Interruption of the Critical Section During the short critical section of the upgrade that applies
changes to the meta-data, it is unlikely but possible that a network interruption can prevent all three config servers
from verifying or modifying data. If this occurs, the config servers (page 478) must be re-synced, and there may be
problems starting new mongos (page 981) processes. The sharded cluster will remain accessible, but avoid all cluster
meta-data changes until you resync the config servers. Operations that change meta-data include: adding shards,
dropping databases, and dropping collections.

1138 Chapter 65. Current Stable Release

MongoDB Documentation, Release 2.4.2

Note: Only perform the following procedure if something (e.g. network, power, etc.) interrupts the upgrade process
during the short critical section of the upgrade. Remember, you may always safely attempt the meta data upgrade
procedure (page 1137).

To resync the config servers:

1. Turn off the balancer (page 475) in the sharded cluster and stop all meta-data operations. If you are in the
middle of an upgrade process (Upgrade a Sharded Cluster from MongoDB 2.2 to MongoDB 2.4 (page 1136)),
you have already disabled the balancer.

2. Shut down two of the three config servers, preferably the last two listed in the
configdb (page 1036) string. For example, if your configdb (page 1036) string is
configA:27019,configB:27019,configC:27019, shut down configB and configC. Shut-
ting down the last two config servers ensures that most mongos (page 981) instances will have uninterrupted
access to cluster meta-data.

3. mongodump (page 992) the data files of the active config server (configA).

4. Move the data files of the deactivated config servers (configB and configC) to a backup location.

5. Create new, empty data directories.

6. Restart the disabled config servers with --dbpath (page 973) pointing to the now-empty data directory and
--port (page 972) pointing to an alternate port (e.g. 27020).

7. Use mongorestore (page 996) to repopulate the data files on the disabled documents from the active config
server (configA) to the restarted config servers on the new port (configB:27020,configC:27020).
These config servers are now re-synced.

8. Restart the restored config servers on the old port, resetting the port back to the old settings (configB:27019
and configC:27019).

9. In some cases connection pooling may cause spurious failures, as the mongos (page 981) disables old con-
nections only after attempted use. 2.4 fixes this problem, but to avoid this issue in version 2.2, you can restart
all mongos (page 981) instances (one-by-one, to avoid downtime) and use the rs.stepDown() (page 953)
method before restarting each of the shard replica set primaries.

10. The sharded cluster is now fully resynced; however before you attempt the upgrade process again, you must
manually reset the upgrade state using a version 2.2 mongos (page 981). Begin by connecting to the 2.2
mongos (page 981) with the mongo (page 984) shell:

mongo <mongos.example.net>

Then, use the following operation to reset the upgrade process:

db.getMongo().getCollection("config.version").update({ _id : 1 }, { $unset : { upgradeState : 1 } })

11. Finally retry the upgrade process, as in Upgrade a Sharded Cluster from MongoDB 2.2 to MongoDB 2.4
(page 1136).

Complete Sharded Cluster Upgrade After you have successfully completed the meta-data upgrade process de-
scribed in Meta-Data Upgrade Procedure (page 1137), and the 2.4 mongos (page 981) instance starts, you can
upgrade the other processes in your MongoDB deployment.

While the balancer is still disabled, upgrade the components of your sharded cluster in the following order:

• Upgrade all mongos (page 981) instances in the cluster, in any order.

• Upgrade all 3 mongod (page 971) config server instances, upgrading the first system in the mongos
--configdb (page 982) argument last.

65.1. Release Notes for MongoDB 2.4 1139

MongoDB Documentation, Release 2.4.2

• Upgrade each shard, one at a time, upgrading the mongod (page 971) secondaries before running
replSetStepDown (page 867) and upgrading the primary of each shard.

When this process is complete, you can now re-enable the balancer (page 507).

Rolling Upgrade Limitation for 2.2.0 Deployments Running with auth Enabled

MongoDB cannot support deployments that mix 2.2.0 and 2.4.0, or greater, components. MongoDB version 2.2.1
and later processes can exist in mixed deployments with 2.4-series processes. Therefore you cannot perform a rolling
upgrade from MongoDB 2.2.0 to MongoDB 2.4.0. To upgrade a cluster with 2.2.0 components, use one of the
following procedures.

1. Perform a rolling upgrade of all 2.2.0 processes to the latest 2.2-series release (e.g. 2.2.3) so that there are no
processes in the deployment that predate 2.2.1. When there are no 2.2.0 processes in the deployment, perform a
rolling upgrade to 2.4.0.

2. Stop all processes in the cluster. Upgrade all processes to a 2.4-series release of MongoDB, and start all pro-
cesses at the same time.

Upgrade from 2.3 to 2.4

If you used a mongod (page 971) from the 2.3 or 2.4-rc (release candidate) series, you can safely transition these
databases to 2.4.0 or later; however, if you created 2dsphere or text indexes using a mongod (page 971) before
v2.4-rc2, you will need to rebuild these indexes. For example:

db.records.dropIndex({ loc: "2dsphere" })
db.records.dropIndex("records_text")

db.records.ensureIndex({ loc: "2dsphere" })
db.records.ensureIndex({ records: "text" })

Downgrade MongoDB from 2.4 to Previous Versions

For some cases the on-disk format of data files used by 2.4 and 2.2 mongod (page 971) is compatible, and you can
upgrade and downgrade if needed. However, several new features in 2.4 are incompatible with previous versions:

• 2dsphere indexes are incompatible with 2.2 and earlier mongod (page 971) instances.

• text indexes are incompatible with 2.2 and earlier mongod (page 971) instances.

• using a hashed index as a shard key are incompatible with 2.2 and earlier mongos (page 981) instances

• hashed indexes are incompatible with 2.0 and earlier mongod (page 971) instances.

Note: In sharded clusters, once you have completed the meta-data upgrade procedure (page 1136), you cannot use
2.0 mongod (page 971) or mongos (page 981) instances in the same cluster.

If you complete the meta-data upgrade, you can have a mixed cluster that has both 2.2 and 2.4 mongod (page 971)
and mongos (page 981) instances, if needed. However, do not create 2dsphere or text indexes in a cluster that
has 2.2 components.

1140 Chapter 65. Current Stable Release

MongoDB Documentation, Release 2.4.2

Considerations and Compatibility If you upgrade to MongoDB 2.4, and then need to run MongoDB 2.2 with the
same data files, consider the following limitations.

• If you use a hashed index as the shard key index, which is only possible under 2.4 you will not be able to
query data in this sharded collection. Furthermore, a 2.2 mongos (page 981) cannot properly route an insert
operation for a collections sharded using a hashed index for the shard key index: any data that you insert using
a 2.2 mongos (page 981), will not arrive on the correct shard and will not be reachable by future queries.

• If you never create an 2dsphere or text index, you can move between a 2.4 and 2.2 mongod (page 971) for a
given data set; however, after you create the first 2dsphere or text index with a 2.4 mongod (page 971) you
will need to run a 2.2 mongod (page 971) with the --upgrade (page 977) option and drop any 2dsphere
or text index.

Upgrade and Downgrade Procedures

Basic Downgrade and Upgrade Except as described below, moving between 2.2 and 2.4 is a drop-in replacement:

• stop the existing mongod (page 971), using the --shutdown (page 977) option as follows:

mongod --dbpath /var/mongod/data --shutdown

Replace http://docs.mongodb.org/manual/var/mongod/data with your MongoDB dbpath
(page 1029).

• start the new mongod (page 971) processes with the same dbpath (page 1029) setting, for example:

mongod --dbpath /var/mongod/data

Replace http://docs.mongodb.org/manual/var/mongod/data with your MongoDB dbpath
(page 1029).

Downgrade to 2.2 After Creating a 2dsphere or text Index If you have created 2dsphere or text indexes
while running a 2.4 mongod (page 971) instance, you can downgrade at any time, by starting the 2.2 mongod
(page 971) with the --upgrade (page 977) option as follows:

mongod --dbpath /var/mongod/data/ --upgrade

Then, you will need to drop any existing 2dsphere or text indexes using db.collection.dropIndex()
(page 906), for example:

db.records.dropIndex({ loc: "2dsphere" })
db.records.dropIndex("records_text")

Warning: --upgrade (page 977) will run repairDatabase (page 863) on any database where you have
created a 2dsphere or text index, which will rebuild all indexes.

Troubleshooting Upgrade/Downgrade Operations If you do not use --upgrade (page 977), when you attempt
to start a 2.2 mongod (page 971) and you have created a 2dsphere or text index, mongod (page 971) will return
the following message:

’need to upgrade database index_plugin_upgrade with pdfile version 4.6, new version: 4.5 Not upgrading, exiting’

While running 2.4, to check the data file version of a MongoDB database, use the following operation in the shell:

65.1. Release Notes for MongoDB 2.4 1141

MongoDB Documentation, Release 2.4.2

db.getSiblingDB(’<databasename>’).stats().dataFileVersion

The major data file version for both 2.2 and 2.4 is 4, the minor data file version for 2.2 is 5 and the minor data file
version for 2.4 is 6 if you have created a 2dsphere or text.

Compatibility and Index Type Changes in MongoDB 2.4

In 2.4 MongoDB includes two new features related to indexes that users upgrading to version 2.4 must consider,
particularly with regard to possible downgrade paths. For more information on downgrades, see Downgrade MongoDB
from 2.4 to Previous Versions (page 1140).

New Index Types

In 2.4 MongoDB adds two new index types: 2dsphere and text. These index types do not exist in 2.2, and
for each database, creating a 2dsphere or text index, will upgrade the data-file version and make that database
incompatible with 2.2.

If you intend to downgrade, you should always drop all 2dsphere and text indexes before moving to 2.2.

You can use the downgrade procedure (page 1140) to downgrade these databases and run 2.2 if needed, however this
will run a full database repair (as with repairDatabase (page 863),) for all affected databases.

Index Type Validation

In MongoDB 2.2 and earlier you could specify invalid index types that did not exist. In these situations, MongoDB
would create an ascending (e.g. 1) index. Invalid indexes include index types specified by strings that do not refer to
an existing index type, and all numbers other than 1 and -1. 1

In 2.4, creating any invalid index will result in an error. Furthermore, you cannot create a 2dsphere or text index
on a collection if its containing database has any invalid index types. 1

Example

If you attempt to add an invalid index in MongoDB 2.4, as in the following:

db.coll.ensureIndex({ field: "1" })

MongoDB will return the following error document:

{
"err" : "Unknown index plugin ’1’ in index { field: \"1\" }"
"code": 16734,
"n": <number>,
"connectionId": <number>,
"ok": 1

}

See Upgrade MongoDB to 2.4 (page 1135) for full upgrade instructions.

1 In 2.4, indexes that specify a type of "1" or "-1" (the strings "1" and "-1") will continue to exist, despite a warning on start-up. However,
a secondary in a replica set cannot complete an initial sync from a primary that has a "1" or "-1" index. Avoid all indexes with invalid types.

1142 Chapter 65. Current Stable Release

MongoDB Documentation, Release 2.4.2

65.1.4 Changes

Major Features

Text Search

MongoDB 2.4 adds support for boolean search of content in MongoDB databases as a beta feature. With the new text
index (page 312), and supporting, text (page 875) command you can search text in data stored in MongoDB, using
an index that updates in real-time and is always consistent with the data set. See Text Search (page 349) for more
information about text search in MongoDB.

New Geospatial Indexes with GeoJSON and Improved Spherical Geometry

MongoDB adds the new 2dsphere geospatial index in addition to the existing 2d index. The 2dsphere index
supports improved spherical queries and supports the following GeoJSON objects:

• Point

• LineString

• Polygon

The 2dsphere index supports all current geospatial query operators (page 739) and introduces the following new
query operator for queries on GeoJSON data:

• $geoWithin (page 747) operator

• $geoIntersects (page 746) operator

The operators use the new $geometry (page 748) parameter.

The $within (page 748) operator no longer requires a geospatial index. Additionally, 2.4 deprecates the $within
(page 748) operator. Use $geoWithin (page 747) operator instead.

For more information on geospatial indexes in 2.4, see:

• Geospatial Indexes and Queries (page 333)

• Geospatial Index Internals (page 346)

New Hashed Index and Sharding with a Hashed Shard Key

To support an easy to configure and evenly distributed shard key, version 2.4 adds a new “hashed” index type that
indexes documents using hashes of field values.

See Hashed Index (page 309) for documentation of hashed indexes, and Hashed Sharding (page 464) for documen-
tation of hash-based sharding.

Security Improvements

New Modular Authentication System with Support for Kerberos

Note: Kerberos authentication is only present in MongoDB Enterprise Edition. To download and install MongoDB
Enterprise, see Install MongoDB Enterprise (page 20).

65.1. Release Notes for MongoDB 2.4 1143

http://geojson.org/geojson-spec.html
http://www.10gen.com/products/mongodb-enterprise

MongoDB Documentation, Release 2.4.2

In 2.4 the MongoDB Enterprise now supports authentication via a Kerberos mechanism. See Deploy MongoDB with
Kerberos Authentication (page 141) for more information.

Also consider the following documents that address authenticating to MongoDB using Kerberos:

• Authenticate to MongoDB using Kerberos and the Java Driver

• Authenticate to MongoDB using Kerberos and the C# Driver

See Also:

MongoDB Security Practices and Procedures (page 123).

Role Based Access Control and New Privilege Documents

MongoDB 2.4 introduces a role based access control system that provides more granular privileges to MongoDB users.
See User Privilege Roles in MongoDB (page 149) for more information.

To support the new access control system, 2.4 also introduces a new format for documents in a database’s
system.users (page 154) collection. See system.users Privilege Documents (page 153) for more information.

Use supportCompatibilityFormPrivilegeDocuments (page 1040) to disable the legacy privilege docu-
ments, which MongoDB continues to support in 2.4.

Enhanced SSL Support

In 2.4, MongoDB instances can optionally require clients to provide SSL certificates signed by a Certificate Authority.
You must use the MongoDB distribution that supports SSL, and your client driver must support SSL. See Connect to
MongoDB with SSL (page 77) for more information.

Compatibility Change: User Uniqueness Enforced

2.4 now enforces uniqueness of the user field in user privilege documents (i.e. in the system.users (page 154)
collection.) Previous versions of MongoDB did not enforce this requirement, and existing databases may have dupli-
cates.

Administration Changes

--setParameter Option Available on the mongos and mongod Command Line

You can now use --setParameter (page 976) on the command line and setParameter (page 1033) in the
configuration file. Currently setParameter (page 1033) provides the following options:

• enableLocalhostAuthBypass (page 1039)

• enableTestCommands (page 1039)

• journalCommitInterval (page 1040)

• logLevel (page 1040)

• logUserIds (page 1040)

• notablescan (page 1040)

• quiet (page 1041)

• replApplyBatchSize (page 1040)

1144 Chapter 65. Current Stable Release

http://docs.mongodb.org/ecosystem/tutorial/authenticate-with-java-driver/
http://docs.mongodb.org/ecosystem/tutorial/authenticate-with-csharp-driver/

MongoDB Documentation, Release 2.4.2

• replIndexPrefetch (page 1040)

• supportCompatibilityFormPrivilegeDocuments (page 1040)

• syncdelay (page 1041)

• textSearchEnabled (page 1041)

• traceExceptions (page 1041)

See mongod Parameters (page 1039) for full documentation of available parameters and their use.

Changes to serverStatus Output Including Additional Metrics

In 2.4 MongoDB adds a number of counters and system metrics to the output of the serverStatus (page 869)
command, including:

• a working set estimator (page 1066).

• operation counters, in document (page 1067) and operation (page 1067).

• record allocation, in record (page 1068).

• thorough metrics of the replication process, in repl (page 1068).

• metrics on the ttl index (page 551) documentation.

Additionally, in 2.4, the serverStatus (page 869) command can dynamically construct the serverStatus
(page 1052) document by excluding any top-level sections included by default, or including any top-level section
not included by default (e.g. workingSet (page 1066).)

See db.serverStatus() (page 945) and serverStatus (page 869) for more information.

Increased Chunk Migration Write Concern

By default, all insert and delete operations that occur as part of a chunk migration in a sharded cluster will have an
increased write concern, to ensure that at least one secondary acknowledges each insert and deletion operation. This
change slows the potential speed of a chunk migration, but increases reliability and ensures that a large number of
chunk migrations cannot affect the availability of a sharded cluster.

BSON Document Validation Enabled by Default for mongod and mongorestore

Starting in 2.4, MongoDB enables basic BSON object validation for mongod (page 971) and mongorestore
(page 996) when writing to MongoDB data files. This prevents any client from inserting invalid or malformed BSON
into a MongoDB database. For objects with a high degree of sub-document nesting this validation may have a small
performance impact. objcheck (page 1027), which was previously disabled by default, provides this validation.

Indexing Changes

Support for Multiple Concurrent Index Builds

A single mongod (page 971) instance can build multiple indexes in the background at the same time. See building
indexes in the background (page 309) for more information on background index builds. Foreground index builds hold
a database lock and must proceed one at a time.

65.1. Release Notes for MongoDB 2.4 1145

MongoDB Documentation, Release 2.4.2

db.killOp() Can Now Kill Foreground Index Builds

The db.killOp() (page 941) method will now terminate a foreground index build, in addition to the other opera-
tions supported in previous versions.

Improved Validation of Index Types

Before 2.4, mongod (page 971) would create an ascending scalar index (e.g. { a : 1 }) when users attempted
to create an index of a type that did not exist. Creating an index of an invalid index type will generate an error in 2.4.

See Compatibility and Index Type Changes in MongoDB 2.4 (page 1142) for more information.

Interface Changes

$setOnInsert – New Update Operator

To set fields only when an upsert (page 932) performs an insert, use the $setOnInsert (page 771) operator with
the upsert (page 932) .

Example

A collection named coll has no documents with _id equal to 1.

The following upsert (page 932) operation inserts a document and applies the $setOnInsert (page 771) operator
to set the fields x and y:

db.coll.update({ _id: 1 },
{ $setOnInsert: { x: 25, y: 30 } },
{ upsert: true })

The newly-inserted document has the field x set to 25 and the field y set to 30:

{ "_id" : 1, "x" : 25, "y" : 30 }

Note: The $setOnInsert (page 771) operator performs no operation for upserts (page 932) that only perform
an update and for updates (page 932) when the upsert option is false.

Limit Number of Elements in an Array

In 2.4, by using the $push (page 765) operator with the $each (page 744), the $sort (page 773), and the $slice
(page 772) modifiers, you can add multiple elements to an array, sort and limit the number of elements in the modified
array to maintain an array with a fixed number of elements.

See Limit Number of Elements in an Array after an Update (page 550) for an example where an update maintains the
top three scores for a student.

See Also:

The following pages provide additional information and examples:

• $push (page 765) operator

• $each (page 744) modifier

1146 Chapter 65. Current Stable Release

MongoDB Documentation, Release 2.4.2

• $sort (page 773) modifier

• $slice (page 772) modifier

JavaScript Engine Changed to V8

JavaScript Changes in MongoDB 2.4 Consider the following impacts of JavaScript Engine Changed to V8
(page 1147) in MongoDB 2.4:

Improved Concurrency Previously, MongoDB operations that required the JavaScript interpreter had to acquire
a lock, and a single mongod (page 971) could only run a single JavaScript operation at a time. The switch to V8
improves concurrency by permitting multiple JavaScript operations to run at the same time.

Modernized JavaScript Implementation (ES5) The 5th edition of ECMAscript, abbreviated as ES5, adds many
new language features, including:

• standardized JSON,

• strict mode,

• function.bind(),

• array extensions, and

• getters and setters.

With V8, MongoDB supports the ES5 implementation of Javascript with the following exceptions.

Note: The following features do not work as expected on documents returned from MongoDB queries:

• Object.seal() throws an exception on documents returned from MongoDB queries.

• Object.freeze() throws an exception on documents returned from MongoDB queries.

• Object.preventExtensions() incorrectly allows the addition of new properties on documents returned
from MongoDB queries.

• enumerable properties, when added to documents returned from MongoDB queries, are not saved during
write operations.

See SERVER-8216, SERVER-8223, SERVER-8215, and SERVER-8214 for more information.

For objects that have not been returned from MongoDB queries, the features work as expected.

Removed Non-Standard SpiderMonkey Features V8 does not support the following non-standard SpiderMonkey
JavaScript extensions, previously supported by MongoDB’s use of SpiderMonkey as its JavaScript engine.

E4X Extensions V8 does not support the non-standard E4X extensions. E4X provides a native XML object to the
JavaScript language and adds the syntax for embedding literal XML documents in JavaScript code.

You need to use alternative XML processing if you used any of the following constructors/methods:

• XML()

• Namespace()

• QName()

65.1. Release Notes for MongoDB 2.4 1147

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/ecma-262/5.1/#sec-15.12.1
http://www.ecma-international.org/ecma-262/5.1/#sec-4.2.2
http://www.ecma-international.org/ecma-262/5.1/#sec-15.3.4.5
http://www.ecma-international.org/ecma-262/5.1/#sec-15.4.4.16
https://jira.mongodb.org/browse/SERVER-8216
https://jira.mongodb.org/browse/SERVER-8223
https://jira.mongodb.org/browse/SERVER-8215
https://jira.mongodb.org/browse/SERVER-8214
https://developer.mozilla.org/en-US/docs/SpiderMonkey
https://developer.mozilla.org/en-US/docs/E4X
https://developer.mozilla.org/en-US/docs/E4X/Processing_XML_with_E4X

MongoDB Documentation, Release 2.4.2

• XMLList()

• isXMLName()

Destructuring Assignment V8 does not support the non-standard destructuring assignments. Destructuring assign-
ment “extract[s] data from arrays or objects using a syntax that mirrors the construction of array and object literals.” -
Mozilla docs

Example

The following destructuring assignment is invalid with V8 and throws a SyntaxError:

original = [4, 8, 15];
var [b, ,c] = a; // <== destructuring assignment
print(b) // 4
print(c) // 15

Iterator(), StopIteration(), and Generators V8 does not support Iterator(), StopIteration(), and gener-
ators.

InternalError() V8 does not support InternalError(). Use Error() instead.

for each...in Construct V8 does not support the use of for each...in construct. Use for (var x in y)
construct instead.

Example

The following for each (var x in y) construct is invalid with V8:

var o = { name: ’MongoDB’, version: 2.4 };

for each (var value in o) {
print(value);

}

Instead, in version 2.4, you can use the for (var x in y) construct:

var o = { name: ’MongoDB’, version: 2.4 };

for (var prop in o) {
var value = o[prop];
print(value);

}

You can also use the array instance method forEach() with the ES5 method Object.keys():

Object.keys(o).forEach(function (key) {
var value = o[key];
print(value);

});

1148 Chapter 65. Current Stable Release

https://developer.mozilla.org/en-US/docs/JavaScript/New_in_JavaScript/1.7#Destructuring_assignment_(Merge_into_own_page.2Fsection)
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Iterators_and_Generators
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Iterators_and_Generators
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Statements/for_each...in

MongoDB Documentation, Release 2.4.2

Array Comprehension V8 does not support Array comprehensions.

Use other methods such as the Array instance methods map(), filter(), or forEach().

Example

With V8, the following array comprehension is invalid:

var a = { w: 1, x: 2, y: 3, z: 4 }

var arr = [i * i for each (i in a) if (i > 2)]
printjson(arr)

Instead, you can implement using the Array instance method forEach() and the ES5 method Object.keys()
:

var a = { w: 1, x: 2, y: 3, z: 4 }

var arr = [];
Object.keys(a).forEach(function (key) {
var val = a[key];
if (val > 2) arr.push(val * val);

})
printjson(arr)

Note: The new logic uses the Array instance method forEach() and not the generic method
Array.forEach(); V8 does not support Array generic methods. See Array Generic Methods (page 1151) for
more information.

Multiple Catch Blocks V8 does not support multiple catch blocks and will throw a SyntaxError.

Example

The following multiple catch blocks is invalid with V8 and will throw "SyntaxError: Unexpected token
if":

try {
something()

} catch (err if err instanceof SomeError) {
print(’some error’)

} catch (err) {
print(’standard error’)

}

Conditional Function Definition V8 will produce different outcomes than SpiderMonkey with conditional function
definitions.

Example

The following conditional function definition produces different outcomes in SpiderMonkey versus V8:

function test () {
if (false) {

65.1. Release Notes for MongoDB 2.4 1149

https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Predefined_Core_Objects#Array_comprehensions
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Functions
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Functions

MongoDB Documentation, Release 2.4.2

function go () {};
}
print(typeof go)

}

With SpiderMonkey, the conditional function outputs undefined, whereas with V8, the conditional function outputs
function.

If your code defines functions this way, it is highly recommended that you refactor the code. The following example
refactors the conditional function definition to work in both SpiderMonkey and V8.

function test () {
var go;
if (false) {
go = function () {}

}
print(typeof go)

}

The refactored code outputs undefined in both SpiderMonkey and V8.

Note: ECMAscript prohibits conditional function definitions. To force V8 to throw an Error, enable strict mode.

function test () {
’use strict’;

if (false) {
function go () {}

}
}

The JavaScript code throws the following syntax error:

SyntaxError: In strict mode code, functions can only be declared at top level or immediately within another function.

String Generic Methods V8 does not support String generics. String generics are a set of methods on the String
class that mirror instance methods.

Example

The following use of the generic method String.toLowerCase() is invalid with V8:

var name = ’MongoDB’;

var lower = String.toLowerCase(name);

With V8, use the String instance method toLowerCase() available through an instance of the String class
instead:

var name = ’MongoDB’;

var lower = name.toLowerCase();
print(name + ’ becomes ’ + lower);

With V8, use the String instance methods instead of following generic methods:

1150 Chapter 65. Current Stable Release

http://www.nczonline.net/blog/2012/03/13/its-time-to-start-using-javascript-strict-mode/
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/String#String_generic_methods

MongoDB Documentation, Release 2.4.2

String.charAt() String.quote() String.toLocaleLowerCase()
String.charCodeAt() String.replace() String.toLocaleUpperCase()
String.concat() String.search() String.toLowerCase()
String.endsWith() String.slice() String.toUpperCase()
String.indexOf() String.split() String.trim()
String.lastIndexOf() String.startsWith() String.trimLeft()
String.localeCompare() String.substr() String.trimRight()
String.match() String.substring()

Array Generic Methods V8 does not support Array generic methods. Array generics are a set of methods on the
Array class that mirror instance methods.

Example

The following use of the generic method Array.every() is invalid with V8:

var arr = [4, 8, 15, 16, 23, 42];

function isEven (val) {
return 0 === val % 2;

}

var allEven = Array.every(arr, isEven);
print(allEven);

With V8, use the Array instance method every() available through an instance of the Array class instead:

var allEven = arr.every(isEven);
print(allEven);

With V8, use the Array instance methods instead of the following generic methods:

Array.concat() Array.lastIndexOf() Array.slice()
Array.every() Array.map() Array.some()
Array.filter() Array.pop() Array.sort()
Array.forEach() Array.push() Array.splice()
Array.indexOf() Array.reverse() Array.unshift()
Array.join() Array.shift()

Array Instance Method toSource() V8 does not support the Array instance method toSource(). Use the
Array instance method toString() instead.

uneval() V8 does not support the non-standard method uneval(). Use the standardized JSON.stringify()
method instead.

In 2.4 the default JavaScript engine in the mongo (page 984) shell mongod (page 971) is now V8. This change affects
all JavaScript behavior including the mapReduce (page 851), group (page 840), and eval (page 826) commands,
as well as the $where (page 777) query operator.

Use the new interpreterVersion() method in the mongo (page 984) shell and the javascriptEngine
(page 811) field in the output of db.serverBuildInfo() (page 944) to determine which JavaScript engine a
MongoDB binary uses.

The primary impacts of the change from the previous JavaScript engine, SpiderMonkey, to V8 are:

65.1. Release Notes for MongoDB 2.4 1151

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Array#Array_generic_methods
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Array/toSource
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/JSON/stringify

MongoDB Documentation, Release 2.4.2

• improved concurrency for JavaScript operations,

• modernized JavaScript implementation, and

• removed non-standard SpiderMonkey features.

See JavaScript Changes in MongoDB 2.4 (page 1147) for more information about all changes .

Additional Limitations for Map-Reduce and $where Operations

In MongoDB 2.4, map-reduce operations (page 851), the group (page 840) command, and $where
(page 777) operator expressions cannot access certain global functions or properties, such as db, that are available in
the mongo (page 984) shell.

When upgrading to MongoDB 2.4, you will need to refactor your code if your map-reduce operations
(page 851), group (page 840) commands, or $where (page 777) operator expressions include any global shell
functions or properties that are no longer available, such as db.

The following shell functions and properties are available to map-reduce operations (page 851), the group
(page 840) command, and $where (page 777) operator expressions in MongoDB 2.4:

Available Properties Available Functions

args

MaxKey

MinKey

assert()

BinData()

DBPointer()

DBRef()

doassert()

emit()

gc()

HexData()

hex_md5()

isNumber()

isObject()

ISODate()

isString()

Map()

MD5()

NumberInt()

NumberLong()

ObjectId()

print()

sleep()

Timestamp()

UUID()

version()

Improvements to the Aggregation Framework

MongoDB 2.4 introduces a number of additional functionality and improved performance for the Aggregation Frame-
work (page 249). Consider the following additions in 2.4:

• $match (page 792) queries now support the $geoWithin (page 747) operator for bounded geospatial queries.

• The new $geoNear (page 788) pipeline stage to support geospatial queries.

• $min (page 794) operator only considers non-null and existing field values. If all the values for a field are null
or are missing, the operator returns null for the minimum value.

• For sort operations where the $sort (page 798) stage immediately precedes a $limit (page 791) in the
pipeline, the MongoDB can perform a more efficient sort that does not require keeping the entire result set in
memory.

• The new $millisecond (page 794) operator returns the millisecond portion of a date.

1152 Chapter 65. Current Stable Release

MongoDB Documentation, Release 2.4.2

• The new $concat (page 784) operator concatenates array of strings.

65.1.5 Additional Resources

• MongoDB Downloads.

• What’s New in MongoDB 2.4 (page 1133).

• All JIRA issues resolved in 2.4.

• All Backwards incompatible changes.

• All Third Party License Notices.

See http://docs.mongodb.org/manual/release-notes/2.4-changes for an overview of all
changes in 2.4.

65.1. Release Notes for MongoDB 2.4 1153

http://mongodb.org/downloads
https://jira.mongodb.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+SERVER+AND+fixVersion+in+%28%222.3.2%22,+%222.3.1%22,+%222.3.0%22,+%222.4.0-rc0%22,+%222.4.0-rc1%22,+%222.4.0-rc2%22,+%222.4.0-rc3%22%29
https://jira.mongodb.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+SERVER+AND+fixVersion+in+%28%222.3.2%22%2C+%222.3.1%22%2C+%222.3.0%22%2C+%222.4.0-rc0%22%2C+%222.4.0-rc1%22%2C+%222.4.0-rc2%22%2C+%222.4.0-rc3%22%29+AND+%22Backward+Breaking%22+in+%28+Rarely+%2C+sometimes%2C+yes+%29+ORDER+BY+votes+DESC%2C+issuetype+DESC%2C+key+DESC
https://github.com/mongodb/mongo/blob/v2.4/distsrc/THIRD-PARTY-NOTICES

MongoDB Documentation, Release 2.4.2

1154 Chapter 65. Current Stable Release

CHAPTER 66

Previous Stable Releases

66.1 Release Notes for MongoDB 2.2

See the full index of this page for a complete list of changes included in 2.2.

• Upgrading (page 1155)
• Changes (page 1157)
• Licensing Changes (page 1164)
• Resources (page 1164)

66.1.1 Upgrading

MongoDB 2.2 is a production release series and succeeds the 2.0 production release series.

MongoDB 2.0 data files are compatible with 2.2-series binaries without any special migration process. However,
always perform the upgrade process for replica sets and sharded clusters using the procedures that follow.

Always upgrade to the latest point release in the 2.2 point release. Currently the latest release of MongoDB is 2.4.2.

Synopsis

• mongod (page 971), 2.2 is a drop-in replacement for 2.0 and 1.8.

• Check your driver (page 529) documentation for information regarding required compatibility upgrades, and
always run the recent release of your driver.

Typically, only users running with authentication, will need to upgrade drivers before continuing with the up-
grade to 2.2.

• For all deployments using authentication, upgrade the drivers (i.e. client libraries), before upgrading the
mongod (page 971) instance or instances.

• For all upgrades of sharded clusters:

– turn off the balancer during the upgrade process. See the Disable the Balancer (page 507) section for more
information.

1155

MongoDB Documentation, Release 2.4.2

– upgrade all mongos (page 981) instances before upgrading any mongod (page 971) instances.

Other than the above restrictions, 2.2 processes can interoperate with 2.0 and 1.8 tools and processes. You can safely
upgrade the mongod (page 971) and mongos (page 981) components of a deployment one by one while the deploy-
ment is otherwise operational. Be sure to read the detailed upgrade procedures below before upgrading production
systems.

Upgrading a Standalone mongod

1. Download binaries of the latest release in the 2.2 series from the MongoDB Download Page.

2. Shutdown your mongod (page 971) instance. Replace the existing binary with the 2.2 mongod (page 971)
binary and restart MongoDB.

Upgrading a Replica Set

You can upgrade to 2.2 by performing a “rolling” upgrade of the set by upgrading the members individually while the
other members are available to minimize downtime. Use the following procedure:

1. Upgrade the secondary members of the set one at a time by shutting down the mongod (page 971) and re-
placing the 2.0 binary with the 2.2 binary. After upgrading a mongod (page 971) instance, wait for the mem-
ber to recover to SECONDARY state before upgrading the next instance. To check the member’s state, issue
rs.status() (page 953) in the mongo (page 984) shell.

2. Use the mongo (page 984) shell method rs.stepDown() (page 953) to step down the primary to allow the
normal failover (page 369) procedure. rs.stepDown() (page 953) expedites the failover procedure and is
preferable to shutting down the primary directly.

Once the primary has stepped down and another member has assumed PRIMARY state, as observed in the output
of rs.status() (page 953), shut down the previous primary and replace mongod (page 971) binary with
the 2.2 binary and start the new process.

Note: Replica set failover is not instant but will render the set unavailable to read or accept writes until the
failover process completes. Typically this takes 10 seconds or more. You may wish to plan the upgrade during
a predefined maintenance window.

Upgrading a Sharded Cluster

Use the following procedure to upgrade a sharded cluster:

• Disable the balancer (page 507).

• Upgrade all mongos (page 981) instances first, in any order.

• Upgrade all of the mongod (page 971) config server instances using the stand alone (page 1156) procedure. To
keep the cluster online, be sure that at all times at least one config server is up.

• Upgrade each shard’s replica set, using the upgrade procedure for replica sets (page 1156) detailed above.

• re-enable the balancer.

Note: Balancing is not currently supported in mixed 2.0.x and 2.2.0 deployments. Thus you will want to reach
a consistent version for all shards within a reasonable period of time, e.g. same-day. See SERVER-6902 for more
information.

1156 Chapter 66. Previous Stable Releases

http://downloads.mongodb.org/
https://jira.mongodb.org/browse/SERVER-6902

MongoDB Documentation, Release 2.4.2

66.1.2 Changes

Major Features

Aggregation Framework

The aggregation framework makes it possible to do aggregation operations without needing to use map-reduce. The
aggregate (page 809) command exposes the aggregation framework, and the db.collection.aggregate()
(page 903) helper in the mongo (page 984) shell provides an interface to these operations. Consider the following
resources for background on the aggregation framework and its use:

• Documentation: Aggregation Framework (page 249)

• Reference: Aggregation Framework Reference (page 265)

• Examples: Aggregation Framework Examples (page 255)

TTL Collections

TTL collections remove expired data from a collection, using a special index and a background thread that deletes ex-
pired documents every minute. These collections are useful as an alternative to capped collections in some cases, such
as for data warehousing and caching cases, including: machine generated event data, logs, and session information
that needs to persist in a database for only a limited period of time.

For more information, see the Expire Data from Collections by Setting TTL (page 551) tutorial.

Concurrency Improvements

MongoDB 2.2 increases the server’s capacity for concurrent operations with the following improvements:

1. DB Level Locking

2. Improved Yielding on Page Faults

3. Improved Page Fault Detection on Windows

To reflect these changes, MongoDB now provides changed and improved reporting for concurrency and use, see locks
(page 1053) and recordStats (page 1065) in server status (page 1052) and see current operation output (page 1078),
db.currentOp() (page 936), mongotop (page 1015), and mongostat (page 1011).

Improved Data Center Awareness with Tag Aware Sharding

MongoDB 2.2 adds additional support for geographic distribution or other custom partitioning for sharded collections
in clusters. By using this “tag aware” sharding, you can automatically ensure that data in a sharded database system is
always on specific shards. For example, with tag aware sharding, you can ensure that data is closest to the application
servers that use that data most frequently.

Shard tagging controls data location, and is complementary but separate from replica set tagging, which controls read
preference (page 381) and write concern (page 174). For example, shard tagging can pin all “USA” data to one or
more logical shards, while replica set tagging can control which mongod (page 971) instances (e.g. “production”
or “reporting”) the application uses to service requests.

See the documentation for the following helpers in the mongo (page 984) shell that support tagged sharding configu-
ration:

• sh.addShardTag() (page 956)

66.1. Release Notes for MongoDB 2.2 1157

https://jira.mongodb.org/browse/SERVER-4328
https://jira.mongodb.org/browse/SERVER-3357
https://jira.mongodb.org/browse/SERVER-4538

MongoDB Documentation, Release 2.4.2

• sh.addTagRange() (page 956)

• sh.removeShardTag() (page 960)

Also, see Tag Aware Sharding (page 510) and Administer and Manage Shard Tags (page 495).

Fully Supported Read Preference Semantics

All MongoDB clients and drivers now support full read preferences (page 381), including consistent support for a full
range of read preference modes (page 381) and tag sets (page 383). This support extends to the mongos (page 981)
and applies identically to single replica sets and to the replica sets for each shard in a sharded cluster.

Additional read preference support now exists in the mongo (page 984) shell using the readPref() (page 898)
cursor method.

Compatibility Changes

Authentication Changes

MongoDB 2.2 provides more reliable and robust support for authentication clients, including drivers and mongos
(page 981) instances.

If your cluster runs with authentication:

• For all drivers, use the latest release of your driver and check its release notes.

• In sharded environments, to ensure that your cluster remains available during the upgrade process you must use
the upgrade procedure for sharded clusters (page 1156).

findAndModify Returns Null Value for Upserts that Perform Inserts

In version 2.2, for upsert that perform inserts with the new option set to false, findAndModify (page 829)
commands will now return the following output:

{ ’ok’: 1.0, ’value’: null }

In the mongo (page 984) shell, upsert findAndModify (page 829) operations that perform inserts (with new set to
false.)only output a null value.

In version 2.0 these operations would return an empty document, e.g. { }.

See: SERVER-6226 for more information.

mongodump Output can only Restore to 2.2 MongoDB Instances

If you use the mongodump (page 992) tool from the 2.2 distribution to create a dump of a database, you must use a
2.2 version of mongorestore (page 996) to restore that dump.

See: SERVER-6961 for more information.

1158 Chapter 66. Previous Stable Releases

https://jira.mongodb.org/browse/SERVER-6226
https://jira.mongodb.org/browse/SERVER-6961

MongoDB Documentation, Release 2.4.2

ObjectId().toString() Returns String Literal ObjectId("...")

In version 2.2, the ObjectId.toString() (page 888) method returns the string representation of the ObjectId()
(page 188) object and has the format ObjectId("...").

Consider the following example that calls the toString() (page 888) method on the
ObjectId("507c7f79bcf86cd7994f6c0e") object:

ObjectId("507c7f79bcf86cd7994f6c0e").toString()

The method now returns the string ObjectId("507c7f79bcf86cd7994f6c0e").

Previously, in version 2.0, the method would return the hexadecimal string 507c7f79bcf86cd7994f6c0e.

If compatibility between versions 2.0 and 2.2 is required, use ObjectId().str (page 188), which holds the hexadecimal
string value in both versions.

ObjectId().valueOf() Returns hexadecimal string

In version 2.2, the ObjectId.valueOf() (page 889) method returns the value of the ObjectId() (page 188) object
as a lowercase hexadecimal string.

Consider the following example that calls the valueOf() (page 889) method on the
ObjectId("507c7f79bcf86cd7994f6c0e") object:

ObjectId("507c7f79bcf86cd7994f6c0e").valueOf()

The method now returns the hexadecimal string 507c7f79bcf86cd7994f6c0e.

Previously, in version 2.0, the method would return the object ObjectId("507c7f79bcf86cd7994f6c0e").

If compatibility between versions 2.0 and 2.2 is required, use ObjectId().str (page 188) attribute, which holds the
hexadecimal string value in both versions.

Behavioral Changes

Restrictions on Collection Names

In version 2.2, collection names cannot:

• contain the $.

• be an empty string (e.g. "").

This change does not affect collections created with now illegal names in earlier versions of MongoDB.

These new restrictions are in addition to the existing restrictions on collection names which are:

• A collection name should begin with a letter or an underscore.

• A collection name cannot contain the null character.

• Begin with the system. prefix. MongoDB reserves system. for system collections, such as the
system.indexes collection.

• The maximum size of a collection name is 128 characters, including the name of the database. However, for
maximum flexibility, collections should have names less than 80 characters.

Collections names may have any other valid UTF-8 string.

See the SERVER-4442 and the Are there any restrictions on the names of Collections? (page 694) FAQ item.

66.1. Release Notes for MongoDB 2.2 1159

https://jira.mongodb.org/browse/SERVER-4442

MongoDB Documentation, Release 2.4.2

Restrictions on Database Names for Windows

Database names running on Windows can no longer contain the following characters:

/\. "*<>:|?

The names of the data files include the database name. If you attempt to upgrade a database instance with one or more
of these characters, mongod (page 971) will refuse to start.

Change the name of these databases before upgrading. See SERVER-4584 and SERVER-6729 for more information.

_id Fields and Indexes on Capped Collections

All capped collections now have an _id field by default, if they exist outside of the local database, and now have
indexes on the _id field. This change only affects capped collections created with 2.2 instances and does not affect
existing capped collections.

See: SERVER-5516 for more information.

New $elemMatch Projection Operator

The $elemMatch (page 778) operator allows applications to narrow the data returned from queries so that the
query operation will only return the first matching element in an array. See the $elemMatch (projection) (page 778)
documentation and the SERVER-2238 and SERVER-828 issues for more information.

Windows Specific Changes

Windows XP is Not Supported

As of 2.2, MongoDB does not support Windows XP. Please upgrade to a more recent version of Windows to use the
latest releases of MongoDB. See SERVER-5648 for more information.

Service Support for mongos.exe

You may now run mongos.exe (page 991) instances as a Windows Service. See the mongos.exe (page 990) reference
and MongoDB as a Windows Service (page 19) and SERVER-1589 for more information.

Log Rotate Command Support

MongoDB for Windows now supports log rotation by way of the logRotate (page 850) database command. See
SERVER-2612 for more information.

New Build Using SlimReadWrite Locks for Windows Concurrency

Labeled “2008+” on the Downloads Page, this build for 64-bit versions of Windows Server 2008 R2 and for Windows
7 or newer, offers increased performance over the standard 64-bit Windows build of MongoDB. See SERVER-3844
for more information.

1160 Chapter 66. Previous Stable Releases

https://jira.mongodb.org/browse/SERVER-4584
https://jira.mongodb.org/browse/SERVER-6729
https://jira.mongodb.org/browse/SERVER-5516
https://jira.mongodb.org/browse/SERVER-2238
https://jira.mongodb.org/browse/SERVER-828
https://jira.mongodb.org/browse/SERVER-5648
https://jira.mongodb.org/browse/SERVER-1589
https://jira.mongodb.org/browse/SERVER-2612
http://www.mongodb.org/downloads
https://jira.mongodb.org/browse/SERVER-3844

MongoDB Documentation, Release 2.4.2

Tool Improvements

Index Definitions Handled by mongodump and mongorestore

When you specify the --collection (page 994) option to mongodump (page 992), mongodump (page 992) will
now backup the definitions for all indexes that exist on the source database. When you attempt to restore this backup
with mongorestore (page 996), the target mongod (page 971) will rebuild all indexes. See SERVER-808 for more
information.

mongorestore (page 996) now includes the --noIndexRestore (page 998) option to provide the preceding
behavior. Use --noIndexRestore (page 998) to prevent mongorestore (page 996) from building previous
indexes.

mongooplog for Replaying Oplogs

The mongooplog (page 1001) tool makes it possible to pull oplog entries from mongod (page 971) instance and
apply them to another mongod (page 971) instance. You can use mongooplog (page 1001) to achieve point-in-time
backup of a MongoDB data set. See the SERVER-3873 case and the mongooplog (page 1000) documentation.

Authentication Support for mongotop and mongostat

mongotop (page 1016) and mongostat (page 1011) now contain support for username/password authentication.
See SERVER-3875 and SERVER-3871 for more information regarding this change. Also consider the documentation
of the following options for additional information:

• mongotop --username (page 1016)

• mongotop --password (page 1016)

• mongostat --username (page 1012)

• mongostat --password (page 1012)

Write Concern Support for mongoimport and mongorestore

mongoimport (page 1004) now provides an option to halt the import if the operation encounters an error, such as
a network interruption, a duplicate key exception, or a write error. The --stopOnError (page 1006) option will
produce an error rather than silently continue importing data. See SERVER-3937 for more information.

In mongorestore (page 996), the --w (page 998) option provides support for configurable write concern.

mongodump Support for Reading from Secondaries

You can now run mongodump (page 992) when connected to a secondary member of a replica set. See SERVER-3854
for more information.

mongoimport Support for full 16MB Documents

Previously, mongoimport (page 1004) would only import documents that were less than 4 megabytes in size.
This issue is now corrected, and you may use mongoimport (page 1004) to import documents that are at least
16 megabytes ins size. See SERVER-4593 for more information.

66.1. Release Notes for MongoDB 2.2 1161

https://jira.mongodb.org/browse/SERVER-808
https://jira.mongodb.org/browse/SERVER-3873
https://jira.mongodb.org/browse/SERVER-3875
https://jira.mongodb.org/browse/SERVER-3871
https://jira.mongodb.org/browse/SERVER-3937
https://jira.mongodb.org/browse/SERVER-3854
https://jira.mongodb.org/browse/SERVER-4593

MongoDB Documentation, Release 2.4.2

Timestamp() Extended JSON format

MongoDB extended JSON now includes a new Timestamp() type to represent the Timestamp type that MongoDB
uses for timestamps in the oplog among other contexts.

This permits tools like mongooplog (page 1001) and mongodump (page 992) to query for specific timestamps.
Consider the following mongodump (page 992) operation:

mongodump --db local --collection oplog.rs --query ’{"ts":{"$gt":{"$timestamp" : {"t": 1344969612000, "i": 1 }}}}’ --out oplog-dump

See SERVER-3483 for more information.

Shell Improvements

Improved Shell User Interface

2.2 includes a number of changes that improve the overall quality and consistency of the user interface for the mongo
(page 984) shell:

• Full Unicode support.

• Bash-like line editing features. See SERVER-4312 for more information.

• Multi-line command support in shell history. See SERVER-3470 for more information.

• Windows support for the edit command. See SERVER-3998 for more information.

Helper to load Server-Side Functions

The db.loadServerScripts() (page 942) loads the contents of the current database’s system.js collection
into the current mongo (page 984) shell session. See SERVER-1651 for more information.

Support for Bulk Inserts

If you pass an array of documents to the insert() (page 920) method, the mongo (page 984) shell will now perform
a bulk insert operation. See SERVER-3819 and SERVER-2395 for more information.

Note: For bulk inserts on sharded clusters, the getLastError (page 837) command alone is insufficient to verify
success. Applications should must verify the success of bulk inserts in application logic.

Operations

Support for Logging to Syslog

See the SERVER-2957 case and the documentation of the syslog (page 1028) run-time option or the mongod
--syslog (page 973) and mongos --syslog (page 982) command line-options.

touch Command

Added the touch (page 878) command to read the data and/or indexes from a collection into memory. See: SERVER-
2023 and touch (page 878) for more information.

1162 Chapter 66. Previous Stable Releases

https://jira.mongodb.org/browse/SERVER-3483
https://jira.mongodb.org/browse/SERVER-4312
https://jira.mongodb.org/browse/SERVER-3470
https://jira.mongodb.org/browse/SERVER-3998
https://jira.mongodb.org/browse/SERVER-1651
https://jira.mongodb.org/browse/SERVER-3819
https://jira.mongodb.org/browse/SERVER-2395
https://jira.mongodb.org/browse/SERVER-2957
https://jira.mongodb.org/browse/SERVER-2023
https://jira.mongodb.org/browse/SERVER-2023

MongoDB Documentation, Release 2.4.2

indexCounters No Longer Report Sampled Data

indexCounters now report actual counters that reflect index use and state. In previous versions, these data were
sampled. See SERVER-5784 and indexCounters for more information.

Padding Specifiable on compact Command

See the documentation of the compact (page 816) and the SERVER-4018 issue for more information.

Added Build Flag to Use System Libraries

The Boost library, version 1.49, is now embedded in the MongoDB code base.

If you want to build MongoDB binaries using system Boost libraries, you can pass scons using the
--use-system-boost flag, as follows:

scons --use-system-boost

When building MongoDB, you can also pass scons a flag to compile MongoDB using only system libraries rather
than the included versions of the libraries. For example:

scons --use-system-all

See the SERVER-3829 and SERVER-5172 issues for more information.

Memory Allocator Changed to TCMalloc

To improve performance, MongoDB 2.2 uses the TCMalloc memory allocator from Google Perftools. For more
information about this change see the SERVER-188 and SERVER-4683. For more information about TCMalloc, see
the documentation of TCMalloc itself.

Replication

Improved Logging for Replica Set Lag

When secondary members of a replica set fall behind in replication, mongod (page 971) now provides better reporting
in the log. This makes it possible to track replication in general and identify what process may produce errors or halt
replication. See SERVER-3575 for more information.

Replica Set Members can Sync from Specific Members

The new replSetSyncFrom (page 867) command and new rs.syncFrom() (page 953) helper in the mongo
(page 984) shell make it possible for you to manually configure from which member of the set a replica will poll
oplog entries. Use these commands to override the default selection logic if needed. Always exercise caution with
replSetSyncFrom (page 867) when overriding the default behavior.

66.1. Release Notes for MongoDB 2.2 1163

https://jira.mongodb.org/browse/SERVER-5784
https://jira.mongodb.org/browse/SERVER-4018
https://jira.mongodb.org/browse/SERVER-3829
https://jira.mongodb.org/browse/SERVER-5172
https://jira.mongodb.org/browse/SERVER-188
https://jira.mongodb.org/browse/SERVER-4683
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://jira.mongodb.org/browse/SERVER-3575

MongoDB Documentation, Release 2.4.2

Replica Set Members will not Sync from Members Without Indexes Unless buildIndexes: false

To prevent inconsistency between members of replica sets, if the member of a replica set has buildIndexes
(page 442) set to true, other members of the replica set will not sync from this member, unless they also have
buildIndexes (page 442) set to true. See SERVER-4160 for more information.

New Option To Configure Index Pre-Fetching during Replication

By default, when replicating options, secondaries will pre-fetch Indexes (page 301) associated with a query
to improve replication throughput in most cases. The replIndexPrefetch (page 1034) setting and
--replIndexPrefetch (page 978) option allow administrators to disable this feature or allow the mongod
(page 971) to pre-fetch only the index on the _id field. See SERVER-6718 for more information.

Map Reduce Improvements

In 2.2 Map Reduce received the following improvements:

• Improved support for sharded MapReduce, and

• MapReduce will retry jobs following a config error.

Sharding Improvements

Index on Shard Keys Can Now Be a Compound Index

If your shard key uses the prefix of an existing index, then you do not need to maintain a separate index for your shard
key in addition to your existing index. This index, however, cannot be a multi-key index. See the “Shard Key Indexes
(page 474)” documentation and SERVER-1506 for more information.

Migration Thresholds Modified

The migration thresholds (page 475) have changed in 2.2 to permit more even distribution of chunks in collections that
have smaller quantities of data. See the Migration Thresholds (page 475) documentation for more information.

66.1.3 Licensing Changes

Added License notice for Google Perftools (TCMalloc Utility). See the License Notice and the SERVER-4683 for
more information.

66.1.4 Resources

• MongoDB Downloads.

• All JIRA issues resolved in 2.2.

• All backwards incompatible changes.

• All third party license notices.

• What’s New in MongoDB 2.2 Online Conference.

1164 Chapter 66. Previous Stable Releases

https://jira.mongodb.org/browse/SERVER-4160
https://jira.mongodb.org/browse/SERVER-6718
https://jira.mongodb.org/browse/SERVER-4521
https://jira.mongodb.org/browse/SERVER-4158
https://jira.mongodb.org/browse/SERVER-1506
https://github.com/mongodb/mongo/blob/v2.2/distsrc/THIRD-PARTY-NOTICES#L231
https://jira.mongodb.org/browse/SERVER-4683
http://mongodb.org/downloads
https://jira.mongodb.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+SERVER+AND+fixVersion+in+%28%222.1.0%22%2C+%222.1.1%22%2C+%222.1.2%22%2C+%222.2.0-rc0%22%2C+%222.2.0-rc1%22%2C+%222.2.0-rc2%22%29+ORDER+BY+component+ASC%2C+key+DESC
https://jira.mongodb.org/secure/IssueNavigator.jspa?requestId=11225
https://github.com/mongodb/mongo/blob/v2.2/distsrc/THIRD-PARTY-NOTICES
http://www.10gen.com/events/webinar/mongodb-online-conference-sept

MongoDB Documentation, Release 2.4.2

66.2 Release Notes for MongoDB 2.0

See the full index of this page for a complete list of changes included in 2.0.

• Upgrading (page 1165)
• Changes (page 1166)
• Resources (page 1171)

66.2.1 Upgrading

Although the major version number has changed, MongoDB 2.0 is a standard, incremental production release and
works as a drop-in replacement for MongoDB 1.8.

Preparation

Read through all release notes before upgrading, and ensure that no changes will affect your deployment.

If you create new indexes in 2.0, then downgrading to 1.8 is possible but you must reindex the new collections.

mongoimport (page 1004) and mongoexport (page 1007) now correctly adhere to the CSV spec for handling
CSV input/output. This may break existing import/export workflows that relied on the previous behavior. For more
information see SERVER-1097.

Journaling is enabled by default in 2.0 for 64-bit builds. If you still prefer to run without journaling, start mongod
(page 971) with the --nojournal (page 975) run-time option. Otherwise, MongoDB creates journal files during
startup. The first time you start mongod (page 971) with journaling, you will see a delay as mongod (page 971)
creates new files. In addition, you may see reduced write throughput.

2.0 mongod (page 971) instances are interoperable with 1.8 mongod (page 971) instances; however, for best results,
upgrade your deployments using the following procedures:

Upgrading a Standalone mongod

1. Download the v2.0.x binaries from the MongoDB Download Page.

2. Shutdown your mongod (page 971) instance. Replace the existing binary with the 2.0.x mongod (page 971)
binary and restart MongoDB.

Upgrading a Replica Set

1. Upgrade the secondary members of the set one at a time by shutting down the mongod (page 971) and replacing
the 1.8 binary with the 2.0.x binary from the MongoDB Download Page.

2. To avoid losing the last few updates on failover you can temporarily halt your application (failover should take
less than 10 seconds), or you can set write concern (page 174) in your application code to confirm that each
update reaches multiple servers.

3. Use the rs.stepDown() (page 953) to step down the primary to allow the normal failover (page 369) proce-
dure.

rs.stepDown() (page 953) and replSetStepDown (page 867) provide for shorter and more consistent
failover procedures than simply shutting down the primary directly.

66.2. Release Notes for MongoDB 2.0 1165

https://jira.mongodb.org/browse/SERVER-1097
http://www.mongodb.org/display/DOCS/Journaling
http://downloads.mongodb.org/
http://downloads.mongodb.org/

MongoDB Documentation, Release 2.4.2

When the primary has stepped down, shut down its instance and upgrade by replacing the mongod (page 971)
binary with the 2.0.x binary.

Upgrading a Sharded Cluster

1. Upgrade all config server instances first, in any order. Since config servers use two-phase commit, shard con-
figuration metadata updates will halt until all are up and running.

2. Upgrade mongos (page 981) routers in any order.

66.2.2 Changes

Compact Command

A compact (page 816) command is now available for compacting a single collection and its indexes. Previously, the
only way to compact was to repair the entire database.

Concurrency Improvements

When going to disk, the server will yield the write lock when writing data that is not likely to be in memory. The
initial implementation of this feature now exists:

See SERVER-2563 for more information.

The specific operations yield in 2.0 are:

• Updates by _id

• Removes

• Long cursor iterations

Default Stack Size

MongoDB 2.0 reduces the default stack size. This change can reduce total memory usage when there are many (e.g.,
1000+) client connections, as there is a thread per connection. While portions of a thread’s stack can be swapped out
if unused, some operating systems do this slowly enough that it might be an issue. The default stack size is lesser of
the system setting or 1MB.

Index Performance Enhancements

v2.0 includes significant improvements to the index (page 330). Indexes are often 25% smaller and 25% faster (depends
on the use case). When upgrading from previous versions, the benefits of the new index type are realized only if you
create a new index or re-index an old one.

Dates are now signed, and the max index key size has increased slightly from 819 to 1024 bytes.

All operations that create a new index will result in a 2.0 index by default. For example:

• Reindexing results on an older-version index results in a 2.0 index. However, reindexing on a secondary does
not work in versions prior to 2.0. Do not reindex on a secondary. For a workaround, see SERVER-3866.

• The repairDatabase command converts indexes to a 2.0 indexes.

1166 Chapter 66. Previous Stable Releases

https://jira.mongodb.org/browse/SERVER-2563
https://jira.mongodb.org/browse/SERVER-3866

MongoDB Documentation, Release 2.4.2

To convert all indexes for a given collection to the 2.0 type (page 1166), invoke the compact (page 816) command.

Once you create new indexes, downgrading to 1.8.x will require a re-index of any indexes created using 2.0. See Build
Old Style Indexes (page 330).

Sharding Authentication

Applications can now use authentication with sharded clusters.

Replica Sets

Hidden Nodes in Sharded Clusters

In 2.0, mongos (page 981) instances can now determine when a member of a replica set becomes “hidden” without
requiring a restart. In 1.8, mongos (page 981) if you reconfigured a member as hidden, you had to restart mongos
(page 981) to prevent queries from reaching the hidden member.

Priorities

Each replica set member can now have a priority value consisting of a floating-point from 0 to 1000, inclusive.
Priorities let you control which member of the set you prefer to have as primary the member with the highest priority
that can see a majority of the set will be elected primary.

For example, suppose you have a replica set with three members, A, B, and C, and suppose that their priorities are set
as follows:

• A‘s priority is 2.

• B‘s priority is 3.

• C‘s priority is 1.

During normal operation, the set will always chose B as primary. If B becomes unavailable, the set will elect A as
primary.

For more information, see the Member Priority (page 370) documentation.

Data-Center Awareness

You can now “tag” replica set members to indicate their location. You can use these tags to design custom write rules
(page 174) across data centers, racks, specific servers, or any other architecture choice.

For example, an administrator can define rules such as “very important write” or customerData or “audit-trail” to
replicate to certain servers, racks, data centers, etc. Then in the application code, the developer would say:

db.foo.insert(doc, {w : "very important write"})

which would succeed if it fulfilled the conditions the DBA defined for “very important write”.

For more information, see Tagging.

Drivers may also support tag-aware reads. Instead of specifying slaveOk, you specify slaveOkwith tags indicating
which data-centers to read from. For details, see the MongoDB Drivers and Client Libraries (page 529) documentation.

66.2. Release Notes for MongoDB 2.0 1167

http://www.mongodb.org/display/DOCS/Data+Center+Awareness#DataCenterAwareness-Tagging%28version2.0%29

MongoDB Documentation, Release 2.4.2

w : majority

You can also set w to majority to ensure that the write propagates to a majority of nodes, effectively committing it.
The value for “majority” will automatically adjust as you add or remove nodes from the set.

For more information, see Write Concern (page 378).

Reconfiguration with a Minority Up

If the majority of servers in a set has been permanently lost, you can now force a reconfiguration of the set to bring it
back online.

For more information see Reconfigure a Replica Set with Unavailable Members (page 436).

Primary Checks for a Caught up Secondary before Stepping Down

To minimize time without a primary, the rs.stepDown() (page 953) method will now fail if the primary does not
see a secondary within 10 seconds of its latest optime. You can force the primary to step down anyway, but by default
it will return an error message.

See also Force a Member to Become Primary (page 415).

Extended Shutdown on the Primary to Minimize Interruption

When you call the shutdown (page 871) command, the primary will refuse to shut down unless there is a secondary
whose optime is within 10 seconds of the primary. If such a secondary isn’t available, the primary will step down and
wait up to a minute for the secondary to be fully caught up before shutting down.

Note that to get this behavior, you must issue the shutdown (page 871) command explicitly; sending a signal to the
process will not trigger this behavior.

You can also force the primary to shut down, even without an up-to-date secondary available.

Maintenance Mode

When repair or compact (page 816) runs on a secondary, the secondary will automatically drop into “recovering”
mode until the operation finishes. This prevents clients from trying to read from it while it’s busy.

Geospatial Features

Multi-Location Documents

Indexing is now supported on documents which have multiple location objects, embedded either inline or in nested
sub-documents. Additional command options are also supported, allowing results to return with not only distance but
the location used to generate the distance.

For more information, see Multi-location Documents.

1168 Chapter 66. Previous Stable Releases

http://www.mongodb.org/display/DOCS/Geospatial+Indexing#GeospatialIndexing-MultilocationDocuments

MongoDB Documentation, Release 2.4.2

Polygon searches

Polygonal $within (page 748) queries are also now supported for simple polygon shapes. For details, see the
$within (page 748) operator documentation.

Journaling Enhancements

• Journaling is now enabled by default for 64-bit platforms. Use the --nojournal command line option to
disable it.

• The journal is now compressed for faster commits to disk.

• A new --journalCommitInterval (page 974) run-time option exists for specifying your own group
commit interval. 100ms is the default (same as in 1.8).

• A new { getLastError: { j: true } } (page 837) option is available to wait for the group com-
mit. The group commit will happen sooner when a client is waiting on {j: true}. If journaling is disabled,
{j: true} is a no-op.

New ContinueOnError Option for Bulk Insert

Set the continueOnError option for bulk inserts, in the driver (page 529), so that bulk insert will continue to insert
any remaining documents even if an insert fails, as is the case with duplicate key exceptions or network interruptions.
The getLastError (page 837) command will report whether any inserts have failed, not just the last one. If multiple
errors occur, the client will only receive the most recent getLastError (page 837) results.

See OP_INSERT.

Note: For bulk inserts on sharded clusters, the getLastError (page 837) command alone is insufficient to verify
success. Applications should must verify the success of bulk inserts in application logic.

Map Reduce

Output to a Sharded Collection

Using the new sharded flag, it is possible to send the result of a map/reduce to a sharded collection. Combined with
the reduce or merge flags, it is possible to keep adding data to very large collections from map/reduce jobs.

For more information, see MapReduce Output Options and mapReduce (page 851).

Performance Improvements

Map/reduce performance will benefit from the following:

• Larger in-memory buffer sizes, reducing the amount of disk I/O needed during a job

• Larger javascript heap size, allowing for larger objects and less GC

• Supports pure JavaScript execution with the jsMode flag. See mapReduce (page 851).

66.2. Release Notes for MongoDB 2.0 1169

http://www.mongodb.org/display/DOCS/Mongo+Wire+Protocol#MongoWireProtocol-OPINSERT
http://www.mongodb.org/display/DOCS/MapReduce#MapReduce-Outputoptions

MongoDB Documentation, Release 2.4.2

New Querying Features

Additional regex options: s

Allows the dot (.) to match all characters including new lines. This is in addition to the currently supported i, m and
x. See Regular Expressions and $regex (page 767).

$and

A special boolean $and (page 741) query operator is now available.

Command Output Changes

The output of the validate (page 879) command and the documents in the system.profile collection have
both been enhanced to return information as BSON objects with keys for each value rather than as free-form strings.

Shell Features

Custom Prompt

You can define a custom prompt for the mongo (page 984) shell. You can change the prompt at any time by setting
the prompt variable to a string or a custom JavaScript function returning a string. For examples, see Custom Prompt.

Default Shell Init Script

On startup, the shell will check for a .mongorc.js file in the user’s home directory. The shell will execute this file
after connecting to the database and before displaying the prompt.

If you would like the shell not to run the .mongorc.js file automatically, start the shell with --norc (page 985).

For more information, see mongo (page 984).

Most Commands Require Authentication

In 2.0, when running with authentication (e.g. auth (page 1029)) all database commands require authentication,
except the following commands.

• isMaster (page 847)

• authenticate (page 810)

• getnonce (page 839)

• buildInfo (page 810)

• ping (page 859)

• isdbgrid (page 848)

1170 Chapter 66. Previous Stable Releases

http://www.mongodb.org/display/DOCS/Advanced+Queries#AdvancedQueries-RegularExpressions
http://www.mongodb.org/display/DOCS/Overview+-+The+MongoDB+Interactive+Shell#Overview-TheMongoDBInteractiveShell-CustomPrompt

MongoDB Documentation, Release 2.4.2

66.2.3 Resources

• MongoDB Downloads

• All JIRA Issues resolved in 2.0

• All Backward Incompatible Changes

66.3 Release Notes for MongoDB 1.8

See the full index of this page for a complete list of changes included in 1.8.

• Upgrading (page 1171)
• Changes (page 1174)
• Resources (page 1176)

66.3.1 Upgrading

MongoDB 1.8 is a standard, incremental production release and works as a drop-in replacement for MongoDB 1.6,
except:

• Replica set members should be upgraded in a particular order, as described in Upgrading a Replica Set
(page 1171).

• The mapReduce (page 851) command has changed in 1.8, causing incompatibility with previous releases.
mapReduce (page 851) no longer generates temporary collections (thus, keepTemp has been removed). Now,
you must always supply a value for out. See the out field options in the mapReduce (page 851) document.
If you use MapReduce, this also likely means you need a recent version of your client driver.

Preparation

Read through all release notes before upgrading and ensure that no changes will affect your deployment.

Upgrading a Standalone mongod

1. Download the v1.8.x binaries from the MongoDB Download Page.

2. Shutdown your mongod (page 971) instance.

3. Replace the existing binary with the 1.8.x mongod (page 971) binary.

4. Restart MongoDB.

Upgrading a Replica Set

1.8.x secondaries can replicate from 1.6.x primaries.

1.6.x secondaries cannot replicate from 1.8.x primaries.

Thus, to upgrade a replica set you must replace all of your secondaries first, then the primary.

For example, suppose you have a replica set with a primary, an arbiter and several secondaries. To upgrade the set, do
the following:

66.3. Release Notes for MongoDB 1.8 1171

http://mongodb.org/downloads
https://jira.mongodb.org/secure/IssueNavigator.jspa?mode=hide&requestId=11002
https://jira.mongodb.org/secure/IssueNavigator.jspa?requestId=11023
http://downloads.mongodb.org/

MongoDB Documentation, Release 2.4.2

1. For the arbiter:

(a) Shut down the arbiter.

(b) Restart it with the 1.8.x binary from the MongoDB Download Page.

2. Change your config (optional) to prevent election of a new primary.

It is possible that, when you start shutting down members of the set, a new primary will be elected. To prevent
this, you can give all of the secondaries a priority of 0 before upgrading, and then change them back afterwards.
To do so:

(a) Record your current config. Run rs.config() (page 950) and paste the results into a text file.

(b) Update your config so that all secondaries have priority 0. For example:

config = rs.conf()
{

"_id" : "foo",
"version" : 3,
"members" : [

{
"_id" : 0,
"host" : "ubuntu:27017"

},
{

"_id" : 1,
"host" : "ubuntu:27018"

},
{

"_id" : 2,
"host" : "ubuntu:27019",
"arbiterOnly" : true

}
{

"_id" : 3,
"host" : "ubuntu:27020"

},
{

"_id" : 4,
"host" : "ubuntu:27021"

},
]

}
config.version++
3
rs.isMaster()
{

"setName" : "foo",
"ismaster" : false,
"secondary" : true,
"hosts" : [

"ubuntu:27017",
"ubuntu:27018"

],
"arbiters" : [

"ubuntu:27019"
],
"primary" : "ubuntu:27018",
"ok" : 1

}

1172 Chapter 66. Previous Stable Releases

http://downloads.mongodb.org/

MongoDB Documentation, Release 2.4.2

// for each secondary
config.members[0].priority = 0
config.members[3].priority = 0
config.members[4].priority = 0
rs.reconfig(config)

3. For each secondary:

(a) Shut down the secondary.

(b) Restart it with the 1.8.x binary from the MongoDB Download Page.

4. If you changed the config, change it back to its original state:

config = rs.conf()
config.version++
config.members[0].priority = 1
config.members[3].priority = 1
config.members[4].priority = 1
rs.reconfig(config)

5. Shut down the primary (the final 1.6 server), and then restart it with the 1.8.x binary from the MongoDB
Download Page.

Upgrading a Sharded Cluster

1. Turn off the balancer:

mongo <a_mongos_hostname>
use config
db.settings.update({_id:"balancer"},{$set : {stopped:true}}, true)

2. For each shard:

• If the shard is a replica set, follow the directions above for Upgrading a Replica Set (page 1171).

• If the shard is a single mongod (page 971) process, shut it down and then restart it with the 1.8.x binary
from the MongoDB Download Page.

3. For each mongos (page 981):

(a) Shut down the mongos (page 981) process.

(b) Restart it with the 1.8.x binary from the MongoDB Download Page.

4. For each config server:

(a) Shut down the config server process.

(b) Restart it with the 1.8.x binary from the MongoDB Download Page.

5. Turn on the balancer:

use config
db.settings.update({_id:"balancer"},{$set : {stopped:false}})

Returning to 1.6

If for any reason you must move back to 1.6, follow the steps above in reverse. Please be careful that you have not
inserted any documents larger than 4MB while running on 1.8 (where the max size has increased to 16MB). If you
have you will get errors when the server tries to read those documents.

66.3. Release Notes for MongoDB 1.8 1173

http://downloads.mongodb.org/
http://downloads.mongodb.org/
http://downloads.mongodb.org/
http://downloads.mongodb.org/
http://downloads.mongodb.org/
http://downloads.mongodb.org/

MongoDB Documentation, Release 2.4.2

Journaling

Returning to 1.6 after using 1.8 Journaling (page 71) works fine, as journaling does not change anything about the
data file format. Suppose you are running 1.8.x with journaling enabled and you decide to switch back to 1.6. There
are two scenarios:

• If you shut down cleanly with 1.8.x, just restart with the 1.6 mongod binary.

• If 1.8.x shut down uncleanly, start 1.8.x up again and let the journal files run to fix any damage (incomplete
writes) that may have existed at the crash. Then shut down 1.8.x cleanly and restart with the 1.6 mongod binary.

66.3.2 Changes

Journaling

MongoDB now supports write-ahead Journaling (page 71) to facilitate fast crash recovery and durability in the storage
engine. With journaling enabled, a mongod (page 971) can be quickly restarted following a crash without needing to
repair the collections. The aggregation framework makes it possible to do aggregation

Sparse and Covered Indexes

Sparse Indexes (page 308) are indexes that only include documents that contain the fields specified in the index.
Documents missing the field will not appear in the index at all. This can significantly reduce index size for indexes of
fields that contain only a subset of documents within a collection.

Covered Indexes (page 316) enable MongoDB to answer queries entirely from the index when the query only selects
fields that the index contains.

Incremental MapReduce Support

The mapReduce (page 851) command supports new options that enable incrementally updating existing collections.
Previously, a MapReduce job could output either to a temporary collection or to a named permanent collection, which
it would overwrite with new data.

You now have several options for the output of your MapReduce jobs:

• You can merge MapReduce output into an existing collection. Output from the Reduce phase will replace
existing keys in the output collection if it already exists. Other keys will remain in the collection.

• You can now re-reduce your output with the contents of an existing collection. Each key output by the reduce
phase will be reduced with the existing document in the output collection.

• You can replace the existing output collection with the new results of the MapReduce job (equivalent to setting
a permanent output collection in previous releases)

• You can compute MapReduce inline and return results to the caller without persisting the results of the job. This
is similar to the temporary collections generated in previous releases, except results are limited to 8MB.

For more information, see the out field options in the mapReduce (page 851) document.

Additional Changes and Enhancements

1.8.1

• Sharding migrate fix when moving larger chunks.

1174 Chapter 66. Previous Stable Releases

MongoDB Documentation, Release 2.4.2

• Durability fix with background indexing.

• Fixed mongos concurrency issue with many incoming connections.

1.8.0

• All changes from 1.7.x series.

1.7.6

• Bug fixes.

1.7.5

• Journaling (page 71).

• Extent allocation improvements.

• Improved replica set connectivity for mongos (page 981).

• getLastError (page 837) improvements for sharding.

1.7.4

• mongos (page 981) routes slaveOk queries to secondaries in replica sets.

• New mapReduce (page 851) output options.

• Sparse Indexes (page 308).

1.7.3

• Initial covered index (page 316) support.

• Distinct can use data from indexes when possible.

• mapReduce (page 851) can merge or reduce results into an existing collection.

• mongod (page 971) tracks and mongostat (page 1011) displays network usage. See mongostat (page 1011).

• Sharding stability improvements.

1.7.2

• $rename (page 768) operator allows renaming of fields in a document.

• db.eval() (page 936) not to block.

• Geo queries with sharding.

• mongostat --discover (page 1013) option

• Chunk splitting enhancements.

• Replica sets network enhancements for servers behind a nat.

66.3. Release Notes for MongoDB 1.8 1175

MongoDB Documentation, Release 2.4.2

1.7.1

• Many sharding performance enhancements.

• Better support for $elemMatch (page 778) on primitives in embedded arrays.

• Query optimizer enhancements on range queries.

• Window service enhancements.

• Replica set setup improvements.

• $pull (page 764) works on primitives in arrays.

1.7.0

• Sharding performance improvements for heavy insert loads.

• Slave delay support for replica sets.

• getLastErrorDefaults (page 444) for replica sets.

• Auto completion in the shell.

• Spherical distance for geo search.

• All fixes from 1.6.1 and 1.6.2.

Release Announcement Forum Pages

• 1.8.1, 1.8.0

• 1.7.6, 1.7.5, 1.7.4, 1.7.3, 1.7.2, 1.7.1, 1.7.0

66.3.3 Resources

• MongoDB Downloads

• All JIRA Issues resolved in 1.8

66.4 Release Notes for MongoDB 1.6

See the full index of this page for a complete list of changes included in 1.6.

• Upgrading (page 1177)
• Sharding (page 1177)
• Replica Sets (page 1177)
• Other Improvements (page 1177)
• Installation (page 1177)
• 1.6.x Release Notes (page 1178)
• 1.5.x Release Notes (page 1178)

1176 Chapter 66. Previous Stable Releases

https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/v09MbhEm62Y
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/JeHQOnam6Qk
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/3t6GNZ1qGYc
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/S5R0Tx9wkEg
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/9Om3Vuw-y9c
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/DfNUrdbmflI
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/df7mwK6Xixo
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/HUR9zYtTpA8
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/TUnJCg9161A
http://mongodb.org/downloads
https://jira.mongodb.org/secure/IssueNavigator.jspa?mode=hide&requestId=10172

MongoDB Documentation, Release 2.4.2

66.4.1 Upgrading

MongoDB 1.6 is a drop-in replacement for 1.4. To upgrade, simply shutdown mongod (page 971) then restart with
the new binaries.

Please note that you should upgrade to the latest version of whichever driver you’re using. Certain drivers, including
the Ruby driver, will require the upgrade, and all the drivers will provide extra features for connecting to replica sets.

66.4.2 Sharding

Sharding (page 461) is now production-ready, making MongoDB horizontally scalable, with no single point of failure.
A single instance of mongod (page 971) can now be upgraded to a distributed cluster with zero downtime when the
need arises.

• Sharding (page 461)

• Deploy a Sharded Cluster (page 481)

• Convert a Replica Set to a Replicated Sharded Cluster (page 489)

66.4.3 Replica Sets

Replica sets (page 365), which provide automated failover among a cluster of n nodes, are also now available.

Please note that replica pairs are now deprecated; we strongly recommend that replica pair users upgrade to replica
sets.

• Replication (page 365)

• Deploy a Replica Set (page 397)

• Convert a Standalone to a Replica Set (page 401)

66.4.4 Other Improvements

• The w option (and wtimeout) forces writes to be propagated to n servers before returning success (this works
especially well with replica sets)

• $or queries (page 760)

• Improved concurrency

• $slice (page 782) operator for returning subsets of arrays

• 64 indexes per collection (formerly 40 indexes per collection)

• 64-bit integers can now be represented in the shell using NumberLong

• The findAndModify (page 829) command now supports upserts. It also allows you to specify fields to return

• $showDiskLoc option to see disk location of a document

• Support for IPv6 and UNIX domain sockets

66.4.5 Installation

• Windows service improvements

• The C++ client is a separate tarball from the binaries

66.4. Release Notes for MongoDB 1.6 1177

MongoDB Documentation, Release 2.4.2

66.4.6 1.6.x Release Notes

• 1.6.5

66.4.7 1.5.x Release Notes

• 1.5.8

• 1.5.7

• 1.5.6

• 1.5.5

• 1.5.4

• 1.5.3

• 1.5.2

• 1.5.1

• 1.5.0

You can see a full list of all changes on JIRA.

Thank you everyone for your support and suggestions!

66.5 Release Notes for MongoDB 1.4

See the full index of this page for a complete list of changes included in 1.4.

• Upgrading (page 1178)
• Core Server Enhancements (page 1178)
• Replication and Sharding (page 1179)
• Deployment and Production (page 1179)
• Query Language Improvements (page 1179)
• Geo (page 1179)

66.5.1 Upgrading

We’re pleased to announce the 1.4 release of MongoDB. 1.4 is a drop-in replacement for 1.2. To upgrade you just
need to shutdown mongod (page 971), then restart with the new binaries. (Users upgrading from release 1.0 should
review the 1.2 release notes (page 1180), in particular the instructions for upgrading the DB format.)

Release 1.4 includes the following improvements over release 1.2:

66.5.2 Core Server Enhancements

• concurrency (page 701) improvements

• indexing memory improvements

• background index creation (page 309)

1178 Chapter 66. Previous Stable Releases

https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/06_QCC05Fpk
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/uJfF1QN6Thk
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/OYvz40RWs90
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/4l0N2U_H0cQ
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/oO749nvTARY
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/380V_Ec_q1c
https://groups.google.com/forum/?hl=en&fromgroups=#!topic/mongodb-user/hsUQL9CxTQw
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/94EE3HVidAA
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/7SBPQ2RSfdM
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/VAhJcjDGTy0
https://jira.mongodb.org/secure/IssueNavigator.jspa?mode=hide&requestId=10107

MongoDB Documentation, Release 2.4.2

• better detection of regular expressions so the index can be used in more cases

66.5.3 Replication and Sharding

• better handling for restarting slaves offline for a while

• fast new slaves from snapshots (--fastsync)

• configurable slave delay (--slavedelay)

• replication handles clock skew on master

• $inc (page 751) replication fixes

• sharding alpha 3 - notably 2-phase commit on config servers

66.5.4 Deployment and Production

• configure “slow threshold” for profiling (page 95)

• ability to do fsync + lock (page 834) for backing up raw files

• option for separate directory per db (--directoryperdb)

• http://localhost:28017/_status to get serverStatus via http

• REST interface is off by default for security (--rest to enable)

• can rotate logs with a db command, logRotate (page 850)

• enhancements to serverStatus (page 1052) command (db.serverStatus()) - counters and replication lag
(page 422) stats

• new mongostat (page 1011) tool

66.5.5 Query Language Improvements

• $all (page 740) with regex

• $not (page 760)

• partial matching of array elements $elemMatch (page 778)

• $ operator for updating arrays

• $addToSet (page 740)

• $unset (page 777)

• $pull (page 764) supports object matching

• $set (page 770) with array indices

66.5.6 Geo

• 2d geospatial search (page 346)

• geo $center (page 743) and $box (page 742) searches

66.5. Release Notes for MongoDB 1.4 1179

MongoDB Documentation, Release 2.4.2

66.6 Release Notes for MongoDB 1.2.x

See the full index of this page for a complete list of changes included in 1.2.

• New Features (page 1180)
• DB Upgrade Required (page 1180)
• Replication Changes (page 1180)
• mongoimport (page 1180)
• field filter changing (page 1181)

66.6.1 New Features

• More indexes per collection

• Faster index creation

• Map/Reduce

• Stored JavaScript functions

• Configurable fsync time

• Several small features and fixes

66.6.2 DB Upgrade Required

There are some changes that will require doing an upgrade if your previous version is <= 1.0.x. If you’re already using
a version >= 1.1.x then these changes aren’t required. There are 2 ways to do it:

• --upgrade

– stop your mongod (page 971) process

– run ./mongod --upgrade

– start mongod (page 971) again

• use a slave

– start a slave on a different port and data directory

– when its synced, shut down the master, and start the new slave on the regular port.

Ask in the forums or IRC for more help.

66.6.3 Replication Changes

• There have been minor changes in replication. If you are upgrading a master/slave setup from <= 1.1.2 you have
to update the slave first.

66.6.4 mongoimport

• mongoimportjson has been removed and is replaced with mongoimport (page 1004) that can do json/csv/tsv

1180 Chapter 66. Previous Stable Releases

MongoDB Documentation, Release 2.4.2

66.6.5 field filter changing

• We’ve changed the semantics of the field filter a little bit. Previously only objects with those fields would be
returned. Now the field filter only changes the output, not which objects are returned. If you need that behavior,
you can use $exists (page 745)

66.6. Release Notes for MongoDB 1.2.x 1181

MongoDB Documentation, Release 2.4.2

1182 Chapter 66. Previous Stable Releases

CHAPTER 67

Other MongoDB Release Notes

67.1 Default Write Concern Change

These release notes outline a change to all driver interfaces released in November 2012. See release notes for specific
drivers for additional information.

67.1.1 Changes

As of the releases listed below, there are two major changes to all drivers:

1. All drivers will add a new top-level connection class that will increase consistency for all MongoDB client
interfaces.

This change is non-backward breaking: existing connection classes will remain in all drivers for a time, and will
continue to operate as expected. However, those previous connection classes are now deprecated as of these
releases, and will eventually be removed from the driver interfaces.

The new top-level connection class is named MongoClient, or similar depending on how host languages
handle namespacing.

2. The default write concern on the new MongoClient class will be to acknowledge all write operations 1. This
will allow your application to receive acknowledgment of all write operations.

See the documentation of Write Concern (page 174) for more information about write concern in MongoDB.

Please migrate to the new MongoClient class expeditiously.

67.1.2 Releases

The following driver releases will include the changes outlined in Changes (page 1183). See each driver’s release
notes for a full account of each release as well as other related driver-specific changes.

• C#, version 1.7

• Java, version 2.10.0
1 The drivers will call getLastError (page 837) without arguments, which is logically equivalent to the w: 1 option; however, this

operation allows replica set users to override the default write concern with the getLastErrorDefaults (page 444) setting in the Replica Set
Configuration (page 441).

1183

MongoDB Documentation, Release 2.4.2

• Node.js, version 1.2

• Perl, version 0.501.1

• PHP, version 1.4

• Python, version 2.4

• Ruby, version 1.8

1184 Chapter 67. Other MongoDB Release Notes

CHAPTER 68

Version Numbers

There are three numbers in a MongoDB version:

<major version number>.<release number>.<revision number>

The second number, the release number, indicates release stability. An odd release number indicates a release in a
development series. Even numbered releases indicate a stable, general availability, release.

Additionally, the three numbers indicate the following:

• <major version number>: This rarely changes. A change to this number indicates very large changes to
MongoDB.

• <release number>: A release can include many changes, including new features and updates. Some
changes may break backwards compatibility. See release notes for every version for compatibility notes. Even-
numbered release numbers are stable branches. Odd-numbered release numbers are development branches.

• <revision number>: This digit increments for every release. Changes each revision address bugs and
security issues,

Example

Version numbers:

• 1.0.0 : First stable release

• 1.0.x : Bug fixes to 1.0.x. These releases carry low risk. Always upgrade to the latest revision in your release
series.

• 1.1.x : Development release. Includes new features not fully finished and other works-in-progress. Some things
may be different than 1.0

• 1.2.x : Second stable release. This is a culmination of the 1.1.x development series.

1185

MongoDB Documentation, Release 2.4.2

1186 Chapter 68. Version Numbers

Part XVI

About MongoDB Documentation

1187

MongoDB Documentation, Release 2.4.2

The MongoDB Manual contains comprehensive documentation on the MongoDB document-oriented database man-
agement system. This page describes the manual’s licensing, editions, and versions, and describes how to make a
change request and how to contribute to the manual.

For more information on MongoDB, see MongoDB: A Document Oriented Database. To download MongoDB, see
the downloads page.

1189

http://docs.mongodb.org/manual/
http://www.mongodb.org/about/
http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.4.2

1190

CHAPTER 69

License

This manual is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 3.0 Unported” (i.e.
“CC-BY-NC-SA”) license.

The MongoDB Manual is copyright © 2011-2013 10gen, Inc.

1191

http://creativecommons.org/licenses/by-nc-sa/3.0/

MongoDB Documentation, Release 2.4.2

1192 Chapter 69. License

CHAPTER 70

Editions

In addition to the MongoDB Manual, you can also access this content in the following editions:

• ePub Format

• Single HTML Page

• PDF Format

You also can access PDF files that contain subsets of the MongoDB Manual:

• MongoDB Reference Manual

• MongoDB Use Case Guide

• MongoDB CRUD Operation Introduction

For Emacs users Info/Texinfo users, the following experimental Texinfo manuals are available for offline use:

• MongoDB Manual Texinfo (tar.gz)

• MongoDB Reference Manual (tar.gz)

• MongoDB CRUD Operation Introduction (tar.gz)

Important: The texinfo manuals are experimental. If you find an issue with one of these editions, please file an
issue in the DOCS Jira project.

1193

http://docs.mongodb.org/manual/
http://docs.mongodb.org/master/MongoDB-Manual.epub
http://docs.mongodb.org/master/single/
http://docs.mongodb.org/master/MongoDB-Manual.pdf
http://docs.mongodb.org/master/MongoDB-reference-manual.pdf
http://docs.mongodb.org/master/MongoDB-use-cases-guide.pdf
http://docs.mongodb.org/master/MongoDB-crud-guide.pdf
http://docs.mongodb.org/master/mongodb-manual-info.tar.gz
http://docs.mongodb.org/master/mongodb-reference-info.tar.gz
http://docs.mongodb.org/master/mongodb-crud-info.tar.gz
https://jira.mongodb.org/browse/DOCS

MongoDB Documentation, Release 2.4.2

1194 Chapter 70. Editions

CHAPTER 71

Version and Revisions

This version of the manual reflects version 2.4 of MongoDB.

See the MongoDB Documentation Project Page for an overview of all editions and output formats of the MongoDB
Manual. You can see the full revision history and track ongoing improvements and additions for all versions of the
manual from its GitHub repository.

This edition reflects “master” branch of the documentation as of the
“c4916d8961dacd10a0f70345a36e674df2f89d62” revision. This branch is explicitly accessible via
“http://docs.mongodb.org/master” and you can always reference the commit of the current manual in the release.txt
file.

The most up-to-date, current, and stable version of the manual is always available at
“http://docs.mongodb.org/manual/”.

1195

http://docs.mongodb.org
https://github.com/mongodb/docs
http://docs.mongodb.org/master
http://docs.mongodb.org/master/release.txt
http://docs.mongodb.org/manual/

MongoDB Documentation, Release 2.4.2

1196 Chapter 71. Version and Revisions

CHAPTER 72

Report an Issue or Make a Change
Request

To report an issue with this manual or to make a change request, file a ticket at the MongoDB DOCS Project on Jira.

1197

https://jira.mongodb.org/browse/DOCS

MongoDB Documentation, Release 2.4.2

1198 Chapter 72. Report an Issue or Make a Change Request

CHAPTER 73

Contribute to the Documentation

73.1 MongoDB Manual Translation

The original authorship language for all MongoDB documentation is American English. However, ensuring that
speakers of other languages can read and understand the documentation is of critical importance to the documentation
project.

In this direction, the MongoDB Documentation project uses the service provided by Smartling to translate the Mon-
goDB documentation into additional non-English languages. This translation project is largely supported by the work
of volunteer translators from the MongoDB community who contribute to the translation effort.

If you would like to volunteer to help translate the MongoDB documentation, please:

• complete the 10gen/MongoDB Contributor Agreement, and

• create an account on Smartling at translate.docs.mongodb.org.

Please use the same email address you use to sign the contributor as you use to create your Smartling account.

The mongodb-translators user group exists to facilitate collaboration between translators and the documentation team
at large. You can join the Google Group without signing the contributor’s agreement.

We currently have the following languages configured:

• Arabic

• Chinese

• Czech

• French

• German

• Hungarian

• Indonesian

• Italian

• Japanese

• Korean

• Lithuanian

1199

http://smartling.com/
http://www.10gen.com/legal/contributor-agreement
http://translate.docs.mongodb.org/
http://groups.google.com/group/mongodb-translators
http://ar.docs.mongodb.org
http://cn.docs.mongodb.org
http://cs.docs.mongodb.org
http://fr.docs.mongodb.org
http://de.docs.mongodb.org
http://hu.docs.mongodb.org
http://id.docs.mongodb.org
http://it.docs.mongodb.org
http://jp.docs.mongodb.org
http://ko.docs.mongodb.org
http://lt.docs.mongodb.org

MongoDB Documentation, Release 2.4.2

• Polish

• Portuguese

• Romanian

• Russian

• Spanish

• Turkish

• Ukrainian

If you would like to initiate a translation project to an additional language, please report this issue using the “Report a
Problem” link above or by posting to the mongodb-translators list.

Currently the translation project only publishes rendered translation. While the translation effort is currently focused
on the web site we are evaluating how to retrieve the translated phrases for use in other media.

See Also:

• Contribute to the Documentation (page 1199)

• MongoDB Documentation Style and Conventions (page 1200)

• MongoDB Documentation Organization (page 1208)

• MongoDB Documentation Practices and Processes (page 1205)

• Build and Deploy the MongoDB Documentation (page 1209)

The entire documentation source for this manual is available in the mongodb/docs repository, which is one of the
MongoDB project repositories on GitHub.

To contribute to the documentation, you can open a GitHub account, fork the mongodb/docs repository, make a change,
and issue a pull request.

In order for the documentation team to accept your change, you must complete the MongoDB/10gen Contributor
Agreement.

You can clone the repository by issuing the following command at your system shell:

git clone git://github.com/mongodb/docs.git

73.2 About the Documentation Process

The MongoDB Manual uses Sphinx, a sophisticated documentation engine built upon Python Docutils. The original
reStructured Text files, as well as all necessary Sphinx extensions and build tools, are available in the same repository
as the documentation.

For more information on the MongoDB documentation process, see:

73.2.1 MongoDB Documentation Style and Conventions

This document provides an overview of the style for the MongoDB documentation stored in this repository. The
overarching goal of this style guide is to provide an accessible base style to ensure that our documentation is easy to
read, simple to use, and straightforward to maintain.

For information regarding the MongoDB Manual organization, see MongoDB Documentation Organization
(page 1208).

1200 Chapter 73. Contribute to the Documentation

http://pl.docs.mongodb.org
http://pt.docs.mongodb.org
http://ro.docs.mongodb.org
http://ru.docs.mongodb.org
http://es.docs.mongodb.org
http://tr.docs.mongodb.org
http://uk.docs.mongodb.org
http://groups.google.com/group/mongodb-translators
https://github.com/mongodb/docs
http://github.com/mongodb
https://github.com/
https://github.com/mongodb/docs
http://www.10gen.com/contributor
http://www.10gen.com/contributor
http://sphinx.pocoo.org/
http://docutils.sourceforge.net/
http://docutils.sourceforge.net/rst.html

MongoDB Documentation, Release 2.4.2

Document History

2011-09-27: Document created with a (very) rough list of style guidelines, conventions, and questions.

2012-01-12: Document revised based on slight shifts in practice, and as part of an effort of making it easier for people
outside of the documentation team to contribute to documentation.

2012-03-21: Merged in content from the Jargon, and cleaned up style in light of recent experiences.

2012-08-10: Addition to the “Referencing” section.

2013-02-07: Migrated this document to the manual. Added “map-reduce” terminology convention. Other edits.

Naming Conventions

This section contains guidelines on naming files, sections, documents and other document elements.

• File naming Convention:

– For Sphinx, all files should have a .txt extension.

– Separate words in file names with hyphens (i.e. -.)

– For most documents, file names should have a terse one or two word name that de-
scribes the material covered in the document. Allow the path of the file within the doc-
ument tree to add some of the required context/categorization. For example it’s ac-
ceptable to have http://docs.mongodb.org/manual/core/sharding.rst and
http://docs.mongodb.org/manual/administration/sharding.rst.

– For tutorials, the full title of the document should be in the file name. For example,
http://docs.mongodb.org/manual/tutorial/replace-one-configuration-server-in-a-shard-cluster.rst

• Phrase headlines and titles so that they the content contained within the section so that users can determine what
questions the text will answer, and material that it will address without needing them to read the content. This
shortens the amount of time that people spend looking for answers, and improvise search/scanning, and possibly
“SEO.”

• Prefer titles and headers in the form of “Using foo” over “How to Foo.”

• When using target references (i.e. :ref: references in documents,) use names that include enough context to
be intelligible thought all documentations. For example, use “replica-set-secondary-only-node”
as opposed to “secondary-only-node”. This is to make the source more usable and easier to maintain.

Style Guide

This includes the local typesetting, English, grammatical, conventions and preferences that all documents in the manual
should use. The goal here is to choose good standards, that are clear, and have a stylistic minimalism that does not
interfere with or distract from the content. A uniform style will improve user experience, and minimize the effect of a
multi-authored document.

Punctuation

• Use the oxford comma.

Oxford commas are the commas in a list of things (e.g. “something, something else, and another thing”) before
the conjunction (e.g. “and” or “or.”).

• Do not add two spaces after terminal punctuation, such as periods.

73.2. About the Documentation Process 1201

MongoDB Documentation, Release 2.4.2

• Place commas and periods inside quotation marks.

• Use title case for headings and document titles. Title case capitalizes the first letter of the first, last, and all
significant words.

Verbs

Verb tense and mood preferences, with examples:

• Avoid the first person. For example do not say, “We will begin the backup process by locking the database,” or
“I begin the backup process by locking my database instance,”

• Use the second person. “If you need to back up your database, start by locking the database first.” In practice,
however, it’s more concise to imply second person using the imperative, as in “Before inititating a back up, lock
the database.”

• When indicated, use the imperative mood. For example: “Backup your databases often” and “To prevent data
loss, back up your databases.”

• The future perfect is also useful in some cases. For example, “Creating disk snapshots without locking the
database will lead to an inconsistent state.”

• Avoid helper verbs, as possible, to increase clarity and concision. For example, attempt to avoid “this does
foo” and “this will do foo” when possible. Use “does foo” over “will do foo” in situations where “this foos” is
unacceptable.

Referencing

• To refer to future or planned functionality in MongoDB or a driver, always link to the Jira case. The Manual’s
conf.py provides an :issue: role that links directly to a Jira case (e.g. :issue:\‘SERVER-9001\‘).

• For non-object references (i.e. functions, operators, methods, database commands, settings) always reference
only the first occurrence of the reference in a section. You should always reference objects, except in section
headings.

• Structure references with the why first; the link second.

For example, instead of this:

Use the Convert a Replica Set to a Replicated Sharded Cluster (page 489) procedure if you have an existing
replica set.

Type this:

To deploy a sharded cluster for an existing replica set, see Convert a Replica Set to a Replicated Sharded Cluster
(page 489).

General Formulations

• Contractions are acceptable insofar as they are necessary to increase readability and flow. Avoid otherwise.

• Make lists grammatically correct.

– Do not use a period after every item unless the list item completes the unfinished sentence before the list.

– Use appropriate commas and conjunctions in the list items.

– Typically begin a bulleted list with an introductory sentence or clause, with a colon or comma.

• The following terms are one word:

1202 Chapter 73. Contribute to the Documentation

MongoDB Documentation, Release 2.4.2

– standalone

– workflow

• Use “unavailable,” “offline,” or “unreachable” to refer to a mongod instance that cannot be accessed. Do not
use the colloquialism “down.”

• Always write out units (e.g. “megabytes”) rather than using abbreviations (e.g. “MB”.)

Structural Formulations

• There should be at least two headings at every nesting level. Within an “h2” block, there should be either: no
“h3” blocks, 2 “h3” blocks, or more than 2 “h3” blocks.

• Section headers are in title case (capitalize first, last, and all important words) and should effectively describe
the contents of the section. In a single document you should strive to have section titles that are not redundant
and grammatically consistent with each other.

• Use paragraphs and paragraph breaks to increase clarity and flow. Avoid burying critical information in the
middle of long paragraphs. Err on the side of shorter paragraphs.

• Prefer shorter sentences to longer sentences. Use complex formations only as a last resort, if at all (e.g. com-
pound complex structures that require semi-colons).

• Avoid paragraphs that consist of single sentences as they often represent a sentence that has unintentionally
become too complex or incomplete. However, sometimes such paragraphs are useful for emphasis, summary,
or introductions.

As a corollary, most sections should have multiple paragraphs.

• For longer lists and more complex lists, use bulleted items rather than integrating them inline into a sentence.

• Do not expect that the content of any example (inline or blocked,) will be self explanatory. Even when it feels
redundant, make sure that the function and use of every example is clearly described.

ReStructured Text and Typesetting

• Place spaces between nested parentheticals and elements in JavaScript examples. For example, prefer { [a,
a, a] } over {[a,a,a]}.

• For underlines associated with headers in RST, use:

– = for heading level 1 or h1s. Use underlines and overlines for document titles.

– - for heading level 2 or h2s.

– ~ for heading level 3 or h3s.

– ‘ for heading level 4 or h4s.

• Use hyphens (-) to indicate items of an ordered list.

• Place footnotes and other references, if you use them, at the end of a section rather than the end of a file.

Use the footnote format that includes automatic numbering and a target name for ease of use. For instance a
footnote tag may look like: [#note]_ with the corresponding directive holding the body of the footnote that
resembles the following: .. [#note].

Do not include .. code-block:: [language] in footnotes.

73.2. About the Documentation Process 1203

MongoDB Documentation, Release 2.4.2

• As it makes sense, use the .. code-block:: [language] form to insert literal blocks into the text.
While the double colon, ::, is functional, the .. code-block:: [language] form makes the source
easier to read and understand.

• For all mentions of referenced types (i.e. commands, operators, expressions, functions, statuses, etc.) use the
reference types to ensure uniform formatting and cross-referencing.

Jargon and Common Terms

Database Systems and Processes

• To indicate the entire database system, use “MongoDB,” not mongo or Mongo.

• To indicate the database process or a server instance, use mongod or mongos. Refer to these as “processes”
or “instances.” Reserve “database” for referring to a database structure, i.e., the structure that holds collections
and refers to a group of files on disk.

Distributed System Terms

• Refer to partitioned systems as “sharded clusters.” Do not use shard clusters or sharded systems.

• Refer to configurations that run with replication as “replica sets” (or “master/slave deployments”) rather than
“clusters” or other variants.

Data Structure Terms

• “document” refers to “rows” or “records” in a MongoDB database. Potential confusion with “JSON Docu-
ments.”

Do not refer to documents as “objects,” because drivers (and MongoDB) do not preserve the order of fields when
fetching data. If the order of objects matter, use an array.

• “field” refers to a “key” or “identifier” of data within a MongoDB document.

• “value” refers to the contents of a “field”.

• “sub-document” describes a nested document.

Other Terms

• Use example.net (and .org or .com if needed) for all examples and samples.

• Hyphenate “map-reduce” in order to avoid ambiguous reference to the command name. Do not camel-case.

Notes on Specific Features

• Geo-Location

1. While MongoDB is capable of storing coordinates in sub-documents, in practice, users should only store
coordinates in arrays. (See: DOCS-41.)

1204 Chapter 73. Contribute to the Documentation

https://jira.mongodb.org/browse/DOCS-41

MongoDB Documentation, Release 2.4.2

73.2.2 MongoDB Documentation Practices and Processes

This document provides an overview of the practices and processes.

Contents

• MongoDB Documentation Practices and Processes (page 1205)
– Commits (page 1205)
– Standards and Practices (page 1205)
– Collaboration (page 1205)
– Builds (page 1206)
– Publication (page 1206)
– Branches (page 1206)
– Migration from Legacy Documentation (page 1206)
– Review Process (page 1207)

* Types of Review (page 1207)
· Initial Technical Review (page 1207)
· Content Review (page 1207)
· Consistency Review (page 1207)
· Subsequent Technical Review (page 1207)

* Review Methods (page 1207)

Commits

When relevant, include a Jira case identifier in a commit message. Reference documentation cases when applicable,
but feel free to reference other cases from jira.mongodb.org.

Err on the side of creating a larger number of discrete commits rather than bundling large set of changes into one
commit.

For the sake of consistency, remove trailing whitespaces in the source file.

“Hard wrap” files to between 72 and 80 characters per-line.

Standards and Practices

• At least two people should vet all non-trivial changes to the documentation before publication. One of the
reviewers should have significant technical experience with the material covered in the documentation.

• All development and editorial work should transpire on github branches or forks that editors can then merge into
the publication branches.

Collaboration

To propose a change to the documentation, do either of the following:

• Open a ticket in the documentation project proposing the change. Someone on the documentation team will
make the change and be in contact with you so that you can review the change.

• Using GitHub, fork the mongodb/docs repository, commit your changes, and issue a pull request. Someone on
the documentation team will review and incorporate your change into the documentation.

73.2. About the Documentation Process 1205

http://jira.mongodb.org/
https://jira.mongodb.org/browse/DOCS
https://github.com/
https://github.com/mongodb/docs

MongoDB Documentation, Release 2.4.2

Builds

Building the documentation is useful because Sphinx and docutils can catch numerous errors in the format and syntax
of the documentation. Additionally, having access to an example documentation as it will appear to the users is
useful for providing more effective basis for the review process. Besides Sphinx, Pygments, and Python-Docutils, the
documentation repository contains all requirements for building the documentation resource.

Talk to someone on the documentation team if you are having problems running builds yourself.

Publication

The makefile for this repository contains targets that automate the publication process. Use make html to publish
a test build of the documentation in the build/ directory of your repository. Use make publish to build the full
contents of the manual from the current branch in the ../public-docs/ directory relative the docs repository.

Other targets include:

• man - builds UNIX Manual pages for all Mongodb utilities.

• push - builds and deploys the contents of the ../public-docs/.

• pdfs - builds a PDF version of the manual (requires LaTeX dependencies.)

Branches

This section provides an overview of the git branches in the MongoDB documentation repository and their use.

At the present time, future work transpires in the master, with the main publication being current. As the
documentation stabilizes, the documentation team will begin to maintain branches of the documentation for specific
MongoDB releases.

Migration from Legacy Documentation

The MongoDB.org Wiki contains a wealth of information. As the transition to the Manual (i.e. this project and
resource) continues, it’s critical that no information disappears or goes missing. The following process outlines how
to migrate a wiki page to the manual:

1. Read the relevant sections of the Manual, and see what the new documentation has to offer on a specific topic.

In this process you should follow cross references and gain an understanding of both the underlying information
and how the parts of the new content relates its constituent parts.

2. Read the wiki page you wish to redirect, and take note of all of the factual assertions, examples presented by the
wiki page.

3. Test the factual assertions of the wiki page to the greatest extent possible. Ensure that example output is accurate.
In the case of commands and reference material, make sure that documented options are accurate.

4. Make corrections to the manual page or pages to reflect any missing pieces of information.

The target of the redirect need not contain every piece of information on the wiki page, if the manual as a
whole does, and relevant section(s) with the information from the wiki page are accessible from the target of the
redirection.

5. As necessary, get these changes reviewed by another writer and/or someone familiar with the area of the infor-
mation in question.

At this point, update the relevant Jira case with the target that you’ve chosen for the redirect, and make the ticket
unassigned.

1206 Chapter 73. Contribute to the Documentation

http://sphinx.pocoo.org/

MongoDB Documentation, Release 2.4.2

6. When someone has reviewed the changes and published those changes to Manual, you, or preferably someone
else on the team, should make a final pass at both pages with fresh eyes and then make the redirect.

Steps 1-5 should ensure that no information is lost in the migration, and that the final review in step 6 should be
trivial to complete.

Review Process

Types of Review

The content in the Manual undergoes many types of review, including the following:

Initial Technical Review Review by an engineer familiar with MongoDB and the topic area of the documentation.
This review focuses on technical content, and correctness of the procedures and facts presented, but can improve any
aspect of the documentation that may still be lacking. When both the initial technical review and the content review
are complete, the piece may be “published.”

Content Review Textual review by another writer to ensure stylistic consistency with the rest of the manual. De-
pending on the content, this may precede or follow the initial technical review. When both the initial technical review
and the content review are complete, the piece may be “published.”

Consistency Review This occurs post-publication and is content focused. The goals of consistency reviews are to
increase the internal consistency of the documentation as a whole. Insert relevant cross-references, update the style as
needed, and provide background fact-checking.

When possible, consistency reviews should be as systematic as possible and we should avoid encouraging stylistic and
information drift by editing only small sections at a time.

Subsequent Technical Review If the documentation needs to be updated following a change in functionality of the
server or following the resolution of a user issue, changes may be significant enough to warrant additional technical
review. These reviews follow the same form as the “initial technical review,” but is often less involved and covers a
smaller area.

Review Methods

If you’re not a usual contributor to the documentation and would like to review something, you can submit reviews in
any of the following methods:

• If you’re reviewing an open pull request in GitHub, the best way to comment is on the “overview diff,” which
you can find by clicking on the “diff” button in the upper left portion of the screen. You can also use the
following URL to reach this interface:

https://github.com/mongodb/docs/pull/[pull-request-id]/files

Replace [pull-request-id] with the identifier of the pull request. Make all comments inline, using
GitHub’s comment system.

You may also provide comments directly on commits, or on the pull request itself but these commit-comments
are archived in less coherent ways and generate less useful emails, while comments on the pull request lead to
less specific changes to the document. ‘

• Leave feedback on Jira cases in the DOCS project. These are better for more general changes that aren’t
necessarily tied to a specific line, or affect multiple files.

73.2. About the Documentation Process 1207

http://jira.mongodb.org/browse/DOCS

MongoDB Documentation, Release 2.4.2

• Create a fork of the repository in your GitHub account, make any required changes and then create a pull request
with your changes.

If you insert lines that begin with any of the following annotations:

.. TODO:
TODO:
.. TODO
TODO

followed by your comments, it will be easier for the original writer to locate your comments. The two dots ..
format is a comment in reStructured Text, which will hide your comments from Sphinx and publication if you’re
worried about that.

This format is often easier for reviewers with larger portions of content to review.

73.2.3 MongoDB Documentation Organization

This document provides an overview of the global organization of the documentation resource. Refer to the notes
below if you are having trouble understanding the reasoning behind a file’s current location, or if you want to add new
documentation but aren’t sure how to integrate it into the existing resource.

If you have questions, don’t hesitate to open a ticket in the Documentation Jira Project or contact the documentation
team.

Global Organization

Indexes and Experience

The documentation project has two “index files”: http://docs.mongodb.org/manual/contents.txt
and http://docs.mongodb.org/manual/index.txt. The “contents” file provides the documentation’s
tree structure, which Sphinx uses to create the left-pane navigational structure, to power the “Next” and “Previous”
page functionality, and to provide all overarching outlines of the resource. The “index” file is not included in the
“contents” file (and thus builds will produce a warning here) and is the page that users first land on when visiting the
resource.

Having separate “contents” and “index” files provides a bit more flexibility with the organization of the resource while
also making it possible to customize the primary user experience.

Additionally, in the top level of the source/ directory, there are a number of “topical” index or outline files. These
(like the “index” and “contents” files) use the .. toctree:: directive to provide organization within the docu-
mentation. The topical indexes combine to create the index in the contents file.

Topical Indexes and Meta Organization

Because the documentation on any given subject exists in a number of different locations across the resource the
“topical” indexes provide the real structure and organization to the resource. This organization makes it possible to
provide great flexibility while still maintaining a reasonable organization of files and URLs for the documentation.
Consider the following example:

Given that topic such as “replication,” has material regarding the administration of replica sets, as well
as reference material, an overview of the functionality, and operational tutorials, it makes more sense to
include a few locations for documents, and use the meta documents to provide the topic-level organization.

Current topical indexes include:

1208 Chapter 73. Contribute to the Documentation

https://jira.mongodb.org/browse/DOCS
mailto:docs@10gen.com
mailto:docs@10gen.com

MongoDB Documentation, Release 2.4.2

• getting-started

• administration

• applications

• reference

• mongo

• sharding

• replication

• faq

Additional topical indexes are forthcoming.

The Top Level Folders

The documentation has a number of top-level folders, that hold all of the content of the resource. Consider the
following list and explanations below:

• “administration” - contains all of the operational and architectural information that systems and database ad-
ministrators need to know in order to run MongoDB. Topics include: monitoring, replica sets, shard clusters,
deployment architectures, and configuration.

• “applications” - contains information about application development and use. While most documentation re-
garding application development is within the purview of the driver documentation, there are some larger topics
regarding the use of these features that deserve some coverage in this context. Topics include: drivers, schema
design, optimization, replication, and sharding.

– “applications/use-cases” - contains use cases that detail how MongoDB can support various kinds uses and
application designs, including in depth instructions and examples.

• “core” - contains overviews and introduction to the core features, functionality, and concepts of MongoDB.
Topics include: replication, sharding, capped collections, journaling/durability, aggregation.

• “reference” - contains references and indexes of shell functions, database commands, status outputs, as well as
manual pages for all of the programs come with MongoDB (e.g. mongostat and mongodump.)

• “tutorial” - contains operational guides and tutorials that lead users through common tasks (administrative and
conceptual) with MongoDB. This includes programming patterns and operational guides.

• “faq” - contains all the frequently asked questions related to MongoDB, in a collection of topical files.

73.2.4 Build and Deploy the MongoDB Documentation

This document contains more direct instructions for building the MongoDB documentation.

Requirements

For basic publication and testing:

• GNU Make

• Python

• Git

• Sphinx (documentation management toolchain)

73.2. About the Documentation Process 1209

MongoDB Documentation, Release 2.4.2

• Pygments (syntax highlighting)

• PyYAML (for the generated tables)

For full publication builds:

• python-argparse

• LaTeX/PDF LaTeX (typically texlive; for building PDFs)

• Common Utilities (rsync, tar, gzip, sed)

Building the Documentation

Clone the repository:

git clone git://github.com/mongodb/docs.git

To build the full publication version of the manual, you will need to have a function LaTeX tool chain; however, for
routine day-to-day rendering of the documentation you can install a much more minimal tool chain.

For Routine Builds

Begin by installing dependencies. On Arch Linux, use the following command to install the full dependencies:

pacman -S python2-sphinx python2-pygments python2-yaml

On Debian/Ubuntu systems issue the following command:

apt-get install python-sphinx python-yaml python-argparse

To build the documentation issue the following command:

make html

You can find the build output in build/<branch>/html, where <branch> is the name of your current branch.

For Publication Builds

Begin by installing additional dependencies. On Arch Linux, use the following command to install the full dependen-
cies:

pacman -S python2-sphinx python2-pygments python2-yaml \
texlive-bin texlive-core texlive-latexextra

On Debian/Ubuntu systems use the following command:

apt-get install python-yaml python-argparse python-sphinx \
texlive-latex-recommended texlive-latex-recommended

Note: The Debian/Ubuntu dependencies, have not been thoroughly tested. If you find an additional dependency,
please submit a pull request to modify this document.

On OS X:

1. You may need to use easy_install to install pip using the following command if you have not already
done so:

1210 Chapter 73. Contribute to the Documentation

MongoDB Documentation, Release 2.4.2

easy_install pip

Alternately, you may be able to replace pip with easy_install in the next step.

2. Install Sphinx, Docutils, and their dependencies with pip using the following command:

pip install Sphinx Jinja2 Pygments docutils PyYAML

Jinja2, Pygments, and docutils are all dependencies of Sphinx.

Note: As of June 6, 2012 and Sphinx version 1.1.3, you must compile the MongoDB documentation using the
Python 2.x series version of Sphinx. There are serious generation problems with the Python 3 series version of
Sphinx.

3. Install a TeX distribution (for building the PDF.) If you do not have a LaTeX installation, use MacTeX

If you have any corrections to the instructions for these platforms or you have a dependency list for Fedora, CentOS,
Red Hat, or other related distributions, please submit a pull request to add this information to this document.

To build a test version of the Manual, issue the following command:

make publish

This places a complete version of the manual in “../public-docs/” named for the current branch (as of 2012-
03-19, typically master.)

To publish a new build of the manual, issue the following command:

make push

Warning: This target depends on publish, and simply uses rsync to move the content of the
“../public-docs/” to the web servers. You must have the proper credentials to run these operations.

Run publish procedure and thoroughly test the build before pushing it live.

Troubleshooting

If you encounter problems with the build, please contact the docs team, so that we can update this guide and/or fix the
build process.

Build Components and Internals

This section describes the build system for the MongoDB manual, including the custom components, and the organi-
zation of the production build process, and the implementation and encoding of the build process.

Tables

bin/table_builder.py provides a way to generate easy to main reStructuredText tables, from content stored in
YAML files.

Rationale: reStructuredText’s default tables are easy to read in source format, but expensive to maintain, particularly
with larger numbers of columns, because changing widths of column necessitates reformatting the entire table. re-
StructuredText does provide a more simple “list table” format for simple tables, but these tables do not support more
complex multi-line output.

Solution: table_builder.py reads a .yaml file that contains three documents:

73.2. About the Documentation Process 1211

http://www.tug.org/mactex/2011/
mailto:docs@10gen.com

MongoDB Documentation, Release 2.4.2

(Each document has a ‘‘section‘‘ field that holds the name/type of the section, that ‘‘table_builder.py‘‘ uses to ensure
that the YAML file is well formed.)

1. A layout document that describes the structure the final presentation of the table. Contains two field, a
header that holds a list of field references, and a rows field that holds a list of lists of field references, for
example:

section: layout
header: [meta.header1, meta.header2]
rows:
- 1: [content.sql1, content.mongo1]
- 2: [content.sql2, content.mongo2]
- 3: [content.sql3, content.mongo3]
- 4: [content.sql4, content.mongo4]

2. A meta document that holds row, column or other minor descriptions, referenced in the layout section.

3. A content document that holds the major content of the document.

There is no functional difference between meta and content fields except that they each provide a distinct names-
pace for table content.

table_builder.py generates .rst output files from .yaml files. The documents processed by Sphinx use the
.. include:: reStructureText directive to include the .rst file. The build system includes targets (generated,)
for all tables, which are a dependency of the Sphinx build process. 1

Use: To add a table:

• create an appropriate .yaml file using any of the existing files as an example. The build system generates all
table files in the source/includes/ directory with the .yaml extension that begin with table-.

• include the generated .rst file in your Sphinx document. (Optional.)

Generated Makefiles

System While the makefile in the top level of documentation source coordinates the build process, most of
the build targets and build system exist in the form of makefiles generated by a collection of Python scripts. This
architecture reduces redundancy while increasing clarity and consistency.

These makefiles enter the build process by way of include statements and a pattern rule in
bin/makefile.dynamic, as follows:

-include $(output)/makefile.tables
-include $(output)/makefile.sphinx

$(output)/makefile.%:bin/makefile-builder/%.py bin/makefile_builder.py bin/builder_data.py
@$(PYTHONBIN) bin/makefile-builder/$(subst .,,$(suffix $@)).py $@

This will rebuild any of the include files that match the pattern $(output)/makefile.%, if the corre-
sponding python script changes, or it will rebuild all generated makefiles if the builder_data.py or the
makefile_builder.py files change.

The Python scripts that output these makefiles, all use the MakefileBuilder class in the
makefile_builder.py file, and are all located in the bin/makefile-builder/ directory. Consider
a simplified example Python code:

1 To prevent a build error, tables are a dependency of all Sphinx builds except the dirhtml, singlehtml, and latex builds, which run
concurrently during the production build process. If you change tables, and run any of these targets without building the tables target, you the
table will not refresh.

1212 Chapter 73. Contribute to the Documentation

MongoDB Documentation, Release 2.4.2

from makefile_builder import MakefileBuilder
from builder_data import sphinx

m = MakefileBuilder()

m.section_break(’sphinx targets’, block=’sphinx’)
m.comment(’each sphinx target invokes and controls the sphinx build.’, block=’sphinx’)
m.newline(block=’sphinx’)

for (builder, prod) in sphinx:
m.newline(1, builder)
m.append_var(’sphinx-targets’, builder)

if prod is True and builder != ’epub’:
b = ’production’
m.target(builder, block=b)

else:
b = ’testing’
m.target(builder, ’sphinx-prerequisites’, block=b)

m.job(’mkdir -p $(branch-output)/’ + builder, block=b)
m.msg(’[$@]: created $(branch-output)/’ + builder, block=b)
m.msg(’[sphinx]: starting $@ build’, block=b)
m.msg(’[$@]: build started at ‘date‘.’, block=b)
m.job(’$(SPHINXBUILD) -b $@ $(ALLSPHINXOPTS) $(branch-output)/$@’, block=b)

m.write(’makefile.output-filename’)

You can also call m.print_content() to render the makefile to standard output. See makefile_builder.py
for the more methods that you can use to define makefiles. This code will generate a makefile that resembles the
following:

sphinx-targets += epub
epub:sphinx-prerequisites

@mkdir -p $(branch-output)/epub
@echo [$@]: created $(branch-output)/epub
@echo [sphinx]: starting $@ build
@echo [$@]: build started at ‘date‘.
@$(SPHINXBUILD) -b $@ $(ALLSPHINXOPTS) $(branch-output)/$@

sphinx-targets += html
html:sphinx-prerequisites

@mkdir -p $(branch-output)/html
@echo [$@]: created $(branch-output)/html
@echo [sphinx]: starting $@ build
@echo [$@]: build started at ‘date‘.
@$(SPHINXBUILD) -b $@ $(ALLSPHINXOPTS) $(branch-output)/$@

sphinx-targets += gettext
gettext:sphinx-prerequisites

@mkdir -p $(branch-output)/gettext
@echo [$@]: created $(branch-output)/gettext
@echo [sphinx]: starting $@ build
@echo [$@]: build started at ‘date‘.
@$(SPHINXBUILD) -b $@ $(ALLSPHINXOPTS) $(branch-output)/$@

All information about the targets themselves are in the builder_data.py file, that contains a number of variables
that hold lists of tuples with information used by the Python scripts to generate the build rules. Comments explain the

73.2. About the Documentation Process 1213

MongoDB Documentation, Release 2.4.2

structure of the data in builder_data.py.

System The build system contains the following 8 makefiles:

• pdfs: Encodes the process for transforming Sphinx’s LaTeX output into pdfs.

• tables: Describes the process for building all tables generated using table_builder.py.

• links: Creates the symbolic links required for production builds.

• sphinx: Generates the targets for Sphinx. These are mostly, but not entirely consistent with the default targets
provided by Sphinx itself.

• releases: Describe targets for generating files for inclusion in the installation have the versions of MongoDB
automatically baked into their text.

• errors: Special processing of the HTTP error pages.

• migrations: Describes the migration process for all non-sphinx components of the build.

• sphinx-migrations: Ensures that all sphinx migrations are fresh.

Troubleshooting If you experience an issue with the generated makefiles, the generated files have comments, and
are quite human readable. To add new generated targets or makefiles, experiment first writing makefiles themselves,
and then write scripts to generate the makefiles.

Because the generated makefiles, and indeed most of the build process does not echo commands, use make -n to
determine the actual oration and sequence used in the build process.

If you have any questions, please feel free to open a Jira Case.

1214 Chapter 73. Contribute to the Documentation

https://jira.mongodb.org/browse/DOCS

	I Install MongoDB
	Installation Guides
	Install MongoDB on Red Hat Enterprise, CentOS, or Fedora Linux
	Install MongoDB on Ubuntu
	Install MongoDB on Debian
	Install MongoDB on Linux
	Install MongoDB on OS X
	Install MongoDB on Windows
	Install MongoDB Enterprise
	Getting Started with MongoDB

	Release Notes

	II Administration
	Run-time Database Configuration
	Configure the Database
	Security Considerations
	Replication and Sharding Configuration
	Run Multiple Database Instances on the Same System
	Diagnostic Configurations

	Backup and Recovery Operations for MongoDB
	Backup Strategies for MongoDB Systems
	Backup and Recovery Procedures
	Backup and Restore Sharded Clusters

	Data Center Awareness
	Operational Segregation in MongoDB Operations and Deployments
	Tag Aware Sharding
	Administer and Manage Shard Tags
	Deploy a Geographically Distributed Replica Set

	Journaling
	Procedures
	Journaling Internals

	Connect to MongoDB with SSL
	Configure mongod and mongos for SSL
	SSL Configuration for Clients

	Monitor MongoDB with SNMP
	Prerequisites
	Configure SNMP
	Troubleshooting

	Monitoring for MongoDB
	Monitoring Tools
	Process Logging
	Diagnosing Performance Issues
	Replication and Monitoring
	Sharding and Monitoring

	Analyze Performance of Database Operations
	Profiling Levels
	Enable Database Profiling and Set the Profiling Level
	View Profiler Data
	Profiler Overhead

	Import and Export MongoDB Data
	Data Type Fidelity
	Data Import and Export and Backups Operations
	Human Intelligible Import/Export Formats

	Linux ulimit Settings
	Resource Utilization
	Review and Set Resource Limits
	Recommended Settings

	Production Notes
	Backups
	Networking
	MongoDB on Linux
	Readahead
	MongoDB on Virtual Environments
	Disk and Storage Systems
	Hardware Requirements and Limitations
	Performance Monitoring
	Production Checklist

	MongoDB Tutorials
	Getting Started
	Administration
	Development Patterns
	Application Development
	Text Search Patterns
	Data Modeling Patterns
	MongoDB Use Case Studies

	III Security
	Strategies and Practices
	Security Practices and Management

	Tutorials
	Configure Linux iptables Firewall for MongoDB
	Configure Windows netsh Firewall for MongoDB
	Access Control in MongoDB
	Deploy MongoDB with Kerberos Authentication
	Create a Vulnerability Report

	Reference
	User Privilege Roles in MongoDB
	system.users Privilege Documents

	IV Core MongoDB Operations (CRUD)
	Read and Write Operations in MongoDB
	Read Operations
	Write Operations

	Fundamental Concepts for Document Databases
	BSON Documents
	ObjectId
	GridFS
	Database References

	CRUD Operations for MongoDB
	Create
	Read
	Update
	Delete

	V Data Modeling
	Background
	Data Modeling Considerations for MongoDB Applications

	Data Modeling Patterns
	Model Embedded One-to-One Relationships Between Documents
	Model Embedded One-to-Many Relationships Between Documents
	Model Referenced One-to-Many Relationships Between Documents
	Model Data for Atomic Operations
	Model Tree Structures with Parent References
	Model Tree Structures with Child References
	Model Tree Structures with an Array of Ancestors
	Model Tree Structures with Materialized Paths
	Model Tree Structures with Nested Sets
	Model Data to Support Keyword Search

	VI Aggregation
	Aggregation Framework
	Overview
	Framework Components
	Use
	Optimizing Performance
	Sharded Operation
	Limitations

	Aggregation Framework Examples
	Requirements
	Aggregations using the Zip Code Data Set
	Aggregation with User Preference Data

	Aggregation Framework Reference
	Pipeline
	Expressions

	SQL to Aggregation Framework Mapping Chart
	Examples

	Map-Reduce
	Examples
	Temporary Collection
	Concurrency
	Sharded Cluster
	Troubleshooting Map-Reduce Operations

	Simple Aggregation Methods and Commands
	Count
	Distinct
	Group

	VII Indexes
	Index Concepts
	Indexing Overview

	Indexing Strategies for Applications
	Indexing Strategies

	Index Tutorials
	Indexing Operations

	Geospatial Indexing
	Geospatial Indexes and Queries

	Text Indexing
	Text Search

	VIII Replication
	Replica Set Use and Operation
	Replica Set Fundamental Concepts
	Replica Set Architectures and Deployment Patterns
	Replica Set Considerations and Behaviors for Applications and Development
	Replica Set Internals and Behaviors
	Master Slave Replication

	Replica Set Tutorials and Procedures
	Replica Set Administration

	Replica Set Reference Material
	Replica Set Configuration
	Replica Set Status Reference
	Replication Info Reference
	Replica Set Commands
	Replica Set Features and Version Compatibility

	IX Sharding
	Sharding Concepts
	Sharded Cluster Overview
	Sharded Cluster Architectures
	Query Routing in Sharded Clusters
	Security Practices for Sharded Clusters
	Sharded Cluster Internals

	Administration
	Sharded Cluster Administration

	Reference
	Sharding Commands

	X Application Development
	Development Considerations
	MongoDB Drivers and Client Libraries
	Optimization Strategies for MongoDB
	Capped Collections
	Server-side JavaScript
	Store a JavaScript Function on the Server

	Application Design Patterns for MongoDB
	Perform Two Phase Commits
	Create Tailable Cursor
	Isolate Sequence of Operations
	Create an Auto-Incrementing Sequence Field
	Limit Number of Elements in an Array after an Update
	Expire Data from Collections by Setting TTL

	XI The mongo Shell
	Getting Started with the mongo Shell
	Start the mongo Shell
	Executing Queries
	Print
	Use a Custom Prompt
	Use an External Editor in the mongo Shell
	Exit the Shell

	Data Types in the mongo Shell
	Date
	ObjectId
	NumberLong

	Access the mongo Shell Help Information
	Command Line Help
	Shell Help
	Database Help
	Collection Help
	Cursor Help
	Type Help

	Write Scripts for the mongo Shell
	Opening New Connections
	Scripting

	mongo Shell Quick Reference
	mongo Shell Command History
	Command Line Options
	Command Helpers
	Basic Shell JavaScript Operations
	Keyboard Shortcuts
	Queries
	Error Checking Methods
	Administrative Command Helpers
	Opening Additional Connections
	Miscellaneous
	Additional Resources

	XII Use Cases
	Operational Intelligence
	Storing Log Data
	Pre-Aggregated Reports
	Hierarchical Aggregation

	Product Data Management
	Product Catalog
	Inventory Management
	Category Hierarchy

	Content Management Systems
	Metadata and Asset Management
	Storing Comments

	Python Application Development
	Write a Tumblelog Application with Django MongoDB Engine
	Write a Tumblelog Application with Flask and MongoEngine

	XIII Frequently Asked Questions
	FAQ: MongoDB Fundamentals
	What kind of database is MongoDB?
	Do MongoDB databases have tables?
	Do MongoDB databases have schemas?
	What languages can I use to work with the MongoDB?
	Does MongoDB support SQL?
	What are typical uses for MongoDB?
	Does MongoDB support transactions?
	Does MongoDB require a lot of RAM?
	How do I configure the cache size?
	Does MongoDB require a separate caching layer for application-level caching?
	Does MongoDB handle caching?
	Are writes written to disk immediately, or lazily?
	What language is MongoDB written in?
	What are the limitations of 32-bit versions of MongoDB?

	FAQ: MongoDB for Application Developers
	What is a namespace in MongoDB?
	How do you copy all objects from one collection to another?
	If you remove a document, does MongoDB remove it from disk?
	When does MongoDB write updates to disk?
	How do I do transactions and locking in MongoDB?
	How do you aggregate data with MongoDB?
	Why does MongoDB log so many ``Connection Accepted'' events?
	Does MongoDB run on Amazon EBS?
	Why are MongoDB's data files so large?
	How do I optimize storage use for small documents?
	When should I use GridFS?
	How does MongoDB address SQL or Query injection?
	How does MongoDB provide concurrency?
	What is the compare order for BSON types?
	How do I query for fields that have null values?
	Are there any restrictions on the names of Collections?
	How do I isolate cursors from intervening write operations?
	When should I embed documents within other documents?
	Can I manually pad documents to prevent moves during updates?

	FAQ: The mongo Shell
	How can I enter multi-line operations in the mongo shell?
	How can I access to different databases temporarily?
	Does the mongo shell support tab completion and other keyboard shortcuts?
	How can I customize the mongo shell prompt?
	Can I edit long shell operations with an external text editor?

	FAQ: Concurrency
	What type of locking does MongoDB use?
	How granular are locks in MongoDB?
	How do I see the status of locks on my mongod instances?
	Does a read or write operation ever yield the lock?
	Which operations lock the database?
	Which administrative commands lock the database?
	Does a MongoDB operation ever lock more than one database?
	How does sharding affect concurrency?
	How does concurrency affect a replica set primary?
	How does concurrency affect secondaries?
	What kind of concurrency does MongoDB provide for JavaScript operations?

	FAQ: Sharding with MongoDB
	Is sharding appropriate for a new deployment?
	How does sharding work with replication?
	Can I change the shard key after sharding a collection?
	What happens to unsharded collections in sharded databases?
	How does MongoDB distribute data across shards?
	What happens if a client updates a document in a chunk during a migration?
	What happens to queries if a shard is inaccessible or slow?
	How does MongoDB distribute queries among shards?
	How does MongoDB sort queries in sharded environments?
	How does MongoDB ensure unique _id field values when using a shard key other than _id?
	I've enabled sharding and added a second shard, but all the data is still on one server. Why?
	Is it safe to remove old files in the moveChunk directory?
	How does mongos use connections?
	Why does mongos hold connections open?
	Where does MongoDB report on connections used by mongos?
	What does writebacklisten in the log mean?
	How should administrators deal with failed migrations?
	What is the process for moving, renaming, or changing the number of config servers?
	When do the mongos servers detect config server changes?
	Is it possible to quickly update mongos servers after updating a replica set configuration?
	What does the maxConns setting on mongos do?
	How do indexes impact queries in sharded systems?
	Can shard keys be randomly generated?
	Can shard keys have a non-uniform distribution of values?
	Can you shard on the _id field?
	Can shard key be in ascending order, like dates or timestamps?
	What do moveChunk commit failed errors mean?
	How does draining a shard affect the balancing of uneven chunk distribution?

	FAQ: Replica Sets and Replication in MongoDB
	What kinds of replication does MongoDB support?
	What do the terms ``primary'' and ``master'' mean?
	What do the terms ``secondary'' and ``slave'' mean?
	How long does replica set failover take?
	Does replication work over the Internet and WAN connections?
	Can MongoDB replicate over a ``noisy'' connection?
	What is the preferred replication method: master/slave or replica sets?
	What is the preferred replication method: replica sets or replica pairs?
	Why use journaling if replication already provides data redundancy?
	Are write operations durable if write concern does not acknowledge writes?
	How many arbiters do replica sets need?
	What information do arbiters exchange with the rest of the replica set?
	Which members of a replica set vote in elections?
	Do hidden members vote in replica set elections?
	Is it normal for replica set members to use different amounts of disk space?

	FAQ: MongoDB Storage
	What are memory mapped files?
	How do memory mapped files work?
	How does MongoDB work with memory mapped files?
	What are page faults?
	What is the difference between soft and hard page faults?
	What tools can I use to investigate storage use in MongoDB?
	What is the working set?
	Why are the files in my data directory larger than the data in my database?
	How can I check the size of a collection?
	How can I check the size of indexes?
	How do I know when the server runs out of disk space?

	FAQ: Indexes
	Should you run ensureIndex() after every insert?
	How do you know what indexes exist in a collection?
	How do you determine the size of an index?
	What happens if an index does not fit into RAM?
	How do you know what index a query used?
	How do you determine what fields to index?
	How do write operations affect indexes?
	Will building a large index affect database performance?
	Can I use index keys to constrain query matches?
	Using $ne and $nin in a query is slow. Why?
	Can I use a multi-key index to support a query for a whole array?
	How can I effectively use indexes strategy for attribute lookups?

	FAQ: MongoDB Diagnostics
	Where can I find information about a mongod process that stopped running unexpectedly?
	Does TCP keepalive time affect sharded clusters and replica sets?
	Memory Diagnostics
	Sharded Cluster Diagnostics

	XIV Reference
	MongoDB Interface
	Reference

	Architecture and Components
	MongoDB Package Components
	Configuration and Use

	Status and Reporting
	Server Status Output Index
	Server Status Reference
	Database Statistics Reference
	Collection Statistics Reference
	Collection Validation Data
	Connection Pool Statistics Reference
	Current Operation Reporting
	Database Profiler Output
	Explain Output
	Exit Codes and Statuses

	Internal Metadata
	Config Database Contents
	The local Database
	System Collections
	GridFS Reference

	General Reference
	MongoDB Limits and Thresholds
	Connection String URI Format
	MongoDB Extended JSON
	Database References
	Glossary

	XV Release Notes
	Current Stable Release
	Release Notes for MongoDB 2.4

	Previous Stable Releases
	Release Notes for MongoDB 2.2
	Release Notes for MongoDB 2.0
	Release Notes for MongoDB 1.8
	Release Notes for MongoDB 1.6
	Release Notes for MongoDB 1.4
	Release Notes for MongoDB 1.2.x

	Other MongoDB Release Notes
	Default Write Concern Change

	Version Numbers

	XVI About MongoDB Documentation
	License
	Editions
	Version and Revisions
	Report an Issue or Make a Change Request
	Contribute to the Documentation
	MongoDB Manual Translation
	About the Documentation Process

