
MongoDB Documentation
Release 2.6.11

MongoDB, Inc.

February 12, 2016

2

© MongoDB, Inc. 2008 - 2015 This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 United States License

3

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Contents

1 Introduction to MongoDB 3
1.1 What is MongoDB . 3

2 Install MongoDB 5
2.1 Installation Guides . 5
2.2 First Steps with MongoDB . 52
2.3 Additional Resources . 59

3 MongoDB CRUD Operations 61
3.1 MongoDB CRUD Introduction . 61
3.2 MongoDB CRUD Concepts . 64
3.3 MongoDB CRUD Tutorials . 96
3.4 MongoDB CRUD Reference . 134

4 Data Models 149
4.1 Data Modeling Introduction . 149
4.2 Data Modeling Concepts . 151
4.3 Data Model Examples and Patterns . 158
4.4 Data Model Reference . 176

5 Administration 191
5.1 Administration Concepts . 191
5.2 Administration Tutorials . 231
5.3 Administration Reference . 299

6 Security 313
6.1 Security Introduction . 313
6.2 Security Concepts . 316
6.3 Security Tutorials . 329
6.4 Security Reference . 403
6.5 Security Checklist . 431

7 Aggregation 435
7.1 Aggregation Introduction . 435
7.2 Aggregation Concepts . 439
7.3 Aggregation Examples . 453
7.4 Aggregation Reference . 470

8 Indexes 481

i

8.1 Index Introduction . 481
8.2 Index Concepts . 485
8.3 Indexing Tutorials . 519
8.4 Indexing Reference . 556

9 Replication 563
9.1 Replication Introduction . 563
9.2 Replication Concepts . 567
9.3 Replica Set Tutorials . 606
9.4 Replication Reference . 658

10 Sharding 675
10.1 Sharding Introduction . 675
10.2 Sharding Concepts . 681
10.3 Sharded Cluster Tutorials . 704
10.4 Sharding Reference . 753

11 Frequently Asked Questions 761
11.1 FAQ: MongoDB Fundamentals . 761
11.2 FAQ: MongoDB for Application Developers . 764
11.3 FAQ: The mongo Shell . 775
11.4 FAQ: Concurrency . 777
11.5 FAQ: Sharding with MongoDB . 782
11.6 FAQ: Replication and Replica Sets . 788
11.7 FAQ: MongoDB Storage . 792
11.8 FAQ: Indexes . 797
11.9 FAQ: MongoDB Diagnostics . 799

12 Release Notes 805
12.1 Current Stable Release . 805
12.2 Previous Stable Releases . 859
12.3 Other MongoDB Release Notes . 907
12.4 MongoDB Version Numbers . 908

13 About MongoDB Documentation 911
13.1 License . 911
13.2 Editions . 911
13.3 Version and Revisions . 912
13.4 Report an Issue or Make a Change Request . 912
13.5 Contribute to the Documentation . 912

ii

MongoDB Documentation, Release 2.6.11

Note: This version of the PDF does not include the reference section, see MongoDB Reference Manual1 for a PDF
edition of all MongoDB Reference Material.

1http://docs.mongodb.org/v2.6/MongoDB-reference-manual.pdf

Contents 1

http://docs.mongodb.org/v2.6/MongoDB-reference-manual.pdf

MongoDB Documentation, Release 2.6.11

2 Contents

CHAPTER 1

Introduction to MongoDB

On this page

• What is MongoDB (page 3)

Welcome to MongoDB. This document provides a brief introduction to MongoDB and some key concepts. See the
installation guides (page 5) for information on downloading and installing MongoDB.

1.1 What is MongoDB

MongoDB is an open-source document database that provides high performance, high availability, and automatic
scaling.

1.1.1 Document Database

A record in MongoDB is a document, which is a data structure composed of field and value pairs. MongoDB docu-
ments are similar to JSON objects. The values of fields may include other documents, arrays, and arrays of documents.

The advantages of using documents are:

• Documents (i.e. objects) correspond to native data types in many programming languages.

• Embedded documents and arrays reduce need for expensive joins.

• Dynamic schema supports fluent polymorphism.

3

MongoDB Documentation, Release 2.6.11

1.1.2 Key Features

High Performance

MongoDB provides high performance data persistence. In particular,

• Support for embedded data models reduces I/O activity on database system.

• Indexes support faster queries and can include keys from embedded documents and arrays.

High Availability

To provide high availability, MongoDB’s replication facility, called replica sets, provide:

• automatic failover.

• data redundancy.

A replica set (page 563) is a group of MongoDB servers that maintain the same data set, providing redundancy and
increasing data availability.

Automatic Scaling

MongoDB provides horizontal scalability as part of its core functionality.

• Automatic sharding (page 675) distributes data across a cluster of machines.

• Replica sets can provide eventually-consistent reads for low-latency high throughput deployments.

4 Chapter 1. Introduction to MongoDB

CHAPTER 2

Install MongoDB

On this page

• Installation Guides (page 5)
• First Steps with MongoDB (page 52)
• Additional Resources (page 59)

MongoDB runs on most platforms and supports both 32-bit and 64-bit architectures.

2.1 Installation Guides

See the Release Notes (page 805) for information about specific releases of MongoDB.

Install on Linux (page 6) Documentations for installing the official MongoDB distribution on Linux-based systems.

Install on Red Hat (page 6) Install MongoDB on Red Hat Enterprise and related Linux systems using .rpm
packages.

Install on Ubuntu (page 10) Install MongoDB on Ubuntu Linux systems using .deb packages.

Install on Debian (page 13) Install MongoDB on Debian systems using .deb packages.

Install on Other Linux Systems (page 16) Install the official build of MongoDB on other Linux systems from
MongoDB archives.

Install on OS X (page 19) Install the official build of MongoDB on OS X systems from Homebrew packages or from
MongoDB archives.

Install on Windows (page 21) Install MongoDB on Windows systems and optionally start MongoDB as a Windows
service.

Install MongoDB Enterprise (page 27) MongoDB Enterprise is available for MongoDB Enterprise subscribers and
includes several additional features including support for SNMP monitoring, LDAP authentication, Kerberos
authentication, and System Event Auditing.

Install MongoDB Enterprise on Red Hat (page 28) Install the MongoDB Enterprise build and required depen-
dencies on Red Hat Enterprise or CentOS Systems using packages.

Install MongoDB Enterprise on Ubuntu (page 32) Install the MongoDB Enterprise build and required depen-
dencies on Ubuntu Linux Systems using packages.

Install MongoDB Enterprise on Amazon AMI (page 42) Install the MongoDB Enterprise build and required
dependencies on Amazon Linux AMI.

5

MongoDB Documentation, Release 2.6.11

Install MongoDB Enterprise on Windows (page 44) Install the MongoDB Enterprise build and required de-
pendencies using the .msi installer.

2.1.1 Install on Linux

On this page

• Recommended (page 6)
• Manual Installation (page 6)

These documents provide instructions to install MongoDB for various Linux systems.

Recommended

For easy installation, MongoDB provides packages for popular Linux distributions. The following guides detail the
installation process for these systems:

Install on Red Hat (page 6) Install MongoDB on Red Hat Enterprise and related Linux systems using .rpm pack-
ages.

Install on Ubuntu (page 10) Install MongoDB on Ubuntu Linux systems using .deb packages.

Install on Debian (page 13) Install MongoDB on Debian systems using .deb packages.

For systems without supported packages, refer to the Manual Installation tutorial.

Manual Installation

For Linux systems without supported packages, see the following guide:

Install on Other Linux Systems (page 16) Install the official build of MongoDB on other Linux systems from Mon-
goDB archives.

Install MongoDB on Red Hat Enterprise or CentOS Linux

On this page

• Overview (page 6)
• Packages (page 7)
• Control Scripts (page 7)
• Considerations (page 7)
• Install MongoDB (page 7)
• Run MongoDB (page 8)
• Uninstall MongoDB (page 10)

Overview Use this tutorial to install MongoDB on Red Hat Enterprise Linux CentOS Linux using .rpm packages.
While some of these distributions include their own MongoDB packages, the official MongoDB packages are generally
more up to date.

6 Chapter 2. Install MongoDB

MongoDB Documentation, Release 2.6.11

Packages MongoDB provides packages of the officially supported MongoDB builds in its own repository. This
repository provides the MongoDB distribution in the following packages:

• mongodb-org

This package is a metapackage that will automatically install the four component packages listed below.

• mongodb-org-server

This package contains the mongod daemon and associated configuration and init scripts.

• mongodb-org-mongos

This package contains the mongos daemon.

• mongodb-org-shell

This package contains the mongo shell.

• mongodb-org-tools

This package contains the following MongoDB tools: mongoimport bsondump, mongodump,
mongoexport, mongofiles, mongooplog, mongoperf, mongorestore, mongostat, and
mongotop.

Control Scripts The mongodb-org package includes various control scripts, including the init script
/etc/rc.d/init.d/mongod. These scripts are used to stop, start, and restart daemon processes.

The package configures MongoDB using the /etc/mongod.conf file in conjunction with the control scripts. See
the Configuration File reference for documentation of settings available in the configuration file.

As of version 2.6.11, there are no control scripts for mongos. The mongos process is used only in sharding
(page 681). You can use the mongod init script to derive your own mongos control script for use in such envi-
ronments. See the mongos reference for configuration details.

Considerations For production deployments, always run MongoDB on 64-bit systems.

The default /etc/mongod.conf configuration file supplied by the 2.6 series packages has bind_ip‘ set to
127.0.0.1 by default. Modify this setting as needed for your environment before initializing a replica set.

Changed in version 2.6: The package structure and names have changed as of version 2.6. For instructions on instal-
lation of an older release, please refer to the documentation for the appropriate version.

Install MongoDB

Step 1: Configure the package management system (YUM). Create a /etc/yum.repos.d/mongodb.repo
file to hold the following configuration information for the MongoDB repository:

If you are running a 64-bit system, use the following configuration:

[mongodb]
name=MongoDB Repository
baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/x86_64/
gpgcheck=0
enabled=1

If you are running a 32-bit system, which is not recommended for production deployments, use the following config-
uration:

2.1. Installation Guides 7

MongoDB Documentation, Release 2.6.11

[mongodb]
name=MongoDB Repository
baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/i686/
gpgcheck=0
enabled=1

Step 2: Install the MongoDB packages and associated tools. When you install the packages, you choose whether
to install the current release or a previous one. This step provides the commands for both.

To install the latest stable version of MongoDB, issue the following command:

sudo yum install -y mongodb-org

To install a specific release of MongoDB, specify each component package individually and append the version number
to the package name, as in the following example that installs the 2.6.9 release of MongoDB:

sudo yum install -y mongodb-org-2.6.9 mongodb-org-server-2.6.9 mongodb-org-shell-2.6.9 mongodb-org-mongos-2.6.9 mongodb-org-tools-2.6.9

You can specify any available version of MongoDB. However yum will upgrade the packages when a newer version
becomes available. To prevent unintended upgrades, pin the package. To pin a package, add the following exclude
directive to your /etc/yum.conf file:

exclude=mongodb-org,mongodb-org-server,mongodb-org-shell,mongodb-org-mongos,mongodb-org-tools

Previous versions of MongoDB packages use different naming conventions. See the 2.4 version of documentation for
more information1.

Run MongoDB

Prerequisites

Configure SELinux
Important: You must configure SELinux to allow MongoDB to start on Red Hat Linux-based systems (Red Hat
Enterprise Linux or CentOS Linux).

To configure SELinux, administrators have three options:

Note: All three options require root privileges. The first two options each requires a system reboot and may have
larger implications for your deployment.

• Disable SELinux entirely by changing the SELINUX setting to disabled in /etc/selinux/config.

SELINUX=disabled

• Set SELinux to permissive mode in /etc/selinux/config by changing the SELINUX setting to
permissive .

SELINUX=permissive

Note: You can use setenforce to change to permissive mode; this method does not require a reboot but is
not persistent.

1http://docs.mongodb.org/v2.4/tutorial/install-mongodb-on-linux

8 Chapter 2. Install MongoDB

http://docs.mongodb.org/v2.4/tutorial/install-mongodb-on-linux
http://docs.mongodb.org/v2.4/tutorial/install-mongodb-on-linux

MongoDB Documentation, Release 2.6.11

• Enable access to the relevant ports (e.g. 27017) for SELinux if in enforcing mode. See Default MongoDB
Port (page 424) for more information on MongoDB’s default ports. For default settings, this can be accom-
plished by running

semanage port -a -t mongod_port_t -p tcp 27017

Warning: On RHEL 7.0, if you change the data path, the default SELinux policies will prevent mongod
from having write access on the new data path if you do not change the security context.

You may alternatively choose not to install the SELinux packages when you are installing your Linux operating system,
or choose to remove the relevant packages. This option is the most invasive and is not recommended.

Data Directories and Permissions Warning: On RHEL 7.0, if you change the data path, the default SELinux policies will prevent mongod from
having write access on the new data path if you do not change the security context.

The MongoDB instance stores its data files in /var/lib/mongo and its log files in /var/log/mongodb
by default, and runs using the mongod user account. You can specify alternate log and data file directories in
/etc/mongod.conf. See systemLog.path and storage.dbPath for additional information.

If you change the user that runs the MongoDB process, you must modify the access control rights to the
/var/lib/mongo and /var/log/mongodb directories to give this user access to these directories.

Step 1: Start MongoDB. You can start the mongod process by issuing the following command:

sudo service mongod start

Step 2: Verify that MongoDB has started successfully You can verify that the mongod process has started suc-
cessfully by checking the contents of the log file at /var/log/mongodb/mongod.log for a line reading

[initandlisten] waiting for connections on port <port>

where <port> is the port configured in /etc/mongod.conf, 27017 by default.

You can optionally ensure that MongoDB will start following a system reboot by issuing the following command:

sudo chkconfig mongod on

Step 3: Stop MongoDB. As needed, you can stop the mongod process by issuing the following command:

sudo service mongod stop

Step 4: Restart MongoDB. You can restart the mongod process by issuing the following command:

sudo service mongod restart

You can follow the state of the process for errors or important messages by watching the output in the
/var/log/mongodb/mongod.log file.

Step 5: Begin using MongoDB. To begin using MongoDB, see Getting Started with MongoDB (page 52). Also
consider the Production Notes (page 210) document before deploying MongoDB in a production environment.

Later, to stop MongoDB, press Control+C in the terminal where the mongod instance is running.

2.1. Installation Guides 9

MongoDB Documentation, Release 2.6.11

Uninstall MongoDB To completely remove MongoDB from a system, you must remove the MongoDB applications
themselves, the configuration files, and any directories containing data and logs. The following section guides you
through the necessary steps.

Warning: This process will completely remove MongoDB, its configuration, and all databases. This process is
not reversible, so ensure that all of your configuration and data is backed up before proceeding.

Step 1: Stop MongoDB. Stop the mongod process by issuing the following command:

sudo service mongod stop

Step 2: Remove Packages. Remove any MongoDB packages that you had previously installed.

sudo yum erase $(rpm -qa | grep mongodb-org)

Step 3: Remove Data Directories. Remove MongoDB databases and log files.

sudo rm -r /var/log/mongodb
sudo rm -r /var/lib/mongo

Install MongoDB on Ubuntu

On this page

• Overview (page 10)
• Packages (page 10)
• Control Scripts (page 11)
• Considerations (page 11)
• Install MongoDB (page 11)
• Run MongoDB (page 12)
• Uninstall MongoDB (page 13)

Overview Use this tutorial to install MongoDB on Ubuntu Linux systems from .deb packages. While Ubuntu
includes its own MongoDB packages, the official MongoDB packages are generally more up-to-date.

Packages MongoDB provides packages of the officially supported MongoDB builds in its own repository. This
repository provides the MongoDB distribution in the following packages:

• mongodb-org

This package is a metapackage that will automatically install the four component packages listed below.

• mongodb-org-server

This package contains the mongod daemon and associated configuration and init scripts.

• mongodb-org-mongos

This package contains the mongos daemon.

10 Chapter 2. Install MongoDB

MongoDB Documentation, Release 2.6.11

• mongodb-org-shell

This package contains the mongo shell.

• mongodb-org-tools

This package contains the following MongoDB tools: mongoimport bsondump, mongodump,
mongoexport, mongofiles, mongooplog, mongoperf, mongorestore, mongostat, and
mongotop.

Control Scripts The mongodb-org package includes various control scripts, including the init script
/etc/init.d/mongod. These scripts are used to stop, start, and restart daemon processes.

The package configures MongoDB using the /etc/mongod.conf file in conjunction with the control scripts. See
the Configuration File reference for documentation of settings available in the configuration file.

As of version 2.6.11, there are no control scripts for mongos. The mongos process is used only in sharding
(page 681). You can use the mongod init script to derive your own mongos control script for use in such envi-
ronments. See the mongos reference for configuration details.

Considerations For production deployments, always run MongoDB on 64-bit systems.

You cannot install this package concurrently with the mongodb, mongodb-server, or mongodb-clients pack-
ages provided by Ubuntu.

The default /etc/mongod.conf configuration file supplied by the 2.6 series packages has bind_ip‘ set to
127.0.0.1 by default. Modify this setting as needed for your environment before initializing a replica set.

Changed in version 2.6: The package structure and names have changed as of version 2.6. For instructions on instal-
lation of an older release, please refer to the documentation for the appropriate version.

Install MongoDB

Step 1: Import the public key used by the package management system. The Ubuntu package management tools
(i.e. dpkg and apt) ensure package consistency and authenticity by requiring that distributors sign packages with
GPG keys. Issue the following command to import the MongoDB public GPG Key2:

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10

Step 2: Create a list file for MongoDB. Create the /etc/apt/sources.list.d/mongodb.list list file
using the following command:

echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist 10gen' | sudo tee /etc/apt/sources.list.d/mongodb.list

Step 3: Reload local package database. Issue the following command to reload the local package database:

sudo apt-get update

Step 4: Install the MongoDB packages. You can install either the latest stable version of MongoDB or a specific
version of MongoDB.

2http://docs.mongodb.org/10gen-gpg-key.asc

2.1. Installation Guides 11

http://docs.mongodb.org/10gen-gpg-key.asc

MongoDB Documentation, Release 2.6.11

Install the latest stable version of MongoDB. Issue the following command:

sudo apt-get install -y mongodb-org

Install a specific release of MongoDB. Specify each component package individually and append the version num-
ber to the package name, as in the following example that installs the 2.6.9 release of MongoDB:

sudo apt-get install -y mongodb-org=2.6.9 mongodb-org-server=2.6.9 mongodb-org-shell=2.6.9 mongodb-org-mongos=2.6.9 mongodb-org-tools=2.6.9

Pin a specific version of MongoDB. Although you can specify any available version of MongoDB, apt-get will
upgrade the packages when a newer version becomes available. To prevent unintended upgrades, pin the package. To
pin the version of MongoDB at the currently installed version, issue the following command sequence:

echo "mongodb-org hold" | sudo dpkg --set-selections
echo "mongodb-org-server hold" | sudo dpkg --set-selections
echo "mongodb-org-shell hold" | sudo dpkg --set-selections
echo "mongodb-org-mongos hold" | sudo dpkg --set-selections
echo "mongodb-org-tools hold" | sudo dpkg --set-selections

Previous versions of MongoDB packages use different naming conventions. See the 2.4 version of documentation for
more information3.

Run MongoDB The MongoDB instance stores its data files in /var/lib/mongodb and its log files in
/var/log/mongodb by default, and runs using the mongodb user account. You can specify alternate log and
data file directories in /etc/mongod.conf. See systemLog.path and storage.dbPath for additional in-
formation.

If you change the user that runs the MongoDB process, you must modify the access control rights to the
/var/lib/mongodb and /var/log/mongodb directories to give this user access to these directories.

Step 1: Start MongoDB. Issue the following command to start mongod:

sudo service mongod start

Step 2: Verify that MongoDB has started successfully Verify that the mongod process has started successfully
by checking the contents of the log file at /var/log/mongodb/mongod.log for a line reading

[initandlisten] waiting for connections on port <port>

where <port> is the port configured in /etc/mongod.conf, 27017 by default.

Step 3: Stop MongoDB. As needed, you can stop the mongod process by issuing the following command:

sudo service mongod stop

Step 4: Restart MongoDB. Issue the following command to restart mongod:

sudo service mongod restart

3http://docs.mongodb.org/v2.4/tutorial/install-mongodb-on-ubuntu

12 Chapter 2. Install MongoDB

http://docs.mongodb.org/v2.4/tutorial/install-mongodb-on-ubuntu
http://docs.mongodb.org/v2.4/tutorial/install-mongodb-on-ubuntu

MongoDB Documentation, Release 2.6.11

Step 5: Begin using MongoDB. To begin using MongoDB, see Getting Started with MongoDB (page 52). Also
consider the Production Notes (page 210) document before deploying MongoDB in a production environment.

Later, to stop MongoDB, press Control+C in the terminal where the mongod instance is running.

Uninstall MongoDB To completely remove MongoDB from a system, you must remove the MongoDB applications
themselves, the configuration files, and any directories containing data and logs. The following section guides you
through the necessary steps.

Warning: This process will completely remove MongoDB, its configuration, and all databases. This process is
not reversible, so ensure that all of your configuration and data is backed up before proceeding.

Step 1: Stop MongoDB. Stop the mongod process by issuing the following command:

sudo service mongod stop

Step 2: Remove Packages. Remove any MongoDB packages that you had previously installed.

sudo apt-get purge mongodb-org*

Step 3: Remove Data Directories. Remove MongoDB databases and log files.

sudo rm -r /var/log/mongodb
sudo rm -r /var/lib/mongodb

Install MongoDB on Debian

On this page

• Overview (page 13)
• Packages (page 13)
• Control Scripts (page 14)
• Considerations (page 14)
• Install MongoDB (page 14)
• Run MongoDB (page 15)
• Uninstall MongoDB (page 16)

Overview Use this tutorial to install MongoDB from .deb packages on Debian 7. While Debian includes its own
MongoDB packages, the official MongoDB packages are more up to date.

Packages MongoDB provides packages of the officially supported MongoDB builds in its own repository. This
repository provides the MongoDB distribution in the following packages:

• mongodb-org

This package is a metapackage that will automatically install the four component packages listed below.

• mongodb-org-server

This package contains the mongod daemon and associated configuration and init scripts.

2.1. Installation Guides 13

MongoDB Documentation, Release 2.6.11

• mongodb-org-mongos

This package contains the mongos daemon.

• mongodb-org-shell

This package contains the mongo shell.

• mongodb-org-tools

This package contains the following MongoDB tools: mongoimport bsondump, mongodump,
mongoexport, mongofiles, mongooplog, mongoperf, mongorestore, mongostat, and
mongotop.

Control Scripts The mongodb-org package includes various control scripts, including the init script
/etc/init.d/mongod. These scripts are used to stop, start, and restart daemon processes.

The package configures MongoDB using the /etc/mongod.conf file in conjunction with the control scripts. See
the Configuration File reference for documentation of settings available in the configuration file.

As of version 2.6.11, there are no control scripts for mongos. The mongos process is used only in sharding
(page 681). You can use the mongod init script to derive your own mongos control script for use in such envi-
ronments. See the mongos reference for configuration details.

Considerations For production deployments, always run MongoDB on 64-bit systems.

You cannot install this package concurrently with the mongodb, mongodb-server, or mongodb-clients pack-
ages included in Debian 7.

The default /etc/mongod.conf configuration file supplied by the 2.6 series packages has bind_ip‘ set to
127.0.0.1 by default. Modify this setting as needed for your environment before initializing a replica set.

Changed in version 2.6: The package structure and names have changed as of version 2.6. For instructions on instal-
lation of an older release, please refer to the documentation for the appropriate version.

Install MongoDB The Debian package management tools (i.e. dpkg and apt) ensure package consistency and
authenticity by requiring that distributors sign packages with GPG keys.

Step 1: Import the public key used by the package management system. Issue the following command to add
the MongoDB public GPG Key4 to the system key ring.

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv 7F0CEB10

Step 2: Create a /etc/apt/sources.list.d/mongodb.list file for MongoDB. Create the list file using
the following command:

echo 'deb http://downloads-distro.mongodb.org/repo/debian-sysvinit dist 10gen' | sudo tee /etc/apt/sources.list.d/mongodb.list

Step 3: Reload local package database. Issue the following command to reload the local package database:

sudo apt-get update

4http://docs.mongodb.org/10gen-gpg-key.asc

14 Chapter 2. Install MongoDB

http://docs.mongodb.org/10gen-gpg-key.asc

MongoDB Documentation, Release 2.6.11

Step 4: Install the MongoDB packages. You can install either the latest stable version of MongoDB or a specific
version of MongoDB.

Install the latest stable version of MongoDB. Issue the following command:

sudo apt-get install -y mongodb-org

Install a specific release of MongoDB. Specify each component package individually and append the version num-
ber to the package name, as in the following example that installs the 2.6.9 release of MongoDB:

sudo apt-get install -y mongodb-org=2.6.9 mongodb-org-server=2.6.9 mongodb-org-shell=2.6.9 mongodb-org-mongos=2.6.9 mongodb-org-tools=2.6.9

Pin a specific version of MongoDB. Although you can specify any available version of MongoDB, apt-get will
upgrade the packages when a newer version becomes available. To prevent unintended upgrades, pin the package. To
pin the version of MongoDB at the currently installed version, issue the following command sequence:

echo "mongodb-org hold" | sudo dpkg --set-selections
echo "mongodb-org-server hold" | sudo dpkg --set-selections
echo "mongodb-org-shell hold" | sudo dpkg --set-selections
echo "mongodb-org-mongos hold" | sudo dpkg --set-selections
echo "mongodb-org-tools hold" | sudo dpkg --set-selections

Previous versions of MongoDB packages use different naming conventions. See the 2.4 version of documentation for
more information5.

Run MongoDB The MongoDB instance stores its data files in /var/lib/mongodb and its log files in
/var/log/mongodb by default, and runs using the mongodb user account. You can specify alternate log and
data file directories in /etc/mongod.conf. See systemLog.path and storage.dbPath for additional in-
formation.

If you change the user that runs the MongoDB process, you must modify the access control rights to the
/var/lib/mongodb and /var/log/mongodb directories to give this user access to these directories.

Step 1: Start MongoDB. Issue the following command to start mongod:

sudo service mongod start

Step 2: Verify that MongoDB has started successfully Verify that the mongod process has started successfully
by checking the contents of the log file at /var/log/mongodb/mongod.log for a line reading

[initandlisten] waiting for connections on port <port>

where <port> is the port configured in /etc/mongod.conf, 27017 by default.

Step 3: Stop MongoDB. As needed, you can stop the mongod process by issuing the following command:

sudo service mongod stop

5http://docs.mongodb.org/v2.4/tutorial/install-mongodb-on-ubuntu

2.1. Installation Guides 15

http://docs.mongodb.org/v2.4/tutorial/install-mongodb-on-ubuntu
http://docs.mongodb.org/v2.4/tutorial/install-mongodb-on-ubuntu

MongoDB Documentation, Release 2.6.11

Step 4: Restart MongoDB. Issue the following command to restart mongod:

sudo service mongod restart

Step 5: Begin using MongoDB. To begin using MongoDB, see Getting Started with MongoDB (page 52). Also
consider the Production Notes (page 210) document before deploying MongoDB in a production environment.

Later, to stop MongoDB, press Control+C in the terminal where the mongod instance is running.

Uninstall MongoDB To completely remove MongoDB from a system, you must remove the MongoDB applications
themselves, the configuration files, and any directories containing data and logs. The following section guides you
through the necessary steps.

Warning: This process will completely remove MongoDB, its configuration, and all databases. This process is
not reversible, so ensure that all of your configuration and data is backed up before proceeding.

Step 1: Stop MongoDB. Stop the mongod process by issuing the following command:

sudo service mongod stop

Step 2: Remove Packages. Remove any MongoDB packages that you had previously installed.

sudo apt-get purge mongodb-org*

Step 3: Remove Data Directories. Remove MongoDB databases and log files.

sudo rm -r /var/log/mongodb
sudo rm -r /var/lib/mongodb

Install MongoDB on Linux Systems

On this page

• Overview (page 16)
• Considerations (page 16)
• Install MongoDB (page 16)
• Run MongoDB (page 18)

Overview Compiled versions of MongoDB for Linux provide a simple option for installing MongoDB for other
Linux systems without supported packages.

Considerations For production deployments, always run MongoDB on 64-bit systems.

Install MongoDB MongoDB provides archives for both 64-bit and 32-bit Linux. Follow the installation procedure
appropriate for your system.

16 Chapter 2. Install MongoDB

MongoDB Documentation, Release 2.6.11

Install for 64-bit Linux

Step 1: Download the binary files for the desired release of MongoDB. Download the binaries from
https://www.mongodb.org/downloads.

For example, to download the latest release through the shell, issue the following:

curl -O http://downloads.mongodb.org/linux/mongodb-linux-x86_64-2.6.11.tgz

Step 2: Extract the files from the downloaded archive. For example, from a system shell, you can extract through
the tar command:

tar -zxvf mongodb-linux-x86_64-2.6.11.tgz

Step 3: Copy the extracted archive to the target directory. Copy the extracted folder to the location from which
MongoDB will run.

mkdir -p mongodb
cp -R -n mongodb-linux-x86_64-2.6.11/ mongodb

Step 4: Ensure the location of the binaries is in the PATH variable. The MongoDB binaries are in the bin/
directory of the archive. To ensure that the binaries are in your PATH, you can modify your PATH.

For example, you can add the following line to your shell’s rc file (e.g. ~/.bashrc):

export PATH=<mongodb-install-directory>/bin:$PATH

Replace <mongodb-install-directory> with the path to the extracted MongoDB archive.

Install for 32-bit Linux

Step 1: Download the binary files for the desired release of MongoDB. Download the binaries from
https://www.mongodb.org/downloads.

For example, to download the latest release through the shell, issue the following:

curl -O http://downloads.mongodb.org/linux/mongodb-linux-i686-2.6.11.tgz

Step 2: Extract the files from the downloaded archive. For example, from a system shell, you can extract through
the tar command:

tar -zxvf mongodb-linux-i686-2.6.11.tgz

Step 3: Copy the extracted archive to the target directory. Copy the extracted folder to the location from which
MongoDB will run.

mkdir -p mongodb
cp -R -n mongodb-linux-i686-2.6.11/ mongodb

2.1. Installation Guides 17

MongoDB Documentation, Release 2.6.11

Step 4: Ensure the location of the binaries is in the PATH variable. The MongoDB binaries are in the bin/
directory of the archive. To ensure that the binaries are in your PATH, you can modify your PATH.

For example, you can add the following line to your shell’s rc file (e.g. ~/.bashrc):

export PATH=<mongodb-install-directory>/bin:$PATH

Replace <mongodb-install-directory> with the path to the extracted MongoDB archive.

Run MongoDB

Step 1: Create the data directory. Before you start MongoDB for the first time, create the directory to which
the mongod process will write data. By default, the mongod process uses the /data/db directory. If you create a
directory other than this one, you must specify that directory in the dbpath option when starting the mongod process
later in this procedure.

The following example command creates the default /data/db directory:

mkdir -p /data/db

Step 2: Set permissions for the data directory. Before running mongod for the first time, ensure that the user
account running mongod has read and write permissions for the directory.

Step 3: Run MongoDB. To run MongoDB, run the mongod process at the system prompt. If necessary, specify the
path of the mongod or the data directory. See the following examples.

Run without specifying paths If your system PATH variable includes the location of the mongod binary and if you
use the default data directory (i.e., /data/db), simply enter mongod at the system prompt:

mongod

Specify the path of the mongod If your PATH does not include the location of the mongod binary, enter the full
path to the mongod binary at the system prompt:

<path to binary>/mongod

Specify the path of the data directory If you do not use the default data directory (i.e., /data/db), specify the
path to the data directory using the --dbpath option:

mongod --dbpath <path to data directory>

Step 4: Begin using MongoDB. To begin using MongoDB, see Getting Started with MongoDB (page 52). Also
consider the Production Notes (page 210) document before deploying MongoDB in a production environment.

Later, to stop MongoDB, press Control+C in the terminal where the mongod instance is running.

18 Chapter 2. Install MongoDB

MongoDB Documentation, Release 2.6.11

2.1.2 Install MongoDB on OS X

On this page

• Overview (page 19)
• Install MongoDB (page 19)
• Run MongoDB (page 21)

Overview

Use this tutorial to install MongoDB on OS X systems.

Platform Support
Starting in version 2.4, MongoDB only supports OS X versions 10.6 (Snow Leopard) on Intel x86-64 and later.

MongoDB is available through the popular OS X package manager Homebrew6 or through the MongoDB Download
site7.

Install MongoDB

You can install MongoDB with Homebrew8 or manually. This section describes both.

Install MongoDB with Homebrew

Homebrew9 installs binary packages based on published “formulae.” This section describes how to update brew to
the latest packages and install MongoDB. Homebrew requires some initial setup and configuration, which is beyond
the scope of this document.

Step 1: Update Homebrew’s package database.

In a system shell, issue the following command:

brew update

Step 2: Install MongoDB.

You can install MongoDB via brew with several different options. Use one of the following operations:

Install the MongoDB Binaries To install the MongoDB binaries, issue the following command in a system shell:

brew install mongodb

6http://brew.sh/
7http://www.mongodb.org/downloads
8http://brew.sh/
9http://brew.sh/

2.1. Installation Guides 19

http://brew.sh/
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://brew.sh/
http://brew.sh/

MongoDB Documentation, Release 2.6.11

Build MongoDB from Source with TLS/SSL Support To build MongoDB from the source files and include
TLS/SSL support, issue the following from a system shell:

brew install mongodb --with-openssl

Install the Latest Development Release of MongoDB To install the latest development release for use in testing
and development, issue the following command in a system shell:

brew install mongodb --devel

Install MongoDB Manually

Only install MongoDB using this procedure if you cannot use homebrew (page 19).

Step 1: Download the binary files for the desired release of MongoDB.

Download the binaries from https://www.mongodb.org/downloads.

For example, to download the latest release through the shell, issue the following:

curl -O http://downloads.mongodb.org/osx/mongodb-osx-x86_64-2.6.11.tgz

Step 2: Extract the files from the downloaded archive.

For example, from a system shell, you can extract through the tar command:

tar -zxvf mongodb-osx-x86_64-2.6.11.tgz

Step 3: Copy the extracted archive to the target directory.

Copy the extracted folder to the location from which MongoDB will run.

mkdir -p mongodb
cp -R -n mongodb-osx-x86_64-2.6.11/ mongodb

Step 4: Ensure the location of the binaries is in the PATH variable.

The MongoDB binaries are in the bin/ directory of the archive. To ensure that the binaries are in your PATH, you
can modify your PATH.

For example, you can add the following line to your shell’s rc file (e.g. ~/.bashrc):

export PATH=<mongodb-install-directory>/bin:$PATH

Replace <mongodb-install-directory> with the path to the extracted MongoDB archive.

20 Chapter 2. Install MongoDB

MongoDB Documentation, Release 2.6.11

Run MongoDB

Step 1: Create the data directory.

Before you start MongoDB for the first time, create the directory to which the mongod process will write data. By
default, the mongod process uses the /data/db directory. If you create a directory other than this one, you must
specify that directory in the dbpath option when starting the mongod process later in this procedure.

The following example command creates the default /data/db directory:

mkdir -p /data/db

Step 2: Set permissions for the data directory.

Before running mongod for the first time, ensure that the user account running mongod has read and write permis-
sions for the directory.

Step 3: Run MongoDB.

To run MongoDB, run the mongod process at the system prompt. If necessary, specify the path of the mongod or the
data directory. See the following examples.

Run without specifying paths If your system PATH variable includes the location of the mongod binary and if you
use the default data directory (i.e., /data/db), simply enter mongod at the system prompt:

mongod

Specify the path of the mongod If your PATH does not include the location of the mongod binary, enter the full
path to the mongod binary at the system prompt:

<path to binary>/mongod

Specify the path of the data directory If you do not use the default data directory (i.e., /data/db), specify the
path to the data directory using the --dbpath option:

mongod --dbpath <path to data directory>

Step 4: Begin using MongoDB.

To begin using MongoDB, see Getting Started with MongoDB (page 52). Also consider the Production Notes
(page 210) document before deploying MongoDB in a production environment.

Later, to stop MongoDB, press Control+C in the terminal where the mongod instance is running.

2.1.3 Install MongoDB on Windows

2.1. Installation Guides 21

MongoDB Documentation, Release 2.6.11

On this page

• Overview (page 22)
• Requirements (page 22)
• Get MongoDB (page 22)
• Install MongoDB (page 23)
• Run MongoDB (page 24)
• Configure a Windows Service for MongoDB (page 25)
• Manually Create a Windows Service for MongoDB (page 26)
• Additional Resources (page 27)

Overview

Use this tutorial to install MongoDB on a Windows systems.

Platform Support
Starting in version 2.2, MongoDB does not support Windows XP. Please use a more recent version of Windows to use
more recent releases of MongoDB.

Important: If you are running any edition of Windows Server 2008 R2 or Windows 7, please install a hotfix to
resolve an issue with memory mapped files on Windows10.

Requirements

On Windows MongoDB requires Windows Server 2008 R2, Windows Vista, or later. The .msi installer includes all
other software dependencies and will automatically upgrade any older version of MongoDB installed using an .msi
file.

Get MongoDB

Step 1: Determine which MongoDB build you need.

There are three builds of MongoDB for Windows:

MongoDB for Windows 64-bit runs only on Windows Server 2008 R2, Windows 7 64-bit, and newer versions of
Windows. This build takes advantage of recent enhancements to the Windows Platform and cannot operate on older
versions of Windows.

MongoDB for Windows 32-bit runs on any 32-bit version of Windows newer than Windows Vista. 32-bit versions
of MongoDB are only intended for older systems and for use in testing and development systems. 32-bit versions of
MongoDB only support databases smaller than 2GB.

MongoDB for Windows 64-bit Legacy runs on Windows Vista, Windows Server 2003, and Windows Server 2008
and does not include recent performance enhancements.

To find which version of Windows you are running, enter the following command in the Command Prompt:

wmic os get osarchitecture

10http://support.microsoft.com/kb/2731284

22 Chapter 2. Install MongoDB

http://support.microsoft.com/kb/2731284
http://support.microsoft.com/kb/2731284

MongoDB Documentation, Release 2.6.11

Step 2: Download MongoDB for Windows.

Download the latest production release of MongoDB from the MongoDB downloads page11. Ensure you download
the correct version of MongoDB for your Windows system. The 64-bit versions of MongoDB do not work with 32-bit
Windows.

Install MongoDB

Interactive Installation

Step 1: Install MongoDB for Windows.

In Windows Explorer, locate the downloaded MongoDB .msi file, which typically is located in the default
Downloads folder. Double-click the .msi file. A set of screens will appear to guide you through the installa-
tion process.

You may specify an installation directory if you choose the “Custom” installation option.

Note: These instructions assume that you have installed MongoDB to C:\mongodb.

MongoDB is self-contained and does not have any other system dependencies. You can run MongoDB from any folder
you choose. You may install MongoDB in any folder (e.g. D:\test\mongodb).

Unattended Installation

You may install MongoDB unattended on Windows from the command line using msiexec.exe.

Step 1: Install MongoDB for Windows.

Open a shell in the directory containing the .msi installation binary of your choice and invoke:

msiexec.exe /q /i mongodb-<version>-signed.msi INSTALLLOCATION="<installation directory>"

By default, this method installs the following MongoDB binaries: mongod.exe, mongo.exe, mongodump.exe,
mongorestore.exe, mongoimport.exe, mongoexport.exe, mongostat.exe, and mongotop.exe.
You can specify the installation location for the executable by modifying the <installation directory>
value. To install specific subsets of the binaries, you may specify an ADDLOCAL argument:

msiexec.exe /q /i mongodb-<version>-signed.msi INSTALLLOCATION="<installation directory>" ADDLOCAL=<binary set(s)>

The <binary set(s)> value is a comma-separated list including one or more of the following:

• Server - includes mongod.exe

• Client - includes mongo.exe

• MonitoringTools - includes mongostat.exe and mongotop.exe

• ImportExportTools - includes mongodump.exe, mongorestore.exe, mongoexport.exe, and
mongoimport.exe)

• MiscellaneousTools - includes bsondump.exe, mongofiles.exe, mongooplog.exe, and
mongoperf.exe

11http://www.mongodb.org/downloads

2.1. Installation Guides 23

http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.6.11

For instance, to install only the entire set of tools to C:\mongodb, invoke:

msiexec.exe /q /i mongodb-<version>-signed.msi INSTALLLOCATION="C:\mongodb" ADDLOCAL=MonitoringTools,ImportExportTools,MiscellaneousTools

You may also specify ADDLOCAL=ALL to install the complete set of binaries, as in the following:

msiexec.exe /q /i mongodb-<version>-signed.msi INSTALLLOCATION="C:\mongodb" ADDLOCAL=ALL

Run MongoDB

Warning: Do not make mongod.exe visible on public networks without running in “Secure Mode” with the
auth setting. MongoDB is designed to be run in trusted environments, and the database does not enable “Secure
Mode” by default.

Step 1: Set up the MongoDB environment.

MongoDB requires a data directory to store all data. MongoDB’s default data directory path is \data\db. Create
this folder using the following commands from a Command Prompt:

md \data\db

You can specify an alternate path for data files using the --dbpath option to mongod.exe, for example:

C:\mongodb\bin\mongod.exe --dbpath d:\test\mongodb\data

If your path includes spaces, enclose the entire path in double quotes, for example:

C:\mongodb\bin\mongod.exe --dbpath "d:\test\mongo db data"

You may also specify the dbpath in a configuration file.

Step 2: Start MongoDB.

To start MongoDB, run mongod.exe. For example, from the Command Prompt:

C:\mongodb\bin\mongod.exe

This starts the main MongoDB database process. The waiting for connections message in the console
output indicates that the mongod.exe process is running successfully.

Depending on the security level of your system, Windows may pop up a Security Alert dialog box about blocking
“some features” of C:\mongodb\bin\mongod.exe from communicating on networks. All users should select
Private Networks, such as my home or work network and click Allow access. For additional
information on security and MongoDB, please see the Security Documentation (page 316).

Step 3: Connect to MongoDB.

To connect to MongoDB through the mongo.exe shell, open another Command Prompt.

C:\mongodb\bin\mongo.exe

If you want to develop applications using .NET, see the documentation of C# and MongoDB12 for more information.

12https://docs.mongodb.org/ecosystem/drivers/csharp

24 Chapter 2. Install MongoDB

https://docs.mongodb.org/ecosystem/drivers/csharp

MongoDB Documentation, Release 2.6.11

Step 4: Begin using MongoDB.

To begin using MongoDB, see Getting Started with MongoDB (page 52). Also consider the Production Notes
(page 210) document before deploying MongoDB in a production environment.

Later, to stop MongoDB, press Control+C in the terminal where the mongod instance is running.

Configure a Windows Service for MongoDB

Step 1: Open an Administrator command prompt.

Windows 7 / Vista / Server 2008 (and R2) Press Win + R, then type cmd, then press Ctrl + Shift +
Enter.

Windows 8 Press Win + X, then press A.

Execute the remaining steps from the Administrator command prompt.

Step 2: Create directories.

Create directories for your database and log files:

mkdir c:\data\db
mkdir c:\data\log

Step 3: Create a configuration file.

Create a configuration file. The file must set systemLog.path. Include additional configuration options
as appropriate.

For example, create a file at C:\mongodb\mongod.cfg that specifies both systemLog.path and
storage.dbPath:

systemLog:
destination: file
path: c:\data\log\mongod.log

storage:
dbPath: c:\data\db

Step 4: Install the MongoDB service.

Important: Run all of the following commands in Command Prompt with “Administrative Privileges”.

Install the MongoDB service by starting mongod.exe with the --install option and the -config option to
specify the previously created configuration file.

"C:\mongodb\bin\mongod.exe" --config "C:\mongodb\mongod.cfg" --install

To use an alternate dbpath, specify the path in the configuration file (e.g. C:\mongodb\mongod.cfg) or on the
command line with the --dbpath option.

2.1. Installation Guides 25

MongoDB Documentation, Release 2.6.11

If needed, you can install services for multiple instances of mongod.exe or mongos.exe. Install each service with
a unique --serviceName and --serviceDisplayName. Use multiple instances only when sufficient system
resources exist and your system design requires it.

Step 5: Start the MongoDB service.

net start MongoDB

Step 6: Stop or remove the MongoDB service as needed.

To stop the MongoDB service use the following command:

net stop MongoDB

To remove the MongoDB service use the following command:

"C:\mongodb\bin\mongod.exe" --remove

Manually Create a Windows Service for MongoDB

You can set up the MongoDB server as a Windows Service that starts automatically at boot time.

The following procedure assumes you have installed MongoDB using the .msi installer with the path
C:\mongodb\.

If you have installed in an alternative directory, you will need to adjust the paths as appropriate.

Step 1: Open an Administrator command prompt.

Windows 7 / Vista / Server 2008 (and R2) Press Win + R, then type cmd, then press Ctrl + Shift +
Enter.

Windows 8 Press Win + X, then press A.

Execute the remaining steps from the Administrator command prompt.

Step 2: Create directories.

Create directories for your database and log files:

mkdir c:\data\db
mkdir c:\data\log

Step 3: Create a configuration file.

Create a configuration file. The file must set systemLog.path. Include additional configuration options
as appropriate.

For example, create a file at C:\mongodb\mongod.cfg that specifies both systemLog.path and
storage.dbPath:

26 Chapter 2. Install MongoDB

MongoDB Documentation, Release 2.6.11

systemLog:
destination: file
path: c:\data\log\mongod.log

storage:
dbPath: c:\data\db

Step 4: Create the MongoDB service.

Create the MongoDB service.

sc.exe create MongoDB binPath= "\"C:\mongodb\mongod.exe\" --service --config= \"C:\mongodb\mongod.cfg\"" DisplayName= "MongoDB" start= "auto"

sc.exe requires a space between “=” and the configuration values (eg “binPath= ”), and a “\” to escape double
quotes.

If successfully created, the following log message will display:

[SC] CreateService SUCCESS

Step 5: Start the MongoDB service.

net start MongoDB

Step 6: Stop or remove the MongoDB service as needed.

To stop the MongoDB service, use the following command:

net stop MongoDB

To remove the MongoDB service, first stop the service and then run the following command:

sc.exe delete MongoDB

Additional Resources

• MongoDB for Developers Free Course13

• MongoDB for .NET Developers Free Online Course14

• MongoDB Architecture Guide15

2.1.4 Install MongoDB Enterprise

These documents provide instructions to install MongoDB Enterprise for Linux and Windows Systems.

Install MongoDB Enterprise on Red Hat (page 28) Install the MongoDB Enterprise build and required dependen-
cies on Red Hat Enterprise or CentOS Systems using packages.

Install MongoDB Enterprise on Ubuntu (page 32) Install the MongoDB Enterprise build and required dependencies
on Ubuntu Linux Systems using packages.

13https://university.mongodb.com/courses/M101P/about?jmp=docs
14https://university.mongodb.com/courses/M101N/about?jmp=docs
15https://www.mongodb.com/lp/white-paper/architecture-guide?jmp=docs

2.1. Installation Guides 27

https://university.mongodb.com/courses/M101P/about?jmp=docs
https://university.mongodb.com/courses/M101N/about?jmp=docs
https://www.mongodb.com/lp/white-paper/architecture-guide?jmp=docs

MongoDB Documentation, Release 2.6.11

Install MongoDB Enterprise on Debian (page 36) Install the MongoDB Enterprise build and required dependencies
on Debian Linux Systems using packages.

Install MongoDB Enterprise on SUSE (page 39) Install the MongoDB Enterprise build and required dependencies
on SUSE Enterprise Linux.

Install MongoDB Enterprise on Amazon AMI (page 42) Install the MongoDB Enterprise build and required depen-
dencies on Amazon Linux AMI.

Install MongoDB Enterprise on Windows (page 44) Install the MongoDB Enterprise build and required dependen-
cies using the .msi installer.

Install MongoDB Enterprise on Red Hat Enterprise or CentOS

On this page

• Overview (page 28)
• Packages (page 28)
• Control Scripts (page 29)
• Considerations (page 29)
• Install MongoDB Enterprise (page 29)
• Run MongoDB Enterprise (page 30)
• Uninstall MongoDB (page 32)

Overview

Use this tutorial to install MongoDB Enterprise16 on Red Hat Enterprise Linux or CentOS Linux from .rpm packages.

Packages

MongoDB provides packages of the officially supported MongoDB Enterprise builds in it’s own repository. This
repository provides the MongoDB Enterprise distribution in the following packages:

• mongodb-enterprise

This package is a metapackage that will automatically install the four component packages listed below.

• mongodb-enterprise-server

This package contains the mongod daemon and associated configuration and init scripts.

• mongodb-enterprise-mongos

This package contains the mongos daemon.

• mongodb-enterprise-shell

This package contains the mongo shell.

• mongodb-enterprise-tools

This package contains the following MongoDB tools: mongoimport bsondump, mongodump,
mongoexport, mongofiles, mongoimport, mongooplog, mongoperf, mongorestore,
mongostat, and mongotop.

16https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

28 Chapter 2. Install MongoDB

https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

MongoDB Documentation, Release 2.6.11

Control Scripts

The mongodb-enterprise package includes various control scripts, including the init script
/etc/rc.d/init.d/mongod.

The package configures MongoDB using the /etc/mongod.conf file in conjunction with the control scripts. See
the Configuration File reference for documentation of settings available in the configuration file.

As of version 2.6.11, there are no control scripts for mongos. The mongos process is used only in sharding
(page 681). You can use the mongod init script to derive your own mongos control script.

Considerations

MongoDB only provides Enterprise packages for 64-bit builds of Red Hat Enterprise Linux and CentOS Linux ver-
sions 5, 6, and 7.

Use the provided distribution packages as described in this page if possible. These packages will automatically install
all of MongoDB’s dependencies, and are the recommended installation method.

To manually install all dependencies, run the appropriate command for your Red Hat/CentOS version.

Version 5

yum install perl cyrus-sasl cyrus-sasl-plain cyrus-sasl-gssapi krb5-libs \
lm_sensors net-snmp openssl popt rpm-libs tcp_wrappers zlib

Version 6

yum install cyrus-sasl cyrus-sasl-plain cyrus-sasl-gssapi krb5-libs \
net-snmp openssl

Version 7

yum install cyrus-sasl cyrus-sasl-plain cyrus-sasl-gssapi krb5-libs \
lm_sensors-libs net-snmp-agent-libs net-snmp openssl rpm-libs \
tcp_wrappers-libs

The default /etc/mongod.conf configuration file supplied by the 2.6 series packages has bind_ip‘ set to
127.0.0.1 by default. Modify this setting as needed for your environment before initializing a replica set.

Changed in version 2.6: The package structure and names have changed as of version 2.6. For instructions on instal-
lation of an older release, please refer to the documentation for the appropriate version.

Install MongoDB Enterprise

When you install the packages for MongoDB Enterprise, you choose whether to install the current release or a previous
one. This procedure describes how to do both.

Step 1: Configure repository. Create an /etc/yum.repos.d/mongodb-enterprise.repo file so that
you can install MongoDB enterprise directly, using yum.

Use the following repository file to specify the latest stable release of MongoDB enterprise.

[mongodb-enterprise]
name=MongoDB Enterprise Repository
baseurl=https://repo.mongodb.com/yum/redhat/$releasever/mongodb-enterprise/stable/$basearch/
gpgcheck=0
enabled=1

2.1. Installation Guides 29

MongoDB Documentation, Release 2.6.11

Use the following repository to install only versions of MongoDB for the 2.6 release. If you’d like to install Mon-
goDB Enterprise packages from a particular release series (page 908), such as 2.4 or 2.6, you can specify the re-
lease series in the repository configuration. For example, to restrict your system to the 2.6 release series, create a
/etc/yum.repos.d/mongodb-enterprise-2.6.repo file to hold the following configuration information
for the MongoDB Enterprise 2.6 repository:

[mongodb-enterprise-2.6]
name=MongoDB Enterprise 2.6 Repository
baseurl=https://repo.mongodb.com/yum/redhat/$releasever/mongodb-enterprise/2.6/$basearch/
gpgcheck=0
enabled=1

.repo files for each release can also be found in the repository itself17. Remember that odd-numbered minor release
versions (e.g. 2.5) are development versions and are unsuitable for production deployment.

Step 2: Install the MongoDB Enterprise packages and associated tools. You can install either the latest stable
version of MongoDB Enterprise or a specific version of MongoDB Enterprise.

To install the latest stable version of MongoDB Enterprise, issue the following command:

sudo yum install -y mongodb-enterprise

Step 3: Optional: Manage Installed Version

Install a specific release of MongoDB Enterprise. Specify each component package individually and append the
version number to the package name, as in the following example that installs the 2.6.9 release of MongoDB:

sudo yum install -y mongodb-enterprise-2.6.9 mongodb-enterprise-server-2.6.9 mongodb-enterprise-shell-2.6.9 mongodb-enterprise-mongos-2.6.9 mongodb-enterprise-tools-2.6.9

Pin a specific version of MongoDB Enterprise. Although you can specify any available version of MongoDB
Enterprise, yum will upgrade the packages when a newer version becomes available. To prevent unintended upgrades,
pin the package. To pin a package, add the following exclude directive to your /etc/yum.conf file:

exclude=mongodb-enterprise,mongodb-enterprise-server,mongodb-enterprise-shell,mongodb-enterprise-mongos,mongodb-enterprise-tools

Previous versions of MongoDB packages use different naming conventions. See the 2.4 version of documentation for
more information18.

Step 4: When the install completes, you can run MongoDB.

Run MongoDB Enterprise

Prerequisites

Configure SELinux
Important: You must configure SELinux to allow MongoDB to start on Red Hat Linux-based systems (Red Hat
Enterprise Linux or CentOS Linux).

To configure SELinux, administrators have three options:

17https://repo.mongodb.com/yum/redhat/
18http://docs.mongodb.org/v2.4/tutorial/install-mongodb-on-linux

30 Chapter 2. Install MongoDB

https://repo.mongodb.com/yum/redhat/
http://docs.mongodb.org/v2.4/tutorial/install-mongodb-on-linux
http://docs.mongodb.org/v2.4/tutorial/install-mongodb-on-linux

MongoDB Documentation, Release 2.6.11

Note: All three options require root privileges. The first two options each requires a system reboot and may have
larger implications for your deployment.

• Disable SELinux entirely by changing the SELINUX setting to disabled in /etc/selinux/config.

SELINUX=disabled

• Set SELinux to permissive mode in /etc/selinux/config by changing the SELINUX setting to
permissive .

SELINUX=permissive

Note: You can use setenforce to change to permissive mode; this method does not require a reboot but is
not persistent.

• Enable access to the relevant ports (e.g. 27017) for SELinux if in enforcing mode. See Default MongoDB
Port (page 424) for more information on MongoDB’s default ports. For default settings, this can be accom-
plished by running

semanage port -a -t mongod_port_t -p tcp 27017

Warning: On RHEL 7.0, if you change the data path, the default SELinux policies will prevent mongod
from having write access on the new data path if you do not change the security context.

You may alternatively choose not to install the SELinux packages when you are installing your Linux operating system,
or choose to remove the relevant packages. This option is the most invasive and is not recommended.

Data Directories and Permissions Warning: On RHEL 7.0, if you change the data path, the default SELinux policies will prevent mongod from
having write access on the new data path if you do not change the security context.

The MongoDB instance stores its data files in /var/lib/mongo and its log files in /var/log/mongodb
by default, and runs using the mongod user account. You can specify alternate log and data file directories in
/etc/mongod.conf. See systemLog.path and storage.dbPath for additional information.

If you change the user that runs the MongoDB process, you must modify the access control rights to the
/var/lib/mongo and /var/log/mongodb directories to give this user access to these directories.

Step 1: Start MongoDB. You can start the mongod process by issuing the following command:

sudo service mongod start

Step 2: Verify that MongoDB has started successfully You can verify that the mongod process has started suc-
cessfully by checking the contents of the log file at /var/log/mongodb/mongod.log for a line reading

[initandlisten] waiting for connections on port <port>

where <port> is the port configured in /etc/mongod.conf, 27017 by default.

You can optionally ensure that MongoDB will start following a system reboot by issuing the following command:

sudo chkconfig mongod on

2.1. Installation Guides 31

MongoDB Documentation, Release 2.6.11

Step 3: Stop MongoDB. As needed, you can stop the mongod process by issuing the following command:

sudo service mongod stop

Step 4: Restart MongoDB. You can restart the mongod process by issuing the following command:

sudo service mongod restart

You can follow the state of the process for errors or important messages by watching the output in the
/var/log/mongodb/mongod.log file.

Step 5: Begin using MongoDB. To begin using MongoDB, see Getting Started with MongoDB (page 52). Also
consider the Production Notes (page 210) document before deploying MongoDB in a production environment.

Later, to stop MongoDB, press Control+C in the terminal where the mongod instance is running.

Uninstall MongoDB

To completely remove MongoDB from a system, you must remove the MongoDB applications themselves, the con-
figuration files, and any directories containing data and logs. The following section guides you through the necessary
steps.

Warning: This process will completely remove MongoDB, its configuration, and all databases. This process is
not reversible, so ensure that all of your configuration and data is backed up before proceeding.

Step 1: Stop MongoDB. Stop the mongod process by issuing the following command:

sudo service mongod stop

Step 2: Remove Packages. Remove any MongoDB packages that you had previously installed.

sudo yum erase $(rpm -qa | grep mongodb-enterprise)

Step 3: Remove Data Directories. Remove MongoDB databases and log files.

sudo rm -r /var/log/mongodb
sudo rm -r /var/lib/mongo

Install MongoDB Enterprise on Ubuntu

On this page

• Overview (page 33)
• Packages (page 33)
• Control Scripts (page 33)
• Considerations (page 33)
• Install MongoDB Enterprise (page 34)
• Run MongoDB Enterprise (page 35)
• Uninstall MongoDB (page 35)

32 Chapter 2. Install MongoDB

MongoDB Documentation, Release 2.6.11

Overview

Use this tutorial to install MongoDB Enterprise19 on Ubuntu Linux systems from .deb packages.

Packages

MongoDB provides packages of the officially supported MongoDB Enterprise builds in it’s own repository. This
repository provides the MongoDB Enterprise distribution in the following packages:

• mongodb-enterprise

This package is a metapackage that will automatically install the four component packages listed below.

• mongodb-enterprise-server

This package contains the mongod daemon and associated configuration and init scripts.

• mongodb-enterprise-mongos

This package contains the mongos daemon.

• mongodb-enterprise-shell

This package contains the mongo shell.

• mongodb-enterprise-tools

This package contains the following MongoDB tools: mongoimport bsondump, mongodump,
mongoexport, mongofiles, mongoimport, mongooplog, mongoperf, mongorestore,
mongostat, and mongotop.

Control Scripts

The mongodb-enterprise package includes various control scripts, including the init script
/etc/rc.d/init.d/mongod.

The package configures MongoDB using the /etc/mongod.conf file in conjunction with the control scripts. See
the Configuration File reference for documentation of settings available in the configuration file.

As of version 2.6.11, there are no control scripts for mongos. The mongos process is used only in sharding
(page 681). You can use the mongod init script to derive your own mongos control script.

Considerations

MongoDB only provides Enterprise packages for Ubuntu 12.04 LTS (Precise Pangolin) and 14.04 LTS (Trusty Tahr).

Changed in version 2.6: The package structure and names have changed as of version 2.6. For instructions on instal-
lation of an older release, please refer to the documentation for the appropriate version.

Use the provided distribution packages as described in this page if possible. These packages will automatically install
all of MongoDB’s dependencies, and are the recommended installation method.

To manually install all dependencies, run the following command:

sudo apt-get install libgssapi-krb5-2 libsasl2-2 libssl1.0.0 libstdc++6 snmp

19https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

2.1. Installation Guides 33

https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

MongoDB Documentation, Release 2.6.11

Install MongoDB Enterprise

Step 1: Import the public key used by the package management system. The Ubuntu package management tools
(i.e. dpkg and apt) ensure package consistency and authenticity by requiring that distributors sign packages with
GPG keys. Issue the following command to import the MongoDB public GPG Key20:

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10

Step 2: Create a /etc/apt/sources.list.d/mongodb-enterprise.list file for MongoDB. Create
the list file using the following command:

echo "deb http://repo.mongodb.com/apt/ubuntu "$(lsb_release -sc)"/mongodb-enterprise/stable multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-enterprise.list

If you’d like to install MongoDB Enterprise packages from a particular release series (page 908), such as 2.4 or 2.6,
you can specify the release series in the repository configuration. For example, to restrict your system to the 2.6 release
series, add the following repository:

echo "deb http://repo.mongodb.com/apt/ubuntu "$(lsb_release -sc)"/mongodb-enterprise/2.6 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-enterprise-2.6.list

Step 3: Reload local package database. Issue the following command to reload the local package database:

sudo apt-get update

Step 4: Install the MongoDB Enterprise packages. When you install the packages, you choose whether to install
the current release or a previous one. This step provides instructions for both.

To install the latest stable version of MongoDB Enterprise, issue the following command:

sudo apt-get install mongodb-enterprise

To install a specific release of MongoDB Enterprise, specify each component package individually and append the
version number to the package name, as in the following example that installs the 2.6.9 release of MongoDB
Enterprise:

sudo apt-get install mongodb-enterprise=2.6.9 mongodb-enterprise-server=2.6.9 mongodb-enterprise-shell=2.6.9 mongodb-enterprise-mongos=2.6.9 mongodb-enterprise-tools=2.6.9

You can specify any available version of MongoDB Enterprise. However apt-get will upgrade the packages when
a newer version becomes available. To prevent unintended upgrades, pin the package. To pin the version of MongoDB
Enterprise at the currently installed version, issue the following command sequence:

echo "mongodb-enterprise hold" | sudo dpkg --set-selections
echo "mongodb-enterprise-server hold" | sudo dpkg --set-selections
echo "mongodb-enterprise-shell hold" | sudo dpkg --set-selections
echo "mongodb-enterprise-mongos hold" | sudo dpkg --set-selections
echo "mongodb-enterprise-tools hold" | sudo dpkg --set-selections

Previous versions of MongoDB Enterprise packages use different naming conventions. See the 2.4 version of docu-
mentation21 for more information.

20http://docs.mongodb.org/10gen-gpg-key.asc
21http://docs.mongodb.org/v2.4/tutorial/install-mongodb-enterprise

34 Chapter 2. Install MongoDB

http://docs.mongodb.org/10gen-gpg-key.asc
http://docs.mongodb.org/v2.4/tutorial/install-mongodb-enterprise
http://docs.mongodb.org/v2.4/tutorial/install-mongodb-enterprise

MongoDB Documentation, Release 2.6.11

Run MongoDB Enterprise

The MongoDB instance stores its data files in /var/lib/mongodb and its log files in /var/log/mongodb
by default, and runs using the mongodb user account. You can specify alternate log and data file directories in
/etc/mongod.conf. See systemLog.path and storage.dbPath for additional information.

If you change the user that runs the MongoDB process, you must modify the access control rights to the
/var/lib/mongodb and /var/log/mongodb directories to give this user access to these directories.

Step 1: Start MongoDB. Issue the following command to start mongod:

sudo service mongod start

Step 2: Verify that MongoDB has started successfully Verify that the mongod process has started successfully
by checking the contents of the log file at /var/log/mongodb/mongod.log for a line reading

[initandlisten] waiting for connections on port <port>

where <port> is the port configured in /etc/mongod.conf, 27017 by default.

Step 3: Stop MongoDB. As needed, you can stop the mongod process by issuing the following command:

sudo service mongod stop

Step 4: Restart MongoDB. Issue the following command to restart mongod:

sudo service mongod restart

Step 5: Begin using MongoDB. To begin using MongoDB, see Getting Started with MongoDB (page 52). Also
consider the Production Notes (page 210) document before deploying MongoDB in a production environment.

Later, to stop MongoDB, press Control+C in the terminal where the mongod instance is running.

Uninstall MongoDB

To completely remove MongoDB from a system, you must remove the MongoDB applications themselves, the con-
figuration files, and any directories containing data and logs. The following section guides you through the necessary
steps.

Warning: This process will completely remove MongoDB, its configuration, and all databases. This process is
not reversible, so ensure that all of your configuration and data is backed up before proceeding.

Step 1: Stop MongoDB. Stop the mongod process by issuing the following command:

sudo service mongod stop

Step 2: Remove Packages. Remove any MongoDB packages that you had previously installed.

2.1. Installation Guides 35

MongoDB Documentation, Release 2.6.11

sudo apt-get purge mongodb-enterprise*

Step 3: Remove Data Directories. Remove MongoDB databases and log files.

sudo rm -r /var/log/mongodb
sudo rm -r /var/lib/mongodb

Install MongoDB Enterprise on Debian

On this page

• Overview (page 36)
• Packages (page 36)
• Control Scripts (page 37)
• Considerations (page 37)
• Install MongoDB Enterprise (page 37)
• Run MongoDB Enterprise (page 38)
• Uninstall MongoDB (page 39)

Overview

Use this tutorial to install MongoDB Enterprise22 from .deb packages on Debian 7.

Packages

MongoDB provides packages of the officially supported MongoDB Enterprise builds in it’s own repository. This
repository provides the MongoDB Enterprise distribution in the following packages:

• mongodb-enterprise

This package is a metapackage that will automatically install the four component packages listed below.

• mongodb-enterprise-server

This package contains the mongod daemon and associated configuration and init scripts.

• mongodb-enterprise-mongos

This package contains the mongos daemon.

• mongodb-enterprise-shell

This package contains the mongo shell.

• mongodb-enterprise-tools

This package contains the following MongoDB tools: mongoimport bsondump, mongodump,
mongoexport, mongofiles, mongoimport, mongooplog, mongoperf, mongorestore,
mongostat, and mongotop.

22https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

36 Chapter 2. Install MongoDB

https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

MongoDB Documentation, Release 2.6.11

Control Scripts

The mongodb-enterprise package includes various control scripts, including the init script
/etc/rc.d/init.d/mongod.

The package configures MongoDB using the /etc/mongod.conf file in conjunction with the control scripts. See
the Configuration File reference for documentation of settings available in the configuration file.

As of version 2.6.11, there are no control scripts for mongos. The mongos process is used only in sharding
(page 681). You can use the mongod init script to derive your own mongos control script.

Considerations

Changed in version 2.6: The package structure and names have changed as of version 2.6. For instructions on instal-
lation of an older release, please refer to the documentation for the appropriate version.

Use the provided distribution packages as described in this page if possible. These packages will automatically install
all of MongoDB’s dependencies, and are the recommended installation method.

To manually install all dependencies, run the following command:

sudo apt-get install libgssapi-krb5-2 libsasl2-2 libssl1.0.0 libstdc++6 snmp

Install MongoDB Enterprise

Step 1: Import the public key used by the package management system. Issue the following command to add
the MongoDB public GPG Key23 to the system key ring.

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv 7F0CEB10

Step 2: Create a /etc/apt/sources.list.d/mongodb-enterprise.list file for MongoDB. Create
the list file using the following command:

echo "deb http://repo.mongodb.com/apt/debian "$(lsb_release -sc)"/mongodb-enterprise/stable main" | sudo tee /etc/apt/sources.list.d/mongodb-enterprise.list

If you’d like to install MongoDB Enterprise packages from a particular release series (page 908), such as 2.6, you can
specify the release series in the repository configuration. For example, to restrict your system to the 2.6 release series,
add the following repository:

echo "deb http://repo.mongodb.com/apt/debian "$(lsb_release -sc)"/mongodb-enterprise/2.6 main" | sudo tee /etc/apt/sources.list.d/mongodb-enterprise-2.6.list

Step 3: Reload local package database. Issue the following command to reload the local package database:

sudo apt-get update

Step 4: Install the MongoDB Enterprise packages. When you install the packages, you choose whether to install
the current release or a previous one. This step provides instructions for both.

To install the latest stable version of MongoDB Enterprise, issue the following command:

sudo apt-get install mongodb-enterprise

23http://docs.mongodb.org/10gen-gpg-key.asc

2.1. Installation Guides 37

http://docs.mongodb.org/10gen-gpg-key.asc

MongoDB Documentation, Release 2.6.11

To install a specific release of MongoDB Enterprise, specify each component package individually and append the
version number to the package name, as in the following example that installs the 2.6.9 release of MongoDB
Enterprise:

sudo apt-get install mongodb-enterprise=2.6.9 mongodb-enterprise-server=2.6.9 mongodb-enterprise-shell=2.6.9 mongodb-enterprise-mongos=2.6.9 mongodb-enterprise-tools=2.6.9

You can specify any available version of MongoDB Enterprise. However apt-get will upgrade the packages when
a newer version becomes available. To prevent unintended upgrades, pin the package. To pin the version of MongoDB
Enterprise at the currently installed version, issue the following command sequence:

echo "mongodb-enterprise hold" | sudo dpkg --set-selections
echo "mongodb-enterprise-server hold" | sudo dpkg --set-selections
echo "mongodb-enterprise-shell hold" | sudo dpkg --set-selections
echo "mongodb-enterprise-mongos hold" | sudo dpkg --set-selections
echo "mongodb-enterprise-tools hold" | sudo dpkg --set-selections

Run MongoDB Enterprise

The MongoDB instance stores its data files in /var/lib/mongodb and its log files in /var/log/mongodb
by default, and runs using the mongodb user account. You can specify alternate log and data file directories in
/etc/mongod.conf. See systemLog.path and storage.dbPath for additional information.

If you change the user that runs the MongoDB process, you must modify the access control rights to the
/var/lib/mongodb and /var/log/mongodb directories to give this user access to these directories.

Step 1: Start MongoDB. Issue the following command to start mongod:

sudo service mongod start

Step 2: Verify that MongoDB has started successfully Verify that the mongod process has started successfully
by checking the contents of the log file at /var/log/mongodb/mongod.log for a line reading

[initandlisten] waiting for connections on port <port>

where <port> is the port configured in /etc/mongod.conf, 27017 by default.

Step 3: Stop MongoDB. As needed, you can stop the mongod process by issuing the following command:

sudo service mongod stop

Step 4: Restart MongoDB. Issue the following command to restart mongod:

sudo service mongod restart

Step 5: Begin using MongoDB. To begin using MongoDB, see Getting Started with MongoDB (page 52). Also
consider the Production Notes (page 210) document before deploying MongoDB in a production environment.

Later, to stop MongoDB, press Control+C in the terminal where the mongod instance is running.

38 Chapter 2. Install MongoDB

MongoDB Documentation, Release 2.6.11

Uninstall MongoDB

To completely remove MongoDB from a system, you must remove the MongoDB applications themselves, the con-
figuration files, and any directories containing data and logs. The following section guides you through the necessary
steps.

Warning: This process will completely remove MongoDB, its configuration, and all databases. This process is
not reversible, so ensure that all of your configuration and data is backed up before proceeding.

Step 1: Stop MongoDB. Stop the mongod process by issuing the following command:

sudo service mongod stop

Step 2: Remove Packages. Remove any MongoDB packages that you had previously installed.

sudo apt-get purge mongodb-enterprise*

Step 3: Remove Data Directories. Remove MongoDB databases and log files.

sudo rm -r /var/log/mongodb
sudo rm -r /var/lib/mongodb

Install MongoDB Enterprise on SUSE

On this page

• Overview (page 39)
• Packages (page 39)
• Control Scripts (page 40)
• Prerequisites (page 40)
• Install MongoDB Enterprise (page 40)
• Install MongoDB Enterprise From Tarball (page 41)
• Run MongoDB Enterprise (page 41)
• Uninstall MongoDB (page 42)

Overview

Use this tutorial to install MongoDB Enterprise24 on SUSE Linux. MongoDB Enterprise is available on select plat-
forms and contains support for several features related to security and monitoring.

Packages

MongoDB provides packages of the officially supported MongoDB Enterprise builds in it’s own repository. This
repository provides the MongoDB Enterprise distribution in the following packages:

24https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

2.1. Installation Guides 39

https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

MongoDB Documentation, Release 2.6.11

• mongodb-enterprise

This package is a metapackage that will automatically install the four component packages listed below.

• mongodb-enterprise-server

This package contains the mongod daemon and associated configuration and init scripts.

• mongodb-enterprise-mongos

This package contains the mongos daemon.

• mongodb-enterprise-shell

This package contains the mongo shell.

• mongodb-enterprise-tools

This package contains the following MongoDB tools: mongoimport bsondump, mongodump,
mongoexport, mongofiles, mongoimport, mongooplog, mongoperf, mongorestore,
mongostat, and mongotop.

Control Scripts

The mongodb-enterprise package includes various control scripts, including the init script
/etc/rc.d/init.d/mongod.

The package configures MongoDB using the /etc/mongod.conf file in conjunction with the control scripts. See
the Configuration File reference for documentation of settings available in the configuration file.

As of version 2.6.11, there are no control scripts for mongos. The mongos process is used only in sharding
(page 681). You can use the mongod init script to derive your own mongos control script.

Prerequisites

MongoDB only provides Enterprise packages for 64-bit builds of SUSE Enterprise Linux version 11.

Use the provided distribution packages as described in this page if possible. These packages will automatically install
all of MongoDB’s dependencies, and are the recommended installation method.

Install MongoDB Enterprise

Step 1: Configure the package management system (zypper). Add the repository so that you can install Mon-
goDB using zypper.

Use the following command to specify the MongoDB 2.6 branch:

sudo zypper addrepo --no-gpgcheck https://repo.mongodb.com/zypper/suse/11/mongodb-enterprise/2.6/x86_64/ mongodb

Step 2: Install the MongoDB packages and associated tools. To install the latest release of MongoDB 2.6, issue
the following command:

sudo zypper install mongodb-enterprise

To install a specific release of MongoDB, specify each component package individually and append the version number
to the package name, as in the following example:

40 Chapter 2. Install MongoDB

MongoDB Documentation, Release 2.6.11

sudo zypper install mongodb-enterprise-2.6.10 mongodb-enterprise-server-2.6.10 mongodb-enterprise-shell-2.6.10 mongodb-enterprise-mongos-2.6.10 mongodb-enterprise-tools-2.6.10

You can specify any available version of MongoDB. However zypper will upgrade the packages when a newer
version becomes available. To prevent unintended upgrades, pin the packages by running the following command:

sudo zypper addlock mongodb-enterprise-2.6.10 mongodb-enterprise-server-2.6.10 mongodb-enterprise-shell-2.6.10 mongodb-enterprise-mongos-2.6.10 mongodb-enterprise-tools-2.6.10

Install MongoDB Enterprise From Tarball

Note: The Enterprise tarball includes an example SNMP configuration file named mongod.conf. This file is not a
MongoDB configuration file.

Step 1: Install dependencies
sudo zypper install cyrus-sasl krb5 libgcc46 libopenssl0_9_8 libsnmp15 libstdc++46 zlib

Step 2: Download and install the MongoDB Enterprise packages. After you have installed the required prereq-
uisite packages, download and install the MongoDB Enterprise packages from http://mongodb.com/download/. The
MongoDB binaries are located in the bin/ directory of the archive. To download and install, use the following
sequence of commands.

curl -O http://downloads.10gen.com/linux/mongodb-linux-x86_64-enterprise-suse11-2.6.11.tgz
tar -zxvf mongodb-linux-x86_64-enterprise-suse11-2.6.11.tgz
cp -R -n mongodb-linux-x86_64-enterprise-suse11-2.6.11/ mongodb

Step 3: Install the MongoDB packages and associated tools. Once you have copied the MongoDB binaries to
their target location, ensure that the location is included in your PATH variable. If it is not, either include it or create
symbolic links from the binaries to a directory that is included.

Run MongoDB Enterprise

The MongoDB instance stores its data files in /var/lib/mongo and its log files in /var/log/mongodb
by default, and runs using the mongod user account. You can specify alternate log and data file directories in
/etc/mongod.conf. See systemLog.path and storage.dbPath for additional information.

If you change the user that runs the MongoDB process, you must modify the access control rights to the
/var/lib/mongo and /var/log/mongodb directories to give this user access to these directories.

Step 1: Start MongoDB. You can start the mongod process by issuing the following command:

sudo service mongod start

Step 2: Verify that MongoDB has started successfully You can verify that the mongod process has started suc-
cessfully by checking the contents of the log file at /var/log/mongodb/mongod.log for a line reading

[initandlisten] waiting for connections on port <port>

where <port> is the port configured in /etc/mongod.conf, 27017 by default.

You can optionally ensure that MongoDB will start following a system reboot by issuing the following command:

2.1. Installation Guides 41

http://mongodb.com/download/

MongoDB Documentation, Release 2.6.11

sudo chkconfig mongod on

Step 3: Stop MongoDB. As needed, you can stop the mongod process by issuing the following command:

sudo service mongod stop

Step 4: Restart MongoDB. You can restart the mongod process by issuing the following command:

sudo service mongod restart

You can follow the state of the process for errors or important messages by watching the output in the
/var/log/mongodb/mongod.log file.

Step 5: Begin using MongoDB. To begin using MongoDB, see Getting Started with MongoDB (page 52). Also
consider the Production Notes (page 210) document before deploying MongoDB in a production environment.

Later, to stop MongoDB, press Control+C in the terminal where the mongod instance is running.

Uninstall MongoDB

To completely remove MongoDB from a system, you must remove the MongoDB applications themselves, the con-
figuration files, and any directories containing data and logs. The following section guides you through the necessary
steps.

Warning: This process will completely remove MongoDB, its configuration, and all databases. This process is
not reversible, so ensure that all of your configuration and data is backed up before proceeding.

Step 1: Stop MongoDB. Stop the mongod process by issuing the following command:

sudo service mongod stop

Step 2: Remove Packages. Remove any MongoDB packages that you had previously installed.

sudo zypper remove $(rpm -qa | grep mongodb-enterprise)

Step 3: Remove Data Directories. Remove MongoDB databases and log files.

sudo rm -r /var/log/mongodb
sudo rm -r /var/lib/mongo

Install MongoDB Enterprise on Amazon Linux AMI

On this page

• Overview (page 43)
• Prerequisites (page 43)
• Install MongoDB Enterprise (page 43)
• Run MongoDB Enterprise (page 43)

42 Chapter 2. Install MongoDB

MongoDB Documentation, Release 2.6.11

Overview

Use this tutorial to install MongoDB Enterprise25 on Amazon Linux AMI. MongoDB Enterprise is available on select
platforms and contains support for several features related to security and monitoring.

Prerequisites

To install all of MongoDB’s dependencies, run the following command:

yum install cyrus-sasl cyrus-sasl-plain cyrus-sasl-gssapi krb5-libs \
lm_sensors-libs net-snmp-agent-libs net-snmp openssl rpm-libs \
tcp_wrappers-libs

Install MongoDB Enterprise

Note: The Enterprise packages include an example SNMP configuration file named mongod.conf. This file is not
a MongoDB configuration file.

Step 1: Download and install the MongoDB Enterprise packages. After you have installed the required prereq-
uisite packages, download and install the MongoDB Enterprise packages from http://mongodb.com/download/. The
MongoDB binaries are located in the bin/ directory of the archive. To download and install, use the following
sequence of commands.

curl -O http://downloads.10gen.com/linux/mongodb-linux-x86_64-enterprise-amzn64-2.6.11.tgz
tar -zxvf mongodb-linux-x86_64-enterprise-amzn64-2.6.11.tgz
cp -R -n mongodb-linux-x86_64-enterprise-amzn64-2.6.11/ mongodb

Step 2: Ensure the location of the MongoDB binaries is included in the PATH variable. Once you have copied
the MongoDB binaries to their target location, ensure that the location is included in your PATH variable. If it is not,
either include it or create symbolic links from the binaries to a directory that is included.

Run MongoDB Enterprise

The MongoDB instance stores its data files in /var/lib/mongo and its log files in /var/log/mongodb
by default, and runs using the mongod user account. You can specify alternate log and data file directories in
/etc/mongod.conf. See systemLog.path and storage.dbPath for additional information.

If you change the user that runs the MongoDB process, you must modify the access control rights to the
/var/lib/mongo and /var/log/mongodb directories to give this user access to these directories.

Step 1: Create the data directory. Before you start MongoDB for the first time, create the directory to which
the mongod process will write data. By default, the mongod process uses the /data/db directory. If you create a
directory other than this one, you must specify that directory in the dbpath option when starting the mongod process
later in this procedure.

The following example command creates the default /data/db directory:

25https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

2.1. Installation Guides 43

https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
http://mongodb.com/download/

MongoDB Documentation, Release 2.6.11

mkdir -p /data/db

Step 2: Set permissions for the data directory. Before running mongod for the first time, ensure that the user
account running mongod has read and write permissions for the directory.

Step 3: Run MongoDB. To run MongoDB, run the mongod process at the system prompt. If necessary, specify the
path of the mongod or the data directory. See the following examples.

Run without specifying paths If your system PATH variable includes the location of the mongod binary and if you
use the default data directory (i.e., /data/db), simply enter mongod at the system prompt:

mongod

Specify the path of the mongod If your PATH does not include the location of the mongod binary, enter the full
path to the mongod binary at the system prompt:

<path to binary>/mongod

Specify the path of the data directory If you do not use the default data directory (i.e., /data/db), specify the
path to the data directory using the --dbpath option:

mongod --dbpath <path to data directory>

Step 4: Begin using MongoDB. To begin using MongoDB, see Getting Started with MongoDB (page 52). Also
consider the Production Notes (page 210) document before deploying MongoDB in a production environment.

Later, to stop MongoDB, press Control+C in the terminal where the mongod instance is running.

Install MongoDB Enterprise on Windows

On this page

• Overview (page 44)
• Prerequisites (page 45)
• Get MongoDB Enterprise (page 45)
• Install MongoDB Enterprise (page 45)
• Run MongoDB Enterprise (page 46)
• Configure a Windows Service for MongoDB Enterprise (page 47)
• Manually Create a Windows Service for MongoDB Enterprise (page 48)

New in version 2.6.

Overview

Use this tutorial to install MongoDB Enterprise26 on Windows systems. MongoDB Enterprise is available on select
platforms and contains support for several features related to security and monitoring.

26https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

44 Chapter 2. Install MongoDB

https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

MongoDB Documentation, Release 2.6.11

Prerequisites

MongoDB Enterprise Server for Windows requires Windows Server 2008 R2 or later. The .msi installer includes all
other software dependencies and will automatically upgrade any older version of MongoDB installed using an .msi
file.

Get MongoDB Enterprise

Step 1: Download MongoDB Enterprise for Windows. Download the latest production release of MongoDB
Enterprise27.

Install MongoDB Enterprise

Interactive Installation

Step 1: Install MongoDB Enterprise for Windows. In Windows Explorer, locate the downloaded MongoDB .msi
file, which typically is located in the default Downloads folder. Double-click the .msi file. A set of screens will
appear to guide you through the installation process.

You may specify an installation directory if you choose the “Custom” installation option.

Note: These instructions assume that you have installed MongoDB to C:\mongodb.

MongoDB is self-contained and does not have any other system dependencies. You can run MongoDB from any folder
you choose. You may install MongoDB in any folder (e.g. D:\test\mongodb).

Unattended Installation You may install MongoDB unattended on Windows from the command line using
msiexec.exe.

Step 1: Install MongoDB Enterprise for Windows. Open a shell in the directory containing the .msi installation
binary of your choice and invoke:

msiexec.exe /q /i mongodb-<version>-signed.msi INSTALLLOCATION="<installation directory>"

By default, this method installs the following MongoDB binaries: mongod.exe, mongo.exe, mongodump.exe,
mongorestore.exe, mongoimport.exe, mongoexport.exe, mongostat.exe, and mongotop.exe.
You can specify the installation location for the executable by modifying the <installation directory>
value. To install specific subsets of the binaries, you may specify an ADDLOCAL argument:

msiexec.exe /q /i mongodb-<version>-signed.msi INSTALLLOCATION="<installation directory>" ADDLOCAL=<binary set(s)>

The <binary set(s)> value is a comma-separated list including one or more of the following:

• Server - includes mongod.exe

• Client - includes mongo.exe

• MonitoringTools - includes mongostat.exe and mongotop.exe

• ImportExportTools - includes mongodump.exe, mongorestore.exe, mongoexport.exe, and
mongoimport.exe)

27http://www.mongodb.com/products/mongodb-enterprise

2.1. Installation Guides 45

http://www.mongodb.com/products/mongodb-enterprise
http://www.mongodb.com/products/mongodb-enterprise

MongoDB Documentation, Release 2.6.11

• MiscellaneousTools - includes bsondump.exe, mongofiles.exe, mongooplog.exe, and
mongoperf.exe

For instance, to install only the entire set of tools to C:\mongodb, invoke:

msiexec.exe /q /i mongodb-<version>-signed.msi INSTALLLOCATION="C:\mongodb" ADDLOCAL=MonitoringTools,ImportExportTools,MiscellaneousTools

You may also specify ADDLOCAL=ALL to install the complete set of binaries, as in the following:

msiexec.exe /q /i mongodb-<version>-signed.msi INSTALLLOCATION="C:\mongodb" ADDLOCAL=ALL

Run MongoDB Enterprise

Warning: Do not make mongod.exe visible on public networks without running in “Secure Mode” with the
auth setting. MongoDB is designed to be run in trusted environments, and the database does not enable “Secure
Mode” by default.

Step 1: Set up the MongoDB environment. MongoDB requires a data directory to store all data. MongoDB’s
default data directory path is \data\db. Create this folder using the following commands from a Command Prompt:

md \data\db

You can specify an alternate path for data files using the --dbpath option to mongod.exe, for example:

C:\mongodb\bin\mongod.exe --dbpath d:\test\mongodb\data

If your path includes spaces, enclose the entire path in double quotes, for example:

C:\mongodb\bin\mongod.exe --dbpath "d:\test\mongo db data"

You may also specify the dbpath in a configuration file.

Step 2: Start MongoDB. To start MongoDB, run mongod.exe. For example, from the Command Prompt:

C:\mongodb\bin\mongod.exe

This starts the main MongoDB database process. The waiting for connections message in the console
output indicates that the mongod.exe process is running successfully.

Depending on the security level of your system, Windows may pop up a Security Alert dialog box about blocking
“some features” of C:\mongodb\bin\mongod.exe from communicating on networks. All users should select
Private Networks, such as my home or work network and click Allow access. For additional
information on security and MongoDB, please see the Security Documentation (page 316).

Step 3: Connect to MongoDB. To connect to MongoDB through the mongo.exe shell, open another Command
Prompt.

C:\mongodb\bin\mongo.exe

If you want to develop applications using .NET, see the documentation of C# and MongoDB28 for more information.

28https://docs.mongodb.org/ecosystem/drivers/csharp

46 Chapter 2. Install MongoDB

https://docs.mongodb.org/ecosystem/drivers/csharp

MongoDB Documentation, Release 2.6.11

Step 4: Begin using MongoDB. To begin using MongoDB, see Getting Started with MongoDB (page 52). Also
consider the Production Notes (page 210) document before deploying MongoDB in a production environment.

Later, to stop MongoDB, press Control+C in the terminal where the mongod instance is running.

Configure a Windows Service for MongoDB Enterprise

Step 1: Open an Administrator command prompt.

Windows 7 / Vista / Server 2008 (and R2) Press Win + R, then type cmd, then press Ctrl + Shift +
Enter.

Windows 8 Press Win + X, then press A.

Execute the remaining steps from the Administrator command prompt.

Step 2: Create directories. Create directories for your database and log files:

mkdir c:\data\db
mkdir c:\data\log

Step 3: Create a configuration file. Create a configuration file. The file must set systemLog.path. Include
additional configuration options as appropriate.

For example, create a file at C:\mongodb\mongod.cfg that specifies both systemLog.path and
storage.dbPath:

systemLog:
destination: file
path: c:\data\log\mongod.log

storage:
dbPath: c:\data\db

Step 4: Install the MongoDB service.
Important: Run all of the following commands in Command Prompt with “Administrative Privileges”.

Install the MongoDB service by starting mongod.exe with the --install option and the -config option to
specify the previously created configuration file.

"C:\mongodb\bin\mongod.exe" --config "C:\mongodb\mongod.cfg" --install

To use an alternate dbpath, specify the path in the configuration file (e.g. C:\mongodb\mongod.cfg) or on the
command line with the --dbpath option.

If needed, you can install services for multiple instances of mongod.exe or mongos.exe. Install each service with
a unique --serviceName and --serviceDisplayName. Use multiple instances only when sufficient system
resources exist and your system design requires it.

Step 5: Start the MongoDB service.
net start MongoDB

2.1. Installation Guides 47

MongoDB Documentation, Release 2.6.11

Step 6: Stop or remove the MongoDB service as needed. To stop the MongoDB service use the following com-
mand:

net stop MongoDB

To remove the MongoDB service use the following command:

"C:\mongodb\bin\mongod.exe" --remove

Manually Create a Windows Service for MongoDB Enterprise

You can set up the MongoDB server as a Windows Service that starts automatically at boot time.

The following procedure assumes you have installed MongoDB using the .msi installer with the path
C:\mongodb\.

If you have installed in an alternative directory, you will need to adjust the paths as appropriate.

Step 1: Open an Administrator command prompt.

Windows 7 / Vista / Server 2008 (and R2) Press Win + R, then type cmd, then press Ctrl + Shift +
Enter.

Windows 8 Press Win + X, then press A.

Execute the remaining steps from the Administrator command prompt.

Step 2: Create directories. Create directories for your database and log files:

mkdir c:\data\db
mkdir c:\data\log

Step 3: Create a configuration file. Create a configuration file. The file must set systemLog.path. Include
additional configuration options as appropriate.

For example, create a file at C:\mongodb\mongod.cfg that specifies both systemLog.path and
storage.dbPath:

systemLog:
destination: file
path: c:\data\log\mongod.log

storage:
dbPath: c:\data\db

Step 4: Create the MongoDB service. Create the MongoDB service.

sc.exe create MongoDB binPath= "\"C:\mongodb\mongod.exe\" --service --config= \"C:\mongodb\mongod.cfg\"" DisplayName= "MongoDB" start= "auto"

sc.exe requires a space between “=” and the configuration values (eg “binPath= ”), and a “\” to escape double
quotes.

If successfully created, the following log message will display:

48 Chapter 2. Install MongoDB

MongoDB Documentation, Release 2.6.11

[SC] CreateService SUCCESS

Step 5: Start the MongoDB service.
net start MongoDB

Step 6: Stop or remove the MongoDB service as needed. To stop the MongoDB service, use the following com-
mand:

net stop MongoDB

To remove the MongoDB service, first stop the service and then run the following command:

sc.exe delete MongoDB

2.1.5 Verify Integrity of MongoDB Packages

On this page

• Overview (page 49)
• Considerations (page 49)
• Procedures (page 49)

Overview

The MongoDB release team digitally signs all software packages to certify that a particular MongoDB package is a
valid and unaltered MongoDB release.

Before installing MongoDB, you can validate packages using either a PGP signature or with MD5 and SHA checksums
of the MongoDB packages. The PGP signatures store an encrypted hash of the software package, that you can validate
to ensure that the package you have is consistent with the official package release. MongoDB also publishes MD5 and
SHA hashes of the official packages that you can use to confirm that you have a valid package.

Considerations

MongoDB signs each release branch with a different PGP key.

The public .asc and .pub key files for each branch are available for download. For example, the 2.2 keys are
available at the following URLs:

https://www.mongodb.org/static/pgp/server-2.2.asc
https://www.mongodb.org/static/pgp/server-2.2.pub

Replace 2.2 with the appropriate release number to download public key. Keys are available for all MongoDB
releases beginning with 2.2.

Procedures

Use PGP/GPG

2.1. Installation Guides 49

MongoDB Documentation, Release 2.6.11

Step 1: Download the MongoDB installation file. Download the binaries from
https://www.mongodb.org/downloads based on your environment.

For example, to download the 2.6.0 release for OS X through the shell, type this command:

curl -LO http://downloads.mongodb.org/osx/mongodb-osx-x86_64-2.6.0.tgz

Step 2: Download the public signature file.
curl -LO http://downloads.mongodb.org/osx/mongodb-osx-x86_64-2.6.0.tgz.sig

Step 3: Download then import the key file. If you have not downloaded and imported the key file, enter these
commands:

curl -LO https://www.mongodb.org/static/pgp/server-2.6.asc
gpg --import server-2.6.asc

You should receive this message:

gpg: key AAB2461C: public key "MongoDB 2.6 Release Signing Key <packaging@mongodb.com>" imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)

Step 4: Verify the MongoDB installation file. Type this command:

gpg --verify mongodb-osx-x86_64-2.6.0.tgz.sig mongodb-osx-x86_64-2.6.0.tgz

You should receive this message:

gpg: Signature made Thu Mar 6 15:11:28 2014 EST using RSA key ID AAB2461C
gpg: Good signature from "MongoDB 2.6 Release Signing Key <packaging@mongodb.com>"

Download and import the key file, as described above, if you receive a message like this one:

gpg: Signature made Thu Mar 6 15:11:28 2014 EST using RSA key ID AAB2461C
gpg: Can't check signature: public key not found

gpg will return the following message if the package is properly signed, but you do not currently trust the signing
key in your local trustdb.

gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: DFFA 3DCF 326E 302C 4787 673A 01C4 E7FA AAB2 461C

Use SHA

MongoDB provides checksums using both the SHA-1 and SHA-256 hash functions. You can use either, as you like.

Step 1: Download the MongoDB installation file. Download the binaries from
https://www.mongodb.org/downloads based on your environment.

For example, to download the 2.6.0 release for OS X through the shell, type this command:

curl -LO http://downloads.mongodb.org/osx/mongodb-osx-x86_64-2.6.0.tgz

50 Chapter 2. Install MongoDB

MongoDB Documentation, Release 2.6.11

Step 2: Download the SHA1 and SHA256 file.
curl -LO http://downloads.mongodb.org/osx/mongodb-osx-x86_64-2.6.3.tgz.sha1
curl -LO http://downloads.mongodb.org/osx/mongodb-osx-x86_64-2.6.3.tgz.sha256

Step 3: Use the SHA-256 checksum to verify the MongoDB package file. Compute the checksum of the package
file:

shasum mongodb-linux-x86_64-2.6.3.tgz

which will generate this result:

fe511ee40428edda3a507f70d2b91d16b0483674 mongodb-osx-x86_64-2.6.3.tgz

Enter this command:

cat mongodb-linux-x86_64-2.6.3.tgz.sha1

which will generate this result:

fe511ee40428edda3a507f70d2b91d16b0483674 mongodb-osx-x86_64-2.6.3.tgz

The output of the shasum and cat commands should be identical.

Step 3: Use the SHA-1 checksum to verify the MongoDB package file. Compute the checksum of the package
file:

shasum -a 256 mongodb-linux-x86_64-2.6.3.tgz

which will generate this result:

be3a5e9f4e9c8e954e9af7053776732387d2841a019185eaf2e52086d4d207a3 mongodb-osx-x86_64-2.6.3.tgz

Enter this command:

cat mongodb-linux-x86_64-2.6.3.tgz.sha256

which will generate this result:

be3a5e9f4e9c8e954e9af7053776732387d2841a019185eaf2e52086d4d207a3 mongodb-osx-x86_64-2.6.3.tgz

The output of the shasum and cat commands should be identical.

Use MD5

Step 1: Download the MongoDB installation file. Download the binaries from
https://www.mongodb.org/downloads based on your environment.

For example, to download the 2.6.0 release for OS X through the shell, type this command:

curl -LO http://downloads.mongodb.org/osx/mongodb-osx-x86_64-2.6.0.tgz

Step 2: Download the MD5 file.
curl -LO http://downloads.mongodb.org/osx/mongodb-osx-x86_64-2.6.0.tgz.md5

2.1. Installation Guides 51

MongoDB Documentation, Release 2.6.11

Step 3: Verify the checksum values for the MongoDB package file (Linux). Compute the checksum of the pack-
age file:

md5 mongodb-linux-x86_64-2.6.0.tgz

which will generate this result:

MD5 (mongodb-linux-x86_64-2.6.0.tgz) = a937d49881f90e1a024b58d642011dc4

Enter this command:

cat mongodb-linux-x86_64-2.6.0.tgz.md5

which will generate this result:

a937d49881f90e1a024b58d642011dc4

The output of the md5 and cat commands should be identical.

Step 4: Verify the MongoDB installation file (OS X). Compute the checksum of the package file:

md5sum -c mongodb-osx-x86_64-2.6.0.tgz.md5 mongodb-osx-x86_64-2.6.0.tgz

which will generate this result:

mongodb-osx-x86_64-2.6.0-rc1.tgz ok

2.2 First Steps with MongoDB

After you have installed MongoDB, consider the following documents as you begin to learn about MongoDB:

Getting Started with MongoDB (page 52) An introduction to the basic operation and use of MongoDB.

Generate Test Data (page 57) To support initial exploration, generate test data to facilitate testing.

2.2.1 Getting Started with MongoDB

On this page

• Connect to a Database (page 53)
• Create a Collection and Insert Documents (page 54)
• Insert Documents using a For Loop or a JavaScript Function (page 54)
• Working with the Cursor (page 54)
• Next Steps with MongoDB (page 56)
• Additional Resources (page 57)

This tutorial provides an introduction to basic database operations using the mongo shell. mongo is a part of the
standard MongoDB distribution and provides a full JavaScript environment with complete access to the JavaScript
language and all standard functions as well as a full database interface for MongoDB. See the mongo JavaScript API29

documentation and the mongo shell JavaScript Method Reference.

The tutorial assumes that you’re running MongoDB on a Linux or OS X operating system and that you have a running
database server; MongoDB does support Windows and provides a Windows distribution with identical operation.

29https://api.mongodb.org/js

52 Chapter 2. Install MongoDB

https://api.mongodb.org/js

MongoDB Documentation, Release 2.6.11

For instructions on installing MongoDB and starting the database server, see the appropriate installation (page 5)
document.

Connect to a Database

In this section, you connect to the database server, which runs as mongod, and begin using the mongo shell to select
a logical database within the database instance and access the help text in the mongo shell.

Connect to a mongod

From a system prompt, start mongo by issuing the mongo command, as follows:

mongo

By default, mongo looks for a database server listening on port 27017 on the localhost interface. To connect to
a server on a different port or interface, use the --port and --host options.

Select a Database

After starting the mongo shell your session will use the test database by default. At any time, issue the following
operation at the mongo to report the name of the current database:

db

1. From the mongo shell, display the list of databases, with the following operation:

show dbs

2. Switch to a new database named mydb, with the following operation:

use mydb

3. Confirm that your session has the mydb database as context, by checking the value of the db object, which
returns the name of the current database, as follows:

db

At this point, if you issue the show dbs operation again, it will not include the mydb database. MongoDB
will not permanently create a database until you insert data into that database. The Create a Collection and
Insert Documents (page 54) section describes the process for inserting data.

New in version 2.4: show databases also returns a list of databases.

Display mongo Help

At any point, you can access help for the mongo shell using the following operation:

help

Furthermore, you can append the .help() method to some JavaScript methods, any cursor object, as well as the db
and db.collection objects to return additional help information.

2.2. First Steps with MongoDB 53

MongoDB Documentation, Release 2.6.11

Create a Collection and Insert Documents

In this section, you insert documents into a new collection named testData within the new database named mydb.

MongoDB will create a collection implicitly upon its first use. You do not need to create a collection before inserting
data. Furthermore, because MongoDB uses dynamic schemas (page 762), you also need not specify the structure of
your documents before inserting them into the collection.

1. From the mongo shell, confirm you are in the mydb database by issuing the following:

db

2. If mongo does not return mydb for the previous operation, set the context to the mydb database, with the
following operation:

use mydb

3. Create two documents named j and k by using the following sequence of JavaScript operations:

j = { name : "mongo" }
k = { x : 3 }

4. Insert the j and k documents into the testData collection with the following sequence of operations:

db.testData.insert(j)
db.testData.insert(k)

When you insert the first document, the mongod will create both the mydb database and the testData
collection.

5. Confirm that the testData collection exists. Issue the following operation:

show collections

The mongo shell will return the list of the collections in the current (i.e. mydb) database. At this point, the only
collection with user data is testData.

6. Confirm that the documents exist in the testData collection by issuing a query on the collection using the
find() method:

db.testData.find()

This operation returns the following results. The ObjectId (page 184) values will be unique:

{ "_id" : ObjectId("4c2209f9f3924d31102bd84a"), "name" : "mongo" }
{ "_id" : ObjectId("4c2209fef3924d31102bd84b"), "x" : 3 }

All MongoDB documents must have an _id field with a unique value. These operations do not explicitly
specify a value for the _id field, so mongo creates a unique ObjectId (page 184) value for the field before
inserting it into the collection.

Insert Documents using a For Loop or a JavaScript Function

To perform the remaining procedures in this tutorial, first add more documents to your database using one or both of
the procedures described in Generate Test Data (page 57).

Working with the Cursor

When you query a collection, MongoDB returns a “cursor” object that contains the results of the query. The mongo
shell then iterates over the cursor to display the results. Rather than returning all results at once, the shell iterates over

54 Chapter 2. Install MongoDB

MongoDB Documentation, Release 2.6.11

the cursor 20 times to display the first 20 results and then waits for a request to iterate over the remaining results. In
the shell, enter it to iterate over the next set of results.

The procedures in this section show other ways to work with a cursor. For comprehensive documentation on cursors,
see crud-read-cursor.

Iterate over the Cursor with a Loop

Before using this procedure, add documents to a collection using one of the procedures in Generate Test Data
(page 57). You can name your database and collections anything you choose, but this procedure will assume the
database named test and a collection named testData.

1. In the MongoDB JavaScript shell, query the testData collection and assign the resulting cursor object to the
c variable:

var c = db.testData.find()

2. Print the full result set by using a while loop to iterate over the c variable:

while (c.hasNext()) printjson(c.next())

The hasNext() function returns true if the cursor has documents. The next() method returns the next
document. The printjson() method renders the document in a JSON-like format.

The operation displays all documents:

{ "_id" : ObjectId("51a7dc7b2cacf40b79990be6"), "x" : 1 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990be7"), "x" : 2 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990be8"), "x" : 3 }
...

Use Array Operations with the Cursor

The following procedure lets you manipulate a cursor object as if it were an array:

1. In the mongo shell, query the testData collection and assign the resulting cursor object to the c variable:

var c = db.testData.find()

2. To find the document at the array index 4, use the following operation:

printjson(c [4])

MongoDB returns the following:

{ "_id" : ObjectId("51a7dc7b2cacf40b79990bea"), "x" : 5 }

When you access documents in a cursor using the array index notation, mongo first calls the
cursor.toArray() method and loads into RAM all documents returned by the cursor. The index is then
applied to the resulting array. This operation iterates the cursor completely and exhausts the cursor.

For very large result sets, mongo may run out of available memory.

For more information on the cursor, see crud-read-cursor.

2.2. First Steps with MongoDB 55

MongoDB Documentation, Release 2.6.11

Query for Specific Documents

MongoDB has a rich query system that allows you to select and filter the documents in a collection along specific
fields and values. See Query Documents (page 100) and Read Operations (page 64) for a full account of queries in
MongoDB.

In this procedure, you query for specific documents in the testData collection by passing a “query document” as a
parameter to the find() method. A query document specifies the criteria the query must match to return a document.

In the mongo shell, query for all documents where the x field has a value of 18 by passing the { x : 18 } query
document as a parameter to the find() method:

db.testData.find({ x : 18 })

MongoDB returns one document that fits this criteria:

{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf7"), "x" : 18 }

Return a Single Document from a Collection

With the findOne() method you can return a single document from a MongoDB collection. The findOne()
method takes the same parameters as find(), but returns a document rather than a cursor.

To retrieve one document from the testData collection, issue the following command:

db.testData.findOne()

For more information on querying for documents, see the Query Documents (page 100) and Read Operations (page 64)
documentation.

Limit the Number of Documents in the Result Set

To increase performance, you can constrain the size of the result by limiting the amount of data your application must
receive over the network.

To specify the maximum number of documents in the result set, call the limit() method on a cursor, as in the
following command:

db.testData.find().limit(3)

MongoDB will return the following result, with different ObjectId (page 184) values:

{ "_id" : ObjectId("51a7dc7b2cacf40b79990be6"), "x" : 1 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990be7"), "x" : 2 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990be8"), "x" : 3 }

Next Steps with MongoDB

For more information on manipulating the documents in a database as you continue to learn MongoDB, consider the
following resources:

• MongoDB CRUD Operations (page 61)

• SQL to MongoDB Mapping Chart (page 136)

• MongoDB Drivers30

30https://docs.mongodb.org/ecosystem/drivers

56 Chapter 2. Install MongoDB

https://docs.mongodb.org/ecosystem/drivers

MongoDB Documentation, Release 2.6.11

Additional Resources

• MongoDB University: Free, Online Courses for Developers and DBAs31

• MongoDB Architecture Guide32

• MongoDB Administration 101 Presentation33

2.2.2 Generate Test Data

On this page

• Insert Multiple Documents Using a For Loop (page 57)
• Insert Multiple Documents with a mongo Shell Function (page 58)
• Additional Resources (page 59)

This tutorial describes how to quickly generate test data as needed to test basic MongoDB operations.

Insert Multiple Documents Using a For Loop

Step 1: Insert new documents into the testData collection.

From the mongo shell, use the for loop. If the testData collection does not exist, MongoDB will implicitly create
the collection.

for (var i = 1; i <= 25; i++) {
db.testData.insert({ x : i })

}

Step 2: Query the collection.

Use find() to query the collection:

db.testData.find()

The mongo shell displays the first 20 documents in the collection. Your ObjectId (page 184) values will be different:

{ "_id" : ObjectId("53d7be30242b692a1138ac7d"), "x" : 1 }
{ "_id" : ObjectId("53d7be30242b692a1138ac7e"), "x" : 2 }
{ "_id" : ObjectId("53d7be30242b692a1138ac7f"), "x" : 3 }
{ "_id" : ObjectId("53d7be30242b692a1138ac80"), "x" : 4 }
{ "_id" : ObjectId("53d7be30242b692a1138ac81"), "x" : 5 }
{ "_id" : ObjectId("53d7be30242b692a1138ac82"), "x" : 6 }
{ "_id" : ObjectId("53d7be30242b692a1138ac83"), "x" : 7 }
{ "_id" : ObjectId("53d7be30242b692a1138ac84"), "x" : 8 }
{ "_id" : ObjectId("53d7be30242b692a1138ac85"), "x" : 9 }
{ "_id" : ObjectId("53d7be30242b692a1138ac86"), "x" : 10 }
{ "_id" : ObjectId("53d7be30242b692a1138ac87"), "x" : 11 }
{ "_id" : ObjectId("53d7be30242b692a1138ac88"), "x" : 12 }
{ "_id" : ObjectId("53d7be30242b692a1138ac89"), "x" : 13 }

31https://education.mongodb.com/?jmp=docs
32https://www.mongodb.com/lp/whitepaper/architecture-guide?jmp=docs
33http://www.mongodb.com/presentations/webinar-mongodb-administration-101?jmp=docs

2.2. First Steps with MongoDB 57

https://education.mongodb.com/?jmp=docs
https://www.mongodb.com/lp/whitepaper/architecture-guide?jmp=docs
http://www.mongodb.com/presentations/webinar-mongodb-administration-101?jmp=docs

MongoDB Documentation, Release 2.6.11

{ "_id" : ObjectId("53d7be30242b692a1138ac8a"), "x" : 14 }
{ "_id" : ObjectId("53d7be30242b692a1138ac8b"), "x" : 15 }
{ "_id" : ObjectId("53d7be30242b692a1138ac8c"), "x" : 16 }
{ "_id" : ObjectId("53d7be30242b692a1138ac8d"), "x" : 17 }
{ "_id" : ObjectId("53d7be30242b692a1138ac8e"), "x" : 18 }
{ "_id" : ObjectId("53d7be30242b692a1138ac8f"), "x" : 19 }
{ "_id" : ObjectId("53d7be30242b692a1138ac90"), "x" : 20 }
Type "it" for more

Step 3: Iterate through the cursor.

The find() method returns a cursor. To iterate the cursor (page 115) and return more documents, type it in the
mongo shell. The shell will exhaust the cursor and return these documents:

{ "_id" : ObjectId("53d7be30242b692a1138ac91"), "x" : 21 }
{ "_id" : ObjectId("53d7be30242b692a1138ac92"), "x" : 22 }
{ "_id" : ObjectId("53d7be30242b692a1138ac93"), "x" : 23 }
{ "_id" : ObjectId("53d7be30242b692a1138ac94"), "x" : 24 }
{ "_id" : ObjectId("53d7be30242b692a1138ac95"), "x" : 25 }

Insert Multiple Documents with a mongo Shell Function

You can create a JavaScript function in your shell session to generate the above data. The insertData() JavaScript
function that follows creates new data for use in testing or training by either creating a new collection or appending
data to an existing collection:

function insertData(dbName, colName, num) {

var col = db.getSiblingDB(dbName).getCollection(colName);

for (i = 0; i < num; i++) {
col.insert({x:i});

}

print(col.count());

}

The insertData() function takes three parameters: a database, a new or existing collection, and the number of
documents to create. The function creates documents with an x field set to an incremented integer, as in the following
example documents:

{ "_id" : ObjectId("51a4da9b292904caffcff6eb"), "x" : 0 }
{ "_id" : ObjectId("51a4da9b292904caffcff6ec"), "x" : 1 }
{ "_id" : ObjectId("51a4da9b292904caffcff6ed"), "x" : 2 }

Store the function in your .mongorc.js file. The mongo shell loads and parses the .mongorc.js file on startup so your
function is available every time you start a session.

Example
Specify database name, collection name, and the number of documents to insert as arguments to insertData().

insertData("test", "testData", 400)

58 Chapter 2. Install MongoDB

MongoDB Documentation, Release 2.6.11

This operation inserts 400 documents into the testData collection in the test database. If the collection and
database do not exist, MongoDB creates them implicitly before inserting documents.

Additional Resources

• Python utils to create random JSON data and import into mongoDB34

See also:

MongoDB CRUD Concepts (page 64) and Data Models (page 149).

2.3 Additional Resources

• Install MongoDB using MongoDB Cloud Manager35

• MongoDB CRUD Concepts (page 64)

• Data Models (page 149)

34https://github.com/10gen-labs/ipsum
35https://docs.cloud.mongodb.com/tutorial/getting-started?jmp=docs

2.3. Additional Resources 59

https://github.com/10gen-labs/ipsum
https://docs.cloud.mongodb.com/tutorial/getting-started?jmp=docs

MongoDB Documentation, Release 2.6.11

60 Chapter 2. Install MongoDB

CHAPTER 3

MongoDB CRUD Operations

MongoDB provides rich semantics for reading and manipulating data. CRUD stands for create, read, update, and
delete. These terms are the foundation for all interactions with the database.

MongoDB CRUD Introduction (page 61) An introduction to the MongoDB data model as well as queries and data
manipulations.

MongoDB CRUD Concepts (page 64) The core documentation of query and data manipulation.

MongoDB CRUD Tutorials (page 96) Examples of basic query and data modification operations.

MongoDB CRUD Reference (page 134) Reference material for the query and data manipulation interfaces.

3.1 MongoDB CRUD Introduction

On this page

• Database Operations (page 62)
• Related Features (page 62)

MongoDB stores data in the form of documents, which are JSON-like field and value pairs. Documents are analogous
to structures in programming languages that associate keys with values (e.g. dictionaries, hashes, maps, and associative
arrays). Formally, MongoDB documents are BSON documents. BSON is a binary representation of JSON with
additional type information. In the documents, the value of a field can be any of the BSON data types, including other
documents, arrays, and arrays of documents. For more information, see Documents (page 176).

61

MongoDB Documentation, Release 2.6.11

MongoDB stores all documents in collections. A collection is a group of related documents that have a set of shared
common indexes. Collections are analogous to a table in relational databases.

3.1.1 Database Operations

Query

In MongoDB a query targets a specific collection of documents. Queries specify criteria, or conditions, that identify
the documents that MongoDB returns to the clients. A query may include a projection that specifies the fields from
the matching documents to return. You can optionally modify queries to impose limits, skips, and sort orders.

In the following diagram, the query process specifies a query criteria and a sort modifier:

See Read Operations Overview (page 65) for more information.

Data Modification

Data modification refers to operations that create, update, or delete data. In MongoDB, these operations modify the
data of a single collection. For the update and delete operations, you can specify the criteria to select the documents
to update or remove.

In the following diagram, the insert operation adds a new document to the users collection.

See Write Operations Overview (page 78) for more information.

3.1.2 Related Features

Indexes

To enhance the performance of common queries and updates, MongoDB has full support for secondary indexes. These
indexes allow applications to store a view of a portion of the collection in an efficient data structure. Most indexes store

62 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

3.1. MongoDB CRUD Introduction 63

MongoDB Documentation, Release 2.6.11

an ordered representation of all values of a field or a group of fields. Indexes may also enforce uniqueness (page 506),
store objects in a geospatial representation (page 494), and facilitate text search (page 501).

Replica Set Read Preference

For replica sets and sharded clusters with replica set components, applications specify read preferences (page 591). A
read preference determines how the client directs read operations to the set.

Write Concern

Applications can also control the behavior of write operations using write concern (page 82). Particularly useful
for deployments with replica sets, the write concern semantics allow clients to specify the assurance that MongoDB
provides when reporting on the success of a write operation.

Aggregation

In addition to the basic queries, MongoDB provides several data aggregation features. For example, MongoDB can
return counts of the number of documents that match a query, or return the number of distinct values for a field, or
process a collection of documents using a versatile stage-based data processing pipeline or map-reduce operations.

3.2 MongoDB CRUD Concepts

The Read Operations (page 64) and Write Operations (page 77) documents introduce the behavior and operations of
read and write operations for MongoDB deployments.

Read Operations (page 64) Queries are the core operations that return data in MongoDB. Introduces queries, their
behavior, and performances.

Cursors (page 68) Queries return iterable objects, called cursors, that hold the full result set.

Query Optimization (page 70) Analyze and improve query performance.

Distributed Queries (page 74) Describes how sharded clusters and replica sets affect the performance of read
operations.

Write Operations (page 77) Write operations insert, update, or remove documents in MongoDB. Introduces data
create and modify operations, their behavior, and performances.

Write Concern (page 82) Describes the kind of guarantee MongoDB provides when reporting on the success
of a write operation.

Distributed Write Operations (page 87) Describes how MongoDB directs write operations on sharded clusters
and replica sets and the performance characteristics of these operations.

Continue reading from Write Operations (page 77) for additional background on the behavior of data modifica-
tion operations in MongoDB.

3.2.1 Read Operations

The following documents describe read operations:

Read Operations Overview (page 65) A high level overview of queries and projections in MongoDB, including a
discussion of syntax and behavior.

64 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

Cursors (page 68) Queries return iterable objects, called cursors, that hold the full result set.

Query Optimization (page 70) Analyze and improve query performance.

Query Plans (page 72) MongoDB executes queries using optimal plans.

Distributed Queries (page 74) Describes how sharded clusters and replica sets affect the performance of read opera-
tions.

Read Operations Overview

On this page

• Query Interface (page 65)
• Query Behavior (page 66)
• Query Statements (page 66)
• Projections (page 67)

Read operations, or queries, retrieve data stored in the database. In MongoDB, queries select documents from a single
collection.

Queries specify criteria, or conditions, that identify the documents that MongoDB returns to the clients. A query may
include a projection that specifies the fields from the matching documents to return. The projection limits the amount
of data that MongoDB returns to the client over the network.

Query Interface

For query operations, MongoDB provides a db.collection.find() method. The method accepts both the
query criteria and projections and returns a cursor (page 68) to the matching documents. You can optionally modify
the query to impose limits, skips, and sort orders.

The following diagram highlights the components of a MongoDB query operation:

The next diagram shows the same query in SQL:

Example

3.2. MongoDB CRUD Concepts 65

MongoDB Documentation, Release 2.6.11

db.users.find({ age: { $gt: 18 } }, { name: 1, address: 1 }).limit(5)

This query selects the documents in the users collection that match the condition age is greater than 18. To specify
the greater than condition, query criteria uses the greater than (i.e. $gt) query selection operator. The query returns
at most 5 matching documents (or more precisely, a cursor to those documents). The matching documents will return
with only the _id, name and address fields. See Projections (page 67) for details.

See
SQL to MongoDB Mapping Chart (page 136) for additional examples of MongoDB queries and the corresponding
SQL statements.

Query Behavior

MongoDB queries exhibit the following behavior:

• All queries in MongoDB address a single collection.

• You can modify the query to impose limits, skips, and sort orders.

• The order of documents returned by a query is not defined unless you specify a sort().

• Operations that modify existing documents (page 107) (i.e. updates) use the same query syntax as queries to
select documents to update.

• In aggregation (page 439) pipeline, the $match pipeline stage provides access to MongoDB queries.

MongoDB provides a db.collection.findOne() method as a special case of find() that returns a single
document.

Query Statements

Consider the following diagram of the query process that specifies a query criteria and a sort modifier:

66 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

In the diagram, the query selects documents from the users collection. Using a query selection operator
to define the conditions for matching documents, the query selects documents that have age greater than (i.e. $gt)
18. Then the sort() modifier sorts the results by age in ascending order.

For additional examples of queries, see Query Documents (page 100).

Projections

Queries in MongoDB return all fields in all matching documents by default. To limit the amount of data that MongoDB
sends to applications, include a projection in the queries. By projecting results with a subset of fields, applications
reduce their network overhead and processing requirements.

Projections, which are the second argument to the find() method, may either specify a list of fields to return or list
fields to exclude in the result documents.

Important: Except for excluding the _id field in inclusive projections, you cannot mix exclusive and inclusive
projections.

Consider the following diagram of the query process that specifies a query criteria and a projection:

In the diagram, the query selects from the users collection. The criteria matches the documents that have age equal
to 18. Then the projection specifies that only the name field should return in the matching documents.

Projection Examples

Exclude One Field From a Result Set
db.records.find({ "user_id": { $lt: 42 } }, { "history": 0 })

3.2. MongoDB CRUD Concepts 67

MongoDB Documentation, Release 2.6.11

This query selects documents in the records collection that match the condition { "user_id": { $lt: 42
} }, and uses the projection { "history": 0 } to exclude the history field from the documents in the result
set.

Return Two fields and the _id Field
db.records.find({ "user_id": { $lt: 42 } }, { "name": 1, "email": 1 })

This query selects documents in the records collection that match the query { "user_id": { $lt: 42 }
} and uses the projection { "name": 1, "email": 1 } to return just the _id field (implicitly included),
name field, and the email field in the documents in the result set.

Return Two Fields and Exclude _id
db.records.find({ "user_id": { $lt: 42} }, { "_id": 0, "name": 1 , "email": 1 })

This query selects documents in the records collection that match the query { "user_id": { $lt: 42}
}, and only returns the name and email fields in the documents in the result set.

See
Limit Fields to Return from a Query (page 112) for more examples of queries with projection statements.

Projection Behavior MongoDB projections have the following properties:

• By default, the _id field is included in the results. To suppress the _id field from the result set, specify _id:
0 in the projection document.

• For fields that contain arrays, MongoDB provides the following projection operators: $elemMatch, $slice,
and $.

• For related projection functionality in the aggregation framework (page 439) pipeline, use the $project
pipeline stage.

Cursors

On this page

• Cursor Behaviors (page 69)
• Cursor Information (page 69)

In the mongo shell, the primary method for the read operation is the db.collection.find() method. This
method queries a collection and returns a cursor to the returning documents.

To access the documents, you need to iterate the cursor. However, in the mongo shell, if the returned cursor is not
assigned to a variable using the var keyword, then the cursor is automatically iterated up to 20 times 1 to print up to
the first 20 documents in the results.

For example, in the mongo shell, the following read operation queries the inventory collection for documents that
have type equal to ’food’ and automatically print up to the first 20 matching documents:

db.inventory.find({ type: 'food' });

To manually iterate the cursor to access the documents, see Iterate a Cursor in the mongo Shell (page 115).
1 You can use the DBQuery.shellBatchSize to change the number of iteration from the default value 20. See Executing Queries

(page 285) for more information.

68 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

Cursor Behaviors

Closure of Inactive Cursors By default, the server will automatically close the cursor after 10 minutes of inactivity
or if client has exhausted the cursor. To override this behavior, you can specify the noTimeout flag in your query
using cursor.addOption(); however, you should either close the cursor manually or exhaust the cursor. In the
mongo shell, you can set the noTimeout flag:

var myCursor = db.inventory.find().addOption(DBQuery.Option.noTimeout);

See your driver documentation for information on setting the noTimeout flag. For the mongo shell, see
cursor.addOption() for a complete list of available cursor flags.

Cursor Isolation Because the cursor is not isolated during its lifetime, intervening write operations on a document
may result in a cursor that returns a document more than once if that document has changed. To handle this situation,
see the information on snapshot mode (page 773).

Cursor Batches The MongoDB server returns the query results in batches. Batch size will not exceed the maximum
BSON document size. For most queries, the first batch returns 101 documents or just enough documents to exceed 1
megabyte. Subsequent batch size is 4 megabytes. To override the default size of the batch, see batchSize() and
limit().

For queries that include a sort operation without an index, the server must load all the documents in memory to perform
the sort before returning any results.

As you iterate through the cursor and reach the end of the returned batch, if there are more results, cursor.next()
will perform a getmore operation to retrieve the next batch. To see how many documents remain in the batch
as you iterate the cursor, you can use the objsLeftInBatch() method, as in the following example:

var myCursor = db.inventory.find();

var myFirstDocument = myCursor.hasNext() ? myCursor.next() : null;

myCursor.objsLeftInBatch();

Cursor Information

The db.serverStatus() method returns a document that includes a metrics field. The metrics field con-
tains a cursor field with the following information:

• number of timed out cursors since the last server restart

• number of open cursors with the option DBQuery.Option.noTimeout set to prevent timeout after a period
of inactivity

• number of “pinned” open cursors

• total number of open cursors

Consider the following example which calls the db.serverStatus() method and accesses the metrics field
from the results and then the cursor field from the metrics field:

db.serverStatus().metrics.cursor

The result is the following document:

3.2. MongoDB CRUD Concepts 69

MongoDB Documentation, Release 2.6.11

{
"timedOut" : <number>
"open" : {

"noTimeout" : <number>,
"pinned" : <number>,
"total" : <number>

}
}

See also:

db.serverStatus()

Query Optimization

On this page

• Create an Index to Support Read Operations (page 70)
• Query Selectivity (page 71)
• Covered Query (page 71)

Indexes improve the efficiency of read operations by reducing the amount of data that query operations need to process.
This simplifies the work associated with fulfilling queries within MongoDB.

Create an Index to Support Read Operations

If your application queries a collection on a particular field or set of fields, then an index on the queried field or a
compound index (page 489) on the set of fields can prevent the query from scanning the whole collection to find and
return the query results. For more information about indexes, see the complete documentation of indexes in MongoDB
(page 485).

Example
An application queries the inventory collection on the type field. The value of the type field is user-driven.

var typeValue = <someUserInput>;
db.inventory.find({ type: typeValue });

To improve the performance of this query, add an ascending, or a descending, index to the inventory collection
on the type field. 2 In the mongo shell, you can create indexes using the db.collection.ensureIndex()
method:

db.inventory.ensureIndex({ type: 1 })

This index can prevent the above query on type from scanning the whole collection to return the results.

To analyze the performance of the query with an index, see Analyze Query Performance (page 117).

In addition to optimizing read operations, indexes can support sort operations and allow for a more efficient storage
utilization. See db.collection.ensureIndex() and Indexing Tutorials (page 519) for more information about
index creation.

2 For single-field indexes, the selection between ascending and descending order is immaterial. For compound indexes, the selection is important.
See indexing order (page 490) for more details.

70 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

Query Selectivity

Query selectivity refers to how well the query predicate excludes or filters out documents in a collection. Query
selectivity can determine whether or not queries can use indexes effectively or even use indexes at all.

More selective queries match a smaller percentage of documents. For instance, an equality match on the unique _id
field is highly selective as it can match at most one document.

Less selective queries match a larger percentage of documents. Less selective queries cannot use indexes effectively
or even at all.

For instance, the inequality operators $nin and $ne are not very selective since they often match a large portion of
the index. As a result, in many cases, a $nin or $ne query with an index may perform no better than a $nin or $ne
query that must scan all documents in a collection.

The selectivity of regular expressions depends on the expressions themselves. For details, see regular expres-
sion and index use.

Covered Query

An index covers (page 71) a query when both of the following apply:

• all the fields in the query (page 100) are part of an index, and

• all the fields returned in the results are in the same index.

For example, a collection inventory has the following index on the type and item fields:

db.inventory.ensureIndex({ type: 1, item: 1 })

This index will cover the following operation which queries on the type and item fields and returns only the item
field:

db.inventory.find(
{ type: "food", item:/^c/ },
{ item: 1, _id: 0 }

)

For the specified index to cover the query, the projection document must explicitly specify _id: 0 to exclude the
_id field from the result since the index does not include the _id field.

Performance Because the index contains all fields required by the query, MongoDB can both match the query
conditions (page 100) and return the results using only the index.

Querying only the index can be much faster than querying documents outside of the index. Index keys are typically
smaller than the documents they catalog, and indexes are typically available in RAM or located sequentially on disk.

Limitations An index cannot cover a query if:

• the query is on a sharded collection and run against a mongos.

Changed in version 2.6.4: In earlier versions, an index cannot cover a query on a sharded collection when run
against either a mongos or the primary.

• any of the indexed fields in any of the documents in the collection includes an array. If an indexed field is an
array, the index becomes a multi-key index (page 491) and cannot support a covered query.

3.2. MongoDB CRUD Concepts 71

MongoDB Documentation, Release 2.6.11

• any of the indexed field in the query predicate or returned in the projection are fields in embedded documents. 3

For example, consider a collection users with documents of the following form:

{ _id: 1, user: { login: "tester" } }

The collection has the following index:

{ "user.login": 1 }

The { "user.login": 1 } index does not cover the following query:

db.users.find({ "user.login": "tester" }, { "user.login": 1, _id: 0 })

However, the query can use the { "user.login": 1 } index to find matching documents.

indexOnly To determine whether a query is a covered query, use the explain() method. If the explain()
output displays true for the indexOnly field, an index covers the query, and MongoDB queries only that index to
match the query and return the results.

For more information see Measure Index Use (page 532).

Query Plans

On this page

• Query Optimization (page 72)
• Query Plan Revision (page 73)
• Cached Query Plan Interface (page 73)
• Index Filters (page 73)

The MongoDB query optimizer processes queries and chooses the most efficient query plan for a query given the
available indexes. The query system then uses this query plan each time the query runs.

The query optimizer only caches the plans for those query shapes that can have more than one viable plan.

The query optimizer occasionally reevaluates query plans as the content of the collection changes to ensure optimal
query plans. You can also specify which indexes the optimizer evaluates with Index Filters (page 73).

You can use the explain() method to view statistics about the query plan for a given query. This information can
help as you develop indexing strategies (page 551).

Query Optimization

To create a new query plan, the query optimizer:

1. runs the query against several candidate indexes in parallel.

2. records the matches in a common results buffer or buffers.

• If the candidate plans include only ordered query plans, there is a single common results buffer.

• If the candidate plans include only unordered query plans, there is a single common results buffer.

• If the candidate plans include both ordered query plans and unordered query plans, there are two common
results buffers, one for the ordered plans and the other for the unordered plans.

3 To index fields in embedded documents, use dot notation.

72 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

If an index returns a result already returned by another index, the optimizer skips the duplicate match. In the
case of the two buffers, both buffers are de-duped.

3. stops the testing of candidate plans and selects an index when one of the following events occur:

• An unordered query plan has returned all the matching results; or

• An ordered query plan has returned all the matching results; or

• An ordered query plan has returned a threshold number of matching results:

– Version 2.0: Threshold is the query batch size. The default batch size is 101.

– Version 2.2: Threshold is 101.

The selected index becomes the index specified in the query plan; future iterations of this query or queries with the
same query pattern will use this index. Query pattern refers to query select conditions that differ only in the values, as
in the following two queries with the same query pattern:

db.inventory.find({ type: 'food' })
db.inventory.find({ type: 'utensil' })

Query Plan Revision

As collections change over time, the query optimizer deletes the query plan and re-evaluates after any of the following
events:

• The collection receives 1,000 write operations.

• The reIndex rebuilds the index.

• You add or drop an index.

• The mongod process restarts.

Changed in version 2.6: explain() operations no longer read from or write to the query planner cache.

Cached Query Plan Interface

New in version 2.6.

MongoDB provides http://docs.mongodb.org/manual/reference/method/js-plan-cache to
view and modify the cached query plans.

Index Filters

New in version 2.6.

Index filters determine which indexes the optimizer evaluates for a query shape. A query shape consists of a combi-
nation of query, sort, and projection specifications. If an index filter exists for a given query shape, the optimizer only
considers those indexes specified in the filter.

When an index filter exists for the query shape, MongoDB ignores the hint(). To see whether MongoDB applied
an index filter for a query, check the explain.filterSet field of the explain() output.

Index filters only affects which indexes the optimizer evaluates; the optimizer may still select the collection scan as
the winning plan for a given query shape.

Index filters exist for the duration of the server process and do not persist after shutdown. MongoDB also provides a
command to manually remove filters.

3.2. MongoDB CRUD Concepts 73

MongoDB Documentation, Release 2.6.11

Because index filters overrides the expected behavior of the optimizer as well as the hint() method, use index filters
sparingly.

See planCacheListFilters, planCacheClearFilters, and planCacheSetFilter.

Distributed Queries

On this page

• Read Operations to Sharded Clusters (page 74)
• Read Operations to Replica Sets (page 75)

Read Operations to Sharded Clusters

Sharded clusters allow you to partition a data set among a cluster of mongod instances in a way that is nearly trans-
parent to the application. For an overview of sharded clusters, see the Sharding (page 675) section of this manual.

For a sharded cluster, applications issue operations to one of the mongos instances associated with the cluster.

74 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

Read operations on sharded clusters are most efficient when directed to a specific shard. Queries to sharded collections
should include the collection’s shard key (page 687). When a query includes a shard key, the mongos can use cluster
metadata from the config database (page 684) to route the queries to shards.

If a query does not include the shard key, the mongos must direct the query to all shards in the cluster. These scatter
gather queries can be inefficient. On larger clusters, scatter gather queries are unfeasible for routine operations.

For more information on read operations in sharded clusters, see the Sharded Cluster Query Routing (page 692) and
Shard Keys (page 687) sections.

Read Operations to Replica Sets

Replica sets use read preferences to determine where and how to route read operations to members of the replica set.
By default, MongoDB always reads data from a replica set’s primary. You can modify that behavior by changing the
read preference mode (page 670).

You can configure the read preference mode (page 670) on a per-connection or per-operation basis to allow reads from
secondaries to:

• reduce latency in multi-data-center deployments,

• improve read throughput by distributing high read-volumes (relative to write volume),

3.2. MongoDB CRUD Concepts 75

MongoDB Documentation, Release 2.6.11

76 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

• for backup operations, and/or

• to allow reads during failover (page 583) situations.

Read operations from secondary members of replica sets are not guaranteed to reflect the current state of the primary,
and the state of secondaries trails the primary by some amount of time. 4

For more information on read preference or on the read preference modes, see Read Preference (page 591) and Read
Preference Modes (page 670).

3.2.2 Write Operations

The following documents describe write operations:

Write Operations Overview (page 78) Provides an overview of MongoDB’s data insertion and modification opera-
tions, including aspects of the syntax, and behavior.

Write Concern (page 82) Describes the kind of guarantee MongoDB provides when reporting on the success of a
write operation.

Atomicity and Transactions (page 86) Describes write operation atomicity in MongoDB.

Distributed Write Operations (page 87) Describes how MongoDB directs write operations on sharded clusters and
replica sets and the performance characteristics of these operations.

Write Operation Performance (page 88) Introduces the performance constraints and factors for writing data to Mon-
goDB deployments.

Bulk Write Operations (page 92) Provides an overview of MongoDB’s bulk write operations.

4 In some circumstances, two nodes in a replica set may transiently believe that they are the primary, but at most, one of them will be able to
complete writes with {w: majority} write concern (page 135). The node that can complete {w: majority} (page 135) writes is the current primary,
and the other node is a former primary that has not yet recognized its demotion, typically due to a network partition. When this occurs, clients that
connect to the former primary may observe stale data despite having requested read preference primary (page 670).

3.2. MongoDB CRUD Concepts 77

MongoDB Documentation, Release 2.6.11

Storage (page 94) Introduces the storage allocation strategies available for MongoDB collections.

Write Operations Overview

On this page

• Insert (page 78)
• Update (page 79)
• Remove (page 80)
• Isolation of Write Operations (page 81)
• Additional Methods (page 81)

A write operation is any operation that creates or modifies data in the MongoDB instance. In MongoDB, write
operations target a single collection. All write operations in MongoDB are atomic on the level of a single document.

There are three classes of write operations in MongoDB: insert (page 78), update (page 79), and remove (page 80).
Insert operations add new data to a collection. Update operations modify existing data, and remove operations delete
data from a collection. No insert, update, or remove can affect more than one document atomically.

For the update and remove operations, you can specify criteria, or conditions, that identify the documents to update or
remove. These operations use the same query syntax to specify the criteria as read operations (page 64).

MongoDB allows applications to determine the acceptable level of acknowledgement required of write operations.
See Write Concern (page 82) for more information.

Insert

In MongoDB, the db.collection.insert() method adds new documents to a collection.

The following diagram highlights the components of a MongoDB insert operation:

The following diagram shows the same query in SQL:

Example
The following operation inserts a new document into the users collection. The new document has four fields name,
age, and status, and an _id field. MongoDB always adds the _id field to the new document if that field does not
exist.

78 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

db.users.insert(
{

name: "sue",
age: 26,
status: "A"

}
)

For more information and examples, see db.collection.insert().

Insert Behavior If you add a new document without the _id field, the client library or the mongod instance adds an
_id field and populates the field with a unique ObjectId.

If you specify the _id field, the value must be unique within the collection. For operations with write concern
(page 82), if you try to create a document with a duplicate _id value, mongod returns a duplicate key exception.

Other Methods to Add Documents You can also add new documents to a collection using methods that have an
upsert (page 80) option. If the option is set to true, these methods will either modify existing documents or add a
new document when no matching documents exist for the query. For more information, see Update Behavior with the
upsert Option (page 80).

Update

In MongoDB, the db.collection.update() method modifies existing documents in a collection. The
db.collection.update() method can accept query criteria to determine which documents to update as well as
an options document that affects its behavior, such as the multi option to update multiple documents.

Operations performed by an update are atomic within a single document. For example, you can safely use the $inc
and $mul operators to modify frequently-changed fields in concurrent applications.

The following diagram highlights the components of a MongoDB update operation:

The following diagram shows the same query in SQL:

3.2. MongoDB CRUD Concepts 79

MongoDB Documentation, Release 2.6.11

Example
db.users.update(

{ age: { $gt: 18 } },
{ $set: { status: "A" } },
{ multi: true }

)

This update operation on the users collection sets the status field to A for the documents that match the criteria
of age greater than 18.

For more information, see db.collection.update() and update() Examples.

Default Update Behavior By default, the db.collection.update() method updates a single document.
However, with the multi option, update() can update all documents in a collection that match a query.

The db.collection.update() method either updates specific fields in the existing document or replaces the
document. See db.collection.update() for details as well as examples.

When performing update operations that increase the document size beyond the allocated space for that document, the
update operation relocates the document on disk.

MongoDB preserves the order of the document fields following write operations except for the following cases:

• The _id field is always the first field in the document.

• Updates that include renaming of field names may result in the reordering of fields in the document.

Changed in version 2.6: Starting in version 2.6, MongoDB actively attempts to preserve the field order in a document.
Before version 2.6, MongoDB did not actively preserve the order of the fields in a document.

Update Behavior with the upsert Option If the update() method includes upsert: true and no documents
match the query portion of the update operation, then the update operation creates a new document. If there are
matching documents, then the update operation with the upsert: true modifies the matching document or documents.

By specifying upsert: true, applications can indicate, in a single operation, that if no matching documents are found
for the update, an insert should be performed. See update() for details on performing an upsert.

Changed in version 2.6: In 2.6, the new Bulk()methods and the underlying update command allow you to perform
many updates with upsert: true operations in a single call.

If you create documents using the upsert option to update() consider using a a unique index to prevent duplicated
operations.

Remove

In MongoDB, the db.collection.remove() method deletes documents from a collection. The
db.collection.remove() method accepts a query criteria to determine which documents to remove.

80 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

The following diagram highlights the components of a MongoDB remove operation:

The following diagram shows the same query in SQL:

Example
db.users.remove(

{ status: "D" }
)

This delete operation on the users collection removes all documents that match the criteria of status equal to D.

For more information, see db.collection.remove() method and Remove Documents (page 111).

Remove Behavior By default, db.collection.remove()method removes all documents that match its query.
However, the method can accept a flag to limit the delete operation to a single document.

Isolation of Write Operations

The modification of a single document is always atomic, even if the write operation modifies multiple embedded
documents within that document. No other operations are atomic.

If a write operation modifies multiple documents, the operation as a whole is not atomic, and other operations may in-
terleave. You can, however, attempt to isolate a write operation that affects multiple documents using the isolation
operator.

For more information Atomicity and Transactions (page 86).

Additional Methods

The db.collection.save() method can either update an existing document or insert a document if the docu-
ment cannot be found by the _id field. See db.collection.save() for more information and examples.

MongoDB also provides methods to perform write operations in bulk. See Bulk() for more information.

3.2. MongoDB CRUD Concepts 81

MongoDB Documentation, Release 2.6.11

Write Concern

On this page

• Considerations (page 82)
• Write Concern Levels (page 82)

Write concern describes the guarantee that MongoDB provides when reporting on the success of a write operation.
The strength of the write concerns determine the level of guarantee. When inserts, updates and deletes have a weak
write concern, write operations return quickly. In some failure cases, write operations issued with weak write concerns
may not persist. With stronger write concerns, clients wait after sending a write operation for MongoDB to confirm
the write operations.

MongoDB provides different levels of write concern to better address the specific needs of applications. Clients
may adjust write concern to ensure that the most important operations persist successfully to an entire MongoDB
deployment. For other less critical operations, clients can adjust the write concern to ensure faster performance rather
than ensure persistence to the entire deployment.

Changed in version 2.6: A new protocol for write operations (page 832) integrates write concern with the write
operations.

For details on write concern configurations, see Write Concern Reference (page 135).

Considerations

Default Write Concern The mongo shell and the MongoDB drivers use Acknowledged (page 82) as the default
write concern.

See Acknowledged (page 82) for more information, including when this write concern became the default.

Timeouts Clients can set a wtimeout (page 136) value as part of a replica acknowledged (page 83) write concern. If
the write concern is not satisfied in the specified interval, the operation returns an error, even if the write concern will
eventually succeed.

MongoDB does not “rollback” or undo modifications made before the wtimeout interval expired.

Write Concern Levels

MongoDB has the following levels of conceptual write concern, listed from weakest to strongest:

Unacknowledged With an unacknowledged write concern, MongoDB does not acknowledge the receipt of write
operations. Unacknowledged is similar to errors ignored; however, drivers will attempt to receive and handle network
errors when possible. The driver’s ability to detect network errors depends on the system’s networking configuration.

Before the releases outlined in Default Write Concern Change (page 907), this was the default write concern.

Acknowledged With a receipt acknowledged write concern, the mongod confirms that it received the write oper-
ation and applied the change to the in-memory view of data. Acknowledged write concern allows clients to catch
network, duplicate key, and other errors.

MongoDB uses the acknowledged write concern by default starting in the driver releases outlined in Releases
(page 908).

82 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

Changed in version 2.6: The mongo shell write methods now incorporates the write concern (page 82) in the write
methods and provide the default write concern whether run interactively or in a script. See Write Method Acknowl-
edgements (page 838) for details.

Acknowledged write concern does not confirm that the write operation has persisted to the disk system.

Journaled With a journaled write concern, the MongoDB acknowledges the write operation only after committing
the data to the journal. This write concern ensures that MongoDB can recover the data following a shutdown or power
interruption.

You must have journaling enabled to use this write concern.

With a journaled write concern, write operations must wait for the next journal commit. To reduce latency for these op-
erations, MongoDB also increases the frequency that it commits operations to the journal. See commitIntervalMs
for more information.

Note: Requiring journaled write concern in a replica set only requires a journal commit of the write operation to the
primary of the set regardless of the level of replica acknowledged write concern.

Replica Acknowledged Replica sets present additional considerations with regards to write concern. The default
write concern only requires acknowledgement from the primary.

With replica acknowledged write concern, you can guarantee that the write operation propagates to additional members
of the replica set. See Write Concern for Replica Sets (page 589) for more information.

Note: Requiring journaled write concern in a replica set only requires a journal commit of the write operation to the
primary of the set regardless of the level of replica acknowledged write concern.

See also:

Write Concern Reference (page 135)

3.2. MongoDB CRUD Concepts 83

MongoDB Documentation, Release 2.6.11

84 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

3.2. MongoDB CRUD Concepts 85

MongoDB Documentation, Release 2.6.11

Atomicity and Transactions

On this page

• $isolated Operator (page 86)
• Transaction-Like Semantics (page 86)
• Concurrency Control (page 86)

In MongoDB, a write operation is atomic on the level of a single document, even if the operation modifies multiple
embedded documents within a single document.

When a single write operation modifies multiple documents, the modification of each document is atomic, but the
operation as a whole is not atomic and other operations may interleave. However, you can isolate a single write
operation that affects multiple documents using the $isolated operator.

$isolated Operator

Using the $isolated operator, a write operation that affect multiple documents can prevent other processes from
interleaving once the write operation modifies the first document. This ensures that no client sees the changes until the
write operation completes or errors out.

Isolated write operation does not provide “all-or-nothing” atomicity. That is, an error during the write operation does
not roll back all its changes that preceded the error.

The $isolated operator does not work on sharded clusters.

For an example of an update operation that uses the $isolated operator, see $isolated. For an example of a
remove operation that uses the $isolated operator, see isolate-remove-operations.

Transaction-Like Semantics

Since a single document can contain multiple embedded documents, single-document atomicity is sufficient for many
practical use cases. For cases where a sequence of write operations must operate as if in a single transaction, you can
implement a two-phase commit (page 120) in your application.

However, two-phase commits can only offer transaction-like semantics. Using two-phase commit ensures data consis-
tency, but it is possible for applications to return intermediate data during the two-phase commit or rollback.

For more information on two-phase commit and rollback, see Perform Two Phase Commits (page 120).

Concurrency Control

Concurrency control allows multiple applications to run concurrently without causing data inconsistency or conflicts.

An approach may be to create a unique index (page 506) on a field (or fields) that should have only unique values (or
unique combination of values) prevents duplicate insertions or updates that result in duplicate values. For examples of
use cases, see update() and Unique Index and findAndModify() and Unique Index.

Another approach is to specify the expected current value of a field in the query predicate for the write operations. For
an example, see Update if Current (page 126).

The two-phase commit pattern provides a variation where the query predicate includes the application identifier
(page 124) as well as the expected state of the data in the write operation.

86 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

Distributed Write Operations

On this page

• Write Operations on Sharded Clusters (page 87)
• Write Operations on Replica Sets (page 88)

Write Operations on Sharded Clusters

For sharded collections in a sharded cluster, the mongos directs write operations from applications to the shards that
are responsible for the specific portion of the data set. The mongos uses the cluster metadata from the config database
(page 684) to route the write operation to the appropriate shards.

MongoDB partitions data in a sharded collection into ranges based on the values of the shard key. Then, MongoDB
distributes these chunks to shards. The shard key determines the distribution of chunks to shards. This can affect the
performance of write operations in the cluster.

Important: Update operations that affect a single document must include the shard key or the _id field. Updates

3.2. MongoDB CRUD Concepts 87

MongoDB Documentation, Release 2.6.11

that affect multiple documents are more efficient in some situations if they have the shard key, but can be broadcast to
all shards.

If the value of the shard key increases or decreases with every insert, all insert operations target a single shard. As a
result, the capacity of a single shard becomes the limit for the insert capacity of the sharded cluster.

For more information, see Sharded Cluster Tutorials (page 704) and Bulk Write Operations (page 92).

Write Operations on Replica Sets

In replica sets, all write operations go to the set’s primary, which applies the write operation then records the oper-
ations on the primary’s operation log or oplog. The oplog is a reproducible sequence of operations to the data set.
Secondary members of the set are continuously replicating the oplog and applying the operations to themselves in an
asynchronous process.

Large volumes of write operations, particularly bulk operations, may create situations where the secondary members
have difficulty applying the replicating operations from the primary at a sufficient rate: this can cause the secondary’s
state to fall behind that of the primary. Secondaries that are significantly behind the primary present problems for
normal operation of the replica set, particularly failover (page 583) in the form of rollbacks (page 587) as well as
general read consistency (page 588).

To help avoid this issue, you can customize the write concern (page 82) to return confirmation of the write operation
to another member 5 of the replica set every 100 or 1,000 operations. This provides an opportunity for secondaries
to catch up with the primary. Write concern can slow the overall progress of write operations but ensure that the
secondaries can maintain a largely current state with respect to the primary.

For more information on replica sets and write operations, see Replica Acknowledged (page 83), Oplog Size (page 597),
and Change the Size of the Oplog (page 634).

Write Operation Performance

5 Intermittently issuing a write concern with a w value of 2 or majority will slow the throughput of write traffic; however, this practice will
allow the secondaries to remain current with the state of the primary.

Changed in version 2.6: In Master/Slave (page 600) deployments, MongoDB treats w: "majority" as equivalent to w: 1. In earlier
versions of MongoDB, w: "majority" produces an error in master/slave (page 600) deployments.

88 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

3.2. MongoDB CRUD Concepts 89

MongoDB Documentation, Release 2.6.11

90 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

On this page

• Indexes (page 91)
• Document Growth (page 91)
• Storage Performance (page 91)

Indexes

After every insert, update, or delete operation, MongoDB must update every index associated with the collection in
addition to the data itself. Therefore, every index on a collection adds some amount of overhead for the performance
of write operations. 6

In general, the performance gains that indexes provide for read operations are worth the insertion penalty. However,
in order to optimize write performance when possible, be careful when creating new indexes and evaluate the existing
indexes to ensure that your queries actually use these indexes.

For indexes and queries, see Query Optimization (page 70). For more information on indexes, see Indexes (page 481)
and Indexing Strategies (page 551).

Document Growth

If an update operation causes a document to exceed the currently allocated record size, MongoDB relocates the docu-
ment on disk with enough contiguous space to hold the document. These relocations take longer than in-place updates,
particularly if the collection has indexes. If a collection has indexes, MongoDB must update all index entries. Thus,
for a collection with many indexes, the move will impact the write throughput.

Some update operations, such as the $inc operation, do not cause an increase in document size. For these update
operations, MongoDB can apply the updates in-place. Other update operations, such as the $push operation, change
the size of the document.

In-place-updates are significantly more efficient than updates that cause document growth. When possible, use data
models (page 151) that minimize the need for document growth.

See Storage (page 94) for more information.

Storage Performance

Hardware The capability of the storage system creates some important physical limits for the performance of Mon-
goDB’s write operations. Many unique factors related to the storage system of the drive affect write performance,
including random access patterns, disk caches, disk readahead and RAID configurations.

Solid state drives (SSDs) can outperform spinning hard disks (HDDs) by 100 times or more for random workloads.

See
Production Notes (page 210) for recommendations regarding additional hardware and configuration options.

Journaling MongoDB uses write ahead logging to an on-disk journal to guarantee write operation (page 77) dura-
bility and to provide crash resiliency. Before applying a change to the data files, MongoDB writes the change operation
to the journal.

6 For inserts and updates to un-indexed fields, the overhead for sparse indexes (page 507) is less than for non-sparse indexes. Also for non-sparse
indexes, updates that do not change the record size have less indexing overhead.

3.2. MongoDB CRUD Concepts 91

MongoDB Documentation, Release 2.6.11

While the durability assurance provided by the journal typically outweigh the performance costs of the additional write
operations, consider the following interactions between the journal and performance:

• if the journal and the data file reside on the same block device, the data files and the journal may have to contend
for a finite number of available write operations. Moving the journal to a separate device may increase the
capacity for write operations.

• if applications specify write concern (page 82) that includes journaled (page 83), mongod will decrease the
duration between journal commits, which can increases the overall write load.

• the duration between journal commits is configurable using the commitIntervalMs run-time option. De-
creasing the period between journal commits will increase the number of write operations, which can limit
MongoDB’s capacity for write operations. Increasing the amount of time between commits may decrease the
total number of write operation, but also increases the chance that the journal will not record a write operation
in the event of a failure.

For additional information on journaling, see Journaling Mechanics (page 309).

Bulk Write Operations

On this page

• Overview (page 92)
• Ordered vs Unordered Operations (page 92)
• Bulk Methods (page 93)
• Bulk Execution Mechanics (page 93)
• Strategies for Bulk Inserts to a Sharded Collection (page 94)

Overview

MongoDB provides clients the ability to perform write operations in bulk. Bulk write operations affect a single
collection. MongoDB allows applications to determine the acceptable level of acknowledgement required for bulk
write operations.

New Bulkmethods provide the ability to perform bulk insert, update, and remove operations. MongoDB also supports
bulk insert through passing an array of documents to the db.collection.insert() method.

Changed in version 2.6: Previous versions of MongoDB provided the ability for bulk inserts only. With previous
versions, clients could perform bulk inserts by passing an array of documents to the db.collection.insert()7 method. To
see the documentation for earlier versions, see Bulk Inserts8.

Ordered vs Unordered Operations

Bulk write operations can be either ordered or unordered. With an ordered list of operations, MongoDB executes
the operations serially. If an error occurs during the processing of one of the write operations, MongoDB will return
without processing any remaining write operations in the list.

With an unordered list of operations, MongoDB can execute the operations in parallel. If an error occurs during the
processing of one of the write operations, MongoDB will continue to process remaining write operations in the list.

Executing an ordered list of operations on a sharded collection will generally be slower than executing an unordered
list since with an ordered list, each operation must wait for the previous operation to finish.

7http://docs.mongodb.org/v2.4/core/bulk-inserts
8http://docs.mongodb.org/v2.4/core/bulk-inserts

92 Chapter 3. MongoDB CRUD Operations

http://docs.mongodb.org/v2.4/core/bulk-inserts
http://docs.mongodb.org/v2.4/core/bulk-inserts

MongoDB Documentation, Release 2.6.11

Bulk Methods

To use the Bulk() methods:

1. Initialize a list of operations using either db.collection.initializeUnorderedBulkOp() or
db.collection.initializeOrderedBulkOp().

2. Add write operations to the list using the following methods:

• Bulk.insert()

• Bulk.find()

• Bulk.find.upsert()

• Bulk.find.update()

• Bulk.find.updateOne()

• Bulk.find.replaceOne()

• Bulk.find.remove()

• Bulk.find.removeOne()

3. To execute the list of operations, use the Bulk.execute() method. You can specify the write concern for
the list in the Bulk.execute() method.

Once executed, you cannot re-execute the list without reinitializing.

For example,

var bulk = db.items.initializeUnorderedBulkOp();
bulk.insert({ _id: 1, item: "abc123", status: "A", soldQty: 5000 });
bulk.insert({ _id: 2, item: "abc456", status: "A", soldQty: 150 });
bulk.insert({ _id: 3, item: "abc789", status: "P", soldQty: 0 });
bulk.execute({ w: "majority", wtimeout: 5000 });

For more examples, refer to the reference page for each http://docs.mongodb.org/manual/reference/method/js-bulk
method. For information and examples on performing bulk insert using the db.collection.insert(), see
db.collection.insert().

See also:

New Write Operation Protocol (page 832)

Bulk Execution Mechanics

When executing an ordered list of operations, MongoDB groups adjacent operations by the operation type.
When executing an unordered list of operations, MongoDB groups and may also reorder the operations to increase
performance. As such, when performing unordered bulk operations, applications should not depend on the ordering.

Each group of operations can have at most 1000 operations. If a group exceeds this limit, MongoDB will
divide the group into smaller groups of 1000 or less. For example, if the bulk operations list consists of 2000 insert
operations, MongoDB creates 2 groups, each with 1000 operations.

The sizes and grouping mechanics are internal performance details and are subject to change in future versions.

To see how the operations are grouped for a bulk operation execution, call Bulk.getOperations() after the
execution.

For more information, see Bulk.execute().

3.2. MongoDB CRUD Concepts 93

MongoDB Documentation, Release 2.6.11

Strategies for Bulk Inserts to a Sharded Collection

Large bulk insert operations, including initial data inserts or routine data import, can affect sharded cluster perfor-
mance. For bulk inserts, consider the following strategies:

Pre-Split the Collection If the sharded collection is empty, then the collection has only one initial chunk, which
resides on a single shard. MongoDB must then take time to receive data, create splits, and distribute the split chunks
to the available shards. To avoid this performance cost, you can pre-split the collection, as described in Split Chunks
in a Sharded Cluster (page 738).

Insert to Multiple mongos To parallelize import processes, send bulk insert or insert operations to more than one
mongos instance. For empty collections, first pre-split the collection as described in Split Chunks in a Sharded Cluster
(page 738).

Avoid Monotonic Throttling If your shard key increases monotonically during an insert, then all inserted data goes
to the last chunk in the collection, which will always end up on a single shard. Therefore, the insert capacity of the
cluster will never exceed the insert capacity of that single shard.

If your insert volume is larger than what a single shard can process, and if you cannot avoid a monotonically increasing
shard key, then consider the following modifications to your application:

• Reverse the binary bits of the shard key. This preserves the information and avoids correlating insertion order
with increasing sequence of values.

• Swap the first and last 16-bit words to “shuffle” the inserts.

Example
The following example, in C++, swaps the leading and trailing 16-bit word of BSON ObjectIds generated so they are
no longer monotonically increasing.

using namespace mongo;
OID make_an_id() {

OID x = OID::gen();
const unsigned char *p = x.getData();
swap((unsigned short&) p[0], (unsigned short&) p[10]);
return x;

}

void foo() {
// create an object
BSONObj o = BSON("_id" << make_an_id() << "x" << 3 << "name" << "jane");
// now we may insert o into a sharded collection

}

See also:

Shard Keys (page 687) for information on choosing a sharded key. Also see Shard Key Internals (page 687) (in
particular, Choosing a Shard Key (page 709)).

Storage

94 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

On this page

• Data Model (page 95)
• Journal (page 95)
• Record Allocation Strategies (page 95)
• Capped Collections (page 96)

Data Model

MongoDB stores data in the form of BSON documents, which are rich mappings of keys, or field names, to values.
BSON supports a rich collection of types, and fields in BSON documents may hold arrays of values or embedded
documents. All documents in MongoDB must be less than 16MB, which is the BSON document size.

Every document in MongoDB is stored in a record which contains the document itself and extra space, or padding,
which allows the document to grow as the result of updates.

All records are contiguously located on disk, and when a document becomes larger than the allocated record, Mon-
goDB must allocate a new record. New allocations require MongoDB to move a document and update all indexes that
refer to the document, which takes more time than in-place updates and leads to storage fragmentation.

All records are part of a collection, which is a logical grouping of documents in a MongoDB database. The documents
in a collection share a set of indexes, and typically these documents share common fields and structure.

In MongoDB the database construct is a group of related collections. Each database has a distinct set of data files and
can contain a large number of collections. Also, each database has one distinct write lock, that blocks operations to
the database during write operations. A single MongoDB deployment may have many databases.

Journal

In order to ensure that all modifications to a MongoDB data set are durably written to disk, MongoDB records all
modifications to a journal that it writes to disk more frequently than it writes the data files. The journal allows
MongoDB to successfully recover data from data files after a mongod instance exits without flushing all changes.

See Journaling Mechanics (page 309) for more information about the journal in MongoDB.

Record Allocation Strategies

MongoDB supports multiple record allocation strategies that determine how mongod adds padding to a document
when creating a record. Because documents in MongoDB may grow after insertion and all records are contiguous on
disk, the padding can reduce the need to relocate documents on disk following updates. Relocations are less efficient
than in-place updates, and can lead to storage fragmentation. As a result, all padding strategies trade additional space
for increased efficiency and decreased fragmentation.

Different allocation strategies support different kinds of workloads: the power of 2 allocations (page 95) are more
efficient for insert/update/delete workloads; while exact fit allocations (page 96) is ideal for collections without update
and delete workloads.

Power of 2 Sized Allocations Changed in version 2.6: For all new collections, usePowerOf2Sizes
became the default allocation strategy. To change the default allocation strategy, use the
newCollectionsUsePowerOf2Sizes parameter.

3.2. MongoDB CRUD Concepts 95

MongoDB Documentation, Release 2.6.11

mongod uses an allocation strategy called usePowerOf2Sizes where each record has a size in bytes that is a
power of 2 (e.g. 32, 64, 128, 256, 512...16777216.) The smallest allocation for a document is 32 bytes. The power of
2 sizes allocation strategy has two key properties:

• there are a limited number of record allocation sizes, which makes it easier for mongod to reuse existing
allocations, which will reduce fragmentation in some cases.

• in many cases, the record allocations are significantly larger than the documents they hold. This allows docu-
ments to grow while minimizing or eliminating the chance that the mongod will need to allocate a new record
if the document grows.

The usePowerOf2Sizes strategy does not eliminate document reallocation as a result of document growth, but it
minimizes its occurrence in many common operations.

Exact Fit Allocation The exact fit allocation strategy allocates record sizes based on the size of the document and
an additional padding factor. Each collection has its own padding factor, which defaults to 1 when you insert the first
document in a collection. MongoDB dynamically adjusts the padding factor up to 2 depending on the rate of growth
of the documents over the life of the collection.

To estimate total record size, compute the product of the padding factor and the size of the document. That is:

record size = paddingFactor * <document size>

The size of each record in a collection reflects the size of the padding factor at the time of allocation. See the
paddingFactor field in the output of db.collection.stats() to see the current padding factor for a collec-
tion.

On average, this exact fit allocation strategy uses less storage space than the usePowerOf2Sizes strategy but will
result in higher levels of storage fragmentation if documents grow beyond the size of their initial allocation.

The compact and repairDatabase operations remove padding by default, as do the mongodump and
mongorestore. compact does allow you to specify a padding for records during compaction.

Capped Collections

Capped collections are fixed-size collections that support high-throughput operations that store records in insertion
order. Capped collections work like circular buffers: once a collection fills its allocated space, it makes room for new
documents by overwriting the oldest documents in the collection.

See Capped Collections (page 219) for more information.

3.3 MongoDB CRUD Tutorials

The following tutorials provide instructions for querying and modifying data. For a higher-level overview of these
operations, see MongoDB CRUD Operations (page 61).

Insert Documents (page 97) Insert new documents into a collection.

Query Documents (page 100) Find documents in a collection using search criteria.

Modify Documents (page 107) Modify documents in a collection

Remove Documents (page 111) Remove documents from a collection.

Limit Fields to Return from a Query (page 112) Limit which fields are returned by a query.

Limit Number of Elements in an Array after an Update (page 114) Use $push with modifiers to sort and maintain
an array of fixed size.

96 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

Iterate a Cursor in the mongo Shell (page 115) Access documents returned by a find query by iterating the cursor,
either manually or using the iterator index.

Analyze Query Performance (page 117) Use query introspection (i.e. explain) to analyze the efficiency of queries
and determine how a query uses available indexes.

Perform Two Phase Commits (page 120) Use two-phase commits when writing data to multiple documents.

Update Document if Current (page 126) Update a document only if it has not changed since it was last read.

Create Tailable Cursor (page 128) Create tailable cursors for use in capped collections with high numbers of write
operations for which an index would be too expensive.

Create an Auto-Incrementing Sequence Field (page 130) Describes how to create an incrementing sequence num-
ber for the _id field using a Counters Collection or an Optimistic Loop.

3.3.1 Insert Documents

On this page

• Insert a Document (page 97)
• Insert an Array of Documents (page 98)
• Insert Multiple Documents with Bulk (page 99)
• Additional Examples and Methods (page 100)

In MongoDB, the db.collection.insert() method adds new documents into a collection.

Insert a Document

Step 1: Insert a document into a collection.

Insert a document into a collection named inventory. The operation will create the collection if the collection does
not currently exist.

db.inventory.insert(
{

item: "ABC1",
details: {

model: "14Q3",
manufacturer: "XYZ Company"

},
stock: [{ size: "S", qty: 25 }, { size: "M", qty: 50 }],
category: "clothing"

}
)

The operation returns a WriteResult object with the status of the operation. A successful insert of the document
returns the following object:

WriteResult({ "nInserted" : 1 })

The nInserted field specifies the number of documents inserted. If the operation encounters an error, the
WriteResult object will contain the error information.

3.3. MongoDB CRUD Tutorials 97

MongoDB Documentation, Release 2.6.11

Step 2: Review the inserted document.

If the insert operation is successful, verify the insertion by querying the collection.

db.inventory.find()

The document you inserted should return.

{ "_id" : ObjectId("53d98f133bb604791249ca99"), "item" : "ABC1", "details" : { "model" : "14Q3", "manufacturer" : "XYZ Company" }, "stock" : [{ "size" : "S", "qty" : 25 }, { "size" : "M", "qty" : 50 }], "category" : "clothing" }

The returned document shows that MongoDB added an _id field to the document. If a client inserts a document that
does not contain the _id field, MongoDB adds the field with the value set to a generated ObjectId9. The ObjectId10

values in your documents will differ from the ones shown.

Insert an Array of Documents

You can pass an array of documents to the db.collection.insert() method to insert multiple documents.

Step 1: Create an array of documents.

Define a variable mydocuments that holds an array of documents to insert.

var mydocuments =
[

{
item: "ABC2",
details: { model: "14Q3", manufacturer: "M1 Corporation" },
stock: [{ size: "M", qty: 50 }],
category: "clothing"

},
{

item: "MNO2",
details: { model: "14Q3", manufacturer: "ABC Company" },
stock: [{ size: "S", qty: 5 }, { size: "M", qty: 5 }, { size: "L", qty: 1 }],
category: "clothing"

},
{

item: "IJK2",
details: { model: "14Q2", manufacturer: "M5 Corporation" },
stock: [{ size: "S", qty: 5 }, { size: "L", qty: 1 }],
category: "houseware"

}
];

Step 2: Insert the documents.

Pass the mydocuments array to the db.collection.insert() to perform a bulk insert.

db.inventory.insert(mydocuments);

The method returns a BulkWriteResult object with the status of the operation. A successful insert of the docu-
ments returns the following object:

9https://docs.mongodb.org/manual/reference/object-id
10https://docs.mongodb.org/manual/reference/object-id

98 Chapter 3. MongoDB CRUD Operations

https://docs.mongodb.org/manual/reference/object-id
https://docs.mongodb.org/manual/reference/object-id

MongoDB Documentation, Release 2.6.11

BulkWriteResult({
"writeErrors" : [],
"writeConcernErrors" : [],
"nInserted" : 3,
"nUpserted" : 0,
"nMatched" : 0,
"nModified" : 0,
"nRemoved" : 0,
"upserted" : []

})

The nInserted field specifies the number of documents inserted. If the operation encounters an error, the
BulkWriteResult object will contain information regarding the error.

The inserted documents will each have an _id field added by MongoDB.

Insert Multiple Documents with Bulk

New in version 2.6.

MongoDB provides a Bulk() API that you can use to perform multiple write operations in bulk. The following
sequence of operations describes how you would use the Bulk()API to insert a group of documents into a MongoDB
collection.

Step 1: Initialize a Bulk operations builder.

Initialize a Bulk operations builder for the collection inventory.

var bulk = db.inventory.initializeUnorderedBulkOp();

The operation returns an unordered operations builder which maintains a list of operations to perform. Unordered
operations means that MongoDB can execute in parallel as well as in nondeterministic order. If an error occurs during
the processing of one of the write operations, MongoDB will continue to process remaining write operations in the
list.

You can also initialize an ordered operations builder; see db.collection.initializeOrderedBulkOp()
for details.

Step 2: Add insert operations to the bulk object.

Add two insert operations to the bulk object using the Bulk.insert() method.

bulk.insert(
{

item: "BE10",
details: { model: "14Q2", manufacturer: "XYZ Company" },
stock: [{ size: "L", qty: 5 }],
category: "clothing"

}
);
bulk.insert(

{
item: "ZYT1",
details: { model: "14Q1", manufacturer: "ABC Company" },
stock: [{ size: "S", qty: 5 }, { size: "M", qty: 5 }],

3.3. MongoDB CRUD Tutorials 99

MongoDB Documentation, Release 2.6.11

category: "houseware"
}

);

Step 3: Execute the bulk operation.

Call the execute() method on the bulk object to execute the operations in its list.

bulk.execute();

The method returns a BulkWriteResult object with the status of the operation. A successful insert of the docu-
ments returns the following object:

BulkWriteResult({
"writeErrors" : [],
"writeConcernErrors" : [],
"nInserted" : 2,
"nUpserted" : 0,
"nMatched" : 0,
"nModified" : 0,
"nRemoved" : 0,
"upserted" : []

})

The nInserted field specifies the number of documents inserted. If the operation encounters an error, the
BulkWriteResult object will contain information regarding the error.

Additional Examples and Methods

For more examples, see db.collection.insert().

The db.collection.update() method, the db.collection.findAndModify(), and the
db.collection.save() method can also add new documents. See the individual reference pages for the
methods for more information and examples.

3.3.2 Query Documents

On this page

• Select All Documents in a Collection (page 101)
• Specify Equality Condition (page 101)
• Specify Conditions Using Query Operators (page 101)
• Specify AND Conditions (page 101)
• Specify OR Conditions (page 102)
• Specify AND as well as OR Conditions (page 102)
• Embedded Documents (page 102)
• Arrays (page 103)

In MongoDB, the db.collection.find() method retrieves documents from a collection. 11 The
db.collection.find() method returns a cursor (page 68) to the retrieved documents.

11 The db.collection.findOne() method also performs a read operation to return a single document. Internally, the
db.collection.findOne() method is the db.collection.find() method with a limit of 1.

100 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

This tutorial provides examples of read operations using the db.collection.find() method in the mongo
shell. In these examples, the retrieved documents contain all their fields. To restrict the fields to return in the retrieved
documents, see Limit Fields to Return from a Query (page 112).

Select All Documents in a Collection

An empty query document ({}) selects all documents in the collection:

db.inventory.find({})

Not specifying a query document to the find() is equivalent to specifying an empty query document. Therefore the
following operation is equivalent to the previous operation:

db.inventory.find()

Specify Equality Condition

To specify equality condition, use the query document { <field>: <value> } to select all documents that
contain the <field> with the specified <value>.

The following example retrieves from the inventory collection all documents where the type field has the value
snacks:

db.inventory.find({ type: "snacks" })

Specify Conditions Using Query Operators

A query document can use the query operators to specify conditions in a MongoDB query.

The following example selects all documents in the inventory collection where the value of the type field is either
’food’ or ’snacks’:

db.inventory.find({ type: { $in: ['food', 'snacks'] } })

Although you can express this query using the $or operator, use the $in operator rather than the $or operator when
performing equality checks on the same field.

Refer to the http://docs.mongodb.org/manual/reference/operator/query document for the com-
plete list of query operators.

Specify AND Conditions

A compound query can specify conditions for more than one field in the collection’s documents. Implicitly, a logical
AND conjunction connects the clauses of a compound query so that the query selects the documents in the collection
that match all the conditions.

In the following example, the query document specifies an equality match on the field type and a less than ($lt)
comparison match on the field price:

db.inventory.find({ type: 'food', price: { $lt: 9.95 } })

This query selects all documents where the type field has the value ’food’ and the value of the price field is less
than 9.95. See comparison operators for other comparison operators.

3.3. MongoDB CRUD Tutorials 101

MongoDB Documentation, Release 2.6.11

Specify OR Conditions

Using the $or operator, you can specify a compound query that joins each clause with a logical OR conjunction so
that the query selects the documents in the collection that match at least one condition.

In the following example, the query document selects all documents in the collection where the field qty has a value
greater than ($gt) 100 or the value of the price field is less than ($lt) 9.95:

db.inventory.find(
{

$or: [{ qty: { $gt: 100 } }, { price: { $lt: 9.95 } }]
}

)

Specify AND as well as OR Conditions

With additional clauses, you can specify precise conditions for matching documents.

In the following example, the compound query document selects all documents in the collection where the value of
the type field is ’food’ and either the qty has a value greater than ($gt) 100 or the value of the price field is
less than ($lt) 9.95:

db.inventory.find(
{

type: 'food',
$or: [{ qty: { $gt: 100 } }, { price: { $lt: 9.95 } }]

}
)

Embedded Documents

When the field holds an embedded document, a query can either specify an exact match on the embedded document
or specify a match by individual fields in the embedded document using the dot notation.

Exact Match on the Embedded Document

To specify an equality match on the whole embedded document, use the query document { <field>: <value>
} where <value> is the document to match. Equality matches on an embedded document require an exact match of
the specified <value>, including the field order.

In the following example, the query matches all documents where the value of the field producer is an embedded
document that contains only the field company with the value ’ABC123’ and the field address with the value
’123 Street’, in the exact order:

db.inventory.find(
{

producer:
{
company: 'ABC123',
address: '123 Street'

}
}

)

102 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

Equality Match on Fields within an Embedded Document

Use the dot notation to match by specific fields in an embedded document. Equality matches for specific fields in
an embedded document will select documents in the collection where the embedded document contains the specified
fields with the specified values. The embedded document can contain additional fields.

In the following example, the query uses the dot notation to match all documents where the value of the field
producer is an embedded document that contains a field company with the value ’ABC123’ and may contain
other fields:

db.inventory.find({ 'producer.company': 'ABC123' })

Arrays

When the field holds an array, you can query for an exact array match or for specific values in the array. If the array
holds embedded documents, you can query for specific fields in the embedded documents using dot notation.

If you specify multiple conditions using the $elemMatch operator, the array must contain at least one element that
satisfies all the conditions. See Single Element Satisfies the Criteria (page 104).

If you specify multiple conditions without using the $elemMatch operator, then some combination of the array
elements, not necessarily a single element, must satisfy all the conditions; i.e. different elements in the array can
satisfy different parts of the conditions. See Combination of Elements Satisfies the Criteria (page 104).

Consider an inventory collection that contains the following documents:

{ _id: 5, type: "food", item: "aaa", ratings: [5, 8, 9] }
{ _id: 6, type: "food", item: "bbb", ratings: [5, 9] }
{ _id: 7, type: "food", item: "ccc", ratings: [9, 5, 8] }

Exact Match on an Array

To specify equality match on an array, use the query document { <field>: <value> } where <value> is
the array to match. Equality matches on the array require that the array field match exactly the specified <value>,
including the element order.

The following example queries for all documents where the field ratings is an array that holds exactly three ele-
ments, 5, 8, and 9, in this order:

db.inventory.find({ ratings: [5, 8, 9] })

The operation returns the following document:

{ "_id" : 5, "type" : "food", "item" : "aaa", "ratings" : [5, 8, 9] }

Match an Array Element

Equality matches can specify a single element in the array to match. These specifications match if the array contains
at least one element with the specified value.

The following example queries for all documents where ratings is an array that contains 5 as one of its elements:

db.inventory.find({ ratings: 5 })

The operation returns the following documents:

3.3. MongoDB CRUD Tutorials 103

MongoDB Documentation, Release 2.6.11

{ "_id" : 5, "type" : "food", "item" : "aaa", "ratings" : [5, 8, 9] }
{ "_id" : 6, "type" : "food", "item" : "bbb", "ratings" : [5, 9] }
{ "_id" : 7, "type" : "food", "item" : "ccc", "ratings" : [9, 5, 8] }

Match a Specific Element of an Array

Equality matches can specify equality matches for an element at a particular index or position of the array using the
dot notation.

In the following example, the query uses the dot notation to match all documents where the ratings array contains
5 as the first element:

db.inventory.find({ 'ratings.0': 5 })

The operation returns the following documents:

{ "_id" : 5, "type" : "food", "item" : "aaa", "ratings" : [5, 8, 9] }
{ "_id" : 6, "type" : "food", "item" : "bbb", "ratings" : [5, 9] }

Specify Multiple Criteria for Array Elements

Single Element Satisfies the Criteria Use $elemMatch operator to specify multiple criteria on the elements of
an array such that at least one array element satisfies all the specified criteria.

The following example queries for documents where the ratings array contains at least one element that is greater
than ($gt) 5 and less than ($lt) 9:

db.inventory.find({ ratings: { $elemMatch: { $gt: 5, $lt: 9 } } })

The operation returns the following documents, whose ratings array contains the element 8 which meets the crite-
ria:

{ "_id" : 5, "type" : "food", "item" : "aaa", "ratings" : [5, 8, 9] }
{ "_id" : 7, "type" : "food", "item" : "ccc", "ratings" : [9, 5, 8] }

Combination of Elements Satisfies the Criteria The following example queries for documents where the
ratings array contains elements that in some combination satisfy the query conditions; e.g., one element can satisfy
the greater than 5 condition and another element can satisfy the less than 9 condition, or a single element can satisfy
both:

db.inventory.find({ ratings: { $gt: 5, $lt: 9 } })

The operation returns the following documents:

{ "_id" : 5, "type" : "food", "item" : "aaa", "ratings" : [5, 8, 9] }
{ "_id" : 6, "type" : "food", "item" : "bbb", "ratings" : [5, 9] }
{ "_id" : 7, "type" : "food", "item" : "ccc", "ratings" : [9, 5, 8] }

The document with the "ratings" : [5, 9] matches the query since the element 9 is greater than 5 (the
first condition) and the element 5 is less than 9 (the second condition).

Array of Embedded Documents

Consider that the inventory collection includes the following documents:

104 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

{
_id: 100,
type: "food",
item: "xyz",
qty: 25,
price: 2.5,
ratings: [5, 8, 9],
memos: [{ memo: "on time", by: "shipping" }, { memo: "approved", by: "billing" }]

}

{
_id: 101,
type: "fruit",
item: "jkl",
qty: 10,
price: 4.25,
ratings: [5, 9],
memos: [{ memo: "on time", by: "payment" }, { memo: "delayed", by: "shipping" }]

}

Match a Field in the Embedded Document Using the Array Index If you know the array index of the embedded
document, you can specify the document using the embedded document’s position using the dot notation.

The following example selects all documents where the memos contains an array whose first element (i.e. index is 0)
is a document that contains the field by whose value is ’shipping’:

db.inventory.find({ 'memos.0.by': 'shipping' })

The operation returns the following document:

{
_id: 100,
type: "food",
item: "xyz",
qty: 25,
price: 2.5,
ratings: [5, 8, 9],
memos: [{ memo: "on time", by: "shipping" }, { memo: "approved", by: "billing" }]

}

Match a Field Without Specifying Array Index If you do not know the index position of the document in the array,
concatenate the name of the field that contains the array, with a dot (.) and the name of the field in the embedded
document.

The following example selects all documents where the memos field contains an array that contains at least one
embedded document that contains the field by with the value ’shipping’:

db.inventory.find({ 'memos.by': 'shipping' })

The operation returns the following documents:

{
_id: 100,
type: "food",
item: "xyz",
qty: 25,
price: 2.5,

3.3. MongoDB CRUD Tutorials 105

MongoDB Documentation, Release 2.6.11

ratings: [5, 8, 9],
memos: [{ memo: "on time", by: "shipping" }, { memo: "approved", by: "billing" }]

}
{

_id: 101,
type: "fruit",
item: "jkl",
qty: 10,
price: 4.25,
ratings: [5, 9],
memos: [{ memo: "on time", by: "payment" }, { memo: "delayed", by: "shipping" }]

}

Specify Multiple Criteria for Array of Documents

Single Element Satisfies the Criteria Use $elemMatch operator to specify multiple criteria on an array of em-
bedded documents such that at least one embedded document satisfies all the specified criteria.

The following example queries for documents where the memos array has at least one embedded document that
contains both the field memo equal to ’on time’ and the field by equal to ’shipping’:

db.inventory.find(
{

memos:
{

$elemMatch:
{

memo: 'on time',
by: 'shipping'

}
}

}
)

The operation returns the following document:

{
_id: 100,
type: "food",
item: "xyz",
qty: 25,
price: 2.5,
ratings: [5, 8, 9],
memos: [{ memo: "on time", by: "shipping" }, { memo: "approved", by: "billing" }]

}

Combination of Elements Satisfies the Criteria The following example queries for documents where the memos
array contains elements that in some combination satisfy the query conditions; e.g. one element satisfies the field
memo equal to ’on time’ condition and another element satisfies the field by equal to ’shipping’ condition, or
a single element can satisfy both criteria:

db.inventory.find(
{
'memos.memo': 'on time',
'memos.by': 'shipping'

106 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

}
)

The query returns the following documents:

{
_id: 100,
type: "food",
item: "xyz",
qty: 25,
price: 2.5,
ratings: [5, 8, 9],
memos: [{ memo: "on time", by: "shipping" }, { memo: "approved", by: "billing" }]

}
{

_id: 101,
type: "fruit",
item: "jkl",
qty: 10,
price: 4.25,
ratings: [5, 9],
memos: [{ memo: "on time", by: "payment" }, { memo: "delayed", by: "shipping" }]

}

See also:

Limit Fields to Return from a Query (page 112)

3.3.3 Modify Documents

On this page

• Update Specific Fields in a Document (page 107)
• Replace the Document (page 109)
• upsert Option (page 109)
• Additional Examples and Methods (page 111)

MongoDB provides the update() method to update the documents of a collection. The method accepts as its
parameters:

• an update conditions document to match the documents to update,

• an update operations document to specify the modification to perform, and

• an options document.

To specify the update condition, use the same structure and syntax as the query conditions.

By default, update() updates a single document. To update multiple documents, use the multi option.

Update Specific Fields in a Document

To change a field value, MongoDB provides update operators12, such as $set to modify values.

12https://docs.mongodb.org/manual/reference/operator/update

3.3. MongoDB CRUD Tutorials 107

https://docs.mongodb.org/manual/reference/operator/update

MongoDB Documentation, Release 2.6.11

Some update operators, such as $set, will create the field if the field does not exist. See the individual update
operator13 reference.

Step 1: Use update operators to change field values.

For the document with item equal to "MNO2", use the $set operator to update the category field and the
details field to the specified values and the $currentDate operator to update the field lastModified with
the current date.

db.inventory.update(
{ item: "MNO2" },
{

$set: {
category: "apparel",
details: { model: "14Q3", manufacturer: "XYZ Company" }

},
$currentDate: { lastModified: true }

}
)

The update operation returns a WriteResult object which contains the status of the operation. A successful update
of the document returns the following object:

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

The nMatched field specifies the number of existing documents matched for the update, and nModified specifies
the number of existing documents modified.

Step 2: Update an embedded field.

To update a field within an embedded document, use the dot notation. When using the dot notation, enclose the whole
dotted field name in quotes.

The following updates the model field within the embedded details document.

db.inventory.update(
{ item: "ABC1" },
{ $set: { "details.model": "14Q2" } }

)

The update operation returns a WriteResult object which contains the status of the operation. A successful update
of the document returns the following object:

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

Step 3: Update multiple documents.

By default, the update() method updates a single document. To update multiple documents, use the multi option
in the update() method.

Update the category field to "apparel" and update the lastModified field to the current date for all docu-
ments that have category field equal to "clothing".

13https://docs.mongodb.org/manual/reference/operator/update

108 Chapter 3. MongoDB CRUD Operations

https://docs.mongodb.org/manual/reference/operator/update
https://docs.mongodb.org/manual/reference/operator/update

MongoDB Documentation, Release 2.6.11

db.inventory.update(
{ category: "clothing" },
{

$set: { category: "apparel" },
$currentDate: { lastModified: true }

},
{ multi: true }

)

The update operation returns a WriteResult object which contains the status of the operation. A successful update
of the document returns the following object:

WriteResult({ "nMatched" : 3, "nUpserted" : 0, "nModified" : 3 })

Replace the Document

To replace the entire content of a document except for the _id field, pass an entirely new document as the second
argument to update().

The replacement document can have different fields from the original document. In the replacement document, you
can omit the _id field since the _id field is immutable. If you do include the _id field, it must be the same value as
the existing value.

Step 1: Replace a document.

The following operation replaces the document with item equal to "BE10". The newly replaced document will only
contain the the _id field and the fields in the replacement document.

db.inventory.update(
{ item: "BE10" },
{

item: "BE05",
stock: [{ size: "S", qty: 20 }, { size: "M", qty: 5 }],
category: "apparel"

}
)

The update operation returns a WriteResult object which contains the status of the operation. A successful update
of the document returns the following object:

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

upsert Option

By default, if no document matches the update query, the update() method does nothing.

However, by specifying upsert: true, the update() method either updates matching document or documents, or
inserts a new document using the update specification if no matching document exists.

Step 1: Specify upsert: true for the update replacement operation.

When you specify upsert: true for an update operation to replace a document and no matching documents
are found, MongoDB creates a new document using the equality conditions in the update conditions document, and
replaces this document, except for the _id field if specified, with the update document.

3.3. MongoDB CRUD Tutorials 109

MongoDB Documentation, Release 2.6.11

The following operation either updates a matching document by replacing it with a new document or adds a new
document if no matching document exists.

db.inventory.update(
{ item: "TBD1" },
{

item: "TBD1",
details: { "model" : "14Q4", "manufacturer" : "ABC Company" },
stock: [{ "size" : "S", "qty" : 25 }],
category: "houseware"

},
{ upsert: true }

)

The update operation returns a WriteResult object which contains the status of the operation, including whether
the db.collection.update() method modified an existing document or added a new document.

WriteResult({
"nMatched" : 0,
"nUpserted" : 1,
"nModified" : 0,
"_id" : ObjectId("53dbd684babeaec6342ed6c7")

})

The nMatched field shows that the operation matched 0 documents.

The nUpserted of 1 shows that the update added a document.

The nModified of 0 specifies that no existing documents were updated.

The _id field shows the generated _id field for the added document.

Step 2: Specify upsert: true for the update specific fields operation.

When you specify upsert: true for an update operation that modifies specific fields and no matching documents
are found, MongoDB creates a new document using the equality conditions in the update conditions document, and
applies the modification as specified in the update document.

The following update operation either updates specific fields of a matching document or adds a new document if no
matching document exists.

db.inventory.update(
{ item: "TBD2" },
{

$set: {
details: { "model" : "14Q3", "manufacturer" : "IJK Co." },
category: "houseware"

}
},
{ upsert: true }

)

The update operation returns a WriteResult object which contains the status of the operation, including whether
the db.collection.update() method modified an existing document or added a new document.

WriteResult({
"nMatched" : 0,
"nUpserted" : 1,
"nModified" : 0,

110 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

"_id" : ObjectId("53dbd7c8babeaec6342ed6c8")
})

The nMatched field shows that the operation matched 0 documents.

The nUpserted of 1 shows that the update added a document.

The nModified of 0 specifies that no existing documents were updated.

The _id field shows the generated _id field for the added document.

Additional Examples and Methods

For more examples, see Update examples in the db.collection.update() reference page.

The db.collection.findAndModify() and the db.collection.save() method can also modify exist-
ing documents or insert a new one. See the individual reference pages for the methods for more information and
examples.

3.3.4 Remove Documents

On this page

• Remove All Documents (page 111)
• Remove Documents that Match a Condition (page 111)
• Remove a Single Document that Matches a Condition (page 112)

In MongoDB, the db.collection.remove() method removes documents from a collection. You can remove
all documents from a collection, remove all documents that match a condition, or limit the operation to remove just a
single document.

This tutorial provides examples of remove operations using the db.collection.remove()method in the mongo
shell.

Remove All Documents

To remove all documents from a collection, pass an empty query document {} to the remove() method. The
remove() method does not remove the indexes.

The following example removes all documents from the inventory collection:

db.inventory.remove({})

To remove all documents from a collection, it may be more efficient to use the drop() method to drop the entire
collection, including the indexes, and then recreate the collection and rebuild the indexes.

Remove Documents that Match a Condition

To remove the documents that match a deletion criteria, call the remove() method with the <query> parameter.

The following example removes all documents from the inventory collection where the type field equals food:

db.inventory.remove({ type : "food" })

3.3. MongoDB CRUD Tutorials 111

MongoDB Documentation, Release 2.6.11

For large deletion operations, it may be more efficient to copy the documents that you want to keep to a new collection
and then use drop() on the original collection.

Remove a Single Document that Matches a Condition

To remove a single document, call the remove() method with the justOne parameter set to true or 1.

The following example removes one document from the inventory collection where the type field equals food:

db.inventory.remove({ type : "food" }, 1)

To delete a single document sorted by some specified order, use the findAndModify() method.

3.3.5 Limit Fields to Return from a Query

On this page

• Return All Fields in Matching Documents (page 112)
• Return the Specified Fields and the _id Field Only (page 113)
• Return Specified Fields Only (page 113)
• Return All But the Excluded Field (page 113)
• Return Specific Fields in Embedded Documents (page 113)
• Projection for Array Fields (page 114)

The projection document limits the fields to return for all matching documents. The projection document can specify
the inclusion of fields or the exclusion of fields.

The specifications have the following forms:

Syntax Description
<field>: <1 or true> Specify the inclusion of a field.
<field>: <0 or false> Specify the suppression of the field.

Important: The _id field is, by default, included in the result set. To suppress the _id field from the result set,
specify _id: 0 in the projection document.

You cannot combine inclusion and exclusion semantics in a single projection with the exception of the _id field.

This tutorial offers various query examples that limit the fields to return for all matching documents. The examples in
this tutorial use a collection inventory and use the db.collection.find() method in the mongo shell. The
db.collection.find() method returns a cursor (page 68) to the retrieved documents. For examples on query
selection criteria, see Query Documents (page 100).

Return All Fields in Matching Documents

If you specify no projection, the find() method returns all fields of all documents that match the query.

db.inventory.find({ type: 'food' })

This operation will return all documents in the inventory collection where the value of the type field is ’food’.
The returned documents contain all its fields.

112 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

Return the Specified Fields and the _id Field Only

A projection can explicitly include several fields. In the following operation, find() method returns all documents
that match the query. In the result set, only the item and qty fields and, by default, the _id field return in the
matching documents.

db.inventory.find({ type: 'food' }, { item: 1, qty: 1 })

Return Specified Fields Only

You can remove the _id field from the results by specifying its exclusion in the projection, as in the following
example:

db.inventory.find({ type: 'food' }, { item: 1, qty: 1, _id:0 })

This operation returns all documents that match the query. In the result set, only the item and qty fields return in
the matching documents.

Return All But the Excluded Field

To exclude a single field or group of fields you can use a projection in the following form:

db.inventory.find({ type: 'food' }, { type:0 })

This operation returns all documents where the value of the type field is food. In the result set, the type field does
not return in the matching documents.

With the exception of the _id field you cannot combine inclusion and exclusion statements in projection documents.

Return Specific Fields in Embedded Documents

Use the dot notation (page 179) to return specific fields inside an embedded document. For example, the inventory
collection contains the following document:

{
"_id" : 3,
"type" : "food",
"item" : "aaa",
"classification": { dept: "grocery", category: "chocolate" }

}

The following operation returns all documents that match the query. The specified projection returns only
the category field in the classification document. The returned category field remains inside the
classification document.

db.inventory.find(
{ type: 'food', _id: 3 },
{ "classification.category": 1, _id: 0 }

)

The operation returns the following document:

{ "classification" : { "category" : "chocolate" } }

3.3. MongoDB CRUD Tutorials 113

MongoDB Documentation, Release 2.6.11

Projection for Array Fields

For fields that contain arrays, MongoDB provides the following projection operators: $elemMatch, $slice, and
$.

For example, the inventory collection contains the following document:

{ "_id" : 5, "type" : "food", "item" : "aaa", "ratings" : [5, 8, 9] }

Then the following operation uses the $slice projection operator to return just the first two elements in the ratings
array.

db.inventory.find({ _id: 5 }, { ratings: { $slice: 2 } })

$elemMatch, $slice, and $ are the only way to project portions of an array. For instance, you cannot project a
portion of an array using the array index; e.g. { "ratings.0": 1 } projection will not project the array with
the first element.

See also:

Query Documents (page 100)

3.3.6 Limit Number of Elements in an Array after an Update

On this page

• Synopsis (page 114)
• Pattern (page 114)

New in version 2.4.

Synopsis

Consider an application where users may submit many scores (e.g. for a test), but the application only needs to track
the top three test scores.

This pattern uses the $push operator with the $each, $sort, and $slice modifiers to sort and maintain an array
of fixed size.

Pattern

Consider the following document in the collection students:

{
_id: 1,
scores: [
{ attempt: 1, score: 10 },
{ attempt: 2 , score:8 }

]
}

The following update uses the $push operator with:

• the $each modifier to append to the array 2 new elements,

• the $sort modifier to order the elements by ascending (1) score, and

114 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

• the $slice modifier to keep the last 3 elements of the ordered array.

db.students.update(
{ _id: 1 },
{

$push: {
scores: {

$each: [{ attempt: 3, score: 7 }, { attempt: 4, score: 4 }],
$sort: { score: 1 },
$slice: -3

}
}

}
)

Note: When using the $sort modifier on the array element, access the field in the embedded document element
directly instead of using the dot notation on the array field.

After the operation, the document contains only the top 3 scores in the scores array:

{
"_id" : 1,
"scores" : [

{ "attempt" : 3, "score" : 7 },
{ "attempt" : 2, "score" : 8 },
{ "attempt" : 1, "score" : 10 }

]
}

See also:

• $push operator,

• $each modifier,

• $sort modifier, and

• $slice modifier.

3.3.7 Iterate a Cursor in the mongo Shell

On this page

• Manually Iterate the Cursor (page 115)
• Iterator Index (page 116)

The db.collection.find() method returns a cursor. To access the documents, you need to iterate the cursor.
However, in the mongo shell, if the returned cursor is not assigned to a variable using the var keyword, then the
cursor is automatically iterated up to 20 times to print up to the first 20 documents in the results. The following
describes ways to manually iterate the cursor to access the documents or to use the iterator index.

Manually Iterate the Cursor

In the mongo shell, when you assign the cursor returned from the find() method to a variable using the var
keyword, the cursor does not automatically iterate.

3.3. MongoDB CRUD Tutorials 115

MongoDB Documentation, Release 2.6.11

You can call the cursor variable in the shell to iterate up to 20 times 14 and print the matching documents, as in the
following example:

var myCursor = db.inventory.find({ type: 'food' });

myCursor

You can also use the cursor method next() to access the documents, as in the following example:

var myCursor = db.inventory.find({ type: 'food' });

while (myCursor.hasNext()) {
print(tojson(myCursor.next()));

}

As an alternative print operation, consider the printjson() helper method to replace print(tojson()):

var myCursor = db.inventory.find({ type: 'food' });

while (myCursor.hasNext()) {
printjson(myCursor.next());

}

You can use the cursor method forEach() to iterate the cursor and access the documents, as in the following
example:

var myCursor = db.inventory.find({ type: 'food' });

myCursor.forEach(printjson);

See JavaScript cursor methods and your driver documentation for more information on cursor methods.

Iterator Index

In the mongo shell, you can use the toArray() method to iterate the cursor and return the documents in an array,
as in the following:

var myCursor = db.inventory.find({ type: 'food' });
var documentArray = myCursor.toArray();
var myDocument = documentArray[3];

The toArray() method loads into RAM all documents returned by the cursor; the toArray() method exhausts
the cursor.

Additionally, some drivers provide access to the documents by using an index on the cursor (i.e.
cursor[index]). This is a shortcut for first calling the toArray() method and then using an index on the
resulting array.

Consider the following example:

var myCursor = db.inventory.find({ type: 'food' });
var myDocument = myCursor[3];

The myCursor[3] is equivalent to the following example:

myCursor.toArray() [3];

14 You can use the DBQuery.shellBatchSize to change the number of iteration from the default value 20. See Executing Queries
(page 285) for more information.

116 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

3.3.8 Analyze Query Performance

On this page

• Evaluate the Performance of a Query (page 117)
• Compare Performance of Indexes (page 119)

The explain() cursor method provides statistics about the performance of a query. This data output can be useful
in measuring if and how a query uses an index. 15

Evaluate the Performance of a Query

Consider a collection inventory with the following documents:

{ "_id" : 1, "item" : "f1", type: "food", quantity: 500 }
{ "_id" : 2, "item" : "f2", type: "food", quantity: 100 }
{ "_id" : 3, "item" : "p1", type: "paper", quantity: 200 }
{ "_id" : 4, "item" : "p2", type: "paper", quantity: 150 }
{ "_id" : 5, "item" : "f3", type: "food", quantity: 300 }
{ "_id" : 6, "item" : "t1", type: "toys", quantity: 500 }
{ "_id" : 7, "item" : "a1", type: "apparel", quantity: 250 }
{ "_id" : 8, "item" : "a2", type: "apparel", quantity: 400 }
{ "_id" : 9, "item" : "t2", type: "toys", quantity: 50 }
{ "_id" : 10, "item" : "f4", type: "food", quantity: 75 }

Query with No Index

The following query retrieves documents where the quantity field has a value between 100 and 200, inclusive:

db.inventory.find({ quantity: { $gte: 100, $lte: 200 } })

The query returns the following documents:

{ "_id" : 2, "item" : "f2", "type" : "food", "quantity" : 100 }
{ "_id" : 3, "item" : "p1", "type" : "paper", "quantity" : 200 }
{ "_id" : 4, "item" : "p2", "type" : "paper", "quantity" : 150 }

To view the query plan selected, use the explain() method:

db.inventory.find({ quantity: { $gte: 100, $lte: 200 } }).explain()

The explain() method returns this output:

{
"cursor" : "BasicCursor",
"isMultiKey" : false,
"n" : 3,
"nscannedObjects" : 10,
"nscanned" : 10,
"nscannedObjectsAllPlans" : 10,
"nscannedAllPlans" : 10,
"scanAndOrder" : false,
"indexOnly" : false,

15 Because explain() attempts multiple query plans, the explain() method does not reflect an accurate timing of query performance. For
more information on its behavior, see explain().

3.3. MongoDB CRUD Tutorials 117

MongoDB Documentation, Release 2.6.11

"nYields" : 0,
"nChunkSkips" : 0,
"millis" : 0,
"server" : "myMongoDB.local:27017",
"filterSet" : false

}

• cursor displays BasicCursor to indicate a collection scan.

• n displays 3 to indicate that the query matches and returns three documents.

• nscanned and nscannedObjects display 10 to indicate that MongoDB had to scan ten documents (i.e.
all documents in the collection) to find the three matching documents.

The difference between the number of matching documents and the number documents scanned may suggest that, to
improve efficiency, the query might benefit from the use of an index.

Query with Index

To support the query on the quantity field, add an index on the quantity field:

db.inventory.ensureIndex({ quantity: 1 })

To view the query plan statistics, use the explain() method:

db.inventory.find({ quantity: { $gte: 100, $lte: 200 } }).explain()

The explain() method returns this output:

{
"cursor" : "BtreeCursor quantity_1",
"isMultiKey" : false,
"n" : 3,
"nscannedObjects" : 3,
"nscanned" : 3,
"nscannedObjectsAllPlans" : 3,
"nscannedAllPlans" : 3,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : 0,
"nChunkSkips" : 0,
"millis" : 0,
"indexBounds" : { "quantity" : [[100, 200]] },
"server" : "myMongoDB.local:27017",
"filterSet" : false

}

• cursor displays BtreeCursor quantity_1 to indicate index use and the name of the index.

• n displays 3 to indicate that the query matches and returns three documents.

• nscanned displays 3 to indicate that MongoDB scanned three index entries.

• nscannedObjects displays 3 to indicate that MongoDB scanned three documents.

When run with an index, the query scanned 3 index entries and 3 documents to return 3 matching documents. Without
the index, to return the 3 matching documents, the query had to scan the whole collection, scanning 10 documents.

118 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

Compare Performance of Indexes

To manually compare the performance of a query using more than one index, you can use the hint() method in
conjunction with the explain() method.

Consider the following query:

db.inventory.find({ quantity: { $gte: 100, $lte: 300 }, type: "food" })

The query returns the following documents:

{ "_id" : 2, "item" : "f2", "type" : "food", "quantity" : 100 }
{ "_id" : 5, "item" : "f3", "type" : "food", "quantity" : 300 }

To support the query, add a compound index (page 489). With compound indexes (page 489), the order of the fields
matter.

For example, add the following two compound indexes. The first index orders by quantity field first, and then the
type field. The second index orders by type first, and then the quantity field.

db.inventory.ensureIndex({ quantity: 1, type: 1 })
db.inventory.ensureIndex({ type: 1, quantity: 1 })

Evaluate the effect of the first index on the query:

db.inventory.find({ quantity: { $gte: 100, $lte: 300 }, type: "food" }).hint({ quantity: 1, type: 1 }).explain()

The explain() method returns the following output:

{
"cursor" : "BtreeCursor quantity_1_type_1",
"isMultiKey" : false,
"n" : 2,
"nscannedObjects" : 2,
"nscanned" : 5,
...

}

MongoDB scanned 5 index keys (nscanned) to return 2 matching documents (n).

Evaluate the effect of the second index on the query:

db.inventory.find({ quantity: { $gte: 100, $lte: 300 }, type: "food" }).hint({ type: 1, quantity: 1 }).explain()

The explain() method returns the following output:

{
"cursor" : "BtreeCursor type_1_quantity_1",
"isMultiKey" : false,
"n" : 2,
"nscannedObjects" : 2,
"nscanned" : 2,
...

}

MongoDB scanned 2 index keys (nscanned) to return 2 matching documents (n).

For this example query, the compound index { type: 1, quantity: 1 } is more efficient than the com-
pound index { quantity: 1, type: 1 }.

See also:

3.3. MongoDB CRUD Tutorials 119

MongoDB Documentation, Release 2.6.11

Query Optimization (page 70), Query Plans (page 72) Optimize Query Performance (page 224), Indexing Strategies
(page 551)

3.3.9 Perform Two Phase Commits

On this page

• Synopsis (page 120)
• Background (page 120)
• Pattern (page 120)
• Recovering from Failure Scenarios (page 123)
• Multiple Applications (page 125)
• Using Two-Phase Commits in Production Applications (page 126)

Synopsis

This document provides a pattern for doing multi-document updates or “multi-document transactions” using a two-
phase commit approach for writing data to multiple documents. Additionally, you can extend this process to provide
a rollback-like (page 124) functionality.

Background

Operations on a single document are always atomic with MongoDB databases; however, operations that involve multi-
ple documents, which are often referred to as “multi-document transactions”, are not atomic. Since documents can be
fairly complex and contain multiple “nested” documents, single-document atomicity provides the necessary support
for many practical use cases.

Despite the power of single-document atomic operations, there are cases that require multi-document transactions.
When executing a transaction composed of sequential operations, certain issues arise, such as:

• Atomicity: if one operation fails, the previous operation within the transaction must “rollback” to the previous
state (i.e. the “nothing,” in “all or nothing”).

• Consistency: if a major failure (i.e. network, hardware) interrupts the transaction, the database must be able to
recover a consistent state.

For situations that require multi-document transactions, you can implement two-phase commit in your application to
provide support for these kinds of multi-document updates. Using two-phase commit ensures that data is consistent
and, in case of an error, the state that preceded the transaction is recoverable (page 124). During the procedure,
however, documents can represent pending data and states.

Note: Because only single-document operations are atomic with MongoDB, two-phase commits can only offer
transaction-like semantics. It is possible for applications to return intermediate data at intermediate points during the
two-phase commit or rollback.

Pattern

Overview

Consider a scenario where you want to transfer funds from account A to account B. In a relational database system,
you can subtract the funds from A and add the funds to B in a single multi-statement transaction. In MongoDB, you

120 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

can emulate a two-phase commit to achieve a comparable result.

The examples in this tutorial use the following two collections:

1. A collection named accounts to store account information.

2. A collection named transactions to store information on the fund transfer transactions.

Initialize Source and Destination Accounts

Insert into the accounts collection a document for account A and a document for account B.

db.accounts.insert(
[

{ _id: "A", balance: 1000, pendingTransactions: [] },
{ _id: "B", balance: 1000, pendingTransactions: [] }

]
)

The operation returns a BulkWriteResult() object with the status of the operation. Upon successful insert, the
BulkWriteResult() has nInserted set to 2 .

Initialize Transfer Record

For each fund transfer to perform, insert into the transactions collection a document with the transfer information.
The document contains the following fields:

• source and destination fields, which refer to the _id fields from the accounts collection,

• value field, which specifies the amount of transfer affecting the balance of the source and
destination accounts,

• state field, which reflects the current state of the transfer. The state field can have the value of initial,
pending, applied, done, canceling, and canceled.

• lastModified field, which reflects last modification date.

To initialize the transfer of 100 from account A to account B, insert into the transactions collection a document
with the transfer information, the transaction state of "initial", and the lastModified field set to the current
date:

db.transactions.insert(
{ _id: 1, source: "A", destination: "B", value: 100, state: "initial", lastModified: new Date() }

)

The operation returns a WriteResult() object with the status of the operation. Upon successful insert, the
WriteResult() object has nInserted set to 1.

Transfer Funds Between Accounts Using Two-Phase Commit

Step 1: Retrieve the transaction to start. From the transactions collection, find a transaction in the initial
state. Currently the transactions collection has only one document, namely the one added in the Initialize
Transfer Record (page 121) step. If the collection contains additional documents, the query will return any transaction
with an initial state unless you specify additional query conditions.

var t = db.transactions.findOne({ state: "initial" })

3.3. MongoDB CRUD Tutorials 121

MongoDB Documentation, Release 2.6.11

Type the variable t in the mongo shell to print the contents of the variable. The operation should print a document
similar to the following except the lastModified field should reflect date of your insert operation:

{ "_id" : 1, "source" : "A", "destination" : "B", "value" : 100, "state" : "initial", "lastModified" : ISODate("2014-07-11T20:39:26.345Z") }

Step 2: Update transaction state to pending. Set the transaction state from initial to pending and use the
$currentDate operator to set the lastModified field to the current date.

db.transactions.update(
{ _id: t._id, state: "initial" },
{

$set: { state: "pending" },
$currentDate: { lastModified: true }

}
)

The operation returns a WriteResult() object with the status of the operation. Upon successful update, the
nMatched and nModified displays 1.

In the update statement, the state: "initial" condition ensures that no other process has already updated this
record. If nMatched and nModified is 0, go back to the first step to get a different transaction and restart the
procedure.

Step 3: Apply the transaction to both accounts. Apply the transaction t to both accounts using the update()
method if the transaction has not been applied to the accounts. In the update condition, include the condition
pendingTransactions: { $ne: t._id } in order to avoid re-applying the transaction if the step is run
more than once.

To apply the transaction to the account, update both the balance field and the pendingTransactions field.

Update the source account, subtracting from its balance the transaction value and adding to its
pendingTransactions array the transaction _id.

db.accounts.update(
{ _id: t.source, pendingTransactions: { $ne: t._id } },
{ $inc: { balance: -t.value }, $push: { pendingTransactions: t._id } }

)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to 1.

Update the destination account, adding to its balance the transaction value and adding to its
pendingTransactions array the transaction _id .

db.accounts.update(
{ _id: t.destination, pendingTransactions: { $ne: t._id } },
{ $inc: { balance: t.value }, $push: { pendingTransactions: t._id } }

)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to 1.

Step 4: Update transaction state to applied. Use the following update() operation to set the transaction’s
state to applied and update the lastModified field:

db.transactions.update(
{ _id: t._id, state: "pending" },
{

$set: { state: "applied" },
$currentDate: { lastModified: true }

122 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

}
)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to 1.

Step 5: Update both accounts’ list of pending transactions. Remove the applied transaction _id from the
pendingTransactions array for both accounts.

Update the source account.

db.accounts.update(
{ _id: t.source, pendingTransactions: t._id },
{ $pull: { pendingTransactions: t._id } }

)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to 1.

Update the destination account.

db.accounts.update(
{ _id: t.destination, pendingTransactions: t._id },
{ $pull: { pendingTransactions: t._id } }

)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to 1.

Step 6: Update transaction state to done. Complete the transaction by setting the state of the transaction to
done and updating the lastModified field:

db.transactions.update(
{ _id: t._id, state: "applied" },
{

$set: { state: "done" },
$currentDate: { lastModified: true }

}
)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to 1.

Recovering from Failure Scenarios

The most important part of the transaction procedure is not the prototypical example above, but rather the possibility
for recovering from the various failure scenarios when transactions do not complete successfully. This section presents
an overview of possible failures and provides steps to recover from these kinds of events.

Recovery Operations

The two-phase commit pattern allows applications running the sequence to resume the transaction and arrive at a
consistent state. Run the recovery operations at application startup, and possibly at regular intervals, to catch any
unfinished transactions.

The time required to reach a consistent state depends on how long the application needs to recover each transaction.

The following recovery procedures uses the lastModified date as an indicator of whether the pending transaction
requires recovery; specifically, if the pending or applied transaction has not been updated in the last 30 minutes,

3.3. MongoDB CRUD Tutorials 123

MongoDB Documentation, Release 2.6.11

the procedures determine that these transactions require recovery. You can use different conditions to make this
determination.

Transactions in Pending State To recover from failures that occur after step “Update transaction state to pending.
(page ??)” but before “Update transaction state to applied. (page ??)” step, retrieve from the transactions
collection a pending transaction for recovery:

var dateThreshold = new Date();
dateThreshold.setMinutes(dateThreshold.getMinutes() - 30);

var t = db.transactions.findOne({ state: "pending", lastModified: { $lt: dateThreshold } });

And resume from step “Apply the transaction to both accounts. (page ??)“

Transactions in Applied State To recover from failures that occur after step “Update transaction state to applied.
(page ??)” but before “Update transaction state to done. (page ??)” step, retrieve from the transactions collection
an applied transaction for recovery:

var dateThreshold = new Date();
dateThreshold.setMinutes(dateThreshold.getMinutes() - 30);

var t = db.transactions.findOne({ state: "applied", lastModified: { $lt: dateThreshold } });

And resume from “Update both accounts’ list of pending transactions. (page ??)“

Rollback Operations

In some cases, you may need to “roll back” or undo a transaction; e.g., if the application needs to “cancel” the
transaction or if one of the accounts does not exist or stops existing during the transaction.

Transactions in Applied State After the “Update transaction state to applied. (page ??)” step, you should not
roll back the transaction. Instead, complete that transaction and create a new transaction (page 121) to reverse the
transaction by switching the values in the source and the destination fields.

Transactions in Pending State After the “Update transaction state to pending. (page ??)” step, but before the
“Update transaction state to applied. (page ??)” step, you can rollback the transaction using the following procedure:

Step 1: Update transaction state to canceling. Update the transaction state from pending to canceling.

db.transactions.update(
{ _id: t._id, state: "pending" },
{

$set: { state: "canceling" },
$currentDate: { lastModified: true }

}
)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to 1.

124 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

Step 2: Undo the transaction on both accounts. To undo the transaction on both accounts, reverse the transaction
t if the transaction has been applied. In the update condition, include the condition pendingTransactions:
t._id in order to update the account only if the pending transaction has been applied.

Update the destination account, subtracting from its balance the transaction value and removing the transaction
_id from the pendingTransactions array.

db.accounts.update(
{ _id: t.destination, pendingTransactions: t._id },
{

$inc: { balance: -t.value },
$pull: { pendingTransactions: t._id }

}
)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to
1. If the pending transaction has not been previously applied to this account, no document will match the update
condition and nMatched and nModified will be 0.

Update the source account, adding to its balance the transaction value and removing the transaction _id from
the pendingTransactions array.

db.accounts.update(
{ _id: t.source, pendingTransactions: t._id },
{

$inc: { balance: t.value},
$pull: { pendingTransactions: t._id }

}
)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to
1. If the pending transaction has not been previously applied to this account, no document will match the update
condition and nMatched and nModified will be 0.

Step 3: Update transaction state to canceled. To finish the rollback, update the transaction state from
canceling to cancelled.

db.transactions.update(
{ _id: t._id, state: "canceling" },
{

$set: { state: "cancelled" },
$currentDate: { lastModified: true }

}
)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to 1.

Multiple Applications

Transactions exist, in part, so that multiple applications can create and run operations concurrently without causing
data inconsistency or conflicts. In our procedure, to update or retrieve the transaction document, the update conditions
include a condition on the state field to prevent reapplication of the transaction by multiple applications.

For example, applications App1 and App2 both grab the same transaction, which is in the initial state. App1
applies the whole transaction before App2 starts. When App2 attempts to perform the “Update transaction state to
pending. (page ??)” step, the update condition, which includes the state: "initial" criterion, will not match
any document, and the nMatched and nModified will be 0. This should signal to App2 to go back to the first step
to restart the procedure with a different transaction.

3.3. MongoDB CRUD Tutorials 125

MongoDB Documentation, Release 2.6.11

When multiple applications are running, it is crucial that only one application can handle a given transaction at any
point in time. As such, in addition including the expected state of the transaction in the update condition, you can
also create a marker in the transaction document itself to identify the application that is handling the transaction. Use
findAndModify() method to modify the transaction and get it back in one step:

t = db.transactions.findAndModify(
{
query: { state: "initial", application: { $exists: false } },
update:
{
$set: { state: "pending", application: "App1" },
$currentDate: { lastModified: true }

},
new: true

}
)

Amend the transaction operations to ensure that only applications that match the identifier in the application field
apply the transaction.

If the application App1 fails during transaction execution, you can use the recovery procedures (page 123), but appli-
cations should ensure that they “own” the transaction before applying the transaction. For example to find and resume
the pending job, use a query that resembles the following:

var dateThreshold = new Date();
dateThreshold.setMinutes(dateThreshold.getMinutes() - 30);

db.transactions.find(
{

application: "App1",
state: "pending",
lastModified: { $lt: dateThreshold }

}
)

Using Two-Phase Commits in Production Applications

The example transaction above is intentionally simple. For example, it assumes that it is always possible to roll back
operations to an account and that account balances can hold negative values.

Production implementations would likely be more complex. Typically, accounts need information about current bal-
ance, pending credits, and pending debits.

For all transactions, ensure that you use the appropriate level of write concern (page 82) for your deployment.

3.3.10 Update Document if Current

On this page

• Overview (page 127)
• Pattern (page 127)
• Example (page 127)
• Modifications to the Pattern (page 127)

126 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

Overview

The Update if Current pattern is an approach to concurrency control (page 86) when multiple applications have access
to the data.

Pattern

The pattern queries for the document to update. Then, for each field to modify, the pattern includes the field and its
value in the returned document in the query predicate for the update operation. This way, the update only modifies the
document fields if the fields have not changed since the query.

Example

Consider the following example in the mongo shell. The example updates the quantity and the reordered fields
of a document only if the fields have not changed since the query.

Changed in version 2.6: The db.collection.update() method now returns a WriteResult() object that
contains the status of the operation. Previous versions required an extra db.getLastErrorObj() method call.

var myDocument = db.products.findOne({ sku: "abc123" });

if (myDocument) {
var oldQuantity = myDocument.quantity;
var oldReordered = myDocument.reordered;

var results = db.products.update(
{

_id: myDocument._id,
quantity: oldQuantity,
reordered: oldReordered

},
{

$inc: { quantity: 50 },
$set: { reordered: true }

}
)

if (results.hasWriteError()) {
print("unexpected error updating document: " + tojson(results));

}
else if (results.nMatched === 0) {

print("No matching document for " +
"{ _id: "+ myDocument._id.toString() +
", quantity: " + oldQuantity +
", reordered: " + oldReordered
+ " } "

);
}

}

Modifications to the Pattern

Another approach is to add a version field to the documents. Applications increment this field upon each update
operation to the documents. You must be able to ensure that all clients that connect to your database include the

3.3. MongoDB CRUD Tutorials 127

MongoDB Documentation, Release 2.6.11

version field in the query predicate. To associate increasing numbers with documents in a collection, you can use
one of the methods described in Create an Auto-Incrementing Sequence Field (page 130).

For more approaches, see Concurrency Control (page 86).

3.3.11 Create Tailable Cursor

On this page

• Overview (page 128)
• C++ Example (page 128)

Overview

By default, MongoDB will automatically close a cursor when the client has exhausted all results in the cursor. How-
ever, for capped collections (page 219) you may use a Tailable Cursor that remains open after the client exhausts
the results in the initial cursor. Tailable cursors are conceptually equivalent to the tail Unix command with the -f
option (i.e. with “follow” mode). After clients insert new additional documents into a capped collection, the tailable
cursor will continue to retrieve documents.

Use tailable cursors on capped collections that have high write volumes where indexes aren’t practical. For instance,
MongoDB replication (page 563) uses tailable cursors to tail the primary’s oplog.

Note: If your query is on an indexed field, do not use tailable cursors, but instead, use a regular cursor. Keep track of
the last value of the indexed field returned by the query. To retrieve the newly added documents, query the collection
again using the last value of the indexed field in the query criteria, as in the following example:

db.<collection>.find({ indexedField: { $gt: <lastvalue> } })

Consider the following behaviors related to tailable cursors:

• Tailable cursors do not use indexes and return documents in natural order.

• Because tailable cursors do not use indexes, the initial scan for the query may be expensive; but, after initially
exhausting the cursor, subsequent retrievals of the newly added documents are inexpensive.

• Tailable cursors may become dead, or invalid, if either:

– the query returns no match.

– the cursor returns the document at the “end” of the collection and then the application deletes that docu-
ment.

A dead cursor has an id of 0.

See your driver documentation for the driver-specific method to specify the tailable cursor.

C++ Example

The tail function uses a tailable cursor to output the results from a query to a capped collection:

• The function handles the case of the dead cursor by having the query be inside a loop.

• To periodically check for new data, the cursor->more() statement is also inside a loop.

128 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

#include "client/dbclient.h"

using namespace mongo;

/*
* Example of a tailable cursor.

* The function "tails" the capped collection (ns) and output elements as they are added.

* The function also handles the possibility of a dead cursor by tracking the field 'insertDate'.

* New documents are added with increasing values of 'insertDate'.

*/

void tail(DBClientBase& conn, const char *ns) {

BSONElement lastValue = minKey.firstElement();

Query query = Query().hint(BSON("$natural" << 1));

while (1) {
auto_ptr<DBClientCursor> c =

conn.query(ns, query, 0, 0, 0,
QueryOption_CursorTailable | QueryOption_AwaitData);

while (1) {
if (!c->more()) {

if (c->isDead()) {
break;

}

continue;
}

BSONObj o = c->next();
lastValue = o["insertDate"];
cout << o.toString() << endl;

}

query = QUERY("insertDate" << GT << lastValue).hint(BSON("$natural" << 1));
}

}

The tail function performs the following actions:

• Initialize the lastValue variable, which tracks the last accessed value. The function will use the lastValue
if the cursor becomes invalid and tail needs to restart the query. Use hint() to ensure that the query uses
the $natural order.

• In an outer while(1) loop,

– Query the capped collection and return a tailable cursor that blocks for several seconds waiting for new
documents

auto_ptr<DBClientCursor> c =
conn.query(ns, query, 0, 0, 0,

QueryOption_CursorTailable | QueryOption_AwaitData);

* Specify the capped collection using ns as an argument to the function.

* Set the QueryOption_CursorTailable option to create a tailable cursor.

3.3. MongoDB CRUD Tutorials 129

MongoDB Documentation, Release 2.6.11

* Set the QueryOption_AwaitData option so that the returned cursor blocks for a few seconds to
wait for data.

– In an inner while (1) loop, read the documents from the cursor:

* If the cursor has no more documents and is not invalid, loop the inner while loop to recheck for
more documents.

* If the cursor has no more documents and is dead, break the inner while loop.

* If the cursor has documents:

· output the document,

· update the lastValue value,

· and loop the inner while (1) loop to recheck for more documents.

– If the logic breaks out of the inner while (1) loop and the cursor is invalid:

* Use the lastValue value to create a new query condition that matches documents added after the
lastValue. Explicitly ensure $natural order with the hint() method:

query = QUERY("insertDate" << GT << lastValue).hint(BSON("$natural" << 1));

* Loop through the outer while (1) loop to re-query with the new query condition and repeat.

See also:

Detailed blog post on tailable cursor16

3.3.12 Create an Auto-Incrementing Sequence Field

On this page

• Synopsis (page 130)
• Considerations (page 130)
• Procedures (page 131)

Synopsis

MongoDB reserves the _id field in the top level of all documents as a primary key. _id must be unique, and always
has an index with a unique constraint (page 506). However, except for the unique constraint you can use any value for
the _id field in your collections. This tutorial describes two methods for creating an incrementing sequence number
for the _id field using the following:

• Use Counters Collection (page 131)

• Optimistic Loop (page 132)

Considerations

Generally in MongoDB, you would not use an auto-increment pattern for the _id field, or any field, because it does
not scale for databases with large numbers of documents. Typically the default value ObjectId is more ideal for the
_id.

16http://shtylman.com/post/the-tail-of-mongodb

130 Chapter 3. MongoDB CRUD Operations

http://shtylman.com/post/the-tail-of-mongodb

MongoDB Documentation, Release 2.6.11

Procedures

Use Counters Collection

Counter Collection Implementation Use a separate counters collection to track the last number sequence used.
The _id field contains the sequence name and the seq field contains the last value of the sequence.

1. Insert into the counters collection, the initial value for the userid:

db.counters.insert(
{

_id: "userid",
seq: 0

}
)

2. Create a getNextSequence function that accepts a name of the sequence. The function uses the
findAndModify() method to atomically increment the seq value and return this new value:

function getNextSequence(name) {
var ret = db.counters.findAndModify(

{
query: { _id: name },
update: { $inc: { seq: 1 } },
new: true

}
);

return ret.seq;
}

3. Use this getNextSequence() function during insert().

db.users.insert(
{

_id: getNextSequence("userid"),
name: "Sarah C."

}
)

db.users.insert(
{

_id: getNextSequence("userid"),
name: "Bob D."

}
)

You can verify the results with find():

db.users.find()

The _id fields contain incrementing sequence values:

{
_id : 1,
name : "Sarah C."

}
{
_id : 2,

3.3. MongoDB CRUD Tutorials 131

MongoDB Documentation, Release 2.6.11

name : "Bob D."
}

findAndModify Behavior When findAndModify() includes the upsert: true option and the query
field(s) is not uniquely indexed, the method could insert a document multiple times in certain circumstances. For
instance, if multiple clients each invoke the method with the same query condition and these methods complete the
find phase before any of methods perform the modify phase, these methods could insert the same document.

In the counters collection example, the query field is the _id field, which always has a unique index. Consider
that the findAndModify() includes the upsert: true option, as in the following modified example:

function getNextSequence(name) {
var ret = db.counters.findAndModify(

{
query: { _id: name },
update: { $inc: { seq: 1 } },
new: true,
upsert: true

}
);

return ret.seq;
}

If multiple clients were to invoke the getNextSequence() method with the same name parameter, then the
methods would observe one of the following behaviors:

• Exactly one findAndModify() would successfully insert a new document.

• Zero or more findAndModify() methods would update the newly inserted document.

• Zero or more findAndModify() methods would fail when they attempted to insert a duplicate.

If the method fails due to a unique index constraint violation, retry the method. Absent a delete of the document, the
retry should not fail.

Optimistic Loop

In this pattern, an Optimistic Loop calculates the incremented _id value and attempts to insert a document with the
calculated _id value. If the insert is successful, the loop ends. Otherwise, the loop will iterate through possible _id
values until the insert is successful.

1. Create a function named insertDocument that performs the “insert if not present” loop. The function wraps
the insert() method and takes a doc and a targetCollection arguments.

Changed in version 2.6: The db.collection.insert() method now returns a writeresults-insert object
that contains the status of the operation. Previous versions required an extra db.getLastErrorObj()
method call.

function insertDocument(doc, targetCollection) {

while (1) {

var cursor = targetCollection.find({}, { _id: 1 }).sort({ _id: -1 }).limit(1);

var seq = cursor.hasNext() ? cursor.next()._id + 1 : 1;

doc._id = seq;

132 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

var results = targetCollection.insert(doc);

if(results.hasWriteError()) {
if(results.writeError.code == 11000 /* dup key */)

continue;
else

print("unexpected error inserting data: " + tojson(results));
}

break;
}

}

The while (1) loop performs the following actions:

• Queries the targetCollection for the document with the maximum _id value.

• Determines the next sequence value for _id by:

– adding 1 to the returned _id value if the returned cursor points to a document.

– otherwise: it sets the next sequence value to 1 if the returned cursor points to no document.

• For the doc to insert, set its _id field to the calculated sequence value seq.

• Insert the doc into the targetCollection.

• If the insert operation errors with duplicate key, repeat the loop. Otherwise, if the insert operation encoun-
ters some other error or if the operation succeeds, break out of the loop.

2. Use the insertDocument() function to perform an insert:

var myCollection = db.users2;

insertDocument(
{

name: "Grace H."
},
myCollection

);

insertDocument(
{

name: "Ted R."
},
myCollection

)

You can verify the results with find():

db.users2.find()

The _id fields contain incrementing sequence values:

{
_id: 1,
name: "Grace H."

}
{
_id : 2,
"name" : "Ted R."

}

3.3. MongoDB CRUD Tutorials 133

MongoDB Documentation, Release 2.6.11

The while loop may iterate many times in collections with larger insert volumes.

3.4 MongoDB CRUD Reference

On this page

• Query Cursor Methods (page 134)
• Query and Data Manipulation Collection Methods (page 134)
• MongoDB CRUD Reference Documentation (page 134)

3.4.1 Query Cursor Methods

Name Description
cursor.count() Returns a count of the documents in a cursor.
cursor.explain() Reports on the query execution plan, including index use, for a cursor.
cursor.hint() Forces MongoDB to use a specific index for a query.
cursor.limit() Constrains the size of a cursor’s result set.
cursor.next() Returns the next document in a cursor.
cursor.skip() Returns a cursor that begins returning results only after passing or skipping a number of

documents.
cursor.sort() Returns results ordered according to a sort specification.
cursor.toArray() Returns an array that contains all documents returned by the cursor.

3.4.2 Query and Data Manipulation Collection Methods

Name Description
db.collection.count() Wraps count to return a count of the number of documents in a collection or

matching a query.
db.collection.distinct()Returns an array of documents that have distinct values for the specified field.
db.collection.find() Performs a query on a collection and returns a cursor object.
db.collection.findOne()Performs a query and returns a single document.
db.collection.insert()Creates a new document in a collection.
db.collection.remove()Deletes documents from a collection.
db.collection.save() Provides a wrapper around an insert() and update() to insert new

documents.
db.collection.update()Modifies a document in a collection.

3.4.3 MongoDB CRUD Reference Documentation

Write Concern Reference (page 135) Configuration options associated with the guarantee MongoDB provides when
reporting on the success of a write operation.

SQL to MongoDB Mapping Chart (page 136) An overview of common database operations showing both the Mon-
goDB operations and SQL statements.

The bios Example Collection (page 142) Sample data for experimenting with MongoDB. insert(), update()
and find() pages use the data for some of their examples.

134 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

Write Concern Reference

On this page

• Available Write Concern (page 135)

Write concern (page 82) describes the guarantee that MongoDB provides when reporting on the success of a write
operation.

Changed in version 2.6: A new protocol for write operations (page 832) integrates write concerns with the write oper-
ations and eliminates the need to call the getLastError command. Previous versions required a getLastError
command immediately after a write operation to specify the write concern.

Available Write Concern

Write concern can include the w (page 135) option to specify the required number of acknowledgments before return-
ing, the j (page 136) option to require writes to the journal before returning, and wtimeout (page 136) option to specify
a time limit to prevent write operations from blocking indefinitely.

In sharded clusters, mongos instances will pass the write concern on to the shard.

w Option The w option provides the ability to disable write concern entirely as well as specify the write concern for
replica sets.

MongoDB uses w: 1 as the default write concern. w: 1 provides basic receipt acknowledgment.

The w option accepts the following values:

Value Description
1 Provides acknowledgment of write operations on a standalone mongod or the primary in a

replica set.
This is the default write concern for MongoDB.

0 Disables basic acknowledgment of write operations, but returns information about socket
exceptions and networking errors to the application.
If you disable basic write operation acknowledgment but require journal commit
acknowledgment, the journal commit prevails, and the server will require that mongod
acknowledge the write operation.

<Number
greater than
1>

Guarantees that write operations have propagated successfully to the specified number of replica
set members including the primary.
For example, w: 2 indicates acknowledgements from the primary and at least one secondary.
If you set w to a number that is greater than the number of set members that hold data,
MongoDB waits for the non-existent members to become available, which means MongoDB
blocks indefinitely.

"majority" Confirms that write operations have propagated to the majority of configured replica set: a
majority of the set’s configured members must acknowledge the write operation before it
succeeds. This allows you to avoid hard coding assumptions about the size of your replica set
into your application.
Changed in version 2.6: In Master/Slave (page 600) deployments, MongoDB treats w:
"majority" as equivalent to w: 1. In earlier versions of MongoDB, w: "majority"
produces an error in master/slave (page 600) deployments.

<tag set> By specifying a tag set (page 641), you can have fine-grained control over which replica set
members must acknowledge a write operation to satisfy the required level of write concern.

3.4. MongoDB CRUD Reference 135

MongoDB Documentation, Release 2.6.11

j Option The j option confirms that the mongod instance has written the data to the on-disk journal. This ensures
that data is not lost if the mongod instance shuts down unexpectedly. Set to true to enable.

Changed in version 2.6: Specifying a write concern that includes j: true to a mongod or mongos running with
--nojournal option now errors. Previous versions would ignore the j: true.

Note: Requiring journaled write concern in a replica set only requires a journal commit of the write operation to the
primary of the set regardless of the level of replica acknowledged write concern.

wtimeout This option specifies a time limit, in milliseconds, for the write concern. wtimeout is only applicable
for w values greater than 1.

wtimeout causes write operations to return with an error after the specified limit, even if the required write concern
will eventually succeed. When these write operations return, MongoDB does not undo successful data modifications
performed before the write concern exceeded the wtimeout time limit.

If you do not specify the wtimeout option and the level of write concern is unachievable, the write operation will
block indefinitely. Specifying a wtimeout value of 0 is equivalent to a write concern without the wtimeout option.

See also:

Write Concern Introduction (page 82) and Write Concern for Replica Sets (page 83).

SQL to MongoDB Mapping Chart

On this page

• Terminology and Concepts (page 136)
• Executables (page 137)
• Examples (page 137)
• Additional Resources (page 141)

In addition to the charts that follow, you might want to consider the Frequently Asked Questions (page 761) section for
a selection of common questions about MongoDB.

Terminology and Concepts

The following table presents the various SQL terminology and concepts and the corresponding MongoDB terminology
and concepts.

SQL Terms/Concepts MongoDB Terms/Concepts
database database
table collection
row document or BSON document
column field
index index
table joins embedded documents and linking
primary key
Specify any unique column or column combination as
primary key.

primary key
In MongoDB, the primary key is automatically set to
the _id field.

aggregation (e.g. group by) aggregation pipeline
See the SQL to Aggregation Mapping Chart
(page 477).

136 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

Executables

The following table presents some database executables and the corresponding MongoDB executables. This table is
not meant to be exhaustive.

MongoDB MySQL Oracle Informix DB2
Database Server mongod mysqld oracle IDS DB2 Server
Database Client mongo mysql sqlplus DB-Access DB2 Client

Examples

The following table presents the various SQL statements and the corresponding MongoDB statements. The examples
in the table assume the following conditions:

• The SQL examples assume a table named users.

• The MongoDB examples assume a collection named users that contain documents of the following prototype:

{
_id: ObjectId("509a8fb2f3f4948bd2f983a0"),
user_id: "abc123",
age: 55,
status: 'A'

}

Create and Alter The following table presents the various SQL statements related to table-level actions and the
corresponding MongoDB statements.

3.4. MongoDB CRUD Reference 137

MongoDB Documentation, Release 2.6.11

SQL Schema Statements MongoDB Schema Statements

CREATE TABLE users (
id MEDIUMINT NOT NULL

AUTO_INCREMENT,
user_id Varchar(30),
age Number,
status char(1),
PRIMARY KEY (id)

)

Implicitly created on first insert() operation. The
primary key _id is automatically added if _id field is
not specified.
db.users.insert({

user_id: "abc123",
age: 55,
status: "A"

})
However, you can also explicitly create a collection:
db.createCollection("users")

ALTER TABLE users
ADD join_date DATETIME

Collections do not describe or enforce the structure of
its documents; i.e. there is no structural alteration at the
collection level.
However, at the document level, update() operations
can add fields to existing documents using the $set op-
erator.
db.users.update(

{ },
{ $set: { join_date: new Date() } },
{ multi: true }

)

ALTER TABLE users
DROP COLUMN join_date

Collections do not describe or enforce the structure of
its documents; i.e. there is no structural alteration at the
collection level.
However, at the document level, update() operations
can remove fields from documents using the $unset
operator.
db.users.update(

{ },
{ $unset: { join_date: "" } },
{ multi: true }

)

CREATE INDEX idx_user_id_asc
ON users(user_id)

db.users.ensureIndex({ user_id: 1 })

CREATE INDEX
idx_user_id_asc_age_desc

ON users(user_id, age DESC)

db.users.ensureIndex({ user_id: 1, age: -1 })

DROP TABLE users db.users.drop()

For more information, see db.collection.insert(), db.createCollection(),
db.collection.update(), $set, $unset, db.collection.ensureIndex(), indexes (page 485),
db.collection.drop(), and Data Modeling Concepts (page 151).

Insert The following table presents the various SQL statements related to inserting records into tables and the cor-
responding MongoDB statements.

138 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

SQL INSERT Statements MongoDB insert() Statements

INSERT INTO users(user_id,
age,
status)

VALUES ("bcd001",
45,
"A")

db.users.insert(
{ user_id: "bcd001", age: 45, status: "A" }

)

For more information, see db.collection.insert().

Select The following table presents the various SQL statements related to reading records from tables and the corre-
sponding MongoDB statements.

3.4. MongoDB CRUD Reference 139

MongoDB Documentation, Release 2.6.11

SQL SELECT Statements MongoDB find() Statements

SELECT *
FROM users

db.users.find()

SELECT id,
user_id,
status

FROM users

db.users.find(
{ },
{ user_id: 1, status: 1 }

)

SELECT user_id, status
FROM users

db.users.find(
{ },
{ user_id: 1, status: 1, _id: 0 }

)

SELECT *
FROM users
WHERE status = "A"

db.users.find(
{ status: "A" }

)

SELECT user_id, status
FROM users
WHERE status = "A"

db.users.find(
{ status: "A" },
{ user_id: 1, status: 1, _id: 0 }

)

SELECT *
FROM users
WHERE status != "A"

db.users.find(
{ status: { $ne: "A" } }

)

SELECT *
FROM users
WHERE status = "A"
AND age = 50

db.users.find(
{ status: "A",
age: 50 }

)

SELECT *
FROM users
WHERE status = "A"
OR age = 50

db.users.find(
{ $or: [{ status: "A" } ,

{ age: 50 }] }
)

SELECT *
FROM users
WHERE age > 25

db.users.find(
{ age: { $gt: 25 } }

)

SELECT *
FROM users
WHERE age < 25

db.users.find(
{ age: { $lt: 25 } }

)

SELECT *
FROM users
WHERE age > 25
AND age <= 50

db.users.find(
{ age: { $gt: 25, $lte: 50 } }

)

SELECT *
FROM users
WHERE user_id like "%bc%"

db.users.find({ user_id: /bc/ })

SELECT *
FROM users
WHERE user_id like "bc%"

db.users.find({ user_id: /^bc/ })

SELECT *
FROM users
WHERE status = "A"
ORDER BY user_id ASC

db.users.find({ status: "A" }).sort({ user_id: 1 })

SELECT *
FROM users
WHERE status = "A"
ORDER BY user_id DESC

db.users.find({ status: "A" }).sort({ user_id: -1 })

SELECT COUNT(*)
FROM users

db.users.count()
or
db.users.find().count()

SELECT COUNT(user_id)
FROM users

db.users.count({ user_id: { $exists: true } })
or
db.users.find({ user_id: { $exists: true } }).count()

SELECT COUNT(*)
FROM users
WHERE age > 30

db.users.count({ age: { $gt: 30 } })
or
db.users.find({ age: { $gt: 30 } }).count()

SELECT DISTINCT(status)
FROM users

db.users.distinct("status")

SELECT *
FROM users
LIMIT 1

db.users.findOne()
or
db.users.find().limit(1)

SELECT *
FROM users
LIMIT 5
SKIP 10

db.users.find().limit(5).skip(10)

EXPLAIN SELECT *
FROM users
WHERE status = "A"

db.users.find({ status: "A" }).explain()

140 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

For more information, see db.collection.find(), db.collection.distinct(),
db.collection.findOne(), $ne $and, $or, $gt, $lt, $exists, $lte, $regex, limit(), skip(),
explain(), sort(), and count().

Update Records The following table presents the various SQL statements related to updating existing records in
tables and the corresponding MongoDB statements.

SQL Update Statements MongoDB update() Statements

UPDATE users
SET status = "C"
WHERE age > 25

db.users.update(
{ age: { $gt: 25 } },
{ $set: { status: "C" } },
{ multi: true }

)

UPDATE users
SET age = age + 3
WHERE status = "A"

db.users.update(
{ status: "A" } ,
{ $inc: { age: 3 } },
{ multi: true }

)

For more information, see db.collection.update(), $set, $inc, and $gt.

Delete Records The following table presents the various SQL statements related to deleting records from tables and
the corresponding MongoDB statements.

SQL Delete Statements MongoDB remove() Statements

DELETE FROM users
WHERE status = "D"

db.users.remove({ status: "D" })

DELETE FROM users db.users.remove({})

For more information, see db.collection.remove().

Additional Resources

• Transitioning from SQL to MongoDB (Presentation)17

• Best Practices for Migrating from RDBMS to MongoDB (Webinar)18

• RDBMS to MongoDB Migration Guide19

• SQL vs. MongoDB Day 1-220

• SQL vs. MongoDB Day 3-521

• MongoDB vs. SQL Day 1822

17http://www.mongodb.com/presentations/webinar-transitioning-sql-mongodb?jmp=docs
18http://www.mongodb.com/webinar/best-practices-migration?jmp=docs
19http://www.mongodb.com/lp/white-paper/migration-rdbms-nosql-mongodb?jmp=docs
20http://www.mongodb.com/blog/post/mongodb-vs-sql-day-1-2?jmp=docs
21http://www.mongodb.com/blog/post/mongodb-vs-sql-day-3-5?jmp=docs
22http://www.mongodb.com/blog/post/mongodb-vs-sql-day-14?jmp=docs

3.4. MongoDB CRUD Reference 141

http://www.mongodb.com/presentations/webinar-transitioning-sql-mongodb?jmp=docs
http://www.mongodb.com/webinar/best-practices-migration?jmp=docs
http://www.mongodb.com/lp/white-paper/migration-rdbms-nosql-mongodb?jmp=docs
http://www.mongodb.com/blog/post/mongodb-vs-sql-day-1-2?jmp=docs
http://www.mongodb.com/blog/post/mongodb-vs-sql-day-3-5?jmp=docs
http://www.mongodb.com/blog/post/mongodb-vs-sql-day-14?jmp=docs

MongoDB Documentation, Release 2.6.11

• MongoDB and MySQL Compared23

• MongoDB Database Modernization Consulting Package24

The bios Example Collection

The bios collection provides example data for experimenting with MongoDB. Many of this guide’s examples on
insert, update and read operations create or query data from the bios collection.

The following documents comprise the bios collection. In the examples, the data might be different, as the examples
themselves make changes to the data.

{
"_id" : 1,
"name" : {

"first" : "John",
"last" : "Backus"

},
"birth" : ISODate("1924-12-03T05:00:00Z"),
"death" : ISODate("2007-03-17T04:00:00Z"),
"contribs" : [

"Fortran",
"ALGOL",
"Backus-Naur Form",
"FP"

],
"awards" : [

{
"award" : "W.W. McDowell Award",
"year" : 1967,
"by" : "IEEE Computer Society"

},
{

"award" : "National Medal of Science",
"year" : 1975,
"by" : "National Science Foundation"

},
{

"award" : "Turing Award",
"year" : 1977,
"by" : "ACM"

},
{

"award" : "Draper Prize",
"year" : 1993,
"by" : "National Academy of Engineering"

}
]

}

{
"_id" : ObjectId("51df07b094c6acd67e492f41"),
"name" : {

"first" : "John",
"last" : "McCarthy"

},

23http://www.mongodb.com/mongodb-and-mysql-compared?jmp=docs
24https://www.mongodb.com/products/consulting?jmp=docs#database_modernization

142 Chapter 3. MongoDB CRUD Operations

http://www.mongodb.com/mongodb-and-mysql-compared?jmp=docs
https://www.mongodb.com/products/consulting?jmp=docs#database_modernization

MongoDB Documentation, Release 2.6.11

"birth" : ISODate("1927-09-04T04:00:00Z"),
"death" : ISODate("2011-12-24T05:00:00Z"),
"contribs" : [

"Lisp",
"Artificial Intelligence",
"ALGOL"

],
"awards" : [

{
"award" : "Turing Award",
"year" : 1971,
"by" : "ACM"

},
{

"award" : "Kyoto Prize",
"year" : 1988,
"by" : "Inamori Foundation"

},
{

"award" : "National Medal of Science",
"year" : 1990,
"by" : "National Science Foundation"

}
]

}

{
"_id" : 3,
"name" : {

"first" : "Grace",
"last" : "Hopper"

},
"title" : "Rear Admiral",
"birth" : ISODate("1906-12-09T05:00:00Z"),
"death" : ISODate("1992-01-01T05:00:00Z"),
"contribs" : [

"UNIVAC",
"compiler",
"FLOW-MATIC",
"COBOL"

],
"awards" : [

{
"award" : "Computer Sciences Man of the Year",
"year" : 1969,
"by" : "Data Processing Management Association"

},
{

"award" : "Distinguished Fellow",
"year" : 1973,
"by" : " British Computer Society"

},
{

"award" : "W. W. McDowell Award",
"year" : 1976,
"by" : "IEEE Computer Society"

},
{

3.4. MongoDB CRUD Reference 143

MongoDB Documentation, Release 2.6.11

"award" : "National Medal of Technology",
"year" : 1991,
"by" : "United States"

}
]

}

{
"_id" : 4,
"name" : {

"first" : "Kristen",
"last" : "Nygaard"

},
"birth" : ISODate("1926-08-27T04:00:00Z"),
"death" : ISODate("2002-08-10T04:00:00Z"),
"contribs" : [

"OOP",
"Simula"

],
"awards" : [

{
"award" : "Rosing Prize",
"year" : 1999,
"by" : "Norwegian Data Association"

},
{

"award" : "Turing Award",
"year" : 2001,
"by" : "ACM"

},
{

"award" : "IEEE John von Neumann Medal",
"year" : 2001,
"by" : "IEEE"

}
]

}

{
"_id" : 5,
"name" : {

"first" : "Ole-Johan",
"last" : "Dahl"

},
"birth" : ISODate("1931-10-12T04:00:00Z"),
"death" : ISODate("2002-06-29T04:00:00Z"),
"contribs" : [

"OOP",
"Simula"

],
"awards" : [

{
"award" : "Rosing Prize",
"year" : 1999,
"by" : "Norwegian Data Association"

},
{

"award" : "Turing Award",

144 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

"year" : 2001,
"by" : "ACM"

},
{

"award" : "IEEE John von Neumann Medal",
"year" : 2001,
"by" : "IEEE"

}
]

}

{
"_id" : 6,
"name" : {

"first" : "Guido",
"last" : "van Rossum"

},
"birth" : ISODate("1956-01-31T05:00:00Z"),
"contribs" : [

"Python"
],
"awards" : [

{
"award" : "Award for the Advancement of Free Software",
"year" : 2001,
"by" : "Free Software Foundation"

},
{

"award" : "NLUUG Award",
"year" : 2003,
"by" : "NLUUG"

}
]

}

{
"_id" : ObjectId("51e062189c6ae665454e301d"),
"name" : {

"first" : "Dennis",
"last" : "Ritchie"

},
"birth" : ISODate("1941-09-09T04:00:00Z"),
"death" : ISODate("2011-10-12T04:00:00Z"),
"contribs" : [

"UNIX",
"C"

],
"awards" : [

{
"award" : "Turing Award",
"year" : 1983,
"by" : "ACM"

},
{

"award" : "National Medal of Technology",
"year" : 1998,
"by" : "United States"

},

3.4. MongoDB CRUD Reference 145

MongoDB Documentation, Release 2.6.11

{
"award" : "Japan Prize",
"year" : 2011,
"by" : "The Japan Prize Foundation"

}
]

}

{
"_id" : 8,
"name" : {

"first" : "Yukihiro",
"aka" : "Matz",
"last" : "Matsumoto"

},
"birth" : ISODate("1965-04-14T04:00:00Z"),
"contribs" : [

"Ruby"
],
"awards" : [

{
"award" : "Award for the Advancement of Free Software",
"year" : "2011",
"by" : "Free Software Foundation"

}
]

}

{
"_id" : 9,
"name" : {

"first" : "James",
"last" : "Gosling"

},
"birth" : ISODate("1955-05-19T04:00:00Z"),
"contribs" : [

"Java"
],
"awards" : [

{
"award" : "The Economist Innovation Award",
"year" : 2002,
"by" : "The Economist"

},
{

"award" : "Officer of the Order of Canada",
"year" : 2007,
"by" : "Canada"

}
]

}

{
"_id" : 10,
"name" : {

"first" : "Martin",
"last" : "Odersky"

},

146 Chapter 3. MongoDB CRUD Operations

MongoDB Documentation, Release 2.6.11

"contribs" : [
"Scala"

]
}

3.4. MongoDB CRUD Reference 147

MongoDB Documentation, Release 2.6.11

148 Chapter 3. MongoDB CRUD Operations

CHAPTER 4

Data Models

Data in MongoDB has a flexible schema. Collections do not enforce document structure. This flexibility gives you
data-modeling choices to match your application and its performance requirements.

Data Modeling Introduction (page 149) An introduction to data modeling in MongoDB.

Data Modeling Concepts (page 151) The core documentation detailing the decisions you must make when determin-
ing a data model, and discussing considerations that should be taken into account.

Data Model Examples and Patterns (page 158) Examples of possible data models that you can use to structure your
MongoDB documents.

Data Model Reference (page 176) Reference material for data modeling for developers of MongoDB applications.

4.1 Data Modeling Introduction

On this page

• Document Structure (page 149)
• Atomicity of Write Operations (page 150)
• Document Growth (page 151)
• Data Use and Performance (page 151)

Data in MongoDB has a flexible schema. Unlike SQL databases, where you must determine and declare a table’s
schema before inserting data, MongoDB’s collections do not enforce document structure. This flexibility facilitates
the mapping of documents to an entity or an object. Each document can match the data fields of the represented entity,
even if the data has substantial variation. In practice, however, the documents in a collection share a similar structure.

The key challenge in data modeling is balancing the needs of the application, the performance characteristics of the
database engine, and the data retrieval patterns. When designing data models, always consider the application usage
of the data (i.e. queries, updates, and processing of the data) as well as the inherent structure of the data itself.

4.1.1 Document Structure

The key decision in designing data models for MongoDB applications revolves around the structure of documents and
how the application represents relationships between data. There are two tools that allow applications to represent
these relationships: references and embedded documents.

149

MongoDB Documentation, Release 2.6.11

References

References store the relationships between data by including links or references from one document to another. Appli-
cations can resolve these references (page 179) to access the related data. Broadly, these are normalized data models.

See Normalized Data Models (page 153) for the strengths and weaknesses of using references.

Embedded Data

Embedded documents capture relationships between data by storing related data in a single document structure. Mon-
goDB documents make it possible to embed document structures in a field or array within a document. These denor-
malized data models allow applications to retrieve and manipulate related data in a single database operation.

See Embedded Data Models (page 152) for the strengths and weaknesses of embedding documents.

4.1.2 Atomicity of Write Operations

In MongoDB, write operations are atomic at the document level, and no single write operation can atomically affect
more than one document or more than one collection. A denormalized data model with embedded data combines
all related data for a represented entity in a single document. This facilitates atomic write operations since a single
write operation can insert or update the data for an entity. Normalizing the data would split the data across multiple
collections and would require multiple write operations that are not atomic collectively.

However, schemas that facilitate atomic writes may limit ways that applications can use the data or may limit ways to
modify applications. The Atomicity Considerations (page 154) documentation describes the challenge of designing a
schema that balances flexibility and atomicity.

150 Chapter 4. Data Models

MongoDB Documentation, Release 2.6.11

4.1.3 Document Growth

Some updates, such as pushing elements to an array or adding new fields, increase a document’s size. If the document
size exceeds the allocated space for that document, MongoDB relocates the document on disk. The growth consider-
ation can affect the decision to normalize or denormalize data. See Document Growth Considerations (page 154) for
more about planning for and managing document growth in MongoDB.

4.1.4 Data Use and Performance

When designing a data model, consider how applications will use your database. For instance, if your application only
uses recently inserted documents, consider using Capped Collections (page 219). Or if your application needs are
mainly read operations to a collection, adding indexes to support common queries can improve performance.

See Operational Factors and Data Models (page 154) for more information on these and other operational considera-
tions that affect data model designs.

4.2 Data Modeling Concepts

Consider the following aspects of data modeling in MongoDB:

Data Model Design (page 152) Presents the different strategies that you can choose from when determining your data
model, their strengths and their weaknesses.

Operational Factors and Data Models (page 154) Details features you should keep in mind when designing your
data model, such as lifecycle management, indexing, horizontal scalability, and document growth.

GridFS (page 156) GridFS is a specification for storing documents that exceeds the BSON-document size limit of
16MB.

4.2. Data Modeling Concepts 151

MongoDB Documentation, Release 2.6.11

For a general introduction to data modeling in MongoDB, see the Data Modeling Introduction (page 149). For example
data models, see Data Modeling Examples and Patterns (page 158).

4.2.1 Data Model Design

On this page

• Embedded Data Models (page 152)
• Normalized Data Models (page 153)
• Additional Resources (page 154)

Effective data models support your application needs. The key consideration for the structure of your documents is
the decision to embed (page 152) or to use references (page 153).

Embedded Data Models

With MongoDB, you may embed related data in a single structure or document. These schema are generally known
as “denormalized” models, and take advantage of MongoDB’s rich documents. Consider the following diagram:

Embedded data models allow applications to store related pieces of information in the same database record. As a
result, applications may need to issue fewer queries and updates to complete common operations.

In general, use embedded data models when:

• you have “contains” relationships between entities. See Model One-to-One Relationships with Embedded Doc-
uments (page 159).

• you have one-to-many relationships between entities. In these relationships the “many” or child documents
always appear with or are viewed in the context of the “one” or parent documents. See Model One-to-Many
Relationships with Embedded Documents (page 160).

152 Chapter 4. Data Models

MongoDB Documentation, Release 2.6.11

In general, embedding provides better performance for read operations, as well as the ability to request and retrieve
related data in a single database operation. Embedded data models make it possible to update related data in a single
atomic write operation.

However, embedding related data in documents may lead to situations where documents grow after creation. Doc-
ument growth can impact write performance and lead to data fragmentation. See Document Growth (page 154) for
details. Furthermore, documents in MongoDB must be smaller than the maximum BSON document size. For
bulk binary data, consider GridFS (page 156).

To interact with embedded documents, use dot notation to “reach into” embedded documents. See query for data in
arrays (page 103) and query data in embedded documents (page 102) for more examples on accessing data in arrays
and embedded documents.

Normalized Data Models

Normalized data models describe relationships using references (page 179) between documents.

In general, use normalized data models:

• when embedding would result in duplication of data but would not provide sufficient read performance advan-
tages to outweigh the implications of the duplication.

• to represent more complex many-to-many relationships.

• to model large hierarchical data sets.

References provides more flexibility than embedding. However, client-side applications must issue follow-up queries
to resolve the references. In other words, normalized data models can require more round trips to the server.

See Model One-to-Many Relationships with Document References (page 161) for an example of referencing. For
examples of various tree models using references, see Model Tree Structures (page 163).

4.2. Data Modeling Concepts 153

MongoDB Documentation, Release 2.6.11

Additional Resources

• Thinking in Documents (Presentation)1

• Schema Design for Time Series Data (Presentation)2

• Socialite, the Open Source Status Feed - Storing a Social Graph (Presentation)3

• MongoDB Rapid Start Consultation Services4

4.2.2 Operational Factors and Data Models

On this page

• Document Growth (page 154)
• Atomicity (page 154)
• Sharding (page 155)
• Indexes (page 155)
• Large Number of Collections (page 155)
• Data Lifecycle Management (page 156)

Modeling application data for MongoDB depends on both the data itself, as well as the characteristics of MongoDB
itself. For example, different data models may allow applications to use more efficient queries, increase the throughput
of insert and update operations, or distribute activity to a sharded cluster more effectively.

These factors are operational or address requirements that arise outside of the application but impact the performance
of MongoDB based applications. When developing a data model, analyze all of your application’s read operations
(page 64) and write operations (page 77) in conjunction with the following considerations.

Document Growth

Some updates to documents can increase the size of documents. These updates include pushing elements to an array
(i.e. $push) and adding new fields to a document. If the document size exceeds the allocated space for that document,
MongoDB will relocate the document on disk. Relocating documents takes longer than in place updates and can lead to
fragmented storage. Although MongoDB automatically adds padding to document allocations (page 95) to minimize
the likelihood of relocation, data models should avoid document growth when possible.

For instance, if your applications require updates that will cause document growth, you may want to refactor your data
model to use references between data in distinct documents rather than a denormalized data model.

MongoDB adaptively adjusts the amount of automatic padding to reduce occurrences of relocation. You may also use
a pre-allocation strategy to explicitly avoid document growth. Refer to the Pre-Aggregated Reports Use Case5 for an
example of the pre-allocation approach to handling document growth.

See Storage (page 94) for more information on MongoDB’s storage model and record allocation strategies.

Atomicity

In MongoDB, operations are atomic at the document level. No single write operation can change more than one
document. Operations that modify more than a single document in a collection still operate on one document at a time.

1http://www.mongodb.com/presentations/webinar-back-basics-1-thinking-documents?jmp=docs
2http://www.mongodb.com/presentations/webinar-time-series-data-mongodb?jmp=docs
3http://www.mongodb.com/presentations/socialite-open-source-status-feed-part-2-managing-social-graph?jmp=docs
4https://www.mongodb.com/products/consulting?jmp=docs#rapid_start
5https://docs.mongodb.org/ecosystem/use-cases/pre-aggregated-reports

154 Chapter 4. Data Models

http://www.mongodb.com/presentations/webinar-back-basics-1-thinking-documents?jmp=docs
http://www.mongodb.com/presentations/webinar-time-series-data-mongodb?jmp=docs
http://www.mongodb.com/presentations/socialite-open-source-status-feed-part-2-managing-social-graph?jmp=docs
https://www.mongodb.com/products/consulting?jmp=docs#rapid_start
https://docs.mongodb.org/ecosystem/use-cases/pre-aggregated-reports

MongoDB Documentation, Release 2.6.11

6 Ensure that your application stores all fields with atomic dependency requirements in the same document. If the
application can tolerate non-atomic updates for two pieces of data, you can store these data in separate documents.

A data model that embeds related data in a single document facilitates these kinds of atomic operations. For data mod-
els that store references between related pieces of data, the application must issue separate read and write operations
to retrieve and modify these related pieces of data.

See Model Data for Atomic Operations (page 171) for an example data model that provides atomic updates for a single
document.

Sharding

MongoDB uses sharding to provide horizontal scaling. These clusters support deployments with large data sets and
high-throughput operations. Sharding allows users to partition a collection within a database to distribute the collec-
tion’s documents across a number of mongod instances or shards.

To distribute data and application traffic in a sharded collection, MongoDB uses the shard key (page 687). Selecting
the proper shard key (page 687) has significant implications for performance, and can enable or prevent query isolation
and increased write capacity. It is important to consider carefully the field or fields to use as the shard key.

See Sharding Introduction (page 675) and Shard Keys (page 687) for more information.

Indexes

Use indexes to improve performance for common queries. Build indexes on fields that appear often in queries and for
all operations that return sorted results. MongoDB automatically creates a unique index on the _id field.

As you create indexes, consider the following behaviors of indexes:

• Each index requires at least 8KB of data space.

• Adding an index has some negative performance impact for write operations. For collections with high write-
to-read ratio, indexes are expensive since each insert must also update any indexes.

• Collections with high read-to-write ratio often benefit from additional indexes. Indexes do not affect un-indexed
read operations.

• When active, each index consumes disk space and memory. This usage can be significant and should be tracked
for capacity planning, especially for concerns over working set size.

See Indexing Strategies (page 551) for more information on indexes as well as Analyze Query Performance (page 117).
Additionally, the MongoDB database profiler (page 239) may help identify inefficient queries.

Large Number of Collections

In certain situations, you might choose to store related information in several collections rather than in a single collec-
tion.

Consider a sample collection logs that stores log documents for various environment and applications. The logs
collection contains documents of the following form:

{ log: "dev", ts: ..., info: ... }
{ log: "debug", ts: ..., info: ...}

6 Document-level atomic operations include all operations within a single MongoDB document record: operations that affect multiple embedded
documents within that single record are still atomic.

4.2. Data Modeling Concepts 155

MongoDB Documentation, Release 2.6.11

If the total number of documents is low, you may group documents into collection by type. For logs, consider main-
taining distinct log collections, such as logs_dev and logs_debug. The logs_dev collection would contain
only the documents related to the dev environment.

Generally, having a large number of collections has no significant performance penalty and results in very good
performance. Distinct collections are very important for high-throughput batch processing.

When using models that have a large number of collections, consider the following behaviors:

• Each collection has a certain minimum overhead of a few kilobytes.

• Each index, including the index on _id, requires at least 8KB of data space.

• For each database, a single namespace file (i.e. <database>.ns) stores all meta-data for that database, and
each index and collection has its own entry in the namespace file. MongoDB places limits on the size
of namespace files.

• MongoDB has limits on the number of namespaces. You may wish to know the current number
of namespaces in order to determine how many additional namespaces the database can support. To get the
current number of namespaces, run the following in the mongo shell:

db.system.namespaces.count()

The limit on the number of namespaces depend on the <database>.ns size. The namespace file defaults to
16 MB.

To change the size of the new namespace file, start the server with the option --nssize <new size MB>.
For existing databases, after starting up the server with --nssize, run the db.repairDatabase() com-
mand from the mongo shell. For impacts and considerations on running db.repairDatabase(), see
repairDatabase.

Data Lifecycle Management

Data modeling decisions should take data lifecycle management into consideration.

The Time to Live or TTL feature (page 222) of collections expires documents after a period of time. Consider using
the TTL feature if your application requires some data to persist in the database for a limited period of time.

Additionally, if your application only uses recently inserted documents, consider Capped Collections (page 219).
Capped collections provide first-in-first-out (FIFO) management of inserted documents and efficiently support opera-
tions that insert and read documents based on insertion order.

4.2.3 GridFS

On this page

• Implement GridFS (page 157)
• GridFS Collections (page 157)
• GridFS Index (page 157)
• Additional Resources (page 158)

GridFS is a specification for storing and retrieving files that exceed the BSON-document size limit of 16MB.

Instead of storing a file in a single document, GridFS divides a file into parts, or chunks, 7 and stores each of those
chunks as a separate document. By default GridFS limits chunk size to 255k. GridFS uses two collections to store
files. One collection stores the file chunks, and the other stores file metadata.

7 The use of the term chunks in the context of GridFS is not related to the use of the term chunks in the context of sharding.

156 Chapter 4. Data Models

MongoDB Documentation, Release 2.6.11

When you query a GridFS store for a file, the driver or client will reassemble the chunks as needed. You can perform
range queries on files stored through GridFS. You also can access information from arbitrary sections of files, which
allows you to “skip” into the middle of a video or audio file.

GridFS is useful not only for storing files that exceed 16MB but also for storing any files for which you want access
without having to load the entire file into memory. For more information on the indications of GridFS, see When
should I use GridFS? (page 768).

Changed in version 2.4.10: The default chunk size changed from 256k to 255k.

Implement GridFS

To store and retrieve files using GridFS, use either of the following:

• A MongoDB driver. See the drivers documentation for information on using GridFS with your driver.

• The mongofiles command-line tool in the mongo shell. See the mongofiles reference for complete
documentation.

GridFS Collections

GridFS stores files in two collections:

• chunks stores the binary chunks. For details, see The chunks Collection (page 183).

• files stores the file’s metadata. For details, see The files Collection (page 183).

GridFS places the collections in a common bucket by prefixing each with the bucket name. By default, GridFS uses
two collections with names prefixed by fs bucket:

• fs.files

• fs.chunks

You can choose a different bucket name than fs, and create multiple buckets in a single database.

Each document in the chunks collection represents a distinct chunk of a file as represented in the GridFS store. Each
chunk is identified by its unique ObjectId stored in its _id field.

For descriptions of all fields in the chunks and files collections, see GridFS Reference (page 182).

GridFS Index

GridFS uses a unique, compound index on the chunks collection for the files_id and n fields. The files_id
field contains the _id of the chunk’s “parent” document. The n field contains the sequence number of the chunk.
GridFS numbers all chunks, starting with 0. For descriptions of the documents and fields in the chunks collection,
see GridFS Reference (page 182).

The GridFS index allows efficient retrieval of chunks using the files_id and n values, as shown in the following
example:

cursor = db.fs.chunks.find({files_id: myFileID}).sort({n:1});

See the relevant driver documentation for the specific behavior of your GridFS application. If your driver does not
create this index, issue the following operation using the mongo shell:

db.fs.chunks.ensureIndex({ files_id: 1, n: 1 }, { unique: true });

4.2. Data Modeling Concepts 157

MongoDB Documentation, Release 2.6.11

Additional Resources

• Building MongoDB Applications with Binary Files Using GridFS: Part 18

• Building MongoDB Applications with Binary Files Using GridFS: Part 29

4.3 Data Model Examples and Patterns

The following documents provide overviews of various data modeling patterns and common schema design consider-
ations:

Model Relationships Between Documents (page 158) Examples for modeling relationships between documents.

Model One-to-One Relationships with Embedded Documents (page 159) Presents a data model that uses em-
bedded documents (page 152) to describe one-to-one relationships between connected data.

Model One-to-Many Relationships with Embedded Documents (page 160) Presents a data model that uses
embedded documents (page 152) to describe one-to-many relationships between connected data.

Model One-to-Many Relationships with Document References (page 161) Presents a data model that uses
references (page 153) to describe one-to-many relationships between documents.

Model Tree Structures (page 163) Examples for modeling tree structures.

Model Tree Structures with Parent References (page 164) Presents a data model that organizes documents in
a tree-like structure by storing references (page 153) to “parent” nodes in “child” nodes.

Model Tree Structures with Child References (page 165) Presents a data model that organizes documents in a
tree-like structure by storing references (page 153) to “child” nodes in “parent” nodes.

See Model Tree Structures (page 163) for additional examples of data models for tree structures.

Model Specific Application Contexts (page 170) Examples for models for specific application contexts.

Model Data for Atomic Operations (page 171) Illustrates how embedding fields related to an atomic update
within the same document ensures that the fields are in sync.

Model Data to Support Keyword Search (page 172) Describes one method for supporting keyword search by
storing keywords in an array in the same document as the text field. Combined with a multi-key index, this
pattern can support application’s keyword search operations.

4.3.1 Model Relationships Between Documents

Model One-to-One Relationships with Embedded Documents (page 159) Presents a data model that uses embedded
documents (page 152) to describe one-to-one relationships between connected data.

Model One-to-Many Relationships with Embedded Documents (page 160) Presents a data model that uses embed-
ded documents (page 152) to describe one-to-many relationships between connected data.

Model One-to-Many Relationships with Document References (page 161) Presents a data model that uses refer-
ences (page 153) to describe one-to-many relationships between documents.

8http://www.mongodb.com/blog/post/building-mongodb-applications-binary-files-using-gridfs-part-1?jmp=docs
9http://www.mongodb.com/blog/post/building-mongodb-applications-binary-files-using-gridfs-part-2?jmp=docs

158 Chapter 4. Data Models

http://www.mongodb.com/blog/post/building-mongodb-applications-binary-files-using-gridfs-part-1?jmp=docs
http://www.mongodb.com/blog/post/building-mongodb-applications-binary-files-using-gridfs-part-2?jmp=docs

MongoDB Documentation, Release 2.6.11

Model One-to-One Relationships with Embedded Documents

On this page

• Overview (page 159)
• Pattern (page 159)

Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions that affect how
you model data can affect application performance and database capacity. See Data Modeling Concepts (page 151)
for a full high level overview of data modeling in MongoDB.

This document describes a data model that uses embedded (page 152) documents to describe relationships between
connected data.

Pattern

Consider the following example that maps patron and address relationships. The example illustrates the advantage of
embedding over referencing if you need to view one data entity in context of the other. In this one-to-one relationship
between patron and address data, the address belongs to the patron.

In the normalized data model, the address document contains a reference to the patron document.

{
_id: "joe",
name: "Joe Bookreader"

}

{
patron_id: "joe",
street: "123 Fake Street",
city: "Faketon",
state: "MA",
zip: "12345"

}

If the address data is frequently retrieved with the name information, then with referencing, your application needs
to issue multiple queries to resolve the reference. The better data model would be to embed the address data in the
patron data, as in the following document:

{
_id: "joe",
name: "Joe Bookreader",
address: {

street: "123 Fake Street",
city: "Faketon",
state: "MA",
zip: "12345"

}
}

With the embedded data model, your application can retrieve the complete patron information with one query.

4.3. Data Model Examples and Patterns 159

MongoDB Documentation, Release 2.6.11

Model One-to-Many Relationships with Embedded Documents

On this page

• Overview (page 160)
• Pattern (page 160)

Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions that affect how
you model data can affect application performance and database capacity. See Data Modeling Concepts (page 151)
for a full high level overview of data modeling in MongoDB.

This document describes a data model that uses embedded (page 152) documents to describe relationships between
connected data.

Pattern

Consider the following example that maps patron and multiple address relationships. The example illustrates the
advantage of embedding over referencing if you need to view many data entities in context of another. In this one-to-
many relationship between patron and address data, the patron has multiple address entities.

In the normalized data model, the address documents contain a reference to the patron document.

{
_id: "joe",
name: "Joe Bookreader"

}

{
patron_id: "joe",
street: "123 Fake Street",
city: "Faketon",
state: "MA",
zip: "12345"

}

{
patron_id: "joe",
street: "1 Some Other Street",
city: "Boston",
state: "MA",
zip: "12345"

}

If your application frequently retrieves the address data with the name information, then your application needs
to issue multiple queries to resolve the references. A more optimal schema would be to embed the address data
entities in the patron data, as in the following document:

{
_id: "joe",
name: "Joe Bookreader",
addresses: [

{

160 Chapter 4. Data Models

MongoDB Documentation, Release 2.6.11

street: "123 Fake Street",
city: "Faketon",
state: "MA",
zip: "12345"

},
{
street: "1 Some Other Street",
city: "Boston",
state: "MA",
zip: "12345"

}
]

}

With the embedded data model, your application can retrieve the complete patron information with one query.

Model One-to-Many Relationships with Document References

On this page

• Overview (page 161)
• Pattern (page 161)

Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions that affect how
you model data can affect application performance and database capacity. See Data Modeling Concepts (page 151)
for a full high level overview of data modeling in MongoDB.

This document describes a data model that uses references (page 153) between documents to describe relationships
between connected data.

Pattern

Consider the following example that maps publisher and book relationships. The example illustrates the advantage of
referencing over embedding to avoid repetition of the publisher information.

Embedding the publisher document inside the book document would lead to repetition of the publisher data, as the
following documents show:

{
title: "MongoDB: The Definitive Guide",
author: ["Kristina Chodorow", "Mike Dirolf"],
published_date: ISODate("2010-09-24"),
pages: 216,
language: "English",
publisher: {

name: "O'Reilly Media",
founded: 1980,
location: "CA"

}
}

4.3. Data Model Examples and Patterns 161

MongoDB Documentation, Release 2.6.11

{
title: "50 Tips and Tricks for MongoDB Developer",
author: "Kristina Chodorow",
published_date: ISODate("2011-05-06"),
pages: 68,
language: "English",
publisher: {

name: "O'Reilly Media",
founded: 1980,
location: "CA"

}
}

To avoid repetition of the publisher data, use references and keep the publisher information in a separate collection
from the book collection.

When using references, the growth of the relationships determine where to store the reference. If the number of books
per publisher is small with limited growth, storing the book reference inside the publisher document may sometimes
be useful. Otherwise, if the number of books per publisher is unbounded, this data model would lead to mutable,
growing arrays, as in the following example:

{
name: "O'Reilly Media",
founded: 1980,
location: "CA",
books: [12346789, 234567890, ...]

}

{
_id: 123456789,
title: "MongoDB: The Definitive Guide",
author: ["Kristina Chodorow", "Mike Dirolf"],
published_date: ISODate("2010-09-24"),
pages: 216,
language: "English"

}

{
_id: 234567890,
title: "50 Tips and Tricks for MongoDB Developer",
author: "Kristina Chodorow",
published_date: ISODate("2011-05-06"),
pages: 68,
language: "English"

}

To avoid mutable, growing arrays, store the publisher reference inside the book document:

{
_id: "oreilly",
name: "O'Reilly Media",
founded: 1980,
location: "CA"

}

{
_id: 123456789,
title: "MongoDB: The Definitive Guide",
author: ["Kristina Chodorow", "Mike Dirolf"],

162 Chapter 4. Data Models

MongoDB Documentation, Release 2.6.11

published_date: ISODate("2010-09-24"),
pages: 216,
language: "English",
publisher_id: "oreilly"

}

{
_id: 234567890,
title: "50 Tips and Tricks for MongoDB Developer",
author: "Kristina Chodorow",
published_date: ISODate("2011-05-06"),
pages: 68,
language: "English",
publisher_id: "oreilly"

}

4.3.2 Model Tree Structures

MongoDB allows various ways to use tree data structures to model large hierarchical or nested data relationships.

Model Tree Structures with Parent References (page 164) Presents a data model that organizes documents in a tree-
like structure by storing references (page 153) to “parent” nodes in “child” nodes.

Model Tree Structures with Child References (page 165) Presents a data model that organizes documents in a tree-
like structure by storing references (page 153) to “child” nodes in “parent” nodes.

4.3. Data Model Examples and Patterns 163

MongoDB Documentation, Release 2.6.11

Model Tree Structures with an Array of Ancestors (page 166) Presents a data model that organizes documents in a
tree-like structure by storing references (page 153) to “parent” nodes and an array that stores all ancestors.

Model Tree Structures with Materialized Paths (page 168) Presents a data model that organizes documents in a tree-
like structure by storing full relationship paths between documents. In addition to the tree node, each document
stores the _id of the nodes ancestors or path as a string.

Model Tree Structures with Nested Sets (page 170) Presents a data model that organizes documents in a tree-like
structure using the Nested Sets pattern. This optimizes discovering subtrees at the expense of tree mutability.

Model Tree Structures with Parent References

On this page

• Overview (page 164)
• Pattern (page 164)

Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions that affect how
you model data can affect application performance and database capacity. See Data Modeling Concepts (page 151)
for a full high level overview of data modeling in MongoDB.

This document describes a data model that describes a tree-like structure in MongoDB documents by storing references
(page 153) to “parent” nodes in children nodes.

Pattern

The Parent References pattern stores each tree node in a document; in addition to the tree node, the document stores
the id of the node’s parent.

Consider the following hierarchy of categories:

The following example models the tree using Parent References, storing the reference to the parent category in the
field parent:

db.categories.insert({ _id: "MongoDB", parent: "Databases" })
db.categories.insert({ _id: "dbm", parent: "Databases" })
db.categories.insert({ _id: "Databases", parent: "Programming" })
db.categories.insert({ _id: "Languages", parent: "Programming" })
db.categories.insert({ _id: "Programming", parent: "Books" })
db.categories.insert({ _id: "Books", parent: null })

• The query to retrieve the parent of a node is fast and straightforward:

db.categories.findOne({ _id: "MongoDB" }).parent

• You can create an index on the field parent to enable fast search by the parent node:

db.categories.ensureIndex({ parent: 1 })

• You can query by the parent field to find its immediate children nodes:

db.categories.find({ parent: "Databases" })

The Parent Links pattern provides a simple solution to tree storage but requires multiple queries to retrieve subtrees.

164 Chapter 4. Data Models

MongoDB Documentation, Release 2.6.11

Model Tree Structures with Child References

On this page

• Overview (page 165)
• Pattern (page 165)

Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions that affect how
you model data can affect application performance and database capacity. See Data Modeling Concepts (page 151)
for a full high level overview of data modeling in MongoDB.

This document describes a data model that describes a tree-like structure in MongoDB documents by storing references
(page 153) in the parent-nodes to children nodes.

Pattern

The Child References pattern stores each tree node in a document; in addition to the tree node, document stores in an
array the id(s) of the node’s children.

Consider the following hierarchy of categories:

4.3. Data Model Examples and Patterns 165

MongoDB Documentation, Release 2.6.11

The following example models the tree using Child References, storing the reference to the node’s children in the field
children:

db.categories.insert({ _id: "MongoDB", children: [] })
db.categories.insert({ _id: "dbm", children: [] })
db.categories.insert({ _id: "Databases", children: ["MongoDB", "dbm"] })
db.categories.insert({ _id: "Languages", children: [] })
db.categories.insert({ _id: "Programming", children: ["Databases", "Languages"] })
db.categories.insert({ _id: "Books", children: ["Programming"] })

• The query to retrieve the immediate children of a node is fast and straightforward:

db.categories.findOne({ _id: "Databases" }).children

• You can create an index on the field children to enable fast search by the child nodes:

db.categories.ensureIndex({ children: 1 })

• You can query for a node in the children field to find its parent node as well as its siblings:

db.categories.find({ children: "MongoDB" })

The Child References pattern provides a suitable solution to tree storage as long as no operations on subtrees are
necessary. This pattern may also provide a suitable solution for storing graphs where a node may have multiple
parents.

Model Tree Structures with an Array of Ancestors

166 Chapter 4. Data Models

MongoDB Documentation, Release 2.6.11

On this page

• Overview (page 167)
• Pattern (page 167)

Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions that affect how
you model data can affect application performance and database capacity. See Data Modeling Concepts (page 151)
for a full high level overview of data modeling in MongoDB.

This document describes a data model that describes a tree-like structure in MongoDB documents using references
(page 153) to parent nodes and an array that stores all ancestors.

Pattern

The Array of Ancestors pattern stores each tree node in a document; in addition to the tree node, document stores in
an array the id(s) of the node’s ancestors or path.

Consider the following hierarchy of categories:

The following example models the tree using Array of Ancestors. In addition to the ancestors field, these docu-
ments also store the reference to the immediate parent category in the parent field:

4.3. Data Model Examples and Patterns 167

MongoDB Documentation, Release 2.6.11

db.categories.insert({ _id: "MongoDB", ancestors: ["Books", "Programming", "Databases"], parent: "Databases" })
db.categories.insert({ _id: "dbm", ancestors: ["Books", "Programming", "Databases"], parent: "Databases" })
db.categories.insert({ _id: "Databases", ancestors: ["Books", "Programming"], parent: "Programming" })
db.categories.insert({ _id: "Languages", ancestors: ["Books", "Programming"], parent: "Programming" })
db.categories.insert({ _id: "Programming", ancestors: ["Books"], parent: "Books" })
db.categories.insert({ _id: "Books", ancestors: [], parent: null })

• The query to retrieve the ancestors or path of a node is fast and straightforward:

db.categories.findOne({ _id: "MongoDB" }).ancestors

• You can create an index on the field ancestors to enable fast search by the ancestors nodes:

db.categories.ensureIndex({ ancestors: 1 })

• You can query by the field ancestors to find all its descendants:

db.categories.find({ ancestors: "Programming" })

The Array of Ancestors pattern provides a fast and efficient solution to find the descendants and the ancestors of a node
by creating an index on the elements of the ancestors field. This makes Array of Ancestors a good choice for working
with subtrees.

The Array of Ancestors pattern is slightly slower than the Materialized Paths (page 168) pattern but is more straight-
forward to use.

Model Tree Structures with Materialized Paths

On this page

• Overview (page 168)
• Pattern (page 168)

Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions that affect how
you model data can affect application performance and database capacity. See Data Modeling Concepts (page 151)
for a full high level overview of data modeling in MongoDB.

This document describes a data model that describes a tree-like structure in MongoDB documents by storing full
relationship paths between documents.

Pattern

The Materialized Paths pattern stores each tree node in a document; in addition to the tree node, document stores as
a string the id(s) of the node’s ancestors or path. Although the Materialized Paths pattern requires additional steps of
working with strings and regular expressions, the pattern also provides more flexibility in working with the path, such
as finding nodes by partial paths.

Consider the following hierarchy of categories:

The following example models the tree using Materialized Paths, storing the path in the field path; the path string
uses the comma , as a delimiter:

168 Chapter 4. Data Models

MongoDB Documentation, Release 2.6.11

db.categories.insert({ _id: "Books", path: null })
db.categories.insert({ _id: "Programming", path: ",Books," })
db.categories.insert({ _id: "Databases", path: ",Books,Programming," })
db.categories.insert({ _id: "Languages", path: ",Books,Programming," })
db.categories.insert({ _id: "MongoDB", path: ",Books,Programming,Databases," })
db.categories.insert({ _id: "dbm", path: ",Books,Programming,Databases," })

• You can query to retrieve the whole tree, sorting by the field path:

db.categories.find().sort({ path: 1 })

• You can use regular expressions on the path field to find the descendants of Programming:

db.categories.find({ path: /,Programming,/ })

• You can also retrieve the descendants of Books where the Books is also at the topmost level of the hierarchy:

db.categories.find({ path: /^,Books,/ })

• To create an index on the field path use the following invocation:

db.categories.ensureIndex({ path: 1 })

This index may improve performance depending on the query:

– For queries from the root Books sub-tree (e.g. http://docs.mongodb.org/manual/^,Books,/
or http://docs.mongodb.org/manual/^,Books,Programming,/), an index on the path
field improves the query performance significantly.

4.3. Data Model Examples and Patterns 169

MongoDB Documentation, Release 2.6.11

– For queries of sub-trees where the path from the root is not provided in the query (e.g.
http://docs.mongodb.org/manual/,Databases,/), or similar queries of sub-trees, where
the node might be in the middle of the indexed string, the query must inspect the entire index.

For these queries an index may provide some performance improvement if the index is significantly smaller
than the entire collection.

Model Tree Structures with Nested Sets

On this page

• Overview (page 170)
• Pattern (page 170)

Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions that affect how
you model data can affect application performance and database capacity. See Data Modeling Concepts (page 151)
for a full high level overview of data modeling in MongoDB.

This document describes a data model that describes a tree like structure that optimizes discovering subtrees at the
expense of tree mutability.

Pattern

The Nested Sets pattern identifies each node in the tree as stops in a round-trip traversal of the tree. The application
visits each node in the tree twice; first during the initial trip, and second during the return trip. The Nested Sets pattern
stores each tree node in a document; in addition to the tree node, document stores the id of node’s parent, the node’s
initial stop in the left field, and its return stop in the right field.

Consider the following hierarchy of categories:

The following example models the tree using Nested Sets:

db.categories.insert({ _id: "Books", parent: 0, left: 1, right: 12 })
db.categories.insert({ _id: "Programming", parent: "Books", left: 2, right: 11 })
db.categories.insert({ _id: "Languages", parent: "Programming", left: 3, right: 4 })
db.categories.insert({ _id: "Databases", parent: "Programming", left: 5, right: 10 })
db.categories.insert({ _id: "MongoDB", parent: "Databases", left: 6, right: 7 })
db.categories.insert({ _id: "dbm", parent: "Databases", left: 8, right: 9 })

You can query to retrieve the descendants of a node:

var databaseCategory = db.categories.findOne({ _id: "Databases" });
db.categories.find({ left: { $gt: databaseCategory.left }, right: { $lt: databaseCategory.right } });

The Nested Sets pattern provides a fast and efficient solution for finding subtrees but is inefficient for modifying the
tree structure. As such, this pattern is best for static trees that do not change.

4.3.3 Model Specific Application Contexts

Model Data for Atomic Operations (page 171) Illustrates how embedding fields related to an atomic update within
the same document ensures that the fields are in sync.

170 Chapter 4. Data Models

MongoDB Documentation, Release 2.6.11

Model Data to Support Keyword Search (page 172) Describes one method for supporting keyword search by storing
keywords in an array in the same document as the text field. Combined with a multi-key index, this pattern can
support application’s keyword search operations.

Model Monetary Data (page 173) Describes two methods to model monetary data in MongoDB.

Model Time Data (page 175) Describes how to deal with local time in MongoDB.

Model Data for Atomic Operations

On this page

• Pattern (page 171)

Pattern

In MongoDB, write operations, e.g. db.collection.update(), db.collection.findAndModify(),
db.collection.remove(), are atomic on the level of a single document. For fields that must be updated to-
gether, embedding the fields within the same document ensures that the fields can be updated atomically.

For example, consider a situation where you need to maintain information on books, including the number of copies
available for checkout as well as the current checkout information.

The available copies of the book and the checkout information should be in sync. As such, embedding the
available field and the checkout field within the same document ensures that you can update the two fields
atomically.

{
_id: 123456789,

4.3. Data Model Examples and Patterns 171

MongoDB Documentation, Release 2.6.11

title: "MongoDB: The Definitive Guide",
author: ["Kristina Chodorow", "Mike Dirolf"],
published_date: ISODate("2010-09-24"),
pages: 216,
language: "English",
publisher_id: "oreilly",
available: 3,
checkout: [{ by: "joe", date: ISODate("2012-10-15") }]

}

Then to update with new checkout information, you can use the db.collection.update()method to atomically
update both the available field and the checkout field:

db.books.update (
{ _id: 123456789, available: { $gt: 0 } },
{

$inc: { available: -1 },
$push: { checkout: { by: "abc", date: new Date() } }

}
)

The operation returns a WriteResult() object that contains information on the status of the operation:

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

The nMatched field shows that 1 document matched the update condition, and nModified shows that the operation
updated 1 document.

If no document matched the update condition, then nMatched and nModified would be 0 and would indicate that
you could not check out the book.

Model Data to Support Keyword Search

On this page

• Pattern (page 172)
• Limitations of Keyword Indexes (page 173)

Note: Keyword search is not the same as text search or full text search, and does not provide stemming or other
text-processing features. See the Limitations of Keyword Indexes (page 173) section for more information.

In 2.4, MongoDB provides a text search feature. See Text Indexes (page 501) for more information.

If your application needs to perform queries on the content of a field that holds text you can perform exact matches
on the text or use $regex to use regular expression pattern matches. However, for many operations on text, these
methods do not satisfy application requirements.

This pattern describes one method for supporting keyword search using MongoDB to support application search
functionality, that uses keywords stored in an array in the same document as the text field. Combined with a multi-key
index (page 491), this pattern can support application’s keyword search operations.

Pattern

To add structures to your document to support keyword-based queries, create an array field in your documents and add
the keywords as strings in the array. You can then create a multi-key index (page 491) on the array and create queries

172 Chapter 4. Data Models

MongoDB Documentation, Release 2.6.11

that select values from the array.

Example
Given a collection of library volumes that you want to provide topic-based search. For each volume, you add the array
topics, and you add as many keywords as needed for a given volume.

For the Moby-Dick volume you might have the following document:

{ title : "Moby-Dick" ,
author : "Herman Melville" ,
published : 1851 ,
ISBN : 0451526996 ,
topics : ["whaling" , "allegory" , "revenge" , "American" ,
"novel" , "nautical" , "voyage" , "Cape Cod"]

}

You then create a multi-key index on the topics array:

db.volumes.ensureIndex({ topics: 1 })

The multi-key index creates separate index entries for each keyword in the topics array. For example the index
contains one entry for whaling and another for allegory.

You then query based on the keywords. For example:

db.volumes.findOne({ topics : "voyage" }, { title: 1 })

Note: An array with a large number of elements, such as one with several hundreds or thousands of keywords will
incur greater indexing costs on insertion.

Limitations of Keyword Indexes

MongoDB can support keyword searches using specific data models and multi-key indexes (page 491); however, these
keyword indexes are not sufficient or comparable to full-text products in the following respects:

• Stemming. Keyword queries in MongoDB can not parse keywords for root or related words.

• Synonyms. Keyword-based search features must provide support for synonym or related queries in the applica-
tion layer.

• Ranking. The keyword look ups described in this document do not provide a way to weight results.

• Asynchronous Indexing. MongoDB builds indexes synchronously, which means that the indexes used for key-
word indexes are always current and can operate in real-time. However, asynchronous bulk indexes may be
more efficient for some kinds of content and workloads.

Model Monetary Data

4.3. Data Model Examples and Patterns 173

MongoDB Documentation, Release 2.6.11

On this page

• Overview (page 174)
• Use Cases for Exact Precision Model (page 174)
• Use Cases for Arbitrary Precision Model (page 174)
• Exact Precision (page 174)
• Arbitrary Precision (page 175)

Overview

MongoDB stores numeric data as either IEEE 754 standard 64-bit floating point numbers or as 32-bit or 64-bit signed
integers. Applications that handle monetary data often require capturing fractional units of currency. However, arith-
metic on floating point numbers, as implemented in modern hardware, often does not conform to requirements for
monetary arithmetic. In addition, some fractional numeric quantities, such as one third and one tenth, have no exact
representation in binary floating point numbers.

Note: Arithmetic mentioned on this page refers to server-side arithmetic performed by mongod or mongos, and not
to client-side arithmetic.

This document describes two ways to model monetary data in MongoDB:

• Exact Precision (page 174) which multiplies the monetary value by a power of 10.

• Arbitrary Precision (page 175) which uses two fields for the value: one field to store the exact monetary value
as a non-numeric and another field to store a floating point approximation of the value.

Use Cases for Exact Precision Model

If you regularly need to perform server-side arithmetic on monetary data, the exact precision model may be appropriate.
For instance:

• If you need to query the database for exact, mathematically valid matches, use Exact Precision (page 174).

• If you need to be able to do server-side arithmetic, e.g., $inc, $mul, and aggregation framework
arithmetic, use Exact Precision (page 174).

Use Cases for Arbitrary Precision Model

If there is no need to perform server-side arithmetic on monetary data, modeling monetary data using the arbitrary
precision model may be suitable. For instance:

• If you need to handle arbitrary or unforeseen number of precision, see Arbitrary Precision (page 175).

• If server-side approximations are sufficient, possibly with client-side post-processing, see Arbitrary Precision
(page 175).

Exact Precision

To model monetary data using the exact precision model:

1. Determine the maximum precision needed for the monetary value. For example, your application may require
precision down to the tenth of one cent for monetary values in USD currency.

174 Chapter 4. Data Models

MongoDB Documentation, Release 2.6.11

2. Convert the monetary value into an integer by multiplying the value by a power of 10 that ensures the maximum
precision needed becomes the least significant digit of the integer. For example, if the required maximum
precision is the tenth of one cent, multiply the monetary value by 1000.

3. Store the converted monetary value.

For example, the following scales 9.99 USD by 1000 to preserve precision up to one tenth of a cent.

{ price: 9990, currency: "USD" }

The model assumes that for a given currency value:

• The scale factor is consistent for a currency; i.e. same scaling factor for a given currency.

• The scale factor is a constant and known property of the currency; i.e applications can determine the scale factor
from the currency.

When using this model, applications must be consistent in performing the appropriate scaling of the values.

For use cases of this model, see Use Cases for Exact Precision Model (page 174).

Arbitrary Precision

To model monetary data using the arbitrary precision model, store the value in two fields:

1. In one field, encode the exact monetary value as a non-numeric data type; e.g., BinData or a string.

2. In the second field, store a double-precision floating point approximation of the exact value.

The following example uses the arbitrary precision model to store 9.99 USD for the price and 0.25 USD for the
fee:

{
price: { display: "9.99", approx: 9.9900000000000002, currency: "USD" },
fee: { display: "0.25", approx: 0.2499999999999999, currency: "USD" }

}

With some care, applications can perform range and sort queries on the field with the numeric approximation. How-
ever, the use of the approximation field for the query and sort operations requires that applications perform client-side
post-processing to decode the non-numeric representation of the exact value and then filter out the returned documents
based on the exact monetary value.

For use cases of this model, see Use Cases for Arbitrary Precision Model (page 174).

Model Time Data

On this page

• Overview (page 175)
• Example (page 176)

Overview

MongoDB stores times in UTC (page 189) by default, and will convert any local time representations into this form.
Applications that must operate or report on some unmodified local time value may store the time zone alongside the
UTC timestamp, and compute the original local time in their application logic.

4.3. Data Model Examples and Patterns 175

MongoDB Documentation, Release 2.6.11

Example

In the MongoDB shell, you can store both the current date and the current client’s offset from UTC.

var now = new Date();
db.data.save({ date: now,

offset: now.getTimezoneOffset() });

You can reconstruct the original local time by applying the saved offset:

var record = db.data.findOne();
var localNow = new Date(record.date.getTime() - (record.offset * 60000));

4.4 Data Model Reference

Documents (page 176) MongoDB stores all data in documents, which are JSON-style data structures composed of
field-and-value pairs.

Database References (page 179) Discusses manual references and DBRefs, which MongoDB can use to represent
relationships between documents.

GridFS Reference (page 182) Convention for storing large files in a MongoDB Database.

ObjectId (page 184) A 12-byte BSON type that MongoDB uses as the default value for its documents’ _id field if
the _id field is not specified.

BSON Types (page 186) Outlines the unique BSON types used by MongoDB. See BSONspec.org10 for the complete
BSON specification.

4.4.1 Documents

On this page

• Document Format (page 177)
• Document Structure (page 177)
• Field Names (page 177)
• Field Value Limit (page 178)
• Document Limitations (page 178)
• The _id Field (page 178)
• Dot Notation (page 179)

MongoDB stores all data in documents, which are JSON-style data structures composed of field-and-value pairs:

{ "item": "pencil", "qty": 500, "type": "no.2" }

Most user-accessible data structures in MongoDB are documents, including:

• All database records.

• Query selectors (page 64), which define what records to select for read, update, and delete operations.

• Update definitions (page 77), which define what fields to modify during an update.

• Index specifications (page 485), which define what fields to index.

10http://bsonspec.org/

176 Chapter 4. Data Models

http://bsonspec.org/

MongoDB Documentation, Release 2.6.11

• Data output by MongoDB for reporting and configuration, such as the output of the serverStatus and the
replica set configuration document (page 660).

Document Format

MongoDB stores documents on disk in the BSON serialization format. BSON is a binary representation of JSON
documents, though it contains more data types than JSON. For the BSON spec, see bsonspec.org11. See also BSON
Types (page 186).

The mongo JavaScript shell and the MongoDB language drivers translate between BSON and the language-
specific document representation.

Document Structure

MongoDB documents are composed of field-and-value pairs and have the following structure:

{
field1: value1,
field2: value2,
field3: value3,
...
fieldN: valueN

}

The value of a field can be any of the BSON data types (page 186), including other documents, arrays, and arrays of
documents. The following document contains values of varying types:

var mydoc = {
_id: ObjectId("5099803df3f4948bd2f98391"),
name: { first: "Alan", last: "Turing" },
birth: new Date('Jun 23, 1912'),
death: new Date('Jun 07, 1954'),
contribs: ["Turing machine", "Turing test", "Turingery"],
views : NumberLong(1250000)

}

The above fields have the following data types:

• _id holds an ObjectId.

• name holds an embedded document that contains the fields first and last.

• birth and death hold values of the Date type.

• contribs holds an array of strings.

• views holds a value of the NumberLong type.

Field Names

Field names are strings.

Documents (page 176) have the following restrictions on field names:

• The field name _id is reserved for use as a primary key; its value must be unique in the collection, is immutable,
and may be of any type other than an array.

11http://bsonspec.org/

4.4. Data Model Reference 177

http://bsonspec.org/

MongoDB Documentation, Release 2.6.11

• The field names cannot start with the dollar sign ($) character.

• The field names cannot contain the dot (.) character.

• The field names cannot contain the null character.

BSON documents may have more than one field with the same name. Most MongoDB interfaces, however,
represent MongoDB with a structure (e.g. a hash table) that does not support duplicate field names. If you need to
manipulate documents that have more than one field with the same name, see the driver documentation for
your driver.

Some documents created by internal MongoDB processes may have duplicate fields, but no MongoDB process will
ever add duplicate fields to an existing user document.

Field Value Limit

For indexed collections (page 481), the values for the indexed fields have a Maximum Index Key Length limit.
See Maximum Index Key Length for details.

Document Limitations

Documents have the following attributes:

Document Size Limit

The maximum BSON document size is 16 megabytes.

The maximum document size helps ensure that a single document cannot use excessive amount of RAM or, during
transmission, excessive amount of bandwidth. To store documents larger than the maximum size, MongoDB provides
the GridFS API. See mongofiles and the documentation for your driver for more information about GridFS.

Document Field Order

MongoDB preserves the order of the document fields following write operations except for the following cases:

• The _id field is always the first field in the document.

• Updates that include renaming of field names may result in the reordering of fields in the document.

Changed in version 2.6: Starting in version 2.6, MongoDB actively attempts to preserve the field order in a document.
Before version 2.6, MongoDB did not actively preserve the order of the fields in a document.

The _id Field

The _id field has the following behavior and constraints:

• By default, MongoDB creates a unique index on the _id field during the creation of a collection.

• The _id field is always the first field in the documents. If the server receives a document that does not have the
_id field first, then the server will move the field to the beginning.

• The _id field may contain values of any BSON data type (page 186), other than an array.

Warning: To ensure functioning replication, do not store values that are of the BSON regular expression
type in the _id field.

178 Chapter 4. Data Models

MongoDB Documentation, Release 2.6.11

The following are common options for storing values for _id:

• Use an ObjectId (page 184).

• Use a natural unique identifier, if available. This saves space and avoids an additional index.

• Generate an auto-incrementing number. See Create an Auto-Incrementing Sequence Field (page 130).

• Generate a UUID in your application code. For a more efficient storage of the UUID values in the collection
and in the _id index, store the UUID as a value of the BSON BinData type.

Index keys that are of the BinData type are more efficiently stored in the index if:

– the binary subtype value is in the range of 0-7 or 128-135, and

– the length of the byte array is: 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, or 32.

• Use your driver’s BSON UUID facility to generate UUIDs. Be aware that driver implementations may imple-
ment UUID serialization and deserialization logic differently, which may not be fully compatible with other
drivers. See your driver documentation12 for information concerning UUID interoperability.

Note: Most MongoDB driver clients will include the _id field and generate an ObjectId before sending the insert
operation to MongoDB; however, if the client sends a document without an _id field, the mongod will add the _id
field and generate the ObjectId.

Dot Notation

MongoDB uses the dot notation to access the elements of an array and to access the fields of an embedded document.

To access an element of an array by the zero-based index position, concatenate the array name with the dot (.) and
zero-based index position, and enclose in quotes:

'<array>.<index>'

See also $ positional operator for update operations and $ projection operator when array index position is unknown.

To access a field of an embedded document with dot-notation, concatenate the embedded document name with the dot
(.) and the field name, and enclose in quotes:

'<embedded document>.<field>'

See also:

• Embedded Documents (page 102) for dot notation examples with embedded documents.

• Arrays (page 103) for dot notation examples with arrays.

4.4.2 Database References

On this page

• Manual References (page 180)
• DBRefs (page 181)

12https://api.mongodb.org/

4.4. Data Model Reference 179

https://api.mongodb.org/

MongoDB Documentation, Release 2.6.11

MongoDB does not support joins. In MongoDB some data is denormalized, or stored with related data in documents to
remove the need for joins. However, in some cases it makes sense to store related information in separate documents,
typically in different collections or databases.

MongoDB applications use one of two methods for relating documents:

• Manual references (page 180) where you save the _id field of one document in another document as a reference.
Then your application can run a second query to return the related data. These references are simple and
sufficient for most use cases.

• DBRefs (page 181) are references from one document to another using the value of the first document’s _id
field, collection name, and, optionally, its database name. By including these names, DBRefs allow documents
located in multiple collections to be more easily linked with documents from a single collection.

To resolve DBRefs, your application must perform additional queries to return the referenced documents. Many
drivers have helper methods that form the query for the DBRef automatically. The drivers 13 do not auto-
matically resolve DBRefs into documents.

DBRefs provide a common format and type to represent relationships among documents. The DBRef format
also provides common semantics for representing links between documents if your database must interact with
multiple frameworks and tools.

Unless you have a compelling reason to use DBRefs, use manual references instead.

Manual References

Background

Using manual references is the practice of including one document’s _id field in another document. The application
can then issue a second query to resolve the referenced fields as needed.

Process

Consider the following operation to insert two documents, using the _id field of the first document as a reference in
the second document:

original_id = ObjectId()

db.places.insert({
"_id": original_id,
"name": "Broadway Center",
"url": "bc.example.net"

})

db.people.insert({
"name": "Erin",
"places_id": original_id,
"url": "bc.example.net/Erin"

})

Then, when a query returns the document from the people collection you can, if needed, make a second query for
the document referenced by the places_id field in the places collection.

13 Some community supported drivers may have alternate behavior and may resolve a DBRef into a document automatically.

180 Chapter 4. Data Models

MongoDB Documentation, Release 2.6.11

Use

For nearly every case where you want to store a relationship between two documents, use manual references
(page 180). The references are simple to create and your application can resolve references as needed.

The only limitation of manual linking is that these references do not convey the database and collection names. If you
have documents in a single collection that relate to documents in more than one collection, you may need to consider
using DBRefs.

DBRefs

Background

DBRefs are a convention for representing a document, rather than a specific reference type. They include the name of
the collection, and in some cases the database name, in addition to the value from the _id field.

Format

DBRefs have the following fields:

$ref
The $ref field holds the name of the collection where the referenced document resides.

$id
The $id field contains the value of the _id field in the referenced document.

$db
Optional.

Contains the name of the database where the referenced document resides.

Only some drivers support $db references.

Example
DBRef documents resemble the following document:

{ "$ref" : <value>, "$id" : <value>, "$db" : <value> }

Consider a document from a collection that stored a DBRef in a creator field:

{
"_id" : ObjectId("5126bbf64aed4daf9e2ab771"),
// .. application fields
"creator" : {

"$ref" : "creators",
"$id" : ObjectId("5126bc054aed4daf9e2ab772"),
"$db" : "users"

}
}

The DBRef in this example points to a document in the creators collection of the users database that has
ObjectId("5126bc054aed4daf9e2ab772") in its _id field.

Note: The order of fields in the DBRef matters, and you must use the above sequence when using a DBRef.

4.4. Data Model Reference 181

MongoDB Documentation, Release 2.6.11

Driver Support for DBRefs

C The C driver contains no support for DBRefs. You can traverse references manually.
C++ The C++ driver contains no support for DBRefs. You can traverse references manually.
C# The C# driver supports DBRefs using the MongoDBRef14 class and FetchDBRef and

FetchDBRefAs methods.
Haskell The Haskell driver contains no support for DBRefs. You can traverse references manually.
Java The DBRef15 class provides support for DBRefs from Java.
JavaScriptThe mongo shell’s JavaScript interface provides a DBRef.
Node.js The Node.js driver supports DBRefs using the DBRef16 class and the dereference17 method.
Perl The Perl driver supports DBRefs using the MongoDB::DBRef18 class. You can traverse references

manually.
PHP The PHP driver supports DBRefs, including the optional $db reference, using the MongoDBRef19

class.
Python The Python driver supports DBRefs using the DBRef20 class and the dereference21 method.
Ruby The Ruby driver supports DBRefs using the DBRef22 class and the dereference23 method.
Scala The Scala driver contains no support for DBRefs. You can traverse references manually.

Use

In most cases you should use the manual reference (page 180) method for connecting two or more related documents.
However, if you need to reference documents from multiple collections, consider using DBRefs.

4.4.3 GridFS Reference

On this page

• The chunks Collection (page 183)
• The files Collection (page 183)

GridFS stores files in two collections:

• chunks stores the binary chunks. For details, see The chunks Collection (page 183).

• files stores the file’s metadata. For details, see The files Collection (page 183).

GridFS places the collections in a common bucket by prefixing each with the bucket name. By default, GridFS uses
two collections with names prefixed by fs bucket:

• fs.files

• fs.chunks

You can choose a different bucket name than fs, and create multiple buckets in a single database.

14https://api.mongodb.org/csharp/current/html/T_MongoDB_Driver_MongoDBRef.htm
15https://api.mongodb.org/java/current/com/mongodb/DBRef.html
16http://mongodb.github.io/node-mongodb-native/api-bson-generated/db_ref.html
17http://mongodb.github.io/node-mongodb-native/api-generated/db.html#dereference
18https://metacpan.org/pod/MongoDB::DBRef
19http://www.php.net/manual/en/class.mongodbref.php/
20https://api.mongodb.org/python/current/api/bson/dbref.html
21https://api.mongodb.org/python/current/api/pymongo/database.html#pymongo.database.Database.deref eren ce
22https://api.mongodb.org/ruby/current/BSON/DBRef.html
23https://api.mongodb.org/ruby/current/Mongo/DB.html#dereference-instance_method

182 Chapter 4. Data Models

https://api.mongodb.org/csharp/current/html/T_MongoDB_Driver_MongoDBRef.htm
https://api.mongodb.org/java/current/com/mongodb/DBRef.html
http://mongodb.github.io/node-mongodb-native/api-bson-generated/db_ref.html
http://mongodb.github.io/node-mongodb-native/api-generated/db.html#dereference
https://metacpan.org/pod/MongoDB::DBRef
http://www.php.net/manual/en/class.mongodbref.php/
https://api.mongodb.org/python/current/api/bson/dbref.html
https://api.mongodb.org/python/current/api/pymongo/database.html#pymongo.database.Database.deref eren ce
https://api.mongodb.org/ruby/current/BSON/DBRef.html
https://api.mongodb.org/ruby/current/Mongo/DB.html#dereference-instance_method

MongoDB Documentation, Release 2.6.11

See also:

GridFS (page 156) for more information about GridFS.

The chunks Collection

Each document in the chunks collection represents a distinct chunk of a file as represented in the GridFS store. The
following is a prototype document from the chunks collection.:

{
"_id" : <ObjectId>,
"files_id" : <ObjectId>,
"n" : <num>,
"data" : <binary>

}

A document from the chunks collection contains the following fields:

chunks._id
The unique ObjectId of the chunk.

chunks.files_id
The _id of the “parent” document, as specified in the files collection.

chunks.n
The sequence number of the chunk. GridFS numbers all chunks, starting with 0.

chunks.data
The chunk’s payload as a BSON binary type.

The chunks collection uses a compound index on files_id and n, as described in GridFS Index (page 157).

The files Collection

Each document in the files collection represents a file in the GridFS store. Consider the following prototype of a
document in the files collection:

{
"_id" : <ObjectId>,
"length" : <num>,
"chunkSize" : <num>,
"uploadDate" : <timestamp>,
"md5" : <hash>,

"filename" : <string>,
"contentType" : <string>,
"aliases" : <string array>,
"metadata" : <dataObject>,

}

Documents in the files collection contain some or all of the following fields. Applications may create additional
arbitrary fields:

files._id
The unique ID for this document. The _id is of the data type you chose for the original document. The default
type for MongoDB documents is BSON ObjectId.

files.length
The size of the document in bytes.

4.4. Data Model Reference 183

MongoDB Documentation, Release 2.6.11

files.chunkSize
The size of each chunk. GridFS divides the document into chunks of the size specified here. The default size is
255 kilobytes.

Changed in version 2.4.10: The default chunk size changed from 256k to 255k.

files.uploadDate
The date the document was first stored by GridFS. This value has the Date type.

files.md5
An MD5 hash returned by the filemd5 command. This value has the String type.

files.filename
Optional. A human-readable name for the document.

files.contentType
Optional. A valid MIME type for the document.

files.aliases
Optional. An array of alias strings.

files.metadata
Optional. Any additional information you want to store.

4.4.4 ObjectId

On this page

• Overview (page 184)
• ObjectId() (page 185)
• Examples (page 185)

Overview

ObjectId is a 12-byte BSON type, constructed using:

• a 4-byte value representing the seconds since the Unix epoch,

• a 3-byte machine identifier,

• a 2-byte process id, and

• a 3-byte counter, starting with a random value.

In MongoDB, documents stored in a collection require a unique _id field that acts as a primary key. MongoDB
uses ObjectIds as the default value for the _id field if the _id field is not specified; i.e. if a document does not
contain a top-level _id field, the MongoDB driver adds the _id field that holds an ObjectId. In addition, if the
mongod receives a document to insert that does not contain an _id field, mongod will add the _id field that holds
an ObjectId.

MongoDB clients should add an _id field with a unique ObjectId. Using ObjectIds for the _id field provides the
following additional benefits:

• in the mongo shell, you can access the creation time of the ObjectId, using the getTimestamp() method.

• sorting on an _id field that stores ObjectId values is roughly equivalent to sorting by creation time.

Important: The relationship between the order of ObjectId values and generation time is not strict within a

184 Chapter 4. Data Models

MongoDB Documentation, Release 2.6.11

single second. If multiple systems, or multiple processes or threads on a single system generate values, within a
single second; ObjectId values do not represent a strict insertion order. Clock skew between clients can also
result in non-strict ordering even for values because client drivers generate ObjectId values.

Also consider the Documents (page 176) section for related information on MongoDB’s document orientation.

ObjectId()

The mongo shell provides the ObjectId() wrapper class to generate a new ObjectId, and to provide the following
helper attribute and methods:

• str

The hexadecimal string representation of the object.

• getTimestamp()

Returns the timestamp portion of the object as a Date.

• toString()

Returns the JavaScript representation in the form of a string literal “ObjectId(...)”.

Changed in version 2.2: In previous versions toString() returns the hexadecimal string representation,
which as of version 2.2 can be retrieved by the str property.

• valueOf()

Returns the representation of the object as a hexadecimal string. The returned string is the str attribute.

Changed in version 2.2: In previous versions, valueOf() returns the object.

Examples

Consider the following uses ObjectId() class in the mongo shell:

Generate a new ObjectId

To generate a new ObjectId, use the ObjectId() constructor with no argument:

x = ObjectId()

In this example, the value of x would be:

ObjectId("507f1f77bcf86cd799439011")

To generate a new ObjectId using the ObjectId() constructor with a unique hexadecimal string:

y = ObjectId("507f191e810c19729de860ea")

In this example, the value of y would be:

ObjectId("507f191e810c19729de860ea")

• To return the timestamp of an ObjectId() object, use the getTimestamp() method as follows:

4.4. Data Model Reference 185

MongoDB Documentation, Release 2.6.11

Convert an ObjectId into a Timestamp

To return the timestamp of an ObjectId() object, use the getTimestamp() method as follows:

ObjectId("507f191e810c19729de860ea").getTimestamp()

This operation will return the following Date object:

ISODate("2012-10-17T20:46:22Z")

Convert ObjectIds into Strings

Access the str attribute of an ObjectId() object, as follows:

ObjectId("507f191e810c19729de860ea").str

This operation will return the following hexadecimal string:

507f191e810c19729de860ea

To return the hexadecimal string representation of an ObjectId(), use the valueOf() method as follows:

ObjectId("507f191e810c19729de860ea").valueOf()

This operation returns the following output:

507f191e810c19729de860ea

To return the string representation of an ObjectId() object (in the form of a string literal ObjectId(...)), use
the toString() method as follows:

ObjectId("507f191e810c19729de860ea").toString()

This operation will return the following string output:

ObjectId("507f191e810c19729de860ea")

4.4.5 BSON Types

On this page

• Comparison/Sort Order (page 187)
• ObjectId (page 188)
• String (page 188)
• Timestamps (page 188)
• Date (page 189)

BSON is a binary serialization format used to store documents and make remote procedure calls in MongoDB. The
BSON specification is located at bsonspec.org24.

BSON supports the following data types as values in documents. Each data type has a corresponding number that can
be used with the $type operator to query documents by BSON type.

24http://bsonspec.org/

186 Chapter 4. Data Models

http://bsonspec.org/

MongoDB Documentation, Release 2.6.11

Type Number Notes
Double 1
String 2
Object 3
Array 4
Binary data 5
Undefined 6 Deprecated.
Object id 7
Boolean 8
Date 9
Null 10
Regular Expression 11
JavaScript 13
Symbol 14
JavaScript (with scope) 15
32-bit integer 16
Timestamp 17
64-bit integer 18
Min key 255 Query with -1.
Max key 127

To determine a field’s type, see Check Types in the mongo Shell (page 281).

If you convert BSON to JSON, see the Extended JSON reference.

Comparison/Sort Order

When comparing values of different BSON types, MongoDB uses the following comparison order, from lowest to
highest:

1. MinKey (internal type)

2. Null

3. Numbers (ints, longs, doubles)

4. Symbol, String

5. Object

6. Array

7. BinData

8. ObjectId

9. Boolean

10. Date, Timestamp

11. Regular Expression

12. MaxKey (internal type)

MongoDB treats some types as equivalent for comparison purposes. For instance, numeric types undergo conversion
before comparison.

The comparison treats a non-existent field as it would an empty BSON Object. As such, a sort on the a field in
documents { } and { a: null } would treat the documents as equivalent in sort order.

With arrays, a less-than comparison or an ascending sort compares the smallest element of arrays, and a greater-than
comparison or a descending sort compares the largest element of the arrays. As such, when comparing a field whose

4.4. Data Model Reference 187

MongoDB Documentation, Release 2.6.11

value is a single-element array (e.g. [1]) with non-array fields (e.g. 2), the comparison is between 1 and 2. A
comparison of an empty array (e.g. []) treats the empty array as less than null or a missing field.

MongoDB sorts BinData in the following order:

1. First, the length or size of the data.

2. Then, by the BSON one-byte subtype.

3. Finally, by the data, performing a byte-by-byte comparison.

The following sections describe special considerations for particular BSON types.

ObjectId

ObjectIds are: small, likely unique, fast to generate, and ordered. These values consists of 12-bytes, where the first
four bytes are a timestamp that reflect the ObjectId’s creation. Refer to the ObjectId (page 184) documentation for
more information.

String

BSON strings are UTF-8. In general, drivers for each programming language convert from the language’s string format
to UTF-8 when serializing and deserializing BSON. This makes it possible to store most international characters in
BSON strings with ease. 25 In addition, MongoDB $regex queries support UTF-8 in the regex string.

Timestamps

BSON has a special timestamp type for internal MongoDB use and is not associated with the regular Date (page 189)
type. Timestamp values are a 64 bit value where:

• the first 32 bits are a time_t value (seconds since the Unix epoch)

• the second 32 bits are an incrementing ordinal for operations within a given second.

Within a single mongod instance, timestamp values are always unique.

In replication, the oplog has a ts field. The values in this field reflect the operation time, which uses a BSON
timestamp value.

Note: The BSON timestamp type is for internal MongoDB use. For most cases, in application development, you will
want to use the BSON date type. See Date (page 189) for more information.

If you insert a document containing an empty BSON timestamp in a top-level field, the MongoDB server will replace
that empty timestamp with the current timestamp value. For example, if you create an insert a document with a
timestamp value, as in the following operation:

var a = new Timestamp();

db.test.insert({ ts: a });

Then, the db.test.find() operation will return a document that resembles the following:

{ "_id" : ObjectId("542c2b97bac0595474108b48"), "ts" : Timestamp(1412180887, 1) }

25 Given strings using UTF-8 character sets, using sort() on strings will be reasonably correct. However, because internally sort() uses the
C++ strcmp api, the sort order may handle some characters incorrectly.

188 Chapter 4. Data Models

MongoDB Documentation, Release 2.6.11

If ts were a field in an embedded document, the server would have left it as an empty timestamp value.

Changed in version 2.6: Previously, the server would only replace empty timestamp values in the first two fields,
including _id, of an inserted document. Now MongoDB will replace any top-level field.

Date

BSON Date is a 64-bit integer that represents the number of milliseconds since the Unix epoch (Jan 1, 1970). This
results in a representable date range of about 290 million years into the past and future.

The official BSON specification26 refers to the BSON Date type as the UTC datetime.

Changed in version 2.0: BSON Date type is signed. 27 Negative values represent dates before 1970.

Example
Construct a Date using the new Date() constructor in the mongo shell:

var mydate1 = new Date()

Example
Construct a Date using the ISODate() constructor in the mongo shell:

var mydate2 = ISODate()

Example
Return the Date value as string:

mydate1.toString()

Example
Return the month portion of the Date value; months are zero-indexed, so that January is month 0:

mydate1.getMonth()

26http://bsonspec.org/#/specification
27 Prior to version 2.0, Date values were incorrectly interpreted as unsigned integers, which affected sorts, range queries, and indexes on Date

fields. Because indexes are not recreated when upgrading, please re-index if you created an index on Date values with an earlier version, and dates
before 1970 are relevant to your application.

4.4. Data Model Reference 189

http://bsonspec.org/#/specification

MongoDB Documentation, Release 2.6.11

190 Chapter 4. Data Models

CHAPTER 5

Administration

The administration documentation addresses the ongoing operation and maintenance of MongoDB instances and de-
ployments. This documentation includes both high level overviews of these concerns as well as tutorials that cover
specific procedures and processes for operating MongoDB.

Administration Concepts (page 191) Core conceptual documentation of operational practices for managing Mon-
goDB deployments and systems.

MongoDB Backup Methods (page 192) Describes approaches and considerations for backing up a MongoDB
database.

Monitoring for MongoDB (page 195) An overview of monitoring tools, diagnostic strategies, and approaches
to monitoring replica sets and sharded clusters.

Production Notes (page 210) A collection of notes that describe best practices and considerations for the oper-
ations of MongoDB instances and deployments.

Continue reading from Administration Concepts (page 191) for additional documentation of MongoDB admin-
istration.

Administration Tutorials (page 231) Tutorials that describe common administrative procedures and practices for op-
erations for MongoDB instances and deployments.

Configuration, Maintenance, and Analysis (page 231) Describes routine management operations, including
configuration and performance analysis.

Backup and Recovery (page 256) Outlines procedures for data backup and restoration with mongod instances
and deployments.

Continue reading from Administration Tutorials (page 231) for more tutorials of common MongoDB mainte-
nance operations.

Administration Reference (page 299) Reference and documentation of internal mechanics of administrative features,
systems and functions and operations.

See also:

The MongoDB Manual contains administrative documentation and tutorials though out several sections. See Replica
Set Tutorials (page 606) and Sharded Cluster Tutorials (page 704) for additional tutorials and information.

5.1 Administration Concepts

The core administration documents address strategies and practices used in the operation of MongoDB systems and
deployments.

191

MongoDB Documentation, Release 2.6.11

Operational Strategies (page 192) Higher level documentation of key concepts for the operation and maintenance of
MongoDB deployments, including backup, maintenance, and configuration.

MongoDB Backup Methods (page 192) Describes approaches and considerations for backing up a MongoDB
database.

Monitoring for MongoDB (page 195) An overview of monitoring tools, diagnostic strategies, and approaches
to monitoring replica sets and sharded clusters.

Run-time Database Configuration (page 203) Outlines common MongoDB configurations and examples of
best-practice configurations for common use cases.

Data Management (page 217) Core documentation that addresses issues in data management, organization, mainte-
nance, and lifestyle management.

Data Center Awareness (page 218) Presents the MongoDB features that allow application developers and
database administrators to configure their deployments to be more data center aware or allow operational
and location-based separation.

Expire Data from Collections by Setting TTL (page 222) TTL collections make it possible to automatically
remove data from a collection based on the value of a timestamp and are useful for managing data like
machine generated event data that are only useful for a limited period of time.

Capped Collections (page 219) Capped collections provide a special type of size-constrained collections that
preserve insertion order and can support high volume inserts.

Optimization Strategies for MongoDB (page 223) Techniques for optimizing application performance with Mon-
goDB.

5.1.1 Operational Strategies

These documents address higher level strategies for common administrative tasks and requirements with respect to
MongoDB deployments.

MongoDB Backup Methods (page 192) Describes approaches and considerations for backing up a MongoDB
database.

Monitoring for MongoDB (page 195) An overview of monitoring tools, diagnostic strategies, and approaches to
monitoring replica sets and sharded clusters.

Run-time Database Configuration (page 203) Outlines common MongoDB configurations and examples of best-
practice configurations for common use cases.

Import and Export MongoDB Data (page 207) Provides an overview of mongoimport and mongoexport, the
tools MongoDB includes for importing and exporting data.

Production Notes (page 210) A collection of notes that describe best practices and considerations for the operations
of MongoDB instances and deployments.

MongoDB Backup Methods

On this page

• Backup by Copying Underlying Data Files (page 193)
• Backup with mongodump (page 193)
• MongoDB Cloud Manager Backup (page 194)
• Ops Manager Backup Software (page 194)

192 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

When deploying MongoDB in production, you should have a strategy for capturing and restoring backups in the case
of data loss events. There are several ways to back up MongoDB clusters:

• Backup by Copying Underlying Data Files (page 193)

• Backup with mongodump (page 193)

• MongoDB Cloud Manager Backup (page 194)

• Ops Manager Backup Software (page 194)

Backup by Copying Underlying Data Files

You can create a backup by copying MongoDB’s underlying data files.

If the volume where MongoDB stores data files supports point in time snapshots, you can use these snapshots to create
backups of a MongoDB system at an exact moment in time.

File systems snapshots are an operating system volume manager feature, and are not specific to MongoDB. The
mechanics of snapshots depend on the underlying storage system. For example, if you use Amazon’s EBS storage
system for EC2 supports snapshots. On Linux the LVM manager can create a snapshot.

To get a correct snapshot of a running mongod process, you must have journaling enabled and the journal must reside
on the same logical volume as the other MongoDB data files. Without journaling enabled, there is no guarantee that
the snapshot will be consistent or valid.

To get a consistent snapshot of a sharded system, you must disable the balancer and capture a snapshot from every
shard and a config server at approximately the same moment in time.

If your storage system does not support snapshots, you can copy the files directly using cp, rsync, or a similar tool.
Since copying multiple files is not an atomic operation, you must stop all writes to the mongod before copying the
files. Otherwise, you will copy the files in an invalid state.

Backups produced by copying the underlying data do not support point in time recovery for replica sets and are
difficult to manage for larger sharded clusters. Additionally, these backups are larger because they include the indexes
and duplicate underlying storage padding and fragmentation. mongodump, by contrast, creates smaller backups.

For more information, see the Backup and Restore with Filesystem Snapshots (page 256) and Backup a Sharded Cluster
with Filesystem Snapshots (page 267) for complete instructions on using LVM to create snapshots. Also see Back up
and Restore Processes for MongoDB on Amazon EC21.

Backup with mongodump

The mongodump tool reads data from a MongoDB database and creates high fidelity BSON files. The
mongorestore tool can populate a MongoDB database with the data from these BSON files. These tools are
simple and efficient for backing up small MongoDB deployments, but are not ideal for capturing backups of larger
systems.

mongodump and mongorestore can operate against a running mongod process, and can manipulate the underly-
ing data files directly. By default, mongodump does not capture the contents of the local database (page 664).

mongodump only captures the documents in the database. The resulting backup is space efficient, but
mongorestore or mongod must rebuild the indexes after restoring data.

When connected to a MongoDB instance, mongodump can adversely affect mongod performance. If your data is
larger than system memory, the queries will push the working set out of memory.

1https://docs.mongodb.org/ecosystem/tutorial/backup-and-restore-mongodb-on-amazon-ec2

5.1. Administration Concepts 193

https://docs.mongodb.org/ecosystem/tutorial/backup-and-restore-mongodb-on-amazon-ec2
https://docs.mongodb.org/ecosystem/tutorial/backup-and-restore-mongodb-on-amazon-ec2

MongoDB Documentation, Release 2.6.11

To mitigate the impact of mongodump on the performance of the replica set, use mongodump to capture back-
ups from a secondary (page 569) member of a replica set. Alternatively, you can shut down a secondary and use
mongodump with the data files directly. If you shut down a secondary to capture data with mongodump ensure that
the operation can complete before its oplog becomes too stale to continue replicating.

For replica sets, mongodump also supports a point in time feature with the --oplog option. Applications may
continue modifying data while mongodump captures the output. To restore a point in time backup created with
--oplog, use mongorestore with the --oplogReplay option.

If applications modify data while mongodump is creating a backup, mongodump will compete for resources with
those applications.

See Back Up and Restore with MongoDB Tools (page 261), Backup a Small Sharded Cluster with mongodump
(page 266), and Backup a Sharded Cluster with Database Dumps (page 269) for more information.

MongoDB Cloud Manager Backup

The MongoDB Cloud Manager2 supports the backing up and restoring of MongoDB deployments.

MongoDB Cloud Manager continually backs up MongoDB replica sets and sharded clusters by reading the oplog data
from your MongoDB deployment.

MongoDB Cloud Manager Backup offers point in time recovery of MongoDB replica sets and a consistent snapshot
of sharded clusters.

MongoDB Cloud Manager achieves point in time recovery by storing oplog data so that it can create a restore for
any moment in time in the last 24 hours for a particular replica set or sharded cluster. Sharded cluster snapshots are
difficult to achieve with other MongoDB backup methods.

To restore a MongoDB deployment from an MongoDB Cloud Manager Backup snapshot, you download a compressed
archive of your MongoDB data files and distribute those files before restarting the mongod processes.

To get started with MongoDB Cloud Manager Backup, sign up for MongoDB Cloud Manager3. For documentation
on MongoDB Cloud Manager, see the MongoDB Cloud Manager documentation4.

Ops Manager Backup Software

MongoDB Subscribers can install and run the same core software that powers MongoDB Cloud Manager Backup
(page 194) on their own infrastructure. Ops Manager, an on-premise solution, has similar functionality to the cloud
version and is available with Enterprise Advanced subscriptions.

For more information about Ops Manager, see the MongoDB Enterprise Advanced5 page and the Ops Manager Man-
ual6.

Further Reading

Backup and Restore with Filesystem Snapshots (page 256) An outline of procedures for creating MongoDB data set
backups using system-level file snapshot tool, such as LVM or native storage appliance tools.

Restore a Replica Set from MongoDB Backups (page 260) Describes procedure for restoring a replica set from an
archived backup such as a mongodump or MongoDB Cloud Manager7 Backup file.

2https://cloud.mongodb.com/?jmp=docs
3https://cloud.mongodb.com/?jmp=docs
4https://docs.cloud.mongodb.com/
5https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
6https://docs.opsmanager.mongodb.com/current/
7https://cloud.mongodb.com/?jmp=docs

194 Chapter 5. Administration

https://cloud.mongodb.com/?jmp=docs
https://cloud.mongodb.com/?jmp=docs
https://docs.cloud.mongodb.com/
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
https://docs.opsmanager.mongodb.com/current/
https://docs.opsmanager.mongodb.com/current/
https://cloud.mongodb.com/?jmp=docs

MongoDB Documentation, Release 2.6.11

Back Up and Restore with MongoDB Tools (page 261) The procedure for writing the contents of a database to a
BSON (i.e. binary) dump file for backing up MongoDB databases.

Backup and Restore Sharded Clusters (page 265) Detailed procedures and considerations for backing up sharded
clusters and single shards.

Recover Data after an Unexpected Shutdown (page 274) Recover data from MongoDB data files that were not prop-
erly closed or have an invalid state.

Additional Resources

• Backup and it’s Role in Disaster Recovery White Paper8

• Backup vs. Replication: Why Do You Need Both?9

• MongoDB Production Readiness Consulting Package10

Monitoring for MongoDB

On this page

• Monitoring Strategies (page 195)
• MongoDB Reporting Tools (page 196)
• Process Logging (page 198)
• Diagnosing Performance Issues (page 199)
• Replication and Monitoring (page 201)
• Sharding and Monitoring (page 202)
• Additional Resources (page 202)

Monitoring is a critical component of all database administration. A firm grasp of MongoDB’s reporting will allow you
to assess the state of your database and maintain your deployment without crisis. Additionally, a sense of MongoDB’s
normal operational parameters will allow you to diagnose before they escalate to failures.

This document presents an overview of the available monitoring utilities and the reporting statistics available in Mon-
goDB. It also introduces diagnostic strategies and suggestions for monitoring replica sets and sharded clusters.

Note: MongoDB Cloud Manager11 is a hosted service that provides monitoring, backup, and automated deployment
of MongoDB instances. See MongoDB Cloud Manager12 and the MongoDB Cloud Manager documentation13 for
more information.

Monitoring Strategies

There are three methods for collecting data about the state of a running MongoDB instance:

• First, there is a set of utilities distributed with MongoDB that provides real-time reporting of database activities.

• Second, database commands return statistics regarding the current database state with greater fidelity.

8https://www.mongodb.com/lp/white-paper/backup-disaster-recovery?jmp=docs
9http://www.mongodb.com/blog/post/backup-vs-replication-why-do-you-need-both?jmp=docs

10https://www.mongodb.com/products/consulting?jmp=docs#s_production_readiness
11https://cloud.mongodb.com/?jmp=docs
12https://cloud.mongodb.com/?jmp=docs
13https://docs.cloud.mongodb.com/

5.1. Administration Concepts 195

https://www.mongodb.com/lp/white-paper/backup-disaster-recovery?jmp=docs
http://www.mongodb.com/blog/post/backup-vs-replication-why-do-you-need-both?jmp=docs
https://www.mongodb.com/products/consulting?jmp=docs#s_production_readiness
https://cloud.mongodb.com/?jmp=docs
https://cloud.mongodb.com/?jmp=docs
https://docs.cloud.mongodb.com/

MongoDB Documentation, Release 2.6.11

• Third, MongoDB Cloud Manager14 collects data from running MongoDB deployments and provides visualiza-
tion and alerts based on that data.

Each strategy can help answer different questions and is useful in different contexts. These methods are complemen-
tary.

MongoDB Reporting Tools

This section provides an overview of the reporting methods distributed with MongoDB. It also offers examples of the
kinds of questions that each method is best suited to help you address.

Utilities The MongoDB distribution includes a number of utilities that quickly return statistics about instances’
performance and activity. Typically, these are most useful for diagnosing issues and assessing normal operation.

mongostat mongostat captures and returns the counts of database operations by type (e.g. insert, query, update,
delete, etc.). These counts report on the load distribution on the server.

Use mongostat to understand the distribution of operation types and to inform capacity planning. See the
mongostat manual for details.

mongotop mongotop tracks and reports the current read and write activity of a MongoDB instance, and reports
these statistics on a per collection basis.

Use mongotop to check if your database activity and use match your expectations. See the mongotop manual
for details.

HTTP Console MongoDB provides a web interface that exposes diagnostic and monitoring information in a simple
web page. The web interface is accessible at localhost:<port>, where the <port> number is 1000 more than
the mongod port .

For example, if a locally running mongod is using the default port 27017, access the HTTP console at
http://localhost:28017.

Commands MongoDB includes a number of commands that report on the state of the database.

These data may provide a finer level of granularity than the utilities discussed above. Consider using their output
in scripts and programs to develop custom alerts, or to modify the behavior of your application in response to the
activity of your instance. The db.currentOp method is another useful tool for identifying the database instance’s
in-progress operations.

serverStatus The serverStatus command, or db.serverStatus() from the shell, returns a general
overview of the status of the database, detailing disk usage, memory use, connection, journaling, and index access.
The command returns quickly and does not impact MongoDB performance.

serverStatus outputs an account of the state of a MongoDB instance. This command is rarely run directly. In
most cases, the data is more meaningful when aggregated, as one would see with monitoring tools including MongoDB
Cloud Manager15. Nevertheless, all administrators should be familiar with the data provided by serverStatus.

14https://cloud.mongodb.com/?jmp=docs
15https://cloud.mongodb.com/?jmp=docs

196 Chapter 5. Administration

https://cloud.mongodb.com/?jmp=docs
https://cloud.mongodb.com/?jmp=docs
https://cloud.mongodb.com/?jmp=docs

MongoDB Documentation, Release 2.6.11

dbStats The dbStats command, or db.stats() from the shell, returns a document that addresses storage use
and data volumes. The dbStats reflect the amount of storage used, the quantity of data contained in the database,
and object, collection, and index counters.

Use this data to monitor the state and storage capacity of a specific database. This output also allows you to compare
use between databases and to determine the average document size in a database.

collStats The collStats or db.collection.stats() from the shell that provides statistics that resem-
ble dbStats on the collection level, including a count of the objects in the collection, the size of the collection, the
amount of disk space used by the collection, and information about its indexes.

replSetGetStatus The replSetGetStatus command (rs.status() from the shell) returns an
overview of your replica set’s status. The replSetGetStatus document details the state and configuration of
the replica set and statistics about its members.

Use this data to ensure that replication is properly configured, and to check the connections between the current host
and the other members of the replica set.

Third Party Tools A number of third party monitoring tools have support for MongoDB, either directly, or through
their own plugins.

Self Hosted Monitoring Tools These are monitoring tools that you must install, configure and maintain on your
own servers. Most are open source.

Tool Plugin Description
Ganglia16 mongodb-ganglia17 Python script to report operations per second,

memory usage, btree statistics, master/slave status
and current connections.

Ganglia gmond_python_modules18 Parses output from the serverStatus and
replSetGetStatus commands.

Motop19 None Realtime monitoring tool for MongoDB servers.
Shows current operations ordered by durations
every second.

mtop20 None A top like tool.
Munin21 mongo-munin22 Retrieves server statistics.
Munin mongomon23 Retrieves collection statistics (sizes, index sizes,

and each (configured) collection count for one
DB).

Munin munin-plugins Ubuntu PPA24 Some additional munin plugins not in the main
distribution.

Nagios25 nagios-plugin-mongodb26 A simple Nagios check script, written in Python.

16http://sourceforge.net/apps/trac/ganglia/wiki
17https://github.com/quiiver/mongodb-ganglia
18https://github.com/ganglia/gmond_python_modules
19https://github.com/tart/motop
20https://github.com/beaufour/mtop
21http://munin-monitoring.org/
22https://github.com/erh/mongo-munin
23https://github.com/pcdummy/mongomon
24https://launchpad.net/ chris-lea/+archive/munin-plugins
25http://www.nagios.org/
26https://github.com/mzupan/nagios-plugin-mongodb

5.1. Administration Concepts 197

http://sourceforge.net/apps/trac/ganglia/wiki
https://github.com/quiiver/mongodb-ganglia
https://github.com/ganglia/gmond_python_modules
https://github.com/tart/motop
https://github.com/beaufour/mtop
http://munin-monitoring.org/
https://github.com/erh/mongo-munin
https://github.com/pcdummy/mongomon
https://launchpad.net/~chris-lea/+archive/munin-plugins
http://www.nagios.org/
https://github.com/mzupan/nagios-plugin-mongodb

MongoDB Documentation, Release 2.6.11

Also consider dex27, an index and query analyzing tool for MongoDB that compares MongoDB log files and indexes
to make indexing recommendations.

See also:

Ops Manager, an on-premise solution available in MongoDB Enterprise Advanced28.

Hosted (SaaS) Monitoring Tools These are monitoring tools provided as a hosted service, usually through a paid
subscription.

Name Notes
MongoDB Cloud Manager29 MongoDB Cloud Manager is a cloud-based suite of services for managing

MongoDB deployments. MongoDB Cloud Manager provides monitoring,
backup, and automation functionality.

Scout30 Several plugins, including MongoDB Monitoring31, MongoDB Slow
Queries32, and MongoDB Replica Set Monitoring33.

Server Density34 Dashboard for MongoDB35, MongoDB specific alerts, replication failover
timeline and iPhone, iPad and Android mobile apps.

Application Performance
Management36

IBM has an Application Performance Management SaaS offering that includes
monitor for MongoDB and other applications and middleware.

Process Logging

During normal operation, mongod and mongos instances report a live account of all server activity and operations to
either standard output or a log file. The following runtime settings control these options.

• quiet. Limits the amount of information written to the log or output.

• verbosity. Increases the amount of information written to the log or output. You can also modify the logging
verbosity during runtime with the logLevel parameter or the db.setLogLevel() method in the shell.

• path. Enables logging to a file, rather than the standard output. You must specify the full path to the log file
when adjusting this setting.

• logAppend. Adds information to a log file instead of overwriting the file.

Note: You can specify these configuration operations as the command line arguments to mongod or mongos

For example:

mongod -v --logpath /var/log/mongodb/server1.log --logappend

Starts a mongod instance in verbose mode, appending data to the log file at
/var/log/mongodb/server1.log/.

The following database commands also affect logging:

• getLog. Displays recent messages from the mongod process log.

27https://github.com/mongolab/dex
28https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
29https://cloud.mongodb.com/?jmp=docs
30http://scoutapp.com
31https://scoutapp.com/plugin_urls/391-mongodb-monitoring
32http://scoutapp.com/plugin_urls/291-mongodb-slow-queries
33http://scoutapp.com/plugin_urls/2251-mongodb-replica-set-monitoring
34http://www.serverdensity.com
35http://www.serverdensity.com/mongodb-monitoring/
36http://ibmserviceengage.com

198 Chapter 5. Administration

https://github.com/mongolab/dex
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
https://cloud.mongodb.com/?jmp=docs
http://scoutapp.com
https://scoutapp.com/plugin_urls/391-mongodb-monitoring
http://scoutapp.com/plugin_urls/291-mongodb-slow-queries
http://scoutapp.com/plugin_urls/291-mongodb-slow-queries
http://scoutapp.com/plugin_urls/2251-mongodb-replica-set-monitoring
http://www.serverdensity.com
http://www.serverdensity.com/mongodb-monitoring/
http://ibmserviceengage.com
http://ibmserviceengage.com

MongoDB Documentation, Release 2.6.11

• logRotate. Rotates the log files for mongod processes only. See Rotate Log Files (page 243).

Diagnosing Performance Issues

Degraded performance in MongoDB is typically a function of the relationship between the quantity of data stored
in the database, the amount of system RAM, the number of connections to the database, and the amount of time the
database spends in a locked state.

In some cases performance issues may be transient and related to traffic load, data access patterns, or the availability
of hardware on the host system for virtualized environments. Some users also experience performance limitations as a
result of inadequate or inappropriate indexing strategies, or as a consequence of poor schema design patterns. In other
situations, performance issues may indicate that the database may be operating at capacity and that it is time to add
additional capacity to the database.

The following are some causes of degraded performance in MongoDB.

Locks MongoDB uses a locking system to ensure data set consistency. However, if certain operations are long-
running, or a queue forms, performance will slow as requests and operations wait for the lock. Lock-related slowdowns
can be intermittent. To see if the lock has been affecting your performance, look to the data in the globalLock section
of the serverStatus output. If globalLock.currentQueue.total is consistently high, then there is a
chance that a large number of requests are waiting for a lock. This indicates a possible concurrency issue that may be
affecting performance.

If globalLock.totalTime is high relative to uptime, the database has existed in a lock state for a significant
amount of time.

Long queries are often the result of a number of factors: ineffective use of indexes, non-optimal schema design, poor
query structure, system architecture issues, or insufficient RAM resulting in page faults (page 229) and disk reads.

Memory Usage MongoDB uses memory mapped files to store data. Given a data set of sufficient size, the MongoDB
process will allocate all available memory on the system for its use. While this is part of the design, and affords
MongoDB superior performance, the memory mapped files make it difficult to determine if the amount of RAM is
sufficient for the data set.

The memory usage statuses metrics of the serverStatus output can provide insight into MongoDB’s memory use.
Check the resident memory use (i.e. mem.resident): if this exceeds the amount of system memory and there is a
significant amount of data on disk that isn’t in RAM, you may have exceeded the capacity of your system.

You should also check the amount of mapped memory (i.e. mem.mapped.) If this value is greater than the amount of
system memory, some operations will require disk access page faults to read data from virtual memory and negatively
affect performance.

Page Faults Page faults can occur as MongoDB reads from or writes data to parts of its data files that are not
currently located in physical memory. In contrast, operating system page faults happen when physical memory is
exhausted and pages of physical memory are swapped to disk.

Page faults triggered by MongoDB are reported as the total number of page faults in one second. To check for page
faults, see the extra_info.page_faults value in the serverStatus output.

MongoDB on Windows counts both hard and soft page faults.

The MongoDB page fault counter may increase dramatically in moments of poor performance and may correlate
with limited physical memory environments. Page faults also can increase while accessing much larger data sets,
for example, scanning an entire collection. Limited and sporadic MongoDB page faults do not necessarily indicate a
problem or a need to tune the database.

5.1. Administration Concepts 199

MongoDB Documentation, Release 2.6.11

A single page fault completes quickly and is not problematic. However, in aggregate, large volumes of page faults
typically indicate that MongoDB is reading too much data from disk. In many situations, MongoDB’s read locks will
“yield” after a page fault to allow other processes to read and avoid blocking while waiting for the next page to read
into memory. This approach improves concurrency, and also improves overall throughput in high volume systems.

Increasing the amount of RAM accessible to MongoDB may help reduce the frequency of page faults. If this is not
possible, you may want to consider deploying a sharded cluster or adding shards to your deployment to distribute load
among mongod instances.

See What are page faults? (page 793) for more information.

Number of Connections In some cases, the number of connections between the application layer (i.e. clients) and
the database can overwhelm the ability of the server to handle requests. This can produce performance irregularities.
The following fields in the serverStatus document can provide insight:

• globalLock.activeClients contains a counter of the total number of clients with active operations in
progress or queued.

• connections is a container for the following two fields:

– current the total number of current clients that connect to the database instance.

– available the total number of unused collections available for new clients.

If requests are high because there are numerous concurrent application requests, the database may have trouble keeping
up with demand. If this is the case, then you will need to increase the capacity of your deployment. For read-heavy
applications increase the size of your replica set and distribute read operations to secondary members. For write heavy
applications, deploy sharding and add one or more shards to a sharded cluster to distribute load among mongod
instances.

Spikes in the number of connections can also be the result of application or driver errors. All of the officially supported
MongoDB drivers implement connection pooling, which allows clients to use and reuse connections more efficiently.
Extremely high numbers of connections, particularly without corresponding workload is often indicative of a driver or
other configuration error.

Unless constrained by system-wide limits MongoDB has no limit on incoming connections. You can modify system
limits using the ulimit command, or by editing your system’s /etc/sysctl file. See UNIX ulimit Settings
(page 300) for more information.

Database Profiling MongoDB’s “Profiler” is a database profiling system that can help identify inefficient queries
and operations.

The following profiling levels are available:

Level Setting
0 Off. No profiling
1 On. Only includes “slow” operations
2 On. Includes all operations

Enable the profiler by setting the profile value using the following command in the mongo shell:

db.setProfilingLevel(1)

The slowOpThresholdMs setting defines what constitutes a “slow” operation. To set the threshold above
which the profiler considers operations “slow” (and thus, included in the level 1 profiling data), you can configure
slowOpThresholdMs at runtime as an argument to the db.setProfilingLevel() operation.

See
The documentation of db.setProfilingLevel() for more information about this command.

200 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

By default, mongod records all “slow” queries to its log, as defined by slowOpThresholdMs.

Note: Because the database profiler can negatively impact performance, only enable profiling for strategic intervals
and as minimally as possible on production systems.

You may enable profiling on a per-mongod basis. This setting will not propagate across a replica set or sharded
cluster.

You can view the output of the profiler in the system.profile collection of your database by issuing the show
profile command in the mongo shell, or with the following operation:

db.system.profile.find({ millis : { $gt : 100 } })

This returns all operations that lasted longer than 100 milliseconds. Ensure that the value specified here (100, in this
example) is above the slowOpThresholdMs threshold.

See also:

Optimization Strategies for MongoDB (page 223) addresses strategies that may improve the performance of your
database queries and operations.

Replication and Monitoring

Beyond the basic monitoring requirements for any MongoDB instance, for replica sets, administrators must monitor
replication lag. “Replication lag” refers to the amount of time that it takes to copy (i.e. replicate) a write operation
on the primary to a secondary. Some small delay period may be acceptable, but two significant problems emerge as
replication lag grows:

• First, operations that occurred during the period of lag are not replicated to one or more secondaries. If you’re
using replication to ensure data persistence, exceptionally long delays may impact the integrity of your data set.

• Second, if the replication lag exceeds the length of the operation log (oplog) then MongoDB will have to perform
an initial sync on the secondary, copying all data from the primary and rebuilding all indexes. This is uncommon
under normal circumstances, but if you configure the oplog to be smaller than the default, the issue can arise.

Note: The size of the oplog is only configurable during the first run using the --oplogSize argument to the
mongod command, or preferably, the oplogSizeMB setting in the MongoDB configuration file. If you do not
specify this on the command line before running with the --replSet option, mongod will create a default
sized oplog.

By default, the oplog is 5 percent of total available disk space on 64-bit systems. For more information about
changing the oplog size, see the Change the Size of the Oplog (page 634)

For causes of replication lag, see Replication Lag (page 654).

Replication issues are most often the result of network connectivity issues between members, or the result of a primary
that does not have the resources to support application and replication traffic. To check the status of a replica, use the
replSetGetStatus or the following helper in the shell:

rs.status()

The replSetGetStatus reference provides a more in-depth overview view of this output. In general, watch the
value of optimeDate, and pay particular attention to the time difference between the primary and the secondary
members.

5.1. Administration Concepts 201

MongoDB Documentation, Release 2.6.11

Sharding and Monitoring

In most cases, the components of sharded clusters benefit from the same monitoring and analysis as all other MongoDB
instances. In addition, clusters require further monitoring to ensure that data is effectively distributed among nodes
and that sharding operations are functioning appropriately.

See also:

See the Sharding Concepts (page 681) documentation for more information.

Config Servers The config database maintains a map identifying which documents are on which shards. The cluster
updates this map as chunks move between shards. When a configuration server becomes inaccessible, certain sharding
operations become unavailable, such as moving chunks and starting mongos instances. However, clusters remain
accessible from already-running mongos instances.

Because inaccessible configuration servers can seriously impact the availability of a sharded cluster, you should mon-
itor your configuration servers to ensure that the cluster remains well balanced and that mongos instances can restart.

MongoDB Cloud Manager37 monitors config servers and can create notifications if a config server becomes inacces-
sible. See the MongoDB Cloud Manager documentation38 for more information.

Balancing and Chunk Distribution The most effective sharded cluster deployments evenly balance chunks among
the shards. To facilitate this, MongoDB has a background balancer process that distributes data to ensure that chunks
are always optimally distributed among the shards.

Issue the db.printShardingStatus() or sh.status() command to the mongos by way of the mongo
shell. This returns an overview of the entire cluster including the database name, and a list of the chunks.

Stale Locks In nearly every case, all locks used by the balancer are automatically released when they become stale.
However, because any long lasting lock can block future balancing, it’s important to ensure that all locks are legitimate.
To check the lock status of the database, connect to a mongos instance using the mongo shell. Issue the following
command sequence to switch to the config database and display all outstanding locks on the shard database:

use config
db.locks.find()

For active deployments, the above query can provide insights. The balancing process, which originates on a randomly
selected mongos, takes a special “balancer” lock that prevents other balancing activity from transpiring. Use the
following command, also to the config database, to check the status of the “balancer” lock.

db.locks.find({ _id : "balancer" })

If this lock exists, make sure that the balancer process is actively using this lock.

Additional Resources

• MongoDB Production Readiness Consulting Package39

37https://cloud.mongodb.com/?jmp=docs
38https://docs.cloud.mongodb.com/
39https://www.mongodb.com/products/consulting?jmp=docs#s_production_readiness

202 Chapter 5. Administration

https://cloud.mongodb.com/?jmp=docs
https://docs.cloud.mongodb.com/
https://www.mongodb.com/products/consulting?jmp=docs#s_production_readiness

MongoDB Documentation, Release 2.6.11

Run-time Database Configuration

On this page

• Configure the Database (page 203)
• Security Considerations (page 204)
• Replication and Sharding Configuration (page 205)
• Run Multiple Database Instances on the Same System (page 207)
• Diagnostic Configurations (page 207)

The command line and configuration file interfaces provide MongoDB administrators with a large num-
ber of options and settings for controlling the operation of the database system. This document provides an overview
of common configurations and examples of best-practice configurations for common use cases.

While both interfaces provide access to the same collection of options and settings, this document primarily uses the
configuration file interface. If you run MongoDB using a control script or installed from a package for your operating
system, you likely already have a configuration file located at /etc/mongod.conf. Confirm this by checking the
contents of the /etc/init.d/mongod or /etc/rc.d/mongod script to ensure that the control scripts start the
mongod with the appropriate configuration file (see below.)

To start a MongoDB instance using this configuration file, issue a command in the following form:

mongod --config /etc/mongod.conf
mongod -f /etc/mongod.conf

Modify the values in the /etc/mongod.conf file on your system to control the configuration of your database
instance.

Configure the Database

Consider the following basic configuration which uses the YAML format:

processManagement:
fork: true

net:
bindIp: 127.0.0.1
port: 27017

storage:
dbPath: /srv/mongodb

systemLog:
destination: file
path: "/var/log/mongodb/mongod.log"
logAppend: true

storage:
journal:

enabled: true

Or, if using the older .ini configuration file format:

fork = true
bind_ip = 127.0.0.1
port = 27017
quiet = true
dbpath = /srv/mongodb
logpath = /var/log/mongodb/mongod.log

5.1. Administration Concepts 203

MongoDB Documentation, Release 2.6.11

logappend = true
journal = true

For most standalone servers, this is a sufficient base configuration. It makes several assumptions, but consider the
following explanation:

• fork is true, which enables a daemon mode for mongod, which detaches (i.e. “forks”) the MongoDB from
the current session and allows you to run the database as a conventional server.

• bindIp is 127.0.0.1, which forces the server to only listen for requests on the localhost IP. Only bind to
secure interfaces that the application-level systems can access with access control provided by system network
filtering (i.e. “firewall”).

New in version 2.6: mongod installed from official .deb (page 13) and .rpm (page 6) packages have the
bind_ip configuration set to 127.0.0.1 by default.

• port is 27017, which is the default MongoDB port for database instances. MongoDB can bind to any port.
You can also filter access based on port using network filtering tools.

Note: UNIX-like systems require superuser privileges to attach processes to ports lower than 1024.

• quiet is true. This disables all but the most critical entries in output/log file, and is not recommended for
production systems. If you do set this option, you can use setParameter to modify this setting during run
time.

• dbPath is /srv/mongodb, which specifies where MongoDB will store its data files. /srv/mongodb and
/var/lib/mongodb are popular locations. The user account that mongod runs under will need read and
write access to this directory.

• systemLog.path is /var/log/mongodb/mongod.log which is where mongod will write its output.
If you do not set this value, mongod writes all output to standard output (e.g. stdout.)

• logAppend is true, which ensures that mongod does not overwrite an existing log file following the server
start operation.

• storage.journal.enabled is true, which enables journaling. Journaling ensures single instance write-
durability. 64-bit builds of mongod enable journaling by default. Thus, this setting may be redundant.

Given the default configuration, some of these values may be redundant. However, in many situations explicitly stating
the configuration increases overall system intelligibility.

Security Considerations

The following collection of configuration options are useful for limiting access to a mongod instance. Consider the
following settings, shown in both YAML and older configuration file format:

In YAML format

security:
authorization: enabled

net:
bindIp: 127.0.0.1,10.8.0.10,192.168.4.24

Or, if using the older older configuration file format40:

bind_ip = 127.0.0.1,10.8.0.10,192.168.4.24
auth = true

40http://docs.mongodb.org/v2.4/reference/configuration-options

204 Chapter 5. Administration

http://docs.mongodb.org/v2.4/reference/configuration-options

MongoDB Documentation, Release 2.6.11

Consider the following explanation for these configuration decisions:

• “bindIp” has three values: 127.0.0.1, the localhost interface; 10.8.0.10, a private IP address typically
used for local networks and VPN interfaces; and 192.168.4.24, a private network interface typically used
for local networks.

Because production MongoDB instances need to be accessible from multiple database servers, it is important
to bind MongoDB to multiple interfaces that are accessible from your application servers. At the same time it’s
important to limit these interfaces to interfaces controlled and protected at the network layer.

• “authorization” is true enables the authorization system within MongoDB. If enabled you will need to
log in by connecting over the localhost interface for the first time to create user credentials.

See also:

Security Concepts (page 316)

Replication and Sharding Configuration

Replication Configuration Replica set configuration is straightforward, and only requires that the replSetName
have a value that is consistent among all members of the set. Consider the following:

In YAML format

replication:
replSetName: set0

Or, if using the older configuration file format41:

replSet = set0

Use descriptive names for sets. Once configured, use the mongo shell to add hosts to the replica set.

See also:

Replica set reconfiguration.

To enable authentication for the replica set, add the following keyFile option:

In YAML format

security:
keyFile: /srv/mongodb/keyfile

Or, if using the older configuration file format42:

keyFile = /srv/mongodb/keyfile

Setting keyFile enables authentication and specifies a key file for the replica set member use to when authenticating
to each other. The content of the key file is arbitrary, but must be the same on all members of the replica set and
mongos instances that connect to the set. The keyfile must be less than one kilobyte in size and may only contain
characters in the base64 set and the file must not have group or “world” permissions on UNIX systems.

See also:

The Replica Set Security (page 318) section for information on configuring authentication with replica sets.

The Replication (page 563) document for more information on replication in MongoDB and replica set configuration
in general.

41http://docs.mongodb.org/v2.4/reference/configuration-options
42http://docs.mongodb.org/v2.4/reference/configuration-options

5.1. Administration Concepts 205

http://docs.mongodb.org/v2.4/reference/configuration-options
http://docs.mongodb.org/v2.4/reference/configuration-options

MongoDB Documentation, Release 2.6.11

Sharding Configuration Sharding requires a number of mongod instances with different configurations. The con-
fig servers store the cluster’s metadata, while the cluster distributes data among one or more shard servers.

Note: Config servers are not replica sets.

To set up one or three “config server” instances as normal (page 203) mongod instances, and then add the following
configuration option:

In YAML format

sharding:
clusterRole: configsvr

net:
bindIp: 10.8.0.12
port: 27001

Or, if using the older configuration file format43:

configsvr = true

bind_ip = 10.8.0.12
port = 27001

This creates a config server running on the private IP address 10.8.0.12 on port 27001. Make sure that there are
no port conflicts, and that your config server is accessible from all of your mongos and mongod instances.

To set up shards, configure two or more mongod instance using your base configuration (page 203), with the
shardsvr value for the sharding.clusterRole setting:

sharding:
clusterRole: shardsvr

Or, if using the older configuration file format44:

shardsvr = true

Finally, to establish the cluster, configure at least one mongos process with the following settings:

In YAML format:

sharding:
configDB: 10.8.0.12:27001
chunkSize: 64

Or, if using the older configuration file format45:

configdb = 10.8.0.12:27001
chunkSize = 64

Important: Always use 3 config servers in production environments.

You can specify multiple configDB instances by specifying hostnames and ports in the form of a comma separated
list.

In general, avoid modifying the chunkSize from the default value of 64, 46 and should ensure this setting is consis-
tent among all mongos instances.

43http://docs.mongodb.org/v2.4/reference/configuration-options
44http://docs.mongodb.org/v2.4/reference/configuration-options
45http://docs.mongodb.org/v2.4/reference/configuration-options
46 Chunk size is 64 megabytes by default, which provides the ideal balance between the most even distribution of data, for which smaller chunk

sizes are best, and minimizing chunk migration, for which larger chunk sizes are optimal.

206 Chapter 5. Administration

http://docs.mongodb.org/v2.4/reference/configuration-options
http://docs.mongodb.org/v2.4/reference/configuration-options
http://docs.mongodb.org/v2.4/reference/configuration-options

MongoDB Documentation, Release 2.6.11

See also:

The Sharding (page 675) section of the manual for more information on sharding and cluster configuration.

Run Multiple Database Instances on the Same System

In many cases running multiple instances of mongod on a single system is not recommended. On some types of
deployments 47 and for testing purposes you may need to run more than one mongod on a single system.

In these cases, use a base configuration (page 203) for each instance, but consider the following configuration values:

In YAML format:

storage:
dbPath: /srv/mongodb/db0/

processManagement:
pidFilePath: /srv/mongodb/db0.pid

Or, if using the older configuration file format48:

dbpath = /srv/mongodb/db0/
pidfilepath = /srv/mongodb/db0.pid

The dbPath value controls the location of the mongod instance’s data directory. Ensure that each database has a
distinct and well labeled data directory. The pidFilePath controls where mongod process places it’s process id
file. As this tracks the specific mongod file, it is crucial that file be unique and well labeled to make it easy to start
and stop these processes.

Create additional control scripts and/or adjust your existing MongoDB configuration and control script as needed to
control these processes.

Diagnostic Configurations

The following configuration options control various mongod behaviors for diagnostic purposes:

• operationProfiling.mode sets the database profiler (page 230) level. The profiler is not active by
default because of the possible impact on the profiler itself on performance. Unless this setting is on, queries
are not profiled.

• operationProfiling.slowOpThresholdMs configures the threshold which determines whether a
query is “slow” for the purpose of the logging system and the profiler (page 230). The default value is 100
milliseconds. Set a lower value if the database profiler does not return useful results or a higher value to only
log the longest running queries.

• systemLog.verbosity controls the amount of logging output that mongod write to the log. Only use this
option if you are experiencing an issue that is not reflected in the normal logging level.

For more information, see also Database Profiling (page 230).

Import and Export MongoDB Data

47 Single-tenant systems with SSD or other high performance disks may provide acceptable performance levels for multiple mongod instances.
Additionally, you may find that multiple databases with small working sets may function acceptably on a single system.

48http://docs.mongodb.org/v2.4/reference/configuration-options

5.1. Administration Concepts 207

http://docs.mongodb.org/v2.4/reference/configuration-options

MongoDB Documentation, Release 2.6.11

On this page

• Data Import, Export, and Backup Operations (page 208)
• Human Intelligible Import/Export Formats (page 209)

This document provides an overview of the import and export programs included in the MongoDB distribution. These
tools are useful when you want to backup or export a portion of your data without capturing the state of the entire
database, or for simple data ingestion cases. For more complex data migration tasks, you may want to write your own
import and export scripts using a client driver to interact with the database itself. For disaster recovery protection and
routine database backup operation, use full database instance backups (page 192).

Warning: Because these tools primarily operate by interacting with a running mongod instance, they can impact
the performance of your running database.
Not only do these processes create traffic for a running database instance, they also force the database to read all
data through memory. When MongoDB reads infrequently used data, it can supplant more frequently accessed
data, causing a deterioration in performance for the database’s regular workload.

See also:

MongoDB Backup Methods (page 192) or MongoDB Cloud Manager Backup documentation49 for more information
on backing up MongoDB instances. Additionally, consider the following references for the MongoDB import/export
tools:

• mongoimport

• mongoexport

• mongorestore

• mongodump

Data Import, Export, and Backup Operations

For resilient and non-disruptive backups, use a file system or block-level disk snapshot function, such as the meth-
ods described in the MongoDB Backup Methods (page 192) document. The tools and operations discussed provide
functionality that is useful in the context of providing some kinds of backups.

In contrast, use import and export tools to backup a small subset of your data or to move data to or from a third
party system. These backups may capture a small crucial set of data or a frequently modified section of data for extra
insurance, or for ease of access.

Warning: mongoimport and mongoexport do not reliably preserve all rich BSON data types because JSON
can only represent a subset of the types supported by BSON. As a result, data exported or imported with these tools
may lose some measure of fidelity. See the Extended JSON reference for more information.

No matter how you decide to import or export your data, consider the following guidelines:

• Label files so that you can identify the contents of the export or backup as well as the point in time the ex-
port/backup reflect.

• Do not create or apply exports if the backup process itself will have an adverse effect on a production system.

• Make sure that they reflect a consistent data state. Export or backup processes can impact data integrity (i.e.
type fidelity) and consistency if updates continue during the backup process.

49https://docs.cloud.mongodb.com/tutorial/nav/backup-use/

208 Chapter 5. Administration

https://docs.cloud.mongodb.com/tutorial/nav/backup-use/

MongoDB Documentation, Release 2.6.11

• Test backups and exports by restoring and importing to ensure that the backups are useful.

Human Intelligible Import/Export Formats

This section describes a process to import/export a collection to a file in a JSON or CSV format.

The examples in this section use the MongoDB tools mongoimport and mongoexport. These tools may also be
useful for importing data into a MongoDB database from third party applications.

If you want to simply copy a database or collection from one instance to another, consider using the copydb,
clone, or cloneCollection commands, which may be more suited to this task. The mongo shell provides
the db.copyDatabase() method.

Collection Export with mongoexport You can use the mongoexport utility you can create a backup file.

Warning: mongoimport and mongoexport do not reliably preserve all rich BSON data types because JSON
can only represent a subset of the types supported by BSON. As a result, data exported or imported with these tools
may lose some measure of fidelity. See the Extended JSON reference for more information.

In the most simple invocation, the command takes the following form:

mongoexport --collection collection --out collection.json

This will export all documents in the collection named collection into the file collection.json. Without
the output specification (i.e. “--out collection.json”), mongoexport writes output to standard output (i.e.
“stdout”). You can further narrow the results by supplying a query filter using the “--query” and limit results to a
single database using the “--db” option. For instance:

mongoexport --db sales --collection contacts --query '{"field": 1}'

This command returns all documents in the sales database’s contacts collection, with a field named field with
a value of 1. Enclose the query in single quotes (e.g. ’) to ensure that it does not interact with your shell environment.
The resulting documents will return on standard output.

By default, mongoexport returns one JSON document per MongoDB document. Specify the “--jsonArray”
argument to return the export as a single JSON array. Use the “--csv” file to return the result in CSV (comma
separated values) format.

If your mongod instance is not running, you can use the “--dbpath” option to specify the location to your Mon-
goDB instance’s database files. See the following example:

mongoexport --db sales --collection contacts --dbpath /srv/MongoDB/

This reads the data files directly. This locks the data directory to prevent conflicting writes. The mongod process must
not be running or attached to these data files when you run mongoexport in this configuration.

The “--host” and “--port” options allow you to specify a non-local host to connect to capture the export. Consider
the following example:

mongoexport --host mongodb1.example.net --port 37017 --username user --password pass --collection contacts --out mdb1-examplenet.json

On any mongoexport command you may, as above specify username and password credentials as above.

Collection Import with mongoimport To restore a backup taken with mongoexport. Most of the arguments
to mongoexport also exist for mongoimport.

5.1. Administration Concepts 209

MongoDB Documentation, Release 2.6.11

Warning: mongoimport and mongoexport do not reliably preserve all rich BSON data types because JSON
can only represent a subset of the types supported by BSON. As a result, data exported or imported with these tools
may lose some measure of fidelity. See the Extended JSON reference for more information.

Consider the following command:

mongoimport --collection collection --file collection.json

This imports the contents of the file collection.json into the collection named collection. If you do not
specify a file with the “--file” option, mongoimport accepts input over standard input (e.g. “stdin.”)

If you specify the “--upsert” option, all of mongoimport operations will attempt to update existing documents
in the database and insert other documents. This option will cause some performance impact depending on your
configuration.

You can specify the database option --db to import these documents to a particular database. If your MongoDB
instance is not running, use the “--dbpath” option to specify the location of your MongoDB instance’s database
files. Consider using the “--journal” option to ensure that mongoimport records its operations in the jour-
nal. The mongod process must not be running or attached to these data files when you run mongoimport in this
configuration.

Use the “--ignoreBlanks” option to ignore blank fields. For CSV and TSV imports, this option provides the
desired functionality in most cases: it avoids inserting blank fields in MongoDB documents.

Production Notes

On this page

• Packages (page 210)
• Concurrency (page 211)
• Journaling (page 211)
• Networking (page 211)
• Hardware Considerations (page 212)
• Architecture (page 214)
• Platforms (page 214)
• Performance Monitoring (page 216)
• Backups (page 217)
• Additional Resources (page 217)

This page details system configurations that affect MongoDB, especially in production.

Note: MongoDB Cloud Manager50 is a hosted service that provides monitoring, backup, and automated deployment
of MongoDB instances. See MongoDB Cloud Manager51 and the MongoDB Cloud Manager documentation52 for
more information.

Packages

50https://cloud.mongodb.com/?jmp=docs
51https://cloud.mongodb.com/?jmp=docs
52https://docs.cloud.mongodb.com/

210 Chapter 5. Administration

https://cloud.mongodb.com/?jmp=docs
https://cloud.mongodb.com/?jmp=docs
https://docs.cloud.mongodb.com/

MongoDB Documentation, Release 2.6.11

MongoDB Be sure you have the latest stable release. All releases are available on the Downloads53 page. This is a
good place to verify what is current, even if you then choose to install via a package manager.

Always use 64-bit builds for production. The 32-bit build MongoDB offers for test and development environments
is not suitable for production deployments as it can store no more than 2GB of data. See the 32-bit limitations page
(page 764) for more information.

32-bit builds exist to support use on development machines.

Operating Systems MongoDB distributions are currently available for Mac OS X, Linux, Windows Server 2008 R2
64bit, Windows 7 (32 bit and 64 bit), Windows Vista, and Solaris platforms.

Note: MongoDB uses the GNU C Library54 (glibc) if available on a system. MongoDB requires version at least
glibc-2.12-1.2.el6 to avoid a known bug with earlier versions. For best results use at least version 2.13.

Concurrency

In earlier versions of MongoDB, all write operations contended for a single readers-writer lock on the MongoDB
instance. As of version 2.2, each database has a readers-writer lock that allows concurrent reads access to a database,
but gives exclusive access to a single write operation per database. See the Concurrency (page 777) page for more
information.

Journaling

MongoDB uses write ahead logging to an on-disk journal to guarantee that MongoDB is able to quickly recover the
write operations (page 77) following a crash or other serious failure.

In order to ensure that mongod will be able to recover its data files and keep the data files in a valid state following a
crash, leave journaling enabled. See Journaling (page 309) for more information.

Networking

Use Trusted Networking Environments Always run MongoDB in a trusted environment, with network rules that
prevent access from all unknown machines, systems, and networks. As with any sensitive system dependent on
network access, your MongoDB deployment should only be accessible to specific systems that require access, such as
application servers, monitoring services, and other MongoDB components.

Note: By default, authorization is not enabled and mongod assumes a trusted environment. You can enable
security/auth (page 316) mode if you need it.

See documents in the Security Section (page 313) for additional information, specifically:

• Configuration Options (page 323)

• Firewalls (page 324)

• Network Security Tutorials (page 330)

For Windows users, consider the Windows Server Technet Article on TCP Configuration55 when deploying MongoDB
on Windows.

53http://www.mongodb.org/downloads
54http://www.gnu.org/software/libc/
55http://technet.microsoft.com/en-us/library/dd349797.aspx

5.1. Administration Concepts 211

http://www.mongodb.org/downloads
http://www.gnu.org/software/libc/
http://technet.microsoft.com/en-us/library/dd349797.aspx

MongoDB Documentation, Release 2.6.11

Connection Pools To avoid overloading the connection resources of a single mongod or mongos instance, ensure
that clients maintain reasonable connection pool sizes.

The connPoolStats database command returns information regarding the number of open connections to the
current database for mongos instances and mongod instances in sharded clusters.

Hardware Considerations

MongoDB is designed specifically with commodity hardware in mind and has few hardware requirements or limita-
tions. MongoDB’s core components run on little-endian hardware, primarily x86/x86_64 processors. Client libraries
(i.e. drivers) can run on big or little endian systems.

Hardware Requirements and Limitations The hardware for the most effective MongoDB deployments have the
following properties:

Allocate Sufficient RAM and CPU As with all software, more RAM and a faster CPU clock speed are important
for performance.

In general, databases are not CPU bound. As such, increasing the number of cores can help, but does not provide
significant marginal return.

Use Solid State Disks (SSDs) MongoDB has good results and a good price-performance ratio with SATA SSD
(Solid State Disk).

Use SSD if available and economical. Spinning disks can be performant, but SSDs’ capacity for random I/O operations
works well with the update model of mongod.

Commodity (SATA) spinning drives are often a good option, as the random I/O performance increase with more
expensive spinning drives is not that dramatic (only on the order of 2x). Using SSDs or increasing RAM may be more
effective in increasing I/O throughput.

Avoid Remote File Systems

• Remote file storage can create performance problems in MongoDB. See Remote Filesystems (page 213) for
more information about storage and MongoDB.

MongoDB and NUMA Hardware Running MongoDB on a system with Non-Uniform Access Memory (NUMA)
can cause a number of operational problems, including slow performance for periods of time and high system process
usage.

When running MongoDB servers and clients on NUMA hardware, you should configure a memory interleave policy
so that the host behaves in a non-NUMA fashion. MongoDB checks NUMA settings on start up when deployed on
Linux (since version 2.0) and Windows (since version 2.6) machines, and prints a warning if the NUMA configuration
may degrade performance.

See also:

• The MySQL “swap insanity” problem and the effects of NUMA56 post, which describes the effects of NUMA
on databases. The post introduces NUMA and its goals, and illustrates how these goals are not compatible
with production databases. Although the blog post addresses the impact of NUMA for MySQL, the issues for
MongoDB are similar.

56http://jcole.us/blog/archives/2010/09/28/mysql-swap-insanity-and-the-numa-architecture/

212 Chapter 5. Administration

http://jcole.us/blog/archives/2010/09/28/mysql-swap-insanity-and-the-numa-architecture/

MongoDB Documentation, Release 2.6.11

• NUMA: An Overview57.

Configuring NUMA on Windows On Windows, memory interleaving must be enabled through the machine’s
BIOS. Please consult your system documentation for details.

Configuring NUMA on Linux When running MongoDB on Linux, you may instead use the numactl command
and start the MongoDB programs (mongod, including the config servers (page 684); mongos; or clients) in the
following manner:

numactl --interleave=all <path>

where <path> is the path to the program you are starting. Then, disable zone reclaim in the proc settings using the
following command:

echo 0 > /proc/sys/vm/zone_reclaim_mode

To fully disable NUMA behavior, you must perform both operations. For more information, see the Documentation
for /proc/sys/vm/*58.

Disk and Storage Systems

Swap Assign swap space for your systems. Allocating swap space can avoid issues with memory contention and
can prevent the OOM Killer on Linux systems from killing mongod.

The method mongod uses to map memory files to memory ensures that the operating system will never store Mon-
goDB data in swap space. On Windows systems, MongoDB requires extra swap space due to commitment limits. For
details, see MongoDB on Windows (page 216).

RAID Most MongoDB deployments should use disks backed by RAID-10.

RAID-5 and RAID-6 do not typically provide sufficient performance to support a MongoDB deployment.

Avoid RAID-0 with MongoDB deployments. While RAID-0 provides good write performance, it also provides limited
availability and can lead to reduced performance on read operations, particularly when using Amazon’s EBS volumes.

Remote Filesystems The Network File System protocol (NFS) is not recommended for use with MongoDB as some
versions perform poorly.

Performance problems arise when both the data files and the journal files are hosted on NFS. You may experience
better performance if you place the journal on local or iscsi volumes. If you must use NFS, add the following NFS
options to your /etc/fstab file: bg, nolock, and noatime.

Separate Components onto Different Storage Devices For improved performance, consider separating your
database’s data, journal, and logs onto different storage devices, based on your application’s access and write pat-
tern.

Note: This will affect your ability to create snapshot-style backups of your data, since the files will be on different
devices and volumes.

57https://queue.acm.org/detail.cfm?id=2513149
58http://www.kernel.org/doc/Documentation/sysctl/vm.txt

5.1. Administration Concepts 213

https://queue.acm.org/detail.cfm?id=2513149
http://www.kernel.org/doc/Documentation/sysctl/vm.txt
http://www.kernel.org/doc/Documentation/sysctl/vm.txt

MongoDB Documentation, Release 2.6.11

Scheduling for Virtual Devices Local block devices attached to virtual machine instances via the hypervisor should
use a noop scheduler for best performance. The noop scheduler allows the operating system to defer I/O scheduling to
the underlying hypervisor.

Architecture

Write Concern Write concern describes the guarantee that MongoDB provides when reporting on the success of
a write operation. The strength of the write concerns determine the level of guarantee. When inserts, updates and
deletes have a weak write concern, write operations return quickly. In some failure cases, write operations issued with
weak write concerns may not persist. With stronger write concerns, clients wait after sending a write operation for
MongoDB to confirm the write operations.

MongoDB provides different levels of write concern to better address the specific needs of applications. Clients
may adjust write concern to ensure that the most important operations persist successfully to an entire MongoDB
deployment. For other less critical operations, clients can adjust the write concern to ensure faster performance rather
than ensure persistence to the entire deployment.

See the Write Concern (page 82) document for more information about choosing an appropriate write concern level
for your deployment.

Replica Sets See the Replica Set Architectures (page 575) document for an overview of architectural considerations
for replica set deployments.

Sharded Clusters See the Sharded Cluster Production Architecture (page 686) document for an overview of rec-
ommended sharded cluster architectures for production deployments.

Platforms

MongoDB on Linux
Important: The following discussion only applies to Linux, and therefore does not affect deployments where
mongod instances run other UNIX-like systems or on Windows.

Kernel and File Systems When running MongoDB in production on Linux, it is recommended that you use Linux
kernel version 2.6.36 or later.

MongoDB preallocates its database files before using them and often creates large files. As such, you should use the
Ext4 and XFS file systems:

• In general, if you use the Ext4 file system, use at least version 2.6.23 of the Linux Kernel.

• In general, if you use the XFS file system, use at least version 2.6.25 of the Linux Kernel.

• Some Linux distributions require different versions of the kernel to support using ext4 and/or xfs:

Linux Distribution Filesystem Kernel Version
CentOS 5.5 ext4, xfs 2.6.18-194.el5
CentOS 5.6 ext4, xfs 2.6.18-238.el5
CentOS 5.8 ext4, xfs 2.6.18-308.8.2.el5
CentOS 6.1 ext4, xfs 2.6.32-131.0.15.el6.x86_64
RHEL 5.6 ext4 2.6.18-238
RHEL 6.0 xfs 2.6.32-71
Ubuntu 10.04.4 LTS ext4, xfs 2.6.32-38-server
Amazon Linux AMI release 2012.03 ext4 3.2.12-3.2.4.amzn1.x86_64

214 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Important: MongoDB requires a filesystem that supports fsync() on directories. For example, HGFS and Virtual
Box’s shared folders do not support this operation.

Recommended Configuration

• Turn off atime for the storage volume containing the database files.

• Set the file descriptor limit, -n, and the user process limit (ulimit), -u, above 20,000, according to the sug-
gestions in the ulimit (page 300) document. A low ulimit will affect MongoDB when under heavy use and can
produce errors and lead to failed connections to MongoDB processes and loss of service.

• Disable Transparent Huge Pages, as MongoDB performs better with normal (4096 bytes) virtual memory pages.
See Transparent Huge Pages Settings (page 232).

• Disable NUMA in your BIOS. If that is not possible see MongoDB on NUMA Hardware (page 212).

• Configure SELinux on Red Hat. For more information, see Configure SELinux for MongoDB (page 8) and
Configure SELinux for MongoDB Enterprise (page 30).

• Ensure that readahead settings for the block devices that store the database files are appropriate. For random
access use patterns, set low readahead values. A readahead of 32 (16kb) often works well.

For a standard block device, you can run sudo blockdev --report to get the readahead settings and
sudo blockdev --setra <value> <device> to change the readahead settings. Refer to your spe-
cific operating system manual for more information.

• Use the Network Time Protocol (NTP) to synchronize time among your hosts. This is especially important in
sharded clusters.

MongoDB Enterprise and TLS/SSL Libraries On Linux platforms, you may observe one of the following state-
ments in the MongoDB log:

<path to TLS/SSL libs>/libssl.so.<version>: no version information available (required by /usr/bin/mongod)
<path to TLS/SSL libs>/libcrypto.so.<version>: no version information available (required by /usr/bin/mongod)

These warnings indicate that the system’s TLS/SSL libraries are different from the TLS/SSL libraries that the mongod
was compiled against. Typically these messages do not require intervention; however, you can use the following
operations to determine the symbol versions that mongod expects:

objdump -T <path to mongod>/mongod | grep " SSL_"
objdump -T <path to mongod>/mongod | grep " CRYPTO_"

These operations will return output that resembles one the of the following lines:

0000000000000000 DF *UND* 0000000000000000 libssl.so.10 SSL_write
0000000000000000 DF *UND* 0000000000000000 OPENSSL_1.0.0 SSL_write

The last two strings in this output are the symbol version and symbol name. Compare these values with the values
returned by the following operations to detect symbol version mismatches:

objdump -T <path to TLS/SSL libs>/libssl.so.1*
objdump -T <path to TLS/SSL libs>/libcrypto.so.1*

This procedure is neither exact nor exhaustive: many symbols used by mongod from the libcrypto library do not
begin with CRYPTO_.

MongoDB on Windows

5.1. Administration Concepts 215

MongoDB Documentation, Release 2.6.11

Install Hotfix Microsoft has released a hotfix for Windows 7 and Windows Server 2008 R2, KB273128459, that
repairs a bug in these operating systems’ use of memory-mapped files that adversely affects the performance of Mon-
goDB.

Install this hotfix to obtain significant performance improvements on MongoDB 2.6.6 and later releases in the 2.6
series.

Configure Windows Page File Configure the page file such that the minimum and maximum page file size are equal
and at least 32 GB. Use a multiple of this size if, during peak usage, you expect concurrent writes to many databases
or collections. However, the page file size does not need to exceed the maximum size of the database.

A large page file is needed as Windows requires enough space to accommodate all regions of memory mapped files
made writable during peak usage, regardless of whether writes actually occur.

The page file is not used for database storage and will not receive writes during normal MongoDB operation. As such,
the page file will not affect performance, but it must exist and be large enough to accommodate Windows’ commitment
rules during peak database use.

Note: Dynamic page file sizing is too slow to accommodate the rapidly fluctuating commit charge of an active
MongoDB deployment. This can result in transient overcommitment situations that may lead to abrupt server shutdown
with a VirtualProtect error 1455.

MongoDB on Virtual Environments The section describes considerations when running MongoDB in some of the
more common virtual environments.

For all platforms, consider Scheduling for Virtual Devices (page 214).

EC2 MongoDB is compatible with EC2.

MongoDB Cloud Manager60 provides integration with Amazon Web Services (AWS) and lets you deploy new EC2
instances directly from MongoDB Cloud Manager. See Configure AWS Integration61 for more details.

VMWare MongoDB is compatible with VMWare. As some users have run into issues with VMWare’s memory
overcommit feature, disabling the feature is recommended.

It is possible to clone a virtual machine running MongoDB. You might use this function to spin up a new virtual host
to add as a member of a replica set. If you clone a VM with journaling enabled, the clone snapshot will be valid. If
not using journaling, first stop mongod, then clone the VM, and finally, restart mongod.

OpenVZ Some users have had issues when running MongoDB on some older version of OpenVZ due to its handling
of virtual memory, as with VMWare.

This issue seems to have been resolved in the more recent versions of OpenVZ.

Performance Monitoring

iostat On Linux, use the iostat command to check if disk I/O is a bottleneck for your database. Specify a number
of seconds when running iostat to avoid displaying stats covering the time since server boot.

59http://support.microsoft.com/kb/2731284
60https://cloud.mongodb.com/?jmp=docs
61https://docs.cloud.mongodb.com/tutorial/configure-aws-settings/

216 Chapter 5. Administration

http://support.microsoft.com/kb/2731284
https://cloud.mongodb.com/?jmp=docs
https://docs.cloud.mongodb.com/tutorial/configure-aws-settings/

MongoDB Documentation, Release 2.6.11

For example, the following command will display extended statistics and the time for each displayed report, with
traffic in MB/s, at one second intervals:

iostat -xmt 1

Key fields from iostat:

• %util: this is the most useful field for a quick check, it indicates what percent of the time the device/drive is
in use.

• avgrq-sz: average request size. Smaller number for this value reflect more random IO operations.

bwm-ng bwm-ng62 is a command-line tool for monitoring network use. If you suspect a network-based bottleneck,
you may use bwm-ng to begin your diagnostic process.

Backups

To make backups of your MongoDB database, please refer to MongoDB Backup Methods Overview (page 192).

Additional Resources

• Blog Post: Capacity Planning and Hardware Provisioning for MongoDB In Ten Minutes63

• Whitepaper: MongoDB Multi-Data Center Deployments64

• Whitepaper: Security Architecture65

• Whitepaper: MongoDB Architecture Guide66

• Presentation: MongoDB Administration 10167

• MongoDB Production Readiness Consulting Package68

5.1.2 Data Management

These document introduce data management practices and strategies for MongoDB deployments, including strategies
for managing multi-data center deployments, managing larger file stores, and data lifecycle tools.

Data Center Awareness (page 218) Presents the MongoDB features that allow application developers and database
administrators to configure their deployments to be more data center aware or allow operational and location-
based separation.

Capped Collections (page 219) Capped collections provide a special type of size-constrained collections that preserve
insertion order and can support high volume inserts.

Expire Data from Collections by Setting TTL (page 222) TTL collections make it possible to automatically remove
data from a collection based on the value of a timestamp and are useful for managing data like machine generated
event data that are only useful for a limited period of time.

62http://www.gropp.org/?id=projects&sub=bwm-ng
63https://www.mongodb.com/blog/post/capacity-planning-and-hardware-provisioning-mongodb-ten-minutes?jmp=docs
64http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs
65https://www.mongodb.com/lp/white-paper/mongodb-security-architecture?jmp=docs
66https://www.mongodb.com/lp/whitepaper/architecture-guide?jmp=docs
67http://www.mongodb.com/presentations/webinar-mongodb-administration-101?jmp=docs
68https://www.mongodb.com/products/consulting?jmp=docs#s_production_readiness

5.1. Administration Concepts 217

http://www.gropp.org/?id=projects&sub=bwm-ng
https://www.mongodb.com/blog/post/capacity-planning-and-hardware-provisioning-mongodb-ten-minutes?jmp=docs
http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs
https://www.mongodb.com/lp/white-paper/mongodb-security-architecture?jmp=docs
https://www.mongodb.com/lp/whitepaper/architecture-guide?jmp=docs
http://www.mongodb.com/presentations/webinar-mongodb-administration-101?jmp=docs
https://www.mongodb.com/products/consulting?jmp=docs#s_production_readiness

MongoDB Documentation, Release 2.6.11

Data Center Awareness

On this page

• Further Reading (page 219)
• Additional Resource (page 219)

MongoDB provides a number of features that allow application developers and database administrators to customize
the behavior of a sharded cluster or replica set deployment so that MongoDB may be more “data center aware,” or
allow operational and location-based separation.

MongoDB also supports segregation based on functional parameters, to ensure that certain mongod instances are
only used for reporting workloads or that certain high-frequency portions of a sharded collection only exist on specific
shards.

The following documents, found either in this section or other sections of this manual, provide information on cus-
tomizing a deployment for operation- and location-based separation:

Operational Segregation in MongoDB Deployments (page 218) MongoDB lets you specify that certain application
operations use certain mongod instances.

Tag Aware Sharding (page 746) Tags associate specific ranges of shard key values with specific shards for use in
managing deployment patterns.

Manage Shard Tags (page 747) Use tags to associate specific ranges of shard key values with specific shards.

Operational Segregation in MongoDB Deployments

On this page

• Operational Overview (page 218)
• Additional Resource (page 219)

Operational Overview MongoDB includes a number of features that allow database administrators and developers
to segregate application operations to MongoDB deployments by functional or geographical groupings.

This capability provides “data center awareness,” which allows applications to target MongoDB deployments with
consideration of the physical location of the mongod instances. MongoDB supports segmentation of operations
across different dimensions, which may include multiple data centers and geographical regions in multi-data center
deployments, racks, networks, or power circuits in single data center deployments.

MongoDB also supports segregation of database operations based on functional or operational parameters, to ensure
that certain mongod instances are only used for reporting workloads or that certain high-frequency portions of a
sharded collection only exist on specific shards.

Specifically, with MongoDB, you can:

• ensure write operations propagate to specific members of a replica set, or to specific members of replica sets.

• ensure that specific members of a replica set respond to queries.

• ensure that specific ranges of your shard key balance onto and reside on specific shards.

• combine the above features in a single distributed deployment, on a per-operation (for read and write operations)
and collection (for chunk distribution in sharded clusters distribution) basis.

218 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

For full documentation of these features, see the following documentation in the MongoDB Manual:

• Read Preferences (page 591), which controls how drivers help applications target read operations to members
of a replica set.

• Write Concerns (page 82), which controls how MongoDB ensures that write operations propagate to members
of a replica set.

• Replica Set Tags (page 641), which control how applications create and interact with custom groupings of replica
set members to create custom application-specific read preferences and write concerns.

• Tag Aware Sharding (page 746), which allows MongoDB administrators to define an application-specific bal-
ancing policy, to control how documents belonging to specific ranges of a shard key distribute to shards in the
sharded cluster.

See also:

Before adding operational segregation features to your application and MongoDB deployment, become familiar with
all documentation of replication (page 563), and sharding (page 675).

Additional Resource MongoDB Multi-Data Center Deployments Whitepaper69

Further Reading

• The Write Concern (page 82) and Read Preference (page 591) documents, which address capabilities related to
data center awareness.

• Deploy a Geographically Redundant Replica Set (page 612).

Additional Resource

MongoDB Multi-Data Center Deployments Whitepaper70

Capped Collections

On this page

• Recommendations and Restrictions (page 220)
• Procedures (page 221)

Capped collections are fixed-size collections that support high-throughput operations that insert and retrieve docu-
ments based on insertion order. Capped collections work in a way similar to circular buffers: once a collection fills its
allocated space, it makes room for new documents by overwriting the oldest documents in the collection.

See createCollection() or create for more information on creating capped collections.

Capped collections have the following behaviors:

• Capped collections guarantee preservation of the insertion order. As a result, queries do not need an index to
return documents in insertion order. Without this indexing overhead, they can support higher insertion through-
put.

69http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs
70http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs

5.1. Administration Concepts 219

http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs
http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs

MongoDB Documentation, Release 2.6.11

• Capped collections guarantee that insertion order is identical to the order on disk (natural order) and do so
by prohibiting updates that increase document size. Capped collections only allow updates that fit the original
document size, which ensures a document does not change its location on disk.

• Capped collections automatically remove the oldest documents in the collection without requiring scripts or
explicit remove operations.

For example, the oplog.rs collection that stores a log of the operations in a replica set uses a capped collection.
Consider the following potential use cases for capped collections:

• Store log information generated by high-volume systems. Inserting documents in a capped collection without
an index is close to the speed of writing log information directly to a file system. Furthermore, the built-in
first-in-first-out property maintains the order of events, while managing storage use.

• Cache small amounts of data in a capped collections. Since caches are read rather than write heavy, you would
either need to ensure that this collection always remains in the working set (i.e. in RAM) or accept some write
penalty for the required index or indexes.

Recommendations and Restrictions

• You can only make in-place updates of documents. If the update operation causes the document to grow beyond
their original size, the update operation will fail.

If you plan to update documents in a capped collection, create an index so that these update operations do not
require a table scan.

• If you update a document in a capped collection to a size smaller than its original size, and then a secondary
resyncs from the primary, the secondary will replicate and allocate space based on the current smaller document
size. If the primary then receives an update which increases the document back to its original size, the primary
will accept the update but the secondary will fail with a failing update: objects in a capped
ns cannot grow error message.

To prevent this error, create your secondary from a snapshot of one of the other up-to-date members of the
replica set. Follow our tutorial on filesystem snapshots (page 256) to seed your new secondary.

Seeding the secondary with a filesystem snapshot is the only way to guarantee the primary and secondary binary
files are compatible. MongoDB Cloud Manager Backup snapshots are insufficient in this situation since you
need more than the content of the secondary to match the primary.

• You cannot delete documents from a capped collection. To remove all documents from a collection, use the
drop() method to drop the collection.

• You cannot shard a capped collection.

• Capped collections created after 2.2 have an _id field and an index on the _id field by default. Capped
collections created before 2.2 do not have an index on the _id field by default. If you are using capped
collections with replication prior to 2.2, you should explicitly create an index on the _id field.

Warning: If you have a capped collection in a replica set outside of the local database, before 2.2,
you should create a unique index on _id. Ensure uniqueness using the unique: true option to
the ensureIndex() method or by using an ObjectId for the _id field. Alternately, you can use the
autoIndexId option to create when creating the capped collection, as in the Query a Capped Collec-
tion (page 221) procedure.

• Use natural ordering to retrieve the most recently inserted elements from the collection efficiently. This is
(somewhat) analogous to tail on a log file.

• The aggregation pipeline operator $out cannot write results to a capped collection.

220 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Procedures

Create a Capped Collection You must create capped collections explicitly using the createCollection()
method, which is a helper in the mongo shell for the create command. When creating a capped collection you must
specify the maximum size of the collection in bytes, which MongoDB will pre-allocate for the collection. The size of
the capped collection includes a small amount of space for internal overhead.

db.createCollection("log", { capped: true, size: 100000 })

If the size field is less than or equal to 4096, then the collection will have a cap of 4096 bytes. Otherwise, MongoDB
will raise the provided size to make it an integer multiple of 256.

Additionally, you may also specify a maximum number of documents for the collection using the max field as in the
following document:

db.createCollection("log", { capped : true, size : 5242880, max : 5000 })

Important: The size argument is always required, even when you specify max number of documents. MongoDB
will remove older documents if a collection reaches the maximum size limit before it reaches the maximum document
count.

See
createCollection() and create.

Query a Capped Collection If you perform a find() on a capped collection with no ordering specified, MongoDB
guarantees that the ordering of results is the same as the insertion order.

To retrieve documents in reverse insertion order, issue find() along with the sort() method with the $natural
parameter set to -1, as shown in the following example:

db.cappedCollection.find().sort({ $natural: -1 })

Check if a Collection is Capped Use the isCapped() method to determine if a collection is capped, as follows:

db.collection.isCapped()

Convert a Collection to Capped You can convert a non-capped collection to a capped collection with the
convertToCapped command:

db.runCommand({"convertToCapped": "mycoll", size: 100000});

The size parameter specifies the size of the capped collection in bytes.

Warning: This command obtains a global write lock and will block other operations until it has completed.

Changed in version 2.2: Before 2.2, capped collections did not have an index on _id unless you specified
autoIndexId to the create, after 2.2 this became the default.

Automatically Remove Data After a Specified Period of Time For additional flexibility when expiring data, con-
sider MongoDB’s TTL indexes, as described in Expire Data from Collections by Setting TTL (page 222). These indexes

5.1. Administration Concepts 221

MongoDB Documentation, Release 2.6.11

allow you to expire and remove data from normal collections using a special type, based on the value of a date-typed
field and a TTL value for the index.

TTL Collections (page 222) are not compatible with capped collections.

Tailable Cursor You can use a tailable cursor with capped collections. Similar to the Unix tail -f command,
the tailable cursor “tails” the end of a capped collection. As new documents are inserted into the capped collection,
you can use the tailable cursor to continue retrieving documents.

See Create Tailable Cursor (page 128) for information on creating a tailable cursor.

Expire Data from Collections by Setting TTL

On this page

• Procedures (page 222)

New in version 2.2.

This document provides an introduction to MongoDB’s “time to live” or TTL collection feature. TTL collections make
it possible to store data in MongoDB and have the mongod automatically remove data after a specified number of
seconds or at a specific clock time.

Data expiration is useful for some classes of information, including machine generated event data, logs, and session
information that only need to persist for a limited period of time.

A special TTL index property (page 504) supports the implementation of TTL collections. The TTL feature relies on a
background thread in mongod that reads the date-typed values in the index and removes expired documents from the
collection.

Procedures

To create a TTL index (page 504), use the db.collection.ensureIndex() method with the
expireAfterSeconds option on a field whose value is either a date (page 189) or an array that contains date
values (page 189).

Note: The TTL index is a single field index. Compound indexes do not support the TTL property. For more
information on TTL indexes, see TTL Indexes (page 504).

Expire Documents after a Specified Number of Seconds To expire data after a specified number of seconds has
passed since the indexed field, create a TTL index on a field that holds values of BSON date type or an array of BSON
date-typed objects and specify a positive non-zero value in the expireAfterSeconds field. A document will
expire when the number of seconds in the expireAfterSeconds field has passed since the time specified in its
indexed field. 71

For example, the following operation creates an index on the log_events collection’s createdAt field and spec-
ifies the expireAfterSeconds value of 3600 to set the expiration time to be one hour after the time specified by
createdAt.

71 If the field contains an array of BSON date-typed objects, data expires if at least one of BSON date-typed object is older than the number of
seconds specified in expireAfterSeconds.

222 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

db.log_events.ensureIndex({ "createdAt": 1 }, { expireAfterSeconds: 3600 })

When adding documents to the log_events collection, set the createdAt field to the current time:

db.log_events.insert({
"createdAt": new Date(),
"logEvent": 2,
"logMessage": "Success!"

})

MongoDB will automatically delete documents from the log_events collection when the document’s createdAt
value 1 is older than the number of seconds specified in expireAfterSeconds.

See also:

$currentDate operator

Expire Documents at a Specific Clock Time To expire documents at a specific clock time, begin by creating a
TTL index on a field that holds values of BSON date type or an array of BSON date-typed objects and specify an
expireAfterSeconds value of 0. For each document in the collection, set the indexed date field to a value
corresponding to the time the document should expire. If the indexed date field contains a date in the past, MongoDB
considers the document expired.

For example, the following operation creates an index on the log_events collection’s expireAt field and specifies
the expireAfterSeconds value of 0:

db.log_events.ensureIndex({ "expireAt": 1 }, { expireAfterSeconds: 0 })

For each document, set the value of expireAt to correspond to the time the document should expire. For instance,
the following insert() operation adds a document that should expire at July 22, 2013 14:00:00.

db.log_events.insert({
"expireAt": new Date('July 22, 2013 14:00:00'),
"logEvent": 2,
"logMessage": "Success!"

})

MongoDB will automatically delete documents from the log_events collection when the documents’ expireAt
value is older than the number of seconds specified in expireAfterSeconds, i.e. 0 seconds older in this case. As
such, the data expires at the specified expireAt value.

5.1.3 Optimization Strategies for MongoDB

There are many factors that can affect database performance and responsiveness including index use, query structure,
data models and application design, as well as operational factors such as architecture and system configuration.

This section describes techniques for optimizing application performance with MongoDB.

Evaluate Performance of Current Operations (page 224) MongoDB provides introspection tools that describe the
query execution process, to allow users to test queries and build more efficient queries.

Optimize Query Performance (page 224) Introduces the use of projections (page 67) to reduce the amount of data
MongoDB sends to clients.

Design Notes (page 226) A collection of notes related to the architecture, design, and administration of MongoDB-
based applications.

5.1. Administration Concepts 223

MongoDB Documentation, Release 2.6.11

Evaluate Performance of Current Operations

On this page

• Use the Database Profiler to Evaluate Operations Against the Database (page 224)
• Use db.currentOp() to Evaluate mongod Operations (page 224)
• Use $explain to Evaluate Query Performance (page 224)

The following sections describe techniques for evaluating operational performance.

Use the Database Profiler to Evaluate Operations Against the Database

MongoDB provides a database profiler that shows performance characteristics of each operation against the database.
Use the profiler to locate any queries or write operations that are running slow. You can use this information, for
example, to determine what indexes to create.

For more information, see Database Profiling (page 230).

Use db.currentOp() to Evaluate mongod Operations

The db.currentOp() method reports on current operations running on a mongod instance.

Use $explain to Evaluate Query Performance

The explain() method returns statistics on a query, and reports the index MongoDB selected to fulfill the query, as
well as information about the internal operation of the query.

Example
To use explain() on a query for documents matching the expression { a: 1 }, in the collection named
records, use an operation that resembles the following in the mongo shell:

db.records.find({ a: 1 }).explain()

See Analyze Query Performance (page 117) for more details.

Optimize Query Performance

On this page

• Create Indexes to Support Queries (page 225)
• Limit the Number of Query Results to Reduce Network Demand (page 225)
• Use Projections to Return Only Necessary Data (page 225)
• Use $hint to Select a Particular Index (page 226)
• Use the Increment Operator to Perform Operations Server-Side (page 226)

224 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Create Indexes to Support Queries

For commonly issued queries, create indexes (page 481). If a query searches multiple fields, create a compound index
(page 489). Scanning an index is much faster than scanning a collection. The indexes structures are smaller than the
documents reference, and store references in order.

Example
If you have a posts collection containing blog posts, and if you regularly issue a query that sorts on the
author_name field, then you can optimize the query by creating an index on the author_name field:

db.posts.ensureIndex({ author_name : 1 })

Indexes also improve efficiency on queries that routinely sort on a given field.

Example
If you regularly issue a query that sorts on the timestamp field, then you can optimize the query by creating an
index on the timestamp field:

Creating this index:

db.posts.ensureIndex({ timestamp : 1 })

Optimizes this query:

db.posts.find().sort({ timestamp : -1 })

Because MongoDB can read indexes in both ascending and descending order, the direction of a single-key index does
not matter.

Indexes support queries, update operations, and some phases of the aggregation pipeline (page 441).

Index keys that are of the BinData type are more efficiently stored in the index if:

• the binary subtype value is in the range of 0-7 or 128-135, and

• the length of the byte array is: 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, or 32.

Limit the Number of Query Results to Reduce Network Demand

MongoDB cursors return results in groups of multiple documents. If you know the number of results you want, you
can reduce the demand on network resources by issuing the limit() method.

This is typically used in conjunction with sort operations. For example, if you need only 10 results from your query to
the posts collection, you would issue the following command:

db.posts.find().sort({ timestamp : -1 }).limit(10)

For more information on limiting results, see limit()

Use Projections to Return Only Necessary Data

When you need only a subset of fields from documents, you can achieve better performance by returning only the
fields you need:

For example, if in your query to the posts collection, you need only the timestamp, title, author, and
abstract fields, you would issue the following command:

5.1. Administration Concepts 225

MongoDB Documentation, Release 2.6.11

db.posts.find({}, { timestamp : 1 , title : 1 , author : 1 , abstract : 1}).sort({ timestamp : -1 })

For more information on using projections, see Limit Fields to Return from a Query (page 112).

Use $hint to Select a Particular Index

In most cases the query optimizer (page 72) selects the optimal index for a specific operation; however, you can force
MongoDB to use a specific index using the hint() method. Use hint() to support performance testing, or on
some queries where you must select a field or field included in several indexes.

Use the Increment Operator to Perform Operations Server-Side

Use MongoDB’s $inc operator to increment or decrement values in documents. The operator increments the value
of the field on the server side, as an alternative to selecting a document, making simple modifications in the client
and then writing the entire document to the server. The $inc operator can also help avoid race conditions, which
would result when two application instances queried for a document, manually incremented a field, and saved the
entire document back at the same time.

Design Notes

On this page

• Schema Considerations (page 226)
• General Considerations (page 227)
• Replica Set Considerations (page 227)
• Sharding Considerations (page 228)
• Analyze Performance (page 228)
• Additional Resources (page 230)

This page details features of MongoDB that may be important to keep in mind when developing applications.

Schema Considerations

Dynamic Schema Data in MongoDB has a dynamic schema. Collections do not enforce document structure. This
facilitates iterative development and polymorphism. Nevertheless, collections often hold documents with highly ho-
mogeneous structures. See Data Modeling Concepts (page 151) for more information.

Some operational considerations include:

• the exact set of collections to be used;

• the indexes to be used: with the exception of the _id index, all indexes must be created explicitly;

• shard key declarations: choosing a good shard key is very important as the shard key cannot be changed once
set.

Avoid importing unmodified data directly from a relational database. In general, you will want to “roll up” certain
data into richer documents that take advantage of MongoDB’s support for embedded documents and nested arrays.

226 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Case Sensitive Strings MongoDB strings are case sensitive. So a search for "joe" will not find "Joe".

Consider:

• storing data in a normalized case format, or

• using regular expressions ending with the i option, and/or

• using $toLower or $toUpper in the aggregation framework (page 439).

Type Sensitive Fields MongoDB data is stored in the BSON format, a binary encoded serialization of JSON-like
documents. BSON encodes additional type information. See bsonspec.org72 for more information.

Consider the following document which has a field x with the string value "123":

{ x : "123" }

Then the following query which looks for a number value 123 will not return that document:

db.mycollection.find({ x : 123 })

General Considerations

By Default, Updates Affect one Document To update multiple documents that meet your query criteria, set the
update multi option to true or 1. See: Update Multiple Documents (page 80).

Prior to MongoDB 2.2, you would specify the upsert and multi options in the update method as positional
boolean options. See: the update method reference documentation.

BSON Document Size Limit The BSON Document Size limit is currently set at 16MB per document. If you
require larger documents, use GridFS (page 156).

No Fully Generalized Transactions MongoDB does not have fully generalized transactions (page 86). If you
model your data using rich documents that closely resemble your application’s objects, each logical object will be in
one MongoDB document. MongoDB allows you to modify a document in a single atomic operation. These kinds of
data modification pattern covers most common uses of transactions in other systems.

Replica Set Considerations

Use an Odd Number of Replica Set Members Replica sets (page 563) perform consensus elections. To ensure
that elections will proceed successfully, either use an odd number of members, typically three, or else use an arbiter
to ensure an odd number of votes.

Keep Replica Set Members Up-to-Date MongoDB replica sets support automatic failover (page 583). It is impor-
tant for your secondaries to be up-to-date. There are various strategies for assessing consistency:

1. Use monitoring tools to alert you to lag events. See Monitoring for MongoDB (page 195) for a detailed discus-
sion of MongoDB’s monitoring options.

2. Specify appropriate write concern.

72http://bsonspec.org/#/specification

5.1. Administration Concepts 227

http://bsonspec.org/#/specification

MongoDB Documentation, Release 2.6.11

3. If your application requires manual fail over, you can configure your secondaries as priority 0 (page 570).
Priority 0 secondaries require manual action for a failover. This may be practical for a small replica set, but
large deployments should fail over automatically.

See also:

replica set rollbacks (page 587).

Sharding Considerations

• Pick your shard keys carefully. You cannot choose a new shard key for a collection that is already sharded.

• Shard key values are immutable.

• When enabling sharding on an existing collection, MongoDB imposes a maximum size on those col-
lections to ensure that it is possible to create chunks. For a detailed explanation of this limit, see:
<sharding-existing-collection-data-size>.

To shard large amounts of data, create a new empty sharded collection, and ingest the data from the source
collection using an application level import operation.

• Unique indexes are not enforced across shards except for the shard key itself. See Enforce Unique Keys for
Sharded Collections (page 749).

• Consider pre-splitting (page 704) a sharded collection before a massive bulk import.

Analyze Performance

As you develop and operate applications with MongoDB, you may want to analyze the performance of the database
as the application. Consider the following as you begin to investigate the performance of MongoDB.

Overview Degraded performance in MongoDB is typically a function of the relationship between the quantity of
data stored in the database, the amount of system RAM, the number of connections to the database, and the amount of
time the database spends in a locked state.

In some cases performance issues may be transient and related to traffic load, data access patterns, or the availability
of hardware on the host system for virtualized environments. Some users also experience performance limitations as a
result of inadequate or inappropriate indexing strategies, or as a consequence of poor schema design patterns. In other
situations, performance issues may indicate that the database may be operating at capacity and that it is time to add
additional capacity to the database.

The following are some causes of degraded performance in MongoDB.

Locks MongoDB uses a locking system to ensure data set consistency. However, if certain operations are long-
running, or a queue forms, performance will slow as requests and operations wait for the lock. Lock-related slowdowns
can be intermittent. To see if the lock has been affecting your performance, look to the data in the globalLock section
of the serverStatus output. If globalLock.currentQueue.total is consistently high, then there is a
chance that a large number of requests are waiting for a lock. This indicates a possible concurrency issue that may be
affecting performance.

If globalLock.totalTime is high relative to uptime, the database has existed in a lock state for a significant
amount of time.

Long queries are often the result of a number of factors: ineffective use of indexes, non-optimal schema design, poor
query structure, system architecture issues, or insufficient RAM resulting in page faults (page 229) and disk reads.

228 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Memory Use MongoDB uses memory mapped files to store data. Given a data set of sufficient size, the MongoDB
process will allocate all available memory on the system for its use. While this is part of the design, and affords
MongoDB superior performance, the memory mapped files make it difficult to determine if the amount of RAM is
sufficient for the data set.

The memory usage statuses metrics of the serverStatus output can provide insight into MongoDB’s memory use.
Check the resident memory use (i.e. mem.resident): if this exceeds the amount of system memory and there is a
significant amount of data on disk that isn’t in RAM, you may have exceeded the capacity of your system.

You should also check the amount of mapped memory (i.e. mem.mapped.) If this value is greater than the amount of
system memory, some operations will require disk access page faults to read data from virtual memory and negatively
affect performance.

Page Faults Page faults can occur as MongoDB reads from or writes data to parts of its data files that are not
currently located in physical memory. In contrast, operating system page faults happen when physical memory is
exhausted and pages of physical memory are swapped to disk.

Page faults triggered by MongoDB are reported as the total number of page faults in one second. To check for page
faults, see the extra_info.page_faults value in the serverStatus output.

MongoDB on Windows counts both hard and soft page faults.

The MongoDB page fault counter may increase dramatically in moments of poor performance and may correlate
with limited physical memory environments. Page faults also can increase while accessing much larger data sets,
for example, scanning an entire collection. Limited and sporadic MongoDB page faults do not necessarily indicate a
problem or a need to tune the database.

A single page fault completes quickly and is not problematic. However, in aggregate, large volumes of page faults
typically indicate that MongoDB is reading too much data from disk. In many situations, MongoDB’s read locks will
“yield” after a page fault to allow other processes to read and avoid blocking while waiting for the next page to read
into memory. This approach improves concurrency, and also improves overall throughput in high volume systems.

Increasing the amount of RAM accessible to MongoDB may help reduce the frequency of page faults. If this is not
possible, you may want to consider deploying a sharded cluster or adding shards to your deployment to distribute load
among mongod instances.

See What are page faults? (page 793) for more information.

Number of Connections In some cases, the number of connections between the application layer (i.e. clients) and
the database can overwhelm the ability of the server to handle requests. This can produce performance irregularities.
The following fields in the serverStatus document can provide insight:

• globalLock.activeClients contains a counter of the total number of clients with active operations in
progress or queued.

• connections is a container for the following two fields:

– current the total number of current clients that connect to the database instance.

– available the total number of unused collections available for new clients.

If requests are high because there are numerous concurrent application requests, the database may have trouble keeping
up with demand. If this is the case, then you will need to increase the capacity of your deployment. For read-heavy
applications increase the size of your replica set and distribute read operations to secondary members. For write heavy
applications, deploy sharding and add one or more shards to a sharded cluster to distribute load among mongod
instances.

Spikes in the number of connections can also be the result of application or driver errors. All of the officially supported
MongoDB drivers implement connection pooling, which allows clients to use and reuse connections more efficiently.

5.1. Administration Concepts 229

MongoDB Documentation, Release 2.6.11

Extremely high numbers of connections, particularly without corresponding workload is often indicative of a driver or
other configuration error.

Unless constrained by system-wide limits MongoDB has no limit on incoming connections. You can modify system
limits using the ulimit command, or by editing your system’s /etc/sysctl file. See UNIX ulimit Settings
(page 300) for more information.

Database Profiling MongoDB’s “Profiler” is a database profiling system that can help identify inefficient queries
and operations.

The following profiling levels are available:

Level Setting
0 Off. No profiling
1 On. Only includes “slow” operations
2 On. Includes all operations

Enable the profiler by setting the profile value using the following command in the mongo shell:

db.setProfilingLevel(1)

The slowOpThresholdMs setting defines what constitutes a “slow” operation. To set the threshold above
which the profiler considers operations “slow” (and thus, included in the level 1 profiling data), you can configure
slowOpThresholdMs at runtime as an argument to the db.setProfilingLevel() operation.

See
The documentation of db.setProfilingLevel() for more information about this command.

By default, mongod records all “slow” queries to its log, as defined by slowOpThresholdMs.

Note: Because the database profiler can negatively impact performance, only enable profiling for strategic intervals
and as minimally as possible on production systems.

You may enable profiling on a per-mongod basis. This setting will not propagate across a replica set or sharded
cluster.

You can view the output of the profiler in the system.profile collection of your database by issuing the show
profile command in the mongo shell, or with the following operation:

db.system.profile.find({ millis : { $gt : 100 } })

This returns all operations that lasted longer than 100 milliseconds. Ensure that the value specified here (100, in this
example) is above the slowOpThresholdMs threshold.

See also:

Optimization Strategies for MongoDB (page 223) addresses strategies that may improve the performance of your
database queries and operations.

Additional Resources

• MongoDB Ops Optimization Consulting Package73

73https://www.mongodb.com/products/consulting?jmp=docs#ops_optimization

230 Chapter 5. Administration

https://www.mongodb.com/products/consulting?jmp=docs#ops_optimization

MongoDB Documentation, Release 2.6.11

5.2 Administration Tutorials

The administration tutorials provide specific step-by-step instructions for performing common MongoDB setup, main-
tenance, and configuration operations.

Configuration, Maintenance, and Analysis (page 231) Describes routine management operations, including config-
uration and performance analysis.

Manage mongod Processes (page 236) Start, configure, and manage running mongod process.

Rotate Log Files (page 243) Archive the current log files and start new ones.

Continue reading from Configuration, Maintenance, and Analysis (page 231) for additional tutorials of funda-
mental MongoDB maintenance procedures.

Backup and Recovery (page 256) Outlines procedures for data backup and restoration with mongod instances and
deployments.

Backup and Restore with Filesystem Snapshots (page 256) An outline of procedures for creating MongoDB
data set backups using system-level file snapshot tool, such as LVM or native storage appliance tools.

Backup and Restore Sharded Clusters (page 265) Detailed procedures and considerations for backing up
sharded clusters and single shards.

Recover Data after an Unexpected Shutdown (page 274) Recover data from MongoDB data files that were not
properly closed or have an invalid state.

Continue reading from Backup and Recovery (page 256) for additional tutorials of MongoDB backup and re-
covery procedures.

MongoDB Scripting (page 277) An introduction to the scripting capabilities of the mongo shell and the scripting
capabilities embedded in MongoDB instances.

MongoDB Tutorials (page 296) A complete list of tutorials in the MongoDB Manual that address MongoDB opera-
tion and use.

5.2.1 Configuration, Maintenance, and Analysis

The following tutorials describe routine management operations, including configuration and performance analysis:

Disable Transparent Huge Pages (THP) (page 232) Describes Transparent Huge Pages (THP) and provides detailed
instructions on disabling them.

Use Database Commands (page 234) The process for running database commands that provide basic database oper-
ations.

Manage mongod Processes (page 236) Start, configure, and manage running mongod process.

Terminate Running Operations (page 238) Stop in progress MongoDB client operations using db.killOp() and
maxTimeMS().

Analyze Performance of Database Operations (page 239) Collect data that introspects the performance of query and
update operations on a mongod instance.

Rotate Log Files (page 243) Archive the current log files and start new ones.

Manage Journaling (page 245) Describes the procedures for configuring and managing MongoDB’s journaling sys-
tem which allows MongoDB to provide crash resiliency and durability.

Store a JavaScript Function on the Server (page 247) Describes how to store JavaScript functions on a MongoDB
server.

5.2. Administration Tutorials 231

MongoDB Documentation, Release 2.6.11

Upgrade to the Latest Revision of MongoDB (page 247) Introduces the basic process for upgrading a MongoDB de-
ployment between different minor release versions.

Monitor MongoDB With SNMP on Linux (page 250) The SNMP extension, available in MongoDB Enterprise, al-
lows MongoDB to provide database metrics via SNMP.

Monitor MongoDB Windows with SNMP (page 252) The SNMP extension, available in the Windows build of Mon-
goDB Enterprise, allows MongoDB to provide database metrics via SNMP.

Troubleshoot SNMP (page 254) Outlines common errors and diagnostic processes useful for deploying MongoDB
Enterprise with SNMP support.

Disable Transparent Huge Pages (THP)

On this page

• Init Script (page 232)
• Using tuned and ktune (page 233)
• Test Your Changes (page 234)

Transparent Huge Pages (THP) is a Linux memory management system that reduces the overhead of Translation
Lookaside Buffer (TLB) lookups on machines with large amounts of memory by using larger memory pages.

However, database workloads often perform poorly with THP, because they tend to have sparse rather than contiguous
memory access patterns. You should disable THP on Linux machines to ensure best performance with MongoDB.

Init Script

Important: If you are using tuned or ktune (for example, if you are running Red Hat or CentOS 6+), you must
additionally configure them so that THP is not re-enabled. See Using tuned and ktune (page 233).

Step 1: Create the init.d script. Create the following file at /etc/init.d/disable-transparent-hugepages:

#!/bin/sh
BEGIN INIT INFO
Provides: disable-transparent-hugepages
Required-Start: $local_fs
Required-Stop:
X-Start-Before: mongod mongodb-mms-automation-agent
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Disable Linux transparent huge pages
Description: Disable Linux transparent huge pages, to improve
database performance.
END INIT INFO

case $1 in
start)
if [-d /sys/kernel/mm/transparent_hugepage]; then

thp_path=/sys/kernel/mm/transparent_hugepage
elif [-d /sys/kernel/mm/redhat_transparent_hugepage]; then
thp_path=/sys/kernel/mm/redhat_transparent_hugepage

else

232 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

return 0
fi

echo 'never' > ${thp_path}/enabled
echo 'never' > ${thp_path}/defrag

unset thp_path
;;

esac

Step 2: Make it executable. Run the following command to ensure that the init script can be used:

sudo chmod 755 /etc/init.d/disable-transparent-hugepages

Step 3: Configure your operating system to run it on boot. Use the appropriate command to configure the new
init script on your Linux distribution.

Distribution Command
Ubuntu and Debian

sudo update-rc.d disable-transparent-hugepages defaults

SUSE
sudo insserv /etc/init.d/disable-transparent-hugepages

Red Hat, CentOS, Amazon Linux, and derivatives
sudo chkconfig --add disable-transparent-hugepages

Step 4: Override tuned and ktune, if applicable If you are using tuned or ktune (for example, if you are
running Red Hat or CentOS 6+) you must now configure them to preserve the above settings.

Using tuned and ktune

Important: If using tuned or ktune, you must perform this step in addition to installing the init script.

tuned and ktune are dynamic kernel tuning tools available on Red Hat and CentOS that can disable transparent
huge pages.

To disable transparent huge pages in tuned or ktune, you need to edit or create a new profile that sets THP to
never.

Red Hat/CentOS 6

Step 1: Create a new profile. Create a new profile from an existing default profile by copying the relevant directory.
In the example we use the default profile as the base and call our new profile no-thp.

sudo cp -r /etc/tune-profiles/default /etc/tune-profiles/no-thp

Step 2: Edit ktune.sh. Edit /etc/tune-profiles/no-thp/ktune.sh and add the following:

5.2. Administration Tutorials 233

MongoDB Documentation, Release 2.6.11

set_transparent_hugepages never

to the start() block of the file, before the return 0 statement.

Step 3: Enable the new profile. Finally, enable the new profile by issuing:

sudo tuned-adm profile no-thp

Red Hat/CentOS 7

Step 1: Create a new profile. Create a new tuned profile directory:

sudo mkdir /etc/tuned/no-thp

Step 2: Edit tuned.conf. Create and edit /etc/tuned/no-thp/tuned.conf so that it contains the fol-
lowing:

[main]
include=virtual-guest

[vm]
transparent_hugepages=never

Step 3: Enable the new profile. Finally, enable the new profile by issuing:

sudo tuned-adm profile no-thp

Test Your Changes

You can check the status of THP support by issuing the following commands:

cat /sys/kernel/mm/transparent_hugepage/enabled
cat /sys/kernel/mm/transparent_hugepage/defrag

On Red Hat Enterprise Linux, CentOS, and potentially other Red Hat-based derivatives, you may instead need to use
the following:

cat /sys/kernel/mm/redhat_transparent_hugepage/enabled
cat /sys/kernel/mm/redhat_transparent_hugepage/defrag

For both files, the correct output resembles:

always madvise [never]

Use Database Commands

234 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

On this page

• Database Command Form (page 235)
• Issue Commands (page 235)
• admin Database Commands (page 235)
• Command Responses (page 235)

The MongoDB command interface provides access to all non CRUD database operations. Fetching server stats,
initializing a replica set, and running a map-reduce job are all accomplished with commands.

See http://docs.mongodb.org/manual/reference/command for list of all commands sorted by func-
tion.

Database Command Form

You specify a command first by constructing a standard BSON document whose first key is the name of the command.
For example, specify the isMaster command using the following BSON document:

{ isMaster: 1 }

Issue Commands

The mongo shell provides a helper method for running commands called db.runCommand(). The following
operation in mongo runs the above command:

db.runCommand({ isMaster: 1 })

Many drivers provide an equivalent for the db.runCommand() method. Internally, running commands with
db.runCommand() is equivalent to a special query against the $cmd collection.

Many common commands have their own shell helpers or wrappers in the mongo shell and drivers, such as the
db.isMaster() method in the mongo JavaScript shell.

You can use the maxTimeMS option to specify a time limit for the execution of a command, see Terminate a Command
(page 239) for more information on operation termination.

admin Database Commands

You must run some commands on the admin database. Normally, these operations resemble the followings:

use admin
db.runCommand({buildInfo: 1})

However, there’s also a command helper that automatically runs the command in the context of the admin database:

db._adminCommand({buildInfo: 1})

Command Responses

All commands return, at minimum, a document with an ok field indicating whether the command has succeeded:

5.2. Administration Tutorials 235

MongoDB Documentation, Release 2.6.11

{ 'ok': 1 }

Failed commands return the ok field with a value of 0.

Manage mongod Processes

On this page

• Start mongod Processes (page 236)
• Stop mongod Processes (page 237)
• Stop a Replica Set (page 237)

MongoDB runs as a standard program. You can start MongoDB from a command line by issuing the mongod com-
mand and specifying options. For a list of options, see the mongod reference. MongoDB can also run as a Windows
service. For details, see Configure a Windows Service for MongoDB (page 25). To install MongoDB, see Install
MongoDB (page 5).

The following examples assume the directory containing the mongod process is in your system paths. The mongod
process is the primary database process that runs on an individual server. mongos provides a coherent MongoDB
interface equivalent to a mongod from the perspective of a client. The mongo binary provides the administrative
shell.

This document page discusses the mongod process; however, some portions of this document may be applicable to
mongos instances.

Start mongod Processes

By default, MongoDB stores data in the /data/db directory. On Windows, MongoDB stores data in C:\data\db.
On all platforms, MongoDB listens for connections from clients on port 27017.

To start MongoDB using all defaults, issue the following command at the system shell:

mongod

Specify a Data Directory If you want mongod to store data files at a path other than /data/db you can specify
a dbPath. The dbPath must exist before you start mongod. If it does not exist, create the directory and the
permissions so that mongod can read and write data to this path. For more information on permissions, see the
security operations documentation (page 431).

To specify a dbPath for mongod to use as a data directory, use the --dbpath option. The following invocation
will start a mongod instance and store data in the /srv/mongodb path

mongod --dbpath /srv/mongodb/

Specify a TCP Port Only a single process can listen for connections on a network interface at a time. If you run
multiple mongod processes on a single machine, or have other processes that must use this port, you must assign each
a different port to listen on for client connections.

To specify a port to mongod, use the --port option on the command line. The following command starts mongod
listening on port 12345:

mongod --port 12345

Use the default port number when possible, to avoid confusion.

236 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Start mongod as a Daemon To run a mongod process as a daemon (i.e. fork), and write its output to a log file,
use the --fork and --logpath options. You must create the log directory; however, mongod will create the log
file if it does not exist.

The following command starts mongod as a daemon and records log output to /var/log/mongodb.log.

mongod --fork --logpath /var/log/mongodb.log

Additional Configuration Options For an overview of common configurations and common configuration deploy-
ments. configurations for common use cases, see Run-time Database Configuration (page 203).

Stop mongod Processes

In a clean shutdown a mongod completes all pending operations, flushes all data to data files, and closes all data files.
Other shutdowns are unclean and can compromise the validity the data files.

To ensure a clean shutdown, always shutdown mongod instances using one of the following methods:

Use shutdownServer() Shut down the mongod from the mongo shell using the db.shutdownServer()
method as follows:

use admin
db.shutdownServer()

Calling the same method from a control script accomplishes the same result.

For systems with authorization enabled, users may only issue db.shutdownServer() when authenticated
to the admin database or via the localhost interface on systems without authentication enabled.

Use --shutdown From the Linux command line, shut down the mongod using the --shutdown option in the
following command:

mongod --shutdown

Use CTRL-C When running the mongod instance in interactive mode (i.e. without --fork), issue Control-C
to perform a clean shutdown.

Use kill From the Linux command line, shut down a specific mongod instance using the following command:

kill <mongod process ID>

Warning: Never use kill -9 (i.e. SIGKILL) to terminate a mongod instance.

Stop a Replica Set

Procedure If the mongod is the primary in a replica set, the shutdown process for these mongod instances has the
following steps:

1. Check how up-to-date the secondaries are.

2. If no secondary is within 10 seconds of the primary, mongod will return a message that it will not shut down.
You can pass the shutdown command a timeoutSecs argument to wait for a secondary to catch up.

5.2. Administration Tutorials 237

MongoDB Documentation, Release 2.6.11

3. If there is a secondary within 10 seconds of the primary, the primary will step down and wait for the secondary
to catch up.

4. After 60 seconds or once the secondary has caught up, the primary will shut down.

Force Replica Set Shutdown If there is no up-to-date secondary and you want the primary to shut down, issue the
shutdown command with the force argument, as in the following mongo shell operation:

db.adminCommand({shutdown : 1, force : true})

To keep checking the secondaries for a specified number of seconds if none are immediately up-to-date, issue
shutdown with the timeoutSecs argument. MongoDB will keep checking the secondaries for the specified
number of seconds if none are immediately up-to-date. If any of the secondaries catch up within the allotted time, the
primary will shut down. If no secondaries catch up, it will not shut down.

The following command issues shutdown with timeoutSecs set to 5:

db.adminCommand({shutdown : 1, timeoutSecs : 5})

Alternately you can use the timeoutSecs argument with the db.shutdownServer() method:

db.shutdownServer({timeoutSecs : 5})

Terminate Running Operations

On this page

• Overview (page 238)
• Available Procedures (page 238)

Overview

MongoDB provides two facilitates to terminate running operations: maxTimeMS() and db.killOp(). Use these
operations as needed to control the behavior of operations in a MongoDB deployment.

Available Procedures

maxTimeMS New in version 2.6.

The maxTimeMS() method sets a time limit for an operation. When the operation reaches the specified time limit,
MongoDB interrupts the operation at the next interrupt point.

Terminate a Query From the mongo shell, use the following method to set a time limit of 30 milliseconds for this
query:

db.location.find({ "town": { "$regex": "(Pine Lumber)",
"$options": 'i' } }).maxTimeMS(30)

238 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Terminate a Command Consider a potentially long running operation using distinct to return each dis-
tinct‘‘collection‘‘ field that has a city key:

db.runCommand({ distinct: "collection",
key: "city" })

You can add the maxTimeMS field to the command document to set a time limit of 45 milliseconds for the operation:

db.runCommand({ distinct: "collection",
key: "city",
maxTimeMS: 45 })

db.getLastError() and db.getLastErrorObj() will return errors for interrupted options:

{ "n" : 0,
"connectionId" : 1,
"err" : "operation exceeded time limit",
"ok" : 1 }

killOp The db.killOp() method interrupts a running operation at the next interrupt point. db.killOp()
identifies the target operation by operation ID.

db.killOp(<opId>)

Warning: Terminate running operations with extreme caution. Only use db.killOp() to terminate operations
initiated by clients and do not terminate internal database operations.

Related
To return a list of running operations see db.currentOp().

Analyze Performance of Database Operations

On this page

• Profiling Levels (page 240)
• Enable Database Profiling and Set the Profiling Level (page 240)
• View Profiler Data (page 241)
• Profiler Overhead (page 242)

The database profiler collects fine grained data about MongoDB write operations, cursors, database commands on
a running mongod instance. You can enable profiling on a per-database or per-instance basis. The profiling level
(page 240) is also configurable when enabling profiling.

The database profiler writes all the data it collects to the system.profile (page 304) collection, which is a capped
collection (page 219). See Database Profiler Output (page 305) for overview of the data in the system.profile
(page 304) documents created by the profiler.

This document outlines a number of key administration options for the database profiler. For additional related infor-
mation, consider the following resources:

• Database Profiler Output (page 305)

• Profile Command

5.2. Administration Tutorials 239

MongoDB Documentation, Release 2.6.11

• db.currentOp()

Profiling Levels

The following profiling levels are available:

• 0 - the profiler is off, does not collect any data. mongod always writes operations longer than the
slowOpThresholdMs threshold to its log.

• 1 - collects profiling data for slow operations only. By default slow operations are those slower than 100
milliseconds.

You can modify the threshold for “slow” operations with the slowOpThresholdMs runtime option or the
setParameter command. See the Specify the Threshold for Slow Operations (page 240) section for more
information.

• 2 - collects profiling data for all database operations.

Enable Database Profiling and Set the Profiling Level

You can enable database profiling from the mongo shell or through a driver using the profile command. This
section will describe how to do so from the mongo shell. See your driver documentation if you want to
control the profiler from within your application.

When you enable profiling, you also set the profiling level (page 240). The profiler records data in the
system.profile (page 304) collection. MongoDB creates the system.profile (page 304) collection in a
database after you enable profiling for that database.

To enable profiling and set the profiling level, use the db.setProfilingLevel() helper in the mongo shell,
passing the profiling level as a parameter. For example, to enable profiling for all database operations, consider the
following operation in the mongo shell:

db.setProfilingLevel(2)

The shell returns a document showing the previous level of profiling. The "ok" : 1 key-value pair indicates the
operation succeeded:

{ "was" : 0, "slowms" : 100, "ok" : 1 }

To verify the new setting, see the Check Profiling Level (page 241) section.

Specify the Threshold for Slow Operations The threshold for slow operations applies to the entire mongod in-
stance. When you change the threshold, you change it for all databases on the instance.

Important: Changing the slow operation threshold for the database profiler also affects the profiling subsystem’s
slow operation threshold for the entire mongod instance. Always set the threshold to the highest useful value.

By default the slow operation threshold is 100 milliseconds. Databases with a profiling level of 1 will log operations
slower than 100 milliseconds.

To change the threshold, pass two parameters to the db.setProfilingLevel() helper in the mongo shell. The
first parameter sets the profiling level for the current database, and the second sets the default slow operation threshold
for the entire mongod instance.

For example, the following command sets the profiling level for the current database to 0, which disables profiling,
and sets the slow-operation threshold for the mongod instance to 20 milliseconds. Any database on the instance with
a profiling level of 1 will use this threshold:

240 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

db.setProfilingLevel(0,20)

Check Profiling Level To view the profiling level (page 240), issue the following from the mongo shell:

db.getProfilingStatus()

The shell returns a document similar to the following:

{ "was" : 0, "slowms" : 100 }

The was field indicates the current level of profiling.

The slowms field indicates how long an operation must exist in milliseconds for an operation to pass the “slow”
threshold. MongoDB will log operations that take longer than the threshold if the profiling level is 1. This document
returns the profiling level in the was field. For an explanation of profiling levels, see Profiling Levels (page 240).

To return only the profiling level, use the db.getProfilingLevel() helper in the mongo as in the following:

db.getProfilingLevel()

Disable Profiling To disable profiling, use the following helper in the mongo shell:

db.setProfilingLevel(0)

Enable Profiling for an Entire mongod Instance For development purposes in testing environments, you can
enable database profiling for an entire mongod instance. The profiling level applies to all databases provided by the
mongod instance.

To enable profiling for a mongod instance, pass the following parameters to mongod at startup or within the
configuration file:

mongod --profile=1 --slowms=15

This sets the profiling level to 1, which collects profiling data for slow operations only, and defines slow operations as
those that last longer than 15 milliseconds.

See also:

mode and slowOpThresholdMs.

Database Profiling and Sharding You cannot enable profiling on a mongos instance. To enable profiling in a
shard cluster, you must enable profiling for each mongod instance in the cluster.

View Profiler Data

The database profiler logs information about database operations in the system.profile (page 304) collection.

To view profiling information, query the system.profile (page 304) collection. You can use $comment to add
data to the query document to make it easier to analyze data from the profiler. To view example queries, see Profiler
Overhead (page 242).

For an explanation of the output data, see Database Profiler Output (page 305).

5.2. Administration Tutorials 241

MongoDB Documentation, Release 2.6.11

Example Profiler Data Queries This section displays example queries to the system.profile (page 304) col-
lection. For an explanation of the query output, see Database Profiler Output (page 305).

To return the most recent 10 log entries in the system.profile (page 304) collection, run a query similar to the
following:

db.system.profile.find().limit(10).sort({ ts : -1 }).pretty()

To return all operations except command operations ($cmd), run a query similar to the following:

db.system.profile.find({ op: { $ne : 'command' } }).pretty()

To return operations for a particular collection, run a query similar to the following. This example returns operations
in the mydb database’s test collection:

db.system.profile.find({ ns : 'mydb.test' }).pretty()

To return operations slower than 5 milliseconds, run a query similar to the following:

db.system.profile.find({ millis : { $gt : 5 } }).pretty()

To return information from a certain time range, run a query similar to the following:

db.system.profile.find(
{
ts : {

$gt : new ISODate("2012-12-09T03:00:00Z") ,
$lt : new ISODate("2012-12-09T03:40:00Z")

}
}

).pretty()

The following example looks at the time range, suppresses the user field from the output to make it easier to read,
and sorts the results by how long each operation took to run:

db.system.profile.find(
{
ts : {

$gt : new ISODate("2011-07-12T03:00:00Z") ,
$lt : new ISODate("2011-07-12T03:40:00Z")
}

},
{ user : 0 }

).sort({ millis : -1 })

Show the Five Most Recent Events On a database that has profiling enabled, the show profile helper in the
mongo shell displays the 5 most recent operations that took at least 1 millisecond to execute. Issue show profile
from the mongo shell, as follows:

show profile

Profiler Overhead

When enabled, profiling has a minor effect on performance. The system.profile (page 304) collection is a
capped collection with a default size of 1 megabyte. A collection of this size can typically store several thousand
profile documents, but some application may use more or less profiling data per operation.

242 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Change Size of system.profile Collection on the Primary To change the size of the system.profile
(page 304) collection, you must:

1. Disable profiling.

2. Drop the system.profile (page 304) collection.

3. Create a new system.profile (page 304) collection.

4. Re-enable profiling.

For example, to create a new system.profile (page 304) collections that’s 4000000 bytes, use the following
sequence of operations in the mongo shell:

db.setProfilingLevel(0)

db.system.profile.drop()

db.createCollection("system.profile", { capped: true, size:4000000 })

db.setProfilingLevel(1)

Change Size of system.profile Collection on a Secondary To change the size of the system.profile
(page 304) collection on a secondary, you must stop the secondary, run it as a standalone, and then perform the
steps above. When done, restart the standalone as a member of the replica set. For more information, see Perform
Maintenance on Replica Set Members (page 636).

Rotate Log Files

On this page

• Overview (page 243)
• Log Rotation With MongoDB (page 243)
• Syslog Log Rotation (page 244)

Overview

Log rotation using MongoDB’s standard approach archives the current log file and starts a new one. To do this, the
mongod or mongos instance renames the current log file by appending a UTC (GMT) timestamp to the filename, in
ISODate format. It then opens a new log file, closes the old log file, and sends all new log entries to the new log file.

MongoDB’s standard approach to log rotation only rotates logs in response to the logRotate command, or when
the mongod or mongos process receives a SIGUSR1 signal from the operating system.

Alternately, you may configure mongod to send log data to syslog. In this case, you can take advantage of alternate
logrotation tools.

See also:

For information on logging, see the Process Logging (page 198) section.

Log Rotation With MongoDB

The following steps create and rotate a log file:

5.2. Administration Tutorials 243

MongoDB Documentation, Release 2.6.11

1. Start a mongod with verbose logging, with appending enabled, and with the following log file:

mongod -v --logpath /var/log/mongodb/server1.log --logappend

2. In a separate terminal, list the matching files:

ls /var/log/mongodb/server1.log*

For results, you get:

server1.log

3. Rotate the log file using one of the following methods.

• From the mongo shell, issue the logRotate command from the admin database:

use admin
db.runCommand({ logRotate : 1 })

This is the only available method to rotate log files on Windows systems.

• For Linux systems, rotate logs for a single process by issuing the following command:

kill -SIGUSR1 <mongod process id>

4. List the matching files again:

ls /var/log/mongodb/server1.log*

For results you get something similar to the following. The timestamps will be different.

server1.log server1.log.2011-11-24T23-30-00

The example results indicate a log rotation performed at exactly 11:30 pm on November 24th, 2011
UTC, which is the local time offset by the local time zone. The original log file is the one with the timestamp.
The new log is server1.log file.

If you issue a second logRotate command an hour later, then an additional file would appear when listing
matching files, as in the following example:

server1.log server1.log.2011-11-24T23-30-00 server1.log.2011-11-25T00-30-00

This operation does not modify the server1.log.2011-11-24T23-30-00 file created earlier, while
server1.log.2011-11-25T00-30-00 is the previous server1.log file, renamed. server1.log
is a new, empty file that receives all new log output.

Syslog Log Rotation

New in version 2.2.

To configure mongod to send log data to syslog rather than writing log data to a file, use the following procedure.

1. Start a mongod with the syslogFacility option.

2. Store and rotate the log output using your system’s default log rotation mechanism.

Important: You cannot use syslogFacility with systemLog.path.

244 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Manage Journaling

On this page

• Procedures (page 245)

MongoDB uses write ahead logging to an on-disk journal to guarantee write operation (page 77) durability and to
provide crash resiliency. Before applying a change to the data files, MongoDB writes the change operation to the
journal. If MongoDB should terminate or encounter an error before it can write the changes from the journal to the
data files, MongoDB can re-apply the write operation and maintain a consistent state.

Without a journal, if mongod exits unexpectedly, you must assume your data is in an inconsistent state, and you must
run either repair (page 274) or, preferably, resync (page 640) from a clean member of the replica set.

With journaling enabled, if mongod stops unexpectedly, the program can recover everything written to the journal,
and the data remains in a consistent state. By default, the greatest extent of lost writes, i.e., those not made to the
journal, are those made in the last 100 milliseconds. See commitIntervalMs for more information on the default.

With journaling, if you want a data set to reside entirely in RAM, you need enough RAM to hold the data set plus
the “write working set.” The “write working set” is the amount of unique data you expect to see written between
re-mappings of the private view. For information on views, see Storage Views used in Journaling (page 310).

Important: Changed in version 2.0: For 64-bit builds of mongod, journaling is enabled by default. For other
platforms, see storage.journal.enabled.

Procedures

Enable Journaling Changed in version 2.0: For 64-bit builds of mongod, journaling is enabled by default.

To enable journaling, start mongod with the --journal command line option.

If no journal files exist, when mongod starts, it must preallocate new journal files. During this operation, the mongod
is not listening for connections until preallocation completes: for some systems this may take a several minutes.
During this period your applications and the mongo shell are not available.

Disable Journaling
Warning: Do not disable journaling on production systems. If your mongod instance stops without shutting
down cleanly unexpectedly for any reason, (e.g. power failure) and you are not running with journaling, then you
must recover from an unaffected replica set member or backup, as described in repair (page 274).

To disable journaling, start mongod with the --nojournal command line option.

Get Commit Acknowledgment You can get commit acknowledgment with the Write Concern (page 82) and the j
option. For details, see Write Concern Reference (page 135).

Avoid Preallocation Lag To avoid preallocation lag (page 309), you can preallocate files in the journal directory by
copying them from another instance of mongod.

Preallocated files do not contain data. It is safe to later remove them. But if you restart mongod with journaling,
mongod will create them again.

Example

5.2. Administration Tutorials 245

MongoDB Documentation, Release 2.6.11

The following sequence preallocates journal files for an instance of mongod running on port 27017 with a database
path of /data/db.

For demonstration purposes, the sequence starts by creating a set of journal files in the usual way.

1. Create a temporary directory into which to create a set of journal files:

mkdir ~/tmpDbpath

2. Create a set of journal files by staring a mongod instance that uses the temporary directory:

mongod --port 10000 --dbpath ~/tmpDbpath --journal

3. When you see the following log output, indicating mongod has the files, press CONTROL+C to stop the
mongod instance:

[initandlisten] waiting for connections on port 10000

4. Preallocate journal files for the new instance of mongod by moving the journal files from the data directory of
the existing instance to the data directory of the new instance:

mv ~/tmpDbpath/journal /data/db/

5. Start the new mongod instance:

mongod --port 27017 --dbpath /data/db --journal

Monitor Journal Status Use the following commands and methods to monitor journal status:

• serverStatus

The serverStatus command returns database status information that is useful for assessing performance.

• journalLatencyTest

Use journalLatencyTest to measure how long it takes on your volume to write to the disk in an append-
only fashion. You can run this command on an idle system to get a baseline sync time for journaling. You can
also run this command on a busy system to see the sync time on a busy system, which may be higher if the
journal directory is on the same volume as the data files.

The journalLatencyTest command also provides a way to check if your disk drive is buffering writes in
its local cache. If the number is very low (i.e., less than 2 milliseconds) and the drive is non-SSD, the drive
is probably buffering writes. In that case, enable cache write-through for the device in your operating system,
unless you have a disk controller card with battery backed RAM.

Change the Group Commit Interval Changed in version 2.0.

You can set the group commit interval using the --journalCommitInterval command line option. The allowed
range is 2 to 300 milliseconds.

Lower values increase the durability of the journal at the expense of disk performance.

Recover Data After Unexpected Shutdown On a restart after a crash, MongoDB replays all journal files in the
journal directory before the server becomes available. If MongoDB must replay journal files, mongod notes these
events in the log output.

There is no reason to run repairDatabase in these situations.

246 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Store a JavaScript Function on the Server

Note: Do not store application logic in the database. There are performance limitations to running JavaScript inside
of MongoDB. Application code also is typically most effective when it shares version control with the application
itself.

There is a special system collection named system.js that can store JavaScript functions for reuse.

To store a function, you can use the db.collection.save(), as in the following example:

db.system.js.save(
{

_id : "myAddFunction" ,
value : function (x, y){ return x + y; }

}
);

• The _id field holds the name of the function and is unique per database.

• The value field holds the function definition

Once you save a function in the system.js collection, you can use the function from any JavaScript context (e.g.
eval command or the mongo shell method db.eval(), $where operator, mapReduce or mongo shell method
db.collection.mapReduce()).

Consider the following example from the mongo shell that first saves a function named echoFunction to the
system.js collection and calls the function using db.eval() method:

db.system.js.save(
{ _id: "echoFunction",
value : function(x) { return x; }

}
)

db.eval("echoFunction('test')")

See http://github.com/mongodb/mongo/tree/master/jstests/core/storefunc.js for a full example.

New in version 2.1: In the mongo shell, you can use db.loadServerScripts() to load all the scripts saved in
the system.js collection for the current database. Once loaded, you can invoke the functions directly in the shell,
as in the following example:

db.loadServerScripts();

echoFunction(3);

myAddFunction(3, 5);

Upgrade to the Latest Revision of MongoDB

5.2. Administration Tutorials 247

http://github.com/mongodb/mongo/tree/master/jstests/core/storefunc.js

MongoDB Documentation, Release 2.6.11

On this page

• Before Upgrading (page 248)
• Upgrade Procedure (page 248)
• Upgrade a MongoDB Instance (page 248)
• Replace the Existing Binaries (page 249)
• Upgrade Sharded Clusters (page 249)
• Upgrade Replica Sets (page 250)
• Additional Resources (page 250)

Revisions provide security patches, bug fixes, and new or changed features that do not contain any backward breaking
changes. Always upgrade to the latest revision in your release series. The third number in the MongoDB version
number (page 908) indicates the revision.

Before Upgrading

• Ensure you have an up-to-date backup of your data set. See MongoDB Backup Methods (page 192).

• Consult the following documents for any special considerations or compatibility issues specific to your Mon-
goDB release:

– The release notes, located at Release Notes (page 805).

– The documentation for your driver. See Drivers74 page for more information.

• If your installation includes replica sets, plan the upgrade during a predefined maintenance window.

• Before you upgrade a production environment, use the procedures in this document to upgrade a staging environ-
ment that reproduces your production environment, to ensure that your production configuration is compatible
with all changes.

Upgrade Procedure

Important: Always backup all of your data before upgrading MongoDB.

Upgrade each mongod and mongos binary separately, using the procedure described here. When upgrading a binary,
use the procedure Upgrade a MongoDB Instance (page 248).

Follow this upgrade procedure:

1. For deployments that use authentication, first upgrade all of your MongoDB drivers. To upgrade, see the
documentation for your driver.

2. Upgrade sharded clusters, as described in Upgrade Sharded Clusters (page 249).

3. Upgrade any standalone instances. See Upgrade a MongoDB Instance (page 248).

4. Upgrade any replica sets that are not part of a sharded cluster, as described in Upgrade Replica Sets (page 250).

Upgrade a MongoDB Instance

To upgrade a mongod or mongos instance, use one of the following approaches:

74https://docs.mongodb.org/ecosystem/drivers

248 Chapter 5. Administration

https://docs.mongodb.org/ecosystem/drivers

MongoDB Documentation, Release 2.6.11

• Upgrade the instance using the operating system’s package management tool and the official MongoDB pack-
ages. This is the preferred approach. See Install MongoDB (page 5).

• Upgrade the instance by replacing the existing binaries with new binaries. See Replace the Existing Binaries
(page 249).

Replace the Existing Binaries

Important: Always backup all of your data before upgrading MongoDB.

This section describes how to upgrade MongoDB by replacing the existing binaries. The preferred approach to an
upgrade is to use the operating system’s package management tool and the official MongoDB packages, as described
in Install MongoDB (page 5).

To upgrade a mongod or mongos instance by replacing the existing binaries:

1. Download the binaries for the latest MongoDB revision from the MongoDB Download Page75 and store the
binaries in a temporary location. The binaries download as compressed files that uncompress to the directory
structure used by the MongoDB installation.

2. Shutdown the instance.

3. Replace the existing MongoDB binaries with the downloaded binaries.

4. Restart the instance.

Upgrade Sharded Clusters

To upgrade a sharded cluster:

1. Disable the cluster’s balancer, as described in Disable the Balancer (page 732).

2. Upgrade each mongos instance by following the instructions below in Upgrade a MongoDB Instance
(page 248). You can upgrade the mongos instances in any order.

3. Upgrade each mongod config server (page 684) individually starting with the last config server listed in your
mongos --configdb string and working backward. To keep the cluster online, make sure at least one config
server is always running. For each config server upgrade, follow the instructions below in Upgrade a MongoDB
Instance (page 248)

Example
Given the following config string:

mongos --configdb cfg0.example.net:27019,cfg1.example.net:27019,cfg2.example.net:27019

You would upgrade the config servers in the following order:

(a) cfg2.example.net

(b) cfg1.example.net

(c) cfg0.example.net

4. Upgrade each shard.

• If a shard is a replica set, upgrade the shard using the procedure below titled Upgrade Replica Sets
(page 250).

75http://downloads.mongodb.org/

5.2. Administration Tutorials 249

http://downloads.mongodb.org/

MongoDB Documentation, Release 2.6.11

• If a shard is a standalone instance, upgrade the shard using the procedure below titled Upgrade a MongoDB
Instance (page 248).

5. Re-enable the balancer, as described in Enable the Balancer (page 733).

Upgrade Replica Sets

To upgrade a replica set, upgrade each member individually, starting with the secondaries and finishing with the
primary. Plan the upgrade during a predefined maintenance window.

Upgrade Secondaries Upgrade each secondary separately as follows:

1. Upgrade the secondary’s mongod binary by following the instructions below in Upgrade a MongoDB Instance
(page 248).

2. After upgrading a secondary, wait for the secondary to recover to the SECONDARY state before upgrading the
next instance. To check the member’s state, issue rs.status() in the mongo shell.

The secondary may briefly go into STARTUP2 or RECOVERING. This is normal. Make sure to wait for the
secondary to fully recover to SECONDARY before you continue the upgrade.

Upgrade the Primary

1. Step down the primary to initiate the normal failover (page 583) procedure. Using one of the following:

• The rs.stepDown() helper in the mongo shell.

• The replSetStepDown database command.

During failover, the set cannot accept writes. Typically this takes 10-20 seconds. Plan the upgrade during a
predefined maintenance window.

Note: Stepping down the primary is preferable to directly shutting down the primary. Stepping down expedites
the failover procedure.

2. Once the primary has stepped down, call the rs.status() method from the mongo shell until you see that
another member has assumed the PRIMARY state.

3. Shut down the original primary and upgrade its instance by following the instructions below in Upgrade a
MongoDB Instance (page 248).

Additional Resources

• MongoDB Major Version Upgrade Consulting Package76

Monitor MongoDB With SNMP on Linux

76https://www.mongodb.com/products/consulting?jmp=docs#major_version_upgrade

250 Chapter 5. Administration

https://www.mongodb.com/products/consulting?jmp=docs#major_version_upgrade

MongoDB Documentation, Release 2.6.11

On this page

• Overview (page 251)
• Considerations (page 251)
• Configuration Files (page 251)
• Procedure (page 251)
• Optional: Run MongoDB as SNMP Master (page 252)

New in version 2.2.

Enterprise Feature
SNMP is only available in MongoDB Enterprise77.

Overview

MongoDB Enterprise can provide database metrics via SNMP, in support of centralized data collection and aggrega-
tion. This procedure explains the setup and configuration of a mongod instance as an SNMP subagent, as well as
initializing and testing of SNMP support with MongoDB Enterprise.

See also:

Troubleshoot SNMP (page 254) and Monitor MongoDB Windows with SNMP (page 252) for complete instructions on
using MongoDB with SNMP on Windows systems.

Considerations

Only mongod instances provide SNMP support. mongos and the other MongoDB binaries do not support SNMP.

Configuration Files

Changed in version 2.6.

MongoDB Enterprise contains the following configuration files to support SNMP:

• MONGOD-MIB.txt:

The management information base (MIB) file that defines MongoDB’s SNMP output.

• mongod.conf.subagent:

The configuration file to run mongod as the SNMP subagent. This file sets SNMP run-time configuration
options, including the AgentX socket to connect to the SNMP master.

• mongod.conf.master:

The configuration file to run mongod as the SNMP master. This file sets SNMP run-time configuration options.

Procedure

Step 1: Copy configuration files. Use the following sequence of commands to move the SNMP configuration files
to the SNMP service configuration directory.

77http://www.mongodb.com/products/mongodb-enterprise

5.2. Administration Tutorials 251

http://www.mongodb.com/products/mongodb-enterprise

MongoDB Documentation, Release 2.6.11

First, create the SNMP configuration directory if needed and then, from the installation directory, copy the configura-
tion files to the SNMP service configuration directory:

mkdir -p /etc/snmp/
cp MONGOD-MIB.txt /usr/share/snmp/mibs/MONGOD-MIB.txt
cp mongod.conf.subagent /etc/snmp/mongod.conf

The configuration filename is tool-dependent. For example, when using net-snmp the configuration file is
snmpd.conf.

By default SNMP uses UNIX domain for communication between the agent (i.e. snmpd or the master) and sub-agent
(i.e. MongoDB).

Ensure that the agentXAddress specified in the SNMP configuration file for MongoDB matches the
agentXAddress in the SNMP master configuration file.

Step 2: Start MongoDB. Start mongod with the snmp-subagent to send data to the SNMP master.

mongod --snmp-subagent

Step 3: Confirm SNMP data retrieval. Use snmpwalk to collect data from mongod:

Connect an SNMP client to verify the ability to collect SNMP data from MongoDB.

Install the net-snmp78 package to access the snmpwalk client. net-snmp provides the snmpwalk SNMP client.

snmpwalk -m /usr/share/snmp/mibs/MONGOD-MIB.txt -v 2c -c mongodb 127.0.0.1:<port> 1.3.6.1.4.1.34601

<port> refers to the port defined by the SNMP master, not the primary port used by mongod for client communi-
cation.

Optional: Run MongoDB as SNMP Master

You can run mongod with the snmp-master option for testing purposes. To do this, use the SNMP master configu-
ration file instead of the subagent configuration file. From the directory containing the unpacked MongoDB installation
files:

cp mongod.conf.master /etc/snmp/mongod.conf

Additionally, start mongod with the snmp-master option, as in the following:

mongod --snmp-master

Monitor MongoDB Windows with SNMP

On this page

• Overview (page 253)
• Considerations (page 253)
• Configuration Files (page 253)
• Procedure (page 253)
• Optional: Run MongoDB as SNMP Master (page 254)

78http://www.net-snmp.org/

252 Chapter 5. Administration

http://www.net-snmp.org/

MongoDB Documentation, Release 2.6.11

New in version 2.6.

Enterprise Feature
SNMP is only available in MongoDB Enterprise79.

Overview

MongoDB Enterprise can provide database metrics via SNMP, in support of centralized data collection and aggrega-
tion. This procedure explains the setup and configuration of a mongod.exe instance as an SNMP subagent, as well
as initializing and testing of SNMP support with MongoDB Enterprise.

See also:

Monitor MongoDB With SNMP on Linux (page 250) and Troubleshoot SNMP (page 254) for more information.

Considerations

Only mongod.exe instances provide SNMP support. mongos.exe and the other MongoDB binaries do not support
SNMP.

Configuration Files

Changed in version 2.6.

MongoDB Enterprise contains the following configuration files to support SNMP:

• MONGOD-MIB.txt:

The management information base (MIB) file that defines MongoDB’s SNMP output.

• mongod.conf.subagent:

The configuration file to run mongod.exe as the SNMP subagent. This file sets SNMP run-time configuration
options, including the AgentX socket to connect to the SNMP master.

• mongod.conf.master:

The configuration file to run mongod.exe as the SNMP master. This file sets SNMP run-time configuration
options.

Procedure

Step 1: Copy configuration files. Use the following sequence of commands to move the SNMP configuration files
to the SNMP service configuration directory.

First, create the SNMP configuration directory if needed and then, from the installation directory, copy the configura-
tion files to the SNMP service configuration directory:

md C:\snmp\etc\config
copy MONGOD-MIB.txt C:\snmp\etc\config\MONGOD-MIB.txt
copy mongod.conf.subagent C:\snmp\etc\config\mongod.conf

79http://www.mongodb.com/products/mongodb-enterprise

5.2. Administration Tutorials 253

http://www.mongodb.com/products/mongodb-enterprise

MongoDB Documentation, Release 2.6.11

The configuration filename is tool-dependent. For example, when using net-snmp the configuration file is
snmpd.conf.

Edit the configuration file to ensure that the communication between the agent (i.e. snmpd or the master) and sub-
agent (i.e. MongoDB) uses TCP.

Ensure that the agentXAddress specified in the SNMP configuration file for MongoDB matches the
agentXAddress in the SNMP master configuration file.

Step 2: Start MongoDB. Start mongod.exe with the snmp-subagent to send data to the SNMP master.

mongod.exe --snmp-subagent

Step 3: Confirm SNMP data retrieval. Use snmpwalk to collect data from mongod.exe:

Connect an SNMP client to verify the ability to collect SNMP data from MongoDB.

Install the net-snmp80 package to access the snmpwalk client. net-snmp provides the snmpwalk SNMP client.

snmpwalk -m C:\snmp\etc\config\MONGOD-MIB.txt -v 2c -c mongodb 127.0.0.1:<port> 1.3.6.1.4.1.34601

<port> refers to the port defined by the SNMP master, not the primary port used by mongod.exe for client
communication.

Optional: Run MongoDB as SNMP Master

You can run mongod.exe with the snmp-master option for testing purposes. To do this, use the SNMP master
configuration file instead of the subagent configuration file. From the directory containing the unpacked MongoDB
installation files:

copy mongod.conf.master C:\snmp\etc\config\mongod.conf

Additionally, start mongod.exe with the snmp-master option, as in the following:

mongod.exe --snmp-master

Troubleshoot SNMP

On this page

• Overview (page 255)
• Issues (page 255)

New in version 2.6.

Enterprise Feature
SNMP is only available in MongoDB Enterprise.

80http://www.net-snmp.org/

254 Chapter 5. Administration

http://www.net-snmp.org/

MongoDB Documentation, Release 2.6.11

Overview

MongoDB Enterprise can provide database metrics via SNMP, in support of centralized data collection and aggre-
gation. This document identifies common problems you may encounter when deploying MongoDB Enterprise with
SNMP as well as possible solutions for these issues.

See Monitor MongoDB With SNMP on Linux (page 250) and Monitor MongoDB Windows with SNMP (page 252) for
complete installation instructions.

Issues

Failed to Connect The following in the mongod logfile:

Warning: Failed to connect to the agentx master agent

AgentX is the SNMP agent extensibility protocol defined in Internet RFC 274181. It explains how to define additional
data to monitor over SNMP. When MongoDB fails to connect to the agentx master agent, use the following procedure
to ensure that the SNMP subagent can connect properly to the SNMP master.

1. Make sure the master agent is running.

2. Compare the SNMP master’s configuration file with the subagent configuration file. Ensure that the agentx
socket definition is the same between the two.

3. Check the SNMP configuration files to see if they specify using UNIX Domain Sockets. If so, confirm that the
mongod has appropriate permissions to open a UNIX domain socket.

Error Parsing Command Line One of the following errors at the command line:

Error parsing command line: unknown option snmp-master
try 'mongod --help' for more information

Error parsing command line: unknown option snmp-subagent
try 'mongod --help' for more information

mongod binaries that are not part of the Enterprise Edition produce this error. Install the Enterprise Edition (page 27)
and attempt to start mongod again.

Other MongoDB binaries, including mongos will produce this error if you attempt to star them with snmp-master
or snmp-subagent. Only mongod supports SNMP.

Error Starting SNMPAgent The following line in the log file indicates that mongod cannot read the
mongod.conf file:

[SNMPAgent] warning: error starting SNMPAgent as master err:1

If running on Linux, ensure mongod.conf exists in the /etc/snmp directory, and ensure that the mongod UNIX
user has permission to read the mongod.conf file.

If running on Windows, ensure mongod.conf exists in C:\snmp\etc\config.

81http://www.ietf.org/rfc/rfc2741.txt

5.2. Administration Tutorials 255

http://www.ietf.org/rfc/rfc2741.txt

MongoDB Documentation, Release 2.6.11

5.2.2 Backup and Recovery

The following tutorials describe backup and restoration for a mongod instance:

Backup and Restore with Filesystem Snapshots (page 256) An outline of procedures for creating MongoDB data set
backups using system-level file snapshot tool, such as LVM or native storage appliance tools.

Restore a Replica Set from MongoDB Backups (page 260) Describes procedure for restoring a replica set from an
archived backup such as a mongodump or MongoDB Cloud Manager82 Backup file.

Back Up and Restore with MongoDB Tools (page 261) The procedure for writing the contents of a database to a
BSON (i.e. binary) dump file for backing up MongoDB databases.

Backup and Restore Sharded Clusters (page 265) Detailed procedures and considerations for backing up sharded
clusters and single shards.

Recover Data after an Unexpected Shutdown (page 274) Recover data from MongoDB data files that were not prop-
erly closed or have an invalid state.

Backup and Restore with Filesystem Snapshots

On this page

• Snapshots Overview (page 256)
• Backup and Restore Using LVM on a Linux System (page 257)
• Create Backups on Instances that do not have Journaling Enabled (page 259)

This document describes a procedure for creating backups of MongoDB systems using system-level tools, such as
LVM or storage appliance, as well as the corresponding restoration strategies.

These filesystem snapshots, or “block-level” backup methods use system level tools to create copies of the device that
holds MongoDB’s data files. These methods complete quickly and work reliably, but require more system configura-
tion outside of MongoDB.

See also:

MongoDB Backup Methods (page 192) and Back Up and Restore with MongoDB Tools (page 261).

Snapshots Overview

Snapshots work by creating pointers between the live data and a special snapshot volume. These pointers are the-
oretically equivalent to “hard links.” As the working data diverges from the snapshot, the snapshot process uses a
copy-on-write strategy. As a result the snapshot only stores modified data.

After making the snapshot, you mount the snapshot image on your file system and copy data from the snapshot. The
resulting backup contains a full copy of all data.

Snapshots have the following limitations:

• The database must be valid when the snapshot takes place. This means that all writes accepted by the database
need to be fully written to disk: either to the journal or to data files.

If all writes are not on disk when the backup occurs, the backup will not reflect these changes. If writes are in
progress when the backup occurs, the data files will reflect an inconsistent state. With journaling all data-file
states resulting from in-progress writes are recoverable; without journaling you must flush all pending writes

82https://cloud.mongodb.com/?jmp=docs

256 Chapter 5. Administration

https://cloud.mongodb.com/?jmp=docs

MongoDB Documentation, Release 2.6.11

to disk before running the backup operation and must ensure that no writes occur during the entire backup
procedure.

If you do use journaling, the journal must reside on the same volume as the data.

• Snapshots create an image of an entire disk image. Unless you need to back up your entire system, consider
isolating your MongoDB data files, journal (if applicable), and configuration on one logical disk that doesn’t
contain any other data.

Alternately, store all MongoDB data files on a dedicated device so that you can make backups without duplicat-
ing extraneous data.

• Ensure that you copy data from snapshots and onto other systems to ensure that data is safe from site failures.

• Although different snapshots methods provide different capability, the LVM method outlined below does not
provide any capacity for capturing incremental backups.

Snapshots With Journaling If your mongod instance has journaling enabled, then you can use any kind of file
system or volume/block level snapshot tool to create backups.

If you manage your own infrastructure on a Linux-based system, configure your system with LVM to provide your disk
packages and provide snapshot capability. You can also use LVM-based setups within a cloud/virtualized environment.

Note: Running LVM provides additional flexibility and enables the possibility of using snapshots to back up Mon-
goDB.

Snapshots with Amazon EBS in a RAID 10 Configuration If your deployment depends on Amazon’s Elastic
Block Storage (EBS) with RAID configured within your instance, it is impossible to get a consistent state across all
disks using the platform’s snapshot tool. As an alternative, you can do one of the following:

• Flush all writes to disk and create a write lock to ensure consistent state during the backup process.

If you choose this option see Create Backups on Instances that do not have Journaling Enabled (page 259).

• Configure LVM to run and hold your MongoDB data files on top of the RAID within your system.

If you choose this option, perform the LVM backup operation described in Create a Snapshot (page 257).

Backup and Restore Using LVM on a Linux System

This section provides an overview of a simple backup process using LVM on a Linux system. While the tools, com-
mands, and paths may be (slightly) different on your system the following steps provide a high level overview of the
backup operation.

Note: Only use the following procedure as a guideline for a backup system and infrastructure. Production backup
systems must consider a number of application specific requirements and factors unique to specific environments.

Create a Snapshot To create a snapshot with LVM, issue a command as root in the following format:

lvcreate --size 100M --snapshot --name mdb-snap01 /dev/vg0/mongodb

This command creates an LVM snapshot (with the --snapshot option) named mdb-snap01 of the mongodb
volume in the vg0 volume group.

5.2. Administration Tutorials 257

MongoDB Documentation, Release 2.6.11

This example creates a snapshot named mdb-snap01 located at /dev/vg0/mdb-snap01. The location and
paths to your systems volume groups and devices may vary slightly depending on your operating system’s LVM
configuration.

The snapshot has a cap of at 100 megabytes, because of the parameter --size 100M. This size does not re-
flect the total amount of the data on the disk, but rather the quantity of differences between the current state of
/dev/vg0/mongodb and the creation of the snapshot (i.e. /dev/vg0/mdb-snap01.)

Warning: Ensure that you create snapshots with enough space to account for data growth, particularly for the
period of time that it takes to copy data out of the system or to a temporary image.
If your snapshot runs out of space, the snapshot image becomes unusable. Discard this logical volume and create
another.

The snapshot will exist when the command returns. You can restore directly from the snapshot at any time or by
creating a new logical volume and restoring from this snapshot to the alternate image.

While snapshots are great for creating high quality backups very quickly, they are not ideal as a format for storing
backup data. Snapshots typically depend and reside on the same storage infrastructure as the original disk images.
Therefore, it’s crucial that you archive these snapshots and store them elsewhere.

Archive a Snapshot After creating a snapshot, mount the snapshot and copy the data to separate storage. Your
system might try to compress the backup images as you move them offline. Alternatively, take a block level copy of
the snapshot image, such as with the following procedure:

umount /dev/vg0/mdb-snap01
dd if=/dev/vg0/mdb-snap01 | gzip > mdb-snap01.gz

The above command sequence does the following:

• Ensures that the /dev/vg0/mdb-snap01 device is not mounted. Never take a block level copy of a filesys-
tem or filesystem snapshot that is mounted.

• Performs a block level copy of the entire snapshot image using the dd command and compresses the result in a
gzipped file in the current working directory.

Warning: This command will create a large gz file in your current working directory. Make sure that you
run this command in a file system that has enough free space.

Restore a Snapshot To restore a snapshot created with the above method, issue the following sequence of com-
mands:

lvcreate --size 1G --name mdb-new vg0
gzip -d -c mdb-snap01.gz | dd of=/dev/vg0/mdb-new
mount /dev/vg0/mdb-new /srv/mongodb

The above sequence does the following:

• Creates a new logical volume named mdb-new, in the /dev/vg0 volume group. The path to the new device
will be /dev/vg0/mdb-new.

Warning: This volume will have a maximum size of 1 gigabyte. The original file system must have had a
total size of 1 gigabyte or smaller, or else the restoration will fail.
Change 1G to your desired volume size.

• Uncompresses and unarchives the mdb-snap01.gz into the mdb-new disk image.

258 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

• Mounts the mdb-new disk image to the /srv/mongodb directory. Modify the mount point to correspond to
your MongoDB data file location, or other location as needed.

Note: The restored snapshot will have a stale mongod.lock file. If you do not remove this file from the snap-
shot, and MongoDB may assume that the stale lock file indicates an unclean shutdown. If you’re running with
storage.journal.enabled enabled, and you do not use db.fsyncLock(), you do not need to remove
the mongod.lock file. If you use db.fsyncLock() you will need to remove the lock.

Restore Directly from a Snapshot To restore a backup without writing to a compressed gz file, use the following
sequence of commands:

umount /dev/vg0/mdb-snap01
lvcreate --size 1G --name mdb-new vg0
dd if=/dev/vg0/mdb-snap01 of=/dev/vg0/mdb-new
mount /dev/vg0/mdb-new /srv/mongodb

Remote Backup Storage You can implement off-system backups using the combined process (page 259) and SSH.

This sequence is identical to procedures explained above, except that it archives and compresses the backup on a
remote system using SSH.

Consider the following procedure:

umount /dev/vg0/mdb-snap01
dd if=/dev/vg0/mdb-snap01 | ssh username@example.com gzip > /opt/backup/mdb-snap01.gz
lvcreate --size 1G --name mdb-new vg0
ssh username@example.com gzip -d -c /opt/backup/mdb-snap01.gz | dd of=/dev/vg0/mdb-new
mount /dev/vg0/mdb-new /srv/mongodb

Create Backups on Instances that do not have Journaling Enabled

If your mongod instance does not run with journaling enabled, or if your journal is on a separate volume, obtaining a
functional backup of a consistent state is more complicated. As described in this section, you must flush all writes to
disk and lock the database to prevent writes during the backup process. If you have a replica set configuration, then
for your backup use a secondary which is not receiving reads (i.e. hidden member).

Important: In the following procedure, you must issue the db.fsyncLock() and db.fsyncUnlock() op-
erations on the same connection. The client that issues db.fsyncLock() is solely responsible for issuing a
db.fsyncUnlock() operation and must be able to handle potential error conditions so that it can perform the
db.fsyncUnlock() before terminating the connection.

Step 1: Flush writes to disk and lock the database to prevent further writes. To flush writes to disk and to “lock”
the database, issue the db.fsyncLock() method in the mongo shell:

db.fsyncLock();

Step 2: Perform the backup operation described in Create a Snapshot.

5.2. Administration Tutorials 259

MongoDB Documentation, Release 2.6.11

Step 3: After the snapshot completes, unlock the database. To unlock the database after the snapshot has com-
pleted, use the following command in the mongo shell:

db.fsyncUnlock();

Changed in version 2.2: When used in combination with fsync or db.fsyncLock(), mongod will block
reads, including those from mongodump, when queued write operation waits behind the fsync lock. Do not use
mongodump with db.fsyncLock().

Restore a Replica Set from MongoDB Backups

On this page

• Restore Database into a Single Node Replica Set (page 260)
• Add Members to the Replica Set (page 261)

This procedure outlines the process for taking MongoDB data and restoring that data into a new replica set. Use this
approach for seeding test deployments from production backups as well as part of disaster recovery.

You cannot restore a single data set to three new mongod instances and then create a replica set. In this situation
MongoDB will force the secondaries to perform an initial sync. The procedures in this document describe the correct
and efficient ways to deploy a replica set.

Restore Database into a Single Node Replica Set

Step 1: Obtain backup MongoDB Database files. The backup files may come from a file system snapshot
(page 256). The MongoDB Cloud Manager83 produces MongoDB database files for stored snapshots84 and point
in time snapshots85.

You can also use mongorestore to restore database files using data created with mongodump. See Back Up and
Restore with MongoDB Tools (page 261) for more information.

Step 2: Start a mongod using data files from the backup as the data path. Start a mongod for a new single-
node replica set. Specify the path to the backup data files with --dbpath option and the replica set name with the
--replSet option.

mongod --dbpath /data/db --replSet <replName>

Step 3: Connect a mongo shell to the mongod instance. For example, to connect to a mongod running on
localhost on the default port of 27017, simply issue:

mongo

Step 4: Initiate the new replica set. Use rs.initiate() on the replica set member:

rs.initiate()

MongoDB initiates a set that consists of the current member and that uses the default replica set configuration.

83https://cloud.mongodb.com/?jmp=docs
84https://docs.cloud.mongodb.com/tutorial/restore-from-snapshot/
85https://docs.cloud.mongodb.com/tutorial/restore-from-point-in-time-snapshot/

260 Chapter 5. Administration

https://cloud.mongodb.com/?jmp=docs
https://docs.cloud.mongodb.com/tutorial/restore-from-snapshot/
https://docs.cloud.mongodb.com/tutorial/restore-from-point-in-time-snapshot/
https://docs.cloud.mongodb.com/tutorial/restore-from-point-in-time-snapshot/

MongoDB Documentation, Release 2.6.11

Add Members to the Replica Set

MongoDB provides two options for restoring secondary members of a replica set:

• Manually copy the database files to each data directory.

• Allow initial sync (page 598) to distribute data automatically.

The following sections outlines both approaches.

Note: If your database is large, initial sync can take a long time to complete. For large databases, it might be
preferable to copy the database files onto each host.

Copy Database Files and Restart mongod Instance Use the following sequence of operations to “seed” additional
members of the replica set with the restored data by copying MongoDB data files directly.

Step 1: Shut down the mongod instance that you restored. Use --shutdown or db.shutdownServer()
to ensure a clean shut down.

Step 2: Copy the primary’s data directory to each secondary. Copy the primary’s data directory into the dbPath
of the other members of the replica set. The dbPath is /data/db by default.

Step 3: Start the mongod instance that you restored.

Step 4: Add the secondaries to the replica set. In a mongo shell connected to the primary, add the secondaries to
the replica set using rs.add(). See Deploy a Replica Set (page 607) for more information about deploying a replica
set.

Update Secondaries using Initial Sync Use the following sequence of operations to “seed” additional members of
the replica set with the restored data using the default initial sync operation.

Step 1: Ensure that the data directories on the prospective replica set members are empty.

Step 2: Add each prospective member to the replica set. When you add a member to the replica set, Initial Sync
(page 598) copies the data from the primary to the new member.

Back Up and Restore with MongoDB Tools

On this page

• Backup a Database with mongodump (page 262)
• Restore a Database with mongorestore (page 264)

This document describes the process for writing and restoring backups to files in binary format with the mongodump
and mongorestore tools.

5.2. Administration Tutorials 261

MongoDB Documentation, Release 2.6.11

Use these tools for backups if other backup methods, such as the MongoDB Cloud Manager86 or file system snapshots
(page 256) are unavailable.

See also:

MongoDB Backup Methods (page 192), mongodump, and mongorestore.

Backup a Database with mongodump

mongodump does not dump the content of the local database.

To backup all the databases in a cluster via mongodump, you should have the backup (page 410) role. The backup
(page 410) role provides all the needed privileges for backing up all database. The role confers no additional access,
in keeping with the policy of least privilege.

To backup a given database, you must have read access on the database. Several roles provide this access, including
the backup (page 410) role.

To backup the system.profile collection in a database, you must have read access on certain system collec-
tions in the database. Several roles provide this access, including the clusterAdmin (page 407) and dbAdmin
(page 406) roles.

Changed in version 2.6.

To backup users and user-defined roles (page 321) for a given database, you must have access to the admin database.
MongoDB stores the user data and role definitions for all databases in the admin database.

Specifically, to backup a given database’s users, you must have the find (page 419) action (page 418)
on the admin database’s admin.system.users (page 304) collection. The backup (page 410) and
userAdminAnyDatabase (page 411) roles both provide this privilege.

To backup the user-defined roles on a database, you must have the find (page 419) action on the admin database’s
admin.system.roles (page 304) collection. Both the backup (page 410) and userAdminAnyDatabase
(page 411) roles provide this privilege.

Basic mongodump Operations The mongodump utility can back up data by either:

• connecting to a running mongod or mongos instance, or

• accessing data files without an active instance.

The utility can create a backup for an entire server, database or collection, or can use a query to backup just part of a
collection.

When you run mongodump without any arguments, the command connects to the MongoDB instance on the local
system (e.g. 127.0.0.1 or localhost) on port 27017 and creates a database backup named dump/ in the
current directory.

To backup data from a mongod or mongos instance running on the same machine and on the default port of 27017,
use the following command:

mongodump

The data format used by mongodump from version 2.2 or later is incompatible with earlier versions of mongod. Do
not use recent versions of mongodump to back up older data stores.

You can also specify the --host and --port of the MongoDB instance that the mongodump should connect to.
For example:

86https://cloud.mongodb.com/?jmp=docs

262 Chapter 5. Administration

https://cloud.mongodb.com/?jmp=docs

MongoDB Documentation, Release 2.6.11

mongodump --host mongodb.example.net --port 27017

mongodump will write BSON files that hold a copy of data accessible via the mongod listening on port 27017 of
the mongodb.example.net host. See Create Backups from Non-Local mongod Instances (page 263) for more
information.

To use mongodump without a running MongoDB instance, specify the --dbpath option to read directly from
MongoDB data files. See Create Backups Without a Running mongod Instance (page 263) for details.

To specify a different output directory, you can use the --out or -o option:

mongodump --out /data/backup/

To limit the amount of data included in the database dump, you can specify --db and --collection as options to
mongodump. For example:

mongodump --collection myCollection --db test

This operation creates a dump of the collection named myCollection from the database test in a dump/ subdi-
rectory of the current working directory.

mongodump overwrites output files if they exist in the backup data folder. Before running the mongodump command
multiple times, either ensure that you no longer need the files in the output folder (the default is the dump/ folder) or
rename the folders or files.

Point in Time Operation Using Oplogs Use the --oplog option with mongodump to collect the oplog entries
to build a point-in-time snapshot of a database within a replica set. With --oplog, mongodump copies all the data
from the source database as well as all of the oplog entries from the beginning to the end of the backup procedure. This
operation, in conjunction with mongorestore --oplogReplay, allows you to restore a backup that reflects the
specific moment in time that corresponds to when mongodump completed creating the dump file.

Create Backups Without a Running mongod Instance If your MongoDB instance is not running, you can use
the --dbpath option to specify the location to your MongoDB instance’s database files. mongodump reads from
the data files directly with this operation. This locks the data directory to prevent conflicting writes. The mongod
process must not be running or attached to these data files when you run mongodump in this configuration. Consider
the following example:

Given a MongoDB instance that contains the customers, products, and suppliers databases, the follow-
ing mongodump operation backs up the databases using the --dbpath option, which specifies the location of the
database files on the host:

mongodump --dbpath /data -o dataout

The --out or -o option allows you to specify the directory where mongodump will save the backup.
mongodump creates a separate backup directory for each of the backed up databases: dataout/customers,
dataout/products, and dataout/suppliers.

Create Backups from Non-Local mongod Instances The --host and --port options for mongodump allow
you to connect to and backup from a remote host. Consider the following example:

mongodump --host mongodb1.example.net --port 3017 --username user --password pass --out /opt/backup/mongodump-2013-10-24

On any mongodump command you may, as above, specify username and password credentials to specify database
authentication.

5.2. Administration Tutorials 263

MongoDB Documentation, Release 2.6.11

Restore a Database with mongorestore

Changed in version 2.6.

To restore users and user-defined roles (page 321) on a given database, you must have access to the admin database.
MongoDB stores the user data and role definitions for all databases in the admin database.

Specifically, to restore users to a given database, you must have the insert (page 419) action (page 418) on the
admin database’s admin.system.users (page 304) collection. The restore (page 410) role provides this
privilege.

To restore user-defined roles to a database, you must have the insert (page 419) action on the admin database’s
admin.system.roles (page 304) collection. The restore (page 410) role provides this privilege.

Basic mongorestore Operations The mongorestore utility restores a binary backup created by
mongodump. By default, mongorestore looks for a database backup in the dump/ directory.

The mongorestore utility can restore data either by:

• connecting to a running mongod or mongos directly, or

• writing to a set of MongoDB data files without use of a running mongod.

mongorestore can restore either an entire database backup or a subset of the backup.

To use mongorestore to connect to an active mongod or mongos, use a command with the following prototype
form:

mongorestore --port <port number> <path to the backup>

To use mongorestore to write to data files without using a running mongod, use a command with the following
prototype form:

mongorestore --dbpath <database path> <path to the backup>

Consider the following example:

mongorestore dump-2013-10-25/

Here, mongorestore imports the database backup in the dump-2013-10-25 directory to the mongod instance
running on the localhost interface.

Restore Point in Time Oplog Backup If you created your database dump using the --oplog option to ensure a
point-in-time snapshot, call mongorestore with the --oplogReplay option, as in the following example:

mongorestore --oplogReplay

You may also consider using the mongorestore --objcheck option to check the integrity of objects while
inserting them into the database, or you may consider the mongorestore --drop option to drop each collection
from the database before restoring from backups.

Restore a Subset of data from a Binary Database Dump mongorestore also includes the ability to a filter to
all input before inserting it into the new database. Consider the following example:

mongorestore --filter '{"field": 1}'

Here, mongorestore only adds documents to the database from the dump located in the dump/ folder if the
documents have a field name field that holds a value of 1. Enclose the filter in single quotes (e.g. ’) to prevent the
filter from interacting with your shell environment.

264 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Restore Without a Running mongod mongorestore can write data to MongoDB data files without needing to
connect to a mongod directly.

Example
Restore a Database Without a Running mongod

Given a set of backed up databases in the /data/backup/ directory:

• /data/backup/customers,

• /data/backup/products, and

• /data/backup/suppliers

The following mongorestore command restores the products database. The command uses the --dbpath
option to specify the path to the MongoDB data files:

mongorestore --dbpath /data/db --journal /data/backup/products

The mongorestore imports the database backup in the /data/backup/products directory to the mongod
instance that runs on the localhost interface. The mongorestore operation imports the backup even if the mongod
is not running.

The --journal option ensures that mongorestore records all operation in the durability journal. The journal
prevents data file corruption if anything (e.g. power failure, disk failure, etc.) interrupts the restore operation.

Restore Backups to Non-Local mongod Instances By default, mongorestore connects to a MongoDB instance
running on the localhost interface (e.g. 127.0.0.1) and on the default port (27017). If you want to restore to a
different host or port, use the --host and --port options.

Consider the following example:

mongorestore --host mongodb1.example.net --port 3017 --username user --password pass /opt/backup/mongodump-2013-10-24

As above, you may specify username and password connections if your mongod requires authentication.

Additional Resources

• Backup and its Role in Disaster Recovery White Paper87

• Cloud Backup through MongoDB Cloud Manager88

• Blog Post: Backup vs. Replication, Why you Need Both89

Backup and Restore Sharded Clusters

The following tutorials describe backup and restoration for sharded clusters:

Backup a Small Sharded Cluster with mongodump (page 266) If your sharded cluster holds a small data set, you
can use mongodump to capture the entire backup in a reasonable amount of time.

Backup a Sharded Cluster with Filesystem Snapshots (page 267) Use file system snapshots back up each compo-
nent in the sharded cluster individually. The procedure involves stopping the cluster balancer. If your system
configuration allows file system backups, this might be more efficient than using MongoDB tools.

87https://www.mongodb.com/lp/white-paper/backup-disaster-recovery?jmp=docs
88https://cloud.mongodb.com/?jmp=docs
89http://www.mongodb.com/blog/post/backup-vs-replication-why-do-you-need-both?jmp=docs

5.2. Administration Tutorials 265

https://www.mongodb.com/lp/white-paper/backup-disaster-recovery?jmp=docs
https://cloud.mongodb.com/?jmp=docs
http://www.mongodb.com/blog/post/backup-vs-replication-why-do-you-need-both?jmp=docs

MongoDB Documentation, Release 2.6.11

Backup a Sharded Cluster with Database Dumps (page 269) Create backups using mongodump to back up each
component in the cluster individually.

Schedule Backup Window for Sharded Clusters (page 271) Limit the operation of the cluster balancer to provide a
window for regular backup operations.

Restore a Single Shard (page 271) An outline of the procedure and consideration for restoring a single shard from a
backup.

Restore a Sharded Cluster (page 272) An outline of the procedure and consideration for restoring an entire sharded
cluster from backup.

Backup a Small Sharded Cluster with mongodump

On this page

• Overview (page 266)
• Considerations (page 267)
• Procedure (page 267)

Overview If your sharded cluster holds a small data set, you can connect to a mongos using mongodump. You can
create backups of your MongoDB cluster, if your backup infrastructure can capture the entire backup in a reasonable
amount of time and if you have a storage system that can hold the complete MongoDB data set.

See MongoDB Backup Methods (page 192) and Backup and Restore Sharded Clusters (page 265) for complete infor-
mation on backups in MongoDB and backups of sharded clusters in particular.

Important: By default mongodump issue its queries to the non-primary nodes.

To backup all the databases in a cluster via mongodump, you should have the backup (page 410) role. The backup
(page 410) role provides all the needed privileges for backing up all database. The role confers no additional access,
in keeping with the policy of least privilege.

To backup a given database, you must have read access on the database. Several roles provide this access, including
the backup (page 410) role.

To backup the system.profile collection in a database, you must have read access on certain system collec-
tions in the database. Several roles provide this access, including the clusterAdmin (page 407) and dbAdmin
(page 406) roles.

Changed in version 2.6.

To backup users and user-defined roles (page 321) for a given database, you must have access to the admin database.
MongoDB stores the user data and role definitions for all databases in the admin database.

Specifically, to backup a given database’s users, you must have the find (page 419) action (page 418)
on the admin database’s admin.system.users (page 304) collection. The backup (page 410) and
userAdminAnyDatabase (page 411) roles both provide this privilege.

To backup the user-defined roles on a database, you must have the find (page 419) action on the admin database’s
admin.system.roles (page 304) collection. Both the backup (page 410) and userAdminAnyDatabase
(page 411) roles provide this privilege.

266 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Considerations If you use mongodump without specifying a database or collection, mongodump will capture
collection data and the cluster meta-data from the config servers (page 684).

You cannot use the --oplog option for mongodump when capturing data from mongos. As a result, if you need
to capture a backup that reflects a single moment in time, you must stop all writes to the cluster for the duration of the
backup operation.

Procedure

Capture Data You can perform a backup of a sharded cluster by connecting mongodump to a mongos. Use the
following operation at your system’s prompt:

mongodump --host mongos3.example.net --port 27017

mongodump will write BSON files that hold a copy of data stored in the sharded cluster accessible via the mongos
listening on port 27017 of the mongos3.example.net host.

Restore Data Backups created with mongodump do not reflect the chunks or the distribution of data in the sharded
collection or collections. Like all mongodump output, these backups contain separate directories for each database
and BSON files for each collection in that database.

You can restore mongodump output to any MongoDB instance, including a standalone, a replica set, or a new sharded
cluster. When restoring data to sharded cluster, you must deploy and configure sharding before restoring data from
the backup. See Deploy a Sharded Cluster (page 705) for more information.

Backup a Sharded Cluster with Filesystem Snapshots

On this page

• Overview (page 267)
• Considerations (page 267)
• Procedure (page 268)

Overview This document describes a procedure for taking a backup of all components of a sharded cluster. This pro-
cedure uses file system snapshots to capture a copy of the mongod instance. An alternate procedure uses mongodump
to create binary database dumps when file-system snapshots are not available. See Backup a Sharded Cluster with
Database Dumps (page 269) for the alternate procedure.

See MongoDB Backup Methods (page 192) and Backup and Restore Sharded Clusters (page 265) for complete infor-
mation on backups in MongoDB and backups of sharded clusters in particular.

Important: To capture a point-in-time backup from a sharded cluster you must stop all writes to the cluster. On a
running production system, you can only capture an approximation of point-in-time snapshot.

Considerations

Balancing It is essential that you stop the balancer before capturing a backup.

If the balancer is active while you capture backups, the backup artifacts may be incomplete and/or have duplicate data,
as chunks may migrate while recording backups.

5.2. Administration Tutorials 267

MongoDB Documentation, Release 2.6.11

Precision In this procedure, you will stop the cluster balancer and take a backup up of the config database, and
then take backups of each shard in the cluster using a file-system snapshot tool. If you need an exact moment-in-time
snapshot of the system, you will need to stop all application writes before taking the filesystem snapshots; otherwise
the snapshot will only approximate a moment in time.

For approximate point-in-time snapshots, you can improve the quality of the backup while minimizing impact on the
cluster by taking the backup from a secondary member of the replica set that provides each shard.

Consistency If the journal and data files are on the same logical volume, you can use a single point-in-time snapshot
to capture a valid copy of the data.

If the journal and data files are on different file systems, you must use db.fsyncLock() and
db.fsyncUnLock() to capture a valid copy of your data.

Procedure

Step 1: Disable the balancer. Disable the balancer process that equalizes the distribution of data among the shards.
To disable the balancer, use the sh.stopBalancer() method in the mongo shell.

Consider the following example:

use config
sh.stopBalancer()

For more information, see the Disable the Balancer (page 732) procedure.

Step 2: If necessary, lock one secondary member of each replica set in each shard. If your mongod does not
have journaling enabled or your journal and data files are on different volumes, you must lock your mongod before
capturing a back up.

If your mongod has journaling enabled and your journal and data files are on the same volume, you may skip this
step.

If you need to lock the monogd, attempt to lock one secondary member of each replica set in each shard so that your
backups reflect the state of your database at the nearest possible approximation of a single moment in time.

To lock a secondary, connect through the mongo shell to the secondary member’s mongod instance and issue the
db.fsyncLock() method.

Step 3: Back up one of the config servers. Backing up a config server (page 684) backs up the sharded cluster’s
metadata. You need back up only one config server, as they all hold the same data. Do one of the following to back up
one of the config servers:

Create a file-system snapshot of the config server. Do this only if the config server has journaling enabled. Use
the procedure in Backup and Restore with Filesystem Snapshots (page 256). Never use db.fsyncLock() on config
databases.

Create a database dump to backup the config server. Issue mongodump against one of the config mongod
instances. If you are running MongoDB 2.4 or later with the --configsvr option, then include the --oplog
option to ensure that the dump includes a partial oplog containing operations from the duration of the mongodump
operation. For example:

268 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

mongodump --oplog

Step 4: Back up the replica set members of the shards that you locked. You may back up the shards in parallel.
For each shard, create a snapshot. Use the procedure in Backup and Restore with Filesystem Snapshots (page 256).

Step 5: Unlock locked replica set members. If you locked any mongod instances to capture the backup, unlock
them now.

Unlock all locked replica set members of each shard using the db.fsyncUnlock() method in the mongo shell.

Step 6: Enable the balancer. Re-enable the balancer with the sh.setBalancerState() method. Use the
following command sequence when connected to the mongos with the mongo shell:

use config
sh.setBalancerState(true)

Backup a Sharded Cluster with Database Dumps

On this page

• Overview (page 269)
• Prerequisites (page 269)
• Consideration (page 270)
• Procedure (page 270)

Overview This document describes a procedure for taking a backup of all components of a sharded cluster. This
procedure uses mongodump to create dumps of the mongod instance. An alternate procedure uses file system snap-
shots to capture the backup data, and may be more efficient in some situations if your system configuration allows file
system backups. See Backup and Restore Sharded Clusters (page 265) for more information.

See MongoDB Backup Methods (page 192) and Backup and Restore Sharded Clusters (page 265) for complete infor-
mation on backups in MongoDB and backups of sharded clusters in particular.

Prerequisites
Important: To capture a point-in-time backup from a sharded cluster you must stop all writes to the cluster. On a
running production system, you can only capture an approximation of point-in-time snapshot.

To backup all the databases in a cluster via mongodump, you should have the backup (page 410) role. The backup
(page 410) role provides all the needed privileges for backing up all database. The role confers no additional access,
in keeping with the policy of least privilege.

To backup a given database, you must have read access on the database. Several roles provide this access, including
the backup (page 410) role.

To backup the system.profile collection in a database, you must have read access on certain system collec-
tions in the database. Several roles provide this access, including the clusterAdmin (page 407) and dbAdmin
(page 406) roles.

Changed in version 2.6.

5.2. Administration Tutorials 269

MongoDB Documentation, Release 2.6.11

To backup users and user-defined roles (page 321) for a given database, you must have access to the admin database.
MongoDB stores the user data and role definitions for all databases in the admin database.

Specifically, to backup a given database’s users, you must have the find (page 419) action (page 418)
on the admin database’s admin.system.users (page 304) collection. The backup (page 410) and
userAdminAnyDatabase (page 411) roles both provide this privilege.

To backup the user-defined roles on a database, you must have the find (page 419) action on the admin database’s
admin.system.roles (page 304) collection. Both the backup (page 410) and userAdminAnyDatabase
(page 411) roles provide this privilege.

Consideration To create these backups of a sharded cluster, you will stop the cluster balancer and take a backup up
of the config database, and then take backups of each shard in the cluster using mongodump to capture the backup
data. To capture a more exact moment-in-time snapshot of the system, you will need to stop all application writes
before taking the filesystem snapshots; otherwise the snapshot will only approximate a moment in time.

For approximate point-in-time snapshots, taking the backup from a single offline secondary member of the replica set
that provides each shard can improve the quality of the backup while minimizing impact on the cluster.

Procedure

Step 1: Disable the balancer process. Disable the balancer process that equalizes the distribution of data among
the shards. To disable the balancer, use the sh.stopBalancer() method in the mongo shell. For example:

use config
sh.setBalancerState(false)

For more information, see the Disable the Balancer (page 732) procedure.

Warning: If you do not stop the balancer, the backup could have duplicate data or omit data as chunks migrate
while recording backups.

Step 2: Lock replica set members. Lock one member of each replica set in each shard so that your backups reflect
the state of your database at the nearest possible approximation of a single moment in time. Lock these mongod
instances in as short of an interval as possible.

To lock or freeze a sharded cluster, you shut down one member of each replica set. Ensure that the oplog has sufficient
capacity to allow these secondaries to catch up to the state of the primaries after finishing the backup procedure. See
Oplog Size (page 597) for more information.

Step 3: Backup one config server. Run mongodump against a config server mongod instance to back up the clus-
ter’s metadata. The config server mongod instance must be version 2.4 or later and must run with the --configsvr
option. You only need to back up one config server.

Use mongodump with the --oplog option to backup one of the config servers (page 684).

mongodump --oplog

Step 4: Backup replica set members. Back up the replica set members of the shards that shut down using
mongodump and specifying the --dbpath option. You may back up the shards in parallel. Consider the following
invocation:

270 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

mongodump --journal --dbpath /data/db/ --out /data/backup/

You must run mongodump on the same system where the mongod ran. This operation will create a dump of all the
data managed by the mongod instances that used the dbPath /data/db/. mongodump writes the output of this
dump to the /data/backup/ directory.

Step 5: Restart replica set members. Restart all stopped replica set members of each shard as normal and allow
them to catch up with the state of the primary.

Step 6: Re-enable the balancer process. Re-enable the balancer with the sh.setBalancerState() method.

Use the following command sequence when connected to the mongos with the mongo shell:

use config
sh.setBalancerState(true)

Schedule Backup Window for Sharded Clusters

On this page

• Overview (page 271)
• Procedure (page 271)

Overview In a sharded cluster, the balancer process is responsible for distributing sharded data around the cluster,
so that each shard has roughly the same amount of data.

However, when creating backups from a sharded cluster it is important that you disable the balancer while taking
backups to ensure that no chunk migrations affect the content of the backup captured by the backup procedure. Using
the procedure outlined in the section Disable the Balancer (page 732) you can manually stop the balancer process
temporarily. As an alternative you can use this procedure to define a balancing window so that the balancer is always
disabled during your automated backup operation.

Procedure If you have an automated backup schedule, you can disable all balancing operations for a period of time.
For instance, consider the following command:

use config
db.settings.update({ _id : "balancer" }, { $set : { activeWindow : { start : "6:00", stop : "23:00" } } }, true)

This operation configures the balancer to run between 6:00am and 11:00pm, server time. Schedule your backup
operation to run and complete outside of this time. Ensure that the backup can complete outside the window when
the balancer is running and that the balancer can effectively balance the collection among the shards in the window
allotted to each.

Restore a Single Shard

On this page

• Overview (page 272)
• Procedure (page 272)

5.2. Administration Tutorials 271

MongoDB Documentation, Release 2.6.11

Overview Restoring a single shard from backup with other unaffected shards requires a number of special consider-
ations and practices. This document outlines the additional tasks you must perform when restoring a single shard.

Consider the following resources on backups in general as well as backup and restoration of sharded clusters specifi-
cally:

• Backup and Restore Sharded Clusters (page 265)

• Restore a Sharded Cluster (page 272)

• MongoDB Backup Methods (page 192)

Procedure Always restore sharded clusters as a whole. When you restore a single shard, keep in mind that the
balancer process might have moved chunks to or from this shard since the last backup. If that’s the case, you must
manually move those chunks, as described in this procedure.

Step 1: Restore the shard as you would any other mongod instance. See MongoDB Backup Methods (page 192)
for overviews of these procedures.

Step 2: Manage the chunks. For all chunks that migrate away from this shard, you do not need to do anything at
this time. You do not need to delete these documents from the shard because the chunks are automatically filtered out
from queries by mongos. You can remove these documents from the shard, if you like, at your leisure.

For chunks that migrate to this shard after the most recent backup, you must manually recover the chunks using back-
ups of other shards, or some other source. To determine what chunks have moved, view the changelog collection
in the Config Database (page 754).

Restore a Sharded Cluster

On this page

• Overview (page 272)
• Related Documents (page 272)
• Procedures (page 272)

Overview You can restore a sharded cluster either from snapshots (page 256) or from BSON database dumps
(page 269) created by the mongodump tool. This document provides procedures for both:

• Restore a Sharded Cluster with Filesystem Snapshots (page 273)

• Restore a Sharded Cluster with Database Dumps (page 273)

Related Documents For an overview of backups in MongoDB, see MongoDB Backup Methods (page 192). For
complete information on backups and backups of sharded clusters in particular, see Backup and Restore Sharded
Clusters (page 265).

For backup procedures, see:

• Backup a Sharded Cluster with Filesystem Snapshots (page 267)

• Backup a Sharded Cluster with Database Dumps (page 269)

Procedures Use the procedure for the type of backup files to restore.

272 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Restore a Sharded Cluster with Filesystem Snapshots

Step 1: Shut down the entire cluster. Stop all mongos and mongod processes, including all shards and all config
servers.

Connect to each member use the following operation:

use admin
db.shutdownServer()

For version 2.4 or earlier, use db.shutdownServer({force:true}).

Step 2: Restore the data files. One each server, extract the data files to the location where the mongod instance
will access them. Restore the following:

Data files for each server in each shard. Because replica sets provide each production shard, restore all the mem-
bers of the replica set or use the other standard approaches for restoring a replica set from backup. See the Restore a
Snapshot (page 258) and Restore a Database with mongorestore (page 264) sections for details on these procedures.

Data files for each config server.

Step 3: Restart the config servers. Restart each config server (page 684) mongod instance by issuing a command
similar to the following for each, using values appropriate to your configuration:

mongod --configsvr --dbpath /data/configdb --port 27019

Step 4: If shard hostnames have changed, update the config string and config database. If shard hostnames
have changed, start one mongos instance using the updated config string with the new configdb hostnames and
ports.

Then update the shards collection in the Config Database (page 754) to reflect the new hostnames. Then stop the
mongos instance.

Step 5: Restart all the shard mongod instances.

Step 6: Restart all the mongos instances. If shard hostnames have changed, make sure to use the updated config
string.

Step 7: Connect to a mongos to ensure the cluster is operational. Connect to a mongos instance from a mongo
shell and use the db.printShardingStatus() method to ensure that the cluster is operational, as follows:

db.printShardingStatus()
show collections

Restore a Sharded Cluster with Database Dumps

5.2. Administration Tutorials 273

MongoDB Documentation, Release 2.6.11

Step 1: Shut down the entire cluster. Stop all mongos and mongod processes, including all shards and all config
servers.

Connect to each member use the following operation:

use admin
db.shutdownServer()

For version 2.4 or earlier, use db.shutdownServer({force:true}).

Step 2: Restore the data files. One each server, use mongorestore to restore the database dump to the location
where the mongod instance will access the data.

The following example restores a database dump located at /opt/backup/ to the /data/ directory. This requires
that there are no active mongod instances attached to the /data directory.

mongorestore --dbpath /data /opt/backup

Step 3: Restart the config servers. Restart each config server (page 684) mongod instance by issuing a command
similar to the following for each, using values appropriate to your configuration:

mongod --configsvr --dbpath /data/configdb --port 27019

Step 4: If shard hostnames have changed, update the config string and config database. If shard hostnames
have changed, start one mongos instance using the updated config string with the new configdb hostnames and
ports.

Then update the shards collection in the Config Database (page 754) to reflect the new hostnames. Then stop the
mongos instance.

Step 5: Restart all the shard mongod instances.

Step 6: Restart all the mongos instances. If shard hostnames have changed, make sure to use the updated config
string.

Step 7: Connect to a mongos to ensure the cluster is operational. Connect to a mongos instance from a mongo
shell and use the db.printShardingStatus() method to ensure that the cluster is operational, as follows:

db.printShardingStatus()
show collections

Recover Data after an Unexpected Shutdown

On this page

• Process (page 275)
• mongod.lock (page 277)

274 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

If MongoDB does not shutdown cleanly 90 the on-disk representation of the data files will likely reflect an inconsistent
state which could lead to data corruption. 91

To prevent data inconsistency and corruption, always shut down the database cleanly and use the durability journaling.
MongoDB writes data to the journal, by default, every 100 milliseconds, such that MongoDB can always recover to a
consistent state even in the case of an unclean shutdown due to power loss or other system failure.

If you are not running as part of a replica set and do not have journaling enabled, use the following procedure to
recover data that may be in an inconsistent state. If you are running as part of a replica set, you should always restore
from a backup or restart the mongod instance with an empty dbPath and allow MongoDB to perform an initial sync
to restore the data.

See also:

The Administration (page 191) documents, including Replica Set Syncing (page 596), and the documentation on the
--repair repairPath and storage.journal.enabled settings.

Process

Indications When you are aware of a mongod instance running without journaling that stops unexpectedly and
you’re not running with replication, you should always run the repair operation before starting MongoDB again. If
you’re using replication, then restore from a backup and allow replication to perform an initial sync (page 596) to
restore data.

If the mongod.lock file in the data directory specified by dbPath, /data/db by default, is not a zero-byte file,
then mongod will refuse to start, and you will find a message that contains the following line in your MongoDB log
our output:

Unclean shutdown detected.

This indicates that you need to run mongod with the --repair option. If you run repair when the mongodb.lock
file exists in your dbPath, or the optional --repairpath, you will see a message that contains the following line:

old lock file: /data/db/mongod.lock. probably means unclean shutdown

If you see this message, as a last resort you may remove the lockfile and run the repair operation before starting the
database normally, as in the following procedure:

Overview

Warning: Recovering a member of a replica set.
Do not use this procedure to recover a member of a replica set. Instead you should either restore from a backup
(page 192) or perform an initial sync using data from an intact member of the set, as described in Resync a Member
of a Replica Set (page 640).

There are two processes to repair data files that result from an unexpected shutdown:

• Use the --repair option in conjunction with the --repairpath option. mongod will read the existing
data files, and write the existing data to new data files.

You do not need to remove the mongod.lock file before using this procedure.

90 To ensure a clean shut down, use the db.shutdownServer() from the mongo shell, your control script, the mongod --shutdown
option on Linux systems, “Control-C” when running mongod in interactive mode, or kill $(pidof mongod) or kill -2 $(pidof
mongod).

91 You can also use the db.collection.validate() method to test the integrity of a single collection. However, this process is time
consuming, and without journaling you can safely assume that the data is in an invalid state and you should either run the repair operation or resync
from an intact member of the replica set.

5.2. Administration Tutorials 275

MongoDB Documentation, Release 2.6.11

• Use the --repair option. mongod will read the existing data files, write the existing data to new files and
replace the existing, possibly corrupt, files with new files.

You must remove the mongod.lock file before using this procedure.

Note: --repair functionality is also available in the shell with the db.repairDatabase() helper for the
repairDatabase command.

Procedures
Important: Always Run mongod as the same user to avoid changing the permissions of the MongoDB data files.

Repair Data Files and Preserve Original Files To repair your data files using the --repairpath option to
preserve the original data files unmodified.

Repair Data Files without Preserving Original Files To repair your data files without preserving the original files,
do not use the --repairpath option, as in the following procedure:

Warning: After you remove the mongod.lock file you must run the --repair process before using your
database.

Step 1: Start mongod using the option to replace the original files with the repaired files. Start the mongod
instance using the --repair option and the --repairpath option. Issue a command similar to the following:

mongod --dbpath /data/db --repair --repairpath /data/db0

When this completes, the new repaired data files will be in the /data/db0 directory.

Step 2: Start mongod with the new data directory. Start mongod using the following invocation to point the
dbPath at /data/db0:

mongod --dbpath /data/db0

Once you confirm that the data files are operational you may delete or archive the old data files in the /data/db
directory. You may also wish to move the repaired files to the old database location or update the dbPath to indicate
the new location.

Step 1: Remove the stale lock file. For example:

rm /data/db/mongod.lock

Replace /data/db with your dbPath where your MongoDB instance’s data files reside.

Step 2: Start mongod using the option to replace the original files with the repaired files. Start the mongod
instance using the --repair option, which replaces the original data files with the repaired data files. Issue a
command similar to the following:

mongod --dbpath /data/db --repair

When this completes, the repaired data files will replace the original data files in the /data/db directory.

276 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Step 3: Start mongod as usual. Start mongod using the following invocation to point the dbPath at /data/db:

mongod --dbpath /data/db

mongod.lock

In normal operation, you should never remove the mongod.lock file and start mongod. Instead consider the one
of the above methods to recover the database and remove the lock files. In dire situations you can remove the lockfile,
and start the database using the possibly corrupt files, and attempt to recover data from the database; however, it’s
impossible to predict the state of the database in these situations.

If you are not running with journaling, and your database shuts down unexpectedly for any reason, you should always
proceed as if your database is in an inconsistent and likely corrupt state. If at all possible restore from backup
(page 192) or, if running as a replica set, restore by performing an initial sync using data from an intact member of the
set, as described in Resync a Member of a Replica Set (page 640).

5.2.3 MongoDB Scripting

The mongo shell is an interactive JavaScript shell for MongoDB, and is part of all MongoDB distributions92. This
section provides an introduction to the shell, and outlines key functions, operations, and use of the mongo shell. Also
consider FAQ: The mongo Shell (page 775) and the shell method and other relevant reference material.

Note: Most examples in the MongoDB Manual use the mongo shell; however, many drivers provide similar
interfaces to MongoDB.

Server-side JavaScript (page 277) Details MongoDB’s support for executing JavaScript code for server-side opera-
tions.

Data Types in the mongo Shell (page 279) Describes the super-set of JSON available for use in the mongo shell.

Write Scripts for the mongo Shell (page 282) An introduction to the mongo shell for writing scripts to manipulate
data and administer MongoDB.

Getting Started with the mongo Shell (page 284) Introduces the use and operation of the MongoDB shell.

Access the mongo Shell Help Information (page 288) Describes the available methods for accessing online help for
the operation of the mongo interactive shell.

mongo Shell Quick Reference (page 290) A high level reference to the use and operation of the mongo shell.

Server-side JavaScript

On this page

• Overview (page 278)
• Running .js files via a mongo shell Instance on the Server (page 278)
• Concurrency (page 279)
• Disable Server-Side Execution of JavaScript (page 279)

92http://www.mongodb.org/downloads

5.2. Administration Tutorials 277

http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.6.11

Overview

MongoDB provides the following commands, methods, and operator that perform server-side execution of JavaScript
code:

• mapReduce and the corresponding mongo shell method db.collection.mapReduce(). mapReduce
operations map, or associate, values to keys, and for keys with multiple values, reduce the values for each key
to a single object. For more information, see Map-Reduce (page 442).

• eval command and the corresponding mongo shell method db.eval(). eval operations evaluates
JavaScript functions on the database server. You cannot use the eval command and db.eval() method
with sharded collections. For replica sets, you can only run the eval command and db.eval() method
against the primary. For more information, see eval command and db.eval() method reference pages.

• $where operator that evaluates a JavaScript expression or a function in order to query for documents.

You can also specify a JavaScript file to the mongo shell to run on the server. For more information, see Running .js
files via a mongo shell Instance on the Server (page 278)

JavaScript in MongoDB
Although the aforementioned operations use JavaScript, most interactions with MongoDB do not use JavaScript but
use an idiomatic driver in the language of the interacting application.

You can also disable server-side execution of JavaScript. For details, see Disable Server-Side Execution of JavaScript
(page 279).

Running .js files via a mongo shell Instance on the Server

You can specify a JavaScript (.js) file to a mongo shell instance to execute the file on the server. This is a good
technique for performing batch administrative work. When you run mongo shell on the server, connecting via the
localhost interface, the connection is fast with low latency.

The command helpers (page 291) provided in the mongo shell are not available in JavaScript files because they are
not valid JavaScript. The following table maps the most common mongo shell helpers to their JavaScript equivalents.

278 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Shell Helpers JavaScript Equivalents
show dbs, show databases

db.adminCommand('listDatabases')

use <db>
db = db.getSiblingDB('<db>')

show collections
db.getCollectionNames()

show users
db.getUsers()

show roles
db.getRoles({showBuiltinRoles: true})

show log <logname>
db.adminCommand({ 'getLog' : '<logname>' })

show logs
db.adminCommand({ 'getLog' : '*' })

it
cursor = db.collection.find()
if (cursor.hasNext()){

cursor.next();
}

Concurrency

Changed in version 2.4.

The V8 JavaScript engine, which became the default in 2.4, allows multiple JavaScript operations to execute at the
same time. Prior to 2.4, MongoDB operations that required the JavaScript interpreter had to acquire a lock, and a
single mongod could only run a single JavaScript operation at a time.

Refer to the individual method or operator documentation for any concurrency information. See also the concurrency
table (page 779).

Disable Server-Side Execution of JavaScript

You can disable all server-side execution of JavaScript, by passing the --noscripting option on the command
line or setting security.javascriptEnabled in a configuration file.

See also:

Store a JavaScript Function on the Server (page 247)

Data Types in the mongo Shell

On this page

• Types (page 280)
• Check Types in the mongo Shell (page 281)

5.2. Administration Tutorials 279

MongoDB Documentation, Release 2.6.11

MongoDB BSON provides support for additional data types than JSON. Drivers provide native support for these
data types in host languages and the mongo shell also provides several helper classes to support the use of these data
types in the mongo JavaScript shell. See the Extended JSON reference for additional information.

Types

Date The mongo shell provides various methods to return the date, either as a string or as a Date object:

• Date() method which returns the current date as a string.

• new Date() constructor which returns a Date object using the ISODate() wrapper.

• ISODate() constructor which returns a Date object using the ISODate() wrapper.

Internally, Date (page 189) objects are stored as a 64 bit integer representing the number of milliseconds since the
Unix epoch (Jan 1, 1970), which results in a representable date range of about 290 millions years into the past and
future.

Return Date as a String To return the date as a string, use the Date() method, as in the following example:

var myDateString = Date();

To print the value of the variable, type the variable name in the shell, as in the following:

myDateString

The result is the value of myDateString:

Wed Dec 19 2012 01:03:25 GMT-0500 (EST)

To verify the type, use the typeof operator, as in the following:

typeof myDateString

The operation returns string.

Return Date The mongo shell wraps objects of Date type with the ISODate helper; however, the objects remain
of type Date.

The following example uses both the new Date() constructor and the ISODate() constructor to return Date
objects.

var myDate = new Date();
var myDateInitUsingISODateWrapper = ISODate();

You can use the new operator with the ISODate() constructor as well.

To print the value of the variable, type the variable name in the shell, as in the following:

myDate

The result is the Date value of myDate wrapped in the ISODate() helper:

ISODate("2012-12-19T06:01:17.171Z")

To verify the type, use the instanceof operator, as in the following:

myDate instanceof Date
myDateInitUsingISODateWrapper instanceof Date

280 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

The operation returns true for both.

ObjectId The mongo shell provides the ObjectId() wrapper class around the ObjectId data type. To generate a
new ObjectId, use the following operation in the mongo shell:

new ObjectId

See
ObjectId (page 184) for full documentation of ObjectIds in MongoDB.

NumberLong By default, the mongo shell treats all numbers as floating-point values. The mongo shell provides
the NumberLong() wrapper to handle 64-bit integers.

The NumberLong() wrapper accepts the long as a string:

NumberLong("2090845886852")

The following examples use the NumberLong() wrapper to write to the collection:

db.collection.insert({ _id: 10, calc: NumberLong("2090845886852") })
db.collection.update({ _id: 10 },

{ $set: { calc: NumberLong("2555555000000") } })
db.collection.update({ _id: 10 },

{ $inc: { calc: NumberLong(5) } })

Retrieve the document to verify:

db.collection.findOne({ _id: 10 })

In the returned document, the calc field contains a NumberLong object:

{ "_id" : 10, "calc" : NumberLong("2555555000005") }

If you use the $inc to increment the value of a field that contains a NumberLong object by a float, the data type
changes to a floating point value, as in the following example:

1. Use $inc to increment the calc field by 5, which the mongo shell treats as a float:

db.collection.update({ _id: 10 },
{ $inc: { calc: 5 } })

2. Retrieve the updated document:

db.collection.findOne({ _id: 10 })

In the updated document, the calc field contains a floating point value:

{ "_id" : 10, "calc" : 2555555000010 }

NumberInt By default, the mongo shell treats all numbers as floating-point values. The mongo shell provides the
NumberInt() constructor to explicitly specify 32-bit integers.

Check Types in the mongo Shell

To determine the type of fields, the mongo shell provides the instanceof and typeof operators.

5.2. Administration Tutorials 281

MongoDB Documentation, Release 2.6.11

instanceof instanceof returns a boolean to test if a value is an instance of some type.

For example, the following operation tests whether the _id field is an instance of type ObjectId:

mydoc._id instanceof ObjectId

The operation returns true.

typeof typeof returns the type of a field.

For example, the following operation returns the type of the _id field:

typeof mydoc._id

In this case typeof will return the more generic object type rather than ObjectId type.

Write Scripts for the mongo Shell

On this page

• Opening New Connections (page 282)
• Differences Between Interactive and Scripted mongo (page 282)
• Scripting (page 283)

You can write scripts for the mongo shell in JavaScript that manipulate data in MongoDB or perform administrative
operation. For more information about the mongo shell see MongoDB Scripting (page 277), and see the Running .js
files via a mongo shell Instance on the Server (page 278) section for more information about using these mongo script.

This tutorial provides an introduction to writing JavaScript that uses the mongo shell to access MongoDB.

Opening New Connections

From the mongo shell or from a JavaScript file, you can instantiate database connections using the Mongo() con-
structor:

new Mongo()
new Mongo(<host>)
new Mongo(<host:port>)

Consider the following example that instantiates a new connection to the MongoDB instance running on localhost on
the default port and sets the global db variable to myDatabase using the getDB() method:

conn = new Mongo();
db = conn.getDB("myDatabase");

Additionally, you can use the connect() method to connect to the MongoDB instance. The following example
connects to the MongoDB instance that is running on localhost with the non-default port 27020 and set the
global db variable:

db = connect("localhost:27020/myDatabase");

Differences Between Interactive and Scripted mongo

When writing scripts for the mongo shell, consider the following:

282 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

• To set the db global variable, use the getDB() method or the connect() method. You can assign the
database reference to a variable other than db.

• Write operations in the mongo shell use the “safe writes” by default. If performing bulk operations, use the
Bulk() methods. See Write Method Acknowledgements (page 838) for more information.

Changed in version 2.6: Before MongoDB 2.6, call db.getLastError() explicitly to wait for the result of
write operations (page 77).

• You cannot use any shell helper (e.g. use <dbname>, show dbs, etc.) inside the JavaScript file because
they are not valid JavaScript.

The following table maps the most common mongo shell helpers to their JavaScript equivalents.

Shell Helpers JavaScript Equivalents
show dbs, show databases

db.adminCommand('listDatabases')

use <db>
db = db.getSiblingDB('<db>')

show collections
db.getCollectionNames()

show users
db.getUsers()

show roles
db.getRoles({showBuiltinRoles: true})

show log <logname>
db.adminCommand({ 'getLog' : '<logname>' })

show logs
db.adminCommand({ 'getLog' : '*' })

it
cursor = db.collection.find()
if (cursor.hasNext()){

cursor.next();
}

• In interactive mode, mongo prints the results of operations including the content of all cursors. In scripts, either
use the JavaScript print() function or the mongo specific printjson() function which returns formatted
JSON.

Example
To print all items in a result cursor in mongo shell scripts, use the following idiom:

cursor = db.collection.find();
while (cursor.hasNext()) {

printjson(cursor.next());
}

Scripting

From the system prompt, use mongo to evaluate JavaScript.

5.2. Administration Tutorials 283

MongoDB Documentation, Release 2.6.11

--eval option Use the --eval option to mongo to pass the shell a JavaScript fragment, as in the following:

mongo test --eval "printjson(db.getCollectionNames())"

This returns the output of db.getCollectionNames() using the mongo shell connected to the mongod or
mongos instance running on port 27017 on the localhost interface.

Execute a JavaScript file You can specify a .js file to the mongo shell, and mongo will execute the JavaScript
directly. Consider the following example:

mongo localhost:27017/test myjsfile.js

This operation executes the myjsfile.js script in a mongo shell that connects to the test database on the
mongod instance accessible via the localhost interface on port 27017.

Alternately, you can specify the mongodb connection parameters inside of the javascript file using the Mongo()
constructor. See Opening New Connections (page 282) for more information.

You can execute a .js file from within the mongo shell, using the load() function, as in the following:

load("myjstest.js")

This function loads and executes the myjstest.js file.

The load() method accepts relative and absolute paths. If the current working directory of the mongo shell is
/data/db, and the myjstest.js resides in the /data/db/scripts directory, then the following calls within
the mongo shell would be equivalent:

load("scripts/myjstest.js")
load("/data/db/scripts/myjstest.js")

Note: There is no search path for the load() function. If the desired script is not in the current working directory
or the full specified path, mongo will not be able to access the file.

Getting Started with the mongo Shell

On this page

• Start the mongo Shell (page 284)
• Executing Queries (page 285)
• Print (page 286)
• Evaluate a JavaScript File (page 286)
• Use a Custom Prompt (page 286)
• Use an External Editor in the mongo Shell (page 287)
• Exit the Shell (page 288)

This document provides a basic introduction to using the mongo shell. See Install MongoDB (page 5) for instructions
on installing MongoDB for your system.

Start the mongo Shell

To start the mongo shell and connect to your MongoDB instance running on localhost with default port:

1. Go to your <mongodb installation dir>:

284 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

cd <mongodb installation dir>

2. Type ./bin/mongo to start mongo:

./bin/mongo

If you have added the <mongodb installation dir>/bin to the PATH environment variable, you can
just type mongo instead of ./bin/mongo.

3. To display the database you are using, type db:

db

The operation should return test, which is the default database. To switch databases, issue the use <db>
helper, as in the following example:

use <database>

To list the available databases, use the helper show dbs. See also How can I access different databases
temporarily? (page 775) to access a different database from the current database without switching your current
database context (i.e. db..)

To start the mongo shell with other options, see examples of starting up mongo and mongo reference which
provides details on the available options.

Note: When starting, mongo checks the user’s HOME directory for a JavaScript file named .mongorc.js. If found,
mongo interprets the content of .mongorc.js before displaying the prompt for the first time. If you use the shell to
evaluate a JavaScript file or expression, either by using the --eval option on the command line or by specifying a .js
file to mongo, mongo will read the .mongorc.js file after the JavaScript has finished processing. You can prevent
.mongorc.js from being loaded by using the --norc option.

Executing Queries

From the mongo shell, you can use the shell methods to run queries, as in the following example:

db.<collection>.find()

• The db refers to the current database.

• The <collection> is the name of the collection to query. See Collection Help (page 289) to list the available
collections.

If the mongo shell does not accept the name of the collection, for instance if the name contains a space, hyphen,
or starts with a number, you can use an alternate syntax to refer to the collection, as in the following:

db["3test"].find()

db.getCollection("3test").find()

• The find() method is the JavaScript method to retrieve documents from <collection>. The find()
method returns a cursor to the results; however, in the mongo shell, if the returned cursor is not assigned to a
variable using the var keyword, then the cursor is automatically iterated up to 20 times to print up to the first
20 documents that match the query. The mongo shell will prompt Type it to iterate another 20 times.

You can set the DBQuery.shellBatchSize attribute to change the number of iteration from the default
value 20, as in the following example which sets it to 10:

5.2. Administration Tutorials 285

MongoDB Documentation, Release 2.6.11

DBQuery.shellBatchSize = 10;

For more information and examples on cursor handling in the mongo shell, see Cursors (page 68).

See also Cursor Help (page 289) for list of cursor help in the mongo shell.

For more documentation of basic MongoDB operations in the mongo shell, see:

• Getting Started with MongoDB (page 52)

• mongo Shell Quick Reference (page 290)

• Read Operations (page 64)

• Write Operations (page 77)

• Indexing Tutorials (page 519)

Print

The mongo shell automatically prints the results of the find() method if the returned cursor is not assigned to
a variable using the var keyword. To format the result, you can add the .pretty() to the operation, as in the
following:

db.<collection>.find().pretty()

In addition, you can use the following explicit print methods in the mongo shell:

• print() to print without formatting

• print(tojson(<obj>)) to print with JSON formatting and equivalent to printjson()

• printjson() to print with JSON formatting and equivalent to print(tojson(<obj>))

Evaluate a JavaScript File

You can execute a .js file from within the mongo shell, using the load() function, as in the following:

load("myjstest.js")

This function loads and executes the myjstest.js file.

The load() method accepts relative and absolute paths. If the current working directory of the mongo shell is
/data/db, and the myjstest.js resides in the /data/db/scripts directory, then the following calls within
the mongo shell would be equivalent:

load("scripts/myjstest.js")
load("/data/db/scripts/myjstest.js")

Note: There is no search path for the load() function. If the desired script is not in the current working directory
or the full specified path, mongo will not be able to access the file.

Use a Custom Prompt

You may modify the content of the prompt by creating the variable prompt in the shell. The prompt variable can
hold strings as well as any arbitrary JavaScript. If prompt holds a function that returns a string, mongo can display
dynamic information in each prompt. Consider the following examples:

286 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Example
Create a prompt with the number of operations issued in the current session, define the following variables:

cmdCount = 1;
prompt = function() {

return (cmdCount++) + "> ";
}

The prompt would then resemble the following:

1> db.collection.find()
2> show collections
3>

Example
To create a mongo shell prompt in the form of <database>@<hostname>$ define the following variables:

host = db.serverStatus().host;

prompt = function() {
return db+"@"+host+"$ ";

}

The prompt would then resemble the following:

<database>@<hostname>$ use records
switched to db records
records@<hostname>$

Example
To create a mongo shell prompt that contains the system up time and the number of documents in the current database,
define the following prompt variable:

prompt = function() {
return "Uptime:"+db.serverStatus().uptime+" Documents:"+db.stats().objects+" > ";

}

The prompt would then resemble the following:

Uptime:5897 Documents:6 > db.people.save({name : "James"});
Uptime:5948 Documents:7 >

Use an External Editor in the mongo Shell

New in version 2.2.

In the mongo shell you can use the edit operation to edit a function or variable in an external editor. The edit
operation uses the value of your environments EDITOR variable.

At your system prompt you can define the EDITOR variable and start mongo with the following two operations:

export EDITOR=vim
mongo

5.2. Administration Tutorials 287

MongoDB Documentation, Release 2.6.11

Then, consider the following example shell session:

MongoDB shell version: 2.2.0
> function f() {}
> edit f
> f
function f() {

print("this really works");
}
> f()
this really works
> o = {}
{ }
> edit o
> o
{ "soDoes" : "this" }
>

Note: As mongo shell interprets code edited in an external editor, it may modify code in functions, depending on
the JavaScript compiler. For mongo may convert 1+1 to 2 or remove comments. The actual changes affect only the
appearance of the code and will vary based on the version of JavaScript used but will not affect the semantics of the
code.

Exit the Shell

To exit the shell, type quit() or use the <Ctrl-c> shortcut.

Access the mongo Shell Help Information

On this page

• Command Line Help (page 288)
• Shell Help (page 289)
• Database Help (page 289)
• Collection Help (page 289)
• Cursor Help (page 289)
• Type Help (page 290)

In addition to the documentation in the MongoDB Manual, the mongo shell provides some additional information
in its “online” help system. This document provides an overview of accessing this help information.

See also:

• mongo Manual Page

• MongoDB Scripting (page 277), and

• mongo Shell Quick Reference (page 290).

Command Line Help

To see the list of options and help for starting the mongo shell, use the --help option from the command line:

288 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

mongo --help

Shell Help

To see the list of help, in the mongo shell, type help:

help

Database Help

• To see the list of databases on the server, use the show dbs command:

show dbs

New in version 2.4: show databases is now an alias for show dbs

• To see the list of help for methods you can use on the db object, call the db.help() method:

db.help()

• To see the implementation of a method in the shell, type the db.<method name> without the parenthesis
(()), as in the following example which will return the implementation of the method db.addUser():

db.addUser

Collection Help

• To see the list of collections in the current database, use the show collections command:

show collections

• To see the help for methods available on the collection objects (e.g. db.<collection>), use the
db.<collection>.help() method:

db.collection.help()

<collection> can be the name of a collection that exists, although you may specify a collection that doesn’t
exist.

• To see the collection method implementation, type the db.<collection>.<method> name without the
parenthesis (()), as in the following example which will return the implementation of the save() method:

db.collection.save

Cursor Help

When you perform read operations (page 65) with the find() method in the mongo shell, you can use various
cursor methods to modify the find() behavior and various JavaScript methods to handle the cursor returned from
the find() method.

• To list the available modifier and cursor handling methods, use the db.collection.find().help()
command:

5.2. Administration Tutorials 289

MongoDB Documentation, Release 2.6.11

db.collection.find().help()

<collection> can be the name of a collection that exists, although you may specify a collection that doesn’t
exist.

• To see the implementation of the cursor method, type the db.<collection>.find().<method> name
without the parenthesis (()), as in the following example which will return the implementation of the
toArray() method:

db.collection.find().toArray

Some useful methods for handling cursors are:

• hasNext() which checks whether the cursor has more documents to return.

• next() which returns the next document and advances the cursor position forward by one.

• forEach(<function>) which iterates the whole cursor and applies the <function> to each document
returned by the cursor. The <function> expects a single argument which corresponds to the document from
each iteration.

For examples on iterating a cursor and retrieving the documents from the cursor, see cursor handling (page 68). See
also js-query-cursor-methods for all available cursor methods.

Type Help

To get a list of the wrapper classes available in the mongo shell, such as BinData(), type help misc in the
mongo shell:

help misc

mongo Shell Quick Reference

On this page

• mongo Shell Command History (page 290)
• Command Line Options (page 291)
• Command Helpers (page 291)
• Basic Shell JavaScript Operations (page 291)
• Keyboard Shortcuts (page 292)
• Queries (page 293)
• Error Checking Methods (page 295)
• Administrative Command Helpers (page 295)
• Opening Additional Connections (page 295)
• Miscellaneous (page 296)
• Additional Resources (page 296)

mongo Shell Command History

You can retrieve previous commands issued in the mongo shell with the up and down arrow keys. Command history
is stored in ~/.dbshell file. See .dbshell for more information.

290 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Command Line Options

The mongo executable can be started with numerous options. See mongo executable page for details on all
available options.

The following table displays some common options for mongo:

Op-
tion

Description

--help Show command line options
--nodb Start mongo shell without connecting to a database.

To connect later, see Opening New Connections (page 282).
--shellUsed in conjunction with a JavaScript file (i.e. <file.js>) to continue in the mongo shell after running

the JavaScript file.
See JavaScript file (page 284) for an example.

Command Helpers

The mongo shell provides various help. The following table displays some common help methods and commands:

Help Methods and
Commands

Description

help Show help.
db.help() Show help for database methods.
db.<collection>.help()Show help on collection methods. The <collection> can be the name of an existing

collection or a non-existing collection.
show dbs Print a list of all databases on the server.
use <db> Switch current database to <db>. The mongo shell variable db is set to the current

database.
show
collections

Print a list of all collections for current database

show users Print a list of users for current database.
show roles Print a list of all roles, both user-defined and built-in, for the current database.
show profile Print the five most recent operations that took 1 millisecond or more. See documentation

on the database profiler (page 239) for more information.
show databases New in version 2.4: Print a list of all available databases.
load() Execute a JavaScript file. See Getting Started with the mongo Shell (page 284) for more

information.

Basic Shell JavaScript Operations

The mongo shell provides a JavaScript API for database operations.

In the mongo shell, db is the variable that references the current database. The variable is automatically set to the
default database test or is set when you use the use <db> to switch current database.

The following table displays some common JavaScript operations:

5.2. Administration Tutorials 291

MongoDB Documentation, Release 2.6.11

JavaScript Database Operations Description
db.auth() If running in secure mode, authenticate the user.
coll = db.<collection> Set a specific collection in the current database to a vari-

able coll, as in the following example:
coll = db.myCollection;
You can perform operations on the myCollection
using the variable, as in the following example:
coll.find();

find() Find all documents in the collection and returns a cursor.
See the db.collection.find() and Query Docu-
ments (page 100) for more information and examples.
See Cursors (page 68) for additional information on cur-
sor handling in the mongo shell.

insert() Insert a new document into the collection.
update() Update an existing document in the collection.

See Write Operations (page 77) for more information.
save() Insert either a new document or update an existing doc-

ument in the collection.
See Write Operations (page 77) for more information.

remove() Delete documents from the collection.
See Write Operations (page 77) for more information.

drop() Drops or removes completely the collection.
ensureIndex() Create a new index on the collection if the index does

not exist; otherwise, the operation has no effect.
db.getSiblingDB() Return a reference to another database using this same

connection without explicitly switching the current
database. This allows for cross database queries. See
How can I access different databases temporarily?
(page 775) for more information.

For more information on performing operations in the shell, see:

• MongoDB CRUD Concepts (page 64)

• Read Operations (page 64)

• Write Operations (page 77)

• js-administrative-methods

Keyboard Shortcuts

Changed in version 2.2.

The mongo shell provides most keyboard shortcuts similar to those found in the bash shell or in Emacs. For some
functions mongo provides multiple key bindings, to accommodate several familiar paradigms.

The following table enumerates the keystrokes supported by the mongo shell:

Keystroke Function
Up-arrow previous-history
Down-arrow next-history
Home beginning-of-line
End end-of-line
Tab autocomplete

Continued on next page

292 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

Table 5.1 – continued from previous page
Keystroke Function
Left-arrow backward-character
Right-arrow forward-character
Ctrl-left-arrow backward-word
Ctrl-right-arrow forward-word
Meta-left-arrow backward-word
Meta-right-arrow forward-word
Ctrl-A beginning-of-line
Ctrl-B backward-char
Ctrl-C exit-shell
Ctrl-D delete-char (or exit shell)
Ctrl-E end-of-line
Ctrl-F forward-char
Ctrl-G abort
Ctrl-J accept-line
Ctrl-K kill-line
Ctrl-L clear-screen
Ctrl-M accept-line
Ctrl-N next-history
Ctrl-P previous-history
Ctrl-R reverse-search-history
Ctrl-S forward-search-history
Ctrl-T transpose-chars
Ctrl-U unix-line-discard
Ctrl-W unix-word-rubout
Ctrl-Y yank
Ctrl-Z Suspend (job control works in linux)
Ctrl-H (i.e. Backspace) backward-delete-char
Ctrl-I (i.e. Tab) complete
Meta-B backward-word
Meta-C capitalize-word
Meta-D kill-word
Meta-F forward-word
Meta-L downcase-word
Meta-U upcase-word
Meta-Y yank-pop
Meta-[Backspace] backward-kill-word
Meta-< beginning-of-history
Meta-> end-of-history

Queries

In the mongo shell, perform read operations using the find() and findOne() methods.

The find() method returns a cursor object which the mongo shell iterates to print documents on screen. By default,
mongo prints the first 20. The mongo shell will prompt the user to “Type it” to continue iterating the next 20
results.

The following table provides some common read operations in the mongo shell:

5.2. Administration Tutorials 293

MongoDB Documentation, Release 2.6.11

Read Operations Description
db.collection.find(<query>) Find the documents matching the <query> criteria in

the collection. If the <query> criteria is not specified
or is empty (i.e {}), the read operation selects all doc-
uments in the collection.
The following example selects the documents in the
users collection with the name field equal to "Joe":
coll = db.users;
coll.find({ name: "Joe" });
For more information on specifying the <query> cri-
teria, see Query Documents (page 100).

db.collection.find(<query>,
<projection>)

Find documents matching the <query> criteria and re-
turn just specific fields in the <projection>.
The following example selects all documents from the
collection but returns only the name field and the _id
field. The _id is always returned unless explicitly spec-
ified to not return.
coll = db.users;
coll.find({ },

{ name: true }
);

For more information on specifying the
<projection>, see Limit Fields to Return from
a Query (page 112).

db.collection.find().sort(<sort
order>)

Return results in the specified <sort order>.
The following example selects all documents from the
collection and returns the results sorted by the name
field in ascending order (1). Use -1 for descending or-
der:
coll = db.users;
coll.find().sort({ name: 1 });

db.collection.find(<query>).sort(
<sort order>)

Return the documents matching the <query> criteria
in the specified <sort order>.

db.collection.find(...).limit(<n>
)

Limit result to <n> rows. Highly recommended if you
need only a certain number of rows for best perfor-
mance.

db.collection.find(...).skip(<n>
)

Skip <n> results.

count() Returns total number of documents in the collection.
db.collection.find(<query>).count() Returns the total number of documents that match the

query.
The count() ignores limit() and skip(). For
example, if 100 records match but the limit is 10,
count() will return 100. This will be faster than it-
erating yourself, but still take time.

db.collection.findOne(<query>) Find and return a single document. Returns null if not
found.

The following example selects a single doc-
ument in the users collection with the
name field matches to "Joe":

coll = db.users;
coll.findOne({ name: "Joe" });
Internally, the findOne() method is the find()
method with a limit(1).

294 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

See Query Documents (page 100) and Read Operations (page 64) documentation for more information and examples.
See http://docs.mongodb.org/manual/reference/operator/query to specify other query opera-
tors.

Error Checking Methods

Changed in version 2.6.

The mongo shell write methods now integrates the Write Concern (page 82) directly into the method execution rather
than with a separate db.getLastError() method. As such, the write methods now return a WriteResult()
object that contains the results of the operation, including any write errors and write concern errors.

Previous versions used db.getLastError() and db.getLastErrorObj() methods to return error informa-
tion.

Administrative Command Helpers

The following table lists some common methods to support database administration:

JavaScript Database
Administration Methods

Description

db.cloneDatabase(<host>)Clone the current database from the <host> specified. The <host> database
instance must be in noauth mode.

db.copyDatabase(<from>,
<to>, <host>)

Copy the <from> database from the <host> to the <to> database on the
current server.
The <host> database instance must be in noauth mode.

db.fromColl.renameCollection(<toColl>)Rename collection from fromColl to <toColl>.
db.repairDatabase() Repair and compact the current database. This operation can be very slow on

large databases.
db.addUser(<user>,
<pwd>)

Add user to current database.

db.getCollectionNames()Get the list of all collections in the current database.
db.dropDatabase() Drops the current database.

See also administrative database methods for a full list of methods.

Opening Additional Connections

You can create new connections within the mongo shell.

The following table displays the methods to create the connections:

JavaScript Connection Create Methods Description

db = connect("<host><:port>/<dbname>")
Open a new database connection.

conn = new Mongo()
db = conn.getDB("dbname")

Open a connection to a new server using new
Mongo().
Use getDB() method of the connection to select a
database.

See also Opening New Connections (page 282) for more information on the opening new connections from the mongo
shell.

5.2. Administration Tutorials 295

MongoDB Documentation, Release 2.6.11

Miscellaneous

The following table displays some miscellaneous methods:

Method Description
Object.bsonsize(<document>) Prints the BSON size of a <document> in bytes

See the MongoDB JavaScript API Documentation93 for a full list of JavaScript methods .

Additional Resources

Consider the following reference material that addresses the mongo shell and its interface:

• mongo

• js-administrative-methods

• database-commands

• Aggregation Reference (page 470)

Additionally, the MongoDB source code repository includes a jstests directory94 which contains numerous mongo
shell scripts.

5.2.4 MongoDB Tutorials

This page lists the tutorials available as part of the MongoDB Manual. In addition to these documents, you can refer
to the introductory MongoDB Tutorial (page 52). If there is a process or pattern that you would like to see included
here, please open a Jira Case95.

Getting Started

• Install MongoDB on Linux Systems (page 16)

• Install MongoDB on Red Hat Enterprise or CentOS Linux (page 6)

• Install MongoDB on Debian (page 13)

• Install MongoDB on Ubuntu (page 10)

• Install MongoDB on OS X (page 19)

• Install MongoDB on Windows (page 21)

• Getting Started with MongoDB (page 52)

• Generate Test Data (page 57)

Administration

Replica Sets

• Deploy a Replica Set (page 607)

93http://api.mongodb.org/js/index.html
94https://github.com/mongodb/mongo/tree/master/jstests/
95https://jira.mongodb.org/browse/DOCS

296 Chapter 5. Administration

http://api.mongodb.org/js/index.html
https://github.com/mongodb/mongo/tree/master/jstests/
https://jira.mongodb.org/browse/DOCS

MongoDB Documentation, Release 2.6.11

• Deploy Replica Set and Configure Authentication and Authorization (page 348)

• Convert a Standalone to a Replica Set (page 619)

• Add Members to a Replica Set (page 620)

• Remove Members from Replica Set (page 622)

• Replace a Replica Set Member (page 624)

• Adjust Priority for Replica Set Member (page 625)

• Resync a Member of a Replica Set (page 640)

• Deploy a Geographically Redundant Replica Set (page 612)

• Change the Size of the Oplog (page 634)

• Force a Member to Become Primary (page 638)

• Change Hostnames in a Replica Set (page 649)

• Add an Arbiter to Replica Set (page 618)

• Convert a Secondary to an Arbiter (page 632)

• Configure a Secondary’s Sync Target (page 652)

• Configure a Delayed Replica Set Member (page 629)

• Configure a Hidden Replica Set Member (page 628)

• Configure Non-Voting Replica Set Member (page 631)

• Prevent Secondary from Becoming Primary (page 626)

• Configure Replica Set Tag Sets (page 641)

• Manage Chained Replication (page 647)

• Reconfigure a Replica Set with Unavailable Members (page 645)

• Recover Data after an Unexpected Shutdown (page 274)

• Troubleshoot Replica Sets (page 654)

Sharding

• Deploy a Sharded Cluster (page 705)

• Convert a Replica Set to a Replicated Sharded Cluster (page 714)

• Add Shards to a Cluster (page 712)

• Remove Shards from an Existing Sharded Cluster (page 734)

• Deploy Three Config Servers for Production Deployments (page 713)

• Migrate Config Servers with the Same Hostname (page 722)

• Migrate Config Servers with Different Hostnames (page 723)

• Replace Disabled Config Server (page 724)

• Migrate a Sharded Cluster to Different Hardware (page 725)

• Backup Cluster Metadata (page 728)

• Backup a Small Sharded Cluster with mongodump (page 266)

5.2. Administration Tutorials 297

MongoDB Documentation, Release 2.6.11

• Backup a Sharded Cluster with Filesystem Snapshots (page 267)

• Backup a Sharded Cluster with Database Dumps (page 269)

• Restore a Single Shard (page 271)

• Restore a Sharded Cluster (page 272)

• Schedule Backup Window for Sharded Clusters (page 271)

• Manage Shard Tags (page 747)

Basic Operations

• Use Database Commands (page 234)

• Recover Data after an Unexpected Shutdown (page 274)

• Expire Data from Collections by Setting TTL (page 222)

• Analyze Performance of Database Operations (page 239)

• Rotate Log Files (page 243)

• Build Old Style Indexes (page 527)

• Manage mongod Processes (page 236)

• Back Up and Restore with MongoDB Tools (page 261)

• Backup and Restore with Filesystem Snapshots (page 256)

Security

• Configure Linux iptables Firewall for MongoDB (page 331)

• Configure Windows netsh Firewall for MongoDB (page 334)

• Enable Client Access Control (page 353)

• Create a User Administrator (page 381)

• Add a User to a Database (page 383)

• Create a Role (page 386)

• Modify a User’s Access (page 391)

• View Roles (page 393)

• Generate a Key File (page 376)

• Configure MongoDB with Kerberos Authentication on Linux (page 369)

• Create a Vulnerability Report (page 402)

Development Patterns

• Perform Two Phase Commits (page 120)

• Create an Auto-Incrementing Sequence Field (page 130)

• Enforce Unique Keys for Sharded Collections (page 749)

298 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

• Aggregation Examples (page 453)

• Model Data to Support Keyword Search (page 172)

• Limit Number of Elements in an Array after an Update (page 114)

• Perform Incremental Map-Reduce (page 464)

• Troubleshoot the Map Function (page 466)

• Troubleshoot the Reduce Function (page 467)

• Store a JavaScript Function on the Server (page 247)

Text Search Patterns

• Create a text Index (page 543)

• Specify a Language for Text Index (page 544)

• Specify Name for text Index (page 546)

• Control Search Results with Weights (page 547)

• Limit the Number of Entries Scanned (page 548)

Data Modeling Patterns

• Model One-to-One Relationships with Embedded Documents (page 159)

• Model One-to-Many Relationships with Embedded Documents (page 160)

• Model One-to-Many Relationships with Document References (page 161)

• Model Data for Atomic Operations (page 171)

• Model Tree Structures with Parent References (page 164)

• Model Tree Structures with Child References (page 165)

• Model Tree Structures with Materialized Paths (page 168)

• Model Tree Structures with Nested Sets (page 170)

See also:

The MongoDB Manual contains administrative documentation and tutorials though out several sections. See Replica
Set Tutorials (page 606) and Sharded Cluster Tutorials (page 704) for additional tutorials and information.

5.3 Administration Reference

UNIX ulimit Settings (page 300) Describes user resources limits (i.e. ulimit) and introduces the considerations
and optimal configurations for systems that run MongoDB deployments.

System Collections (page 304) Introduces the internal collections that MongoDB uses to track per-database metadata,
including indexes, collections, and authentication credentials.

Database Profiler Output (page 305) Describes the data collected by MongoDB’s operation profiler, which intro-
spects operations and reports data for analysis on performance and behavior.

Journaling Mechanics (page 309) Describes the internal operation of MongoDB’s journaling facility and outlines
how the journal allows MongoDB to provide provides durability and crash resiliency.

5.3. Administration Reference 299

MongoDB Documentation, Release 2.6.11

Exit Codes and Statuses (page 311) Lists the unique codes returned by mongos and mongod processes upon exit.

5.3.1 UNIX ulimit Settings

On this page

• Resource Utilization (page 300)
• Review and Set Resource Limits (page 301)

Most UNIX-like operating systems, including Linux and OS X, provide ways to limit and control the usage of system
resources such as threads, files, and network connections on a per-process and per-user basis. These “ulimits” prevent
single users from using too many system resources. Sometimes, these limits have low default values that can cause a
number of issues in the course of normal MongoDB operation.

Note: Red Hat Enterprise Linux and CentOS 6 place a max process limitation of 1024 which overrides ulimit set-
tings. Create a file named /etc/security/limits.d/99-mongodb-nproc.conf with new soft nproc
and hard nproc values to increase the process limit. See /etc/security/limits.d/90-nproc.conf file
as an example.

Resource Utilization

mongod and mongos each use threads and file descriptors to track connections and manage internal operations. This
section outlines the general resource utilization patterns for MongoDB. Use these figures in combination with the
actual information about your deployment and its use to determine ideal ulimit settings.

Generally, all mongod and mongos instances:

• track each incoming connection with a file descriptor and a thread.

• track each internal thread or pthread as a system process.

mongod

• 1 file descriptor for each data file in use by the mongod instance.

• 1 file descriptor for each journal file used by the mongod instance when storage.journal.enabled is
true.

• In replica sets, each mongod maintains a connection to all other members of the set.

mongod uses background threads for a number of internal processes, including TTL collections (page 222), replica-
tion, and replica set health checks, which may require a small number of additional resources.

mongos

In addition to the threads and file descriptors for client connections, mongos must maintain connects to all config
servers and all shards, which includes all members of all replica sets.

For mongos, consider the following behaviors:

• mongos instances maintain a connection pool to each shard so that the mongos can reuse connections and
quickly fulfill requests without needing to create new connections.

300 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

• You can limit the number of incoming connections using the maxIncomingConnections run-time option.
By restricting the number of incoming connections you can prevent a cascade effect where the mongos creates
too many connections on the mongod instances.

Note: Changed in version 2.6: MongoDB removed the upward limit on the maxIncomingConnections
setting.

Review and Set Resource Limits

ulimit

You can use the ulimit command at the system prompt to check system limits, as in the following example:

$ ulimit -a
-t: cpu time (seconds) unlimited
-f: file size (blocks) unlimited
-d: data seg size (kbytes) unlimited
-s: stack size (kbytes) 8192
-c: core file size (blocks) 0
-m: resident set size (kbytes) unlimited
-u: processes 192276
-n: file descriptors 21000
-l: locked-in-memory size (kb) 40000
-v: address space (kb) unlimited
-x: file locks unlimited
-i: pending signals 192276
-q: bytes in POSIX msg queues 819200
-e: max nice 30
-r: max rt priority 65
-N 15: unlimited

ulimit refers to the per-user limitations for various resources. Therefore, if your mongod instance executes as
a user that is also running multiple processes, or multiple mongod processes, you might see contention for these
resources. Also, be aware that the processes value (i.e. -u) refers to the combined number of distinct processes
and sub-process threads.

You can change ulimit settings by issuing a command in the following form:

ulimit -n <value>

There are both “hard” and the “soft” ulimits that affect MongoDB’s performance. The “hard” ulimit refers to
the maximum number of processes that a user can have active at any time. This is the ceiling: no non-root process
can increase the “hard” ulimit. In contrast, the “soft” ulimit is the limit that is actually enforced for a session or
process, but any process can increase it up to “hard” ulimit maximum.

A low “soft” ulimit can cause can’t create new thread, closing connection errors if the number
of connections grows too high. For this reason, it is extremely important to set both ulimit values to the recom-
mended values.

ulimit will modify both “hard” and “soft” values unless the -H or -S modifiers are specified when modifying limit
values.

For many distributions of Linux you can change values by substituting the -n option for any possible value in the
output of ulimit -a. On OS X, use the launchctl limit command. See your operating system documentation
for the precise procedure for changing system limits on running systems.

After changing the ulimit settings, you must restart the process to take advantage of the modified settings. You can
use the /proc file system to see the current limitations on a running process.

5.3. Administration Reference 301

MongoDB Documentation, Release 2.6.11

Depending on your system’s configuration, and default settings, any change to system limits made using ulimit
may revert following system a system restart. Check your distribution and operating system documentation for more
information.

Note: SUSE Linux Enterprise Server 11, and potentially other versions of SLES and other SUSE distributions, ship
with virtual memory address space limited to 8GB by default. This must be adjusted in order to prevent virtual memory
allocation failures as the database grows.

The SLES packages for MongoDB adjust these limits in the default scripts, but you will need to make this change
manually if you are using custom scripts and/or the tarball release rather than the SLES packages.

Recommended ulimit Settings

Every deployment may have unique requirements and settings; however, the following thresholds and settings are
particularly important for mongod and mongos deployments:

• -f (file size): unlimited

• -t (cpu time): unlimited

• -v (virtual memory): unlimited 96

• -n (open files): 64000

• -m (memory size): unlimited 1 97

• -u (processes/threads): 64000

Always remember to restart your mongod and mongos instances after changing the ulimit settings to ensure that
the changes take effect.

Linux distributions using Upstart

For Linux distributions that use Upstart, you can specify limits within service scripts if you start mongod and/or
mongos instances as Upstart services. You can do this by using limit stanzas98.

Specify the Recommended ulimit Settings (page 302), as in the following example:

limit fsize unlimited unlimited # (file size)
limit cpu unlimited unlimited # (cpu time)
limit as unlimited unlimited # (virtual memory size)
limit nofile 64000 64000 # (open files)
limit nproc 64000 64000 # (processes/threads)

Each limit stanza sets the “soft” limit to the first value specified and the “hard” limit to the second.

After changing limit stanzas, ensure that the changes take effect by restarting the application services, using the
following form:

restart <service name>

96 If you limit virtual or resident memory size on a system running MongoDB the operating system will refuse to honor additional allocation
requests.

97 The -m parameter to ulimit has no effect on Linux systems with kernel versions more recent than 2.4.30. You may omit -m if you wish.
98http://upstart.ubuntu.com/wiki/Stanzas#limit

302 Chapter 5. Administration

http://upstart.ubuntu.com/wiki/Stanzas#limit

MongoDB Documentation, Release 2.6.11

Linux distributions using systemd

For Linux distributions that use systemd, you can specify limits within the [Service] sections of service scripts
if you start mongod and/or mongos instances as systemd services. You can do this by using resource limit direc-
tives99.

Specify the Recommended ulimit Settings (page 302), as in the following example:

[Service]
Other directives omitted
(file size)
LimitFSIZE=infinity
(cpu time)
LimitCPU=infinity
(virtual memory size)
LimitAS=infinity
(open files)
LimitNOFILE=64000
(processes/threads)
LimitNPROC=64000

Each systemd limit directive sets both the “hard” and “soft” limits to the value specified.

After changing limit stanzas, ensure that the changes take effect by restarting the application services, using the
following form:

systemctl restart <service name>

/proc File System

Note: This section applies only to Linux operating systems.

The /proc file-system stores the per-process limits in the file system object located at /proc/<pid>/limits,
where <pid> is the process’s PID or process identifier. You can use the following bash function to return the content
of the limits object for a process or processes with a given name:

return-limits(){

for process in $@; do
process_pids=`ps -C $process -o pid --no-headers | cut -d " " -f 2`

if [-z $@]; then
echo "[no $process running]"

else
for pid in $process_pids; do

echo "[$process #$pid -- limits]"
cat /proc/$pid/limits

done
fi

done

}

You can copy and paste this function into a current shell session or load it as part of a script. Call the function with
one the following invocations:

99http://www.freedesktop.org/software/systemd/man/systemd.exec.html#LimitCPU=

5.3. Administration Reference 303

http://www.freedesktop.org/software/systemd/man/systemd.exec.html#LimitCPU=
http://www.freedesktop.org/software/systemd/man/systemd.exec.html#LimitCPU=

MongoDB Documentation, Release 2.6.11

return-limits mongod
return-limits mongos
return-limits mongod mongos

5.3.2 System Collections

On this page

• Synopsis (page 304)
• Collections (page 304)

Synopsis

MongoDB stores system information in collections that use the <database>.system.* namespace, which Mon-
goDB reserves for internal use. Do not create collections that begin with system.

MongoDB also stores some additional instance-local metadata in the local database (page 664), specifically for repli-
cation purposes.

Collections

System collections include these collections stored in the admin database:

admin.system.roles
New in version 2.6.

The admin.system.roles (page 304) collection stores custom roles that administrators create and assign
to users to provide access to specific resources.

admin.system.users
Changed in version 2.6.

The admin.system.users (page 304) collection stores the user’s authentication credentials as well as any
roles assigned to the user. Users may define authorization roles in the admin.system.roles (page 304)
collection.

admin.system.version
New in version 2.6.

Stores the schema version of the user credential documents.

System collections also include these collections stored directly in each database:

<database>.system.namespaces
The <database>.system.namespaces (page 304) collection contains information about all of the
database’s collections. Additional namespace metadata exists in the database.ns files and is opaque to
database users.

<database>.system.indexes
The <database>.system.indexes (page 304) collection lists all the indexes in the database. Add and
remove data from this collection via the ensureIndex() and dropIndex()

<database>.system.profile
The <database>.system.profile (page 304) collection stores database profiling information. For in-
formation on profiling, see Database Profiling (page 230).

304 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

<database>.system.js
The <database>.system.js (page 304) collection holds special JavaScript code for use in server side
JavaScript (page 277). See Store a JavaScript Function on the Server (page 247) for more information.

5.3.3 Database Profiler Output

On this page

• Example system.profile Document (page 305)
• Output Reference (page 306)

The database profiler captures data information about read and write operations, cursor operations, and database com-
mands. To configure the database profile and set the thresholds for capturing profile data, see the Analyze Performance
of Database Operations (page 239) section.

The database profiler writes data in the system.profile (page 304) collection, which is a capped collection. To
view the profiler’s output, use normal MongoDB queries on the system.profile (page 304) collection.

Note: Because the database profiler writes data to the system.profile (page 304) collection in a database, the
profiler will profile some write activity, even for databases that are otherwise read-only.

Example system.profile Document

The documents in the system.profile (page 304) collection have the following form. This example document
reflects an update operation:

{
"op" : "update",
"ns" : "social.users",
"query" : {

"name" : "j.r."
},
"updateobj" : {

"$set" : {
"likes" : [

"basketball",
"trekking"

]
}

},
"nscanned" : 1,
"nscannedObjects" : 1,
"moved" : true,
"nmoved" : 1,
"nMatched" : 1,
"nModified" : 1,
"keyUpdates" : 0,
"numYield" : 0,
"lockStats" : {

"timeLockedMicros" : {
"r" : NumberLong(0),
"w" : NumberLong(258)

},
"timeAcquiringMicros" : {

5.3. Administration Reference 305

MongoDB Documentation, Release 2.6.11

"r" : NumberLong(0),
"w" : NumberLong(7)

}
},
"millis" : 0,
"execStats" : {
},
"ts" : ISODate("2012-12-10T19:31:28.977Z"),
"client" : "127.0.0.1",
"allUsers" : [],
"user" : ""

}

Output Reference

For any single operation, the documents created by the database profiler will include a subset of the following fields.
The precise selection of fields in these documents depends on the type of operation.

system.profile.op
The type of operation. The possible values are:

•insert

•query

•update

•remove

•getmore

•command

system.profile.ns
The namespace the operation targets. Namespaces in MongoDB take the form of the database, followed by a
dot (.), followed by the name of the collection.

system.profile.query
The query document (page 100) used.

Changed in version 2.6.11: For "getmore" (page 306) operations on cursors returned from a
db.collection.find() or a db.collection.aggregate(), the query (page 306) field contains
respectively the query predicate or the issued aggregate command document. For details on the aggregate
command document, see the aggregate reference page.

system.profile.command
The command operation.

system.profile.updateobj
The <update> document passed in during an update (page 107) operation.

system.profile.cursorid
The ID of the cursor accessed by a getmore operation.

system.profile.ntoreturn
Changed in version 2.2: In 2.0, MongoDB includes this field for query and command operations. In 2.2, this
information MongoDB also includes this field for getmore operations.

The number of documents the operation specified to return. For example, the profile command would
return one document (a results document) so the ntoreturn (page 306) value would be 1. The limit(5)
command would return five documents so the ntoreturn (page 306) value would be 5.

306 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

If the ntoreturn (page 306) value is 0, the command did not specify a number of documents to return, as
would be the case with a simple find() command with no limit specified.

system.profile.ntoskip
New in version 2.2.

The number of documents the skip() method specified to skip.

system.profile.nscanned
The number of documents that MongoDB scans in the index (page 481) in order to carry out the operation.

In general, if nscanned (page 307) is much higher than nreturned (page 308), the database is scanning
many objects to find the target objects. Consider creating an index to improve this.

system.profile.nscannedObjects
The number of documents that MongoDB scans from the collection in order to carry out the operation.

system.profile.moved
This field appears with a value of true when an update operation moved one or more documents to a new
location on disk. If the operation did not result in a move, this field does not appear. Operations that result in a
move take more time than in-place updates and typically occur as a result of document growth.

system.profile.nmoved
New in version 2.2.

The number of documents the operation moved on disk. This field appears only if the operation resulted in a
move. The field’s implicit value is zero, and the field is present only when non-zero.

system.profile.scanAndOrder
scanAndOrder (page 307) is a boolean that is true when a query cannot use the order of documents in the
index for returning sorted results: MongoDB must sort the documents after it receives the documents from a
cursor.

If scanAndOrder (page 307) is false, MongoDB can use the order of the documents in an index to return
sorted results.

system.profile.ndeleted
The number of documents deleted by the operation.

system.profile.ninserted
The number of documents inserted by the operation.

system.profile.nMatched
New in version 2.6.

The number of documents that match the system.profile.query (page 306) condition for the update
operation.

system.profile.nModified
New in version 2.6.

The number of documents modified by the update operation.

system.profile.upsert
A boolean that indicates the update operation’s upsert option value. Only appears if upsert is true.

system.profile.keyUpdates
New in version 2.2.

The number of index (page 481) keys the update changed in the operation. Changing an index key carries a
small performance cost because the database must remove the old key and inserts a new key into the B-tree
index.

5.3. Administration Reference 307

MongoDB Documentation, Release 2.6.11

system.profile.numYield
New in version 2.2.

The number of times the operation yielded to allow other operations to complete. Typically, operations yield
when they need access to data that MongoDB has not yet fully read into memory. This allows other operations
that have data in memory to complete while MongoDB reads in data for the yielding operation. For more
information, see the FAQ on when operations yield (page 778).

system.profile.lockStats
New in version 2.2.

The time in microseconds the operation spent acquiring and holding locks. This field reports data for the
following lock types:

•R - global read lock

•W - global write lock

•r - database-specific read lock

•w - database-specific write lock

system.profile.lockStats.timeLockedMicros
The time in microseconds the operation held a specific lock. For operations that require more than one
lock, like those that lock the local database to update the oplog, this value may be longer than the total
length of the operation (i.e. millis (page 308).)

system.profile.lockStats.timeAcquiringMicros
The time in microseconds the operation spent waiting to acquire a specific lock.

system.profile.nreturned
The number of documents returned by the operation.

system.profile.responseLength
The length in bytes of the operation’s result document. A large responseLength (page 308) can affect
performance. To limit the size of the result document for a query operation, you can use any of the following:

•Projections (page 112)

•The limit() method

•The batchSize() method

Note: When MongoDB writes query profile information to the log, the responseLength (page 308) value
is in a field named reslen.

system.profile.millis
The time in milliseconds from the perspective of the mongod from the beginning of the operation to the end of
the operation.

system.profile.execStats
New in version 2.6.

A document that contains the execution statistics of the query operation. For other operations, the value is an
empty document.

The system.profile.execStats (page 308) presents the staticstics as a tree; each node provides the
statistics for the operation executed during that stage of the query operation.

Note: The following fields list for execStats (page 308) is not meant to be exhaustive as the returned fields
vary per stage.

308 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

system.profile.execStats.type
The descriptive name for the operation performed as part of the query execution; e.g.

•COLLSCAN for a collection scan

•IXSCAN for scanning index keys

•FETCH for retrieving documents

system.profile.execStats.children
An array that contains statistics for the operations that are the children of the current stage.

system.profile.ts
The timestamp of the operation.

system.profile.client
The IP address or hostname of the client connection where the operation originates.

For some operations, such as db.eval(), the client is 0.0.0.0:0 instead of an actual client.

system.profile.allUsers
An array of authenticated user information (user name and database) for the session. See also Client Authenti-
cation (page 318).

system.profile.user
The authenticated user who ran the operation. If the operation was not run by an authenticated user, this field’s
value is an empty string.

5.3.4 Journaling Mechanics

On this page

• Journal Files (page 309)
• Storage Views used in Journaling (page 310)
• How Journaling Records Write Operations (page 310)

When running with journaling, MongoDB stores and applies write operations (page 77) in memory and in the on-
disk journal before the changes are present in the data files on disk. Writes to the journal are atomic, ensuring the
consistency of the on-disk journal files. This document discusses the implementation and mechanics of journaling
in MongoDB systems. See Manage Journaling (page 245) for information on configuring, tuning, and managing
journaling.

Journal Files

With journaling enabled, MongoDB creates a journal subdirectory within the directory defined by dbPath, which is
/data/db by default. The journal directory holds journal files, which contain write-ahead redo logs. The directory
also holds a last-sequence-number file. A clean shutdown removes all the files in the journal directory. A dirty shut-
down (crash) leaves files in the journal directory; these are used to automatically recover the database to a consistent
state when the mongod process is restarted.

Journal files are append-only files and have file names prefixed with j._. When a journal file holds 1 gigabyte of data,
MongoDB creates a new journal file. Once MongoDB applies all the write operations in a particular journal file to the
database data files, it deletes the file, as it is no longer needed for recovery purposes. Unless you write many bytes of
data per second, the journal directory should contain only two or three journal files.

You can use the storage.smallFiles run time option when starting mongod to limit the size of each journal
file to 128 megabytes, if you prefer.

5.3. Administration Reference 309

MongoDB Documentation, Release 2.6.11

To speed the frequent sequential writes that occur to the current journal file, you can ensure that the journal directory
is on a different filesystem from the database data files.

Important: If you place the journal on a different filesystem from your data files you cannot use a filesystem snapshot
alone to capture valid backups of a dbPath directory. In this case, use fsyncLock() to ensure that database files
are consistent before the snapshot and fsyncUnlock() once the snapshot is complete.

Note: Depending on your filesystem, you might experience a preallocation lag the first time you start a mongod
instance with journaling enabled.

MongoDB may preallocate journal files if the mongod process determines that it is more efficient to preallocate
journal files than create new journal files as needed. The amount of time required to pre-allocate lag might last several
minutes, during which you will not be able to connect to the database. This is a one-time preallocation and does not
occur with future invocations.

To avoid preallocation lag, see Avoid Preallocation Lag (page 245).

Storage Views used in Journaling

With journaling, MongoDB’s storage layer has two internal views of the data set.

The shared view stores modified data for upload to the MongoDB data files. The shared view is the only view
with direct access to the MongoDB data files. When running with journaling, mongod asks the operating system to
map your existing on-disk data files to the shared view virtual memory view. The operating system maps the files
but does not load them. MongoDB later loads data files into the shared view as needed.

The private view stores data for use with read operations (page 64). The private view is the first place
MongoDB applies new write operations (page 77). Upon a journal commit, MongoDB copies the changes made in
the private view to the shared view, where they are then available for uploading to the database data files.

The journal is an on-disk view that stores new write operations after MongoDB applies the operation to the private
view but before applying them to the data files. The journal provides durability. If the mongod instance were to
crash without having applied the writes to the data files, the journal could replay the writes to the shared view for
eventual upload to the data files.

How Journaling Records Write Operations

MongoDB copies the write operations to the journal in batches called group commits. These “group commits” help
minimize the performance impact of journaling, since a group commit must block all writers during the commit. See
commitIntervalMs for information on the default commit interval.

Journaling stores raw operations that allow MongoDB to reconstruct the following:

• document insertion/updates

• index modifications

• metadata changes to the namespace files

• creation and dropping of databases and their associated data files

As write operations (page 77) occur, MongoDB writes the data to the private view in RAM and then copies the
write operations in batches to the journal. The journal stores the operations on disk to ensure durability. Each journal
entry describes the bytes the write operation changed in the data files.

MongoDB next applies the journal’s write operations to the shared view. At this point, the shared view
becomes inconsistent with the data files.

310 Chapter 5. Administration

MongoDB Documentation, Release 2.6.11

At default intervals of 60 seconds, MongoDB asks the operating system to flush the shared view to disk. This
brings the data files up-to-date with the latest write operations. The operating system may choose to flush the shared
view to disk at a higher frequency than 60 seconds, particularly if the system is low on free memory.

When MongoDB flushes write operations to the data files, MongoDB notes which journal writes have been flushed.
Once a journal file contains only flushed writes, it is no longer needed for recovery, and MongoDB either deletes it or
recycles it for a new journal file.

As part of journaling, MongoDB routinely asks the operating system to remap the shared view to the private
view, in order to save physical RAM. Upon a new remapping, the operating system knows that physical memory
pages can be shared between the shared view and the private view mappings.

Note: The interaction between the shared view and the on-disk data files is similar to how MongoDB works
without journaling, which is that MongoDB asks the operating system to flush in-memory changes back to the data
files every 60 seconds.

5.3.5 Exit Codes and Statuses

MongoDB will return one of the following codes and statuses when exiting. Use this guide to interpret logs and when
troubleshooting issues with mongod and mongos instances.

0
Returned by MongoDB applications upon successful exit.

2
The specified options are in error or are incompatible with other options.

3
Returned by mongod if there is a mismatch between hostnames specified on the command line and in the
local.sources (page 667) collection. mongod may also return this status if oplog collection in the local
database is not readable.

4
The version of the database is different from the version supported by the mongod (or mongod.exe) instance.
The instance exits cleanly. Restart mongod with the --upgrade option to upgrade the database to the version
supported by this mongod instance.

5
Returned by mongod if a moveChunk operation fails to confirm a commit.

12
Returned by the mongod.exe process on Windows when it receives a Control-C, Close, Break or Shutdown
event.

14
Returned by MongoDB applications which encounter an unrecoverable error, an uncaught exception or uncaught
signal. The system exits without performing a clean shut down.

20
Message: ERROR: wsastartup failed <reason>

Returned by MongoDB applications on Windows following an error in the WSAStartup function.

Message: NT Service Error

Returned by MongoDB applications for Windows due to failures installing, starting or removing the NT Service
for the application.

5.3. Administration Reference 311

MongoDB Documentation, Release 2.6.11

45
Returned when a MongoDB application cannot open a file or cannot obtain a lock on a file.

47
MongoDB applications exit cleanly following a large clock skew (32768 milliseconds) event.

48
mongod exits cleanly if the server socket closes. The server socket is on port 27017 by default, or as specified
to the --port run-time option.

49
Returned by mongod.exe or mongos.exe on Windows when either receives a shutdown message from the
Windows Service Control Manager.

100
Returned by mongod when the process throws an uncaught exception.

312 Chapter 5. Administration

CHAPTER 6

Security

This section outlines basic security and risk management strategies and access control. The included tutorials outline
specific tasks for configuring firewalls, authentication, and system privileges.

Security Introduction (page 313) A high-level introduction to security and MongoDB deployments.

Security Concepts (page 316) The core documentation of security.

Authentication (page 316) Mechanisms for verifying user and instance access to MongoDB.

Authorization (page 320) Control access to MongoDB instances using authorization.

Network Exposure and Security (page 322) Discusses potential security risks related to the network and strate-
gies for decreasing possible network-based attack vectors for MongoDB.

Continue reading from Security Concepts (page 316) for additional documentation of MongoDB’s security
features and operation.

Security Tutorials (page 329) Tutorials for enabling and configuring security features for MongoDB.

Network Security Tutorials (page 330) Ensure that the underlying network configuration supports a secure op-
erating environment for MongoDB deployments, and appropriately limits access to MongoDB deploy-
ments.

Access Control Tutorials (page 352) These tutorials describe procedures relevant for the configuration, opera-
tion, and maintenance of MongoDB’s access control system.

User and Role Management Tutorials (page 381) MongoDB’s access control system provides a flexible role-
based access control system that you can use to limit access to MongoDB deployments. The tutorials in
this section describe the configuration an setup of the authorization system.

Continue reading from Security Tutorials (page 329) for additional tutorials that address the use and management
of secure MongoDB deployments.

Create a Vulnerability Report (page 402) Report a vulnerability in MongoDB.

Security Reference (page 403) Reference for security related functions.

Security Checklist (page 431) A high level overview of global security consideration for administrators of MongoDB
deployments. Use this checklist if you are new to deploying MongoDB in production and want to implement
high quality security practices.

6.1 Security Introduction

313

MongoDB Documentation, Release 2.6.11

On this page

• Authentication (page 314)
• Role Based Access Control (page 314)
• Auditing (page 314)
• Encryption (page 315)
• Hardening Deployments and Environments (page 315)
• Additional Resources (page 316)

Maintaining a secure MongoDB deployment requires administrators to implement controls to ensure that users and
applications have access to only the data that they require. MongoDB provides features that allow administrators to
implement these controls and restrictions for any MongoDB deployment.

If you are already familiar with security and MongoDB security practices, consider the Security Checklist (page 431)
for a collection of recommended actions to protect a MongoDB deployment.

6.1.1 Authentication

Before gaining access to a system all clients should identify themselves to MongoDB. This ensures that no client can
access the data stored in MongoDB without being explicitly allowed.

MongoDB supports a number of authentication mechanisms (page 317) that clients can use to verify their identity.
MongoDB supports two mechanisms: a password-based challenge and response protocol and x.509 certificates. Ad-
ditionally, MongoDB Enterprise1 also provides support for LDAP proxy authentication (page 318) and Kerberos au-
thentication (page 318).

See Authentication (page 316) for more information.

6.1.2 Role Based Access Control

Access control, i.e. authorization (page 320), determines a user’s access to resources and operations. Clients should
only be able to perform the operations required to fulfill their approved functions. This is the “principle of least
privilege” and limits the potential risk of a compromised application.

MongoDB’s role-based access control system allows administrators to control all access and ensure that all granted
access applies as narrowly as possible. MongoDB does not enable authorization by default. When you enable autho-
rization (page 320), MongoDB will require authentication for all connections.

When authorization is enabled, MongoDB controls a user’s access through the roles assigned to the user. A role
consists of a set of privileges, where a privilege consists of actions, or a set of operations, and a resource upon which
the actions are allowed.

Users may have one or more role that describes their access. MongoDB provides several built-in roles (page 405) and
users can construct specific roles tailored to clients’ actual requirements.

See Authorization (page 320) for more information.

6.1.3 Auditing

Auditing provides administrators with the ability to verify that the implemented security policies are controlling activ-
ity in the system. Retaining audit information ensures that administrators have enough information to perform forensic
investigations and comply with regulations and polices that require audit data.

1http://www.mongodb.com/products/mongodb-enterprise

314 Chapter 6. Security

http://www.mongodb.com/products/mongodb-enterprise

MongoDB Documentation, Release 2.6.11

See Auditing (page 325) for more information.

6.1.4 Encryption

Transport Encryption

You can use TLS/SSL (Transport Layer Security/Secure Sockets Layer) to encrypt all of MongoDB’s network traffic.
TLS/SSL ensures that MongoDB network traffic is only readable by the intended client.

See Configure mongod and mongos for TLS/SSL (page 338) for more information.

Encryption at Rest

There are two broad classes of approaches to encrypting data at rest with MongoDB. You can use these solutions
together or independently:

Application Level Encryption

Provide encryption on a per-field or per-document basis within the application layer. To encrypt document or field
level data, write custom encryption and decryption routines or use a commercial solutions such as the Vormetric Data
Security Platform2.

Storage Encryption

Encrypt all MongoDB data on the storage or operating system to ensure that only authorized processes can access
protected data. A number of third-party libraries can integrate with the operating system to provide transparent disk-
level encryption. For example:

Linux Unified Key Setup (LUKS) LUKS is available for most Linux distributions. For configuration explanation,
see the LUKS documentation from Red Hat3.

IBM Guardium Data Encryption IBM Guardium Data Encryption4 provides support for disk-level encryption for
Linux and Windows operating systems.

Vormetric Data Security Platform The Vormetric Data Security Platform5 provides disk and file-level encryption in
addition to application level encryption.

Bitlocker Drive Encryption Bitlocker Drive Encryption6 is a feature available on Windows Server 2008 and 2012
that provides disk encryption.

Properly configured disk encryption, when used alongside good security policies that protect relevant accounts, pass-
words, and encryption keys, can help ensure compliance with standards, including HIPAA, PCI-DSS, and FERPA.

6.1.5 Hardening Deployments and Environments

In addition to implementing controls within MongoDB, you should also place controls around MongoDB to reduce
the risk exposure of the entire MongoDB system. This is a defense in depth strategy.

2http://www.vormetric.com/sites/default/files/sb-MongoDB-Letter-2014-0611.pdf
3https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/sec-Encryption.html
4http://www-03.ibm.com/software/products/en/infosphere-guardium-data-encryption
5http://www.vormetric.com/sites/default/files/sb-MongoDB-Letter-2014-0611.pdf
6http://technet.microsoft.com/en-us/library/hh831713.aspx

6.1. Security Introduction 315

http://www.vormetric.com/sites/default/files/sb-MongoDB-Letter-2014-0611.pdf
http://www.vormetric.com/sites/default/files/sb-MongoDB-Letter-2014-0611.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/sec-Encryption.html
http://www-03.ibm.com/software/products/en/infosphere-guardium-data-encryption
http://www.vormetric.com/sites/default/files/sb-MongoDB-Letter-2014-0611.pdf
http://technet.microsoft.com/en-us/library/hh831713.aspx

MongoDB Documentation, Release 2.6.11

Hardening MongoDB extends the ideas of least privilege, auditing, and encryption outside of MongoDB. Reducing
risk includes: configuring the network rules to ensure that only trusted hosts have access to MongoDB, and that the
MongoDB processes only have access to the parts of the filesystem required for operation.

6.1.6 Additional Resources

• Making HIPAA Compliant MongoDB Applications7

• Security Architecture White Paper8

• Webinar: Securing Your MongoDB Deployment9

6.2 Security Concepts

These documents introduce and address concepts and strategies related to security practices in MongoDB deployments.

Authentication (page 316) Mechanisms for verifying user and instance access to MongoDB.

Authorization (page 320) Control access to MongoDB instances using authorization.

Collection-Level Access Control (page 322) Scope privileges to specific collections.

Network Exposure and Security (page 322) Discusses potential security risks related to the network and strategies
for decreasing possible network-based attack vectors for MongoDB.

Security and MongoDB API Interfaces (page 324) Discusses potential risks related to MongoDB’s JavaScript,
HTTP and REST interfaces, including strategies to control those risks.

Auditing (page 325) Audit server and client activity for mongod and mongos instances.

Kerberos Authentication (page 326) Kerberos authentication and MongoDB.

6.2.1 Authentication

On this page

• Client Users (page 317)
• Authentication Mechanisms (page 317)
• Authentication Behavior (page 318)

Authentication is the process of verifying the identity of a client. When access control, i.e. authorization (page 320),
is enabled, MongoDB requires all clients to authenticate themselves first in order to determine the access for the client.

Although authentication and authorization (page 320) are closely connected, authentication is distinct from authoriza-
tion. Authentication verifies the identity of a user; authorization determines the verified user’s access to resources and
operations.

MongoDB supports a number of authentication mechanisms (page 317) that clients can use to verify their identity.
These mechanisms allow MongoDB to integrate into your existing authentication system. See Authentication Mecha-
nisms (page 317) for details.

7https://www.mongodb.com/blog/post/making-hipaa-compliant-applications-mongodb?jmp=docs
8https://www.mongodb.com/lp/white-paper/mongodb-security-architecture?jmp=docs
9http://www.mongodb.com/presentations/webinar-securing-your-mongodb-deployment?jmp=docs

316 Chapter 6. Security

https://www.mongodb.com/blog/post/making-hipaa-compliant-applications-mongodb?jmp=docs
https://www.mongodb.com/lp/white-paper/mongodb-security-architecture?jmp=docs
http://www.mongodb.com/presentations/webinar-securing-your-mongodb-deployment?jmp=docs

MongoDB Documentation, Release 2.6.11

In addition to verifying the identity of a client, MongoDB can require members of replica sets and sharded clusters to
authenticate their membership (page 318) to their respective replica set or sharded cluster. See Authentication Between
MongoDB Instances (page 318) for more information.

Client Users

To authenticate a client in MongoDB, you must add a corresponding user to MongoDB. When adding a user, you
create the user in a specific database. Together, the user’s name and database serve as a unique identifier for that
user. That is, if two users have the same name but are created in different databases, they are two separate users. To
authenticate, the client must authenticate the user against the user’s database. For instance, if using the mongo shell
as a client, you can specify the database for the user with the –authenticationDatabase option.

To add and manage user information, MongoDB provides the db.createUser() method as well as other user
management methods. For an example of adding a user to MongoDB, see Add a User to a Database (page 383).

MongoDB stores all user information, including name (page 416), password (page 416), and the user’s
database (page 416), in the system.users (page 415) collection in the admin database.

Authentication Mechanisms

MongoDB supports multiple authentication mechanisms. MongoDB’s default authentication method is a challenge
and response mechanism (MONGODB-CR) (page 317). MongoDB also supports x509 certificate authentication
(page 317), LDAP proxy authentication (page 318), and Kerberos authentication (page 318).

This section introduces the mechanisms available in MongoDB.

To specify the authentication mechanism to use, see authenticationMechanisms.

MONGODB-CR Authentication

MONGODB-CR is a challenge-response mechanism that authenticates users through passwords. MONGODB-CR is the
default mechanism.

When you use MONGODB-CR authentication, MONGODB-CR verifies the user against the user’s name (page 416),
password (page 416) and database (page 416). The user’s database is the database where the user was created,
and the user’s database and the user’s name together serves to identify the user.

Using key files, you can also use MONGODB-CR authentication for the internal member authentication (page 318)
of replica set members and sharded cluster members. The contents of the key files serve as the shared password for
the members. You must store the key file on each mongod or mongos instance for that replica set or sharded cluster.
The content of the key file is arbitrary but must be the same on all mongod and mongos instances that connect to
each other.

See Generate a Key File (page 376) for instructions on generating a key file and turning on key file authentication for
members.

x.509 Certificate Authentication

New in version 2.6.

MongoDB supports x.509 certificate authentication for use with a secure TLS/SSL connection (page 338).

To authenticate to servers, clients can use x.509 certificates instead of usernames and passwords. See Client x.509
Certificate (page 357) for more information.

6.2. Security Concepts 317

MongoDB Documentation, Release 2.6.11

For membership authentication, members of sharded clusters and replica sets can use x.509 certificates instead of key
files. See Use x.509 Certificate for Membership Authentication (page 359) for more information.

Kerberos Authentication

MongoDB Enterprise10 supports authentication using a Kerberos service. Kerberos is an industry standard authentica-
tion protocol for large client/server systems.

To use MongoDB with Kerberos, you must have a properly configured Kerberos deployment, configured Kerberos
service principals (page 327) for MongoDB, and added Kerberos user principal (page 327) to MongoDB.

See Kerberos Authentication (page 326) for more information on Kerberos and MongoDB. To configure MongoDB to
use Kerberos authentication, see Configure MongoDB with Kerberos Authentication on Linux (page 369) and Configure
MongoDB with Kerberos Authentication on Windows (page 372).

LDAP Proxy Authority Authentication

MongoDB Enterprise11 supports proxy authentication through a Lightweight Directory Access Protocol (LDAP) ser-
vice. See Authenticate Using SASL and LDAP with OpenLDAP (page 366) and Authenticate Using SASL and LDAP
with ActiveDirectory (page 363).

MongoDB Enterprise for Windows does not include LDAP support for authentication. However, MongoDB Enterprise
for Linux supports using LDAP authentication with an ActiveDirectory server.

MongoDB does not support LDAP authentication in mixed sharded cluster deployments that contain both version 2.4
and version 2.6 shards.

Authentication Behavior

Client Authentication

Clients can authenticate using the challenge and response (page 317), x.509 (page 317), LDAP Proxy (page 318) and
Kerberos (page 318) mechanisms.

Each client connection should authenticate as exactly one user. If a client authenticates to a database as one user and
later authenticates to the same database as a different user, the second authentication invalidates the first. While clients
can authenticate as multiple users if the users are defined on different databases, we recommend authenticating as one
user at a time, providing the user with appropriate privileges on the databases required by the user.

See Authenticate to a MongoDB Instance or Cluster (page 375) for more information.

Authentication Between MongoDB Instances

You can authenticate members of replica sets and sharded clusters. To authenticate members of a single MongoDB
deployment to each other, MongoDB can use the keyFile and x.509 (page 317) mechanisms. Using keyFile
authentication for members also enables authorization.

Always run replica sets and sharded clusters in a trusted networking environment. Ensure that the network permits
only trusted traffic to reach each mongod and mongos instance.

10http://www.mongodb.com/products/mongodb-enterprise
11http://www.mongodb.com/products/mongodb-enterprise

318 Chapter 6. Security

http://www.mongodb.com/products/mongodb-enterprise
http://www.mongodb.com/products/mongodb-enterprise

MongoDB Documentation, Release 2.6.11

Use your environment’s firewall and network routing to ensure that traffic only from clients and other members can
reach your mongod and mongos instances. If needed, use virtual private networks (VPNs) to ensure secure connec-
tions over wide area networks (WANs).

Always ensure that:

• Your network configuration will allow every member of the replica set or sharded cluster to contact every other
member.

• If you use MongoDB’s authentication system to limit access to your infrastructure, ensure that you configure a
keyFile on all members to permit authentication.

See Generate a Key File (page 376) for instructions on generating a key file and turning on key file authentication for
members. For an example of using key files for sharded cluster authentication, see Enable Authentication in a Sharded
Cluster (page 354).

Authentication on Sharded Clusters

In sharded clusters, applications authenticate to directly to mongos instances, using credentials stored in the admin
database of the config servers. The shards in the sharded cluster also have credentials, and clients can authenticate
directly to the shards to perform maintenance directly on the shards. In general, applications and clients should connect
to the sharded cluster through the mongos.

Changed in version 2.6: Previously, the credentials for authenticating to a database on a cluster resided on the primary
shard (page 683) for that database.

Some maintenance operations, such as cleanupOrphaned, compact, rs.reconfig(), require direct connec-
tions to specific shards in a sharded cluster. To perform these operations with authentication enabled, you must connect
directly to the shard and authenticate as a shard local administrative user. To create a shard local administrative user,
connect directly to the shard and create the user. MongoDB stores shard local users in the admin database of the shard
itself. These shard local users are completely independent from the users added to the sharded cluster via mongos.
Shard local users are local to the shard and are inaccessible by mongos. Direct connections to a shard should only be
for shard-specific maintenance and configuration.

Localhost Exception

The localhost exception allows you to enable authorization before creating the first user in the system. When active,
the localhost exception allows all connections from the localhost interface to have full access to that instance. The
exception applies only when there are no users created in the MongoDB instance.

If you use the localhost exception when deploying a new MongoDB system, the first user you create must be
in the admin database with privileges to create other users, such as a user with the userAdmin (page 407) or
userAdminAnyDatabase (page 411) role. See Enable Client Access Control (page 353) and Create a User Ad-
ministrator (page 381) for more information.

In the case of a sharded cluster, the localhost exception can apply to the cluster as a whole or separately to each shard.
The localhost exception can apply to the cluster as a whole if there are no user information stored on the config servers
and clients access via mongos instances.

The localhost exception can apply separately to each shard if there is no user information stored on the shard itself and
clients connect to the shard directly.

To prevent unauthorized access to a cluster’s shards, you must either create an administrator on each shard
or disable the localhost exception. To disable the localhost exception, use setParameter to set the
enableLocalhostAuthBypass parameter to 0 during startup.

6.2. Security Concepts 319

MongoDB Documentation, Release 2.6.11

6.2.2 Authorization

On this page

• Roles (page 320)
• Users (page 321)
• Additional Information (page 322)

MongoDB employs Role-Based Access Control (RBAC) to govern access to a MongoDB system. A user is granted
one or more roles (page 320) that determine the user’s access to database resources and operations. Outside of role
assignments, the user has no access to the system.

MongoDB does not enable authorization by default. You can enable authorization using the --auth or
the --keyFile options, or if using a configuration file, with the security.authorization or the
security.keyFile settings.

MongoDB provides built-in roles (page 405), each with a dedicated purpose for a common use case. Examples include
the read (page 405), readWrite (page 405), dbAdmin (page 406), and root (page 412) roles.

Administrators also can create new roles and privileges to cater to operational needs. Administrators can assign
privileges scoped as granularly as the collection level.

When granted a role, a user receives all the privileges of that role. A user can have several roles concurrently, in which
case the user receives the union of all the privileges of the respective roles.

Roles

A role consists of privileges that pair resources with allowed operations. Each privilege is specified explicitly in the
role or inherited from another role or both.

Except for roles created in the admin database, a role can only include privileges that apply to its database and can
only inherit from other roles in its database.

A role created in the admin database can include privileges that apply to the admin database, other databases or to
the cluster (page 418) resource, and can inherit from roles in other databases as well as the admin database.

A user assigned a role receives all the privileges of that role. The user can have multiple roles and can have different
roles on different databases.

Roles always grant privileges and never limit access. For example, if a user has both read (page 405) and
readWriteAnyDatabase (page 411) roles on a database, the greater access prevails.

Privileges

A privilege consists of a specified resource and the actions permitted on the resource.

A privilege resource (page 417) is either a database, collection, set of collections, or the cluster. If the cluster, the
affiliated actions affect the state of the system rather than a specific database or collection.

An action (page 418) is a command or method the user is allowed to perform on the resource. A resource can have
multiple allowed actions. For available actions see Privilege Actions (page 418).

For example, a privilege that includes the update (page 419) action allows a user to modify existing documents on
the resource. To additionally grant the user permission to create documents on the resource, the administrator would
add the insert (page 419) action to the privilege.

For privilege syntax, see admin.system.roles.privileges (page 413).

320 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Inherited Privileges

A role can include one or more existing roles in its definition, in which case the role inherits all the privileges of the
included roles.

A role can inherit privileges from other roles in its database. A role created on the admin database can inherit
privileges from roles in any database.

User-Defined Roles

New in version 2.6.

User administrators can create custom roles to ensure collection-level and command-level granularity and to adhere to
the policy of least privilege. Administrators create and edit roles using the role management commands.

MongoDB scopes a user-defined role to the database in which it is created and uniquely identifies the role by the
pairing of its name and its database. MongoDB stores the roles in the admin database’s system.roles (page 412)
collection. Do not access this collection directly but instead use the role management commands to view and edit
custom roles.

Collection-Level Access Control

By creating a role with privileges (page 320) that are scoped to a specific collection in a particular database, adminis-
trators can implement collection-level access control.

See Collection-Level Access Control (page 322) for more information.

Users

MongoDB stores user credentials in the protected admin.system.users (page 304). Use the user management
methods to view and edit user credentials.

Role Assignment to Users

User administrators create the users that access the system’s databases. MongoDB’s user management commands let
administrators create users and assign them roles.

MongoDB scopes a user to the database in which the user is created. MongoDB stores all user definitions in the admin
database, no matter which database the user is scoped to. MongoDB stores users in the admin database’s system.users
collection (page 415). Do not access this collection directly but instead use the user management commands.

The first role assigned in a database should be either userAdmin (page 407) or userAdminAnyDatabase
(page 411). This user can then create all other users in the system. See Create a User Administrator (page 381).

Protect the User and Role Collections

MongoDB stores role and user data in the protected admin.system.roles (page 304) and
admin.system.users (page 304) collections, which are only accessible using the user management meth-
ods.

If you disable access control, do not modify the admin.system.roles (page 304) and admin.system.users
(page 304) collections using normal insert() and update() operations.

6.2. Security Concepts 321

MongoDB Documentation, Release 2.6.11

Additional Information

See the reference section for documentation of all built-in-roles (page 405) and all available privilege actions
(page 418). Also consider the reference for the form of the resource documents (page 417).

To create users see the Create a User Administrator (page 381) and Add a User to a Database (page 383) tutorials.

6.2.3 Collection-Level Access Control

On this page

• Privileges and Scope (page 322)
• Additional Information (page 322)

Collection-level access control allows administrators to grant users privileges that are scoped to specific collections.

Administrators can implement collection-level access control through user-defined roles (page 321). By creating a role
with privileges (page 320) that are scoped to a specific collection in a particular database, administrators can provision
users with roles that grant privileges on a collection level.

Privileges and Scope

A privilege consists of actions (page 418) and the resources (page 417) upon which the actions are permissible; i.e.
the resources define the scope of the actions for that privilege.

By specifying both the database and the collection in the resource document (page 417) for a privilege, administrator
can limit the privilege actions just to a specific collection in a specific database. Each privilege action in a role can be
scoped to a different collection.

For example, a user defined role can contain the following privileges:

privileges: [
{ resource: { db: "products", collection: "inventory" }, actions: ["find", "update", "insert"] },
{ resource: { db: "products", collection: "orders" }, actions: ["find"] }

]

The first privilege scopes its actions to the inventory collection of the products database. The second privilege
scopes its actions to the orders collection of the products database.

Additional Information

For more information on user-defined roles and MongoDB authorization model, see Authorization (page 320). For a
tutorial on creating user-defined roles, see Create a Role (page 386).

6.2.4 Network Exposure and Security

On this page

• Configuration Options (page 323)
• Firewalls (page 324)
• Virtual Private Networks (page 324)

322 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

By default, MongoDB programs (i.e. mongos and mongod) will bind to all available network interfaces (i.e. IP
addresses) on a system.

This page outlines various runtime options that allow you to limit access to MongoDB programs.

Configuration Options

You can limit the network exposure with the following mongod and mongos configuration options: enabled,
net.http.RESTInterfaceEnabled, bindIp, and port. You can use a configuration file to specify
these settings.

nohttpinterface

The enabled setting for mongod and mongos instances disables the “home” status page.

Changed in version 2.6: The mongod and mongos instances run with the http interface disabled by default.

The status interface is read-only by default, and the default port for the status page is 28017. Authentication does not
control or affect access to this interface.

Important: Disable this interface for production deployments. If you enable this interface, you should only allow
trusted clients to access this port. See Firewalls (page 324).

rest

The net.http.RESTInterfaceEnabled setting for mongod enables a fully interactive administrative REST
interface, which is disabled by default. The net.http.RESTInterfaceEnabled configuration makes the http
status interface 12, which is read-only by default, fully interactive. Use the net.http.RESTInterfaceEnabled
setting with the enabled setting.

The REST interface does not support any authentication and you should always restrict access to this interface to only
allow trusted clients to connect to this port.

You may also enable this interface on the command line as mongod --rest --httpinterface.

Important: Disable this option for production deployments. If do you leave this interface enabled, you should only
allow trusted clients to access this port.

bind_ip

The bindIp setting for mongod and mongos instances limits the network interfaces on which MongoDB programs
will listen for incoming connections. You can also specify a number of interfaces by passing bindIp a comma
separated list of IP addresses. You can use the mongod --bind_ip and mongos --bind_ip option on the
command line at run time to limit the network accessibility of a MongoDB program.

Important: Make sure that your mongod and mongos instances are only accessible on trusted networks. If your
system has more than one network interface, bind MongoDB programs to the private or internal network interface.

12 Starting in version 2.6, http interface is disabled by default.

6.2. Security Concepts 323

MongoDB Documentation, Release 2.6.11

port

The port setting for mongod and mongos instances changes the main port on which the mongod or mongos
instance listens for connections. The default port is 27017. Changing the port does not meaningfully reduce risk or
limit exposure. You may also specify this option on the command line as mongod --port or mongos --port.
Setting port also indirectly sets the port for the HTTP status interface, which is always available on the port numbered
1000 greater than the primary mongod port.

Only allow trusted clients to connect to the port for the mongod and mongos instances. See Firewalls (page 324).

See also Security Considerations (page 204) and Default MongoDB Port (page 424).

Firewalls

Firewalls allow administrators to filter and control access to a system by providing granular control over what network
communications. For administrators of MongoDB, the following capabilities are important: limiting incoming traffic
on a specific port to specific systems, and limiting incoming traffic from untrusted hosts.

On Linux systems, the iptables interface provides access to the underlying netfilter firewall. On Windows
systems, netsh command line interface provides access to the underlying Windows Firewall. For additional infor-
mation about firewall configuration, see Configure Linux iptables Firewall for MongoDB (page 331) and Configure
Windows netsh Firewall for MongoDB (page 334).

For best results and to minimize overall exposure, ensure that only traffic from trusted sources can reach mongod and
mongos instances and that the mongod and mongos instances can only connect to trusted outputs.

See also:

For MongoDB deployments on Amazon’s web services, see the Amazon EC213 page, which addresses Amazon’s
Security Groups and other EC2-specific security features.

Virtual Private Networks

Virtual private networks, or VPNs, make it possible to link two networks over an encrypted and limited-access trusted
network. Typically, MongoDB users who use VPNs use TLS/SSL rather than IPSEC VPNs for performance issues.

Depending on configuration and implementation, VPNs provide for certificate validation and a choice of encryption
protocols, which requires a rigorous level of authentication and identification of all clients. Furthermore, because
VPNs provide a secure tunnel, by using a VPN connection to control access to your MongoDB instance, you can
prevent tampering and “man-in-the-middle” attacks.

6.2.5 Security and MongoDB API Interfaces

On this page

• JavaScript and the Security of the mongo Shell (page 325)
• HTTP Status Interface (page 325)
• REST API (page 325)

The following section contains strategies to limit risks related to MongoDB’s available interfaces including JavaScript,
HTTP, and REST interfaces.

13https://docs.mongodb.org/ecosystem/platforms/amazon-ec2

324 Chapter 6. Security

https://docs.mongodb.org/ecosystem/platforms/amazon-ec2

MongoDB Documentation, Release 2.6.11

JavaScript and the Security of the mongo Shell

The following JavaScript evaluation behaviors of the mongo shell represents risk exposures.

JavaScript Expression or JavaScript File

The mongo program can evaluate JavaScript expressions using the command line --eval option. Also, the mongo
program can evaluate a JavaScript file (.js) passed directly to it (e.g. mongo someFile.js).

Because the mongo program evaluates the JavaScript directly, inputs should only come from trusted sources.

.mongorc.js File

If a .mongorc.js file exists 14, the mongo shell will evaluate a .mongorc.js file before starting. You can disable
this behavior by passing the mongo --norc option.

HTTP Status Interface

The HTTP status interface provides a web-based interface that includes a variety of operational data, logs, and status
reports regarding the mongod or mongos instance. The HTTP interface is always available on the port numbered
1000 greater than the primary mongod port. By default, the HTTP interface port is 28017, but is indirectly set using
the port option which allows you to configure the primary mongod port.

Without the net.http.RESTInterfaceEnabled setting, this interface is entirely read-only, and limited in
scope; nevertheless, this interface may represent an exposure. To disable the HTTP interface, set the enabled run
time option or the --nohttpinterface command line option. See also Configuration Options (page 323).

REST API

The REST API to MongoDB provides additional information and write access on top of the HTTP Status interface.
While the REST API does not provide any support for insert, update, or remove operations, it does provide adminis-
trative access, and its accessibility represents a vulnerability in a secure environment. The REST interface is disabled
by default, and is not recommended for production use.

If you must use the REST API, please control and limit access to the REST API. The REST API does not include any
support for authentication, even when running with authorization enabled.

See the following documents for instructions on restricting access to the REST API interface:

• Configure Linux iptables Firewall for MongoDB (page 331)

• Configure Windows netsh Firewall for MongoDB (page 334)

6.2.6 Auditing

On this page

• Audit Events and Filter (page 326)
• Audit Guarantee (page 326)

14 On Linux and Unix systems, mongo reads the .mongorc.js file from $HOME/.mongorc.js (i.e. ~/.mongorc.js). On Windows,
mongo.exe reads the .mongorc.js file from %HOME%.mongorc.js or %HOMEDRIVE%%HOMEPATH%.mongorc.js.

6.2. Security Concepts 325

MongoDB Documentation, Release 2.6.11

New in version 2.6.

MongoDB Enterprise includes an auditing capability for mongod and mongos instances. The auditing facility allows
administrators and users to track system activity for deployments with multiple users and applications. The auditing
facility can write audit events to the console, the syslog, a JSON file, or a BSON file.

Audit Events and Filter

To enable auditing for MongoDB Enterprise, see Configure System Events Auditing (page 397).

Once enabled, the auditing system can record the following operations:

• schema (DDL),

• replica set,

• authentication and authorization, and

• general operations.

For details on the audit log messages, see System Event Audit Messages (page 424).

By default, the auditing system records all these operations; however, you can set up filters (page 399) to restrict the
events captured. To set up filters, see Configure Audit Filters (page 399).

Audit Guarantee

The auditing system writes every audit event 15 to an in-memory buffer of audit events. MongoDB writes this buffer to
disk periodically. For events collected from any single connection, the events have a total order: if MongoDB writes
one event to disk, the system guarantees that it has written all prior events for that connection to disk.

If an audit event entry corresponds to an operation that affects the durable state of the database, such as a modification
to data, MongoDB will always write the audit event to disk before writing to the journal for that entry.

That is, before adding an operation to the journal, MongoDB writes all audit events on the connection that triggered
the operation, up to and including the entry for the operation.

These auditing guarantees require that MongoDB run with journaling enabled.

Warning: MongoDB may lose events if the server terminates before it commits the events to the audit log.
The client may receive confirmation of the event before MongoDB commits to the audit log. For example, while
auditing an aggregation operation, the server might crash after returning the result but before the audit log flushes.

6.2.7 Kerberos Authentication

On this page

• Overview (page 327)
• Kerberos Components and MongoDB (page 327)
• Operational Considerations (page 328)
• Kerberized MongoDB Environments (page 329)
• Additional Resources (page 329)

New in version 2.4.
15 Audit configuration can include a filter (page 399) to limit events to audit.

326 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Overview

MongoDB Enterprise provides support for Kerberos authentication of MongoDB clients to mongod and mongos.
Kerberos is an industry standard authentication protocol for large client/server systems. Kerberos allows MongoDB
and applications to take advantage of existing authentication infrastructure and processes.

Kerberos Components and MongoDB

Principals

In a Kerberos-based system, every participant in the authenticated communication is known as a “principal”, and every
principal must have a unique name.

Principals belong to administrative units called realms. For each realm, the Kerberos Key Distribution Center (KDC)
maintains a database of the realm’s principal and the principals’ associated “secret keys”.

For a client-server authentication, the client requests from the KDC a “ticket” for access to a specific asset. KDC
uses the client’s secret and the server’s secret to construct the ticket which allows the client and server to mutually
authenticate each other, while keeping the secrets hidden.

For the configuration of MongoDB for Kerberos support, two kinds of principal names are of interest: user principals
(page 327) and service principals (page 327).

User Principal To authenticate using Kerberos, you must add the Kerberos user principals to MongoDB to the
$external database. User principal names have the form:

<username>@<KERBEROS REALM>

For every user you want to authenticate using Kerberos, you must create a corresponding user in MongoDB in the
$external database.

For examples of adding a user to MongoDB as well as authenticating as that user, see Configure MongoDB with
Kerberos Authentication on Linux (page 369) and Configure MongoDB with Kerberos Authentication on Windows
(page 372).

See also:

User and Role Management Tutorials (page 381) for general information regarding creating and managing users in
MongoDB.

Service Principal Every MongoDB mongod and mongos instance (or mongod.exe or mongos.exe on Win-
dows) must have an associated service principal. Service principal names have the form:

<service>/<fully qualified domain name>@<KERBEROS REALM>

For MongoDB, the <service> defaults to mongodb. For example, if m1.example.com is a MongoDB server,
and example.com maintains the EXAMPLE.COM Kerberos realm, then m1 should have the service principal name
mongodb/m1.example.com@EXAMPLE.COM.

To specify a different value for <service>, use serviceName during the start up of mongod or mongos (or
mongod.exe or mongos.exe). mongo shell or other clients may also specify a different service principal name
using serviceName.

Service principal names must be reachable over the network using the fully qualified domain name (FQDN) part of its
service principal name.

By default, Kerberos attempts to identify hosts using the /etc/kerb5.conf file before using DNS to resolve hosts.

6.2. Security Concepts 327

MongoDB Documentation, Release 2.6.11

On Windows, if running MongoDB as a service, see Assign Service Principal Name to MongoDB Windows Service
(page 374).

Linux Keytab Files

Linux systems can store Kerberos authentication keys for a service principal (page 327) in keytab files. Each Kerber-
ized mongod and mongos instance running on Linux must have access to a keytab file containing keys for its service
principal (page 327).

To keep keytab files secure, use file permissions that restrict access to only the user that runs the mongod or mongos
process.

Tickets

On Linux, MongoDB clients can use Kerberos’s kinit program to initialize a credential cache for authenticating the
user principal to servers.

Windows Active Directory

Unlike on Linux systems, mongod and mongos instances running on Windows do not require access to keytab
files. Instead, the mongod and mongos instances read their server credentials from a credential store specific to the
operating system.

However, from the Windows Active Directory, you can export a keytab file for use on Linux systems. See Ktpass16

for more information.

Authenticate With Kerberos

To configure MongoDB for Kerberos support and authenticate, see Configure MongoDB with Kerberos Authentication
on Linux (page 369) and Configure MongoDB with Kerberos Authentication on Windows (page 372).

Operational Considerations

The HTTP Console

The MongoDB HTTP Console17 interface does not support Kerberos authentication.

DNS

Each host that runs a mongod or mongos instance must have both A and PTR DNS records to provide forward and
reverse lookup.

Without A and PTR DNS records, the host cannot resolve the components of the Kerberos domain or the Key Distri-
bution Center (KDC).

16http://technet.microsoft.com/en-us/library/cc753771.aspx
17https://docs.mongodb.org/ecosystem/tools/http-interfaces/#http-console

328 Chapter 6. Security

http://technet.microsoft.com/en-us/library/cc753771.aspx
https://docs.mongodb.org/ecosystem/tools/http-interfaces/#http-console

MongoDB Documentation, Release 2.6.11

System Time Synchronization

To successfully authenticate, the system time for each mongod and mongos instance must be within 5 minutes of the
system time of the other hosts in the Kerberos infrastructure.

Kerberized MongoDB Environments

Driver Support

The following MongoDB drivers support Kerberos authentication:

• Java18

• C#19

• C++20

• Python21

Use with Additional MongoDB Authentication Mechanism

Although MongoDB supports the use of Kerberos authentication with other authentication mechanisms, only add
the other mechanisms as necessary. See the Incorporate Additional Authentication Mechanisms
section in Configure MongoDB with Kerberos Authentication on Linux (page 369) and Configure MongoDB with
Kerberos Authentication on Windows (page 372) for details.

Additional Resources

• MongoDB LDAP and Kerberos Authentication with Dell (Quest) Authentication Services22

• MongoDB with Red Hat Enterprise Linux Identity Management and Kerberos23

6.3 Security Tutorials

The following tutorials provide instructions for enabling and using the security features available in MongoDB.

Network Security Tutorials (page 330) Ensure that the underlying network configuration supports a secure operating
environment for MongoDB deployments, and appropriately limits access to MongoDB deployments.

Configure Linux iptables Firewall for MongoDB (page 331) Basic firewall configuration patterns and exam-
ples for iptables on Linux systems.

Configure Windows netsh Firewall for MongoDB (page 334) Basic firewall configuration patterns and exam-
ples for netsh on Windows systems.

Configure mongod and mongos for TLS/SSL (page 338) TLS/SSL allows MongoDB clients to support en-
crypted connections to mongod instances.

18https://docs.mongodb.org/ecosystem/tutorial/authenticate-with-java-driver/
19https://docs.mongodb.org/ecosystem/tutorial/authenticate-with-csharp-driver/
20https://docs.mongodb.org/ecosystem/tutorial/authenticate-with-cpp-driver/
21http://api.mongodb.org/python/current/examples/authentication.html
22https://www.mongodb.com/blog/post/mongodb-ldap-and-kerberos-authentication-dell-quest-authentication-services?jmp=docs
23http://docs.mongodb.org/ecosystem/tutorial/manage-red-hat-enterprise-linux-identity-management/?jmp=docs

6.3. Security Tutorials 329

https://docs.mongodb.org/ecosystem/tutorial/authenticate-with-java-driver/
https://docs.mongodb.org/ecosystem/tutorial/authenticate-with-csharp-driver/
https://docs.mongodb.org/ecosystem/tutorial/authenticate-with-cpp-driver/
http://api.mongodb.org/python/current/examples/authentication.html
https://www.mongodb.com/blog/post/mongodb-ldap-and-kerberos-authentication-dell-quest-authentication-services?jmp=docs
http://docs.mongodb.org/ecosystem/tutorial/manage-red-hat-enterprise-linux-identity-management/?jmp=docs

MongoDB Documentation, Release 2.6.11

Continue reading from Network Security Tutorials (page 330) for more information on running MongoDB in
secure environments.

Security Deployment Tutorials (page 348) These tutorials describe procedures for deploying MongoDB using au-
thentication and authorization.

Access Control Tutorials (page 352) These tutorials describe procedures relevant for the configuration, operation,
and maintenance of MongoDB’s access control system.

Enable Client Access Control (page 353) Describes the process for enabling authentication for MongoDB de-
ployments.

Use x.509 Certificates to Authenticate Clients (page 357) Use x.509 for client authentication.

Use x.509 Certificate for Membership Authentication (page 359) Use x.509 for internal member authentica-
tion for replica sets and sharded clusters.

Configure MongoDB with Kerberos Authentication on Linux (page 369) For MongoDB Enterprise Linux,
describes the process to enable Kerberos-based authentication for MongoDB deployments.

Continue reading from Access Control Tutorials (page 352) for additional tutorials on configuring MongoDB’s
authentication systems.

Enable Authentication after Creating the User Administrator (page 355) Describes an alternative process for
enabling authentication for MongoDB deployments.

User and Role Management Tutorials (page 381) MongoDB’s access control system provides a flexible role-based
access control system that you can use to limit access to MongoDB deployments. The tutorials in this section
describe the configuration an setup of the authorization system.

Add a User to a Database (page 383) Create non-administrator users using MongoDB’s role-based authentica-
tion system.

Create a Role (page 386) Create custom role.

Modify a User’s Access (page 391) Modify the actions available to a user on specific database resources.

View Roles (page 393) View a role’s privileges.

Continue reading from User and Role Management Tutorials (page 381) for additional tutorials on managing
users and privileges in MongoDB’s authorization system.

Auditing Tutorials (page 397) MongoDB Enterprise provides auditing of operations. The tutorials in this section
describe procedures to enable and configure the auditing feature.

Create a Vulnerability Report (page 402) Report a vulnerability in MongoDB.

6.3.1 Network Security Tutorials

The following tutorials provide information on handling network security for MongoDB.

Configure Linux iptables Firewall for MongoDB (page 331) Basic firewall configuration patterns and examples for
iptables on Linux systems.

Configure Windows netsh Firewall for MongoDB (page 334) Basic firewall configuration patterns and examples for
netsh on Windows systems.

Configure mongod and mongos for TLS/SSL (page 338) TLS/SSL allows MongoDB clients to support encrypted
connections to mongod instances.

TLS/SSL Configuration for Clients (page 342) Configure clients to connect to MongoDB instances that use
TLS/SSL.

Upgrade a Cluster to Use TLS/SSL (page 346) Rolling upgrade process to use TLS/SSL.

330 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Configure MongoDB for FIPS (page 347) Configure for Federal Information Processing Standard (FIPS).

Configure Linux iptables Firewall for MongoDB

On this page

• Overview (page 331)
• Patterns (page 331)
• Change Default Policy to DROP (page 333)
• Manage and Maintain iptables Configuration (page 334)

On contemporary Linux systems, the iptables program provides methods for managing the Linux Kernel’s
netfilter or network packet filtering capabilities. These firewall rules make it possible for administrators to
control what hosts can connect to the system, and limit risk exposure by limiting the hosts that can connect to a
system.

This document outlines basic firewall configurations for iptables firewalls on Linux. Use these approaches as a
starting point for your larger networking organization. For a detailed overview of security practices and risk manage-
ment for MongoDB, see Security Concepts (page 316).

See also:

For MongoDB deployments on Amazon’s web services, see the Amazon EC224 page, which addresses Amazon’s
Security Groups and other EC2-specific security features.

Overview

Rules in iptables configurations fall into chains, which describe the process for filtering and processing specific
streams of traffic. Chains have an order, and packets must pass through earlier rules in a chain to reach later rules.
This document addresses only the following two chains:

INPUT Controls all incoming traffic.

OUTPUT Controls all outgoing traffic.

Given the default ports (page 323) of all MongoDB processes, you must configure networking rules that permit only
required communication between your application and the appropriate mongod and mongos instances.

Be aware that, by default, the default policy of iptables is to allow all connections and traffic unless explicitly
disabled. The configuration changes outlined in this document will create rules that explicitly allow traffic from
specific addresses and on specific ports, using a default policy that drops all traffic that is not explicitly allowed. When
you have properly configured your iptables rules to allow only the traffic that you want to permit, you can Change
Default Policy to DROP (page 333).

Patterns

This section contains a number of patterns and examples for configuring iptables for use with MongoDB deploy-
ments. If you have configured different ports using the port configuration setting, you will need to modify the rules
accordingly.

24https://docs.mongodb.org/ecosystem/platforms/amazon-ec2

6.3. Security Tutorials 331

https://docs.mongodb.org/ecosystem/platforms/amazon-ec2

MongoDB Documentation, Release 2.6.11

Traffic to and from mongod Instances This pattern is applicable to all mongod instances running as standalone
instances or as part of a replica set.

The goal of this pattern is to explicitly allow traffic to the mongod instance from the application server. In the
following examples, replace <ip-address> with the IP address of the application server:

iptables -A INPUT -s <ip-address> -p tcp --destination-port 27017 -m state --state NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -d <ip-address> -p tcp --source-port 27017 -m state --state ESTABLISHED -j ACCEPT

The first rule allows all incoming traffic from <ip-address> on port 27017, which allows the application server to
connect to the mongod instance. The second rule, allows outgoing traffic from the mongod to reach the application
server.

Optional
If you have only one application server, you can replace <ip-address> with either the IP address itself, such as:
198.51.100.55. You can also express this using CIDR notation as 198.51.100.55/32. If you want to permit
a larger block of possible IP addresses you can allow traffic from a /24 using one of the following specifications for
the <ip-address>, as follows:

10.10.10.10/24
10.10.10.10/255.255.255.0

Traffic to and from mongos Instances mongos instances provide query routing for sharded clusters. Clients
connect to mongos instances, which behave from the client’s perspective as mongod instances. In turn, the mongos
connects to all mongod instances that are components of the sharded cluster.

Use the same iptables command to allow traffic to and from these instances as you would from the mongod
instances that are members of the replica set. Take the configuration outlined in the Traffic to and from mongod
Instances (page 332) section as an example.

Traffic to and from a MongoDB Config Server Config servers, host the config database that stores metadata
for sharded clusters. Each production cluster has three config servers, initiated using the mongod --configsvr
option. 25 Config servers listen for connections on port 27019. As a result, add the following iptables rules to the
config server to allow incoming and outgoing connection on port 27019, for connection to the other config servers.

iptables -A INPUT -s <ip-address> -p tcp --destination-port 27019 -m state --state NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -d <ip-address> -p tcp --source-port 27019 -m state --state ESTABLISHED -j ACCEPT

Replace <ip-address> with the address or address space of all the mongod that provide config servers.

Additionally, config servers need to allow incoming connections from all of the mongos instances in the cluster and
all mongod instances in the cluster. Add rules that resemble the following:

iptables -A INPUT -s <ip-address> -p tcp --destination-port 27019 -m state --state NEW,ESTABLISHED -j ACCEPT

Replace <ip-address> with the address of the mongos instances and the shard mongod instances.

Traffic to and from a MongoDB Shard Server For shard servers, running as mongod --shardsvr 26 Because
the default port number is 27018 when running with the shardsvr value for the clusterRole setting, you must
configure the following iptables rules to allow traffic to and from each shard:

25 You also can run a config server by using the configsvr value for the clusterRole setting in a configuration file.
26 You can also specify the shard server option with the shardsvr value for the clusterRole setting in the configuration file. Shard members

are also often conventional replica sets using the default port.

332 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

iptables -A INPUT -s <ip-address> -p tcp --destination-port 27018 -m state --state NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -d <ip-address> -p tcp --source-port 27018 -m state --state ESTABLISHED -j ACCEPT

Replace the <ip-address> specification with the IP address of all mongod. This allows you to permit incoming
and outgoing traffic between all shards including constituent replica set members, to:

• all mongod instances in the shard’s replica sets.

• all mongod instances in other shards. 27

Furthermore, shards need to be able make outgoing connections to:

• all mongod instances in the config servers.

Create a rule that resembles the following, and replace the <ip-address> with the address of the config servers
and the mongos instances:

iptables -A OUTPUT -d <ip-address> -p tcp --source-port 27018 -m state --state ESTABLISHED -j ACCEPT

Provide Access For Monitoring Systems

1. The mongostat diagnostic tool, when running with the --discover needs to be able to reach all compo-
nents of a cluster, including the config servers, the shard servers, and the mongos instances.

2. If your monitoring system needs access the HTTP interface, insert the following rule to the chain:

iptables -A INPUT -s <ip-address> -p tcp --destination-port 28017 -m state --state NEW,ESTABLISHED -j ACCEPT

Replace <ip-address> with the address of the instance that needs access to the HTTP or REST interface.
For all deployments, you should restrict access to this port to only the monitoring instance.

Optional
For config server mongod instances running with the shardsvr value for the clusterRole setting, the
rule would resemble the following:

iptables -A INPUT -s <ip-address> -p tcp --destination-port 28018 -m state --state NEW,ESTABLISHED -j ACCEPT

For config server mongod instances running with the configsvr value for the clusterRole setting, the
rule would resemble the following:

iptables -A INPUT -s <ip-address> -p tcp --destination-port 28019 -m state --state NEW,ESTABLISHED -j ACCEPT

Change Default Policy to DROP

The default policy for iptables chains is to allow all traffic. After completing all iptables configuration changes,
you must change the default policy to DROP so that all traffic that isn’t explicitly allowed as above will not be able to
reach components of the MongoDB deployment. Issue the following commands to change this policy:

iptables -P INPUT DROP

iptables -P OUTPUT DROP

27 All shards in a cluster need to be able to communicate with all other shards to facilitate chunk and balancing operations.

6.3. Security Tutorials 333

MongoDB Documentation, Release 2.6.11

Manage and Maintain iptables Configuration

This section contains a number of basic operations for managing and using iptables. There are various front end
tools that automate some aspects of iptables configuration, but at the core all iptables front ends provide the
same basic functionality:

Make all iptables Rules Persistent By default all iptables rules are only stored in memory. When your
system restarts, your firewall rules will revert to their defaults. When you have tested a rule set and have guaranteed
that it effectively controls traffic you can use the following operations to you should make the rule set persistent.

On Red Hat Enterprise Linux, Fedora Linux, and related distributions you can issue the following command:

service iptables save

On Debian, Ubuntu, and related distributions, you can use the following command to dump the iptables rules to
the /etc/iptables.conf file:

iptables-save > /etc/iptables.conf

Run the following operation to restore the network rules:

iptables-restore < /etc/iptables.conf

Place this command in your rc.local file, or in the /etc/network/if-up.d/iptables file with other
similar operations.

List all iptablesRules To list all of currently applied iptables rules, use the following operation at the system
shell.

iptables -L

Flush all iptables Rules If you make a configuration mistake when entering iptables rules or simply need to
revert to the default rule set, you can use the following operation at the system shell to flush all rules:

iptables -F

If you’ve already made your iptables rules persistent, you will need to repeat the appropriate procedure in the
Make all iptables Rules Persistent (page 334) section.

Configure Windows netsh Firewall for MongoDB

On this page

• Overview (page 335)
• Patterns (page 335)
• Manage and Maintain Windows Firewall Configurations (page 337)

On Windows Server systems, the netsh program provides methods for managing the Windows Firewall. These
firewall rules make it possible for administrators to control what hosts can connect to the system, and limit risk
exposure by limiting the hosts that can connect to a system.

This document outlines basic Windows Firewall configurations. Use these approaches as a starting point for your
larger networking organization. For a detailed over view of security practices and risk management for MongoDB, see
Security Concepts (page 316).

334 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

See also:

Windows Firewall28 documentation from Microsoft.

Overview

Windows Firewall processes rules in an ordered determined by rule type, and parsed in the following order:

1. Windows Service Hardening

2. Connection security rules

3. Authenticated Bypass Rules

4. Block Rules

5. Allow Rules

6. Default Rules

By default, the policy in Windows Firewall allows all outbound connections and blocks all incoming connections.

Given the default ports (page 323) of all MongoDB processes, you must configure networking rules that permit only
required communication between your application and the appropriate mongod.exe and mongos.exe instances.

The configuration changes outlined in this document will create rules which explicitly allow traffic from specific
addresses and on specific ports, using a default policy that drops all traffic that is not explicitly allowed.

You can configure the Windows Firewall with using the netsh command line tool or through a windows application.
On Windows Server 2008 this application is Windows Firewall With Advanced Security in Administrative Tools. On
previous versions of Windows Server, access the Windows Firewall application in the System and Security control
panel.

The procedures in this document use the netsh command line tool.

Patterns

This section contains a number of patterns and examples for configuring Windows Firewall for use with MongoDB
deployments. If you have configured different ports using the port configuration setting, you will need to modify the
rules accordingly.

Traffic to and from mongod.exe Instances This pattern is applicable to all mongod.exe instances running as
standalone instances or as part of a replica set. The goal of this pattern is to explicitly allow traffic to the mongod.exe
instance from the application server.

netsh advfirewall firewall add rule name="Open mongod port 27017" dir=in action=allow protocol=TCP localport=27017

This rule allows all incoming traffic to port 27017, which allows the application server to connect to the
mongod.exe instance.

Windows Firewall also allows enabling network access for an entire application rather than to a specific port, as in the
following example:

netsh advfirewall firewall add rule name="Allowing mongod" dir=in action=allow program=" C:\mongodb\bin\mongod.exe"

You can allow all access for a mongos.exe server, with the following invocation:

28http://technet.microsoft.com/en-us/network/bb545423.aspx

6.3. Security Tutorials 335

http://technet.microsoft.com/en-us/network/bb545423.aspx

MongoDB Documentation, Release 2.6.11

netsh advfirewall firewall add rule name="Allowing mongos" dir=in action=allow program=" C:\mongodb\bin\mongos.exe"

Traffic to and from mongos.exe Instances mongos.exe instances provide query routing for sharded clusters.
Clients connect to mongos.exe instances, which behave from the client’s perspective as mongod.exe instances.
In turn, the mongos.exe connects to all mongod.exe instances that are components of the sharded cluster.

Use the same Windows Firewall command to allow traffic to and from these instances as you would from the
mongod.exe instances that are members of the replica set.

netsh advfirewall firewall add rule name="Open mongod shard port 27018" dir=in action=allow protocol=TCP localport=27018

Traffic to and from a MongoDB Config Server Configuration servers, host the config database that stores meta-
data for sharded clusters. Each production cluster has three configuration servers, initiated using the mongod
--configsvr option. 29 Configuration servers listen for connections on port 27019. As a result, add the fol-
lowing Windows Firewall rules to the config server to allow incoming and outgoing connection on port 27019, for
connection to the other config servers.

netsh advfirewall firewall add rule name="Open mongod config svr port 27019" dir=in action=allow protocol=TCP localport=27019

Additionally, config servers need to allow incoming connections from all of the mongos.exe instances in the cluster
and all mongod.exe instances in the cluster. Add rules that resemble the following:

netsh advfirewall firewall add rule name="Open mongod config svr inbound" dir=in action=allow protocol=TCP remoteip=<ip-address> localport=27019

Replace <ip-address> with the addresses of the mongos.exe instances and the shard mongod.exe instances.

Traffic to and from a MongoDB Shard Server For shard servers, running as mongod --shardsvr 30 Because
the default port number is 27018 when running with the shardsvr value for the clusterRole setting, you must
configure the following Windows Firewall rules to allow traffic to and from each shard:

netsh advfirewall firewall add rule name="Open mongod shardsvr inbound" dir=in action=allow protocol=TCP remoteip=<ip-address> localport=27018
netsh advfirewall firewall add rule name="Open mongod shardsvr outbound" dir=out action=allow protocol=TCP remoteip=<ip-address> localport=27018

Replace the <ip-address> specification with the IP address of all mongod.exe instances. This allows you to
permit incoming and outgoing traffic between all shards including constituent replica set members to:

• all mongod.exe instances in the shard’s replica sets.

• all mongod.exe instances in other shards. 31

Furthermore, shards need to be able make outgoing connections to:

• all mongos.exe instances.

• all mongod.exe instances in the config servers.

Create a rule that resembles the following, and replace the <ip-address> with the address of the config servers
and the mongos.exe instances:

netsh advfirewall firewall add rule name="Open mongod config svr outbound" dir=out action=allow protocol=TCP remoteip=<ip-address> localport=27018

29 You also can run a config server by using the configsrv value for the clusterRole setting in a configuration file.
30 You can also specify the shard server option with the shardsvr value for the clusterRole setting in the configuration file. Shard members

are also often conventional replica sets using the default port.
31 All shards in a cluster need to be able to communicate with all other shards to facilitate chunk and balancing operations.

336 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Provide Access For Monitoring Systems

1. The mongostat diagnostic tool, when running with the --discover needs to be able to reach all compo-
nents of a cluster, including the config servers, the shard servers, and the mongos.exe instances.

2. If your monitoring system needs access the HTTP interface, insert the following rule to the chain:

netsh advfirewall firewall add rule name="Open mongod HTTP monitoring inbound" dir=in action=allow protocol=TCP remoteip=<ip-address> localport=28017

Replace <ip-address> with the address of the instance that needs access to the HTTP or REST interface.
For all deployments, you should restrict access to this port to only the monitoring instance.

Optional
For config server mongod instances running with the shardsvr value for the clusterRole setting, the
rule would resemble the following:

netsh advfirewall firewall add rule name="Open mongos HTTP monitoring inbound" dir=in action=allow protocol=TCP remoteip=<ip-address> localport=28018

For config server mongod instances running with the configsvr value for the clusterRole setting, the
rule would resemble the following:

netsh advfirewall firewall add rule name="Open mongod configsvr HTTP monitoring inbound" dir=in action=allow protocol=TCP remoteip=<ip-address> localport=28019

Manage and Maintain Windows Firewall Configurations

This section contains a number of basic operations for managing and using netsh. While you can use the GUI front
ends to manage the Windows Firewall, all core functionality is accessible is accessible from netsh.

Delete all Windows Firewall Rules To delete the firewall rule allowing mongod.exe traffic:

netsh advfirewall firewall delete rule name="Open mongod port 27017" protocol=tcp localport=27017

netsh advfirewall firewall delete rule name="Open mongod shard port 27018" protocol=tcp localport=27018

List All Windows Firewall Rules To return a list of all Windows Firewall rules:

netsh advfirewall firewall show rule name=all

Reset Windows Firewall To reset the Windows Firewall rules:

netsh advfirewall reset

Backup and Restore Windows Firewall Rules To simplify administration of larger collection of systems, you can
export or import firewall systems from different servers) rules very easily on Windows:

Export all firewall rules with the following command:

netsh advfirewall export "C:\temp\MongoDBfw.wfw"

Replace "C:\temp\MongoDBfw.wfw" with a path of your choosing. You can use a command in the following
form to import a file created using this operation:

6.3. Security Tutorials 337

MongoDB Documentation, Release 2.6.11

netsh advfirewall import "C:\temp\MongoDBfw.wfw"

Configure mongod and mongos for TLS/SSL

On this page

• Overview (page 338)
• Prerequisites (page 338)
• Procedures (page 339)

Overview

This document helps you to configure MongoDB to support TLS/SSL. MongoDB clients can use TLS/SSL to encrypt
connections to mongod and mongos instances. MongoDB TLS/SSL implementation uses OpenSSL libraries.

Note: Although TLS is the successor to SSL, this page uses the more familiar term SSL to refer to TLS/SSL.

These instructions assume that you have already installed a build of MongoDB that includes SSL support and that your
client driver supports SSL. For instructions on upgrading a cluster currently not using SSL to using SSL, see Upgrade
a Cluster to Use TLS/SSL (page 346).

Changed in version 2.6: MongoDB’s SSL encryption only allows use of strong SSL ciphers with a minimum of 128-bit
key length for all connections.

New in version 2.6: MongoDB Enterprise for Windows includes support for SSL.

Prerequisites

Important: A full description of TLS/SSL, PKI (Public Key Infrastructure) certificates, and Certificate Authority
is beyond the scope of this document. This page assumes prior knowledge of TLS/SSL as well as access to valid
certificates.

MongoDB Support The default distribution of MongoDB32 does not contain support for SSL. To use SSL, you
must either build MongoDB locally passing the --ssl option to scons or use MongoDB Enterprise33.

Client Support See TLS/SSL Configuration for Clients (page 342) to learn about SSL support for Python, Java,
Ruby, and other clients.

Certificate Authorities For production use, your MongoDB deployment should use valid certificates generated and
signed by a single certificate authority. You or your organization can generate and maintain an independent certificate
authority, or use certificates generated by a third-party SSL vendor. Obtaining and managing certificates is beyond the
scope of this documentation.

32http://www.mongodb.org/downloads
33http://www.mongodb.com/products/mongodb-enterprise

338 Chapter 6. Security

http://www.mongodb.org/downloads
http://www.mongodb.com/products/mongodb-enterprise

MongoDB Documentation, Release 2.6.11

.pem File Before you can use SSL, you must have a .pem file containing a public key certificate and its associated
private key.

MongoDB can use any valid SSL certificate issued by a certificate authority, or a self-signed certificate. If you use a
self-signed certificate, although the communications channel will be encrypted, there will be no validation of server
identity. Although such a situation will prevent eavesdropping on the connection, it leaves you vulnerable to a man-in-
the-middle attack. Using a certificate signed by a trusted certificate authority will permit MongoDB drivers to verify
the server’s identity.

In general, avoid using self-signed certificates unless the network is trusted.

Additionally, with regards to authentication among replica set/sharded cluster members (page 318), in order to mini-
mize exposure of the private key and allow hostname validation, it is advisable to use different certificates on different
servers.

For testing purposes, you can generate a self-signed certificate and private key on a Unix system with a command that
resembles the following:

cd /etc/ssl/
openssl req -newkey rsa:2048 -new -x509 -days 365 -nodes -out mongodb-cert.crt -keyout mongodb-cert.key

This operation generates a new, self-signed certificate with no passphrase that is valid for 365 days. Once you have
the certificate, concatenate the certificate and private key to a .pem file, as in the following example:

cat mongodb-cert.key mongodb-cert.crt > mongodb.pem

See also:

Use x.509 Certificates to Authenticate Clients (page 357)

Procedures

Set Up mongod and mongos with SSL Certificate and Key To use SSL in your MongoDB deployment, include
the following run-time options with mongod and mongos:

• net.ssl.mode set to requireSSL. This setting restricts each server to use only SSL encrypted connections.
You can also specify either the value allowSSL or preferSSL to set up the use of mixed SSL modes on a
port. See net.ssl.mode for details.

• PEMKeyfile with the .pem file that contains the SSL certificate and key.

Consider the following syntax for mongod:

mongod --sslMode requireSSL --sslPEMKeyFile <pem>

For example, given an SSL certificate located at /etc/ssl/mongodb.pem, configure mongod to use SSL encryp-
tion for all connections with the following command:

mongod --sslMode requireSSL --sslPEMKeyFile /etc/ssl/mongodb.pem

Note:
• Specify <pem> with the full path name to the certificate.

• If the private key portion of the <pem> is encrypted, specify the passphrase. See SSL Certificate Passphrase
(page 341).

You may also specify these options in the configuration file, as in the following examples:

If using the YAML configuration file format:

6.3. Security Tutorials 339

MongoDB Documentation, Release 2.6.11

net:
ssl:

mode: requireSSL
PEMKeyFile: /etc/ssl/mongodb.pem

Or, if using the older older configuration file format34:

sslMode = requireSSL
sslPEMKeyFile = /etc/ssl/mongodb.pem

To connect, to mongod and mongos instances using SSL, the mongo shell and MongoDB tools must include the
--ssl option. See TLS/SSL Configuration for Clients (page 342) for more information on connecting to mongod
and mongos running with SSL.

See also:

Upgrade a Cluster to Use TLS/SSL (page 346)

Set Up mongod and mongos with Certificate Validation To set up mongod or mongos for SSL encryption
using an SSL certificate signed by a certificate authority, include the following run-time options during startup:

• net.ssl.mode set to requireSSL. This setting restricts each server to use only SSL encrypted connections.
You can also specify either the value allowSSL or preferSSL to set up the use of mixed SSL modes on a
port. See net.ssl.mode for details.

• PEMKeyfile with the name of the .pem file that contains the signed SSL certificate and key.

• CAFile with the name of the .pem file that contains the root certificate chain from the Certificate Authority.

Consider the following syntax for mongod:

mongod --sslMode requireSSL --sslPEMKeyFile <pem> --sslCAFile <ca>

For example, given a signed SSL certificate located at /etc/ssl/mongodb.pem and the certificate authority file
at /etc/ssl/ca.pem, you can configure mongod for SSL encryption as follows:

mongod --sslMode requireSSL --sslPEMKeyFile /etc/ssl/mongodb.pem --sslCAFile /etc/ssl/ca.pem

Note:
• Specify the <pem> file and the <ca> file with either the full path name or the relative path name.

• If the <pem> is encrypted, specify the passphrase. See SSL Certificate Passphrase (page 341).

You may also specify these options in the configuration file, as in the following examples:

If using the YAML configuration file format:

net:
ssl:

mode: requireSSL
PEMKeyFile: /etc/ssl/mongodb.pem
CAFile: /etc/ssl/ca.pem

Or, if using the older older configuration file format35:

34http://docs.mongodb.org/v2.4/reference/configuration-options
35http://docs.mongodb.org/v2.4/reference/configuration-options

340 Chapter 6. Security

http://docs.mongodb.org/v2.4/reference/configuration-options
http://docs.mongodb.org/v2.4/reference/configuration-options

MongoDB Documentation, Release 2.6.11

sslMode = requireSSL
sslPEMKeyFile = /etc/ssl/mongodb.pem
sslCAFile = /etc/ssl/ca.pem

To connect, to mongod and mongos instances using SSL, the mongo tools must include the both the --ssl and
--sslPEMKeyFile option. See TLS/SSL Configuration for Clients (page 342) for more information on connecting
to mongod and mongos running with SSL.

See also:

Upgrade a Cluster to Use TLS/SSL (page 346)

Block Revoked Certificates for Clients To prevent clients with revoked certificates from connecting, include the
sslCRLFile to specify a .pem file that contains revoked certificates.

For example, the following mongod with SSL configuration includes the sslCRLFile setting:

mongod --sslMode requireSSL --sslCRLFile /etc/ssl/ca-crl.pem --sslPEMKeyFile /etc/ssl/mongodb.pem --sslCAFile /etc/ssl/ca.pem

Clients with revoked certificates in the /etc/ssl/ca-crl.pem will not be able to connect to this mongod in-
stance.

Validate Only if a Client Presents a Certificate In most cases it is important to ensure that clients present valid
certificates. However, if you have clients that cannot present a client certificate, or are transitioning to using a certificate
authority you may only want to validate certificates from clients that present a certificate.

If you want to bypass validation for clients that don’t present certificates, include the
weakCertificateValidation run-time option with mongod and mongos. If the client does not present a
certificate, no validation occurs. These connections, though not validated, are still encrypted using SSL.

For example, consider the following mongod with an SSL configuration that includes the
weakCertificateValidation setting:

mongod --sslMode requireSSL --sslWeakCertificateValidation --sslPEMKeyFile /etc/ssl/mongodb.pem --sslCAFile /etc/ssl/ca.pem

Then, clients can connect either with the option --ssl and no certificate or with the option --ssl and a valid
certificate. See TLS/SSL Configuration for Clients (page 342) for more information on SSL connections for clients.

Note: If the client presents a certificate, the certificate must be a valid certificate.

All connections, including those that have not presented certificates are encrypted using SSL.

SSL Certificate Passphrase The PEM files for PEMKeyfile and ClusterFile may be encrypted. With en-
crypted PEM files, you must specify the passphrase at startup with a command-line or a configuration file option or
enter the passphrase when prompted.

Changed in version 2.6: In previous versions, you can only specify the passphrase with a command-line or a configu-
ration file option.

To specify the passphrase in clear text on the command line or in a configuration file, use the PEMKeyPassword
and/or the ClusterPassword option.

To have MongoDB prompt for the passphrase at the start of mongod or mongos and avoid specifying the passphrase
in clear text, omit the PEMKeyPassword and/or the ClusterPassword option. MongoDB will prompt for each
passphrase as necessary.

Important: The passphrase prompt option is available if you run the MongoDB instance in the foreground with

6.3. Security Tutorials 341

MongoDB Documentation, Release 2.6.11

a connected terminal. If you run mongod or mongos in a non-interactive session (e.g. without a terminal or as a
service on Windows), you cannot use the passphrase prompt option.

Run in FIPS Mode See Configure MongoDB for FIPS (page 347) for more details.

TLS/SSL Configuration for Clients

On this page

• mongo Shell SSL Configuration (page 342)
• MongoDB Cloud Manager (page 343)
• PyMongo (page 343)
• Java (page 344)
• Ruby (page 344)
• Node.JS (node-mongodb-native) (page 344)
• .NET (page 345)
• MongoDB Tools (page 345)

Clients must have support for TLS/SSL to work with a mongod or a mongos instance that has TLS/SSL support
enabled. The current versions of the Python, Java, Ruby, Node.js, .NET, and C++ drivers have support for TLS/SSL,
with full support coming in future releases of other drivers.

Important: A full description of TLS/SSL, PKI (Public Key Infrastructure) certificates, and Certificate Authority
is beyond the scope of this document. This page assumes prior knowledge of TLS/SSL as well as access to valid
certificates.

Note: Although TLS is the successor to SSL, this page uses the more familiar term SSL to refer to TLS/SSL.

See also:

Configure mongod and mongos for TLS/SSL (page 338).

mongo Shell SSL Configuration

For SSL connections, you must use the mongo shell built with SSL support or distributed with MongoDB Enterprise.
To support SSL, mongo has the following settings:

• --ssl

• --sslPEMKeyFile with the name of the .pem file that contains the SSL certificate and key.

• --sslCAFile with the name of the .pem file that contains the certificate from the Certificate Authority (CA).

Warning: If the mongo shell or any other tool that connects to mongos or mongod is run without
--sslCAFile, it will not attempt to validate server certificates. This results in vulnerability to expired
mongod and mongos certificates as well as to foreign processes posing as valid mongod or mongos
instances. Ensure that you always specify the CA file against which server certificates should be validated
in cases where intrusion is a possibility.

• --sslPEMKeyPassword option if the client certificate-key file is encrypted.

342 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Connect to MongoDB Instance with SSL Encryption To connect to a mongod or mongos instance that requires
only a SSL encryption mode (page 339), start mongo shell with --ssl, as in the following:

mongo --ssl

Connect to MongoDB Instance that Requires Client Certificates To connect to a mongod or mongos that re-
quires CA-signed client certificates (page 340), start the mongo shell with --ssl and the --sslPEMKeyFile
option to specify the signed certificate-key file, as in the following:

mongo --ssl --sslPEMKeyFile /etc/ssl/client.pem

Connect to MongoDB Instance that Validates when Presented with a Certificate To connect to a mongod or
mongos instance that only requires valid certificates when the client presents a certificate (page 341), start mongo
shell either with the --ssl ssl and no certificate or with the --ssl ssl and a valid signed certificate.

For example, if mongod is running with weak certificate validation, both of the following mongo shell clients can
connect to that mongod:

mongo --ssl
mongo --ssl --sslPEMKeyFile /etc/ssl/client.pem

Important: If the client presents a certificate, the certificate must be valid.

MongoDB Cloud Manager

The MongoDB Cloud Manager Monitoring agent will also have to connect via SSL in order to gather its statistics.
Because the agent already utilizes SSL for its communications to the MongoDB Cloud Manager servers, this is just a
matter of enabling SSL support in MongoDB Cloud Manager itself on a per host basis.

See the MongoDB Cloud Manager documentation36 for more information about SSL configuration.

PyMongo

Add the “ssl=True” parameter to a PyMongo MongoClient37 to create a MongoDB connection to an SSL Mon-
goDB instance:

from pymongo import MongoClient
c = MongoClient(host="mongodb.example.net", port=27017, ssl=True)

To connect to a replica set, use the following operation:

from pymongo import MongoReplicaSetClient
c = MongoReplicaSetClient("mongodb.example.net:27017",

replicaSet="mysetname", ssl=True)

PyMongo also supports an “ssl=true” option for the MongoDB URI:

mongodb://mongodb.example.net:27017/?ssl=true

For more details, see the Python MongoDB Driver page38.

36https://docs.cloud.mongodb.com/
37http://api.mongodb.org/python/current/api/pymongo/mongo_client.html#pymongo.mongo_client.MongoClient
38https://docs.mongodb.org/ecosystem/drivers/python

6.3. Security Tutorials 343

https://docs.cloud.mongodb.com/
http://api.mongodb.org/python/current/api/pymongo/mongo_client.html#pymongo.mongo_client.MongoClient
https://docs.mongodb.org/ecosystem/drivers/python

MongoDB Documentation, Release 2.6.11

Java

Consider the following example “SSLApp.java” class file:

import com.mongodb.*;
import javax.net.ssl.SSLSocketFactory;

public class SSLApp {

public static void main(String args[]) throws Exception {

MongoClientOptions o = new MongoClientOptions.Builder()
.socketFactory(SSLSocketFactory.getDefault())
.build();

MongoClient m = new MongoClient("localhost", o);

DB db = m.getDB("test");
DBCollection c = db.getCollection("foo");

System.out.println(c.findOne());
}

}

For more details, see the Java MongoDB Driver page39.

Ruby

The recent versions of the Ruby driver have support for connections to SSL servers. Install the latest version of the
driver with the following command:

gem install mongo

Then connect to a standalone instance, using the following form:

require 'rubygems'
require 'mongo'

connection = MongoClient.new('localhost', 27017, :ssl => true)

Replace connection with the following if you’re connecting to a replica set:

connection = MongoReplicaSetClient.new(['localhost:27017'],
['localhost:27018'],
:ssl => true)

Here, mongod instance run on “localhost:27017” and “localhost:27018”.

For more details, see the Ruby MongoDB Driver page40.

Node.JS (node-mongodb-native)

In the node-mongodb-native41 driver, use the following invocation to connect to a mongod or mongos instance via
SSL:

39https://docs.mongodb.org/ecosystem/drivers/java
40https://docs.mongodb.org/ecosystem/drivers/ruby
41https://github.com/mongodb/node-mongodb-native

344 Chapter 6. Security

https://docs.mongodb.org/ecosystem/drivers/java
https://docs.mongodb.org/ecosystem/drivers/ruby
https://github.com/mongodb/node-mongodb-native

MongoDB Documentation, Release 2.6.11

var db1 = new Db(MONGODB, new Server("127.0.0.1", 27017,
{ auto_reconnect: false, poolSize:4, ssl:true });

To connect to a replica set via SSL, use the following form:

var replSet = new ReplSetServers([
new Server(RS.host, RS.ports[1], { auto_reconnect: true }),
new Server(RS.host, RS.ports[0], { auto_reconnect: true }),
],

{rs_name:RS.name, ssl:true}
);

For more details, see the Node.JS MongoDB Driver page42.

.NET

As of release 1.6, the .NET driver supports SSL connections with mongod and mongos instances. To connect using
SSL, you must add an option to the connection string, specifying ssl=true as follows:

var connectionString = "mongodb://localhost/?ssl=true";
var server = MongoServer.Create(connectionString);

The .NET driver will validate the certificate against the local trusted certificate store, in addition to providing en-
cryption of the server. This behavior may produce issues during testing if the server uses a self-signed certificate. If
you encounter this issue, add the sslverifycertificate=false option to the connection string to prevent the
.NET driver from validating the certificate, as follows:

var connectionString = "mongodb://localhost/?ssl=true&sslverifycertificate=false";
var server = MongoServer.Create(connectionString);

For more details, see the .NET MongoDB Driver page43.

MongoDB Tools

Changed in version 2.6.

Various MongoDB utility programs supports SSL. These tools include:

• mongodump

• mongoexport

• mongofiles

• mongoimport

• mongooplog

• mongorestore

• mongostat

• mongotop

To use SSL connections with these tools, use the same SSL options as the mongo shell. See mongo Shell SSL
Configuration (page 342).

42https://docs.mongodb.org/ecosystem/drivers/node-js
43https://docs.mongodb.org/ecosystem/drivers/csharp

6.3. Security Tutorials 345

https://docs.mongodb.org/ecosystem/drivers/node-js
https://docs.mongodb.org/ecosystem/drivers/csharp

MongoDB Documentation, Release 2.6.11

Upgrade a Cluster to Use TLS/SSL

The default distribution of MongoDB44 does not contain support for TLS/SSL. To use TLS/SSL you can either compile
MongoDB with TLS/SSL support or use MongoDB Enterprise. See Configure mongod and mongos for TLS/SSL
(page 338) for more information about TLS/SSL and MongoDB.

Important: A full description of TLS/SSL, PKI (Public Key Infrastructure) certificates, and Certificate Authority
is beyond the scope of this document. This page assumes prior knowledge of TLS/SSL as well as access to valid
certificates.

Changed in version 2.6.

The MongoDB server supports listening for both TLS/SSL encrypted and unencrypted connections on the same TCP
port. This allows upgrades of MongoDB clusters to use TLS/SSL encrypted connections.

To upgrade from a MongoDB cluster using no TLS/SSL encryption to one using only TLS/SSL encryption, use the
following rolling upgrade process:

1. For each node of a cluster, start the node with the option --sslMode set to allowSSL. The --sslMode
allowSSL setting allows the node to accept both TLS/SSL and non-TLS/non-SSL incoming connections. Its
connections to other servers do not use TLS/SSL. Include other TLS/SSL options (page 338) as well as any other
options that are required for your specific configuration. For example:

mongod --replSet <name> --sslMode allowSSL --sslPEMKeyFile <path to TLS/SSL Certificate and key PEM file> --sslCAFile <path to root CA PEM file>

Upgrade all nodes of the cluster to these settings.

You may also specify these options in the configuration file. If using a YAML format
configuration file, specify the following settings in the file:

net:
ssl:

mode: <disabled|allowSSL|preferSSL|requireSSL>
PEMKeyFile: <path to TLS/SSL certificate and key PEM file>
CAFile: <path to root CA PEM file>

Or, if using the older configuration file format45:

sslMode = <disabled|allowSSL|preferSSL|requireSSL>
sslPEMKeyFile = <path to TLS/SSL certificate and key PEM file>
sslCAFile = <path to root CA PEM file>

2. Switch all clients to use TLS/SSL. See TLS/SSL Configuration for Clients (page 342).

3. For each node of a cluster, use the setParameter command to update the sslMode to preferSSL. 46

With preferSSL as its net.ssl.mode, the node accepts both TLS/SSL and non-TLS/non-SSL incoming
connections, and its connections to other servers use TLS/SSL. For example:

db.getSiblingDB('admin').runCommand({ setParameter: 1, sslMode: "preferSSL" })

Upgrade all nodes of the cluster to these settings.

At this point, all connections should be using TLS/SSL.

4. For each node of the cluster, use the setParameter command to update the sslMode to requireSSL.
1 With requireSSL as its net.ssl.mode, the node will reject any non-TLS/non-SSL connections. For
example:

44http://www.mongodb.org/downloads
45http://docs.mongodb.org/v2.4/reference/configuration-options
46 As an alternative to using the setParameter command, you can also restart the nodes with the appropriate TLS/SSL options and values.

346 Chapter 6. Security

http://www.mongodb.org/downloads
http://docs.mongodb.org/v2.4/reference/configuration-options

MongoDB Documentation, Release 2.6.11

db.getSiblingDB('admin').runCommand({ setParameter: 1, sslMode: "requireSSL" })

5. After the upgrade of all nodes, edit the configuration file with the appropriate TLS/SSL settings to
ensure that upon subsequent restarts, the cluster uses TLS/SSL.

Configure MongoDB for FIPS

On this page

• Overview (page 347)
• Prerequisites (page 347)
• Considerations (page 348)
• Procedure (page 348)

New in version 2.6.

Overview

The Federal Information Processing Standard (FIPS) is a U.S. government computer security standard used to certify
software modules and libraries that encrypt and decrypt data securely. You can configure MongoDB to run with a
FIPS 140-2 certified library for OpenSSL. Configure FIPS to run by default or as needed from the command line.

Prerequisites

Important: A full description of FIPS and TLS/SSL is beyond the scope of this document. This tutorial assumes
prior knowledge of FIPS and TLS/SSL.

Only the MongoDB Enterprise47 version supports FIPS mode. See Install MongoDB Enterprise (page 27) to download
and install MongoDB Enterprise48 to use FIPS mode.

Your system must have an OpenSSL library configured with the FIPS 140-2 module. At the command line, type
openssl version to confirm your OpenSSL software includes FIPS support.

For Red Hat Enterprise Linux 6.x (RHEL 6.x) or its derivatives such as CentOS 6.x, the OpenSSL toolkit must be
at least openssl-1.0.1e-16.el6_5 to use FIPS mode. To upgrade the toolkit for these platforms, issue the
following command:

sudo yum update openssl

Some versions of Linux periodically execute a process to prelink dynamic libraries with pre-assigned addresses. This
process modifies the OpenSSL libraries, specifically libcrypto. The OpenSSL FIPS mode will subsequently fail
the signature check performed upon startup to ensure libcrypto has not been modified since compilation.

To configure the Linux prelink process to not prelink libcrypto:

sudo bash -c "echo '-b /usr/lib64/libcrypto.so.*' >>/etc/prelink.conf.d/openssl-prelink.conf"

47http://www.mongodb.com/products/mongodb-enterprise
48http://www.mongodb.com/products/mongodb-enterprise

6.3. Security Tutorials 347

http://www.mongodb.com/products/mongodb-enterprise
http://www.mongodb.com/products/mongodb-enterprise

MongoDB Documentation, Release 2.6.11

Considerations

FIPS is property of the encryption system and not the access control system. However, if your environment re-
quires FIPS compliant encryption and access control, you must ensure that the access control system uses only FIPS-
compliant encryption.

MongoDB’s FIPS support covers the way that MongoDB uses OpenSSL for network encryption and X509 authen-
tication. If you use Kerberos or LDAP Proxy authentication, you muse ensure that these external mechanisms are
FIPS-compliant. MONGODB-CR authentication is not FIPS compliant.

Procedure

Configure MongoDB to use TLS/SSL See Configure mongod and mongos for TLS/SSL (page 338) for details about
configuring OpenSSL.

Run mongod or mongos instance in FIPS mode Perform these steps after you Configure mongod and mongos
for TLS/SSL (page 338).

Step 1: Change configuration file. To configure your mongod or mongos instance to use FIPS mode, shut down
the instance and update the configuration file with the following setting:

net:
ssl:

FIPSMode: true

Step 2: Start mongod or mongos instance with configuration file. For example, run this command to start the
mongod instance with its configuration file:

mongod --config /etc/mongod.conf

Confirm FIPS mode is running Check the server log file for a message FIPS is active:

FIPS 140-2 mode activated

6.3.2 Security Deployment Tutorials

The following tutorials provide information in deploying MongoDB using authentication and authorization.

Deploy Replica Set and Configure Authentication and Authorization (page 348) Configure a replica set that has au-
thentication enabled.

Deploy Replica Set and Configure Authentication and Authorization

On this page

• Overview (page 349)
• Considerations (page 349)
• Procedure (page 350)

348 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Overview

With authentication (page 316) enabled, MongoDB forces all clients to identify themselves before granting access to
the server. Authorization (page 320), in turn, allows administrators to define and limit the resources and operations
that a user can access. Using authentication and authorization is a key part of a complete security strategy.

All MongoDB deployments support authentication. By default, MongoDB does not require authorization checking.
You can enforce authorization checking when deploying MongoDB, or on an existing deployment; however, you
cannot enable authorization checking on a running deployment without downtime.

This tutorial provides a procedure for creating a MongoDB replica set (page 563) that uses the challenge-response au-
thentication mechanism. The tutorial includes creation of a minimal authorization system to support basic operations.

Considerations

Authentication In this procedure, you will configure MongoDB using the default challenge-response authentication
mechanism, using the keyFile to supply the password for inter-process authentication (page 318). The content of
the key file is the shared secret used for all internal authentication.

All deployments that enforce authorization checking should have one user administrator user that can create new users
and modify existing users. During this procedure you will create a user administrator that you will use to administer
this deployment.

Architecture In a production, deploy each member of the replica set to its own machine and if possible bind to the
standard MongoDB port of 27017. Use the bind_ip option to ensure that MongoDB listens for connections from
applications on configured addresses.

For a geographically distributed replica sets, ensure that the majority of the set’s mongod instances reside in the
primary site.

See Replica Set Deployment Architectures (page 575) for more information.

Connectivity Ensure that network traffic can pass between all members of the set and all clients in the network
securely and efficiently. Consider the following:

• Establish a virtual private network. Ensure that your network topology routes all traffic between members within
a single site over the local area network.

• Configure access control to prevent connections from unknown clients to the replica set.

• Configure networking and firewall rules so that incoming and outgoing packets are permitted only on the default
MongoDB port and only from within your deployment.

Finally ensure that each member of a replica set is accessible by way of resolvable DNS or hostnames. You should
either configure your DNS names appropriately or set up your systems’ /etc/hosts file to reflect this configuration.

Configuration Specify the run time configuration on each system in a configuration file stored in
/etc/mongod.conf or a related location. Create the directory where MongoDB stores data files before deploying
MongoDB.

For more information about the run time options used above and other configuration options, see
http://docs.mongodb.org/manual/reference/configuration-options.

6.3. Security Tutorials 349

MongoDB Documentation, Release 2.6.11

Procedure

This procedure deploys a replica set in which all members use the same key file.

Step 1: Start one member of the replica set. This mongod should not enable auth.

Step 2: Create administrative users. The following operations will create two users: a user administrator that will
be able to create and modify users (siteUserAdmin), and a root (page 412) user (siteRootAdmin) that you
will use to complete the remainder of the tutorial:

use admin
db.createUser({

user: "siteUserAdmin",
pwd: "<password>",
roles: [{ role: "userAdminAnyDatabase", db: "admin" }]

});
db.createUser({

user: "siteRootAdmin",
pwd: "<password>",
roles: [{ role: "root", db: "admin" }]

});

Step 3: Stop the mongod instance.

Step 4: Create the key file to be used by each member of the replica set. Create the key file your deployment will
use to authenticate servers to each other.

To generate pseudo-random data to use for a keyfile, issue the following openssl command:

openssl rand -base64 741 > mongodb-keyfile
chmod 600 mongodb-keyfile

You may generate a key file using any method you choose. Always ensure that the password stored in the key file is
both long and contains a high amount of entropy. Using openssl in this manner helps generate such a key.

Step 5: Copy the key file to each member of the replica set. Copy the mongodb-keyfile to all hosts where
components of a MongoDB deployment run. Set the permissions of these files to 600 so that only the owner of the
file can read or write this file to prevent other users on the system from accessing the shared secret.

Step 6: Start each member of the replica set with the appropriate options. For each member, start a mongod
and specify the key file and the name of the replica set. Also specify other parameters as needed for your deployment.
For replication-specific parameters, see cli-mongod-replica-set required by your deployment.

If your application connects to more than one replica set, each set should have a distinct name. Some drivers group
replica set connections by replica set name.

The following example specifies parameters through the --keyFile and --replSet command-line options:

mongod --keyFile /mysecretdirectory/mongodb-keyfile --replSet "rs0"

The following example specifies parameters through a configuration file:

mongod --config $HOME/.mongodb/config

350 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

In production deployments, you can configure a control script to manage this process. Control scripts are beyond the
scope of this document.

Step 7: Connect to the member of the replica set where you created the administrative users. Connect to
the replica set member you started and authenticate as the siteRootAdmin user. From the mongo shell, use the
following operation to authenticate:

use admin
db.auth("siteRootAdmin", "<password>");

Step 8: Initiate the replica set. Use rs.initiate() on the replica set member:

rs.initiate()

MongoDB initiates a set that consists of the current member and that uses the default replica set configuration.

Step 9: Verify the initial replica set configuration. Use rs.conf() to display the replica set configuration object
(page 659):

rs.conf()

The replica set configuration object resembles the following:

{
"_id" : "rs0",
"version" : 1,
"members" : [

{
"_id" : 1,
"host" : "mongodb0.example.net:27017"

}
]

}

Step 10: Add the remaining members to the replica set. Add the remaining members with the rs.add()
method.

The following example adds two members:

rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")

When complete, you have a fully functional replica set. The new replica set will elect a primary.

Step 11: Check the status of the replica set. Use the rs.status() operation:

rs.status()

Step 12: Create additional users to address operational requirements. You can use built-in roles (page 405) to
create common types of database users, such as the dbOwner (page 407) role to create a database administrator, the
readWrite (page 405) role to create a user who can update data, or the read (page 405) role to create user who
can search data but no more. You also can define custom roles (page 321).

For example, the following creates a database administrator for the products database:

6.3. Security Tutorials 351

MongoDB Documentation, Release 2.6.11

use products
db.createUser(

{
user: "productsDBAdmin",
pwd: "password",
roles:
[

{
role: "dbOwner",
db: "products"

}
]

}
)

For an overview of roles and privileges, see Authorization (page 320). For more information on adding users, see Add
a User to a Database (page 383).

6.3.3 Access Control Tutorials

The following tutorials provide instructions for MongoDB”s authentication and authorization related features.

Enable Client Access Control (page 353) Describes the process for enabling authentication for MongoDB deploy-
ments.

Enable Authentication in a Sharded Cluster (page 354) Control access to a sharded cluster through a key file and
the keyFile setting on each of the cluster’s components.

Enable Authentication after Creating the User Administrator (page 355) Describes an alternative process for en-
abling authentication for MongoDB deployments.

Use x.509 Certificates to Authenticate Clients (page 357) Use x.509 for client authentication.

Use x.509 Certificate for Membership Authentication (page 359) Use x.509 for internal member authentication for
replica sets and sharded clusters.

Authenticate Using SASL and LDAP with ActiveDirectory (page 363) Describes the process for authentication us-
ing SASL/LDAP with ActiveDirectory.

Authenticate Using SASL and LDAP with OpenLDAP (page 366) Describes the process for authentication using
SASL/LDAP with OpenLDAP.

Configure MongoDB with Kerberos Authentication on Linux (page 369) For MongoDB Enterprise Linux, de-
scribes the process to enable Kerberos-based authentication for MongoDB deployments.

Configure MongoDB with Kerberos Authentication on Windows (page 372) For MongoDB Enterprise for Win-
dows, describes the process to enable Kerberos-based authentication for MongoDB deployments.

Authenticate to a MongoDB Instance or Cluster (page 375) Describes the process for authenticating to MongoDB
systems using the mongo shell.

Generate a Key File (page 376) Use key file to allow the components of MongoDB sharded cluster or replica set to
mutually authenticate.

Troubleshoot Kerberos Authentication on Linux (page 377) Steps to troubleshoot Kerberos-based authentication
for MongoDB deployments.

Implement Field Level Redaction (page 379) Describes the process to set up and access document content that can
have different access levels for the same data.

352 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Enable Client Access Control

On this page

• Overview (page 353)
• Considerations (page 353)
• Procedure (page 353)
• Next Steps (page 354)

Overview

Enabling access control on a MongoDB instance restricts access to the instance by requiring that users identify them-
selves when connecting. In this procedure, you enable access control and then create the instance’s first user, which
must be a user administrator. The user administrator grants further access to the instance by creating additional users.

Considerations

If you create the user administrator before enabling access control, MongoDB disables the localhost exception
(page 319). In that case, you must use the “Enable Authentication after Creating the User Administrator (page 355)”
procedure to enable access control.

This procedure uses the localhost exception (page 319) to allow you to create the first user after enabling authentication.
See Localhost Exception (page 319) and Authentication (page 316) for more information.

Procedure

Step 1: Start the MongoDB instance with authentication enabled. Start the mongod or mongos instance with
the authorization or keyFile setting. Use authorization on a standalone instance. Use keyFile on an
instance in a replica set or sharded cluster.

For example, to start a mongod with authentication enabled and a key file stored in /private/var, first set the
following option in the mongod‘s configuration file:

security:
keyFile: /private/var/key.pem

Then start the mongod and specify the config file. For example:

mongod --config /etc/mongodb/mongodb.conf

After you enable authentication, only the user administrator can connect to the MongoDB instance. The user admin-
istrator must log in and grant further access to the instance by creating additional users.

Step 2: Connect to the MongoDB instance via the localhost exception. Connect to the MongoDB instance from
a client running on the same system. This access is made possible by the localhost exception (page 319).

Step 3: Create the system user administrator. Add the user with the userAdminAnyDatabase (page 411)
role, and only that role.

The following example creates the user siteUserAdmin user on the admin database:

6.3. Security Tutorials 353

MongoDB Documentation, Release 2.6.11

use admin
db.createUser(

{
user: "siteUserAdmin",
pwd: "password",
roles: [{ role: "userAdminAnyDatabase", db: "admin" }]

}
)

After you create the user administrator, the localhost exception (page 319) is no longer available.

The mongo shell executes a number of commands at start up. As a result, when you log in as the user administrator,
you may see authentication errors from one or more commands. You may ignore these errors, which are expected,
because the userAdminAnyDatabase (page 411) role does not have permissions to run some of the start up
commands.

Step 4: Create additional users. Login in with the user administrator’s credentials and create additional users. See
Add a User to a Database (page 383).

Next Steps

If you need to disable access control for any reason, restart the process without the authorization or keyFile
setting.

Enable Authentication in a Sharded Cluster

On this page

• Overview (page 354)
• Consideration (page 354)
• Procedure (page 355)
• Related Documents (page 355)

New in version 2.0: Support for authentication with sharded clusters.

Overview

When authentication is enabled on a sharded cluster every client that accesses the cluster must provide credentials.
This includes MongoDB instances that access each other within the cluster.

To enable authentication on a sharded cluster, you must enable authentication individually on each component of the
cluster. This means enabling authentication on each mongos and each mongod, including each config server, and all
members of a shard’s replica set.

Authentication requires an authentication mechanism and, in most cases, a keyfile. The content of the key file must
be the same on all cluster members.

Consideration

It is not possible to convert an existing sharded cluster that does not enforce access control to require authentication
without taking all components of the cluster offline for a short period of time.

354 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Procedure

Step 1: Create a key file. Create the key file your deployment will use to authenticate servers to each other.

To generate pseudo-random data to use for a keyfile, issue the following openssl command:

openssl rand -base64 741 > mongodb-keyfile
chmod 600 mongodb-keyfile

You may generate a key file using any method you choose. Always ensure that the password stored in the key file is
both long and contains a high amount of entropy. Using openssl in this manner helps generate such a key.

Step 2: Enable authentication on each component in the cluster. On each mongos and mongod in the cluster,
including all config servers and shards, specify the key file using one of the following approaches:

Specify the key file in the configuration file. In the configuration file, set the keyFile option to the key file’s path
and then start the component, as in the following example:

security:
keyFile: /srv/mongodb/keyfile

Specify the key file at runtime. When starting the component, set the --keyFile option, which is an option
for both mongos instances and mongod instances. Set the --keyFile to the key file’s path. The keyFile
setting implies the authorization setting, which means in most cases you do not need to set authorization
explicitly.

Step 3: Add users. While connected to a mongos, add the first administrative user and then add subsequent users.
See Create a User Administrator (page 381).

Related Documents

• Authentication (page 316)

• Security (page 313)

• Use x.509 Certificate for Membership Authentication (page 359)

Enable Authentication after Creating the User Administrator

On this page

• Overview (page 356)
• Considerations (page 356)
• Procedure (page 356)
• Next Steps (page 357)

6.3. Security Tutorials 355

MongoDB Documentation, Release 2.6.11

Overview

Enabling authentication on a MongoDB instance restricts access to the instance by requiring that users identify them-
selves when connecting. In this procedure, you will create the instance’s first user, which must be a user administrator
and then enable authentication. Then, you can authenticate as the user administrator to create additional users and
grant additional access to the instance.

This procedures outlines how enable authentication after creating the user administrator. The approach requires a
restart. To enable authentication without restarting, see Enable Client Access Control (page 353).

Considerations

This document outlines a procedure for enabling authentication for MongoDB instance where you create the first user
on an existing MongoDB system that does not require authentication before restarting the instance and requiring au-
thentication. You can use the localhost exception (page 319) to gain access to a system with no users and authentication
enabled. See Enable Client Access Control (page 353) for the description of that procedure.

Procedure

Step 1: Start the MongoDB instance without authentication. Start the mongod or mongos instance without the
authorization or keyFile setting. For example:

mongod --port 27017 --dbpath /data/db1

For details on starting a mongod or mongos, see Manage mongod Processes (page 236) or Deploy a Sharded Cluster
(page 705).

Step 2: Create the system user administrator. Add the user with the userAdminAnyDatabase (page 411)
role, and only that role.

The following example creates the user siteUserAdmin user on the admin database:

use admin
db.createUser(

{
user: "siteUserAdmin",
pwd: "password",
roles: [{ role: "userAdminAnyDatabase", db: "admin" }]

}
)

Step 3: Re-start the MongoDB instance with authentication enabled. Re-start the mongod or mongos instance
with the authorization or keyFile setting. Use authorization on a standalone instance. Use keyFile
on an instance in a replica set or sharded cluster.

The following example enables authentication on a standalone mongod using the authorization command-line
option:

mongod --auth --config /etc/mongodb/mongodb.conf

Step 4: Create additional users. Log in with the user administrator’s credentials and create additional users. See
Add a User to a Database (page 383).

356 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Next Steps

If you need to disable authentication for any reason, restart the process without the authorization or keyFile
option.

Use x.509 Certificates to Authenticate Clients

On this page

• Prerequisites (page 357)
• Procedures (page 358)

New in version 2.6.

MongoDB supports x.509 certificate authentication for use with a secure TLS/SSL connection (page 338). The x.509
client authentication allows clients to authenticate to servers with certificates (page 357) rather than with a username
and password.

To use x.509 authentication for the internal authentication of replica set/sharded cluster members, see Use x.509
Certificate for Membership Authentication (page 359).

Prerequisites

Important: A full description of TLS/SSL, PKI (Public Key Infrastructure) certificates, in particular x.509 cer-
tificates, and Certificate Authority is beyond the scope of this document. This tutorial assumes prior knowledge of
TLS/SSL as well as access to valid x.509 certificates.

Certificate Authority For production use, your MongoDB deployment should use valid certificates generated and
signed by a single certificate authority. You or your organization can generate and maintain an independent certificate
authority, or use certificates generated by a third-party SSL vendor. Obtaining and managing certificates is beyond the
scope of this documentation.

Client x.509 Certificate The client certificate must have the following properties:

• A single Certificate Authority (CA) must issue the certificates for both the client and the server.

• Client certificates must contain the following fields:

keyUsage = digitalSignature
extendedKeyUsage = clientAuth

• Each unique MongoDB user must have a unique certificate.

• A client x.509 certificate’s subject, which contains the Distinguished Name (DN), must differ from that of a
Member x.509 Certificate (page 360). Specifically, the subjects must differ with regards to at least one of the
following attributes: Organization (O), the Organizational Unit (OU) or the Domain Component (DC).

Warning: If a client x.509 certificate’s subject has the same O, OU, and DC combination as the Member
x.509 Certificate (page 360), the client will be identified as a cluster member and granted full permission on
the system.

6.3. Security Tutorials 357

MongoDB Documentation, Release 2.6.11

Procedures

Configure MongoDB Server

Use Command-line Options You can configure the MongoDB server from the command line, e.g.:

mongod --clusterAuthMode x509 --sslMode requireSSL --sslPEMKeyFile <path to SSL certificate and key PEM file> --sslCAFile <path to root CA PEM file>

Warning: If the --sslCAFile option and its target file are not specified, x.509 client and member authenti-
cation will not function. mongod, and mongos in sharded systems, will not be able to verify the certificates of
processes connecting to it against the trusted certificate authority (CA) that issued them, breaking the certificate
chain.
As of version 2.6.4, mongod will not start with x.509 authentication enabled if the CA file is not specified.

Use Configuration File You may also specify these options in the configuration file.

Starting in MongoDB 2.6, you can specify the configuration for MongoDB in YAML format, e.g.:

security:
clusterAuthMode: x509

net:
ssl:

mode: requireSSL
PEMKeyFile: <path to TLS/SSL certificate and key PEM file>
CAFile: <path to root CA PEM file>

For backwards compatibility, you can also specify the configuration using the older configuration file format49, e.g.:

clusterAuthMode = x509
sslMode = requireSSL
sslPEMKeyFile = <path to TLS/SSL certificate and key PEM file>
sslCAFile = <path to the root CA PEM file>

Include any additional options, TLS/SSL or otherwise, that are required for your specific configuration.

Add x.509 Certificate subject as a User To authenticate with a client certificate, you must first add the value of
the subject from the client certificate as a MongoDB user. Each unique x.509 client certificate corresponds to a
single MongoDB user; i.e. you cannot use a single client certificate to authenticate more than one MongoDB user.

1. You can retrieve the subject from the client certificate with the following command:

openssl x509 -in <pathToClient PEM> -inform PEM -subject -nameopt RFC2253

The command returns the subject string as well as certificate:

subject= CN=myName,OU=myOrgUnit,O=myOrg,L=myLocality,ST=myState,C=myCountry
-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----

2. Add the value of the subject, omitting the spaces, from the certificate as a user.

For example, in the mongo shell, to add the user with both the readWrite role in the test database and the
userAdminAnyDatabase role which is defined only in the admin database:

49http://docs.mongodb.org/v2.4/reference/configuration-options

358 Chapter 6. Security

http://docs.mongodb.org/v2.4/reference/configuration-options

MongoDB Documentation, Release 2.6.11

db.getSiblingDB("$external").runCommand(
{

createUser: "CN=myName,OU=myOrgUnit,O=myOrg,L=myLocality,ST=myState,C=myCountry",
roles: [

{ role: 'readWrite', db: 'test' },
{ role: 'userAdminAnyDatabase', db: 'admin' }

],
writeConcern: { w: "majority" , wtimeout: 5000 }

}
)

In the above example, to add the user with the readWrite role in the test database, the role specification
document specified ’test’ in the db field. To add userAdminAnyDatabase role for the user, the above
example specified ’admin’ in the db field.

Note: Some roles are defined only in the admin database, including: clusterAdmin,
readAnyDatabase, readWriteAnyDatabase, dbAdminAnyDatabase, and
userAdminAnyDatabase. To add a user with these roles, specify ’admin’ in the db.

See Add a User to a Database (page 383) for details on adding a user with roles.

Authenticate with a x.509 Certificate To authenticate with a client certificate, you must first add a MongoDB user
that corresponds to the client certificate. See Add x.509 Certificate subject as a User (page 358).

To authenticate, use the db.auth() method in the $external database, specifying "MONGODB-X509" for the
mechanism field, and the user that corresponds to the client certificate (page 358) for the user field.

For example, if using the mongo shell,

1. Connect mongo shell to the mongod set up for TLS/SSL:

mongo --ssl --sslPEMKeyFile <path to CA signed client PEM file> --sslCAFile <path to root CA PEM file>

2. To perform the authentication, use the db.auth()method in the $external database. For the mechanism
field, specify "MONGODB-X509", and for the user field, specify the user, or the subject, that corresponds
to the client certificate.

db.getSiblingDB("$external").auth(
{

mechanism: "MONGODB-X509",
user: "CN=myName,OU=myOrgUnit,O=myOrg,L=myLocality,ST=myState,C=myCountry"

}
)

Use x.509 Certificate for Membership Authentication

On this page

• Member x.509 Certificate (page 360)
• Configure Replica Set/Sharded Cluster (page 360)
• Upgrade from Keyfile Authentication to x.509 Authentication (page 361)

New in version 2.6.

6.3. Security Tutorials 359

MongoDB Documentation, Release 2.6.11

MongoDB supports x.509 certificate authentication for use with a secure TLS/SSL connection (page 338). Sharded
cluster members and replica set members can use x.509 certificates to verify their membership to the cluster or the
replica set instead of using keyfiles (page 316). The membership authentication is an internal process.

For client authentication with x.509, see Use x.509 Certificates to Authenticate Clients (page 357).

Important: A full description of TLS/SSL, PKI (Public Key Infrastructure) certificates, in particular x.509 cer-
tificates, and Certificate Authority is beyond the scope of this document. This tutorial assumes prior knowledge of
TLS/SSL as well as access to valid x.509 certificates.

Member x.509 Certificate

The member certificate, used for internal authentication to verify membership to the sharded cluster or a replica set,
must have the following properties:

• A single Certificate Authority (CA) must issue all the x.509 certificates for the members of a sharded cluster or
a replica set.

• The Distinguished Name (DN), found in the member certificate’s subject, must specify a non-empty value
for at least one of the following attributes: Organization (O), the Organizational Unit (OU) or the Domain
Component (DC).

• The Organization attributes (O‘s), the Organizational Unit attributes (OU‘s), and the Domain Components (DC‘s)
must match those from the certificates for the other cluster members. To match, the certificate must match all
specifications of these attributes, or even the non-specification of these attributes. The order of the attributes
does not matter.

In the following example, the two DN‘s contain matching specifications for O, OU as well as the non-specification
of the DC attribute.

CN=host1,OU=Dept1,O=MongoDB,ST=NY,C=US
C=US, ST=CA, O=MongoDB, OU=Dept1, CN=host2

However, the following two DN‘s contain a mismatch for the OU attribute since one contains two OU specifica-
tions and the other, only one specification.

CN=host1,OU=Dept1,OU=Sales,O=MongoDB
CN=host2,OU=Dept1,O=MongoDB

• Either the Common Name (CN) or one of the Subject Alternative Name (SAN) entries must match the hostname
of the server, used by the other members of the cluster.

For example, the certificates for a cluster could have the following subjects:

subject= CN=<myhostname1>,OU=Dept1,O=MongoDB,ST=NY,C=US
subject= CN=<myhostname2>,OU=Dept1,O=MongoDB,ST=NY,C=US
subject= CN=<myhostname3>,OU=Dept1,O=MongoDB,ST=NY,C=US

You can use an x509 certificate that does not have Extended Key Usage (EKU) attributes set. If you use EKU attribute
in the PEMKeyFile certificate, then specify the clientAuth and/or serverAuth attributes (i.e. “TLS Web
Client Authentication” and “TLS Web Server Authentication,”) as needed. The certificate that you specify for the
PEMKeyFile option requires the serverAuth attribute, and the certificate you specify to clusterFile requires
the clientAuth attribute. If you omit ClusterFile, mongod will use the certificate specified to PEMKeyFile
for member authentication.

Configure Replica Set/Sharded Cluster

360 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Use Command-line Options To specify the x.509 certificate for internal cluster member authentication, append the
additional TLS/SSL options --clusterAuthMode and --sslClusterFile, as in the following example for a
member of a replica set:

mongod --replSet <name> --sslMode requireSSL --clusterAuthMode x509 --sslClusterFile <path to membership certificate and key PEM file> --sslPEMKeyFile <path to SSL certificate and key PEM file> --sslCAFile <path to root CA PEM file>

Include any additional options, TLS/SSL or otherwise, that are required for your specific configuration. For instance,
if the membership key is encrypted, set the --sslClusterPassword to the passphrase to decrypt the key or have
MongoDB prompt for the passphrase. See SSL Certificate Passphrase (page 341) for details.

Warning: If the --sslCAFile option and its target file are not specified, x.509 client and member authenti-
cation will not function. mongod, and mongos in sharded systems, will not be able to verify the certificates of
processes connecting to it against the trusted certificate authority (CA) that issued them, breaking the certificate
chain.
As of version 2.6.4, mongod will not start with x.509 authentication enabled if the CA file is not specified.

Use Configuration File You can specify the configuration for MongoDB in a YAML formatted configuration
file, as in the following example:

security:
clusterAuthMode: x509

net:
ssl:

mode: requireSSL
PEMKeyFile: <path to TLS/SSL certificate and key PEM file>
CAFile: <path to root CA PEM file>
clusterFile: <path to x.509 membership certificate and key PEM file>

See security.clusterAuthMode, net.ssl.mode, net.ssl.PEMKeyFile, net.ssl.CAFile, and
net.ssl.clusterFile for more information on the settings.

Upgrade from Keyfile Authentication to x.509 Authentication

To upgrade clusters that are currently using keyfile authentication to x.509 authentication, use a rolling upgrade pro-
cess.

Clusters Currently Using TLS/SSL For clusters using TLS/SSL and keyfile authentication, to upgrade to x.509
cluster authentication, use the following rolling upgrade process:

1. For each node of a cluster, start the node with the option --clusterAuthMode set to sendKeyFile and
the option --sslClusterFile set to the appropriate path of the node’s certificate. Include other TLS/SSL
options (page 338) as well as any other options that are required for your specific configuration. For example:

mongod --replSet <name> --sslMode requireSSL --clusterAuthMode sendKeyFile --sslClusterFile <path to membership certificate and key PEM file> --sslPEMKeyFile <path to SSL Certificate and key PEM file> --sslCAFile <path to root CA PEM file>

With this setting, each node continues to use its keyfile to authenticate itself as a member. However, each
node can now accept either a keyfile or an x.509 certificate from other members to authenticate those members.
Upgrade all nodes of the cluster to this setting.

2. Then, for each node of a cluster, connect to the node and use the setParameter command to update the
clusterAuthMode to sendX509. 50 For example,

50 As an alternative to using the setParameter command, you can also restart the nodes with the appropriate TLS/SSL and x509 options and
values.

6.3. Security Tutorials 361

MongoDB Documentation, Release 2.6.11

db.getSiblingDB('admin').runCommand({ setParameter: 1, clusterAuthMode: "sendX509" })

With this setting, each node uses its x.509 certificate, specified with the --sslClusterFile option in the
previous step, to authenticate itself as a member. However, each node continues to accept either a keyfile or an
x.509 certificate from other members to authenticate those members. Upgrade all nodes of the cluster to this
setting.

3. Optional but recommended. Finally, for each node of the cluster, connect to the node and use the
setParameter command to update the clusterAuthMode to x509 to only use the x.509 certificate for
authentication. 1 For example:

db.getSiblingDB('admin').runCommand({ setParameter: 1, clusterAuthMode: "x509" })

4. After the upgrade of all nodes, edit the configuration file with the appropriate x.509 settings to ensure
that upon subsequent restarts, the cluster uses x.509 authentication.

See --clusterAuthMode for the various modes and their descriptions.

Clusters Currently Not Using TLS/SSL For clusters using keyfile authentication but not TLS/SSL, to upgrade to
x.509 authentication, use the following rolling upgrade process:

1. For each node of a cluster, start the node with the option --sslMode set to allowSSL, the option
--clusterAuthMode set to sendKeyFile and the option --sslClusterFile set to the appropri-
ate path of the node’s certificate. Include other TLS/SSL options (page 338) as well as any other options that are
required for your specific configuration. For example:

mongod --replSet <name> --sslMode allowSSL --clusterAuthMode sendKeyFile --sslClusterFile <path to membership certificate and key PEM file> --sslPEMKeyFile <path to SSL certificate and key PEM file> --sslCAFile <path to root CA PEM file>

The --sslMode allowSSL setting allows the node to accept both TLS/SSL and non-TLS/non-SSL incom-
ing connections. Its outgoing connections do not use TLS/SSL.

The --clusterAuthMode sendKeyFile setting allows each node continues to use its keyfile to authen-
ticate itself as a member. However, each node can now accept either a keyfile or an x.509 certificate from other
members to authenticate those members.

Upgrade all nodes of the cluster to these settings.

2. Then, for each node of a cluster, connect to the node and use the setParameter command to update the
sslMode to preferSSL and the clusterAuthMode to sendX509. 1 For example:

db.getSiblingDB('admin').runCommand({ setParameter: 1, sslMode: "preferSSL", clusterAuthMode: "sendX509" })

With the sslMode set to preferSSL, the node accepts both TLS/SSL and non-TLS/non-SSL incoming con-
nections, and its outgoing connections use TLS/SSL.

With the clusterAuthMode set to sendX509, each node uses its x.509 certificate, specified with the
--sslClusterFile option in the previous step, to authenticate itself as a member. However, each node
continues to accept either a keyfile or an x.509 certificate from other members to authenticate those members.

Upgrade all nodes of the cluster to these settings.

3. Optional but recommended. Finally, for each node of the cluster, connect to the node and use the
setParameter command to update the sslMode to requireSSL and the clusterAuthMode to x509.
1 For example:

db.getSiblingDB('admin').runCommand({ setParameter: 1, sslMode: "requireSSL", clusterAuthMode: "x509" })

With the sslMode set to requireSSL, the node only uses TLS/SSLs connections.

With the clusterAuthMode set to x509, the node only uses the x.509 certificate for authentication.

362 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

4. After the upgrade of all nodes, edit the configuration file with the appropriate TLS/SSL and x.509
settings to ensure that upon subsequent restarts, the cluster uses x.509 authentication.

See --clusterAuthMode for the various modes and their descriptions.

Authenticate Using SASL and LDAP with ActiveDirectory

On this page

• Considerations (page 363)
• Configure saslauthd (page 363)
• Configure MongoDB (page 364)

MongoDB Enterprise provides support for proxy authentication of users. This allows administrators to configure
a MongoDB cluster to authenticate users by proxying authentication requests to a specified Lightweight Directory
Access Protocol (LDAP) service.

Considerations

MongoDB Enterprise for Windows does not include LDAP support for authentication. However, MongoDB Enterprise
for Linux supports using LDAP authentication with an ActiveDirectory server.

MongoDB does not support LDAP authentication in mixed sharded cluster deployments that contain both version 2.4
and version 2.6 shards. See Upgrade MongoDB to 2.6 (page 847) for upgrade instructions.

Use secure encrypted or trusted connections between clients and the server, as well as between saslauthd and the
LDAP server. The LDAP server uses the SASL PLAIN mechanism, sending and receiving data in plain text. You
should use only a trusted channel such as a VPN, a connection encrypted with TLS/SSL, or a trusted wired network.

Configure saslauthd

LDAP support for user authentication requires proper configuration of the saslauthd daemon process as well as
the MongoDB server.

Step 1: Specify the mechanism. On systems that configure saslauthd with the
/etc/sysconfig/saslauthd file, such as Red Hat Enterprise Linux, Fedora, CentOS, and Amazon
Linux AMI, set the mechanism MECH to ldap:

MECH=ldap

On systems that configure saslauthd with the /etc/default/saslauthd file, such as Ubuntu, set the
MECHANISMS option to ldap:

MECHANISMS="ldap"

Step 2: Adjust caching behavior. On certain Linux distributions, saslauthd starts with the caching of authenti-
cation credentials enabled. Until restarted or until the cache expires, saslauthd will not contact the LDAP server
to re-authenticate users in its authentication cache. This allows saslauthd to successfully authenticate users in its
cache, even in the LDAP server is down or if the cached users’ credentials are revoked.

To set the expiration time (in seconds) for the authentication cache, see the -t option51 of saslauthd.
51http://www.linuxcommand.org/man_pages/saslauthd8.html

6.3. Security Tutorials 363

http://www.linuxcommand.org/man_pages/saslauthd8.html

MongoDB Documentation, Release 2.6.11

Step 3: Configure LDAP Options with ActiveDirectory. If the saslauthd.conf file does not exist, create it.
The saslauthd.conf file usually resides in the /etc folder. If specifying a different file path, see the -O option52

of saslauthd.

To use with ActiveDirectory, start saslauthd with the following configuration options set in the
saslauthd.conf file:

ldap_servers: <ldap uri>
ldap_use_sasl: yes
ldap_mech: DIGEST-MD5
ldap_auth_method: fastbind

For the <ldap uri>, specify the uri of the ldap server. For example, ldap_servers:
ldaps://ad.example.net.

For more information on saslauthd configuration, see http://www.openldap.org/doc/admin24/guide.html#Configuringsaslauthd.

Step 4: Test the saslauthd configuration. Use testsaslauthd utility to test the saslauthd configuration.
For example:

testsaslauthd -u testuser -p testpassword -f /var/run/saslauthd/mux

Configure MongoDB

Step 1: Add user to MongoDB for authentication. Add the user to the $external database in MongoDB. To
specify the user’s privileges, assign roles (page 320) to the user.

For example, the following adds a user with read-only access to the records database.

db.getSiblingDB("$external").createUser(
{

user : <username>,
roles: [{ role: "read", db: "records" }]

}
)

Add additional principals as needed. For more information about creating and managing users, see
http://docs.mongodb.org/manual/reference/command/nav-user-management.

Step 2: Configure MongoDB server. To configure the MongoDB server to use the saslauthd instance for proxy
authentication, start the mongod with the following options:

• --auth,

• authenticationMechanisms parameter set to PLAIN, and

• saslauthdPath parameter set to the path to the Unix-domain Socket of the saslauthd instance.

Configure the MongoDB server using either the command line option --setParameter or the configuration
file. Specify additional configurations as appropriate for your configuration.

If you use the authorization option to enforce authentication, you will need privileges to create a user.

52http://www.linuxcommand.org/man_pages/saslauthd8.html

364 Chapter 6. Security

http://www.linuxcommand.org/man_pages/saslauthd8.html
http://www.openldap.org/doc/admin24/guide.html#Configuringsaslauthd

MongoDB Documentation, Release 2.6.11

Use specific saslauthd socket path. For socket path of /<some>/<path>/saslauthd, set the
saslauthdPath to /<some>/<path>/saslauthd/mux, as in the following command line example:

mongod --auth --setParameter saslauthdPath=/<some>/<path>/saslauthd/mux --setParameter authenticationMechanisms=PLAIN

Or if using a YAML format configuration file, specify the following settings in the file:

security:
authorization: enabled

setParameter:
saslauthdPath: /<some>/<path>/saslauthd/mux
authenticationMechanisms: PLAIN

Or, if using the older configuration file format53:

auth=true
setParameter=saslauthdPath=/<some>/<path>/saslauthd/mux
setParameter=authenticationMechanisms=PLAIN

Use default Unix-domain socket path. To use the default Unix-domain socket path, set the saslauthdPath to
the empty string "", as in the following command line example:

mongod --auth --setParameter saslauthdPath="" --setParameter authenticationMechanisms=PLAIN

Or if using a YAML format configuration file, specify the following settings in the file:

security:
authorization: enabled

setParameter:
saslauthdPath: ""
authenticationMechanisms: PLAIN

Or, if using the older configuration file format54:

auth=true
setParameter=saslauthdPath=""
setParameter=authenticationMechanisms=PLAIN

Step 3: Authenticate the user in the mongo shell. To perform the authentication in the mongo shell, use the
db.auth() method in the $external database.

Specify the value "PLAIN" in the mechanism field, the user and password in the user and pwd fields respectively,
and the value false in the digestPassword field. You must specify false for digestPassword since the
server must receive an undigested password to forward on to saslauthd, as in the following example:

db.getSiblingDB("$external").auth(
{

mechanism: "PLAIN",
user: <username>,
pwd: <cleartext password>,
digestPassword: false

}
)

53http://docs.mongodb.org/v2.4/reference/configuration-options
54http://docs.mongodb.org/v2.4/reference/configuration-options

6.3. Security Tutorials 365

http://docs.mongodb.org/v2.4/reference/configuration-options
http://docs.mongodb.org/v2.4/reference/configuration-options

MongoDB Documentation, Release 2.6.11

The server forwards the password in plain text. In general, use only on a trusted channel (VPN, TLS/SSL, trusted
wired network). See Considerations.

Authenticate Using SASL and LDAP with OpenLDAP

On this page

• Considerations (page 366)
• Configure saslauthd (page 366)
• Configure MongoDB (page 367)

MongoDB Enterprise provides support for proxy authentication of users. This allows administrators to configure
a MongoDB cluster to authenticate users by proxying authentication requests to a specified Lightweight Directory
Access Protocol (LDAP) service.

Considerations

MongoDB Enterprise for Windows does not include LDAP support for authentication. However, MongoDB Enterprise
for Linux supports using LDAP authentication with an ActiveDirectory server.

MongoDB does not support LDAP authentication in mixed sharded cluster deployments that contain both version 2.4
and version 2.6 shards. See Upgrade MongoDB to 2.6 (page 847) for upgrade instructions.

Use secure encrypted or trusted connections between clients and the server, as well as between saslauthd and the
LDAP server. The LDAP server uses the SASL PLAIN mechanism, sending and receiving data in plain text. You
should use only a trusted channel such as a VPN, a connection encrypted with TLS/SSL, or a trusted wired network.

Configure saslauthd

LDAP support for user authentication requires proper configuration of the saslauthd daemon process as well as
the MongoDB server.

Step 1: Specify the mechanism. On systems that configure saslauthd with the
/etc/sysconfig/saslauthd file, such as Red Hat Enterprise Linux, Fedora, CentOS, and Amazon
Linux AMI, set the mechanism MECH to ldap:

MECH=ldap

On systems that configure saslauthd with the /etc/default/saslauthd file, such as Ubuntu, set the
MECHANISMS option to ldap:

MECHANISMS="ldap"

Step 2: Adjust caching behavior. On certain Linux distributions, saslauthd starts with the caching of authenti-
cation credentials enabled. Until restarted or until the cache expires, saslauthd will not contact the LDAP server
to re-authenticate users in its authentication cache. This allows saslauthd to successfully authenticate users in its
cache, even in the LDAP server is down or if the cached users’ credentials are revoked.

To set the expiration time (in seconds) for the authentication cache, see the -t option55 of saslauthd.

55http://www.linuxcommand.org/man_pages/saslauthd8.html

366 Chapter 6. Security

http://www.linuxcommand.org/man_pages/saslauthd8.html

MongoDB Documentation, Release 2.6.11

Step 3: Configure LDAP Options with OpenLDAP. If the saslauthd.conf file does not exist, create it. The
saslauthd.conf file usually resides in the /etc folder. If specifying a different file path, see the -O option56 of
saslauthd.

To connect to an OpenLDAP server, update the saslauthd.conf file with the following configuration options:

ldap_servers: <ldap uri>
ldap_search_base: <search base>
ldap_filter: <filter>

The ldap_servers specifies the uri of the LDAP server used for authentication. In general, for OpenLDAP installed
on the local machine, you can specify the value ldap://localhost:389 or if using LDAP over TLS/SSL, you
can specify the value ldaps://localhost:636.

The ldap_search_base specifies distinguished name to which the search is relative. The search includes the base
or objects below.

The ldap_filter specifies the search filter.

The values for these configuration options should correspond to the values specific for your test. For example, to filter
on email, specify ldap_filter: (mail=%n) instead.

OpenLDAP Example A sample saslauthd.conf file for OpenLDAP includes the following content:

ldap_servers: ldaps://ad.example.net
ldap_search_base: ou=Users,dc=example,dc=com
ldap_filter: (uid=%u)

To use this sample OpenLDAP configuration, create users with a uid attribute (login name) and place under the
Users organizational unit (ou) under the domain components (dc) example and com.

For more information on saslauthd configuration, see http://www.openldap.org/doc/admin24/guide.html#Configuringsaslauthd.

Step 4: Test the saslauthd configuration. Use testsaslauthd utility to test the saslauthd configuration.
For example:

testsaslauthd -u testuser -p testpassword -f /var/run/saslauthd/mux

Configure MongoDB

Step 1: Add user to MongoDB for authentication. Add the user to the $external database in MongoDB. To
specify the user’s privileges, assign roles (page 320) to the user.

For example, the following adds a user with read-only access to the records database.

db.getSiblingDB("$external").createUser(
{

user : <username>,
roles: [{ role: "read", db: "records" }]

}
)

Add additional principals as needed. For more information about creating and managing users, see
http://docs.mongodb.org/manual/reference/command/nav-user-management.

56http://www.linuxcommand.org/man_pages/saslauthd8.html

6.3. Security Tutorials 367

http://www.linuxcommand.org/man_pages/saslauthd8.html
http://www.openldap.org/doc/admin24/guide.html#Configuringsaslauthd

MongoDB Documentation, Release 2.6.11

Step 2: Configure MongoDB server. To configure the MongoDB server to use the saslauthd instance for proxy
authentication, start the mongod with the following options:

• --auth,

• authenticationMechanisms parameter set to PLAIN, and

• saslauthdPath parameter set to the path to the Unix-domain Socket of the saslauthd instance.

Configure the MongoDB server using either the command line option --setParameter or the configuration
file. Specify additional configurations as appropriate for your configuration.

If you use the authorization option to enforce authentication, you will need privileges to create a user.

Use specific saslauthd socket path. For socket path of /<some>/<path>/saslauthd, set the
saslauthdPath to /<some>/<path>/saslauthd/mux, as in the following command line example:

mongod --auth --setParameter saslauthdPath=/<some>/<path>/saslauthd/mux --setParameter authenticationMechanisms=PLAIN

Or if using a YAML format configuration file, specify the following settings in the file:

security:
authorization: enabled

setParameter:
saslauthdPath: /<some>/<path>/saslauthd/mux
authenticationMechanisms: PLAIN

Or, if using the older configuration file format57:

auth=true
setParameter=saslauthdPath=/<some>/<path>/saslauthd/mux
setParameter=authenticationMechanisms=PLAIN

Use default Unix-domain socket path. To use the default Unix-domain socket path, set the saslauthdPath to
the empty string "", as in the following command line example:

mongod --auth --setParameter saslauthdPath="" --setParameter authenticationMechanisms=PLAIN

Or if using a YAML format configuration file, specify the following settings in the file:

security:
authorization: enabled

setParameter:
saslauthdPath: ""
authenticationMechanisms: PLAIN

Or, if using the older configuration file format58:

auth=true
setParameter=saslauthdPath=""
setParameter=authenticationMechanisms=PLAIN

57http://docs.mongodb.org/v2.4/reference/configuration-options
58http://docs.mongodb.org/v2.4/reference/configuration-options

368 Chapter 6. Security

http://docs.mongodb.org/v2.4/reference/configuration-options
http://docs.mongodb.org/v2.4/reference/configuration-options

MongoDB Documentation, Release 2.6.11

Step 3: Authenticate the user in the mongo shell. To perform the authentication in the mongo shell, use the
db.auth() method in the $external database.

Specify the value "PLAIN" in the mechanism field, the user and password in the user and pwd fields respectively,
and the value false in the digestPassword field. You must specify false for digestPassword since the
server must receive an undigested password to forward on to saslauthd, as in the following example:

db.getSiblingDB("$external").auth(
{

mechanism: "PLAIN",
user: <username>,
pwd: <cleartext password>,
digestPassword: false

}
)

The server forwards the password in plain text. In general, use only on a trusted channel (VPN, TLS/SSL, trusted
wired network). See Considerations.

Configure MongoDB with Kerberos Authentication on Linux

On this page

• Overview (page 369)
• Prerequisites (page 369)
• Procedure (page 369)
• Additional Considerations (page 371)
• Additional Resources (page 372)

New in version 2.4.

Overview

MongoDB Enterprise supports authentication using a Kerberos service (page 326). Kerberos is an industry standard
authentication protocol for large client/server system.

Prerequisites

Setting up and configuring a Kerberos deployment is beyond the scope of this document. This tutorial assumes
you have have configured a Kerberos service principal (page 327) for each mongod and mongos instance in your
MongoDB deployment, and you have a valid keytab file (page 328) for for each mongod and mongos instance.

To verify MongoDB Enterprise binaries:

mongod --version

In the output from this command, look for the string modules: subscription or modules: enterprise
to confirm your system has MongoDB Enterprise.

Procedure

The following procedure outlines the steps to add a Kerberos user principal to MongoDB, configure a standalone
mongod instance for Kerberos support, and connect using the mongo shell and authenticate the user principal.

6.3. Security Tutorials 369

MongoDB Documentation, Release 2.6.11

Step 1: Start mongodwithout Kerberos. For the initial addition of Kerberos users, start mongodwithout Kerberos
support.

If a Kerberos user is already in MongoDB and has the privileges required to create a user, you can start mongod with
Kerberos support.

Step 2: Connect to mongod. Connect via the mongo shell to the mongod instance. If mongod has --auth
enabled, ensure you connect with the privileges required to create a user.

Step 3: Add Kerberos Principal(s) to MongoDB. Add a Kerberos principal, <username>@<KERBEROS
REALM> or <username>/<instance>@<KERBEROS REALM>, to MongoDB in the $external database.
Specify the Kerberos realm in all uppercase. The $external database allows mongod to consult an external source
(e.g. Kerberos) to authenticate. To specify the user’s privileges, assign roles (page 320) to the user.

The following example adds the Kerberos principal application/reporting@EXAMPLE.NET with read-only
access to the records database:

use $external
db.createUser(

{
user: "application/reporting@EXAMPLE.NET",
roles: [{ role: "read", db: "records" }]

}
)

Add additional principals as needed. For every user you want to authenticate using Kerberos, you must
create a corresponding user in MongoDB. For more information about creating and managing users, see
http://docs.mongodb.org/manual/reference/command/nav-user-management.

Step 4: Start mongod with Kerberos support. To start mongod with Kerberos support, set the environmental
variable KRB5_KTNAME to the path of the keytab file and the mongod parameter authenticationMechanisms
to GSSAPI in the following form:

env KRB5_KTNAME=<path to keytab file> \
mongod \
--setParameter authenticationMechanisms=GSSAPI
<additional mongod options>

For example, the following starts a standalone mongod instance with Kerberos support:

env KRB5_KTNAME=/opt/mongodb/mongod.keytab \
/opt/mongodb/bin/mongod --auth \
--setParameter authenticationMechanisms=GSSAPI \
--dbpath /opt/mongodb/data

The path to your mongod as well as your keytab file (page 328) may differ. Modify or include additional mongod
options as required for your configuration. The keytab file (page 328) must be only accessible to the owner of the
mongod process.

With the official .deb or .rpm packages, you can set the KRB5_KTNAME in a environment settings file. See
KRB5_KTNAME (page 371) for details.

Step 5: Connect mongo shell to mongod and authenticate. Connect the mongo shell client as the Kerberos prin-
cipal application/reporting@EXAMPLE.NET. Before connecting, you must have used Kerberos’s kinit
program to get credentials for application/reporting@EXAMPLE.NET.

370 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

You can connect and authenticate from the command line.

mongo --authenticationMechanism=GSSAPI --authenticationDatabase='$external' \
--username application/reporting@EXAMPLE.NET

Or, alternatively, you can first connect mongo to the mongod, and then from the mongo shell, use the db.auth()
method to authenticate in the $external database.

use $external
db.auth({ mechanism: "GSSAPI", user: "application/reporting@EXAMPLE.NET" })

Additional Considerations

KRB5_KTNAME If you installed MongoDB Enterprise using one of the official .deb or .rpm packages, and you
use the included init/upstart scripts to control the mongod instance, you can set the KR5_KTNAME variable in the
default environment settings file instead of setting the variable each time.

For .rpm packages, the default environment settings file is /etc/sysconfig/mongod.

For .deb packages, the file is /etc/default/mongodb.

Set the KRB5_KTNAME value in a line that resembles the following:

export KRB5_KTNAME="<path to keytab>"

Configure mongos for Kerberos To start mongos with Kerberos support, set the environmen-
tal variable KRB5_KTNAME to the path of its keytab file (page 328) and the mongos parameter
authenticationMechanisms to GSSAPI in the following form:

env KRB5_KTNAME=<path to keytab file> \
mongos \
--setParameter authenticationMechanisms=GSSAPI \
<additional mongos options>

For example, the following starts a mongos instance with Kerberos support:

env KRB5_KTNAME=/opt/mongodb/mongos.keytab \
mongos \
--setParameter authenticationMechanisms=GSSAPI \
--configdb shard0.example.net, shard1.example.net,shard2.example.net \
--keyFile /opt/mongodb/mongos.keyfile

The path to your mongos as well as your keytab file (page 328) may differ. The keytab file (page 328) must be only
accessible to the owner of the mongos process.

Modify or include any additional mongos options as required for your configuration. For example, instead of us-
ing --keyFile for internal authentication of sharded cluster members, you can use x.509 member authentication
(page 359) instead.

Use a Config File To configure mongod or mongos for Kerberos support using a configuration file,
specify the authenticationMechanisms setting in the configuration file:

If using the YAML configuration file format:

setParameter:
authenticationMechanisms: GSSAPI

Or, if using the older .ini configuration file format:

6.3. Security Tutorials 371

MongoDB Documentation, Release 2.6.11

setParameter=authenticationMechanisms=GSSAPI

Modify or include any additional mongod options as required for your configuration. For example, if
/opt/mongodb/mongod.conf contains the following configuration settings for a standalone mongod:

security:
authorization: enabled

setParameter:
authenticationMechanisms: GSSAPI

storage:
dbPath: /opt/mongodb/data

Or, if using the older configuration file format59:

auth = true
setParameter=authenticationMechanisms=GSSAPI
dbpath=/opt/mongodb/data

To start mongod with Kerberos support, use the following form:

env KRB5_KTNAME=/opt/mongodb/mongod.keytab \
/opt/mongodb/bin/mongod --config /opt/mongodb/mongod.conf

The path to your mongod, keytab file (page 328), and configuration file may differ. The keytab file (page 328) must
be only accessible to the owner of the mongod process.

Troubleshoot Kerberos Setup for MongoDB If you encounter problems when starting mongod or mongos with
Kerberos authentication, see Troubleshoot Kerberos Authentication on Linux (page 377).

Incorporate Additional Authentication Mechanisms Kerberos authentication (GSSAPI) can work alongside
MongoDB’s challenge/response authentication mechanism (MONGODB-CR), MongoDB’s authentication mechanism
for LDAP (PLAIN), and MongoDB’s authentication mechanism for x.509 (MONGODB-X509). Specify the mecha-
nisms, as follows:

--setParameter authenticationMechanisms=GSSAPI,MONGODB-CR

Only add the other mechanisms if in use. This parameter setting does not affect MongoDB’s internal authentication of
cluster members.

Additional Resources

• MongoDB LDAP and Kerberos Authentication with Dell (Quest) Authentication Services60

• MongoDB with Red Hat Enterprise Linux Identity Management and Kerberos61

Configure MongoDB with Kerberos Authentication on Windows

59http://docs.mongodb.org/v2.4/reference/configuration-options
60https://www.mongodb.com/blog/post/mongodb-ldap-and-kerberos-authentication-dell-quest-authentication-services?jmp=docs
61http://docs.mongodb.org/ecosystem/tutorial/manage-red-hat-enterprise-linux-identity-management/?jmp=docs

372 Chapter 6. Security

http://docs.mongodb.org/v2.4/reference/configuration-options
https://www.mongodb.com/blog/post/mongodb-ldap-and-kerberos-authentication-dell-quest-authentication-services?jmp=docs
http://docs.mongodb.org/ecosystem/tutorial/manage-red-hat-enterprise-linux-identity-management/?jmp=docs

MongoDB Documentation, Release 2.6.11

On this page

• Overview (page 373)
• Prerequisites (page 373)
• Procedures (page 373)
• Additional Considerations (page 374)

New in version 2.6.

Overview

MongoDB Enterprise supports authentication using a Kerberos service (page 326). Kerberos is an industry standard
authentication protocol for large client/server system. Kerberos allows MongoDB and applications to take advantage
of existing authentication infrastructure and processes.

Prerequisites

Setting up and configuring a Kerberos deployment is beyond the scope of this document. This tutorial assumes have
configured a Kerberos service principal (page 327) for each mongod.exe and mongos.exe instance.

Procedures

Step 1: Start mongod.exe without Kerberos. For the initial addition of Kerberos users, start mongod.exe
without Kerberos support.

If a Kerberos user is already in MongoDB and has the privileges required to create a user, you can start mongod.exe
with Kerberos support.

Step 2: Connect to mongod. Connect via the mongo.exe shell to the mongod.exe instance. If mongod.exe
has --auth enabled, ensure you connect with the privileges required to create a user.

Step 3: Add Kerberos Principal(s) to MongoDB. Add a Kerberos principal, <username>@<KERBEROS
REALM>, to MongoDB in the $external database. Specify the Kerberos realm in ALL UPPERCASE. The
$external database allows mongod.exe to consult an external source (e.g. Kerberos) to authenticate. To specify
the user’s privileges, assign roles (page 320) to the user.

The following example adds the Kerberos principal reportingapp@EXAMPLE.NET with read-only access to the
records database:

use $external
db.createUser(

{
user: "reportingapp@EXAMPLE.NET",
roles: [{ role: "read", db: "records" }]

}
)

Add additional principals as needed. For every user you want to authenticate using Kerberos, you must
create a corresponding user in MongoDB. For more information about creating and managing users, see
http://docs.mongodb.org/manual/reference/command/nav-user-management.

6.3. Security Tutorials 373

MongoDB Documentation, Release 2.6.11

Step 4: Start mongod.exe with Kerberos support. You must start mongod.exe as the service principal ac-
count (page 374).

To start mongod.exe with Kerberos support, set the mongod.exe parameter authenticationMechanisms
to GSSAPI:

mongod.exe --setParameter authenticationMechanisms=GSSAPI <additional mongod.exe options>

For example, the following starts a standalone mongod.exe instance with Kerberos support:

mongod.exe --auth --setParameter authenticationMechanisms=GSSAPI

Modify or include additional mongod.exe options as required for your configuration.

Step 5: Connect mongo.exe shell to mongod.exe and authenticate. Connect the mongo.exe shell client as
the Kerberos principal application@EXAMPLE.NET.

You can connect and authenticate from the command line.

mongo.exe --authenticationMechanism=GSSAPI --authenticationDatabase='$external' \
--username reportingapp@EXAMPLE.NET

Or, alternatively, you can first connect mongo.exe to the mongod.exe, and then from the mongo.exe shell, use
the db.auth() method to authenticate in the $external database.

use $external
db.auth({ mechanism: "GSSAPI", user: "reportingapp@EXAMPLE.NET" })

Additional Considerations

Configure mongos.exe for Kerberos To start mongos.exe with Kerberos support, set the mongos.exe pa-
rameter authenticationMechanisms to GSSAPI. You must start mongos.exe as the service principal ac-
count (page 374).:

mongos.exe --setParameter authenticationMechanisms=GSSAPI <additional mongos options>

For example, the following starts a mongos instance with Kerberos support:

mongos.exe --setParameter authenticationMechanisms=GSSAPI --configdb shard0.example.net, shard1.example.net,shard2.example.net --keyFile C:\<path>\mongos.keyfile

Modify or include any additional mongos.exe options as required for your configuration. For example, instead of
using --keyFile for for internal authentication of sharded cluster members, you can use x.509 member authentica-
tion (page 359) instead.

Assign Service Principal Name to MongoDB Windows Service Use setspn.exe to assign the service principal
name (SPN) to the account running the mongod.exe and the mongos.exe service:

setspn.exe -A <service>/<fully qualified domain name> <service account name>

For example, if mongod.exe runs as a service named mongodb on testserver.mongodb.com with the ser-
vice account name mongodtest, assign the SPN as follows:

setspn.exe -A mongodb/testserver.mongodb.com mongodtest

374 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Incorporate Additional Authentication Mechanisms Kerberos authentication (GSSAPI) can work alongside
MongoDB’s challenge/response authentication mechanism (MONGODB-CR), MongoDB’s authentication mechanism
for LDAP (PLAIN), and MongoDB’s authentication mechanism for x.509 (MONGODB-X509). Specify the mecha-
nisms, as follows:

--setParameter authenticationMechanisms=GSSAPI,MONGODB-CR

Only add the other mechanisms if in use. This parameter setting does not affect MongoDB’s internal authentication of
cluster members.

Authenticate to a MongoDB Instance or Cluster

On this page

• Overview (page 375)
• Prerequisites (page 375)
• Procedures (page 375)

Overview

To authenticate to a running mongod or mongos instance, you must have user credentials for a resource on that
instance. When you authenticate to MongoDB, you authenticate either to a database or to a cluster. Your user privileges
determine the resource you can authenticate to.

You authenticate to a resource either by:

• using the authentication options when connecting to the mongod or mongos instance, or

• connecting first and then authenticating to the resource with the authenticate command or the db.auth()
method.

This section describes both approaches.

In general, always use a trusted channel (VPN, TLS/SSL, trusted wired network) for connecting to a MongoDB
instance.

Prerequisites

You must have user credentials on the database or cluster to which you are authenticating.

Procedures

Authenticate When First Connecting to MongoDB

Step 1: Specify your credentials when starting the mongo instance. When using mongo to connect to a mongod
or mongos, enter your username, password, and authenticationDatabase. For example:

mongo --username "prodManager" --password "cleartextPassword" --authenticationDatabase "products"

6.3. Security Tutorials 375

MongoDB Documentation, Release 2.6.11

Step 2: Close the session when your work is complete. To close an authenticated session, use the logout com-
mand.:

db.runCommand({ logout: 1 })

Authenticate After Connecting to MongoDB

Step 1: Connect to a MongoDB instance. Connect to a mongod or mongos instance.

Step 2: Switch to the database to which to authenticate.
use <database>

Step 3: Authenticate. Use either the authenticate command or the db.auth() method to provide your
username and password to the database. For example:

db.auth("prodManager", "cleartextPassword")

Step 4: Close the session when your work is complete. To close an authenticated session, use the logout com-
mand.:

db.runCommand({ logout: 1 })

Generate a Key File

On this page

• Overview (page 376)
• Procedure (page 377)

Overview

This section describes how to generate a key file to store authentication information. After generating a key file,
specify the key file using the keyFile option when starting a mongod or mongos instance.

A key’s length must be between 6 and 1024 characters and may only contain characters in the base64 set. The key
file must not have group or world permissions on UNIX systems. Key file permissions are not checked on Windows
systems.

MongoDB strips whitespace characters (e.g. x0d, x09, and x20) for cross-platform convenience. As a result, the
following operations produce identical keys:

echo -e "my secret key" > key1
echo -e "my secret key\n" > key2
echo -e "my secret key" > key3
echo -e "my\r\nsecret\r\nkey\r\n" > key4

376 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Procedure

Step 1: Create a key file. Create the key file your deployment will use to authenticate servers to each other.

To generate pseudo-random data to use for a keyfile, issue the following openssl command:

openssl rand -base64 741 > mongodb-keyfile
chmod 600 mongodb-keyfile

You may generate a key file using any method you choose. Always ensure that the password stored in the key file is
both long and contains a high amount of entropy. Using openssl in this manner helps generate such a key.

Step 2: Specify the key file when starting a MongoDB instance. Specify the path to the key file with the keyFile
option.

Troubleshoot Kerberos Authentication on Linux

On this page

• Kerberos Configuration Checklist (page 377)
• Debug with More Verbose Logs (page 378)
• Common Error Messages (page 378)

New in version 2.4.

Kerberos Configuration Checklist

If you have difficulty starting mongod or mongos with Kerberos (page 326) on Linux systems, ensure that:

• The mongod and the mongos binaries are from MongoDB Enterprise.

To verify MongoDB Enterprise binaries:

mongod --version

In the output from this command, look for the string modules: subscription or modules:
enterprise to confirm your system has MongoDB Enterprise.

• You are not using the HTTP Console62. MongoDB Enterprise does not support Kerberos authentication over the
HTTP Console interface.

• Either the service principal name (SPN) in the keytab file (page 328) matches the SPN for the
mongod or mongos instance, or the mongod or the mongos instance use the --setParameter
saslHostName=<host name> to match the name in the keytab file.

• The canonical system hostname of the system that runs the mongod or mongos instance is a resolvable, fully
qualified domain for this host. You can test the system hostname resolution with the hostname -f command
at the system prompt.

• Each host that runs a mongod or mongos instance has both the A and PTR DNS records to provide forward
and reverse lookup. The records allow the host to resolve the components of the Kerberos infrastructure.

62https://docs.mongodb.org/ecosystem/tools/http-interface/#http-console

6.3. Security Tutorials 377

https://docs.mongodb.org/ecosystem/tools/http-interface/#http-console

MongoDB Documentation, Release 2.6.11

• Both the Kerberos Key Distribution Center (KDC) and the system running mongod instance or mongos must
be able to resolve each other using DNS. By default, Kerberos attempts to resolve hosts using the content of the
/etc/kerb5.conf before using DNS to resolve hosts.

• The time synchronization of the systems running mongod or the mongos instances and the Kerberos infras-
tructure are within the maximum time skew (default is 5 minutes) of each other. Time differences greater than
the maximum time skew will prevent successful authentication.

Debug with More Verbose Logs

If you still encounter problems with Kerberos on Linux, you can start both mongod and mongo (or another client)
with the environment variable KRB5_TRACE set to different files to produce more verbose logging of the Kerberos
process to help further troubleshooting. For example, the following starts a standalone mongod with KRB5_TRACE
set:

env KRB5_KTNAME=/opt/mongodb/mongod.keytab \
KRB5_TRACE=/opt/mongodb/log/mongodb-kerberos.log \
/opt/mongodb/bin/mongod --dbpath /opt/mongodb/data \
--fork --logpath /opt/mongodb/log/mongod.log \
--auth --setParameter authenticationMechanisms=GSSAPI

Common Error Messages

In some situations, MongoDB will return error messages from the GSSAPI interface if there is a problem with the
Kerberos service. Some common error messages are:

GSSAPI error in client while negotiating security context. This error occurs on the
client and reflects insufficient credentials or a malicious attempt to authenticate.

If you receive this error, ensure that you are using the correct credentials and the correct fully qualified domain
name when connecting to the host.

GSSAPI error acquiring credentials. This error occurs during the start of the mongod or mongos
and reflects improper configuration of the system hostname or a missing or incorrectly configured keytab file.

If you encounter this problem, consider the items in the Kerberos Configuration Checklist (page 377), in partic-
ular, whether the SPN in the keytab file (page 328) matches the SPN for the mongod or mongos instance.

To determine whether the SPNs match:

1. Examine the keytab file, with the following command:

klist -k <keytab>

Replace <keytab> with the path to your keytab file.

2. Check the configured hostname for your system, with the following command:

hostname -f

Ensure that this name matches the name in the keytab file, or start mongod or mongos with the
--setParameter saslHostName=<hostname>.

See also:

• Kerberos Authentication (page 326)

• Configure MongoDB with Kerberos Authentication on Linux (page 369)

• Configure MongoDB with Kerberos Authentication on Windows (page 372)

378 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Implement Field Level Redaction

On this page

• Procedure (page 379)

The $redact pipeline operator restricts the contents of the documents based on information stored in the documents
themselves.

To store the access criteria data, add a field to the documents and embedded documents. To allow for multiple com-
binations of access levels for the same data, consider setting the access field to an array of arrays. Each array element
contains a required set that allows a user with that set to access the data.

Then, include the $redact stage in the db.collection.aggregate() operation to restrict contents of the
result set based on the access required to view the data.

For more information on the $redact pipeline operator, including its syntax and associated system variables as well
as additional examples, see $redact.

Procedure

For example, a forecasts collection contains documents of the following form where the tags field determines
the access levels required to view the data:

{
_id: 1,
title: "123 Department Report",

6.3. Security Tutorials 379

MongoDB Documentation, Release 2.6.11

tags: [["G"], ["FDW"]],
year: 2014,
subsections: [

{
subtitle: "Section 1: Overview",
tags: [["SI", "G"], ["FDW"]],
content: "Section 1: This is the content of section 1."

},
{

subtitle: "Section 2: Analysis",
tags: [["STLW"]],
content: "Section 2: This is the content of section 2."

},
{

subtitle: "Section 3: Budgeting",
tags: [["TK"], ["FDW", "TGE"]],
content: {

text: "Section 3: This is the content of section3.",
tags: [["HCS"], ["FDW", "TGE", "BX"]]

}
}

]
}

For each document, the tags field contains various access groupings necessary to view the data. For example, the
value [["G"], ["FDW", "TGE"]] can specify that a user requires either access level ["G"] or both [
"FDW", "TGE"] to view the data.

Consider a user who only has access to view information tagged with either "FDW" or "TGE". To run a query on all
documents with year 2014 for this user, include a $redact stage as in the following:

var userAccess = ["FDW", "TGE"];
db.forecasts.aggregate(

[
{ $match: { year: 2014 } },
{ $redact:

{
$cond: {

if: { $anyElementTrue:
{
$map: {

input: "$tags" ,
as: "fieldTag",
in: { $setIsSubset: ["$$fieldTag", userAccess] }

}
}

},
then: "$$DESCEND",
else: "$$PRUNE"

}
}

}
]

)

The aggregation operation returns the following “redacted” document for the user:

{ "_id" : 1,
"title" : "123 Department Report",

380 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

"tags" : [["G"], ["FDW"]],
"year" : 2014,
"subsections" :

[
{
"subtitle" : "Section 1: Overview",
"tags" : [["SI", "G"], ["FDW"]],
"content" : "Section 1: This is the content of section 1."

},
{
"subtitle" : "Section 3: Budgeting",
"tags" : [["TK"], ["FDW", "TGE"]]

}
]

}

See also:

$map, $setIsSubset, $anyElementTrue

6.3.4 User and Role Management Tutorials

The following tutorials provide instructions on how to enable authentication and limit access for users with privilege
roles.

Create a User Administrator (page 381) Create users with special permissions to to create, modify, and remove other
users, as well as administer authentication credentials (e.g. passwords).

Add a User to a Database (page 383) Create non-administrator users using MongoDB’s role-based authentication
system.

Create an Administrative User with Unrestricted Access (page 385) Create a user with unrestricted access. Create
such a user only in unique situations. In general, all users in the system should have no more access than needed
to perform their required operations.

Create a Role (page 386) Create custom role.

Assign a User a Role (page 388) Assign a user a role. A role grants the user a defined set of privileges. A user can
have multiple roles.

Verify User Privileges (page 389) View a user’s current privileges.

Modify a User’s Access (page 391) Modify the actions available to a user on specific database resources.

View Roles (page 393) View a role’s privileges.

Change a User’s Password (page 394) Only user administrators can edit credentials. This tutorial describes the pro-
cess for editing an existing user’s password.

Change Your Password and Custom Data (page 395) Users with sufficient access can change their own passwords
and modify the optional custom data associated with their user credential.

Create a User Administrator

6.3. Security Tutorials 381

MongoDB Documentation, Release 2.6.11

On this page

• Overview (page 382)
• Prerequisites (page 382)
• Procedure (page 382)
• Related Documents (page 383)
• Additional Resources (page 383)

Overview

User administrators create users and create and assigns roles. A user administrator can grant any privilege in the
database and can create new ones. In a MongoDB deployment, create the user administrator as the first user. Then let
this user create all other users.

To provide user administrators, MongoDB has userAdmin (page 407) and userAdminAnyDatabase (page 411)
roles, which grant access to actions (page 418) that support user and role management. Following the policy of least
privilege userAdmin (page 407) and userAdminAnyDatabase (page 411) confer no additional privileges.

Carefully control access to these roles. A user with either of these roles can grant itself unlimited additional privileges.
Specifically, a user with the userAdmin (page 407) role can grant itself any privilege in the database. A user assigned
either the userAdmin (page 407) role on the admin database or the userAdminAnyDatabase (page 411) can
grant itself any privilege in the system.

Prerequisites

Required Access You must have the createUser (page 420) action (page 418) on a database to create a new user
on that database.

You must have the grantRole (page 420) action (page 418) on a role’s database to grant the role to another user.

If you have the userAdmin (page 407) or userAdminAnyDatabase (page 411) role, you have those actions.

First User Restrictions If your MongoDB deployment has no users, you must connect to mongod using the local-
host exception (page 319) or use the --noauth option when starting mongod to gain full access the system. Once
you have access, you can skip to Creating the system user administrator in this procedure.

If users exist in the MongoDB database, but none of them has the appropriate prerequisites to create a new user or you
do not have access to them, you must restart mongod with the --noauth option.

Procedure

Step 1: Connect to MongoDB with the appropriate privileges. Connect to mongod or mongos either through
the localhost exception (page 319) or as a user with the privileges indicated in the prerequisites section.

In the following example, manager has the required privileges specified in Prerequisites (page 382).

mongo --port 27017 -u manager -p 123456 --authenticationDatabase admin

Step 2: Create the system user administrator. Add the user with the userAdminAnyDatabase (page 411)
role, and only that role.

The following example creates the user siteUserAdmin user on the admin database:

382 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

use admin
db.createUser(

{
user: "siteUserAdmin",
pwd: "password",
roles: [{ role: "userAdminAnyDatabase", db: "admin" }]

}
)

Step 3: Create a user administrator for a single database. Optionally, you may want to create user administrators
that only have access to administer users in a specific database by way of the userAdmin (page 407) role.

The following example creates the user recordsUserAdmin on the records database:

use records
db.createUser(

{
user: "recordsUserAdmin",
pwd: "password",
roles: [{ role: "userAdmin", db: "records" }]

}
)

Related Documents

• Authentication (page 316)

• Security Introduction (page 313)

• Enable Client Access Control (page 353)

• Access Control Tutorials (page 352)

Additional Resources

• Security Architecture White Paper63

• Webinar: Securing Your MongoDB Deployment64

• Creating a Single View Part 3: Securing Your Deployment65

Add a User to a Database

On this page

• Overview (page 384)
• Considerations (page 384)
• Prerequisites (page 384)
• Procedures (page 384)

Changed in version 2.6.
63https://www.mongodb.com/lp/white-paper/mongodb-security-architecture?jmp=docs
64http://www.mongodb.com/webinar/securing-your-mongodb-deployment?jmp=docs
65https://www.mongodb.com/presentations/creating-single-view-part-3-securing-your-deployment?jmp=docs

6.3. Security Tutorials 383

https://www.mongodb.com/lp/white-paper/mongodb-security-architecture?jmp=docs
http://www.mongodb.com/webinar/securing-your-mongodb-deployment?jmp=docs
https://www.mongodb.com/presentations/creating-single-view-part-3-securing-your-deployment?jmp=docs

MongoDB Documentation, Release 2.6.11

Overview

Each application and user of a MongoDB system should map to a distinct application or administrator. This access
isolation facilitates access revocation and ongoing user maintenance. At the same time users should have only the
minimal set of privileges required to ensure a system of least privilege.

To create a user, you must define the user’s credentials and assign that user roles (page 320). Credentials verify the
user’s identity to a database, and roles determine the user’s access to database resources and operations.

For an overview of credentials and roles in MongoDB see Security Introduction (page 313).

Considerations

For users that authenticate using external mechanisms, 66 you do not need to provide credentials when creating users.

For all users, select the roles that have the exact required privileges (page 320). If the correct roles do not exist, create
roles (page 386).

You can create a user without assigning roles, choosing instead to assign the roles later. To do so, create the user with
an empty roles (page 416) array.

Prerequisites

To create a user on a system that uses authentication (page 316), you must authenticate as a user administrator. If you
have not yet created a user administrator, do so as described in Create a User Administrator (page 381).

Required Access You must have the createUser (page 420) action (page 418) on a database to create a new user
on that database.

You must have the grantRole (page 420) action (page 418) on a role’s database to grant the role to another user.

If you have the userAdmin (page 407) or userAdminAnyDatabase (page 411) role, you have those actions.

First User Restrictions If your MongoDB deployment has no users, you must connect to mongod using the local-
host exception (page 319) or use the --noauth option when starting mongod to gain full access the system. Once
you have access, you can skip to Creating the system user administrator in this procedure.

If users exist in the MongoDB database, but none of them has the appropriate prerequisites to create a new user or you
do not have access to them, you must restart mongod with the --noauth option.

Procedures

Step 1: Connect to MongoDB with the appropriate privileges. Connect to the mongod or mongos with the
privileges specified in the Prerequisites (page 384) section.

The following procedure uses the siteUserAdmin created in Create a User Administrator (page 381).

mongo --port 27017 -u siteUserAdmin -p password --authenticationDatabase admin

66 Configure MongoDB with Kerberos Authentication on Linux (page 369), Authenticate Using SASL and LDAP with OpenLDAP (page 366),
Authenticate Using SASL and LDAP with ActiveDirectory (page 363), and x.509 certificates provide external authentication mechanisms.

384 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Step 2: Create the new user. Create the user in the database to which the user will belong. Pass a well formed user
document to the db.createUser() method.

The following operation creates a user in the reporting database with the specified name, password, and roles.

use reporting
db.createUser(

{
user: "reportsUser",
pwd: "12345678",
roles: [

{ role: "read", db: "reporting" },
{ role: "read", db: "products" },
{ role: "read", db: "sales" },
{ role: "readWrite", db: "accounts" }

]
}

)

To authenticate the reportsUser, you must authenticate the user in the reporting database.

Create an Administrative User with Unrestricted Access

On this page

• Overview (page 385)
• Prerequisites (page 385)
• Procedure (page 386)

Overview

Most users should have only the minimal set of privileges required for their operations, in keeping with the policy of
least privilege. However, some authorization architectures may require a user with unrestricted access. To support
these super users, you can create users with access to all database resources (page 417) and actions (page 418).

For many deployments, you may be able to avoid having any users with unrestricted access by having an administrative
user with the createUser (page 420) and grantRole (page 420) actions granted as needed to support operations.

If users truly need unrestricted access to a MongoDB deployment, MongoDB provides a built-in role (page 405) named
root (page 412) that grants the combined privileges of all built-in roles. This document describes how to create an
administrative user with the root (page 412) role.

For descriptions of the access each built-in role provides, see the section on built-in roles (page 405).

Prerequisites

Required Access You must have the createUser (page 420) action (page 418) on a database to create a new user
on that database.

You must have the grantRole (page 420) action (page 418) on a role’s database to grant the role to another user.

If you have the userAdmin (page 407) or userAdminAnyDatabase (page 411) role, you have those actions.

6.3. Security Tutorials 385

MongoDB Documentation, Release 2.6.11

First User Restrictions If your MongoDB deployment has no users, you must connect to mongod using the local-
host exception (page 319) or use the --noauth option when starting mongod to gain full access the system. Once
you have access, you can skip to Creating the system user administrator in this procedure.

If users exist in the MongoDB database, but none of them has the appropriate prerequisites to create a new user or you
do not have access to them, you must restart mongod with the --noauth option.

Procedure

Step 1: Connect to MongoDB with the appropriate privileges. Connect to the mongod or mongos as a user
with the privileges specified in the Prerequisites (page 385) section.

The following procedure uses the siteUserAdmin created in Create a User Administrator (page 381).

mongo --port 27017 -u siteUserAdmin -p password --authenticationDatabase admin

Step 2: Create the administrative user. In the admin database, create a new user using the db.createUser()
method. Give the user the built-in root (page 412) role.

For example:

use admin
db.createUser(

{
user: "superuser",
pwd: "12345678",
roles: ["root"]

}
)

Authenticate against the admin database to test the new user account. Use db.auth() while using the admin
database or use the mongo shell with the --authenticationDatabase option.

Create a Role

On this page

• Overview (page 386)
• Prerequisites (page 387)
• Procedures (page 387)

Overview

Roles grant users access to MongoDB resources. By default, MongoDB provides a number of built-in roles (page 405)
that administrators may use to control access to a MongoDB system. However, if these roles cannot describe the
desired set of privileges, you can create a new, customized role in a particular database.

Except for roles created in the admin database, a role can only include privileges that apply to its database and can
only inherit from other roles in its database.

A role created in the admin database can include privileges that apply to the admin database, other databases or to
the cluster (page 418) resource, and can inherit from roles in other databases as well as the admin database.

MongoDB uses the combination of the database name and the role name to uniquely define a role.

386 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Prerequisites

To create a role in a database, the user must have:

• the createRole (page 420) action (page 418) on that database resource (page 417).

• the grantRole (page 420) action (page 418) on that database to specify privileges for the new role as well as
to specify roles to inherit from.

Built-in roles userAdmin (page 407) and userAdminAnyDatabase (page 411) provide createRole
(page 420) and grantRole (page 420) actions on their respective resources (page 417).

Procedures

To create a new role, use the db.createRole() method, specifying the privileges in the privileges array and
the inherited roles in the roles array.

Create a Role to Manage Current Operations The following example creates a role named manageOpRole
which provides only the privileges to run both db.currentOp() and db.killOp(). 67

Step 1: Connect to MongoDB with the appropriate privileges. Connect to mongod or mongos with the privi-
leges specified in the Prerequisites (page 387) section.

The following procedure uses the siteUserAdmin created in Create a User Administrator (page 381).

mongo --port 27017 -u siteUserAdmin -p password --authenticationDatabase admin

The siteUserAdmin has privileges to create roles in the admin as well as other databases.

Step 2: Create a new role to manage current operations. manageOpRole has privileges that act on multiple
databases as well as the cluster resource (page 418). As such, you must create the role in the admin database.

use admin
db.createRole(

{
role: "manageOpRole",
privileges: [

{ resource: { cluster: true }, actions: ["killop", "inprog"] },
{ resource: { db: "", collection: "" }, actions: ["killCursors"] }

],
roles: []

}
)

The new role grants permissions to kill any operations.

Warning: Terminate running operations with extreme caution. Only use db.killOp() to terminate operations
initiated by clients and do not terminate internal database operations.

Create a Role to Run mongostat The following example creates a role named mongostatRole that provides
only the privileges to run mongostat. 68

67 The built-in role clusterMonitor (page 408) also provides the privilege to run db.currentOp() along with other privileges, and the
built-in role hostManager (page 409) provides the privilege to run db.killOp() along with other privileges.

68 The built-in role clusterMonitor (page 408) also provides the privilege to run mongostat along with other privileges.

6.3. Security Tutorials 387

MongoDB Documentation, Release 2.6.11

Step 1: Connect to MongoDB with the appropriate privileges. Connect to mongod or mongos with the privi-
leges specified in the Prerequisites (page 387) section.

The following procedure uses the siteUserAdmin created in Create a User Administrator (page 381).

mongo --port 27017 -u siteUserAdmin -p password --authenticationDatabase admin

The siteUserAdmin has privileges to create roles in the admin as well as other databases.

Step 2: Create a new role to manage current operations. mongostatRole has privileges that act on the cluster
resource (page 418). As such, you must create the role in the admin database.

use admin
db.createRole(

{
role: "mongostatRole",
privileges: [

{ resource: { cluster: true }, actions: ["serverStatus"] }
],
roles: []

}
)

Assign a User a Role

On this page

• Overview (page 388)
• Prerequisites (page 388)
• Procedure (page 389)

Changed in version 2.6.

Overview

A role provides a user privileges to perform a set of actions (page 418) on a resource (page 417). A user can have
multiple roles.

In MongoDB systems with authorization enforced, you must grant a user a role for the user to access a database
resource. To assign a role, first determine the privileges the user needs and then determine the role that grants those
privileges.

For an overview of roles and privileges, see Authorization (page 320). For descriptions of the access each built-in role
provides, see the section on built-in roles (page 405).

Prerequisites

You must have the grantRole (page 420) action (page 418) on a database to grant a role on that database.

To view a role’s information, you must be explicitly granted the role or must have the viewRole (page 420) action
(page 418) on the role’s database.

388 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Procedure

Step 1: Connect with the privilege to grant roles. Connect to the mongod or mongos as a user with the privileges
specified in the Prerequisites (page 388) section.

The following procedure uses the siteUserAdmin created in Create a User Administrator (page 381).

mongo --port 27017 -u siteUserAdmin -p password --authenticationDatabase admin

Step 2: Identify the user’s roles and privileges. To display the roles and privileges of the user to be modified, use
the db.getUser() and db.getRole() methods.

For example, to view roles for reportsUser created in Add a User to a Database (page 383), issue:

use reporting
db.getUser("reportsUser")

To display the privileges granted to the user by the readWrite role on the "accounts" database, issue:

use accounts
db.getRole("readWrite", { showPrivileges: true })

Step 3: Identify the privileges to grant or revoke. If the user requires additional privileges, grant to the user the
role, or roles, with the required set of privileges. If such a role does not exist, create a new role (page 386) with the
appropriate set of privileges.

Step 4: Grant a role to a user. Grant the user the role using the db.grantRolesToUser() method.

For example, the following grants new roles to the user reportsUser created in Add a User to a Database
(page 383).

use reporting
db.grantRolesToUser(

"reportsUser",
[
{ role: "readWrite", db: "products" } ,
{ role: "readAnyDatabase", db:"admin" }

]
)

Verify User Privileges

On this page

• Overview (page 389)
• Prerequisites (page 390)
• Procedure (page 390)

Overview

A user’s privileges determine the access the user has to MongoDB resources (page 417) and the actions (page 418)
that user can perform. Users receive privileges through role assignments. A user can have multiple roles, and each

6.3. Security Tutorials 389

MongoDB Documentation, Release 2.6.11

role can have multiple privileges.

For an overview of roles and privileges, see Authorization (page 320).

Prerequisites

To view a role’s information, you must be explicitly granted the role or must have the viewRole (page 420) action
(page 418) on the role’s database.

Procedure

Step 1: Connect to MongoDB with the appropriate privileges. Connect to mongod or mongos as a user with
the privileges specified in the prerequisite section.

The following procedure uses the siteUserAdmin created in Create a User Administrator (page 381).

mongo --port 27017 -u siteUserAdmin -p password --authenticationDatabase admin

Step 2: Identify the user’s roles. Use the usersInfo command or db.getUser() method to display user
information.

For example, to view roles for reportsUser created in Add a User to a Database (page 383), issue:

use reporting
db.getUser("reportsUser")

In the returned document, the roles (page 416) field displays all roles for reportsUser:
...
"roles" : [

{ "role" : "readWrite", "db" : "accounts" },
{ "role" : "read", "db" : "reporting" },
{ "role" : "read", "db" : "products" },
{ "role" : "read", "db" : "sales" }

]

Step 3: Identify the privileges granted by the roles. For a given role, use the db.getRole() method, or the
rolesInfo command, with the showPrivileges option:

For example, to view the privileges granted by read role on the products database, use the following operation,
issue:

use products
db.getRole("read", { showPrivileges: true })

In the returned document, the privileges and inheritedPrivileges arrays. The privileges lists
the privileges directly specified by the role and excludes those privileges inherited from other roles. The
inheritedPrivileges lists all privileges granted by this role, both directly specified and inherited. If the role
does not inherit from other roles, the two fields are the same.
...
"privileges" : [

{
"resource": { "db" : "products", "collection" : "" },
"actions": ["collStats","dbHash","dbStats","find","killCursors","planCacheRead"]

},

390 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

{
"resource" : { "db" : "products", "collection" : "system.indexes" },
"actions": ["collStats","dbHash","dbStats","find","killCursors","planCacheRead"]

},
{
"resource" : { "db" : "products", "collection" : "system.js" },
"actions": ["collStats","dbHash","dbStats","find","killCursors","planCacheRead"]

},
{
"resource" : { "db" : "products", "collection" : "system.namespaces" },
"actions": ["collStats","dbHash","dbStats","find","killCursors","planCacheRead"]

}
],
"inheritedPrivileges" : [

{
"resource": { "db" : "products", "collection" : "" },
"actions": ["collStats","dbHash","dbStats","find","killCursors","planCacheRead"]

},
{
"resource" : { "db" : "products", "collection" : "system.indexes" },
"actions": ["collStats","dbHash","dbStats","find","killCursors","planCacheRead"]

},
{
"resource" : { "db" : "products", "collection" : "system.js" },
"actions": ["collStats","dbHash","dbStats","find","killCursors","planCacheRead"]

},
{
"resource" : { "db" : "products", "collection" : "system.namespaces" },
"actions": ["collStats","dbHash","dbStats","find","killCursors","planCacheRead"]

}
]

Modify a User’s Access

On this page

• Overview (page 391)
• Prerequisites (page 392)
• Procedure (page 392)

Overview

When a user’s responsibilities change, modify the user’s access to include only those roles the user requires. This
follows the policy of least privilege.

To change a user’s access, first determine the privileges the user needs and then determine the roles that grants those
privileges. Grant and revoke roles using the db.grantRolesToUser() and db.revokeRolesFromUser()
methods.

For an overview of roles and privileges, see Authorization (page 320). For descriptions of the access each built-in role
provides, see the section on built-in roles (page 405).

6.3. Security Tutorials 391

MongoDB Documentation, Release 2.6.11

Prerequisites

You must have the grantRole (page 420) action (page 418) on a database to grant a role on that database.

You must have the revokeRole (page 420) action (page 418) on a database to revoke a role on that database.

To view a role’s information, you must be explicitly granted the role or must have the viewRole (page 420) action
(page 418) on the role’s database.

Procedure

Step 1: Connect to MongoDB with the appropriate privileges. Connect to mongod or mongos as a user with
the privileges specified in the prerequisite section.

The following procedure uses the siteUserAdmin created in Create a User Administrator (page 381).

mongo --port 27017 -u siteUserAdmin -p password --authenticationDatabase admin

Step 2: Identify the user’s roles and privileges. To display the roles and privileges of the user to be modified, use
the db.getUser() and db.getRole() methods.

For example, to view roles for reportsUser created in Add a User to a Database (page 383), issue:

use reporting
db.getUser("reportsUser")

To display the privileges granted to the user by the readWrite role on the "accounts" database, issue:

use accounts
db.getRole("readWrite", { showPrivileges: true })

Step 3: Identify the privileges to grant or revoke. If the user requires additional privileges, grant to the user the
role, or roles, with the required set of privileges. If such a role does not exist, create a new role (page 386) with the
appropriate set of privileges.

To revoke a subset of privileges provided by an existing role: revoke the original role and grant a role that contains
only the required privileges. You may need to create a new role (page 386) if a role does not exist.

Step 4: Modify the user’s access.

Revoke a Role Revoke a role with the db.revokeRolesFromUser() method. The following example opera-
tion removes the readWrite (page 405) role on the accounts database from the reportsUser:

use reporting
db.revokeRolesFromUser(

"reportsUser",
[

{ role: "readWrite", db: "accounts" }
]

)

392 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Grant a Role Grant a role using the db.grantRolesToUser() method. For example, the following operation
grants the reportsUser user the read (page 405) role on the accounts database:

use reporting
db.grantRolesToUser(

"reportsUser",
[

{ role: "read", db: "accounts" }
]

)

For sharded clusters, the changes to the user are instant on the mongos on which the command runs. How-
ever, for other mongos instances in the cluster, the user cache may wait up to 10 minutes to refresh. See
userCacheInvalidationIntervalSecs.

View Roles

On this page

• Overview (page 393)
• Prerequisites (page 393)
• Procedures (page 393)

Overview

A role (page 320) grants privileges to the users who are assigned the role. Each role is scoped to a particular
database, but MongoDB stores all role information in the admin.system.roles (page 304) collection in the
admin database.

Prerequisites

To view a role’s information, you must be explicitly granted the role or must have the viewRole (page 420) action
(page 418) on the role’s database.

Procedures

The following procedures use the rolesInfo command. You also can use the methods db.getRole() (singular)
and db.getRoles().

View a Role in the Current Database If the role is in the current database, you can refer to the role by name, as for
the role dataEntry on the current database:

db.runCommand({ rolesInfo: "dataEntry" })

View a Role in a Different Database If the role is in a different database, specify the role as a document. Use the
following form:

{ role: "<role name>", db: "<role db>" }

6.3. Security Tutorials 393

MongoDB Documentation, Release 2.6.11

To view the custom appWriter role in the orders database, issue the following command from the mongo shell:

db.runCommand({ rolesInfo: { role: "appWriter", db: "orders" } })

View Multiple Roles To view information for multiple roles, specify each role as a document or string in an array.

To view the custom appWriter and clientWriter roles in the orders database, as well as the dataEntry
role on the current database, use the following command from the mongo shell:

db.runCommand({ rolesInfo: [{ role: "appWriter", db: "orders" },
{ role: "clientWriter", db: "orders" },
"dataEntry"]

})

View All Custom Roles To view the all custom roles, query admin.system.roles (page 413) collection directly, for
example:

db = db.getSiblingDB('admin')
db.system.roles.find()

Change a User’s Password

Changed in version 2.6.

On this page

• Overview (page 394)
• Prerequisites (page 394)
• Procedure (page 394)

Overview

Strong passwords help prevent unauthorized access, and all users should have strong passwords. You can use the
openssl program to generate unique strings for use in passwords, as in the following command:

openssl rand -base64 48

Prerequisites

You must have the changeAnyPassword action (page 418) on a database to modify the password of any user on
that database.

To change your own password, you must have the changeOwnPassword (page 419) action (page 418) on your
database. See Change Your Password and Custom Data (page 395).

Procedure

Step 1: Connect to MongoDB with the appropriate privileges. Connect to the mongod or mongos with the
privileges specified in the Prerequisites (page 394) section.

394 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

The following procedure uses the siteUserAdmin created in Create a User Administrator (page 381).

mongo --port 27017 -u siteUserAdmin -p password --authenticationDatabase admin

Step 2: Change the password. Pass the user’s username and the new password to the
db.changeUserPassword() method.

The following operation changes the reporting user’s password to SOh3TbYhxuLiW8ypJPxmt1oOfL:

db.changeUserPassword("reporting", "SOh3TbYhxuLiW8ypJPxmt1oOfL")

Change Your Password and Custom Data

Changed in version 2.6.

On this page

• Overview (page 395)
• Considerations (page 395)
• Prerequisites (page 395)
• Procedure (page 396)

Overview

Users with appropriate privileges can change their own passwords and custom data. Custom data (page 416) stores
optional user information.

Considerations

To generate a strong password for use in this procedure, you can use the openssl utility’s rand command. For
example, issue openssl rand with the following options to create a base64-encoded string of 48 pseudo-random
bytes:

openssl rand -base64 48

Prerequisites

To modify your own password and custom data, you must have privileges that grant changeOwnPassword
(page 419) and changeOwnCustomData (page 419) actions (page 418) respectively on the user’s database.

Step 1: Connect as a user with privileges to manage users and roles. Connect to the mongod or mongos with
privileges to manage users and roles, such as a user with userAdminAnyDatabase (page 411) role. The following
procedure uses the siteUserAdmin created in Create a User Administrator (page 381).

mongo --port 27017 -u siteUserAdmin -p password --authenticationDatabase admin

6.3. Security Tutorials 395

MongoDB Documentation, Release 2.6.11

Step 2: Create a role with appropriate privileges. In the admin database, create a new role with
changeOwnPassword (page 419) and changeOwnCustomData (page 419).

use admin
db.createRole(

{ role: "changeOwnPasswordCustomDataRole",
privileges: [

{
resource: { db: "", collection: ""},
actions: ["changeOwnPassword", "changeOwnCustomData"]

}
],
roles: []

}
)

Step 3: Add a user with this role. In the test database, create a new user with the created
"changeOwnPasswordCustomDataRole" role. For example, the following operation creates a user with both
the built-in role readWrite (page 405) and the user-created "changeOwnPasswordCustomDataRole".

use test
db.createUser(

{
user:"user123",
pwd:"12345678",
roles:["readWrite", { role:"changeOwnPasswordCustomDataRole", db:"admin" }]

}
)

To grant an existing user the new role, use db.grantRolesToUser().

Procedure

Step 1: Connect with the appropriate privileges. Connect to the mongod or mongos as a user with appropriate
privileges.

For example, the following operation connects to MongoDB as user123 created in the Prerequisites (page 395)
section.

mongo --port 27017 -u user123 -p 12345678 --authenticationDatabase test

To check that you have the privileges specified in the Prerequisites (page 395) section as well as to see user information,
use the usersInfo command with the showPrivileges option.

Step 2: Change your password and custom data. Use the db.updateUser() method to update the password
and custom data.

For example, the following operation changes thw user’s password to KNlZmiaNUp0B and custom data to {
title: "Senior Manager" }:

use test
db.updateUser(

"user123",
{

pwd: "KNlZmiaNUp0B",
customData: { title: "Senior Manager" }

396 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

}
)

6.3.5 Auditing Tutorials

The following tutorials provide instructions on how to enable auditing for system events and specify which events to
audit.

Configure System Events Auditing (page 397) Enable and configure MongoDB Enterprise system event auditing fea-
ture.

Configure Audit Filters (page 399) Specify which events to audit.

Configure System Events Auditing

On this page

• Enable and Configure Audit Output (page 397)

New in version 2.6.

MongoDB Enterprise69 supports auditing (page 325) of various operations. A complete auditing solution must involve
all mongod server and mongos router processes.

The audit facility can write audit events to the console, the syslog (option is unavailable on Windows), a JSON file,
or a BSON file. For details on the audited operations and the audit log messages, see System Event Audit Messages
(page 424).

Enable and Configure Audit Output

Use the --auditDestination option to enable auditing and specify where to output the audit events.

Warning: For sharded clusters, if you enable auditing on mongos instances, you must enable auditing on all
mongod instances in the cluster, i.e. shards and config servers.

Output to Syslog To enable auditing and print audit events to the syslog (option is unavailable on Windows) in
JSON format, specify syslog for the --auditDestination setting. For example:

mongod --dbpath data/db --auditDestination syslog

Warning: The syslog message limit can result in the truncation of the audit messages. The auditing system will
neither detect the truncation nor error upon its occurrence.

You may also specify these options in the configuration file:

storage:
dbPath: data/db

auditLog:
destination: syslog

69https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

6.3. Security Tutorials 397

https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

MongoDB Documentation, Release 2.6.11

Output to Console To enable auditing and print the audit events to standard output (i.e. stdout), specify
console for the --auditDestination setting. For example:

mongod --dbpath data/db --auditDestination console

You may also specify these options in the configuration file:

storage:
dbPath: data/db

auditLog:
destination: console

Output to JSON File To enable auditing and print audit events to a file in JSON format, specify file
for the --auditDestination setting, JSON for the --auditFormat setting, and the output filename for
the --auditPath. The --auditPath option accepts either full path name or relative path name. For
example, the following enables auditing and records audit events to a file with the relative path name of
data/db/auditLog.json:

mongod --dbpath data/db --auditDestination file --auditFormat JSON --auditPath data/db/auditLog.json

The audit file rotates at the same time as the server log file.

You may also specify these options in the configuration file:

storage:
dbPath: data/db

auditLog:
destination: file
format: JSON
path: data/db/auditLog.json

Note: Printing audit events to a file in JSON format degrades server performance more than printing to a file in BSON
format.

Output to BSON File To enable auditing and print audit events to a file in BSON binary format, specify file
for the --auditDestination setting, BSON for the --auditFormat setting, and the output filename for
the --auditPath. The --auditPath option accepts either full path name or relative path name. For ex-
ample, the following enables auditing and records audit events to a BSON file with the relative path name of
data/db/auditLog.bson:

mongod --dbpath data/db --auditDestination file --auditFormat BSON --auditPath data/db/auditLog.bson

The audit file rotates at the same time as the server log file.

You may also specify these options in the configuration file:

storage:
dbPath: data/db

auditLog:
destination: file
format: BSON
path: data/db/auditLog.bson

To view the contents of the file, pass the file to the MongoDB utility bsondump. For example, the following converts
the audit log into a human-readable form and output to the terminal:

398 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

bsondump data/db/auditLog.bson

See also:

Configure Audit Filters (page 399), Auditing (page 325), System Event Audit Messages (page 424)

Configure Audit Filters

On this page

• --auditFilter Option (page 399)
• Examples (page 399)

MongoDB Enterprise70 supports auditing (page 325) of various operations. When enabled (page 397), the audit
facility, by default, records all auditable operations as detailed in Audit Event Actions, Details, and Results (page 425).
To specify which events to record, the audit feature includes the --auditFilter option.

--auditFilter Option

The --auditFilter option takes a string representation of a query document of the form:

{ <field1>: <expression1>, ... }

• The <field> can be any field in the audit message (page 424), including fields returned in the param
(page 425) document.

• The <expression> is a query condition expression.

To specify an audit filter, enclose the filter document in single quotes to pass the document as a string.

To specify the audit filter in a configuration file, you must use the YAML format of the configuration file.

Examples

Filter for Multiple Operation Types The following example audits only the createCollection (page 419)
and dropCollection (page 420) actions by using the filter:

{ atype: { $in: ["createCollection", "dropCollection"] } }

To specify an audit filter, enclose the filter document in single quotes to pass the document as a string.

mongod --dbpath data/db --auditDestination file --auditFilter '{ atype: { $in: ["createCollection", "dropCollection"] } }' --auditFormat BSON --auditPath data/db/auditLog.bson

To specify the audit filter in a configuration file, you must use the YAML format of the configuration file.

storage:
dbPath: data/db

auditLog:
destination: file
format: BSON
path: data/db/auditLog.bson
filter: '{ atype: { $in: ["createCollection", "dropCollection"] } }'

70https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

6.3. Security Tutorials 399

https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

MongoDB Documentation, Release 2.6.11

Filter on Authentication Operations on a Single Database The <field> can include any field in the audit
message (page 424). For authentication operations (i.e. atype: "authenticate"), the audit messages include
a db field in the param document.

The following example audits only the authenticate operations that occur against the test database by using
the filter:

{ atype: "authenticate", "param.db": "test" }

To specify an audit filter, enclose the filter document in single quotes to pass the document as a string.

mongod --dbpath data/db --auth --auditDestination file --auditFilter '{ atype: "authenticate", "param.db": "test" }' --auditFormat BSON --auditPath data/db/auditLog.bson

To specify the audit filter in a configuration file, you must use the YAML format of the configuration file.

storage:
dbPath: data/db

security:
authorization: enabled

auditLog:
destination: file
format: BSON
path: data/db/auditLog.bson
filter: '{ atype: "authenticate", "param.db": "test" }'

To filter on all authenticate operations across databases, use the filter { atype: "authenticate" }.

Filter on Collection Creation and Drop Operations for a Single Database The <field> can include any field in
the audit message (page 424). For collection creation and drop operations (i.e. atype: "createCollection"
and atype: "dropCollection"), the audit messages include a namespace ns field in the param document.

The following example audits only the createCollection and dropCollection operations that occur against
the test database by using the filter:

Note: The regular expression requires two backslashes (\\) to escape the dot (.).

{ atype: { $in: ["createCollection", "dropCollection"] }, "param.ns": /^test\\./ } }

To specify an audit filter, enclose the filter document in single quotes to pass the document as a string.

mongod --dbpath data/db --auth --auditDestination file --auditFilter '{ atype: { $in: ["createCollection", "dropCollection"] }, "param.ns": /^test\\./ } }' --auditFormat BSON --auditPath data/db/auditLog.bson

To specify the audit filter in a configuration file, you must use the YAML format of the configuration file.

storage:
dbPath: data/db

security:
authorization: enabled

auditLog:
destination: file
format: BSON
path: data/db/auditLog.bson
filter: '{ atype: { $in: ["createCollection", "dropCollection"] }, "param.ns": /^test\\./ } }'

Filter by Authorization Role The following example audits operations by users with readWrite (page 405) role
on the test database, including users with roles that inherit from readWrite (page 405), by using the filter:

400 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

{ roles: { role: "readWrite", db: "test" } }

To specify an audit filter, enclose the filter document in single quotes to pass the document as a string.

mongod --dbpath data/db --auth --auditDestination file --auditFilter '{ roles: { role: "readWrite", db: "test" } }' --auditFormat BSON --auditPath data/db/auditLog.bson

To specify the audit filter in a configuration file, you must use the YAML format of the configuration file.

storage:
dbPath: data/db

security:
authorization: enabled

auditLog:
destination: file
format: BSON
path: data/db/auditLog.bson
filter: '{ roles: { role: "readWrite", db: "test" } }'

Filter on Read and Write Operations To capture read and write operations in the audit, you must also enable
the audit system to log authorization successes using the auditAuthorizationSuccess parameter. 71

Note: Enabling auditAuthorizationSuccess degrades performance more than logging only the authorization
failures.

The following example audits the find(), insert(), remove(), update(), save(), and
findAndModify() operations by using the filter:

{ atype: "authCheck", "param.command": { $in: ["find", "insert", "delete", "update", "findandmodify"] } }

To specify an audit filter, enclose the filter document in single quotes to pass the document as a string.

mongod --dbpath data/db --auth --setParameter auditAuthorizationSuccess=true --auditDestination file --auditFilter '{ atype: "authCheck", "param.command": { $in: ["find", "insert", "delete", "update", "findandmodify"] } }' --auditFormat BSON --auditPath data/db/auditLog.bson

To specify the audit filter in a configuration file, you must use the YAML format of the configuration file.

storage:
dbPath: data/db

security:
authorization: enabled

auditLog:
destination: file
format: BSON
path: data/db/auditLog.bson
filter: '{ atype: "authCheck", "param.command": { $in: ["find", "insert", "delete", "update", "findandmodify"] } }'

setParameter: { auditAuthorizationSuccess: true }

Filter on Read and Write Operations for a Collection To capture read and write operations in the audit,
you must also enable the audit system to log authorization successes using the auditAuthorizationSuccess
parameter. 1

Note: Enabling auditAuthorizationSuccess degrades performance more than logging only the authorization
failures.

71 You can enable auditAuthorizationSuccess parameter without enabling --auth; however, all operations will return success for
authorization checks.

6.3. Security Tutorials 401

MongoDB Documentation, Release 2.6.11

The following example audits the find(), insert(), remove(), update(), save(), and
findAndModify() operations for the collection orders in the database test by using the filter:

{ atype: "authCheck", "param.ns": "test.orders", "param.command": { $in: ["find", "insert", "delete", "update", "findandmodify"] } }

To specify an audit filter, enclose the filter document in single quotes to pass the document as a string.

mongod --dbpath data/db --auth --setParameter auditAuthorizationSuccess=true --auditDestination file --auditFilter '{ atype: "authCheck", "param.ns": "test.orders", "param.command": { $in: ["find", "insert", "delete", "update", "findandmodify"] } }' --auditFormat BSON --auditPath data/db/auditLog.bson

To specify the audit filter in a configuration file, you must use the YAML format of the configuration file.

storage:
dbPath: data/db

security:
authorization: enabled

auditLog:
destination: file
format: BSON
path: data/db/auditLog.bson
filter: '{ atype: "authCheck", "param.ns": "test.orders", "param.command": { $in: ["find", "insert", "delete", "update", "findandmodify"] } }'

setParameter: { auditAuthorizationSuccess: true }

See also:

Configure System Events Auditing (page 397), Auditing (page 325), System Event Audit Messages (page 424)

6.3.6 Create a Vulnerability Report

On this page

• Create the Report in JIRA (page 402)
• Information to Provide (page 402)
• Send the Report via Email (page 403)
• Evaluation of a Vulnerability Report (page 403)
• Disclosure (page 403)

If you believe you have discovered a vulnerability in MongoDB or have experienced a security incident related to
MongoDB, please report the issue to aid in its resolution.

To report an issue, we strongly suggest filing a ticket in the SECURITY72 project in JIRA. MongoDB, Inc responds to
vulnerability notifications within 48 hours.

Create the Report in JIRA

Submit a ticket in the Security73 project at: <http://jira.mongodb.org/browse>. The ticket number will become the
reference identification for the issue for its lifetime. You can use this identifier for tracking purposes.

Information to Provide

All vulnerability reports should contain as much information as possible so MongoDB’s developers can move quickly
to resolve the issue. In particular, please include the following:

72https://jira.mongodb.org/browse/SECURITY
73https://jira.mongodb.org/browse/SECURITY

402 Chapter 6. Security

https://jira.mongodb.org/browse/SECURITY
https://jira.mongodb.org/browse/SECURITY
http://jira.mongodb.org/browse

MongoDB Documentation, Release 2.6.11

• The name of the product.

• Common Vulnerability information, if applicable, including:

• CVSS (Common Vulnerability Scoring System) Score.

• CVE (Common Vulnerability and Exposures) Identifier.

• Contact information, including an email address and/or phone number, if applicable.

Send the Report via Email

While JIRA is the preferred reporting method, you may also report vulnerabilities via email to secu-
rity@mongodb.com74.

You may encrypt email using MongoDB’s public key at https://docs.mongodb.org/10gen-security-gpg-key.asc.

MongoDB, Inc. responds to vulnerability reports sent via email with a response email that contains a reference number
for a JIRA ticket posted to the SECURITY75 project.

Evaluation of a Vulnerability Report

MongoDB, Inc. validates all submitted vulnerabilities and uses Jira to track all communications regarding a vulner-
ability, including requests for clarification or additional information. If needed, MongoDB representatives set up a
conference call to exchange information regarding the vulnerability.

Disclosure

MongoDB, Inc. requests that you do not publicly disclose any information regarding the vulnerability or exploit the
issue until it has had the opportunity to analyze the vulnerability, to respond to the notification, and to notify key users,
customers, and partners.

The amount of time required to validate a reported vulnerability depends on the complexity and severity of the issue.
MongoDB, Inc. takes all required vulnerabilities very seriously and will always ensure that there is a clear and open
channel of communication with the reporter.

After validating an issue, MongoDB, Inc. coordinates public disclosure of the issue with the reporter in a mutually
agreed timeframe and format. If required or requested, the reporter of a vulnerability will receive credit in the published
security bulletin.

6.4 Security Reference

On this page

• Security Methods in the mongo Shell (page 404)
• Security Reference Documentation (page 404)
• Security Release Notes Alerts (page 431)

74security@mongodb.com
75https://jira.mongodb.org/browse/SECURITY

6.4. Security Reference 403

mailto:security@mongodb.com
mailto:security@mongodb.com
https://docs.mongodb.org/10gen-security-gpg-key.asc
https://jira.mongodb.org/browse/SECURITY

MongoDB Documentation, Release 2.6.11

6.4.1 Security Methods in the mongo Shell

Name Description
db.auth() Authenticates a user to a database.

User Management Methods

Name Description
db.createUser() Creates a new user.
db.addUser() Deprecated. Adds a user to a database, and allows administrators to configure the

user’s privileges.
db.updateUser() Updates user data.
db.changeUserPassword()Changes an existing user’s password.
db.removeUser() Deprecated. Removes a user from a database.
db.dropAllUsers() Deletes all users associated with a database.
db.dropUser() Removes a single user.
db.grantRolesToUser() Grants a role and its privileges to a user.
db.revokeRolesFromUser()Removes a role from a user.
db.getUser() Returns information about the specified user.
db.getUsers() Returns information about all users associated with a database.

Role Management Methods

Name Description
db.createRole() Creates a role and specifies its privileges.
db.updateRole() Updates a user-defined role.
db.dropRole() Deletes a user-defined role.
db.dropAllRoles() Deletes all user-defined roles associated with a database.
db.grantPrivilegesToRole() Assigns privileges to a user-defined role.
db.revokePrivilegesFromRole() Removes the specified privileges from a user-defined role.
db.grantRolesToRole() Specifies roles from which a user-defined role inherits privileges.
db.revokeRolesFromRole() Removes inherited roles from a role.
db.getRole() Returns information for the specified role.
db.getRoles() Returns information for all the user-defined roles in a database.

6.4.2 Security Reference Documentation

Built-In Roles (page 405) Reference on MongoDB provided roles and corresponding access.

system.roles Collection (page 412) Describes the content of the collection that stores user-defined roles.

system.users Collection (page 415) Describes the content of the collection that stores users’ credentials and role as-
signments.

Resource Document (page 417) Describes the resource document for roles.

Privilege Actions (page 418) List of the actions available for privileges.

Default MongoDB Port (page 424) List of default ports used by MongoDB.

System Event Audit Messages (page 424) Reference on system event audit messages.

404 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Built-In Roles

On this page

• Database User Roles (page 405)
• Database Administration Roles (page 406)
• Cluster Administration Roles (page 407)
• Backup and Restoration Roles (page 410)
• All-Database Roles (page 411)
• Superuser Roles (page 412)
• Internal Role (page 412)

MongoDB grants access to data and commands through role-based authorization (page 320) and provides built-in
roles that provide the different levels of access commonly needed in a database system. You can additionally create
user-defined roles (page 321).

A role grants privileges to perform sets of actions (page 418) on defined resources (page 417). A given role applies to
the database on which it is defined and can grant access down to a collection level of granularity.

Each of MongoDB’s built-in roles defines access at the database level for all non-system collections in the role’s
database and at the collection level for all system collections (page 304).

MongoDB provides the built-in database user (page 405) and database administration (page 406) roles on every
database. MongoDB provides all other built-in roles only on the admin database.

This section describes the privileges for each built-in role. You can also view the privileges for a built-in role at any
time by issuing the rolesInfo command with the showPrivileges and showBuiltinRoles fields both set
to true.

Database User Roles

Every database includes the following client roles:

read
Provides the ability to read data on all non-system collections and on the following system collections:
system.indexes (page 304), system.js (page 304), and system.namespaces (page 304) collec-
tions. The role provides read access by granting the following actions (page 418):

•collStats (page 423)

•dbHash (page 423)

•dbStats (page 423)

•find (page 419)

•killCursors (page 420)

readWrite
Provides all the privileges of the read (page 405) role plus ability to modify data on all non-system collections
and the system.js (page 304) collection. The role provides the following actions on those collections:

•collStats (page 423)

•convertToCapped (page 422)

•createCollection (page 419)

•dbHash (page 423)

6.4. Security Reference 405

MongoDB Documentation, Release 2.6.11

•dbStats (page 423)

•dropCollection (page 420)

•createIndex (page 419)

•dropIndex (page 422)

•emptycapped (page 420)

•find (page 419)

•insert (page 419)

•killCursors (page 420)

•remove (page 419)

•renameCollectionSameDB (page 422)

•update (page 419)

Database Administration Roles

Every database includes the following database administration roles:

dbAdmin
Provides the following actions (page 418) on the database’s system.indexes (page 304),
system.namespaces (page 304), and system.profile (page 304) collections:

•collStats (page 423)

•dbHash (page 423)

•dbStats (page 423)

•find (page 419)

•killCursors (page 420)

•dropCollection (page 420) and createCollection (page 419) on system.profile
(page 304) only

Changed in version 2.6.4: dbAdmin (page 406) added the createCollection (page 419) for the
system.profile (page 304) collection. Previous versions only had the dropCollection (page 420)
on the system.profile (page 304) collection.

Provides the following actions on all non-system collections. This role does not include full read access on
non-system collections:

•collMod (page 422)

•collStats (page 423)

•compact (page 422)

•convertToCapped (page 422)

•createCollection (page 419)

•createIndex (page 419)

•dbStats (page 423)

•dropCollection (page 420)

•dropDatabase (page 422)

406 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

•dropIndex (page 422)

•enableProfiler (page 420)

•indexStats (page 423)

•reIndex (page 422)

•renameCollectionSameDB (page 422)

•repairDatabase (page 423)

•storageDetails (page 421)

•validate (page 423)

dbOwner
The database owner can perform any administrative action on the database. This role combines the privileges
granted by the readWrite (page 405), dbAdmin (page 406) and userAdmin (page 407) roles.

userAdmin
Provides the ability to create and modify roles and users on the current database. This role also indirectly
provides superuser (page 412) access to either the database or, if scoped to the admin database, the cluster.
The userAdmin (page 407) role allows users to grant any user any privilege, including themselves.

The userAdmin (page 407) role explicitly provides the following actions:

•changeCustomData (page 419)

•changePassword (page 419)

•createRole (page 420)

•createUser (page 420)

•dropRole (page 420)

•dropUser (page 420)

•grantRole (page 420)

•revokeRole (page 420)

•viewRole (page 420)

•viewUser (page 420)

Cluster Administration Roles

The admin database includes the following roles for administering the whole system rather than just a single database.
These roles include but are not limited to replica set and sharded cluster administrative functions.

clusterAdmin
Provides the greatest cluster-management access. This role combines the privileges granted by the
clusterManager (page 407), clusterMonitor (page 408), and hostManager (page 409) roles. Ad-
ditionally, the role provides the dropDatabase (page 422) action.

clusterManager
Provides management and monitoring actions on the cluster. A user with this role can access the config and
local databases, which are used in sharding and replication, respectively.

Provides the following actions on the cluster as a whole:

•addShard (page 421)

6.4. Security Reference 407

MongoDB Documentation, Release 2.6.11

•applicationMessage (page 422)

•cleanupOrphaned (page 420)

•flushRouterConfig (page 421)

•listShards (page 421)

•removeShard (page 422)

•replSetConfigure (page 421)

•replSetGetStatus (page 421)

•replSetStateChange (page 421)

•resync (page 421)

Provides the following actions on all databases in the cluster:

•enableSharding (page 421)

•moveChunk (page 421)

•splitChunk (page 422)

•splitVector (page 422)

On the config database, provides the following actions on the settings (page 758) collection:

•insert (page 419)

•remove (page 419)

•update (page 419)

On the config database, provides the following actions on all configuration collections and on the
system.indexes (page 304), system.js (page 304), and system.namespaces (page 304) collec-
tions:

•collStats (page 423)

•dbHash (page 423)

•dbStats (page 423)

•find (page 419)

•killCursors (page 420)

On the local database, provides the following actions on the replset (page 666) collection:

•collStats (page 423)

•dbHash (page 423)

•dbStats (page 423)

•find (page 419)

•killCursors (page 420)

clusterMonitor
Provides read-only access to monitoring tools, such as the MongoDB Cloud Manager76 monitoring agent.

Provides the following actions on the cluster as a whole:

•connPoolStats (page 423)

76https://cloud.mongodb.com/?jmp=docs

408 Chapter 6. Security

https://cloud.mongodb.com/?jmp=docs

MongoDB Documentation, Release 2.6.11

•cursorInfo (page 423)

•getCmdLineOpts (page 423)

•getLog (page 423)

•getParameter (page 422)

•getShardMap (page 421)

•hostInfo (page 422)

•inprog (page 420)

•listDatabases (page 423)

•listShards (page 421)

•netstat (page 423)

•replSetGetStatus (page 421)

•serverStatus (page 423)

•shardingState (page 422)

•top (page 423)

Provides the following actions on all databases in the cluster:

•collStats (page 423)

•dbStats (page 423)

•getShardVersion (page 421)

Provides the find (page 419) action on all system.profile (page 304) collections in the cluster.

Provides the following actions on the config database’s configuration collections and system.indexes
(page 304), system.js (page 304), and system.namespaces (page 304) collections:

•collStats (page 423)

•dbHash (page 423)

•dbStats (page 423)

•find (page 419)

•killCursors (page 420)

hostManager
Provides the ability to monitor and manage servers.

Provides the following actions on the cluster as a whole:

•applicationMessage (page 422)

•closeAllDatabases (page 422)

•connPoolSync (page 422)

•cpuProfiler (page 420)

•diagLogging (page 423)

•flushRouterConfig (page 421)

•fsync (page 422)

•invalidateUserCache (page 420)

6.4. Security Reference 409

MongoDB Documentation, Release 2.6.11

•killop (page 421)

•logRotate (page 422)

•resync (page 421)

•setParameter (page 423)

•shutdown (page 423)

•touch (page 423)

•unlock (page 420)

Provides the following actions on all databases in the cluster:

•killCursors (page 420)

•repairDatabase (page 423)

Backup and Restoration Roles

The admin database includes the following roles for backing up and restoring data:

backup
Provides minimal privileges needed for backing up data. This role provides sufficient privileges to use the
MongoDB Cloud Manager77 backup agent, or to use mongodump to back up an entire mongod instance.

Provides the following actions (page 418) on the mms.backup collection in the admin database:

•insert (page 419)

•update (page 419)

Provides the listDatabases (page 423) action on the cluster as a whole.

Provides the find (page 419) action on the following:

•all non-system collections in the cluster

•all the following system collections in the cluster: system.indexes (page 304),
system.namespaces (page 304), and system.js (page 304)

•the admin.system.users (page 304) and admin.system.roles (page 304) collections

•legacy system.users collections from versions of MongoDB prior to 2.6

restore
Provides privileges needed to restore data from backups. This role is sufficient when restoring
data with mongorestore without the --oplogReplay option. If running mongorestore with
--oplogReplay, however, the restore (page 410) role is insufficient to replay the oplog. To replay the
oplog, create a user-defined role that has anyAction (page 424) on anyResource (page 418) and grant only to
users who must run mongorestore with --oplogReplay.

Provides the following actions on all non-system collections and system.js (page 304) collections in the
cluster; on the admin.system.users (page 304) and admin.system.roles (page 304) collections in
the admin database; and on legacy system.users collections from versions of MongoDB prior to 2.6:

•collMod (page 422)

•createCollection (page 419)

•createIndex (page 419)

77https://cloud.mongodb.com/?jmp=docs

410 Chapter 6. Security

https://cloud.mongodb.com/?jmp=docs

MongoDB Documentation, Release 2.6.11

•dropCollection (page 420)

•insert (page 419)

Provides the following additional actions on admin.system.users (page 304) and legacy
system.users collections:

•find (page 419)

•remove (page 419)

•update (page 419)

Provides the find (page 419) action on all the system.namespaces (page 304) collections in the cluster.

Although, restore (page 410) includes the ability to modify the documents in the admin.system.users
(page 304) collection using normal modification operations, only modify these data using the user management
methods.

All-Database Roles

The admin database provides the following roles that apply to all databases in a mongod instance and are roughly
equivalent to their single-database equivalents:

readAnyDatabase
Provides the same read-only permissions as read (page 405), except it applies to all databases in the cluster.
The role also provides the listDatabases (page 423) action on the cluster as a whole.

readWriteAnyDatabase
Provides the same read and write permissions as readWrite (page 405), except it applies to all databases in
the cluster. The role also provides the listDatabases (page 423) action on the cluster as a whole.

userAdminAnyDatabase
Provides the same access to user administration operations as userAdmin (page 407), except it applies to all
databases in the cluster. The role also provides the following actions on the cluster as a whole:

•authSchemaUpgrade (page 420)

•invalidateUserCache (page 420)

•listDatabases (page 423)

The role also provides the following actions on the admin.system.users (page 304) and
admin.system.roles (page 304) collections on the admin database, and on legacy system.users
collections from versions of MongoDB prior to 2.6:

•collStats (page 423)

•dbHash (page 423)

•dbStats (page 423)

•find (page 419)

•killCursors (page 420)

•planCacheRead (page 421)

Changed in version 2.6.4: userAdminAnyDatabase (page 411) added the following permissions on the
admin.system.users (page 304) and admin.system.roles (page 304) collections:

•createIndex (page 419)

•dropIndex (page 422)

6.4. Security Reference 411

MongoDB Documentation, Release 2.6.11

The userAdminAnyDatabase (page 411) role does not restrict the permissions that a user can grant. As
a result, userAdminAnyDatabase (page 411) users can grant themselves privileges in excess of their cur-
rent privileges and even can grant themselves all privileges, even though the role does not explicitly authorize
privileges beyond user administration. This role is effectively a MongoDB system superuser (page 412).

dbAdminAnyDatabase
Provides the same access to database administration operations as dbAdmin (page 406), except it applies to
all databases in the cluster. The role also provides the listDatabases (page 423) action on the cluster as a
whole.

Superuser Roles

Several roles provide either indirect or direct system-wide superuser access.

The following roles provide the ability to assign any user any privilege on any database, which means that users with
one of these roles can assign themselves any privilege on any database:

• dbOwner (page 407) role, when scoped to the admin database

• userAdmin (page 407) role, when scoped to the admin database

• userAdminAnyDatabase (page 411) role

The following role provides full privileges on all resources:

root
Provides access to the operations and all the resources of the readWriteAnyDatabase (page 411),
dbAdminAnyDatabase (page 412), userAdminAnyDatabase (page 411) and clusterAdmin
(page 407) roles combined.

root (page 412) does not include any access to collections that begin with the system. prefix.

For example, without the ability to insert data directly into the:data:system.users <admin.system.users> and
system.roles (page 304) collections in the admin database. root (page 412) is not suitable for writing
or restoring data that have these collections (e.g. with mongorestore.) To perform these kinds of restore
operations, provision users with the restore (page 410) role.

Internal Role

__system
MongoDB assigns this role to user objects that represent cluster members, such as replica set members and
mongos instances. The role entitles its holder to take any action against any object in the database.

Do not assign this role to user objects representing applications or human administrators, other than in excep-
tional circumstances.

If you need access to all actions on all resources, for example to run the eval or applyOps commands,
do not assign this role. Instead, create a user-defined role (page 386) that grants anyAction (page 424) on
anyResource (page 418) and ensure that only the users who needs access to these operations has this access.

system.roles Collection

New in version 2.6.

412 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

On this page

• system.roles Schema (page 413)
• Examples (page 414)

The system.roles collection in the admin database stores the user-defined roles. To create and manage these
user-defined roles, MongoDB provides role management commands.

system.roles Schema

The documents in the system.roles collection have the following schema:

{
_id: <system-defined id>,
role: "<role name>",
db: "<database>",
privileges:

[
{

resource: { <resource> },
actions: ["<action>", ...]

},
...

],
roles:

[
{ role: "<role name>", db: "<database>" },
...

]
}

A system.roles document has the following fields:

admin.system.roles.role
The role (page 413) field is a string that specifies the name of the role.

admin.system.roles.db
The db (page 413) field is a string that specifies the database to which the role belongs. MongoDB uniquely
identifies each role by the pairing of its name (i.e. role (page 413)) and its database.

admin.system.roles.privileges
The privileges (page 413) array contains the privilege documents that define the privileges (page 320) for
the role.

A privilege document has the following syntax:

{
resource: { <resource> },
actions: ["<action>", ...]

}

Each privilege document has the following fields:

admin.system.roles.privileges[n].resource
A document that specifies the resources upon which the privilege actions (page 414) apply. The docu-
ment has one of the following form:

6.4. Security Reference 413

MongoDB Documentation, Release 2.6.11

{ db: <database>, collection: <collection> }

or

{ cluster : true }

See Resource Document (page 417) for more details.

admin.system.roles.privileges[n].actions
An array of actions permitted on the resource. For a list of actions, see Privilege Actions (page 418).

admin.system.roles.roles
The roles (page 414) array contains role documents that specify the roles from which this role inherits
(page 321) privileges.

A role document has the following syntax:

{ role: "<role name>", db: "<database>" }

A role document has the following fields:

admin.system.roles.roles[n].role
The name of the role. A role can be a built-in role (page 405) provided by MongoDB or a user-defined
role (page 321).

admin.system.roles.roles[n].db
The name of the database where the role is defined.

Examples

Consider the following sample documents found in system.roles collection of the admin database.

A User-Defined Role Specifies Privileges The following is a sample document for a user-defined role appUser
defined for the myApp database:

{
_id: "myApp.appUser",
role: "appUser",
db: "myApp",
privileges: [

{ resource: { db: "myApp" , collection: "" },
actions: ["find", "createCollection", "dbStats", "collStats"] },

{ resource: { db: "myApp", collection: "logs" },
actions: ["insert"] },

{ resource: { db: "myApp", collection: "data" },
actions: ["insert", "update", "remove", "compact"] },

{ resource: { db: "myApp", collection: "system.indexes" },
actions: ["find"] },

{ resource: { db: "myApp", collection: "system.namespaces" },
actions: ["find"] },

],
roles: []

}

The privileges array lists the five privileges that the appUser role specifies:

• The first privilege permits its actions ("find", "createCollection", "dbStats", "collStats") on
all the collections in the myApp database excluding its system collections. See Specify a Database as Resource
(page 417).

414 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

• The next two privileges permits additional actions on specific collections, logs and data, in the myApp
database. See Specify a Collection of a Database as Resource (page 417).

• The last two privileges permits actions on two system collections (page 304) in the myApp database. While
the first privilege gives database-wide permission for the find action, the action does not apply to myApp‘s
system collections. To give access to a system collection, a privilege must explicitly specify the collection. See
Resource Document (page 417).

As indicated by the empty roles array, appUser inherits no additional privileges from other roles.

User-Defined Role Inherits from Other Roles The following is a sample document for a user-defined role
appAdmin defined for the myApp database: The document shows that the appAdmin role specifies privileges
as well as inherits privileges from other roles:

{
_id: "myApp.appAdmin",
role: "appAdmin",
db: "myApp",
privileges: [

{
resource: { db: "myApp", collection: "" },
actions: ["insert", "dbStats", "collStats", "compact", "repairDatabase"]

}
],

roles: [
{ role: "appUser", db: "myApp" }

]
}

The privileges array lists the privileges that the appAdmin role specifies. This role has a single privilege that
permits its actions ("insert", "dbStats", "collStats", "compact", "repairDatabase") on all the
collections in the myApp database excluding its system collections. See Specify a Database as Resource (page 417).

The roles array lists the roles, identified by the role names and databases, from which the role appAdmin inherits
privileges.

system.users Collection

Changed in version 2.6.

On this page

• system.users Schema (page 415)
• Example (page 416)

The system.users collection in the admin database stores user authentication (page 316) and authorization
(page 320) information. To manage data in this collection, MongoDB provides user management commands.

system.users Schema

The documents in the system.users collection have the following schema:

{
_id: <system defined id>,
user: "<name>",

6.4. Security Reference 415

MongoDB Documentation, Release 2.6.11

db: "<database>",
credentials: { <authentication credentials> },
roles: [

{ role: "<role name>", db: "<database>" },
...

],
customData: <custom information>

}

Each system.users document has the following fields:

admin.system.users.user
The user (page 416) field is a string that identifies the user. A user exists in the context of a single logical
database but can have access to other databases through roles specified in the roles (page 416) array.

admin.system.users.db
The db (page 416) field specifies the database associated with the user. The user’s privileges are not necessarily
limited to this database. The user can have privileges in additional databases through the roles (page 416)
array.

admin.system.users.credentials
The credentials (page 416) field contains the user’s authentication information. For users with externally
stored authentication credentials, such as users that use Kerberos (page 369) or x.509 certificates for authentica-
tion, the system.users document for that user does not contain the credentials (page 416) field.

admin.system.users.roles
The roles (page 416) array contains role documents that specify the roles granted to the user. The array
contains both built-in roles (page 405) and user-defined role (page 321).

A role document has the following syntax:

{ role: "<role name>", db: "<database>" }

A role document has the following fields:

admin.system.users.roles[n].role
The name of a role. A role can be a built-in role (page 405) provided by MongoDB or a custom user-defined
role (page 321).

admin.system.users.roles[n].db
The name of the database where role is defined.

When specifying a role using the role management or user management commands, you can specify the role
name alone (e.g. "readWrite") if the role that exists on the database on which the command is run.

admin.system.users.customData
The customData (page 416) field contains optional custom information about the user.

Example

Consider the following document in the system.users collection:

{
_id: "home.Kari",
user: "Kari",
db: "home",
credentials: { "MONGODB-CR" :"<hashed password>" },
roles : [

{ role: "read", db: "home" },

416 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

{ role: "readWrite", db: "test" },
{ role: "appUser", db: "myApp" }

],
customData: { zipCode: "64157" }

}

The document shows that a user Kari is associated with the home database. Kari has the read (page 405) role
in the home database, the readWrite (page 405) role in the test database, and the appUser role in the myApp
database.

Resource Document

On this page

• Database and/or Collection Resource (page 417)
• Cluster Resource (page 418)
• anyResource (page 418)

The resource document specifies the resources upon which a privilege permits actions.

Database and/or Collection Resource

To specify databases and/or collections, use the following syntax:

{ db: <database>, collection: <collection> }

Specify a Collection of a Database as Resource If the resource document species both the db and collection
fields as non-empty strings, the resource is the specified collection in the specified database. For example, the following
document specifies a resource of the inventory collection in the products database:

{ db: "products", collection: "inventory" }

For a user-defined role scoped for a non-admin database, the resource specification for its privileges must specify the
same database as the role. User-defined roles scoped for the admin database can specify other databases.

Specify a Database as Resource If only the collection field is an empty string (""), the resource is the specified
database, excluding the system collections (page 304). For example, the following resource document specifies the
resource of the test database, excluding the system collections:

{ db: "test", collection: "" }

For a user-defined role scoped for a non-admin database, the resource specification for its privileges must specify the
same database as the role. User-defined roles scoped for the admin database can specify other databases.

Note: When you specify a database as the resource, the system collections are excluded, unless you name them
explicitly, as in the following:

{ db: "test", collection: "system.namespaces" }

System collections include but are not limited to the following:

• <database>.system.profile (page 304)

6.4. Security Reference 417

MongoDB Documentation, Release 2.6.11

• <database>.system.namespaces (page 304)

• <database>.system.indexes (page 304)

• <database>.system.js (page 304)

• local.system.replset (page 666)

• system.users Collection (page 415) in the admin database

• system.roles Collection (page 412) in the admin database

Specify Collections Across Databases as Resource If only the db field is an empty string (""), the resource is all
collections with the specified name across all databases. For example, the following document specifies the resource
of all the accounts collections across all the databases:

{ db: "", collection: "accounts" }

For user-defined roles, only roles scoped for the admin database can have this resource specification for their privi-
leges.

Specify All Non-System Collections in All Databases If both the db and collection fields are empty strings
(""), the resource is all collections, excluding the system collections (page 304), in all the databases:

{ db: "", collection: "" }

For user-defined roles, only roles scoped for the admin database can have this resource specification for their privi-
leges.

Cluster Resource

To specify the cluster as the resource, use the following syntax:

{ cluster : true }

Use the cluster resource for actions that affect the state of the system rather than act on specific set of databases
or collections. Examples of such actions are shutdown, replSetReconfig, and addShard. For example, the
following document grants the action shutdown on the cluster.

{ resource: { cluster : true }, actions: ["shutdown"] }

For user-defined roles, only roles scoped for the admin database can have this resource specification for their privi-
leges.

anyResource

The internal resource anyResource gives access to every resource in the system and is intended for internal use.
Do not use this resource, other than in exceptional circumstances. The syntax for this resource is { anyResource:
true }.

Privilege Actions

New in version 2.6.

418 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

On this page

• Query and Write Actions (page 419)
• Database Management Actions (page 419)
• Deployment Management Actions (page 420)
• Replication Actions (page 421)
• Sharding Actions (page 421)
• Server Administration Actions (page 422)
• Diagnostic Actions (page 423)
• Internal Actions (page 424)

Privilege actions define the operations a user can perform on a resource (page 417). A MongoDB privilege (page 320)
comprises a resource (page 417) and the permitted actions. This page lists available actions grouped by common
purpose.

MongoDB provides built-in roles with pre-defined pairings of resources and permitted actions. For lists of the actions
granted, see Built-In Roles (page 405). To define custom roles, see Create a Role (page 386).

Query and Write Actions

find
User can perform the db.collection.find() method. Apply this action to database or collection re-
sources.

insert
User can perform the insert command. Apply this action to database or collection resources.

remove
User can perform the db.collection.remove() method. Apply this action to database or collection
resources.

update
User can perform the update command. Apply this action to database or collection resources.

Database Management Actions

changeCustomData
User can change the custom information of any user in the given database. Apply this action to database
resources.

changeOwnCustomData
Users can change their own custom information. Apply this action to database resources. See also Change Your
Password and Custom Data (page 395).

changeOwnPassword
Users can change their own passwords. Apply this action to database resources. See also Change Your Password
and Custom Data (page 395).

changePassword
User can change the password of any user in the given database. Apply this action to database resources.

createCollection
User can perform the db.createCollection() method. Apply this action to database or collection re-
sources.

6.4. Security Reference 419

MongoDB Documentation, Release 2.6.11

createIndex
Provides access to the db.collection.createIndex() method and the createIndexes command.
Apply this action to database or collection resources.

createRole
User can create new roles in the given database. Apply this action to database resources.

createUser
User can create new users in the given database. Apply this action to database resources.

dropCollection
User can perform the db.collection.drop() method. Apply this action to database or collection re-
sources.

dropRole
User can delete any role from the given database. Apply this action to database resources.

dropUser
User can remove any user from the given database. Apply this action to database resources.

emptycapped
User can perform the emptycapped command. Apply this action to database or collection resources.

enableProfiler
User can perform the db.setProfilingLevel() method. Apply this action to database resources.

grantRole
User can grant any role in the database to any user from any database in the system. Apply this action to database
resources.

killCursors
User can kill cursors on the target collection.

revokeRole
User can remove any role from any user from any database in the system. Apply this action to database resources.

unlock
User can perform the db.fsyncUnlock() method. Apply this action to the cluster resource.

viewRole
User can view information about any role in the given database. Apply this action to database resources.

viewUser
User can view the information of any user in the given database. Apply this action to database resources.

Deployment Management Actions

authSchemaUpgrade
User can perform the authSchemaUpgrade command. Apply this action to the cluster resource.

cleanupOrphaned
User can perform the cleanupOrphaned command. Apply this action to the cluster resource.

cpuProfiler
User can enable and use the CPU profiler. Apply this action to the cluster resource.

inprog
User can use the db.currentOp() method to return pending and active operations. Apply this action to the
cluster resource.

invalidateUserCache
Provides access to the invalidateUserCache command. Apply this action to the cluster resource.

420 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

killop
User can perform the db.killOp() method. Apply this action to the cluster resource.

planCacheRead
User can perform the planCacheListPlans and planCacheListQueryShapes commands and the
PlanCache.getPlansByQuery() and PlanCache.listQueryShapes() methods. Apply this ac-
tion to database or collection resources.

planCacheWrite
User can perform the planCacheClear command and the PlanCache.clear() and
PlanCache.clearPlansByQuery() methods. Apply this action to database or collection resources.

storageDetails
User can perform the storageDetails command. Apply this action to database or collection resources.

Replication Actions

appendOplogNote
User can append notes to the oplog. Apply this action to the cluster resource.

replSetConfigure
User can configure a replica set. Apply this action to the cluster resource.

replSetGetStatus
User can perform the replSetGetStatus command. Apply this action to the cluster resource.

replSetHeartbeat
User can perform the replSetHeartbeat command. Apply this action to the cluster resource.

replSetStateChange
User can change the state of a replica set through the replSetFreeze, replSetMaintenance,
replSetStepDown, and replSetSyncFrom commands. Apply this action to the cluster resource.

resync
User can perform the resync command. Apply this action to the cluster resource.

Sharding Actions

addShard
User can perform the addShard command. Apply this action to the cluster resource.

enableSharding
User can enable sharding on a database using the enableSharding command and can shard a collection
using the shardCollection command. Apply this action to database or collection resources.

flushRouterConfig
User can perform the flushRouterConfig command. Apply this action to the cluster resource.

getShardMap
User can perform the getShardMap command. Apply this action to the cluster resource.

getShardVersion
User can perform the getShardVersion command. Apply this action to database resources.

listShards
User can perform the listShards command. Apply this action to the cluster resource.

moveChunk
User can perform the moveChunk command. In addition, user can perform the movePrimary command

6.4. Security Reference 421

MongoDB Documentation, Release 2.6.11

provided that the privilege is applied to an appropriate database resource. Apply this action to database or
collection resources.

removeShard
User can perform the removeShard command. Apply this action to the cluster resource.

shardingState
User can perform the shardingState command. Apply this action to the cluster resource.

splitChunk
User can perform the splitChunk command. Apply this action to database or collection resources.

splitVector
User can perform the splitVector command. Apply this action to database or collection resources.

Server Administration Actions

applicationMessage
User can perform the logApplicationMessage command. Apply this action to the cluster resource.

closeAllDatabases
User can perform the closeAllDatabases command. Apply this action to the cluster resource.

collMod
User can perform the collMod command. Apply this action to database or collection resources.

compact
User can perform the compact command. Apply this action to database or collection resources.

connPoolSync
User can perform the connPoolSync command. Apply this action to the cluster resource.

convertToCapped
User can perform the convertToCapped command. Apply this action to database or collection resources.

dropDatabase
User can perform the dropDatabase command. Apply this action to database resources.

dropIndex
User can perform the dropIndexes command. Apply this action to database or collection resources.

fsync
User can perform the fsync command. Apply this action to the cluster resource.

getParameter
User can perform the getParameter command. Apply this action to the cluster resource.

hostInfo
Provides information about the server the MongoDB instance runs on. Apply this action to the cluster
resource.

logRotate
User can perform the logRotate command. Apply this action to the cluster resource.

reIndex
User can perform the reIndex command. Apply this action to database or collection resources.

renameCollectionSameDB
Allows the user to rename collections on the current database using the renameCollection command.
Apply this action to database resources.

422 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Additionally, the user must either have find (page 419) on the source collection or not have find (page 419)
on the destination collection.

If a collection with the new name already exists, the user must also have the dropCollection (page 420)
action on the destination collection.

repairDatabase
User can perform the repairDatabase command. Apply this action to database resources.

setParameter
User can perform the setParameter command. Apply this action to the cluster resource.

shutdown
User can perform the shutdown command. Apply this action to the cluster resource.

touch
User can perform the touch command. Apply this action to the cluster resource.

Diagnostic Actions

collStats
User can perform the collStats command. Apply this action to database or collection resources.

connPoolStats
User can perform the connPoolStats and shardConnPoolStats commands. Apply this action to the
cluster resource.

cursorInfo
User can perform the cursorInfo command. Apply this action to the cluster resource.

dbHash
User can perform the dbHash command. Apply this action to database or collection resources.

dbStats
User can perform the dbStats command. Apply this action to database resources.

diagLogging
User can perform the diagLogging command. Apply this action to the cluster resource.

getCmdLineOpts
User can perform the getCmdLineOpts command. Apply this action to the cluster resource.

getLog
User can perform the getLog command. Apply this action to the cluster resource.

indexStats
User can perform the indexStats command. Apply this action to database or collection resources.

listDatabases
User can perform the listDatabases command. Apply this action to the cluster resource.

netstat
User can perform the netstat command. Apply this action to the cluster resource.

serverStatus
User can perform the serverStatus command. Apply this action to the cluster resource.

validate
User can perform the validate command. Apply this action to database or collection resources.

top
User can perform the top command. Apply this action to the cluster resource.

6.4. Security Reference 423

MongoDB Documentation, Release 2.6.11

Internal Actions

anyAction
Allows any action on a resource. Do not assign this action except for exceptional circumstances.

internal
Allows internal actions. Do not assign this action except for exceptional circumstances.

Default MongoDB Port

The following table lists the default TCP ports used by MongoDB:

Default
Port

Description

27017 The default port for mongod and mongos instances. You can change this port with port or
--port.

27018 The default port when running with --shardsvr runtime operation or the shardsvr value for the
clusterRole setting in a configuration file.

27019 The default port when running with --configsvr runtime operation or the configsvr value for
the clusterRole setting in a configuration file.

28017 The default port for the web status page. The web status page is always accessible at a port number
that is 1000 greater than the port determined by port.

System Event Audit Messages

On this page

• Audit Message (page 424)
• Audit Event Actions, Details, and Results (page 425)

Note: Available only in MongoDB Enterprise78.

Audit Message

The event auditing feature (page 325) can record events in JSON format. To configure auditing output, see Configure
System Events Auditing (page 397)

The recorded JSON messages have the following syntax:

{
atype: <String>,
ts : { "$date": <timestamp> },
local: { ip: <String>, port: <int> },
remote: { ip: <String>, port: <int> },
users : [{ user: <String>, db: <String> }, ...],
roles: [{ role: <String>, db: <String> }, ...],
param: <document>,
result: <int>

}

78http://www.mongodb.com/products/mongodb-enterprise

424 Chapter 6. Security

http://www.mongodb.com/products/mongodb-enterprise

MongoDB Documentation, Release 2.6.11

field String atype Action type. See Audit Event Actions, Details, and Results (page 425).

field document ts Document that contains the date and UTC time of the event, in ISO 8601 format.

field document local Document that contains the local ip address and the port number of the running
instance.

field document remote Document that contains the remote ip address and the port number of the
incoming connection associated with the event.

field array users Array of user identification documents. Because MongoDB allows a session to log in
with different user per database, this array can have more than one user. Each document contains a
user field for the username and a db field for the authentication database for that user.

field array roles Array of documents that specify the roles (page 320) granted to the user. Each document
contains a role field for the name of the role and a db field for the database associated with the
role.

field document param Specific details for the event. See Audit Event Actions, Details, and Results
(page 425).

field integer result Error code. See Audit Event Actions, Details, and Results (page 425).

Audit Event Actions, Details, and Results

The following table lists for each atype or action type, the associated param details and the result values, if any.

atype param result
authenticate

{
user: <user name>,
db: <database>,
mechanism: <mechanism>

}

0 - Success
18 - Authentication Failed

authCheck
{

command: <name>,
ns: <database>.<collection>,
args: <command object>

}
ns field is optional.
args field may be redacted.

0 - Success
13 - Unauthorized to perform the op-
eration.
By default, the auditing system
logs only the authorization fail-
ures. To enable the system to
log authorization successes, use the
auditAuthorizationSuccess
parameter. 79

createCollection (page 419)
{ ns: <database>.<collection> }

0 - Success

createDatabase
{ ns: <database> }

0 - Success

Continued on next page

79 Enabling auditAuthorizationSuccess degrades performance more than logging only the authorization failures.

6.4. Security Reference 425

MongoDB Documentation, Release 2.6.11

Table 6.1 – continued from previous page
atype param result
createIndex (page 419)

{
ns: <database>.<collection>,
indexName: <index name>,
indexSpec: <index specification>

}

0 - Success

renameCollection
{

old: <database>.<collection>,
new: <database>.<collection>

}

0 - Success

dropCollection (page 420)
{ ns: <database>.<collection> }

0 - Success

dropDatabase (page 422)
{ ns: <database> }

0 - Success

dropIndex (page 422)
{

ns: <database>.<collection>,
indexName: <index name>

}

0 - Success

createUser (page 420)
{

user: <user name>,
db: <database>,
customData: <document>,
roles: [

{
role: <role name>,
db: <database>

},
...

]
}
The customData field is optional.

0 - Success

dropUser (page 420)
{

user: <user name>,
db: <database>

}

0 - Success

dropAllUsersFromDatabase
{ db: <database> }

0 - Success

Continued on next page

426 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Table 6.1 – continued from previous page
atype param result
updateUser

{
user: <user name>,
db: <database>,
passwordChanged: <boolean>,
customData: <document>,
roles: [

{
role: <role name>,
db: <database>

},
...

]
}
The customData field is optional.

0 - Success

grantRolesToUser
{

user: <user name>,
db: <database>,
roles: [

{
role: <role name>,
db: <database>

},
...

]
}

0 - Success

revokeRolesFromUser
{

user: <user name>,
db: <database>,
roles: [

{
role: <role name>,
db: <database>

},
...

]
}

0 - Success

Continued on next page

6.4. Security Reference 427

MongoDB Documentation, Release 2.6.11

Table 6.1 – continued from previous page
atype param result
createRole (page 420)

{
role: <role name>,
db: <database>,
roles: [

{
role: <role name>,
db: <database>

},
...

],
privileges: [
{
resource: <resource document>,
actions: [<action>, ...]

},
...

]
}
The roles and the privileges
fields are optional.
For details on the resource document,
see Resource Document (page 417).
For a list of actions, see Privilege Ac-
tions (page 418).

0 - Success

updateRole
{

role: <role name>,
db: <database>,
roles: [

{
role: <role name>,
db: <database>

},
...

],
privileges: [
{
resource: <resource document>,
actions: [<action>, ...]

},
...

]
}
The roles and the privileges
fields are optional.
For details on the resource document,
see Resource Document (page 417).
For a list of actions, see Privilege Ac-
tions (page 418).

0 - Success

Continued on next page

428 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Table 6.1 – continued from previous page
atype param result
dropRole (page 420)

{
role: <role name>,
db: <database>

}

0 - Success

dropAllRolesFromDatabase
{ db: <database> }

0 - Success

grantRolesToRole
{

role: <role name>,
db: <database>,
roles: [

{
role: <role name>,
db: <database>

},
...

]
}

0 - Success

revokeRolesFromRole
{

role: <role name>,
db: <database>,
roles: [

{
role: <role name>,
db: <database>

},
...

]
}

0 - Success

grantPrivilegesToRole
{

role: <role name>,
db: <database>,
privileges: [
{
resource: <resource document>,
actions: [<action>, ...]

},
...

]
}
For details on the resource document,
see Resource Document (page 417).
For a list of actions, see Privilege Ac-
tions (page 418).

0 - Success

Continued on next page

6.4. Security Reference 429

MongoDB Documentation, Release 2.6.11

Table 6.1 – continued from previous page
atype param result
revokePrivilegesFromRole

{
role: <role name>,
db: <database name>,
privileges: [
{
resource: <resource document>,
actions: [<action>, ...]

},
...

]
}
For details on the resource document,
see Resource Document (page 417).
For a list of actions, see Privilege Ac-
tions (page 418).

0 - Success

replSetReconfig
{

old: <configuration>,
new: <configuration>

}
Indicates membership change in the
replica set.
The old field is optional.

0 - Success

enableSharding (page 421)
{ ns: <database> }

0 - Success

shardCollection
{

ns: <database>.<collection>,
key: <shard key pattern>,
options: { unique: <boolean> }

}

0 - Success

addShard (page 421)
{

shard: <shard name>,
connectionString: <hostname>:<port>,
maxSize: <maxSize>

}
When a shard is a replica set, the
connectionString includes the
replica set name and can include
other members of the replica set.

0 - Success

removeShard (page 422)
{ shard: <shard name> }

0 - Success

shutdown (page 423)
{ }
Indicates commencement of database
shutdown.

0 - Success

Continued on next page

430 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

Table 6.1 – continued from previous page
atype param result
applicationMessage
(page 422) { msg: <custom message string> }

See logApplicationMessage.

0 - Success

6.4.3 Security Release Notes Alerts

Security Release Notes (page 431) Security vulnerability for password.

Security Release Notes

On this page

• Access to system.users Collection (page 431)
• Password Hashing Insecurity (page 431)

Access to system.users Collection

Changed in version 2.4.

In 2.4, only users with the userAdmin role have access to the system.users collection.

In version 2.2 and earlier, the read-write users of a database all have access to the system.users collection, which
contains the user names and user password hashes. 80

Password Hashing Insecurity

If a user has the same password for multiple databases, the hash will be the same. A malicious user could exploit this
to gain access on a second database using a different user’s credentials.

As a result, always use unique username and password combinations for each database.

Thanks to Will Urbanski, from Dell SecureWorks, for identifying this issue.

6.5 Security Checklist

80 Read-only users do not have access to the system.users collection.

6.5. Security Checklist 431

MongoDB Documentation, Release 2.6.11

On this page

• Require Authentication (page 432)
• Configure Role-Based Access Control (page 432)
• Encrypt Communication (page 432)
• Limit Network Exposure (page 432)
• Audit System Activity (page 433)
• Encrypt and Protect Data (page 433)
• Run MongoDB with a Dedicated User (page 433)
• Run MongoDB with Secure Configuration Options (page 433)
• Request a Security Technical Implementation Guide (where applicable) (page 433)
• Consider Security Standards Compliance (page 433)

This documents provides a list of security measures that you should implement to protect your MongoDB installation.

6.5.1 Require Authentication

Enable MongoDB authentication and specify the authentication mechanism. You can use the MongoDB authentica-
tion mechanism or an existing external framework. Authentication requires that all clients and servers provide valid
credentials before they can connect to the system. In clustered deployments, enable authentication for each MongoDB
server.

See Authentication (page 316), Enable Client Access Control (page 353), and Enable Authentication in a Sharded
Cluster (page 354).

6.5.2 Configure Role-Based Access Control

Create roles that define the exact access a set of users needs. Follow a principle of least privilege. Then create users
and assign them only the roles they need to perform their operations. A user can be a person or a client application.

Create a user administrator first, then create additional users. Create a unique MongoDB user for each person and
application that accesses the system.

See Authorization (page 320), Create a Role (page 386), Create a User Administrator (page 381), and Add a User to
a Database (page 383).

6.5.3 Encrypt Communication

Configure MongoDB to use TLS/SSL for all incoming and outgoing connections. Use TLS/SSL to encrypt commu-
nication between mongod and mongos components of a MongoDB client as well as between all applications and
MongoDB.

See Configure mongod and mongos for TLS/SSL (page 338).

6.5.4 Limit Network Exposure

Ensure that MongoDB runs in a trusted network environment and limit the interfaces on which MongoDB instances
listen for incoming connections. Allow only trusted clients to access the network interfaces and ports on which
MongoDB instances are available.

See the bindIp setting, and see Configure Linux iptables Firewall for MongoDB (page 331) and Configure Windows
netsh Firewall for MongoDB (page 334).

432 Chapter 6. Security

MongoDB Documentation, Release 2.6.11

6.5.5 Audit System Activity

Track access and changes to database configurations and data. MongoDB Enterprise81 includes a system auditing
facility that can record system events (e.g. user operations, connection events) on a MongoDB instance. These audit
records permit forensic analysis and allow administrators to verify proper controls.

See Auditing (page 325) and Configure System Events Auditing (page 397).

6.5.6 Encrypt and Protect Data

Encrypt MongoDB data on each host using file-system, device, or physical encryption. Protect MongoDB data using
file-system permissions. MongoDB data includes data files, configuration files, auditing logs, and key files.

6.5.7 Run MongoDB with a Dedicated User

Run MongoDB processes with a dedicated operating system user account. Ensure that the account has permissions to
access data but no unnecessary permissions.

See Install MongoDB (page 5) for more information on running MongoDB.

6.5.8 Run MongoDB with Secure Configuration Options

MongoDB supports the execution of JavaScript code for certain server-side operations: mapReduce, group, eval,
and $where. If you do not use these operations, disable server-side scripting by using the --noscripting option
on the command line.

Use only the MongoDB wire protocol on production deployments. Do not enable the following, all of which enable
the web server interface: enabled, net.http.JSONPEnabled, and net.http.RESTInterfaceEnabled.
Leave these disabled, unless required for backwards compatibility.

Keep input validation enabled. MongoDB enables input validation by default through the wireObjectCheck
setting. This ensures that all documents stored by the mongod instance are valid BSON.

6.5.9 Request a Security Technical Implementation Guide (where applicable)

The Security Technical Implementation Guide (STIG) contains security guidelines for deployments within the United
States Department of Defense. MongoDB Inc. provides its STIG, upon request, for situations where it is required.
Please request a copy82 for more information.

6.5.10 Consider Security Standards Compliance

For applications requiring HIPAA or PCI-DSS compliance, please refer to the MongoDB Security Reference Architec-
ture83 to learn more about how you can use the key security capabilities to build compliant application infrastructure.

81http://www.mongodb.com/products/mongodb-enterprise
82http://www.mongodb.com/lp/contact/stig-requests
83http://info.mongodb.com/rs/mongodb/images/MongoDB_Security_Architecture_WP.pdf

6.5. Security Checklist 433

http://www.mongodb.com/products/mongodb-enterprise
http://www.mongodb.com/lp/contact/stig-requests
http://info.mongodb.com/rs/mongodb/images/MongoDB_Security_Architecture_WP.pdf
http://info.mongodb.com/rs/mongodb/images/MongoDB_Security_Architecture_WP.pdf

MongoDB Documentation, Release 2.6.11

434 Chapter 6. Security

CHAPTER 7

Aggregation

Aggregations operations process data records and return computed results. Aggregation operations group values from
multiple documents together, and can perform a variety of operations on the grouped data to return a single result.
MongoDB provides three ways to perform aggregation: the aggregation pipeline (page 439), the map-reduce function
(page 442), and single purpose aggregation methods and commands (page 444).

Aggregation Introduction (page 435) A high-level introduction to aggregation.

Aggregation Concepts (page 439) Introduces the use and operation of the data aggregation modalities available in
MongoDB.

Aggregation Pipeline (page 439) The aggregation pipeline is a framework for performing aggregation tasks,
modeled on the concept of data processing pipelines. Using this framework, MongoDB passes the doc-
uments of a single collection through a pipeline. The pipeline transforms the documents into aggregated
results, and is accessed through the aggregate database command.

Map-Reduce (page 442) Map-reduce is a generic multi-phase data aggregation modality for processing quan-
tities of data. MongoDB provides map-reduce with the mapReduce database command.

Single Purpose Aggregation Operations (page 444) MongoDB provides a collection of specific data aggrega-
tion operations to support a number of common data aggregation functions. These operations include
returning counts of documents, distinct values of a field, and simple grouping operations.

Aggregation Mechanics (page 447) Details internal optimization operations, limits, support for sharded col-
lections, and concurrency concerns.

Aggregation Examples (page 453) Examples and tutorials for data aggregation operations in MongoDB.

Aggregation Reference (page 470) References for all aggregation operations material for all data aggregation meth-
ods in MongoDB.

7.1 Aggregation Introduction

On this page

• Aggregation Modalities (page 436)
• Additional Features and Behaviors (page 438)
• Additional Resources (page 439)

Aggregations are operations that process data records and return computed results. MongoDB provides a rich set
of aggregation operations that examine and perform calculations on the data sets. Running data aggregation on the
mongod instance simplifies application code and limits resource requirements.

435

MongoDB Documentation, Release 2.6.11

Like queries, aggregation operations in MongoDB use collections of documents as an input and return results in the
form of one or more documents.

7.1.1 Aggregation Modalities

Aggregation Pipelines

MongoDB 2.2 introduced a new aggregation framework (page 439), modeled on the concept of data processing
pipelines. Documents enter a multi-stage pipeline that transforms the documents into an aggregated result.

The most basic pipeline stages provide filters that operate like queries and document transformations that modify the
form of the output document.

Other pipeline operations provide tools for grouping and sorting documents by specific field or fields as well as tools
for aggregating the contents of arrays, including arrays of documents. In addition, pipeline stages can use operators
for tasks such as calculating the average or concatenating a string.

The pipeline provides efficient data aggregation using native operations within MongoDB, and is the preferred method
for data aggregation in MongoDB.

Map-Reduce

MongoDB also provides map-reduce (page 442) operations to perform aggregation. In general, map-reduce operations
have two phases: a map stage that processes each document and emits one or more objects for each input document,

436 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

and reduce phase that combines the output of the map operation. Optionally, map-reduce can have a finalize stage to
make final modifications to the result. Like other aggregation operations, map-reduce can specify a query condition to
select the input documents as well as sort and limit the results.

Map-reduce uses custom JavaScript functions to perform the map and reduce operations, as well as the optional finalize
operation. While the custom JavaScript provide great flexibility compared to the aggregation pipeline, in general, map-
reduce is less efficient and more complex than the aggregation pipeline.

Note: Starting in MongoDB 2.4, certain mongo shell functions and properties are inaccessible in map-reduce op-
erations. MongoDB 2.4 also provides support for multiple JavaScript operations to run at the same time. Before
MongoDB 2.4, JavaScript code executed in a single thread, raising concurrency issues for map-reduce.

Single Purpose Aggregation Operations

For a number of common single purpose aggregation operations (page 444), MongoDB provides special purpose
database commands. These common aggregation operations are: returning a count of matching documents, returning
the distinct values for a field, and grouping data based on the values of a field. All of these operations aggregate
documents from a single collection. While these operations provide simple access to common aggregation processes,

7.1. Aggregation Introduction 437

MongoDB Documentation, Release 2.6.11

they lack the flexibility and capabilities of the aggregation pipeline and map-reduce.

7.1.2 Additional Features and Behaviors

Both the aggregation pipeline and map-reduce can operate on a sharded collection (page 675). Map-reduce operations
can also output to a sharded collection. See Aggregation Pipeline and Sharded Collections (page 451) and Map-Reduce
and Sharded Collections (page 451) for details.

The aggregation pipeline can use indexes to improve its performance during some of its stages. In addition, the aggre-
gation pipeline has an internal optimization phase. See Pipeline Operators and Indexes (page 441) and Aggregation
Pipeline Optimization (page 447) for details.

For a feature comparison of the aggregation pipeline, map-reduce, and the special group functionality, see Aggregation
Commands Comparison (page 475).

438 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

7.1.3 Additional Resources

• MongoDB Analytics: Learn Aggregation by Example: Exploratory Analytics and Visualization Using Flight
Data1

• MongoDB for Time Series Data: Analyzing Time Series Data Using the Aggregation Framework and Hadoop2

• The Aggregation Framework3

7.2 Aggregation Concepts

MongoDB provides the three approaches to aggregation, each with its own strengths and purposes for a given situation.
This section describes these approaches and also describes behaviors and limitations specific to each approach. See
also the chart (page 475) that compares the approaches.

Aggregation Pipeline (page 439) The aggregation pipeline is a framework for performing aggregation tasks, modeled
on the concept of data processing pipelines. Using this framework, MongoDB passes the documents of a single
collection through a pipeline. The pipeline transforms the documents into aggregated results, and is accessed
through the aggregate database command.

Map-Reduce (page 442) Map-reduce is a generic multi-phase data aggregation modality for processing quantities of
data. MongoDB provides map-reduce with the mapReduce database command.

Single Purpose Aggregation Operations (page 444) MongoDB provides a collection of specific data aggregation op-
erations to support a number of common data aggregation functions. These operations include returning counts
of documents, distinct values of a field, and simple grouping operations.

Aggregation Mechanics (page 447) Details internal optimization operations, limits, support for sharded collections,
and concurrency concerns.

7.2.1 Aggregation Pipeline

New in version 2.2.

On this page

• Pipeline (page 441)
• Pipeline Expressions (page 441)
• Aggregation Pipeline Behavior (page 441)

The aggregation pipeline is a framework for data aggregation modeled on the concept of data processing pipelines.
Documents enter a multi-stage pipeline that transforms the documents into an aggregated results.

The aggregation pipeline provides an alternative to map-reduce and may be the preferred solution for aggregation tasks
where the complexity of map-reduce may be unwarranted.

Aggregation pipeline have some limitations on value types and result size. See Aggregation Pipeline Limits (page 450)
for details on limits and restrictions on the aggregation pipeline.

1http://www.mongodb.com/presentations/mongodb-analytics-learn-aggregation-example-exploratory-analytics-and-visualization?jmp=docs
2http://www.mongodb.com/presentations/mongodb-time-series-data-part-2-analyzing-time-series-data-using-aggregation-

framework?jmp=docs
3https://www.mongodb.com/presentations/aggregation-framework-0?jmp=docs

7.2. Aggregation Concepts 439

http://www.mongodb.com/presentations/mongodb-analytics-learn-aggregation-example-exploratory-analytics-and-visualization?jmp=docs
http://www.mongodb.com/presentations/mongodb-analytics-learn-aggregation-example-exploratory-analytics-and-visualization?jmp=docs
http://www.mongodb.com/presentations/mongodb-time-series-data-part-2-analyzing-time-series-data-using-aggregation-framework?jmp=docs
https://www.mongodb.com/presentations/aggregation-framework-0?jmp=docs

MongoDB Documentation, Release 2.6.11

440 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

Pipeline

The MongoDB aggregation pipeline consists of stages. Each stage transforms the documents as they pass through the
pipeline. Pipeline stages do not need to produce one output document for every input document; e.g., some stages may
generate new documents or filter out documents. Pipeline stages can appear multiple times in the pipeline.

MongoDB provides the db.collection.aggregate() method in the mongo shell and the aggregate com-
mand for aggregation pipeline. See aggregation-pipeline-operator-reference for the available stages.

For example usage of the aggregation pipeline, consider Aggregation with User Preference Data (page 457) and
Aggregation with the Zip Code Data Set (page 453).

Pipeline Expressions

Some pipeline stages takes a pipeline expression as its operand. Pipeline expressions specify the transformation to
apply to the input documents. Expressions have a document (page 176) structure and can contain other expression
(page 471).

Pipeline expressions can only operate on the current document in the pipeline and cannot refer to data from other
documents: expression operations provide in-memory transformation of documents.

Generally, expressions are stateless and are only evaluated when seen by the aggregation process with one exception:
accumulator expressions.

The accumulators, used with the $group pipeline operator, maintain their state (e.g. totals, maximums, minimums,
and related data) as documents progress through the pipeline.

For more information on expressions, see Expressions (page 471).

Aggregation Pipeline Behavior

In MongoDB, the aggregate command operates on a single collection, logically passing the entire collection into
the aggregation pipeline. To optimize the operation, wherever possible, use the following strategies to avoid scanning
the entire collection.

Pipeline Operators and Indexes

The $match and $sort pipeline operators can take advantage of an index when they occur at the beginning of the
pipeline.

New in version 2.4: The $geoNear pipeline operator takes advantage of a geospatial index. When using $geoNear,
the $geoNear pipeline operation must appear as the first stage in an aggregation pipeline.

Even when the pipeline uses an index, aggregation still requires access to the actual documents; i.e. indexes cannot
fully cover an aggregation pipeline.

Changed in version 2.6: In previous versions, for very select use cases, an index could cover a pipeline.

Early Filtering

If your aggregation operation requires only a subset of the data in a collection, use the $match, $limit, and $skip
stages to restrict the documents that enter at the beginning of the pipeline. When placed at the beginning of a pipeline,
$match operations use suitable indexes to scan only the matching documents in a collection.

Placing a $match pipeline stage followed by a $sort stage at the start of the pipeline is logically equivalent to a
single query with a sort and can use an index. When possible, place $match operators at the beginning of the pipeline.

7.2. Aggregation Concepts 441

MongoDB Documentation, Release 2.6.11

Additional Features

The aggregation pipeline has an internal optimization phase that provides improved performance for certain sequences
of operators. For details, see Aggregation Pipeline Optimization (page 447).

The aggregation pipeline supports operations on sharded collections. See Aggregation Pipeline and Sharded Collec-
tions (page 451).

7.2.2 Map-Reduce

On this page

• Map-Reduce JavaScript Functions (page 442)
• Map-Reduce Behavior (page 442)

Map-reduce is a data processing paradigm for condensing large volumes of data into useful aggregated results. For
map-reduce operations, MongoDB provides the mapReduce database command.

Consider the following map-reduce operation:

In this map-reduce operation, MongoDB applies the map phase to each input document (i.e. the documents in the
collection that match the query condition). The map function emits key-value pairs. For those keys that have multiple
values, MongoDB applies the reduce phase, which collects and condenses the aggregated data. MongoDB then stores
the results in a collection. Optionally, the output of the reduce function may pass through a finalize function to further
condense or process the results of the aggregation.

All map-reduce functions in MongoDB are JavaScript and run within the mongod process. Map-reduce operations
take the documents of a single collection as the input and can perform any arbitrary sorting and limiting before
beginning the map stage. mapReduce can return the results of a map-reduce operation as a document, or may write
the results to collections. The input and the output collections may be sharded.

Note: For most aggregation operations, the Aggregation Pipeline (page 439) provides better performance and more
coherent interface. However, map-reduce operations provide some flexibility that is not presently available in the
aggregation pipeline.

Map-Reduce JavaScript Functions

In MongoDB, map-reduce operations use custom JavaScript functions to map, or associate, values to a key. If a key
has multiple values mapped to it, the operation reduces the values for the key to a single object.

The use of custom JavaScript functions provide flexibility to map-reduce operations. For instance, when processing a
document, the map function can create more than one key and value mapping or no mapping. Map-reduce operations
can also use a custom JavaScript function to make final modifications to the results at the end of the map and reduce
operation, such as perform additional calculations.

Map-Reduce Behavior

In MongoDB, the map-reduce operation can write results to a collection or return the results inline. If you write
map-reduce output to a collection, you can perform subsequent map-reduce operations on the same input collection
that merge replace, merge, or reduce new results with previous results. See mapReduce and Perform Incremental
Map-Reduce (page 464) for details and examples.

442 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

7.2. Aggregation Concepts 443

MongoDB Documentation, Release 2.6.11

When returning the results of a map reduce operation inline, the result documents must
be within the BSON Document Size limit, which is currently 16 megabytes. For
additional information on limits and restrictions on map-reduce operations, see the
http://docs.mongodb.org/manual/reference/command/mapReduce reference page.

MongoDB supports map-reduce operations on sharded collections (page 675). Map-reduce operations can also output
the results to a sharded collection. See Map-Reduce and Sharded Collections (page 451).

7.2.3 Single Purpose Aggregation Operations

On this page

• Count (page 444)
• Distinct (page 444)
• Group (page 446)

Aggregation refers to a broad class of data manipulation operations that compute a result based on an input and a spe-
cific procedure. MongoDB provides a number of aggregation operations that perform specific aggregation operations
on a set of data.

Although limited in scope, particularly compared to the aggregation pipeline (page 439) and map-reduce (page 442),
these operations provide straightforward semantics for common data processing options.

Count

MongoDB can return a count of the number of documents that match a query. The count command as well as the
count() and cursor.count() methods provide access to counts in the mongo shell.

Example
Given a collection named records with only the following documents:

{ a: 1, b: 0 }
{ a: 1, b: 1 }
{ a: 1, b: 4 }
{ a: 2, b: 2 }

The following operation would count all documents in the collection and return the number 4:

db.records.count()

The following operation will count only the documents where the value of the field a is 1 and return 3:

db.records.count({ a: 1 })

Distinct

The distinct operation takes a number of documents that match a query and returns all of the unique values for a field
in the matching documents. The distinct command and db.collection.distinct() method provide this
operation in the mongo shell. Consider the following examples of a distinct operation:

Example
Given a collection named records with only the following documents:

444 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

7.2. Aggregation Concepts 445

MongoDB Documentation, Release 2.6.11

{ a: 1, b: 0 }
{ a: 1, b: 1 }
{ a: 1, b: 1 }
{ a: 1, b: 4 }
{ a: 2, b: 2 }
{ a: 2, b: 2 }

Consider the following db.collection.distinct() operation which returns the distinct values of the field b:

db.records.distinct("b")

The results of this operation would resemble:

[0, 1, 4, 2]

Group

The group operation takes a number of documents that match a query, and then collects groups of documents based
on the value of a field or fields. It returns an array of documents with computed results for each group of documents.

Access the grouping functionality via the group command or the db.collection.group() method in the
mongo shell.

Warning: group does not support data in sharded collections. In addition, the results of the group operation
must be no larger than 16 megabytes.

Consider the following group operation:

Example
Given a collection named records with the following documents:

{ a: 1, count: 4 }
{ a: 1, count: 2 }
{ a: 1, count: 4 }
{ a: 2, count: 3 }
{ a: 2, count: 1 }
{ a: 1, count: 5 }
{ a: 4, count: 4 }

Consider the following group operation which groups documents by the field a, where a is less than 3, and sums the
field count for each group:

db.records.group({
key: { a: 1 },
cond: { a: { $lt: 3 } },
reduce: function(cur, result) { result.count += cur.count },
initial: { count: 0 }

})

The results of this group operation would resemble the following:

[
{ a: 1, count: 15 },
{ a: 2, count: 4 }

]

446 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

See also:

The $group for related functionality in the aggregation pipeline (page 439).

7.2.4 Aggregation Mechanics

This section describes behaviors and limitations for the various aggregation modalities.

Aggregation Pipeline Optimization (page 447) Details the internal optimization of certain pipeline sequence.

Aggregation Pipeline Limits (page 450) Presents limitations on aggregation pipeline operations.

Aggregation Pipeline and Sharded Collections (page 451) Mechanics of aggregation pipeline operations on sharded
collections.

Map-Reduce and Sharded Collections (page 451) Mechanics of map-reduce operation with sharded collections.

Map Reduce Concurrency (page 452) Details the locks taken during map-reduce operations.

Aggregation Pipeline Optimization

On this page

• Projection Optimization (page 447)
• Pipeline Sequence Optimization (page 447)
• Pipeline Coalescence Optimization (page 448)
• Examples (page 449)

Aggregation pipeline operations have an optimization phase which attempts to reshape the pipeline for improved
performance.

To see how the optimizer transforms a particular aggregation pipeline, include the explain option in the
db.collection.aggregate() method.

Optimizations are subject to change between releases.

Projection Optimization

The aggregation pipeline can determine if it requires only a subset of the fields in the documents to obtain the results.
If so, the pipeline will only use those required fields, reducing the amount of data passing through the pipeline.

Pipeline Sequence Optimization

$sort + $match Sequence Optimization When you have a sequence with $sort followed by a $match, the
$match moves before the $sort to minimize the number of objects to sort. For example, if the pipeline consists of
the following stages:

{ $sort: { age : -1 } },
{ $match: { status: 'A' } }

During the optimization phase, the optimizer transforms the sequence to the following:

7.2. Aggregation Concepts 447

MongoDB Documentation, Release 2.6.11

{ $match: { status: 'A' } },
{ $sort: { age : -1 } }

$skip + $limit Sequence Optimization When you have a sequence with $skip followed by a $limit, the
$limit moves before the $skip. With the reordering, the $limit value increases by the $skip amount.

For example, if the pipeline consists of the following stages:

{ $skip: 10 },
{ $limit: 5 }

During the optimization phase, the optimizer transforms the sequence to the following:

{ $limit: 15 },
{ $skip: 10 }

This optimization allows for more opportunities for $sort + $limit Coalescence (page 448), such as with $sort +
$skip + $limit sequences. See $sort + $limit Coalescence (page 448) for details on the coalescence and $sort +
$skip + $limit Sequence (page 449) for an example.

For aggregation operations on sharded collections (page 451), this optimization reduces the results returned from each
shard.

$redact + $match Sequence Optimization When possible, when the pipeline has the $redact stage immedi-
ately followed by the $match stage, the aggregation can sometimes add a portion of the $match stage before the
$redact stage. If the added $match stage is at the start of a pipeline, the aggregation can use an index as well
as query the collection to limit the number of documents that enter the pipeline. See Pipeline Operators and Indexes
(page 441) for more information.

For example, if the pipeline consists of the following stages:

{ $redact: { $cond: { if: { $eq: ["$level", 5] }, then: "$$PRUNE", else: "$$DESCEND" } } },
{ $match: { year: 2014, category: { $ne: "Z" } } }

The optimizer can add the same $match stage before the $redact stage:

{ $match: { year: 2014 } },
{ $redact: { $cond: { if: { $eq: ["$level", 5] }, then: "$$PRUNE", else: "$$DESCEND" } } },
{ $match: { year: 2014, category: { $ne: "Z" } } }

Pipeline Coalescence Optimization

When possible, the optimization phase coalesces a pipeline stage into its predecessor. Generally, coalescence occurs
after any sequence reordering optimization.

$sort + $limit Coalescence When a $sort immediately precedes a $limit, the optimizer can coalesce the
$limit into the $sort. This allows the sort operation to only maintain the top n results as it progresses, where
n is the specified limit, and MongoDB only needs to store n items in memory 4. See sort-and-memory for more
information.

4 The optimization will still apply when allowDiskUse is true and the n items exceed the aggregation memory limit (page 451).

448 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

$limit + $limit Coalescence When a $limit immediately follows another $limit, the two stages can
coalesce into a single $limit where the limit amount is the smaller of the two initial limit amounts. For example, a
pipeline contains the following sequence:

{ $limit: 100 },
{ $limit: 10 }

Then the second $limit stage can coalesce into the first $limit stage and result in a single $limit stage where
the limit amount 10 is the minimum of the two initial limits 100 and 10.

{ $limit: 10 }

$skip + $skip Coalescence When a $skip immediately follows another $skip, the two stages can coalesce
into a single $skip where the skip amount is the sum of the two initial skip amounts. For example, a pipeline contains
the following sequence:

{ $skip: 5 },
{ $skip: 2 }

Then the second $skip stage can coalesce into the first $skip stage and result in a single $skip stage where the
skip amount 7 is the sum of the two initial limits 5 and 2.

{ $skip: 7 }

$match + $match Coalescence When a $match immediately follows another $match, the two stages can
coalesce into a single $match combining the conditions with an $and. For example, a pipeline contains the following
sequence:

{ $match: { year: 2014 } },
{ $match: { status: "A" } }

Then the second $match stage can coalesce into the first $match stage and result in a single $match stage

{ $match: { $and: [{ "year" : 2014 }, { "status" : "A" }] } }

Examples

The following examples are some sequences that can take advantage of both sequence reordering and coalescence.
Generally, coalescence occurs after any sequence reordering optimization.

$sort + $skip + $limit Sequence A pipeline contains a sequence of $sort followed by a $skip followed
by a $limit:

{ $sort: { age : -1 } },
{ $skip: 10 },
{ $limit: 5 }

First, the optimizer performs the $skip + $limit Sequence Optimization (page 448) to transforms the sequence to the
following:

{ $sort: { age : -1 } },
{ $limit: 15 }
{ $skip: 10 }

7.2. Aggregation Concepts 449

MongoDB Documentation, Release 2.6.11

The $skip + $limit Sequence Optimization (page 448) increases the $limit amount with the reordering. See $skip +
$limit Sequence Optimization (page 448) for details.

The reordered sequence now has $sort immediately preceding the $limit, and the pipeline can coalesce the two
stages to decrease memory usage during the sort operation. See $sort + $limit Coalescence (page 448) for more
information.

$limit + $skip + $limit + $skip Sequence A pipeline contains a sequence of alternating $limit and
$skip stages:

{ $limit: 100 },
{ $skip: 5 },
{ $limit: 10 },
{ $skip: 2 }

The $skip + $limit Sequence Optimization (page 448) reverses the position of the { $skip: 5 } and { $limit:
10 } stages and increases the limit amount:

{ $limit: 100 },
{ $limit: 15},
{ $skip: 5 },
{ $skip: 2 }

The optimizer then coalesces the two $limit stages into a single $limit stage and the two $skip stages into a
single $skip stage. The resulting sequence is the following:

{ $limit: 15 },
{ $skip: 7 }

See $limit + $limit Coalescence (page 449) and $skip + $skip Coalescence (page 449) for details.

See also:

explain option in the db.collection.aggregate()

Aggregation Pipeline Limits

On this page

• Result Size Restrictions (page 450)
• Memory Restrictions (page 451)

Aggregation operations with the aggregate command have the following limitations.

Result Size Restrictions

If the aggregate command returns a single document that contains the complete result set, the command will
produce an error if the result set exceeds the BSON Document Size limit, which is currently 16 megabytes. To
manage result sets that exceed this limit, the aggregate command can return result sets of any size if the command
return a cursor or store the results to a collection.

Changed in version 2.6: The aggregate command can return results as a cursor or store the results in a collection,
which are not subject to the size limit. The db.collection.aggregate() returns a cursor and can return result
sets of any size.

450 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

Memory Restrictions

Changed in version 2.6.

Pipeline stages have a limit of 100 megabytes of RAM. If a stage exceeds this limit, MongoDB will produce an error.
To allow for the handling of large datasets, use the allowDiskUse option to enable aggregation pipeline stages to
write data to temporary files.

See also:

sort-memory-limit and group-memory-limit.

Aggregation Pipeline and Sharded Collections

On this page

• Behavior (page 451)
• Optimization (page 451)

The aggregation pipeline supports operations on sharded collections. This section describes behaviors specific to the
aggregation pipeline (page 441) and sharded collections.

Behavior

Changed in version 2.6.

When operating on a sharded collection, the aggregation pipeline is split into two parts. The first pipeline runs on each
shard, or if an early $match can exclude shards through the use of the shard key in the predicate, the pipeline runs on
only the relevant shards.

The second pipeline consists of the remaining pipeline stages and runs on the primary shard (page 683). The primary
shard merges the cursors from the other shards and runs the second pipeline on these results. The primary shard
forwards the final results to the mongos. In previous versions, the second pipeline would run on the mongos. 5

Optimization

When splitting the aggregation pipeline into two parts, the pipeline is split to ensure that the shards perform as many
stages as possible with consideration for optimization.

To see how the pipeline was split, include the explain option in the db.collection.aggregate() method.

Optimizations are subject to change between releases.

Map-Reduce and Sharded Collections

On this page

• Sharded Collection as Input (page 452)
• Sharded Collection as Output (page 452)

5 Until all shards upgrade to v2.6, the second pipeline runs on the mongos if any shards are still running v2.4.

7.2. Aggregation Concepts 451

MongoDB Documentation, Release 2.6.11

Map-reduce supports operations on sharded collections, both as an input and as an output. This section describes the
behaviors of mapReduce specific to sharded collections.

Sharded Collection as Input

When using sharded collection as the input for a map-reduce operation, mongos will automatically dispatch the map-
reduce job to each shard in parallel. There is no special option required. mongos will wait for jobs on all shards to
finish.

Sharded Collection as Output

Changed in version 2.2.

If the out field for mapReduce has the sharded value, MongoDB shards the output collection using the _id field
as the shard key.

To output to a sharded collection:

• If the output collection does not exist, MongoDB creates and shards the collection on the _id field.

• For a new or an empty sharded collection, MongoDB uses the results of the first stage of the map-reduce
operation to create the initial chunks distributed among the shards.

• mongos dispatches, in parallel, a map-reduce post-processing job to every shard that owns a chunk. During
the post-processing, each shard will pull the results for its own chunks from the other shards, run the final
reduce/finalize, and write locally to the output collection.

Note:
• During later map-reduce jobs, MongoDB splits chunks as needed.

• Balancing of chunks for the output collection is automatically prevented during post-processing to avoid con-
currency issues.

In MongoDB 2.0:

• mongos retrieves the results from each shard, performs a merge sort to order the results, and proceeds to the
reduce/finalize phase as needed. mongos then writes the result to the output collection in sharded mode.

• This model requires only a small amount of memory, even for large data sets.

• Shard chunks are not automatically split during insertion. This requires manual intervention until the chunks
are granular and balanced.

Important: For best results, only use the sharded output options for mapReduce in version 2.2 or later.

Map Reduce Concurrency

The map-reduce operation is composed of many tasks, including reads from the input collection, executions of the
map function, executions of the reduce function, writes to a temporary collection during processing, and writes to
the output collection.

During the operation, map-reduce takes the following locks:

• The read phase takes a read lock. It yields every 100 documents.

• The insert into the temporary collection takes a write lock for a single write.

452 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

• If the output collection does not exist, the creation of the output collection takes a write lock.

• If the output collection exists, then the output actions (i.e. merge, replace, reduce) take a write lock. This
write lock is global, and blocks all operations on the mongod instance.

Changed in version 2.4: The V8 JavaScript engine, which became the default in 2.4, allows multiple JavaScript
operations to execute at the same time. Prior to 2.4, JavaScript code (i.e. map, reduce, finalize functions)
executed in a single thread.

Note: The final write lock during post-processing makes the results appear atomically. However, output actions
merge and reduce may take minutes to process. For the merge and reduce, the nonAtomic flag is avail-
able, which releases the lock between writing each output document. See the db.collection.mapReduce()
reference for more information.

7.3 Aggregation Examples

This document provides the practical examples that display the capabilities of aggregation (page 439).

Aggregation with the Zip Code Data Set (page 453) Use the aggregation pipeline to group values and to calculate
aggregated sums and averages for a collection of United States zip codes.

Aggregation with User Preference Data (page 457) Use the pipeline to sort, normalize, and sum data on a collection
of user data.

Map-Reduce Examples (page 461) Define map-reduce operations that select ranges, group data, and calculate sums
and averages.

Perform Incremental Map-Reduce (page 464) Run a map-reduce operations over one collection and output results
to another collection.

Troubleshoot the Map Function (page 466) Steps to troubleshoot the map function.

Troubleshoot the Reduce Function (page 467) Steps to troubleshoot the reduce function.

7.3.1 Aggregation with the Zip Code Data Set

On this page

• Data Model (page 453)
• aggregate() Method (page 454)
• Return States with Populations above 10 Million (page 454)
• Return Average City Population by State (page 455)
• Return Largest and Smallest Cities by State (page 456)

The examples in this document use the zipcodes collection. This collection is available at: me-
dia.mongodb.org/zips.json6. Use mongoimport to load this data set into your mongod instance.

Data Model

Each document in the zipcodes collection has the following form:

6http://media.mongodb.org/zips.json

7.3. Aggregation Examples 453

http://media.mongodb.org/zips.json
http://media.mongodb.org/zips.json

MongoDB Documentation, Release 2.6.11

{
"_id": "10280",
"city": "NEW YORK",
"state": "NY",
"pop": 5574,
"loc": [
-74.016323,
40.710537

]
}

• The _id field holds the zip code as a string.

• The city field holds the city name. A city can have more than one zip code associated with it as different
sections of the city can each have a different zip code.

• The state field holds the two letter state abbreviation.

• The pop field holds the population.

• The loc field holds the location as a latitude longitude pair.

aggregate() Method

All of the following examples use the aggregate() helper in the mongo shell.

The aggregate() method uses the aggregation pipeline (page 441) to processes documents into aggregated results.
An aggregation pipeline (page 441) consists of stages with each stage processing the documents as they pass along
the pipeline. Documents pass through the stages in sequence.

The aggregate() method in the mongo shell provides a wrapper around the aggregate database command. See
the documentation for your driver for a more idiomatic interface for data aggregation operations.

Return States with Populations above 10 Million

The following aggregation operation returns all states with total population greater than 10 million:

db.zipcodes.aggregate([
{ $group: { _id: "$state", totalPop: { $sum: "$pop" } } },
{ $match: { totalPop: { $gte: 10*1000*1000 } } }

])

In this example, the aggregation pipeline (page 441) consists of the $group stage followed by the $match stage:

• The $group stage groups the documents of the zipcode collection by the state field, calculates the
totalPop field for each state, and outputs a document for each unique state.

The new per-state documents have two fields: the _id field and the totalPop field. The _id field contains
the value of the state; i.e. the group by field. The totalPop field is a calculated field that contains the total
population of each state. To calculate the value, $group uses the $sum operator to add the population field
(pop) for each state.

After the $group stage, the documents in the pipeline resemble the following:

{
"_id" : "AK",
"totalPop" : 550043

}

454 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

• The $match stage filters these grouped documents to output only those documents whose totalPop value is
greater than or equal to 10 million. The $match stage does not alter the matching documents but outputs the
matching documents unmodified.

The equivalent SQL for this aggregation operation is:

SELECT state, SUM(pop) AS totalPop
FROM zipcodes
GROUP BY state
HAVING totalPop >= (10*1000*1000)

See also:

$group, $match, $sum

Return Average City Population by State

The following aggregation operation returns the average populations for cities in each state:

db.zipcodes.aggregate([
{ $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } },
{ $group: { _id: "$_id.state", avgCityPop: { $avg: "$pop" } } }

])

In this example, the aggregation pipeline (page 441) consists of the $group stage followed by another $group
stage:

• The first $group stage groups the documents by the combination of city and state, uses the $sum ex-
pression to calculate the population for each combination, and outputs a document for each city and state
combination. 7

After this stage in the pipeline, the documents resemble the following:

{
"_id" : {

"state" : "CO",
"city" : "EDGEWATER"

},
"pop" : 13154

}

• A second $group stage groups the documents in the pipeline by the _id.state field (i.e. the state field
inside the _id document), uses the $avg expression to calculate the average city population (avgCityPop)
for each state, and outputs a document for each state.

The documents that result from this aggregation operation resembles the following:

{
"_id" : "MN",
"avgCityPop" : 5335

}

See also:

$group, $sum, $avg
7 A city can have more than one zip code associated with it as different sections of the city can each have a different zip code.

7.3. Aggregation Examples 455

MongoDB Documentation, Release 2.6.11

Return Largest and Smallest Cities by State

The following aggregation operation returns the smallest and largest cities by population for each state:

db.zipcodes.aggregate([
{ $group:

{
_id: { state: "$state", city: "$city" },
pop: { $sum: "$pop" }

}
},
{ $sort: { pop: 1 } },
{ $group:

{
_id : "$_id.state",
biggestCity: { $last: "$_id.city" },
biggestPop: { $last: "$pop" },
smallestCity: { $first: "$_id.city" },
smallestPop: { $first: "$pop" }

}
},

// the following $project is optional, and
// modifies the output format.

{ $project:
{ _id: 0,

state: "$_id",
biggestCity: { name: "$biggestCity", pop: "$biggestPop" },
smallestCity: { name: "$smallestCity", pop: "$smallestPop" }

}
}

])

In this example, the aggregation pipeline (page 441) consists of a $group stage, a $sort stage, another $group
stage, and a $project stage:

• The first $group stage groups the documents by the combination of the city and state, calculates the sum
of the pop values for each combination, and outputs a document for each city and state combination.

At this stage in the pipeline, the documents resemble the following:

{
"_id" : {

"state" : "CO",
"city" : "EDGEWATER"

},
"pop" : 13154

}

• The $sort stage orders the documents in the pipeline by the pop field value, from smallest to largest; i.e. by
increasing order. This operation does not alter the documents.

• The next $group stage groups the now-sorted documents by the _id.state field (i.e. the state field inside
the _id document) and outputs a document for each state.

The stage also calculates the following four fields for each state. Using the $last expression, the $group
operator creates the biggestCity and biggestPop fields that store the city with the largest population
and that population. Using the $first expression, the $group operator creates the smallestCity and
smallestPop fields that store the city with the smallest population and that population.

456 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

The documents, at this stage in the pipeline, resemble the following:

{
"_id" : "WA",
"biggestCity" : "SEATTLE",
"biggestPop" : 520096,
"smallestCity" : "BENGE",
"smallestPop" : 2

}

• The final $project stage renames the _id field to state and moves the biggestCity, biggestPop,
smallestCity, and smallestPop into biggestCity and smallestCity embedded documents.

The output documents of this aggregation operation resemble the following:

{
"state" : "RI",
"biggestCity" : {
"name" : "CRANSTON",
"pop" : 176404

},
"smallestCity" : {
"name" : "CLAYVILLE",
"pop" : 45

}
}

7.3.2 Aggregation with User Preference Data

On this page

• Data Model (page 457)
• Normalize and Sort Documents (page 458)
• Return Usernames Ordered by Join Month (page 458)
• Return Total Number of Joins per Month (page 459)
• Return the Five Most Common “Likes” (page 460)

Data Model

Consider a hypothetical sports club with a database that contains a users collection that tracks the user’s join dates,
sport preferences, and stores these data in documents that resemble the following:

{
_id : "jane",
joined : ISODate("2011-03-02"),
likes : ["golf", "racquetball"]

}
{

_id : "joe",
joined : ISODate("2012-07-02"),
likes : ["tennis", "golf", "swimming"]

}

7.3. Aggregation Examples 457

MongoDB Documentation, Release 2.6.11

Normalize and Sort Documents

The following operation returns user names in upper case and in alphabetical order. The aggregation includes user
names for all documents in the users collection. You might do this to normalize user names for processing.

db.users.aggregate(
[
{ $project : { name:{$toUpper:"$_id"} , _id:0 } },
{ $sort : { name : 1 } }

]
)

All documents from the users collection pass through the pipeline, which consists of the following operations:

• The $project operator:

– creates a new field called name.

– converts the value of the _id to upper case, with the $toUpper operator. Then the $project creates
a new field, named name to hold this value.

– suppresses the id field. $project will pass the _id field by default, unless explicitly suppressed.

• The $sort operator orders the results by the name field.

The results of the aggregation would resemble the following:

{
"name" : "JANE"

},
{

"name" : "JILL"
},
{

"name" : "JOE"
}

Return Usernames Ordered by Join Month

The following aggregation operation returns user names sorted by the month they joined. This kind of aggregation
could help generate membership renewal notices.

db.users.aggregate(
[
{ $project :

{
month_joined : { $month : "$joined" },
name : "$_id",
_id : 0

}
},
{ $sort : { month_joined : 1 } }

]
)

The pipeline passes all documents in the users collection through the following operations:

• The $project operator:

– Creates two new fields: month_joined and name.

458 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

– Suppresses the id from the results. The aggregate() method includes the _id, unless explicitly
suppressed.

• The $month operator converts the values of the joined field to integer representations of the month. Then
the $project operator assigns those values to the month_joined field.

• The $sort operator sorts the results by the month_joined field.

The operation returns results that resemble the following:

{
"month_joined" : 1,
"name" : "ruth"

},
{

"month_joined" : 1,
"name" : "harold"

},
{

"month_joined" : 1,
"name" : "kate"

}
{

"month_joined" : 2,
"name" : "jill"

}

Return Total Number of Joins per Month

The following operation shows how many people joined each month of the year. You might use this aggregated data
for recruiting and marketing strategies.

db.users.aggregate(
[
{ $project : { month_joined : { $month : "$joined" } } } ,
{ $group : { _id : {month_joined:"$month_joined"} , number : { $sum : 1 } } },
{ $sort : { "_id.month_joined" : 1 } }

]
)

The pipeline passes all documents in the users collection through the following operations:

• The $project operator creates a new field called month_joined.

• The $month operator converts the values of the joined field to integer representations of the month. Then
the $project operator assigns the values to the month_joined field.

• The $group operator collects all documents with a given month_joined value and counts how many docu-
ments there are for that value. Specifically, for each unique value, $group creates a new “per-month” document
with two fields:

– _id, which contains a nested document with the month_joined field and its value.

– number, which is a generated field. The $sum operator increments this field by 1 for every document
containing the given month_joined value.

• The $sort operator sorts the documents created by $group according to the contents of the month_joined
field.

The result of this aggregation operation would resemble the following:

7.3. Aggregation Examples 459

MongoDB Documentation, Release 2.6.11

{
"_id" : {
"month_joined" : 1

},
"number" : 3

},
{

"_id" : {
"month_joined" : 2

},
"number" : 9

},
{

"_id" : {
"month_joined" : 3

},
"number" : 5

}

Return the Five Most Common “Likes”

The following aggregation collects top five most “liked” activities in the data set. This type of analysis could help
inform planning and future development.

db.users.aggregate(
[
{ $unwind : "$likes" },
{ $group : { _id : "$likes" , number : { $sum : 1 } } },
{ $sort : { number : -1 } },
{ $limit : 5 }

]
)

The pipeline begins with all documents in the users collection, and passes these documents through the following
operations:

• The $unwind operator separates each value in the likes array, and creates a new version of the source
document for every element in the array.

Example
Given the following document from the users collection:

{
_id : "jane",
joined : ISODate("2011-03-02"),
likes : ["golf", "racquetball"]

}

The $unwind operator would create the following documents:

{
_id : "jane",
joined : ISODate("2011-03-02"),
likes : "golf"

}
{
_id : "jane",

460 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

joined : ISODate("2011-03-02"),
likes : "racquetball"

}

• The $group operator collects all documents the same value for the likes field and counts each grouping.
With this information, $group creates a new document with two fields:

– _id, which contains the likes value.

– number, which is a generated field. The $sum operator increments this field by 1 for every document
containing the given likes value.

• The $sort operator sorts these documents by the number field in reverse order.

• The $limit operator only includes the first 5 result documents.

The results of aggregation would resemble the following:

{
"_id" : "golf",
"number" : 33

},
{

"_id" : "racquetball",
"number" : 31

},
{

"_id" : "swimming",
"number" : 24

},
{

"_id" : "handball",
"number" : 19

},
{

"_id" : "tennis",
"number" : 18

}

7.3.3 Map-Reduce Examples

On this page

• Return the Total Price Per Customer (page 462)
• Calculate Order and Total Quantity with Average Quantity Per Item (page 462)

In the mongo shell, the db.collection.mapReduce()method is a wrapper around the mapReduce command.
The following examples use the db.collection.mapReduce() method:

Consider the following map-reduce operations on a collection orders that contains documents of the following
prototype:

{
_id: ObjectId("50a8240b927d5d8b5891743c"),
cust_id: "abc123",
ord_date: new Date("Oct 04, 2012"),

7.3. Aggregation Examples 461

MongoDB Documentation, Release 2.6.11

status: 'A',
price: 25,
items: [{ sku: "mmm", qty: 5, price: 2.5 },

{ sku: "nnn", qty: 5, price: 2.5 }]
}

Return the Total Price Per Customer

Perform the map-reduce operation on the orders collection to group by the cust_id, and calculate the sum of the
price for each cust_id:

1. Define the map function to process each input document:

• In the function, this refers to the document that the map-reduce operation is processing.

• The function maps the price to the cust_id for each document and emits the cust_id and price
pair.

var mapFunction1 = function() {
emit(this.cust_id, this.price);

};

2. Define the corresponding reduce function with two arguments keyCustId and valuesPrices:

• The valuesPrices is an array whose elements are the price values emitted by the map function and
grouped by keyCustId.

• The function reduces the valuesPrice array to the sum of its elements.

var reduceFunction1 = function(keyCustId, valuesPrices) {
return Array.sum(valuesPrices);

};

3. Perform the map-reduce on all documents in the orders collection using the mapFunction1 map function
and the reduceFunction1 reduce function.

db.orders.mapReduce(
mapFunction1,
reduceFunction1,
{ out: "map_reduce_example" }

)

This operation outputs the results to a collection named map_reduce_example. If the
map_reduce_example collection already exists, the operation will replace the contents with the re-
sults of this map-reduce operation:

Calculate Order and Total Quantity with Average Quantity Per Item

In this example, you will perform a map-reduce operation on the orders collection for all documents that have
an ord_date value greater than 01/01/2012. The operation groups by the item.sku field, and calculates the
number of orders and the total quantity ordered for each sku. The operation concludes by calculating the average
quantity per order for each sku value:

1. Define the map function to process each input document:

• In the function, this refers to the document that the map-reduce operation is processing.

• For each item, the function associates the sku with a new object value that contains the count of 1
and the item qty for the order and emits the sku and value pair.

462 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

var mapFunction2 = function() {
for (var idx = 0; idx < this.items.length; idx++) {

var key = this.items[idx].sku;
var value = {

count: 1,
qty: this.items[idx].qty

};
emit(key, value);

}
};

2. Define the corresponding reduce function with two arguments keySKU and countObjVals:

• countObjVals is an array whose elements are the objects mapped to the grouped keySKU values
passed by map function to the reducer function.

• The function reduces the countObjVals array to a single object reducedValue that contains the
count and the qty fields.

• In reducedVal, the count field contains the sum of the count fields from the individual array ele-
ments, and the qty field contains the sum of the qty fields from the individual array elements.

var reduceFunction2 = function(keySKU, countObjVals) {
reducedVal = { count: 0, qty: 0 };

for (var idx = 0; idx < countObjVals.length; idx++) {
reducedVal.count += countObjVals[idx].count;
reducedVal.qty += countObjVals[idx].qty;

}

return reducedVal;
};

3. Define a finalize function with two arguments key and reducedVal. The function modifies the
reducedVal object to add a computed field named avg and returns the modified object:

var finalizeFunction2 = function (key, reducedVal) {

reducedVal.avg = reducedVal.qty/reducedVal.count;

return reducedVal;

};

4. Perform the map-reduce operation on the orders collection using the mapFunction2,
reduceFunction2, and finalizeFunction2 functions.

db.orders.mapReduce(mapFunction2,
reduceFunction2,
{
out: { merge: "map_reduce_example" },
query: { ord_date:

{ $gt: new Date('01/01/2012') }
},

finalize: finalizeFunction2
}

)

This operation uses the query field to select only those documents with ord_date greater than new
Date(01/01/2012). Then it output the results to a collection map_reduce_example. If the

7.3. Aggregation Examples 463

MongoDB Documentation, Release 2.6.11

map_reduce_example collection already exists, the operation will merge the existing contents with the
results of this map-reduce operation.

7.3.4 Perform Incremental Map-Reduce

On this page

• Data Setup (page 464)
• Initial Map-Reduce of Current Collection (page 464)
• Subsequent Incremental Map-Reduce (page 465)

Map-reduce operations can handle complex aggregation tasks. To perform map-reduce operations, MongoDB provides
the mapReduce command and, in the mongo shell, the db.collection.mapReduce() wrapper method.

If the map-reduce data set is constantly growing, you may want to perform an incremental map-reduce rather than
performing the map-reduce operation over the entire data set each time.

To perform incremental map-reduce:

1. Run a map-reduce job over the current collection and output the result to a separate collection.

2. When you have more data to process, run subsequent map-reduce job with:

• the query parameter that specifies conditions that match only the new documents.

• the out parameter that specifies the reduce action to merge the new results into the existing output
collection.

Consider the following example where you schedule a map-reduce operation on a sessions collection to run at the
end of each day.

Data Setup

The sessions collection contains documents that log users’ sessions each day, for example:

db.sessions.save({ userid: "a", ts: ISODate('2011-11-03 14:17:00'), length: 95 });
db.sessions.save({ userid: "b", ts: ISODate('2011-11-03 14:23:00'), length: 110 });
db.sessions.save({ userid: "c", ts: ISODate('2011-11-03 15:02:00'), length: 120 });
db.sessions.save({ userid: "d", ts: ISODate('2011-11-03 16:45:00'), length: 45 });

db.sessions.save({ userid: "a", ts: ISODate('2011-11-04 11:05:00'), length: 105 });
db.sessions.save({ userid: "b", ts: ISODate('2011-11-04 13:14:00'), length: 120 });
db.sessions.save({ userid: "c", ts: ISODate('2011-11-04 17:00:00'), length: 130 });
db.sessions.save({ userid: "d", ts: ISODate('2011-11-04 15:37:00'), length: 65 });

Initial Map-Reduce of Current Collection

Run the first map-reduce operation as follows:

1. Define the map function that maps the userid to an object that contains the fields userid, total_time,
count, and avg_time:

var mapFunction = function() {
var key = this.userid;
var value = {

userid: this.userid,

464 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

total_time: this.length,
count: 1,
avg_time: 0

};

emit(key, value);
};

2. Define the corresponding reduce function with two arguments key and values to calculate the total time and
the count. The key corresponds to the userid, and the values is an array whose elements corresponds to
the individual objects mapped to the userid in the mapFunction.

var reduceFunction = function(key, values) {

var reducedObject = {
userid: key,
total_time: 0,
count:0,
avg_time:0

};

values.forEach(function(value) {
reducedObject.total_time += value.total_time;
reducedObject.count += value.count;

}
);

return reducedObject;
};

3. Define the finalize function with two arguments key and reducedValue. The function modifies the
reducedValue document to add another field average and returns the modified document.

var finalizeFunction = function (key, reducedValue) {

if (reducedValue.count > 0)
reducedValue.avg_time = reducedValue.total_time / reducedValue.count;

return reducedValue;
};

4. Perform map-reduce on the session collection using the mapFunction, the reduceFunction, and the
finalizeFunction functions. Output the results to a collection session_stat. If the session_stat
collection already exists, the operation will replace the contents:

db.sessions.mapReduce(mapFunction,
reduceFunction,
{
out: "session_stat",
finalize: finalizeFunction

}
)

Subsequent Incremental Map-Reduce

Later, as the sessions collection grows, you can run additional map-reduce operations. For example, add new
documents to the sessions collection:

7.3. Aggregation Examples 465

MongoDB Documentation, Release 2.6.11

db.sessions.save({ userid: "a", ts: ISODate('2011-11-05 14:17:00'), length: 100 });
db.sessions.save({ userid: "b", ts: ISODate('2011-11-05 14:23:00'), length: 115 });
db.sessions.save({ userid: "c", ts: ISODate('2011-11-05 15:02:00'), length: 125 });
db.sessions.save({ userid: "d", ts: ISODate('2011-11-05 16:45:00'), length: 55 });

At the end of the day, perform incremental map-reduce on the sessions collection, but use the query field to select
only the new documents. Output the results to the collection session_stat, but reduce the contents with the
results of the incremental map-reduce:

db.sessions.mapReduce(mapFunction,
reduceFunction,
{
query: { ts: { $gt: ISODate('2011-11-05 00:00:00') } },
out: { reduce: "session_stat" },
finalize: finalizeFunction

}
);

7.3.5 Troubleshoot the Map Function

The map function is a JavaScript function that associates or “maps” a value with a key and emits the key and value
pair during a map-reduce (page 442) operation.

To verify the key and value pairs emitted by the map function, write your own emit function.

Consider a collection orders that contains documents of the following prototype:

{
_id: ObjectId("50a8240b927d5d8b5891743c"),
cust_id: "abc123",
ord_date: new Date("Oct 04, 2012"),
status: 'A',
price: 250,
items: [{ sku: "mmm", qty: 5, price: 2.5 },

{ sku: "nnn", qty: 5, price: 2.5 }]
}

1. Define the map function that maps the price to the cust_id for each document and emits the cust_id and
price pair:

var map = function() {
emit(this.cust_id, this.price);

};

2. Define the emit function to print the key and value:

var emit = function(key, value) {
print("emit");
print("key: " + key + " value: " + tojson(value));

}

3. Invoke the map function with a single document from the orders collection:

var myDoc = db.orders.findOne({ _id: ObjectId("50a8240b927d5d8b5891743c") });
map.apply(myDoc);

4. Verify the key and value pair is as you expected.

466 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

emit
key: abc123 value:250

5. Invoke the map function with multiple documents from the orders collection:

var myCursor = db.orders.find({ cust_id: "abc123" });

while (myCursor.hasNext()) {
var doc = myCursor.next();
print ("document _id= " + tojson(doc._id));
map.apply(doc);
print();

}

6. Verify the key and value pairs are as you expected.

See also:

The map function must meet various requirements. For a list of all the requirements for the map function, see
mapReduce, or the mongo shell helper method db.collection.mapReduce().

7.3.6 Troubleshoot the Reduce Function

On this page

• Confirm Output Type (page 467)
• Ensure Insensitivity to the Order of Mapped Values (page 468)
• Ensure Reduce Function Idempotence (page 469)

The reduce function is a JavaScript function that “reduces” to a single object all the values associated with a par-
ticular key during a map-reduce (page 442) operation. The reduce function must meet various requirements. This
tutorial helps verify that the reduce function meets the following criteria:

• The reduce function must return an object whose type must be identical to the type of the value emitted by
the map function.

• The order of the elements in the valuesArray should not affect the output of the reduce function.

• The reduce function must be idempotent.

For a list of all the requirements for the reduce function, see mapReduce, or the mongo shell helper method
db.collection.mapReduce().

Confirm Output Type

You can test that the reduce function returns a value that is the same type as the value emitted from the map function.

1. Define a reduceFunction1 function that takes the arguments keyCustId and valuesPrices.
valuesPrices is an array of integers:

var reduceFunction1 = function(keyCustId, valuesPrices) {
return Array.sum(valuesPrices);

};

2. Define a sample array of integers:

7.3. Aggregation Examples 467

MongoDB Documentation, Release 2.6.11

var myTestValues = [5, 5, 10];

3. Invoke the reduceFunction1 with myTestValues:

reduceFunction1('myKey', myTestValues);

4. Verify the reduceFunction1 returned an integer:

20

5. Define a reduceFunction2 function that takes the arguments keySKU and valuesCountObjects.
valuesCountObjects is an array of documents that contain two fields count and qty:

var reduceFunction2 = function(keySKU, valuesCountObjects) {
reducedValue = { count: 0, qty: 0 };

for (var idx = 0; idx < valuesCountObjects.length; idx++) {
reducedValue.count += valuesCountObjects[idx].count;
reducedValue.qty += valuesCountObjects[idx].qty;

}

return reducedValue;
};

6. Define a sample array of documents:

var myTestObjects = [
{ count: 1, qty: 5 },
{ count: 2, qty: 10 },
{ count: 3, qty: 15 }

];

7. Invoke the reduceFunction2 with myTestObjects:

reduceFunction2('myKey', myTestObjects);

8. Verify the reduceFunction2 returned a document with exactly the count and the qty field:

{ "count" : 6, "qty" : 30 }

Ensure Insensitivity to the Order of Mapped Values

The reduce function takes a key and a values array as its argument. You can test that the result of the reduce
function does not depend on the order of the elements in the values array.

1. Define a sample values1 array and a sample values2 array that only differ in the order of the array elements:

var values1 = [
{ count: 1, qty: 5 },
{ count: 2, qty: 10 },
{ count: 3, qty: 15 }

];

var values2 = [
{ count: 3, qty: 15 },
{ count: 1, qty: 5 },
{ count: 2, qty: 10 }

];

468 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

2. Define a reduceFunction2 function that takes the arguments keySKU and valuesCountObjects.
valuesCountObjects is an array of documents that contain two fields count and qty:

var reduceFunction2 = function(keySKU, valuesCountObjects) {
reducedValue = { count: 0, qty: 0 };

for (var idx = 0; idx < valuesCountObjects.length; idx++) {
reducedValue.count += valuesCountObjects[idx].count;
reducedValue.qty += valuesCountObjects[idx].qty;

}

return reducedValue;
};

3. Invoke the reduceFunction2 first with values1 and then with values2:

reduceFunction2('myKey', values1);
reduceFunction2('myKey', values2);

4. Verify the reduceFunction2 returned the same result:

{ "count" : 6, "qty" : 30 }

Ensure Reduce Function Idempotence

Because the map-reduce operation may call a reduce multiple times for the same key, and won’t call a reduce for
single instances of a key in the working set, the reduce function must return a value of the same type as the value
emitted from the map function. You can test that the reduce function process “reduced” values without affecting the
final value.

1. Define a reduceFunction2 function that takes the arguments keySKU and valuesCountObjects.
valuesCountObjects is an array of documents that contain two fields count and qty:

var reduceFunction2 = function(keySKU, valuesCountObjects) {
reducedValue = { count: 0, qty: 0 };

for (var idx = 0; idx < valuesCountObjects.length; idx++) {
reducedValue.count += valuesCountObjects[idx].count;
reducedValue.qty += valuesCountObjects[idx].qty;

}

return reducedValue;
};

2. Define a sample key:

var myKey = 'myKey';

3. Define a sample valuesIdempotent array that contains an element that is a call to the reduceFunction2
function:

var valuesIdempotent = [
{ count: 1, qty: 5 },
{ count: 2, qty: 10 },
reduceFunction2(myKey, [{ count:3, qty: 15 }])

];

4. Define a sample values1 array that combines the values passed to reduceFunction2:

7.3. Aggregation Examples 469

MongoDB Documentation, Release 2.6.11

var values1 = [
{ count: 1, qty: 5 },
{ count: 2, qty: 10 },
{ count: 3, qty: 15 }

];

5. Invoke the reduceFunction2 first with myKey and valuesIdempotent and then with myKey and
values1:

reduceFunction2(myKey, valuesIdempotent);
reduceFunction2(myKey, values1);

6. Verify the reduceFunction2 returned the same result:

{ "count" : 6, "qty" : 30 }

7.4 Aggregation Reference

Aggregation Pipeline Quick Reference (page 470) Quick reference card for aggregation pipeline.

http://docs.mongodb.org/manual/reference/operator/aggregation Aggregation pipeline
operations have a collection of operators available to define and manipulate documents in pipeline stages.

Aggregation Commands Comparison (page 475) A comparison of group, mapReduce and aggregate that ex-
plores the strengths and limitations of each aggregation modality.

SQL to Aggregation Mapping Chart (page 477) An overview common aggregation operations in SQL and Mon-
goDB using the aggregation pipeline and operators in MongoDB and common SQL statements.

Aggregation Commands (page 479) The reference for the data aggregation commands, which provide the interfaces
to MongoDB’s aggregation capability.

Variables in Aggregation Expressions (page 479) Use of variables in aggregation pipeline expressions.

7.4.1 Aggregation Pipeline Quick Reference

On this page

• Stages (page 470)
• Expressions (page 471)
• Accumulators (page 475)

Stages

Pipeline stages appear in an array. Documents pass through the stages in sequence. All except the $out and
$geoNear stages can appear multiple times in a pipeline.

db.collection.aggregate([{ <stage> }, ...])

470 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

Name Description
$projectReshapes each document in the stream, such as by adding new fields or removing existing fields. For

each input document, outputs one document.
$match Filters the document stream to allow only matching documents to pass unmodified into the next

pipeline stage. $match uses standard MongoDB queries. For each input document, outputs either one
document (a match) or zero documents (no match).

$redactReshapes each document in the stream by restricting the content for each document based on
information stored in the documents themselves. Incorporates the functionality of $project and
$match. Can be used to implement field level redaction. For each input document, outputs either one
or zero document.

$limit Passes the first n documents unmodified to the pipeline where n is the specified limit. For each input
document, outputs either one document (for the first n documents) or zero documents (after the first n
documents).

$skip Skips the first n documents where n is the specified skip number and passes the remaining documents
unmodified to the pipeline. For each input document, outputs either zero documents (for the first n
documents) or one document (if after the first n documents).

$unwindDeconstructs an array field from the input documents to output a document for each element. Each
output document replaces the array with an element value. For each input document, outputs n
documents where n is the number of array elements and can be zero for an empty array.

$group Groups input documents by a specified identifier expression and applies the accumulator expression(s),
if specified, to each group. Consumes all input documents and outputs one document per each distinct
group. The output documents only contain the identifier field and, if specified, accumulated fields.

$sort Reorders the document stream by a specified sort key. Only the order changes; the documents remain
unmodified. For each input document, outputs one document.

$geoNearReturns an ordered stream of documents based on the proximity to a geospatial point. Incorporates the
functionality of $match, $sort, and $limit for geospatial data. The output documents include an
additional distance field and can include a location identifier field.

$out Writes the resulting documents of the aggregation pipeline to a collection. To use the $out stage, it
must be the last stage in the pipeline.

Expressions

Expressions can include field paths and system variables (page 471), literals (page 472), expression objects (page 472),
and expression operators (page 472). Expressions can be nested.

Field Path and System Variables

Aggregation expressions use field path to access fields in the input documents. To specify a field path, use a string that
prefixes with a dollar sign $ the field name or the dotted field name, if the field is in embedded document. For example,
"$user" to specify the field path for the user field or "$user.name" to specify the field path to "user.name"
field.

"$<field>" is equivalent to "$$CURRENT.<field>" where the CURRENT (page 480) is a system variable that
defaults to the root of the current object in the most stages, unless stated otherwise in specific stages. CURRENT
(page 480) can be rebound.

Along with the CURRENT (page 480) system variable, other system variables (page 480) are also available for use in
expressions. To use user-defined variables, use $let and $map expressions. To access variables in expressions, use
a string that prefixes the variable name with $$.

7.4. Aggregation Reference 471

MongoDB Documentation, Release 2.6.11

Literals

Literals can be of any type. However, MongoDB parses string literals that start with a dollar sign $ as a path to a field
and numeric/boolean literals in expression objects (page 472) as projection flags. To avoid parsing literals, use the
$literal expression.

Expression Objects

Expression objects have the following form:

{ <field1>: <expression1>, ... }

If the expressions are numeric or boolean literals, MongoDB treats the literals as projection flags (e.g. 1 or true to
include the field), valid only in the $project stage. To avoid treating numeric or boolean literals as projection flags,
use the $literal expression to wrap the numeric or boolean literals.

Operator Expressions

Operator expressions are similar to functions that take arguments. In general, these expressions take an array of
arguments and have the following form:

{ <operator>: [<argument1>, <argument2> ...] }

If operator accepts a single argument, you can omit the outer array designating the argument list:

{ <operator>: <argument> }

To avoid parsing ambiguity if the argument is a literal array, you must wrap the literal array in a $literal expression
or keep the outer array that designates the argument list.

Boolean Expressions Boolean expressions evaluate their argument expressions as booleans and return a boolean as
the result.

In addition to the false boolean value, Boolean expression evaluates as false the following: null, 0, and
undefined values. The Boolean expression evaluates all other values as true, including non-zero numeric values
and arrays.

Name Description
$and Returns true only when all its expressions evaluate to true. Accepts any number of argument

expressions.
$or Returns true when any of its expressions evaluates to true. Accepts any number of argument

expressions.
$not Returns the boolean value that is the opposite of its argument expression. Accepts a single argument

expression.

Set Expressions Set expressions performs set operation on arrays, treating arrays as sets. Set expressions ignores
the duplicate entries in each input array and the order of the elements.

If the set operation returns a set, the operation filters out duplicates in the result to output an array that contains only
unique entries. The order of the elements in the output array is unspecified.

If a set contains a nested array element, the set expression does not descend into the nested array but evaluates the
array at top-level.

472 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

Name Description
$setEquals Returns true if the input sets have the same distinct elements. Accepts two or more argument

expressions.
$setIntersectionReturns a set with elements that appear in all of the input sets. Accepts any number of argument

expressions.
$setUnion Returns a set with elements that appear in any of the input sets. Accepts any number of argument

expressions.
$setDifferenceReturns a set with elements that appear in the first set but not in the second set; i.e. performs a

relative complement8 of the second set relative to the first. Accepts exactly two argument
expressions.

$setIsSubsetReturns true if all elements of the first set appear in the second set, including when the first set
equals the second set; i.e. not a strict subset9. Accepts exactly two argument expressions.

$anyElementTrueReturns true if any elements of a set evaluate to true; otherwise, returns false. Accepts a
single argument expression.

$allElementsTrueReturns true if no element of a set evaluates to false, otherwise, returns false. Accepts a
single argument expression.

Comparison Expressions Comparison expressions return a boolean except for $cmp which returns a number.

The comparison expressions take two argument expressions and compare both value and type, using the specified
BSON comparison order (page 187) for values of different types.

Name Description
$cmp Returns: 0 if the two values are equivalent, 1 if the first value is greater than the second, and -1 if the

first value is less than the second.
$eq Returns true if the values are equivalent.
$gt Returns true if the first value is greater than the second.
$gte Returns true if the first value is greater than or equal to the second.
$lt Returns true if the first value is less than the second.
$lte Returns true if the first value is less than or equal to the second.
$ne Returns true if the values are not equivalent.

Arithmetic Expressions Arithmetic expressions perform mathematic operations on numbers. Some arithmetic ex-
pressions can also support date arithmetic.

Name Description
$add Adds numbers to return the sum, or adds numbers and a date to return a new date. If adding numbers

and a date, treats the numbers as milliseconds. Accepts any number of argument expressions, but at
most, one expression can resolve to a date.

$subtractReturns the result of subtracting the second value from the first. If the two values are numbers, return
the difference. If the two values are dates, return the difference in milliseconds. If the two values are a
date and a number in milliseconds, return the resulting date. Accepts two argument expressions. If the
two values are a date and a number, specify the date argument first as it is not meaningful to subtract a
date from a number.

$multiplyMultiplies numbers to return the product. Accepts any number of argument expressions.
$divide Returns the result of dividing the first number by the second. Accepts two argument expressions.
$mod Returns the remainder of the first number divided by the second. Accepts two argument expressions.

String Expressions String expressions, with the exception of $concat, only have a well-defined behavior for
strings of ASCII characters.

$concat behavior is well-defined regardless of the characters used.

8http://en.wikipedia.org/wiki/Complement_(set_theory)
9http://en.wikipedia.org/wiki/Subset

7.4. Aggregation Reference 473

http://en.wikipedia.org/wiki/Complement_(set_theory)
http://en.wikipedia.org/wiki/Subset

MongoDB Documentation, Release 2.6.11

Name Description
$concat Concatenates any number of strings.
$substr Returns a substring of a string, starting at a specified index position up to a specified length. Accepts

three expressions as arguments: the first argument must resolve to a string, and the second and third
arguments must resolve to integers.

$toLower Converts a string to lowercase. Accepts a single argument expression.
$toUpper Converts a string to uppercase. Accepts a single argument expression.
$strcasecmpPerforms case-insensitive string comparison and returns: 0 if two strings are equivalent, 1 if the first

string is greater than the second, and -1 if the first string is less than the second.

Text Search Expressions Name Description
$meta Access text search metadata.

Array Expressions Name Description
$size Returns the number of elements in the array. Accepts a single expression as argument.

Variable Expressions

Name Description
$map Applies a subexpression to each element of an array and returns the array of resulting values in order.

Accepts named parameters.
$let Defines variables for use within the scope of a subexpression and returns the result of the subexpression.

Accepts named parameters.

Literal Expressions

Name Description
$literalReturn a value without parsing. Use for values that the aggregation pipeline may interpret as an

expression. For example, use a $literal expression to a string that starts with a $ to avoid parsing as
a field path.

Date Expressions

Name Description
$dayOfYear Returns the day of the year for a date as a number between 1 and 366 (leap year).
$dayOfMonthReturns the day of the month for a date as a number between 1 and 31.
$dayOfWeek Returns the day of the week for a date as a number between 1 (Sunday) and 7 (Saturday).
$year Returns the year for a date as a number (e.g. 2014).
$month Returns the month for a date as a number between 1 (January) and 12 (December).
$week Returns the week number for a date as a number between 0 (the partial week that precedes the first

Sunday of the year) and 53 (leap year).
$hour Returns the hour for a date as a number between 0 and 23.
$minute Returns the minute for a date as a number between 0 and 59.
$second Returns the seconds for a date as a number between 0 and 60 (leap seconds).
$millisecondReturns the milliseconds of a date as a number between 0 and 999.

Conditional Expressions

Name Description
$cond A ternary operator that evaluates one expression, and depending on the result, returns the value of one of

the other two expressions. Accepts either three expressions in an ordered list or three named parameters.
$ifNullReturns either the non-null result of the first expression or the result of the second expression if the first

expression results in a null result. Null result encompasses instances of undefined values or missing
fields. Accepts two expressions as arguments. The result of the second expression can be null.

474 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

Accumulators

Accumulators, available only for the $group stage, compute values by combining documents that share the same
group key. Accumulators take as input a single expression, evaluating the expression once for each input document,
and maintain their state for the group of documents.

Name Description
$sum Returns a sum for each group. Ignores non-numeric values.
$avg Returns an average for each group. Ignores non-numeric values.
$first Returns a value from the first document for each group. Order is only defined if the documents are

in a defined order.
$last Returns a value from the last document for each group. Order is only defined if the documents are

in a defined order.
$max Returns the highest expression value for each group.
$min Returns the lowest expression value for each group.
$push Returns an array of expression values for each group.
$addToSet Returns an array of unique expression values for each group. Order of the array elements is

undefined.

7.4.2 Aggregation Commands Comparison

The following table provides a brief overview of the features of the MongoDB aggregation commands.

7.4. Aggregation Reference 475

MongoDB Documentation, Release 2.6.11

aggregate mapReduce group
De-
scrip-
tion

New in version 2.2.
Designed with specific goals of
improving performance and
usability for aggregation tasks.
Uses a “pipeline” approach
where objects are transformed as
they pass through a series of
pipeline operators such as
$group, $match, and $sort.
See
http://docs.mongodb.org/manual/reference/operator/aggregation
for more information on the
pipeline operators.

Implements the Map-Reduce
aggregation for processing large
data sets.

Provides grouping functionality.
Is slower than the aggregate
command and has less
functionality than the
mapReduce command.

Key
Fea-
tures

Pipeline operators can be
repeated as needed.
Pipeline operators need not
produce one output document for
every input document.
Can also generate new
documents or filter out
documents.

In addition to grouping
operations, can perform complex
aggregation tasks as well as
perform incremental aggregation
on continuously growing
datasets.
See Map-Reduce Examples
(page 461) and Perform
Incremental Map-Reduce
(page 464).

Can either group by existing
fields or with a custom keyf
JavaScript function, can group by
calculated fields.
See group for information and
example using the keyf
function.

Flex-
i-
bil-
ity

Limited to the operators and
expressions supported by the
aggregation pipeline.
However, can add computed
fields, create new virtual
sub-objects, and extract
sub-fields into the top-level of
results by using the $project
pipeline operator.
See $project for more
information as well as
http://docs.mongodb.org/manual/reference/operator/aggregation
for more information on all the
available pipeline operators.

Custom map, reduce and
finalize JavaScript functions
offer flexibility to aggregation
logic.
See mapReduce for details and
restrictions on the functions.

Custom reduce and
finalize JavaScript functions
offer flexibility to grouping logic.
See group for details and
restrictions on these functions.

Out-
put
Re-
sults

Returns results in various options
(inline as a document that
contains the result set, a cursor to
the result set) or stores the results
in a collection.
The result is subject to the BSON
Document size limit if returned
inline as a document that
contains the result set.
Changed in version 2.6: Can
return results as a cursor or store
the results to a collection.

Returns results in various options
(inline, new collection, merge,
replace, reduce). See
mapReduce for details on the
output options.
Changed in version 2.2: Provides
much better support for sharded
map-reduce output than previous
versions.

Returns results inline as an array
of grouped items.
The result set must fit within the
maximum BSON document size
limit.
Changed in version 2.2: The
returned array can contain at
most 20,000 elements; i.e. at
most 20,000 unique groupings.
Previous versions had a limit of
10,000 elements.

Shard-
ing

Supports non-sharded and
sharded input collections.

Supports non-sharded and
sharded input collections.

Does not support sharded
collection.

Notes Prior to 2.4, JavaScript code
executed in a single thread.

Prior to 2.4, JavaScript code
executed in a single thread.

More
In-
for-
ma-
tion

See Aggregation Pipeline
(page 439) and aggregate.

See Map-Reduce (page 442) and
mapReduce.

See group.

476 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

7.4.3 SQL to Aggregation Mapping Chart

On this page

• Examples (page 477)
• Additional Resources (page 479)

The aggregation pipeline (page 439) allows MongoDB to provide native aggregation capabilities that corresponds to
many common data aggregation operations in SQL.

The following table provides an overview of common SQL aggregation terms, functions, and concepts and the corre-
sponding MongoDB aggregation operators:

SQL Terms,
Functions, and
Concepts

MongoDB Aggregation Operators

WHERE $match
GROUP BY $group
HAVING $match
SELECT $project
ORDER BY $sort
LIMIT $limit
SUM() $sum
COUNT() $sum
join No direct corresponding operator; however, the $unwind operator allows for

somewhat similar functionality, but with fields embedded within the document.

Examples

The following table presents a quick reference of SQL aggregation statements and the corresponding MongoDB state-
ments. The examples in the table assume the following conditions:

• The SQL examples assume two tables, orders and order_lineitem that join by the
order_lineitem.order_id and the orders.id columns.

• The MongoDB examples assume one collection orders that contain documents of the following prototype:

{
cust_id: "abc123",
ord_date: ISODate("2012-11-02T17:04:11.102Z"),
status: 'A',
price: 50,
items: [{ sku: "xxx", qty: 25, price: 1 },

{ sku: "yyy", qty: 25, price: 1 }]
}

7.4. Aggregation Reference 477

MongoDB Documentation, Release 2.6.11

SQL Example MongoDB Example Description

SELECT COUNT(*) AS count
FROM orders

db.orders.aggregate([
{
$group: {

_id: null,
count: { $sum: 1 }

}
}

])

Count all records from orders

SELECT SUM(price) AS total
FROM orders

db.orders.aggregate([
{
$group: {

_id: null,
total: { $sum: "$price" }

}
}

])

Sum the price field from orders

SELECT cust_id,
SUM(price) AS total

FROM orders
GROUP BY cust_id

db.orders.aggregate([
{
$group: {

_id: "$cust_id",
total: { $sum: "$price" }

}
}

])

For each unique cust_id, sum the
price field.

SELECT cust_id,
SUM(price) AS total

FROM orders
GROUP BY cust_id
ORDER BY total

db.orders.aggregate([
{
$group: {

_id: "$cust_id",
total: { $sum: "$price" }

}
},
{ $sort: { total: 1 } }

])

For each unique cust_id, sum the
price field, results sorted by sum.

SELECT cust_id,
ord_date,
SUM(price) AS total

FROM orders
GROUP BY cust_id,

ord_date

db.orders.aggregate([
{
$group: {

_id: {
cust_id: "$cust_id",
ord_date: {

month: { $month: "$ord_date" },
day: { $dayOfMonth: "$ord_date" },
year: { $year: "$ord_date"}

}
},
total: { $sum: "$price" }

}
}

])

For each unique cust_id,
ord_date grouping, sum the
price field. Excludes the time
portion of the date.

SELECT cust_id,
count(*)

FROM orders
GROUP BY cust_id
HAVING count(*) > 1

db.orders.aggregate([
{
$group: {

_id: "$cust_id",
count: { $sum: 1 }

}
},
{ $match: { count: { $gt: 1 } } }

])

For cust_id with multiple records,
return the cust_id and the corre-
sponding record count.

SELECT cust_id,
ord_date,
SUM(price) AS total

FROM orders
GROUP BY cust_id,

ord_date
HAVING total > 250

db.orders.aggregate([
{
$group: {

_id: {
cust_id: "$cust_id",
ord_date: {

month: { $month: "$ord_date" },
day: { $dayOfMonth: "$ord_date" },
year: { $year: "$ord_date"}

}
},
total: { $sum: "$price" }

}
},
{ $match: { total: { $gt: 250 } } }

])

For each unique cust_id,
ord_date grouping, sum the
price field and return only where
the sum is greater than 250. Excludes
the time portion of the date.

SELECT cust_id,
SUM(price) as total

FROM orders
WHERE status = 'A'
GROUP BY cust_id

db.orders.aggregate([
{ $match: { status: 'A' } },
{
$group: {

_id: "$cust_id",
total: { $sum: "$price" }

}
}

])

For each unique cust_id with sta-
tus A, sum the price field.

SELECT cust_id,
SUM(price) as total

FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250

db.orders.aggregate([
{ $match: { status: 'A' } },
{
$group: {

_id: "$cust_id",
total: { $sum: "$price" }

}
},
{ $match: { total: { $gt: 250 } } }

])

For each unique cust_id with sta-
tus A, sum the price field and return
only where the sum is greater than
250.

SELECT cust_id,
SUM(li.qty) as qty

FROM orders o,
order_lineitem li

WHERE li.order_id = o.id
GROUP BY cust_id

db.orders.aggregate([
{ $unwind: "$items" },
{
$group: {

_id: "$cust_id",
qty: { $sum: "$items.qty" }

}
}

])

For each unique cust_id, sum the
corresponding line item qty fields
associated with the orders.

SELECT COUNT(*)
FROM (SELECT cust_id,

ord_date
FROM orders
GROUP BY cust_id,

ord_date)
as DerivedTable

db.orders.aggregate([
{
$group: {

_id: {
cust_id: "$cust_id",
ord_date: {

month: { $month: "$ord_date" },
day: { $dayOfMonth: "$ord_date" },
year: { $year: "$ord_date"}

}
}

}
},
{
$group: {

_id: null,
count: { $sum: 1 }

}
}

])

Count the number of distinct
cust_id, ord_date groupings.
Excludes the time portion of the date.

478 Chapter 7. Aggregation

MongoDB Documentation, Release 2.6.11

Additional Resources

• MongoDB and MySQL Compared10

• Quick Reference Cards11

• MongoDB Database Modernization Consulting Package12

7.4.4 Aggregation Commands

On this page

• Aggregation Commands (page 479)
• Aggregation Methods (page 479)

Aggregation Commands

Name Description
aggregate Performs aggregation tasks (page 439) such as group using the aggregation framework.
count Counts the number of documents in a collection.
distinct Displays the distinct values found for a specified key in a collection.
group Groups documents in a collection by the specified key and performs simple aggregation.
mapReduce Performs map-reduce (page 442) aggregation for large data sets.

Aggregation Methods

Name Description
db.collection.aggregate()Provides access to the aggregation pipeline (page 439).
db.collection.group() Groups documents in a collection by the specified key and performs simple

aggregation.
db.collection.mapReduce()Performs map-reduce (page 442) aggregation for large data sets.

7.4.5 Variables in Aggregation Expressions

On this page

• User Variables (page 480)
• System Variables (page 480)

Aggregation expressions (page 471) can use both user-defined and system variables.

Variables can hold any BSON type data (page 186). To access the value of the variable, use a string with the variable
name prefixed with double dollar signs ($$).

If the variable references an object, to access a specific field in the object, use the dot notation; i.e.
"$$<variable>.<field>".

10http://www.mongodb.com/mongodb-and-mysql-compared?jmp=docs
11https://www.mongodb.com/lp/misc/quick-reference-cards?jmp=docs
12https://www.mongodb.com/products/consulting?jmp=docs#database_modernization

7.4. Aggregation Reference 479

http://www.mongodb.com/mongodb-and-mysql-compared?jmp=docs
https://www.mongodb.com/lp/misc/quick-reference-cards?jmp=docs
https://www.mongodb.com/products/consulting?jmp=docs#database_modernization

MongoDB Documentation, Release 2.6.11

User Variables

User variable names can contain the ascii characters [_a-zA-Z0-9] and any non-ascii character.

User variable names must begin with a lowercase ascii letter [a-z] or a non-ascii character.

System Variables

MongoDB offers the following system variables:

Variable Description

ROOT
References the root document, i.e. the top-level doc-
ument, currently being processed in the aggregation
pipeline stage.

CURRENT
References the start of the field path being processed in
the aggregation pipeline stage. Unless documented oth-
erwise, all stages start with CURRENT (page 480) the
same as ROOT (page 480).
CURRENT (page 480) is modifiable. However, since
$<field> is equivalent to $$CURRENT.<field>,
rebinding CURRENT (page 480) changes the meaning
of $ accesses.

DESCEND
One of the allowed results of a $redact expression.

PRUNE
One of the allowed results of a $redact expression.

KEEP
One of the allowed results of a $redact expression.

See also:

$let, $redact, $map

480 Chapter 7. Aggregation

CHAPTER 8

Indexes

8.1 Index Introduction

On this page

• Index Types (page 481)
• Index Properties (page 484)
• Index Use (page 485)
• Covered Queries (page 485)
• Index Intersection (page 485)
• Restrictions (page 485)

Indexes support the efficient execution of queries in MongoDB. Without indexes, MongoDB must perform a collection
scan, i.e. scan every document in a collection, to select those documents that match the query statement. If an
appropriate index exists for a query, MongoDB can use the index to limit the number of documents it must inspect.

Indexes are special data structures 1 that store a small portion of the collection’s data set in an easy to traverse form.
The index stores the value of a specific field or set of fields, ordered by the value of the field. The ordering of the index
entries supports efficient equality matches and range-based query operations. In addition, MongoDB can return sorted
results by using the ordering in the index.

The following diagram illustrates a query that selects and orders the matching documents using an index:

Fundamentally, indexes in MongoDB are similar to indexes in other database systems. MongoDB defines indexes at
the collection level and supports indexes on any field or sub-field of the documents in a MongoDB collection.

8.1.1 Index Types

MongoDB provides a number of different index types to support specific types of data and queries.

Default _id

All MongoDB collections have an index on the _id field that exists by default. If applications do not specify a value
for _id the driver or the mongod will create an _id field with an ObjectId value.

The _id index is unique and prevents clients from inserting two documents with the same value for the _id field.

1 MongoDB indexes use a B-tree data structure.

481

MongoDB Documentation, Release 2.6.11

Single Field

In addition to the MongoDB-defined _id index, MongoDB supports the creation of user-defined ascend-
ing/descending indexes on a single field of a document (page 487).

For a single-field index and sort operations, the sort order (i.e. ascending or descending) of the index key does not
matter because MongoDB can traverse the index in either direction.

See Single Field Indexes (page 487) and Sort with a Single Field Index (page 553) for more information on single-field
indexes.

Compound Index

MongoDB also supports user-defined indexes on multiple fields, i.e. compound indexes (page 489).

The order of fields listed in a compound index has significance. For instance, if a compound index consists of {
userid: 1, score: -1 }, the index sorts first by userid and then, within each userid value, sorts by
score.

482 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

For compound indexes and sort operations, the sort order (i.e. ascending or descending) of the index keys can deter-
mine whether the index can support a sort operation. See Sort Order (page 490) for more information on the impact
of index order on results in compound indexes.

See Compound Indexes (page 489) and Sort on Multiple Fields (page 553) for more information on compound indexes.

Multikey Index

MongoDB uses multikey indexes (page 491) to index the content stored in arrays. If you index a field that holds an
array value, MongoDB creates separate index entries for every element of the array. These multikey indexes (page 491)
allow queries to select documents that contain arrays by matching on element or elements of the arrays. MongoDB
automatically determines whether to create a multikey index if the indexed field contains an array value; you do not
need to explicitly specify the multikey type.

See Multikey Indexes (page 491) and Multikey Index Bounds (page 514) for more information on multikey indexes.

8.1. Index Introduction 483

MongoDB Documentation, Release 2.6.11

Geospatial Index

To support efficient queries of geospatial coordinate data, MongoDB provides two special indexes: 2d indexes
(page 498) that uses planar geometry when returning results and 2sphere indexes (page 497) that use spherical ge-
ometry to return results.

See 2d Index Internals (page 500) for a high level introduction to geospatial indexes.

Text Indexes

MongoDB provides a text index type that supports searching for string content in a collection. These text indexes
do not store language-specific stop words (e.g. “the”, “a”, “or”) and stem the words in a collection to only store root
words.

See Text Indexes (page 501) for more information on text indexes and search.

Hashed Indexes

To support hash based sharding (page 689), MongoDB provides a hashed index (page 504) type, which indexes the
hash of the value of a field. These indexes have a more random distribution of values along their range, but only
support equality matches and cannot support range-based queries.

8.1.2 Index Properties

Unique Indexes

The unique (page 506) property for an index causes MongoDB to reject duplicate values for the indexed field. To
create a unique index (page 506) on a field that already has duplicate values, see Drop Duplicates (page 511) for
index creation options. Other than the unique constraint, unique indexes are functionally interchangeable with other
MongoDB indexes.

Sparse Indexes

The sparse (page 507) property of an index ensures that the index only contain entries for documents that have the
indexed field. The index skips documents that do not have the indexed field.

You can combine the sparse index option with the unique index option to reject documents that have duplicate values
for a field but ignore documents that do not have the indexed key.

TTL Indexes

TTL indexes (page 504) are special indexes that MongoDB can use to automatically remove documents from a collec-
tion after a certain amount of time. This is ideal for certain types of information like machine generated event data,
logs, and session information that only need to persist in a database for a finite amount of time.

See: Expire Data from Collections by Setting TTL (page 222) for implementation instructions.

484 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

8.1.3 Index Use

Indexes can improve the efficiency of read operations. The Analyze Query Performance (page 117) tutorial provides
an example of the execution statistics of a query with and without an index.

For information on how MongoDB chooses an index to use, see query optimizer (page 72).

8.1.4 Covered Queries

When the query criteria and the projection of a query include only the indexed fields, MongoDB will return results
directly from the index without scanning any documents or bringing documents into memory. These covered queries
can be very efficient.

For more information on covered queries, see Covered Query (page 71).

8.1.5 Index Intersection

New in version 2.6.

MongoDB can use the intersection of indexes (page 512) to fulfill queries. For queries that specify compound query
conditions, if one index can fulfill a part of a query condition, and another index can fulfill another part of the query
condition, then MongoDB can use the intersection of the two indexes to fulfill the query. Whether the use of a
compound index or the use of an index intersection is more efficient depends on the particular query and the system.

For details on index intersection, see Index Intersection (page 512).

8.1.6 Restrictions

Certain restrictions apply to indexes, such as the length of the index keys or the number of indexes per collection. See
Index Limitations for details.

8.2 Index Concepts

These documents describe and provide examples of the types, configuration options, and behavior of indexes in Mon-
goDB. For an over view of indexing, see Index Introduction (page 481). For operational instructions, see Indexing
Tutorials (page 519). The Indexing Reference (page 556) documents the commands and operations specific to index
construction, maintenance, and querying in MongoDB, including index types and creation options.

8.2. Index Concepts 485

MongoDB Documentation, Release 2.6.11

Index Types (page 486) MongoDB provides different types of indexes for different purposes and different types of
content.

Single Field Indexes (page 487) A single field index only includes data from a single field of the documents in
a collection. MongoDB supports single field indexes on fields at the top level of a document and on fields
in sub-documents.

Compound Indexes (page 489) A compound index includes more than one field of the documents in a collec-
tion.

Multikey Indexes (page 491) A multikey index is an index on an array field, adding an index key for each value
in the array.

Geospatial Indexes and Queries (page 494) Geospatial indexes support location-based searches on data that is
stored as either GeoJSON objects or legacy coordinate pairs.

Text Indexes (page 501) Text indexes support search of string content in documents.

Hashed Index (page 504) Hashed indexes maintain entries with hashes of the values of the indexed field and
are primarily used with sharded clusters to support hashed shard keys.

Index Properties (page 504) The properties you can specify when building indexes.

TTL Indexes (page 504) The TTL index is used for TTL collections, which expire data after a period of time.

Unique Indexes (page 506) A unique index causes MongoDB to reject all documents that contain a duplicate
value for the indexed field.

Sparse Indexes (page 507) A sparse index does not index documents that do not have the indexed field.

Index Creation (page 509) The options available when creating indexes.

Index Intersection (page 512) The use of index intersection to fulfill a query.

Multikey Index Bounds (page 514) The computation of bounds on a multikey index scan.

8.2.1 Index Types

MongoDB provides a number of different index types. You can create indexes on any field or embedded field within
a document or embedded document.

In general, you should create indexes that support your common and user-facing queries. Having these indexes will
ensure that MongoDB scans the smallest possible number of documents.

In the mongo shell, you can create an index by calling the ensureIndex() method. For more detailed instructions
about building indexes, see the Indexing Tutorials (page 519) page.

Single Field Indexes (page 487) A single field index only includes data from a single field of the documents in a
collection. MongoDB supports single field indexes on fields at the top level of a document and on fields in
sub-documents.

Compound Indexes (page 489) A compound index includes more than one field of the documents in a collection.

Multikey Indexes (page 491) A multikey index is an index on an array field, adding an index key for each value in
the array.

Geospatial Indexes and Queries (page 494) Geospatial indexes support location-based searches on data that is stored
as either GeoJSON objects or legacy coordinate pairs.

Text Indexes (page 501) Text indexes support search of string content in documents.

Hashed Index (page 504) Hashed indexes maintain entries with hashes of the values of the indexed field and are
primarily used with sharded clusters to support hashed shard keys.

486 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

Single Field Indexes

On this page

• Example (page 487)
• Cases (page 487)

MongoDB provides complete support for indexes on any field in a collection of documents. By default, all collections
have an index on the _id field (page 487), and applications and users may add additional indexes to support important
queries and operations.

MongoDB supports indexes that contain either a single field or multiple fields depending on the operations that this
index-type supports. This document describes ascending/descending indexes that contain a single field. Consider the
following illustration of a single field index.

See also:

Compound Indexes (page 489) for information about indexes that include multiple fields, and Index Introduction
(page 481) for a higher level introduction to indexing in MongoDB.

Example

Given the following document in the friends collection:

{ "_id" : ObjectId(...),
"name" : "Alice",
"age" : 27

}

The following command creates an index on the name field:

db.friends.ensureIndex({ "name" : 1 })

Cases

_id Field Index MongoDB creates the _id index, which is an ascending unique index (page 506) on the _id field,
for all collections when the collection is created. You cannot remove the index on the _id field.

8.2. Index Concepts 487

MongoDB Documentation, Release 2.6.11

Think of the _id field as the primary key for a collection. Every document must have a unique _id field. You may
store any unique value in the _id field. The default value of _id is an ObjectId which is generated when the client
inserts the document. An ObjectId is a 12-byte unique identifier suitable for use as the value of an _id field.

Note: In sharded clusters, if you do not use the _id field as the shard key, then your application must ensure the
uniqueness of the values in the _id field to prevent errors. This is most-often done by using a standard auto-generated
ObjectId.

Before version 2.2, capped collections did not have an _id field. In version 2.2 and newer, capped collections do
have an _id field, except those in the local database. See Capped Collections Recommendations and Restrictions
(page 220) for more information.

Indexes on Embedded Fields You can create indexes on fields within embedded documents, just as you can index
top-level fields in documents. Indexes on embedded fields differ from indexes on embedded documents (page 488),
which include the full content up to the maximum index size of the embedded document in the index. Instead,
indexes on embedded fields allow you to use a “dot notation,” to introspect into embedded documents.

Consider a collection named people that holds documents that resemble the following example document:

{"_id": ObjectId(...),
"name": "John Doe",
"address": {

"street": "Main",
"zipcode": "53511",
"state": "WI"
}

}

You can create an index on the address.zipcode field, using the following specification:

db.people.ensureIndex({ "address.zipcode": 1 })

Indexes on Embedded Documents You can also create indexes on embedded documents.

For example, the factories collection contains documents that contain a metro field, such as:

{
_id: ObjectId(...),
metro: {

city: "New York",
state: "NY"

},
name: "Giant Factory"

}

The metro field is an embedded document, containing the embedded fields city and state. The following com-
mand creates an index on the metro field as a whole:

db.factories.ensureIndex({ metro: 1 })

The following query can use the index on the metro field:

db.factories.find({ metro: { city: "New York", state: "NY" } })

This query returns the above document. When performing equality matches on embedded documents, field order
matters and the embedded documents must match exactly. For example, the following query does not match the above
document:

488 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

db.factories.find({ metro: { state: "NY", city: "New York" } })

See query-embedded-documents for more information regarding querying on embedded documents.

Compound Indexes

On this page

• Sort Order (page 490)
• Prefixes (page 490)
• Index Intersection (page 491)

MongoDB supports compound indexes, where a single index structure holds references to multiple fields 2 within a
collection’s documents. The following diagram illustrates an example of a compound index on two fields:

Compound indexes can support queries that match on multiple fields.

Example
Consider a collection named products that holds documents that resemble the following document:

{
"_id": ObjectId(...),
"item": "Banana",
"category": ["food", "produce", "grocery"],
"location": "4th Street Store",
"stock": 4,
"type": "cases",
"arrival": Date(...)

}

If applications query on the item field as well as query on both the item field and the stock field, you can specify
a single compound index to support both of these queries:

db.products.ensureIndex({ "item": 1, "stock": 1 })

2 MongoDB imposes a limit of 31 fields for any compound index.

8.2. Index Concepts 489

MongoDB Documentation, Release 2.6.11

Important: You may not create compound indexes that have hashed index fields. You will receive an error if you
attempt to create a compound index that includes a hashed index (page 504).

The order of the fields in a compound index is very important. In the previous example, the index will contain
references to documents sorted first by the values of the item field and, within each value of the item field, sorted
by values of the stock field. See Sort Order (page 490) for more information.

In addition to supporting queries that match on all the index fields, compound indexes can support queries that match
on the prefix of the index fields. For details, see Prefixes (page 490).

Sort Order

Indexes store references to fields in either ascending (1) or descending (-1) sort order. For single-field indexes, the
sort order of keys doesn’t matter because MongoDB can traverse the index in either direction. However, for compound
indexes (page 489), sort order can matter in determining whether the index can support a sort operation.

Consider a collection events that contains documents with the fields username and date. Applications can issue
queries that return results sorted first by ascending username values and then by descending (i.e. more recent to last)
date values, such as:

db.events.find().sort({ username: 1, date: -1 })

or queries that return results sorted first by descending username values and then by ascending date values, such
as:

db.events.find().sort({ username: -1, date: 1 })

The following index can support both these sort operations:

db.events.ensureIndex({ "username" : 1, "date" : -1 })

However, the above index cannot support sorting by ascending username values and then by ascending date
values, such as the following:

db.events.find().sort({ username: 1, date: 1 })

For more information on sort order and compound indexes, see Use Indexes to Sort Query Results (page 553).

Prefixes

Index prefixes are the beginning subsets of indexed fields. For example, consider the following compound index:

{ "item": 1, "location": 1, "stock": 1 }

The index has the following index prefixes:

• { item: 1 }

• { item: 1, location: 1 }

For a compound index, MongoDB can use the index to support queries on the index prefixes. As such, MongoDB can
use the index for queries on the following fields:

• the item field,

• the item field and the location field,

• the item field and the location field and the stock field.

490 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

MongoDB can also use the index to support a query on item and stock fields since item field corresponds to a
prefix. However, the index would not be as efficient in supporting the query as would be an index on only item and
stock.

However, MongoDB cannot use the index to support queries that include the following fields since without the item
field, none of the listed fields correspond to a prefix index:

• the location field,

• the stock field, or

• the location and stock fields.

If you have a collection that has both a compound index and an index on its prefix (e.g. { a: 1, b: 1 } and
{ a: 1 }), if neither index has a sparse or unique constraint, then you can remove the index on the prefix (e.g. {
a: 1 }). MongoDB will use the compound index in all of the situations that it would have used the prefix index.

Index Intersection

Starting in version 2.6, MongoDB can use index intersection (page 512) to fulfill queries. The choice between creating
compound indexes that support your queries or relying on index intersection depends on the specifics of your system.
See Index Intersection and Compound Indexes (page 513) for more details.

Multikey Indexes

On this page

• Create Multikey Index (page 491)
• Index Bounds (page 491)
• Limitations (page 492)
• Examples (page 493)

To index a field that holds an array value, MongoDB creates an index key for each element in the array. These multikey
indexes support efficient queries against array fields. Multikey indexes can be constructed over arrays that hold both
scalar values (e.g. strings, numbers) and nested documents.

Create Multikey Index

To create a multikey index, use the db.collection.createIndex() method:

db.coll.createIndex({ <field>: < 1 or -1 > })

MongoDB automatically creates a multikey index if any indexed field is an array; you do not need to explicitly specify
the multikey type.

Index Bounds

If an index is multikey, then computation of the index bounds follows special rules. For details on multikey index
bounds, see Multikey Index Bounds (page 514).

8.2. Index Concepts 491

MongoDB Documentation, Release 2.6.11

Limitations

Compound Multikey Indexes For a compound (page 489) multikey index, each indexed document can have at most
one indexed field whose value is an array. As such, you cannot create a compound multikey index if more than one
to-be-indexed field of a document is an array. Or, if a compound multikey index already exists, you cannot insert a
document that would violate this restriction.

For example, consider a collection that contains the following document:

{ _id: 1, a: [1, 2], b: [1, 2], category: "AB - both arrays" }

You cannot create a compound multikey index { a: 1, b: 1 } on the collection since both the a and b fields
are arrays.

But consider a collection that contains the following documents:

{ _id: 1, a: [1, 2], b: 1, category: "A array" }
{ _id: 2, a: 1, b: [1, 2], category: "B array" }

A compound multikey index { a: 1, b: 1 } is permissible since for each document, only one field indexed
by the compound multikey index is an array; i.e. no document contains array values for both a and b fields. After
creating the compound multikey index, if you attempt to insert a document where both a and b fields are arrays,
MongoDB will fail the insert.

Shard Keys You cannot specify a multikey index as the shard key index.

Changed in version 2.6: However, if the shard key index is a prefix (page 490) of a compound index, the compound
index is allowed to become a compound multikey index if one of the other keys (i.e. keys that are not part of the shard
key) indexes an array. Compound multikey indexes can have an impact on performance.

Hashed Indexes Hashed (page 504) indexes cannot be multikey.

492 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

Covered Queries A multikey index (page 491) cannot support a covered query (page 71).

Examples

Index Basic Arrays Consider a survey collection with the following document:

{ _id: 1, item: "ABC", ratings: [2, 5, 9] }

Create an index on the field ratings:

db.survey.createIndex({ ratings: 1 })

Since the ratings field contains an array, the index on ratings is multikey. The multikey index contains the
following three index keys, each pointing to the same document:

• 2,

• 5, and

• 9.

Index Arrays with Embedded Documents You can create multikey indexes on array fields that contain nested
objects.

Consider an inventory collection with documents of the following form:

{
_id: 1,
item: "abc",
stock: [
{ size: "S", color: "red", quantity: 25 },
{ size: "S", color: "blue", quantity: 10 },
{ size: "M", color: "blue", quantity: 50 }

]
}
{

_id: 2,
item: "def",
stock: [
{ size: "S", color: "blue", quantity: 20 },
{ size: "M", color: "blue", quantity: 5 },
{ size: "M", color: "black", quantity: 10 },
{ size: "L", color: "red", quantity: 2 }

]
}
{

_id: 3,
item: "ijk",
stock: [
{ size: "M", color: "blue", quantity: 15 },
{ size: "L", color: "blue", quantity: 100 },
{ size: "L", color: "red", quantity: 25 }

]
}

...

The following operation creates a multikey index on the stock.size and stock.quantity fields:

8.2. Index Concepts 493

MongoDB Documentation, Release 2.6.11

db.inventory.createIndex({ "stock.size": 1, "stock.quantity": 1 })

The compound multikey index can support queries with predicates that include both indexed fields as well as predicates
that include only the index prefix "stock.size", as in the following examples:

db.inventory.find({ "stock.size": "M" })
db.inventory.find({ "stock.size": "S", "stock.quantity": { $gt: 20 } })

For details on how MongoDB can combine multikey index bounds, see Multikey Index Bounds (page 514). For more
information on behavior of compound indexes and prefixes, see compound indexes and prefixes (page 490).

The compound multikey index can also support sort operations, such as the following examples:

db.inventory.find().sort({ "stock.size": 1, "stock.quantity": 1 })
db.inventory.find({ "stock.size": "M" }).sort({ "stock.quantity": 1 })

For more information on behavior of compound indexes and sort operations, see Use Indexes to Sort Query Results
(page 553).

Geospatial Indexes and Queries

On this page

• Surfaces (page 494)
• Location Data (page 495)
• Query Operations (page 495)
• Geospatial Indexes (page 495)
• Geospatial Indexes and Sharding (page 496)
• Additional Resources (page 496)

MongoDB offers a number of indexes and query mechanisms to handle geospatial information. This section introduces
MongoDB’s geospatial features. For complete examples of geospatial queries in MongoDB, see Geospatial Index
Tutorials (page 533).

Surfaces

Before storing your location data and writing queries, you must decide the type of surface to use to perform calcula-
tions. The type you choose affects how you store data, what type of index to build, and the syntax of your queries.

MongoDB offers two surface types:

Spherical To calculate geometry over an Earth-like sphere, store your location data on a spherical surface and use
2dsphere (page 497) index.

Store your location data as GeoJSON objects with this coordinate-axis order: longitude, latitude. The coordinate
reference system for GeoJSON uses the WGS84 datum.

Flat To calculate distances on a Euclidean plane, store your location data as legacy coordinate pairs and use a 2d
(page 498) index.

494 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

Location Data

If you choose spherical surface calculations, you store location data as either:

GeoJSON Objects Queries on GeoJSON objects always calculate on a sphere. The default coordinate reference
system for GeoJSON uses the WGS84 datum.

New in version 2.4: Support for GeoJSON storage and queries is new in version 2.4. Prior to version 2.4, all geospatial
data used coordinate pairs.

Changed in version 2.6: Support for additional GeoJSON types: MultiPoint, MultiLineString, MultiPolygon, Geome-
tryCollection.

MongoDB supports the following GeoJSON objects:

• Point

• LineString

• Polygon

• MultiPoint

• MultiLineString

• MultiPolygon

• GeometryCollection

Legacy Coordinate Pairs MongoDB supports spherical surface calculations on legacy coordinate pairs using a
2dsphere index by converting the data to the GeoJSON Point type.

If you choose flat surface calculations via a 2d index, you can store data only as legacy coordinate pairs.

Query Operations

MongoDB’s geospatial query operators let you query for:

Inclusion MongoDB can query for locations contained entirely within a specified polygon. Inclusion queries use
the $geoWithin operator.

Both 2d and 2dsphere indexes can support inclusion queries. MongoDB does not require an index for inclusion
queries; however, such indexes will improve query performance.

Intersection MongoDB can query for locations that intersect with a specified geometry. These queries apply only
to data on a spherical surface. These queries use the $geoIntersects operator.

Only 2dsphere indexes support intersection.

Proximity MongoDB can query for the points nearest to another point. Proximity queries use the $near operator.
The $near operator requires a 2d or 2dsphere index.

Geospatial Indexes

MongoDB provides the following geospatial index types to support the geospatial queries.

8.2. Index Concepts 495

MongoDB Documentation, Release 2.6.11

2dsphere 2dsphere (page 497) indexes support:

• Calculations on a sphere

• GeoJSON objects and include backwards compatibility for legacy coordinate pairs

• Compound indexes with scalar index fields (i.e. ascending or descending) as a prefix or suffix of the 2dsphere
index field

New in version 2.4: 2dsphere indexes are not available before version 2.4.

See also:

Query a 2dsphere Index (page 535)

2d 2d (page 498) indexes support:

• Calculations using flat geometry

• Legacy coordinate pairs (i.e., geospatial points on a flat coordinate system)

• Compound indexes with only one additional field, as a suffix of the 2d index field

See also:

Query a 2d Index (page 538)

Geospatial Indexes and Sharding

You cannot use a geospatial index as the shard key index.

You can create and maintain a geospatial index on a sharded collection if it uses fields other than the shard key fields.

For sharded collections, queries using $near and $nearSphere are not supported. You can instead use either the
geoNear command or the $geoNear aggregation stage.

You can also query for geospatial data using $geoWithin.

Additional Resources

The following pages provide complete documentation for geospatial indexes and queries:

2dsphere Indexes (page 497) A 2dsphere index supports queries that calculate geometries on an earth-like sphere.
The index supports data stored as both GeoJSON objects and as legacy coordinate pairs.

2d Indexes (page 498) The 2d index supports data stored as legacy coordinate pairs and is intended for use in Mon-
goDB 2.2 and earlier.

geoHaystack Indexes (page 499) A haystack index is a special index optimized to return results over small areas. For
queries that use spherical geometry, a 2dsphere index is a better option than a haystack index.

2d Index Internals (page 500) Provides a more in-depth explanation of the internals of geospatial indexes. This ma-
terial is not necessary for normal operations but may be useful for troubleshooting and for further understanding.

496 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

2dsphere Indexes

On this page

• Overview (page 497)
• 2dsphere (Version 2) (page 497)
• Considerations (page 497)
• Create a 2dsphere Index (page 498)

New in version 2.4.

Overview A 2dsphere index supports queries that calculate geometries on an earth-like sphere. 2dsphere
index supports all MongoDB geospatial queries: queries for inclusion, intersection and proximity. See the
http://docs.mongodb.org/manual/reference/operator/query-geospatial for the query op-
erators that support geospatial queries.

The 2dsphere index supports data stored as GeoJSON (page 558) objects and as legacy coordinate pairs (See also
2dsphere Indexed Field Restrictions (page 498)). For legacy coordinate pairs, the index converts the data to GeoJSON
Point (page 558). For details on the supported GeoJSON objects, see GeoJSON Objects (page 558).

The default datum for an earth-like sphere is WGS84. Coordinate-axis order is longitude, latitude.

2dsphere (Version 2) Changed in version 2.6.

MongoDB 2.6 introduces a version 2 of 2dsphere indexes. Version 2 is the default version of 2dsphere indexes
created in MongoDB 2.6 and later series. To override the default version 2 and create a version 1 index, include the
option { "2dsphereIndexVersion": 1 } when creating the index.

sparse Property Changed in version 2.6.

2dsphere (Version 2) indexes are sparse (page 507) by default and ignores the sparse: true (page 507) option.
If a document lacks a 2dsphere index field (or the field is null or an empty array), MongoDB does not add an
entry for the document to the index. For inserts, MongoDB inserts the document but does not add to the 2dsphere
index.

For a compound index that includes a 2dsphere index key along with keys of other types, only the 2dsphere
index field determines whether the index references a document.

Earlier versions of MongoDB only support 2dsphere (Version 1) indexes. 2dsphere (Version 1) in-
dexes are not sparse by default and will reject documents with null location fields.

Additional GeoJSON Objects 2dsphere (Version 2) includes support for additional GeoJSON object:
MultiPoint (page 560), MultiLineString (page 560), MultiPolygon (page 561), and GeometryCollection (page 561).
For details on all supported GeoJSON objects, see GeoJSON Objects (page 558).

Considerations

geoNear and $geoNear Restrictions The geoNear command and the $geoNear pipeline stage require that
a collection have at most only one 2dsphere index and/or only one 2d (page 498) index whereas geospatial query
operators (e.g. $near and $geoWithin) permit collections to have multiple geospatial indexes.

The geospatial index restriction for the geoNear command and the $geoNear pipeline stage exists because neither
the geoNear command nor the $geoNear pipeline stage syntax includes the location field. As such, index selection
among multiple 2d indexes or 2dsphere indexes is ambiguous.

8.2. Index Concepts 497

MongoDB Documentation, Release 2.6.11

No such restriction applies for geospatial query operators since these operators take a location field, eliminating the
ambiguity.

Shard Key Restrictions You cannot use a 2dsphere index as a shard key when sharding a collection. However,
you can create and maintain a geospatial index on a sharded collection by using a different field as the shard key.

2dsphere Indexed Field Restrictions Fields with 2dsphere (page 497) indexes must hold geometry data in
the form of coordinate pairs or GeoJSON data. If you attempt to insert a document with non-geometry data in a
2dsphere indexed field, or build a 2dsphere index on a collection where the indexed field has non-geometry data,
the operation will fail.

Create a 2dsphere Index To create a 2dsphere index, use the db.collection.ensureIndex()method,
specifying the location field as the key and specify the string literal "2dsphere" as the index type:

db.collection.ensureIndex({ <location field> : "2dsphere" })

Unlike a compound 2d (page 498) index which can reference one location field and one other field, a compound
(page 489) 2dsphere index can reference multiple location and non-location fields.

For more information on creating 2dspshere indexes, see Create a 2dsphere Index (page 533).

2d Indexes

On this page

• Considerations (page 498)
• Behavior (page 499)
• Points on a 2D Plane (page 499)
• sparse Property (page 499)

Use a 2d index for data stored as points on a two-dimensional plane. The 2d index is intended for legacy coordinate
pairs used in MongoDB 2.2 and earlier.

Use a 2d index if:

• your database has legacy location data from MongoDB 2.2 or earlier, and

• you do not intend to store any location data as GeoJSON objects.

See the http://docs.mongodb.org/manual/reference/operator/query-geospatial for the
query operators that support geospatial queries.

Considerations The geoNear command and the $geoNear pipeline stage require that a collection have at most
only one 2d index and/or only one 2dsphere index (page 497) whereas geospatial query operators (e.g. $near and
$geoWithin) permit collections to have multiple geospatial indexes.

The geospatial index restriction for the geoNear command and the $geoNear pipeline stage exists because neither
the geoNear command nor the $geoNear pipeline stage syntax includes the location field. As such, index selection
among multiple 2d indexes or 2dsphere indexes is ambiguous.

No such restriction applies for geospatial query operators since these operators take a location field, eliminating the
ambiguity.

Do not use a 2d index if your location data includes GeoJSON objects. To index on both legacy coordinate pairs and
GeoJSON objects, use a 2dsphere (page 497) index.

498 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

You cannot use a 2d index as a shard key when sharding a collection. However, you can create and maintain a
geospatial index on a sharded collection by using a different field as the shard key.

Behavior The 2d index supports calculations on a flat, Euclidean plane. The 2d index also supports distance-only
calculations on a sphere, but for geometric calculations (e.g. $geoWithin) on a sphere, store data as GeoJSON
objects and use the 2dsphere index type.

A 2d index can reference two fields. The first must be the location field. A 2d compound index constructs queries
that select first on the location field, and then filters those results by the additional criteria. A compound 2d index can
cover queries.

Points on a 2D Plane To store location data as legacy coordinate pairs, use an array or an embedded document.
When possible, use the array format:

loc : [<longitude> , <latitude>]

Consider the embedded document form:

loc : { lng : <longitude> , lat : <latitude> }

Arrays are preferred as certain languages do not guarantee associative map ordering.

For all points, if you use longitude and latitude, store coordinates in longitude, latitude order.

sparse Property 2d indexes are sparse (page 507) by default and ignores the sparse: true (page 507) option. If
a document lacks a 2d index field (or the field is null or an empty array), MongoDB does not add an entry for the
document to the 2d index. For inserts, MongoDB inserts the document but does not add to the 2d index.

For a compound index that includes a 2d index key along with keys of other types, only the 2d index field determines
whether the index references a document.

geoHaystack Indexes

On this page

• Behavior (page 499)
• sparse Property (page 499)
• Create geoHaystack Index (page 500)

A geoHaystack index is a special index that is optimized to return results over small areas. geoHaystack indexes
improve performance on queries that use flat geometry.

For queries that use spherical geometry, a 2dsphere index is a better option than a haystack index. 2dsphere in-
dexes (page 497) allow field reordering; geoHaystack indexes require the first field to be the location field. Also,
geoHaystack indexes are only usable via commands and so always return all results at once.

Behavior geoHaystack indexes create “buckets” of documents from the same geographic area in order to improve
performance for queries limited to that area. Each bucket in a geoHaystack index contains all the documents within
a specified proximity to a given longitude and latitude.

sparse Property geoHaystack indexes are sparse (page 507) by default and ignore the sparse: true (page 507)
option. If a document lacks a geoHaystack index field (or the field is null or an empty array), MongoDB does
not add an entry for the document to the geoHaystack index. For inserts, MongoDB inserts the document but does
not add to the geoHaystack index.

8.2. Index Concepts 499

MongoDB Documentation, Release 2.6.11

geoHaystack indexes include one geoHaystack index key and one non-geospatial index key; however, only the
geoHaystack index field determines whether the index references a document.

Create geoHaystack Index To create a geoHaystack index, see Create a Haystack Index (page 540). For
information and example on querying a haystack index, see Query a Haystack Index (page 540).

2d Index Internals
On this page

• Calculation of Geohash Values for 2d Indexes (page 500)
• Multi-location Documents for 2d Indexes (page 500)

This document provides a more in-depth explanation of the internals of MongoDB’s 2d geospatial indexes. This
material is not necessary for normal operations or application development but may be useful for troubleshooting and
for further understanding.

Calculation of Geohash Values for 2d Indexes When you create a geospatial index on legacy coordinate pairs,
MongoDB computes geohash values for the coordinate pairs within the specified location range (page 537) and then
indexes the geohash values.

To calculate a geohash value, recursively divide a two-dimensional map into quadrants. Then assign each quadrant a
two-bit value. For example, a two-bit representation of four quadrants would be:

01 11

00 10

These two-bit values (00, 01, 10, and 11) represent each of the quadrants and all points within each quadrant. For
a geohash with two bits of resolution, all points in the bottom left quadrant would have a geohash of 00. The top
left quadrant would have the geohash of 01. The bottom right and top right would have a geohash of 10 and 11,
respectively.

To provide additional precision, continue dividing each quadrant into sub-quadrants. Each sub-quadrant would have
the geohash value of the containing quadrant concatenated with the value of the sub-quadrant. The geohash for the
upper-right quadrant is 11, and the geohash for the sub-quadrants would be (clockwise from the top left): 1101,
1111, 1110, and 1100, respectively.

Multi-location Documents for 2d Indexes New in version 2.0: Support for multiple locations in a document.

While 2d geospatial indexes do not support more than one set of coordinates in a document, you can use a multi-key
index (page 491) to index multiple coordinate pairs in a single document. In the simplest example you may have a
field (e.g. locs) that holds an array of coordinates, as in the following example:

{ _id : ObjectId(...),
locs : [[55.5 , 42.3] ,

[-74 , 44.74] ,
{ lng : 55.5 , lat : 42.3 }]

}

The values of the array may be either arrays, as in [55.5, 42.3], or embedded documents, as in { lng :
55.5 , lat : 42.3 }.

You could then create a geospatial index on the locs field, as in the following:

500 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

db.places.ensureIndex({ "locs": "2d" })

You may also model the location data as a field inside of an embedded document. In this case, the document would
contain a field (e.g. addresses) that holds an array of documents where each document has a field (e.g. loc:) that
holds location coordinates. For example:

{ _id : ObjectId(...),
name : "...",
addresses : [{

context : "home" ,
loc : [55.5, 42.3]

} ,
{
context : "home",
loc : [-74 , 44.74]

}
]

}

You could then create the geospatial index on the addresses.loc field as in the following example:

db.records.ensureIndex({ "addresses.loc": "2d" })

To include the location field with the distance field in multi-location document queries, specify includeLocs:
true in the geoNear command.

Text Indexes

On this page

• Create Text Index (page 501)
• Wildcard Text Indexes (page 502)
• Supported Languages and Stop Words (page 502)
• sparse Property (page 502)
• Restrictions (page 503)
• Storage Requirements and Performance Costs (page 503)
• Text Search (page 503)

New in version 2.4.

MongoDB provides text indexes to support text search of string content in documents of a collection.

text indexes can include any field whose value is a string or an array of string elements. To perform queries that
access the text index, use the $text query operator.

Changed in version 2.6: MongoDB enables the text search feature by default. In MongoDB 2.4, you need to enable
the text search feature manually to create text indexes and perform text search (page 503).

Create Text Index

To create a text index, use the db.collection.ensureIndex() method. To index a field that contains a
string or an array of string elements, include the field and specify the string literal "text" in the index document, as
in the following example:

8.2. Index Concepts 501

MongoDB Documentation, Release 2.6.11

db.reviews.ensureIndex({ comments: "text" })

A collection can have at most one text index.

However, you can specify multiple fields for the text index. For examples of creating text indexes on multiple
fields, see Create a text Index (page 543) and Wildcard Text Indexes (page 502).

Wildcard Text Indexes

To allow for text search on all fields with string content, use the wildcard specifier ($**) to index all fields in the
collection that contain string content. Such an index can be useful with highly unstructured data if it is unclear which
fields to include in the text index or for ad-hoc querying.

With a wildcard text index, MongoDB indexes every field that contains string data for each document in the collection.
The following example creates a text index using the wildcard specifier:

db.collection.createIndex({ "$**": "text" })

Wildcard text indexes are text indexes on multiple fields. As such, you can assign weights to specific fields during
index creation to control the ranking of the results. For more information using weights to control the results of a text
search, see Control Search Results with Weights (page 547).

Wildcard text indexes, as with all text indexes, can be part of a compound indexes. For example, the following creates
a compound index on the field a as well as the wildcard specifier:

db.collection.createIndex({ a: 1, "$**": "text" })

As with all compound text indexes (page 503), since the a precedes the text index key, in order to perform a $text
search with this index, the query predicate must include an equality match conditions a. For information on compound
text indexes, see Compound Text Indexes (page 503).

Supported Languages and Stop Words

MongoDB supports text search for various languages. text indexes drop language-specific stop words (e.g. in
English, “the”, “an”, “a”, “and”, etc.) and uses simple language-specific suffix stemming. For a list of the supported
languages, see Text Search Languages (page 561).

If you specify a language value of "none", then the text index uses simple tokenization with no list of stop words
and no stemming.

For the Latin alphabet, text indexes are case insensitive for non-diacritics; i.e. case insensitive for [A-z]. For all
other characters, text indexes treat them as distinct.

To specify a language for the text index, see Specify a Language for Text Index (page 544).

sparse Property

text indexes are sparse (page 507) by default and ignores the sparse: true (page 507) option. If a document lacks a
text index field (or the field is null or an empty array), MongoDB does not add an entry for the document to the
text index. For inserts, MongoDB inserts the document but does not add to the text index.

For a compound index that includes a text index key along with keys of other types, only the text index field
determine whether the index references a document. The other keys do not determine whether the index references
the documents or not.

502 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

Restrictions

Text Search and Hints You cannot use hint() if the query includes a $text query expression.

Text Index and Sort Sort operations cannot obtain sort order from a text index, even from a compound text index
(page 503); i.e. sort operations cannot use the ordering in the text index.

Compound Index A compound index (page 489) can include a text index key in combination with ascend-
ing/descending index keys. However, these compound indexes have the following restrictions:

• A compound text index cannot include any other special index types, such as multi-key (page 491) or geospa-
tial (page 495) index fields.

• If the compound text index includes keys preceding the text index key, to perform a $text search, the
query predicate must include equality match conditions on the preceding keys.

See also Text Index and Sort (page 503) for additional limitations.

For an example of a compound text index, see Limit the Number of Entries Scanned (page 548).

Drop a Text Index To drop a text index, pass the name of the index to the db.collection.dropIndex()
method. To get the name of the index, run the getIndexes() method.

For information on the default naming scheme for text indexes as well as overriding the default name, see Specify
Name for text Index (page 546).

Storage Requirements and Performance Costs

text indexes have the following storage requirements and performance costs:

• text indexes change the space allocation method for all future record allocations in a collection to
usePowerOf2Sizes.

• text indexes can be large. They contain one index entry for each unique post-stemmed word in each indexed
field for each document inserted.

• Building a text index is very similar to building a large multi-key index and will take longer than building a
simple ordered (scalar) index on the same data.

• When building a large text index on an existing collection, ensure that you have a sufficiently high limit on
open file descriptors. See the recommended settings (page 300).

• text indexes will impact insertion throughput because MongoDB must add an index entry for each unique
post-stemmed word in each indexed field of each new source document.

• Additionally, text indexes do not store phrases or information about the proximity of words in the documents.
As a result, phrase queries will run much more effectively when the entire collection fits in RAM.

Text Search

Text search supports the search of string content in documents of a collection. MongoDB provides the $text operator
to perform text search in queries and in aggregation pipelines (page 549).

The text search process:

• tokenizes and stems the search term(s) during both the index creation and the text command execution.

8.2. Index Concepts 503

MongoDB Documentation, Release 2.6.11

• assigns a score to each document that contains the search term in the indexed fields. The score determines the
relevance of a document to a given search query.

The $text operator can search for words and phrases. The query matches on the complete stemmed words. For
example, if a document field contains the word blueberry, a search on the term blue will not match the document.
However, a search on either blueberry or blueberries will match.

For information and examples on various text search patterns, see the $text query operator. For examples of text
search in aggregation pipeline, see Text Search in the Aggregation Pipeline (page 549).

Hashed Index

New in version 2.4.

Hashed indexes maintain entries with hashes of the values of the indexed field. The hashing function collapses em-
bedded documents and computes the hash for the entire value but does not support multi-key (i.e. arrays) indexes.

Hashed indexes support sharding (page 675) a collection using a hashed shard key (page 689). Using a hashed shard
key to shard a collection ensures a more even distribution of data. See Shard a Collection Using a Hashed Shard Key
(page 711) for more details.

MongoDB can use the hashed index to support equality queries, but hashed indexes do not support range queries.

You may not create compound indexes that have hashed index fields or specify a unique constraint
on a hashed index; however, you can create both a hashed index and an ascending/descending
(i.e. non-hashed) index on the same field: MongoDB will use the scalar index for range queries.

Warning: MongoDB hashed indexes truncate floating point numbers to 64-bit integers before hashing. For
example, a hashed index would store the same value for a field that held a value of 2.3, 2.2, and 2.9. To
prevent collisions, do not use a hashed index for floating point numbers that cannot be reliably converted to
64-bit integers (and then back to floating point). MongoDB hashed indexes do not support floating point values
larger than 253.

Create a hashed index using an operation that resembles the following:

db.active.ensureIndex({ a: "hashed" })

This operation creates a hashed index for the active collection on the a field.

8.2.2 Index Properties

In addition to the numerous index types (page 486) MongoDB supports, indexes can also have various properties. The
following documents detail the index properties that you can select when building an index.

TTL Indexes (page 504) The TTL index is used for TTL collections, which expire data after a period of time.

Unique Indexes (page 506) A unique index causes MongoDB to reject all documents that contain a duplicate value
for the indexed field.

Sparse Indexes (page 507) A sparse index does not index documents that do not have the indexed field.

TTL Indexes

504 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

On this page

• Behavior (page 505)
• Restrictions (page 506)
• Additional Information (page 506)

TTL indexes are special single-field indexes that MongoDB can use to automatically remove documents from a col-
lection after a certain amount of time. Data expiration is useful for certain types of information like machine generated
event data, logs, and session information that only need to persist in a database for a finite amount of time.

To create a TTL index, use the db.collection.ensureIndex() method with the expireAfterSeconds
option on a field whose value is either a date (page 189) or an array that contains date values (page 189).

For example, to create a TTL index on the lastModifiedDate field of the eventlog collection, use the following
operation in the mongo shell:

db.eventlog.ensureIndex({ "lastModifiedDate": 1 }, { expireAfterSeconds: 3600 })

Behavior

Expiration of Data TTL indexes expire documents after the specified number of seconds has passed since the
indexed field value; i.e. the expiration threshold is the indexed field value plus the specified number of seconds.

If the field is an array, and there are multiple date values in the index, MongoDB uses lowest (i.e. earliest) date value
in the array to calculate the expiration threshold.

If the indexed field in a document is not a date or an array that holds a date value(s), the document will not expire.

If a document does not contain the indexed field, the document will not expire.

Delete Operations A background thread in mongod reads the values in the index and removes expired documents
from the collection.

When the TTL thread is active, you will see delete (page 77) operations in the output of db.currentOp() or in the
data collected by the database profiler (page 239).

Timing of the Delete Operation When you build a TTL index in the background (page 510), the TTL thread can
begin deleting documents while the index is building. If you build a TTL index in the foreground, MongoDB begins
removing expired documents as soon as the index finishes building.

The TTL index does not guarantee that expired data will be deleted immediately upon expiration. There may be a
delay between the time a document expires and the time that MongoDB removes the document from the database.

The background task that removes expired documents runs every 60 seconds. As a result, documents may remain in a
collection during the period between the expiration of the document and the running of the background task.

Because the duration of the removal operation depends on the workload of your mongod instance, expired data may
exist for some time beyond the 60 second period between runs of the background task.

Replica Sets On replica sets, the TTL background thread only deletes documents on the primary. However, the TTL
background thread does run on secondaries. Secondary members replicate deletion operations from the primary.

Support for Queries A TTL index supports queries in the same way non-TTL indexes do.

8.2. Index Concepts 505

MongoDB Documentation, Release 2.6.11

Record Allocation A collection with a TTL index has usePowerOf2Sizes enabled, and you cannot modify this
setting for the collection. As a result of enabling usePowerOf2Sizes, MongoDB must allocate more disk space
relative to data size. This approach helps mitigate the possibility of storage fragmentation caused by frequent delete
operations and leads to more predictable storage use patterns.

Restrictions

• TTL indexes are a single-field indexes. Compound indexes (page 489) do not support TTL and ignores the
expireAfterSeconds option.

• The _id field does not support TTL indexes.

• You cannot create a TTL index on a capped collection (page 219) because MongoDB cannot remove documents
from a capped collection.

• You cannot use ensureIndex() to change the value of expireAfterSeconds of an existing index.
Instead use the collMod database command in conjunction with the index collection flag. Otherwise, to
change the value of the option of an existing index, you must drop the index first and recreate.

• If a non-TTL single-field index already exists for a field, you cannot create a TTL index on the same field
since you cannot create indexes that have the same key specification and differ only by the options. To
change a non-TTL single-field index to a TTL index, you must drop the index first and recreate with the
expireAfterSeconds option.

Additional Information

For examples, see Expire Data from Collections by Setting TTL (page 222).

Unique Indexes

On this page

• Behavior (page 506)

A unique index causes MongoDB to reject all documents that contain a duplicate value for the indexed field.

To create a unique index, use the db.collection.ensureIndex() method with the unique option set to
true. For example, to create a unique index on the user_id field of the members collection, use the following
operation in the mongo shell:

db.members.ensureIndex({ "user_id": 1 }, { unique: true })

By default, unique is false on MongoDB indexes.

If you use the unique constraint on a compound index (page 489), then MongoDB will enforce uniqueness on the
combination of values rather than the individual value for any or all values of the key.

Behavior

Unique Constraint Across Separate Documents The unique constraint applies to separate documents in the col-
lection. That is, the unique index prevents separate documents from having the same value for the indexed key, but the
index does not prevent a document from having multiple elements or embedded documents in an indexed array from

506 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

having the same value. In the case of a single document with repeating values, the repeated value is inserted into the
index only once.

For example, a collection has a unique index on a.b:

db.collection.ensureIndex({ "a.b": 1 }, { unique: true })

The unique index permits the insertion of the following document into the collection if no other document in the
collection has the a.b value of 5:

db.collection.insert({ a: [{ b: 5 }, { b: 5 }] })

Unique Index and Missing Field If a document does not have a value for the indexed field in a unique index, the
index will store a null value for this document. Because of the unique constraint, MongoDB will only permit one
document that lacks the indexed field. If there is more than one document without a value for the indexed field or is
missing the indexed field, the index build will fail with a duplicate key error.

You can combine the unique constraint with the sparse index (page 507) to filter these null values from the unique
index and avoid the error.

Restrictions You may not specify a unique constraint on a hashed index (page 504).

See also:

Create a Unique Index (page 522)

Sparse Indexes

On this page

• Behavior (page 507)
• Examples (page 508)

Sparse indexes only contain entries for documents that have the indexed field, even if the index field contains a null
value. The index skips over any document that is missing the indexed field. The index is “sparse” because it does not
include all documents of a collection. By contrast, non-sparse indexes contain all documents in a collection, storing
null values for those documents that do not contain the indexed field.

To create a sparse index, use the db.collection.ensureIndex() method with the sparse option set to
true. For example, the following operation in the mongo shell creates a sparse index on the xmpp_id field of the
addresses collection:

db.addresses.ensureIndex({ "xmpp_id": 1 }, { sparse: true })

Note: Do not confuse sparse indexes in MongoDB with block-level3 indexes in other databases. Think of them as
dense indexes with a specific filter.

Behavior

sparse Index and Incomplete Results Changed in version 2.6.

3http://en.wikipedia.org/wiki/Database_index#Sparse_index

8.2. Index Concepts 507

http://en.wikipedia.org/wiki/Database_index#Sparse_index

MongoDB Documentation, Release 2.6.11

If a sparse index would result in an incomplete result set for queries and sort operations, MongoDB will not use that
index unless a hint() explicitly specifies the index.

For example, the query { x: { $exists: false } } will not use a sparse index on the x field unless
explicitly hinted. See Sparse Index On A Collection Cannot Return Complete Results (page 508) for an example that
details the behavior.

Indexes that are sparse by Default 2dsphere (version 2) (page 497), 2d (page 498), geoHaystack (page 499), and
text (page 501) indexes are always sparse.

sparse Compound Indexes Sparse compound indexes (page 489) that only contain ascending/descending index
keys will index a document as long as the document contains at least one of the keys.

For sparse compound indexes that contain a geospatial key (i.e. 2dsphere (page 497), 2d (page 498), or geoHaystack
(page 499) index keys) along with ascending/descending index key(s), only the existence of the geospatial field(s) in
a document determine whether the index references the document.

For sparse compound indexes that contain text (page 501) index keys along with ascending/descending index keys,
only the existence of the text index field(s) determine whether the index references a document.

sparse and unique Properties An index that is both sparse and unique (page 506) prevents collection from
having documents with duplicate values for a field but allows multiple documents that omit the key.

Examples

Create a Sparse Index On A Collection Consider a collection scores that contains the following documents:

{ "_id" : ObjectId("523b6e32fb408eea0eec2647"), "userid" : "newbie" }
{ "_id" : ObjectId("523b6e61fb408eea0eec2648"), "userid" : "abby", "score" : 82 }
{ "_id" : ObjectId("523b6e6ffb408eea0eec2649"), "userid" : "nina", "score" : 90 }

The collection has a sparse index on the field score:

db.scores.ensureIndex({ score: 1 } , { sparse: true })

Then, the following query on the scores collection uses the sparse index to return the documents that have the
score field less than ($lt) 90:

db.scores.find({ score: { $lt: 90 } })

Because the document for the userid "newbie" does not contain the score field and thus does not meet the query
criteria, the query can use the sparse index to return the results:

{ "_id" : ObjectId("523b6e61fb408eea0eec2648"), "userid" : "abby", "score" : 82 }

Sparse Index On A Collection Cannot Return Complete Results Consider a collection scores that contains the
following documents:

{ "_id" : ObjectId("523b6e32fb408eea0eec2647"), "userid" : "newbie" }
{ "_id" : ObjectId("523b6e61fb408eea0eec2648"), "userid" : "abby", "score" : 82 }
{ "_id" : ObjectId("523b6e6ffb408eea0eec2649"), "userid" : "nina", "score" : 90 }

The collection has a sparse index on the field score:

508 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

db.scores.ensureIndex({ score: 1 } , { sparse: true })

Because the document for the userid "newbie" does not contain the score field, the sparse index does not contain
an entry for that document.

Consider the following query to return all documents in the scores collection, sorted by the score field:

db.scores.find().sort({ score: -1 })

Even though the sort is by the indexed field, MongoDB will not select the sparse index to fulfill the query in order to
return complete results:

{ "_id" : ObjectId("523b6e6ffb408eea0eec2649"), "userid" : "nina", "score" : 90 }
{ "_id" : ObjectId("523b6e61fb408eea0eec2648"), "userid" : "abby", "score" : 82 }
{ "_id" : ObjectId("523b6e32fb408eea0eec2647"), "userid" : "newbie" }

To use the sparse index, explicitly specify the index with hint():

db.scores.find().sort({ score: -1 }).hint({ score: 1 })

The use of the index results in the return of only those documents with the score field:

{ "_id" : ObjectId("523b6e6ffb408eea0eec2649"), "userid" : "nina", "score" : 90 }
{ "_id" : ObjectId("523b6e61fb408eea0eec2648"), "userid" : "abby", "score" : 82 }

See also:

explain() and Analyze Query Performance (page 117)

Sparse Index with Unique Constraint Consider a collection scores that contains the following documents:

{ "_id" : ObjectId("523b6e32fb408eea0eec2647"), "userid" : "newbie" }
{ "_id" : ObjectId("523b6e61fb408eea0eec2648"), "userid" : "abby", "score" : 82 }
{ "_id" : ObjectId("523b6e6ffb408eea0eec2649"), "userid" : "nina", "score" : 90 }

You could create an index with a unique constraint (page 506) and sparse filter on the score field using the following
operation:

db.scores.ensureIndex({ score: 1 } , { sparse: true, unique: true })

This index would permit the insertion of documents that had unique values for the score field or did not include a
score field. Consider the following insert operation (page 97):

db.scores.insert({ "userid": "AAAAAAA", "score": 43 })
db.scores.insert({ "userid": "BBBBBBB", "score": 34 })
db.scores.insert({ "userid": "CCCCCCC" })
db.scores.insert({ "userid": "DDDDDDD" })

However, the index would not permit the addition of the following documents since documents already exists with
score value of 82 and 90:

db.scores.insert({ "userid": "AAAAAAA", "score": 82 })
db.scores.insert({ "userid": "BBBBBBB", "score": 90 })

8.2.3 Index Creation

8.2. Index Concepts 509

MongoDB Documentation, Release 2.6.11

On this page

• Background Construction (page 510)
• Drop Duplicates (page 511)
• Index Names (page 512)

MongoDB provides several options that only affect the creation of the index. Specify these options in a document as
the second argument to the db.collection.ensureIndex() method. This section describes the uses of these
creation options and their behavior.

Related
Some options that you can specify to ensureIndex() options control the properties of the index (page 504), which
are not index creation options. For example, the unique (page 506) option affects the behavior of the index after
creation.

For a detailed description of MongoDB’s index types, see Index Types (page 486) and Index Properties (page 504) for
related documentation.

Background Construction

By default, creating an index blocks all other operations on a database. When building an index on a collection, the
database that holds the collection is unavailable for read or write operations until the index build completes. Any
operation that requires a read or write lock on all databases (e.g. listDatabases) will wait for the foreground index
build to complete.

For potentially long running index building operations, consider the background operation so that the MongoDB
database remains available during the index building operation. For example, to create an index in the background of
the zipcode field of the people collection, issue the following:

db.people.ensureIndex({ zipcode: 1}, {background: true})

By default, background is false for building MongoDB indexes.

You can combine the background option with other options, as in the following:

db.people.ensureIndex({ zipcode: 1}, {background: true, sparse: true })

Behavior

As of MongoDB version 2.4, a mongod instance can build more than one index in the background concurrently.

Changed in version 2.4: Before 2.4, a mongod instance could only build one background index per database at a time.

Changed in version 2.2: Before 2.2, a single mongod instance could only build one index at a time.

Background indexing operations run in the background so that other database operations can run while creating the
index. However, the mongo shell session or connection where you are creating the index will block until the index
build is complete. To continue issuing commands to the database, open another connection or mongo instance.

Queries will not use partially-built indexes: the index will only be usable once the index build is complete.

Note: If MongoDB is building an index in the background, you cannot perform other administra-
tive operations involving that collection, including running repairDatabase, dropping the collection (i.e.
db.collection.drop()), and running compact. These operations will return an error during background
index builds.

510 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

Performance

The background index operation uses an incremental approach that is slower than the normal “foreground” index
builds. If the index is larger than the available RAM, then the incremental process can take much longer than the
foreground build.

If your application includes ensureIndex() operations, and an index doesn’t exist for other operational concerns,
building the index can have a severe impact on the performance of the database.

To avoid performance issues, make sure that your application checks for the indexes at start up using the
getIndexes() method or the equivalent method for your driver4 and terminates if the proper indexes do not ex-
ist. Always build indexes in production instances using separate application code, during designated maintenance
windows.

Building Indexes on Secondaries

Changed in version 2.6: Secondary members can now build indexes in the background. Previously all index builds on
secondaries were in the foreground.

Background index operations on a replica set secondaries begin after the primary completes building the index. If
MongoDB builds an index in the background on the primary, the secondaries will then build that index in the back-
ground.

To build large indexes on secondaries the best approach is to restart one secondary at a time in standalone mode and
build the index. After building the index, restart as a member of the replica set, allow it to catch up with the other
members of the set, and then build the index on the next secondary. When all the secondaries have the new index, step
down the primary, restart it as a standalone, and build the index on the former primary.

The amount of time required to build the index on a secondary must be within the window of the oplog, so that the
secondary can catch up with the primary.

Indexes on secondary members in “recovering” mode are always built in the foreground to allow them to catch up as
soon as possible.

See Build Indexes on Replica Sets (page 524) for a complete procedure for building indexes on secondaries.

Drop Duplicates

Deprecated since version 2.6: The dropDups option to ensureIndex(), createIndex(), and
createIndexes is deprecated.

MongoDB cannot create a unique index (page 506) on a field that has duplicate values. To force the creation of a
unique index, you can specify the dropDups option, which will only index the first occurrence of a value for the key,
and delete all subsequent values.

Important: As in all unique indexes, if a document does not have the indexed field, MongoDB will include it in the
index with a “null” value.

If subsequent fields do not have the indexed field, and you have set {dropDups: true}, MongoDB will remove
these documents from the collection when creating the index. If you combine dropDups with the sparse (page 507)
option, this index will only include documents in the index that have the value, and the documents without the field
will remain in the database.

4https://api.mongodb.org/

8.2. Index Concepts 511

https://api.mongodb.org/

MongoDB Documentation, Release 2.6.11

To create a unique index that drops duplicates on the username field of the accounts collection, use a command
in the following form:

db.accounts.ensureIndex({ username: 1 }, { unique: true, dropDups: true })

Warning: Specifying { dropDups: true } will delete data from your database. Use with extreme cau-
tion.

By default, dropDups is false.

Index Names

The default name for an index is the concatenation of the indexed keys and each key’s direction in the index, 1 or -1.

Example
Issue the following command to create an index on item and quantity:

db.products.ensureIndex({ item: 1, quantity: -1 })

The resulting index is named: item_1_quantity_-1.

Optionally, you can specify a name for an index instead of using the default name.

Example
Issue the following command to create an index on item and quantity and specify inventory as the index
name:

db.products.ensureIndex({ item: 1, quantity: -1 } , { name: "inventory" })

The resulting index has the name inventory.

To view the name of an index, use the getIndexes() method.

8.2.4 Index Intersection

On this page

• Index Prefix Intersection (page 513)
• Index Intersection and Compound Indexes (page 513)
• Index Intersection and Sort (page 514)

New in version 2.6.

MongoDB can use the intersection of multiple indexes to fulfill queries. 5 In general, each index intersection involves
two indexes; however, MongoDB can employ multiple/nested index intersections to resolve a query.

To illustrate index intersection, consider a collection orders that has the following indexes:

{ qty: 1 }
{ item: 1 }

5 In previous versions, MongoDB could use only a single index to fulfill most queries. The exception to this is queries with $or clauses, which
could use a single index for each $or clause.

512 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

MongoDB can use the intersection of the two indexes to support the following query:

db.orders.find({ item: "abc123", qty: { $gt: 15 } })

For query plans that use index intersection, the explain() returns the value Complex Plan in the cursor field.

Index Prefix Intersection

With index intersection, MongoDB can use an intersection of either the entire index or the index prefix. An index
prefix is a subset of a compound index, consisting of one or more keys starting from the beginning of the index.

Consider a collection orders with the following indexes:

{ qty: 1 }
{ status: 1, ord_date: -1 }

To fulfill the following query which specifies a condition on both the qty field and the status field, MongoDB can
use the intersection of the two indexes:

db.orders.find({ qty: { $gt: 10 } , status: "A" })

Index Intersection and Compound Indexes

Index intersection does not eliminate the need for creating compound indexes (page 489). However, because both the
list order (i.e. the order in which the keys are listed in the index) and the sort order (i.e. ascending or descending),
matter in compound indexes (page 489), a compound index may not support a query condition that does not include
the index prefix keys (page 490) or that specifies a different sort order.

For example, if a collection orders has the following compound index, with the status field listed before the
ord_date field:

{ status: 1, ord_date: -1 }

The compound index can support the following queries:

db.orders.find({ status: { $in: ["A", "P"] } })
db.orders.find(

{
ord_date: { $gt: new Date("2014-02-01") },
status: {$in:["P", "A"] }

}
)

But not the following two queries:

db.orders.find({ ord_date: { $gt: new Date("2014-02-01") } })
db.orders.find({ }).sort({ ord_date: 1 })

However, if the collection has two separate indexes:

{ status: 1 }
{ ord_date: -1 }

The two indexes can, either individually or through index intersection, support all four aforementioned queries.

The choice between creating compound indexes that support your queries or relying on index intersection depends on
the specifics of your system.

See also:

8.2. Index Concepts 513

MongoDB Documentation, Release 2.6.11

compound indexes (page 489), Create Compound Indexes to Support Several Different Queries (page 552)

Index Intersection and Sort

Index intersection does not apply when the sort() operation requires an index completely separate from the query
predicate.

For example, the orders collection has the following indexes:

{ qty: 1 }
{ status: 1, ord_date: -1 }
{ status: 1 }
{ ord_date: -1 }

MongoDB cannot use index intersection for the following query with sort:

db.orders.find({ qty: { $gt: 10 } }).sort({ status: 1 })

That is, MongoDB does not use the { qty: 1 } index for the query, and the separate { status: 1 } or the
{ status: 1, ord_date: -1 } index for the sort.

However, MongoDB can use index intersection for the following query with sort since the index { status: 1,
ord_date: -1 } can fulfill part of the query predicate.

db.orders.find({ qty: { $gt: 10 } , status: "A" }).sort({ ord_date: -1 })

8.2.5 Multikey Index Bounds

On this page

• Intersect Bounds for Multikey Index (page 514)
• Compound Bounds for Multikey Index (page 515)

The bounds of an index scan define the portions of an index to search during a query. When multiple predicates over an
index exist, MongoDB will attempt to combine the bounds for these predicates by either intersection or compounding
in order to produce a scan with smaller bounds.

Intersect Bounds for Multikey Index

Bounds intersection refers to a logical conjunction (i.e. AND) of multiple bounds. For instance, given two bounds [[
3, Infinity]] and [[-Infinity, 6]], the intersection of the bounds results in [[3, 6]].

Given an indexed (page 491) array field, consider a query that specifies multiple predicates on the array and can use
a multikey index (page 491). MongoDB can intersect multikey index (page 491) bounds if an $elemMatch joins the
predicates.

For example, a collection survey contains documents with a field item and an array field ratings:

{ _id: 1, item: "ABC", ratings: [2, 9] }
{ _id: 2, item: "XYZ", ratings: [4, 3] }

Create a multikey index (page 491) on the ratings array:

db.survey.ensureIndex({ ratings: 1 })

514 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

The following query uses $elemMatch to require that the array contains at least one single element that matches
both conditions:

db.survey.find({ ratings : { $elemMatch: { $gte: 3, $lte: 6 } } })

Taking the predicates separately:

• the bounds for the greater than or equal to 3 predicate (i.e. $gte: 3) are [[3, Infinity]];

• the bounds for the less than or equal to 6 predicate (i.e. $lte: 6) are [[-Infinity, 6]].

Because the query uses $elemMatch to join these predicates, MongoDB can intersect the bounds to:

ratings: [[3, 6]]

If the query does not join the conditions on the array field with $elemMatch, MongoDB cannot intersect the multikey
index bounds. Consider the following query:

db.survey.find({ ratings : { $gte: 3, $lte: 6 } })

The query searches the ratings array for at least one element greater than or equal to 3 and at least one element
less than or equal to 6. Because a single element does not need to meet both criteria, MongoDB does not intersect the
bounds and uses either [[3, Infinity]] or [[-Infinity, 6]]. MongoDB makes no guarantee
as to which of these two bounds it chooses.

Compound Bounds for Multikey Index

Compounding bounds refers to using bounds for multiple keys of compound index (page 489). For instance, given a
compound index { a: 1, b: 1 } with bounds on field a of [[3, Infinity]] and bounds on field
b of [[-Infinity, 6]], compounding the bounds results in the use of both bounds:

{ a: [[3, Infinity]], b: [[-Infinity, 6]] }

If MongoDB cannot compound the two bounds, MongoDB always constrains the index scan by the bound on its
leading field, in this case, a: [[3, Infinity]].

Compound Index on an Array Field

Consider a compound multikey index; i.e. a compound index (page 489) where one of the indexed fields is an array.
For example, a collection survey contains documents with a field item and an array field ratings:

{ _id: 1, item: "ABC", ratings: [2, 9] }
{ _id: 2, item: "XYZ", ratings: [4, 3] }

Create a compound index (page 489) on the item field and the ratings field:

db.survey.ensureIndex({ item: 1, ratings: 1 })

The following query specifies a condition on both keys of the index:

db.survey.find({ item: "XYZ", ratings: { $gte: 3 } })

Taking the predicates separately:

• the bounds for the item: "XYZ" predicate are [["XYZ", "XYZ"]];

• the bounds for the ratings: { $gte: 3 } predicate are [[3, Infinity]].

MongoDB can compound the two bounds to use the combined bounds of:

8.2. Index Concepts 515

MongoDB Documentation, Release 2.6.11

{ item: [["XYZ", "XYZ"]], ratings: [[3, Infinity]] }

Compound Index on Fields from an Array of Embedded Documents

If an array contains embedded documents, to index on fields contained in the embedded documents, use the dotted
field name (page 179) in the index specification. For instance, given the following array of embedded documents:

ratings: [{ score: 2, by: "mn" }, { score: 9, by: "anon" }]

The dotted field name for the score field is "ratings.score".

Compound Bounds of Non-array Field and Field from an Array Consider a collection survey2 contains doc-
uments with a field item and an array field ratings:

{
_id: 1,
item: "ABC",
ratings: [{ score: 2, by: "mn" }, { score: 9, by: "anon" }]

}
{

_id: 2,
item: "XYZ",
ratings: [{ score: 5, by: "anon" }, { score: 7, by: "wv" }]

}

Create a compound index (page 489) on the non-array field item as well as two fields from an array
ratings.score and ratings.by:

db.survey2.ensureIndex({ "item": 1, "ratings.score": 1, "ratings.by": 1 })

The following query specifies a condition on all three fields:

db.survey2.find({ item: "XYZ", "ratings.score": { $lte: 5 }, "ratings.by": "anon" })

Taking the predicates separately:

• the bounds for the item: "XYZ" predicate are [["XYZ", "XYZ"]];

• the bounds for the score: { $lte: 5 } predicate are [[-Infinity, 5]];

• the bounds for the by: "anon" predicate are ["anon", "anon"].

MongoDB can compound the bounds for the item key with either the bounds for "ratings.score" or the bounds
for "ratings.by", depending upon the query predicates and the index key values. MongoDB makes no guarantee
as to which bounds it compounds with the item field. For instance, MongoDB will either choose to compound the
item bounds with the "ratings.score" bounds:

{
"item" : [["XYZ", "XYZ"]],
"ratings.score" : [[-Infinity, 5]],
"ratings.by" : [[MinKey, MaxKey]]

}

Or, MongoDB may choose to compound the item bounds with "ratings.by" bounds:

{
"item" : [["XYZ", "XYZ"]],
"ratings.score" : [[MinKey, MaxKey]],

516 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

"ratings.by" : [["anon", "anon"]]
}

However, to compound the bounds for "ratings.score" with the bounds for "ratings.by", the query must
use $elemMatch. See Compound Bounds of Index Fields from an Array (page 517) for more information.

Compound Bounds of Index Fields from an Array To compound together the bounds for index keys from the
same array:

• the index keys must share the same field path up to but excluding the field names, and

• the query must specify predicates on the fields using $elemMatch on that path.

For a field in an embedded document, the dotted field name (page 179), such as "a.b.c.d", is the field path for
d. To compound the bounds for index keys from the same array, the $elemMatch must be on the path up to but
excluding the field name itself; i.e. "a.b.c".

For instance, create a compound index (page 489) on the ratings.score and the ratings.by fields:

db.survey2.ensureIndex({ "ratings.score": 1, "ratings.by": 1 })

The fields "ratings.score" and "ratings.by" share the field path ratings. The following query uses
$elemMatch on the field ratings to require that the array contains at least one single element that matches both
conditions:

db.survey2.find({ ratings: { $elemMatch: { score: { $lte: 5 }, by: "anon" } } })

Taking the predicates separately:

• the bounds for the score: { $lte: 5 } predicate is [-Infinity, 5];

• the bounds for the by: "anon" predicate is ["anon", "anon"].

MongoDB can compound the two bounds to use the combined bounds of:

{ "ratings.score" : [[-Infinity, 5]], "ratings.by" : [["anon", "anon"]] }

Query Without $elemMatch If the query does not join the conditions on the indexed array fields with
$elemMatch, MongoDB cannot compound their bounds. Consider the following query:

db.survey2.find({ "ratings.score": { $lte: 5 }, "ratings.by": "anon" })

Because a single embedded document in the array does not need to meet both criteria, MongoDB does not compound
the bounds. When using a compound index, if MongoDB cannot constrain all the fields of the index, MongoDB
always constrains the leading field of the index, in this case "ratings.score":

{
"ratings.score": [[-Infinity, 5]],
"ratings.by": [[MinKey, MaxKey]]

}

$elemMatch on Incomplete Path If the query does not specify $elemMatch on the path of the embedded fields,
up to but excluding the field names, MongoDB cannot compound the bounds of index keys from the same array.

For example, a collection survey3 contains documents with a field item and an array field ratings:

8.2. Index Concepts 517

MongoDB Documentation, Release 2.6.11

{
_id: 1,
item: "ABC",
ratings: [{ score: { q1: 2, q2: 5 } }, { score: { q1: 8, q2: 4 } }]

}
{

_id: 2,
item: "XYZ",
ratings: [{ score: { q1: 7, q2: 8 } }, { score: { q1: 9, q2: 5 } }]

}

Create a compound index (page 489) on the ratings.score.q1 and the ratings.score.q2 fields:

db.survey3.ensureIndex({ "ratings.score.q1": 1, "ratings.score.q2": 1 })

The fields "ratings.score.q1" and "ratings.score.q2" share the field path "ratings.score" and
the $elemMatch must be on that path.

The following query, however, uses an $elemMatch but not on the required path:

db.survey3.find({ ratings: { $elemMatch: { 'score.q1': 2, 'score.q2': 8 } } })

As such, MongoDB cannot compound the bounds, and the "ratings.score.q2" field will be unconstrained
during the index scan. To compound the bounds, the query must use $elemMatch on the path "ratings.score":

db.survey3.find({ 'ratings.score': { $elemMatch: { 'q1': 2, 'q2': 8 } } })

Compound $elemMatchClauses Consider a query that contains multiple $elemMatch clauses on different field
paths, for instance, "a.b": { $elemMatch: ... }, "a.c": { $elemMatch: ... }. Mon-
goDB cannot combine the bounds of the "a.b" with the bounds of "a.c" since "a.b" and "a.c" also require
$elemMatch on the path a.

For example, a collection survey4 contains documents with a field item and an array field ratings:

{
_id: 1,
item: "ABC",
ratings: [
{ score: { q1: 2, q2: 5 }, certainty: { q1: 2, q2: 3 } },
{ score: { q1: 8, q2: 4 }, certainty: { q1: 10, q2: 10 } }

]
}
{

_id: 2,
item: "XYZ",
ratings: [
{ score: { q1: 7, q2: 8 }, certainty: { q1: 5, q2: 5 } },
{ score: { q1: 9, q2: 5 }, certainty: { q1: 7, q2: 7 } }

]
}

Create a compound index (page 489) on the ratings.score.q1 and the ratings.score.q2 fields:

db.survey4.ensureIndex({
"ratings.score.q1": 1,
"ratings.score.q2": 1,
"ratings.certainty.q1": 1,
"ratings.certainty.q2": 1

})

518 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

Consider the following query with two $elemMatch clauses:

db.survey4.find(
{
"ratings.score": { $elemMatch: { q1: 5, q2: 5 } },
"ratings.certainty": { $elemMatch: { q1: 7, q2: 7 } },

}
)

Taking the predicates separately:

• the bounds for the "ratings.score" predicate are the compound bounds:

{ "ratings.score.q1" : [[5, 5]], "ratings.score.q2" : [[5, 5]] }

• the bounds for the "ratings.certainty" predicate are the compound bounds:

{ "ratings.certainty.q1" : [[7, 7]], "ratings.certainty.q2" : [[7, 7]] }

However, MongoDB cannot compound the bounds for "ratings.score" and "ratings.certainty"
since $elemMatch does not join the two. Instead, MongoDB constrains the leading field of the index
"ratings.score.q1" which can be compounded with the bounds for "ratings.score.q2":

{
"ratings.score.q1" : [[5, 5]],
"ratings.score.q2" : [[5, 5]],
"ratings.certainty.q1" : [[MinKey, MaxKey]],
"ratings.certainty.q2" : [[MinKey, MaxKey]]

}

8.3 Indexing Tutorials

Indexes allow MongoDB to process and fulfill queries quickly by creating small and efficient representations of the
documents in a collection.

The documents in this section outline specific tasks related to building and maintaining indexes for data in MongoDB
collections and discusses strategies and practical approaches. For a conceptual overview of MongoDB indexing, see
the Index Concepts (page 485) document.

Index Creation Tutorials (page 519) Create and configure different types of indexes for different purposes.

Index Management Tutorials (page 528) Monitor and assess index performance and rebuild indexes as needed.

Geospatial Index Tutorials (page 533) Create indexes that support data stored as GeoJSON objects and legacy coor-
dinate pairs.

Text Search Tutorials (page 543) Build and configure indexes that support full-text searches.

Indexing Strategies (page 551) The factors that affect index performance and practical approaches to indexing in
MongoDB

8.3.1 Index Creation Tutorials

Instructions for creating and configuring indexes in MongoDB and building indexes on replica sets and sharded clus-
ters.

Create an Index (page 520) Build an index for any field on a collection.

Create a Compound Index (page 521) Build an index of multiple fields on a collection.

8.3. Indexing Tutorials 519

MongoDB Documentation, Release 2.6.11

Create a Unique Index (page 522) Build an index that enforces unique values for the indexed field or fields.

Create a Sparse Index (page 523) Build an index that omits references to documents that do not include the indexed
field. This saves space when indexing fields that are present in only some documents.

Create a Hashed Index (page 524) Compute a hash of the value of a field in a collection and index the hashed value.
These indexes permit equality queries and may be suitable shard keys for some collections.

Build Indexes on Replica Sets (page 524) To build indexes on a replica set, you build the indexes separately on the
primary and the secondaries, as described here.

Build Indexes in the Background (page 526) Background index construction allows read and write operations to
continue while building the index, but take longer to complete and result in a larger index.

Build Old Style Indexes (page 527) A {v : 0} index is necessary if you need to roll back from MongoDB version
2.0 (or later) to MongoDB version 1.8.

Create an Index

On this page

• Create an Index on a Single Field (page 520)
• Additional Considerations (page 521)

Indexes allow MongoDB to process and fulfill queries quickly by creating small and efficient representations of the
documents in a collection. Users can create indexes for any collection on any field in a document. By default,
MongoDB creates an index on the _id field of every collection.

This tutorial describes how to create an index on a single field. MongoDB also supports compound indexes (page 489),
which are indexes on multiple fields. See Create a Compound Index (page 521) for instructions on building compound
indexes.

Create an Index on a Single Field

To create an index, use ensureIndex() or a similar method from your driver6. The ensureIndex() method
only creates an index if an index of the same specification does not already exist.

For example, the following operation creates an index on the userid field of the records collection:

db.records.ensureIndex({ userid: 1 })

The value of the field in the index specification describes the kind of index for that field. For example, a value of 1
specifies an index that orders items in ascending order. A value of -1 specifies an index that orders items in descending
order. For additional index types, see Index Types (page 486).

The created index will support queries that select on the field userid, such as the following:

db.records.find({ userid: 2 })
db.records.find({ userid: { $gt: 10 } })

But the created index does not support the following query on the profile_url field:

db.records.find({ profile_url: 2 })

For queries that cannot use an index, MongoDB must scan all documents in a collection for documents that match the
query.

6https://api.mongodb.org/

520 Chapter 8. Indexes

https://api.mongodb.org/

MongoDB Documentation, Release 2.6.11

Additional Considerations

Although indexes can improve query performances, indexes also present some operational considerations. See Oper-
ational Considerations for Indexes (page 155) for more information.

If your collection holds a large amount of data, and your application needs to be able to access the data while building
the index, consider building the index in the background, as described in Background Construction (page 510). To
build indexes on replica sets, see the Build Indexes on Replica Sets (page 524) section for more information.

Note: To build or rebuild indexes for a replica set see Build Indexes on Replica Sets (page 524).

Some drivers may specify indexes, using NumberLong(1) rather than 1 as the specification. This does not have any
affect on the resulting index.

See also:

Create a Compound Index (page 521), Indexing Tutorials (page 519) and Index Concepts (page 485) for more infor-
mation.

Create a Compound Index

On this page

• Build a Compound Index (page 521)
• Example (page 521)
• Additional Considerations (page 522)

Indexes allow MongoDB to process and fulfill queries quickly by creating small and efficient representations of the
documents in a collection. MongoDB supports indexes that include content on a single field, as well as compound
indexes (page 489) that include content from multiple fields. Continue reading for instructions and examples of
building a compound index.

Build a Compound Index

To create a compound index (page 489) use an operation that resembles the following prototype:

db.collection.ensureIndex({ a: 1, b: 1, c: 1 })

The value of the field in the index specification describes the kind of index for that field. For example, a value of 1
specifies an index that orders items in ascending order. A value of -1 specifies an index that orders items in descending
order. For additional index types, see Index Types (page 486).

Example

The following operation will create an index on the item, category, and price fields of the products collec-
tion:

db.products.ensureIndex({ item: 1, category: 1, price: 1 })

8.3. Indexing Tutorials 521

MongoDB Documentation, Release 2.6.11

Additional Considerations

If your collection holds a large amount of data, and your application needs to be able to access the data while building
the index, consider building the index in the background, as described in Background Construction (page 510). To
build indexes on replica sets, see the Build Indexes on Replica Sets (page 524) section for more information.

Note: To build or rebuild indexes for a replica set see Build Indexes on Replica Sets (page 524).

Some drivers may specify indexes, using NumberLong(1) rather than 1 as the specification. This does not have any
affect on the resulting index.

See also:

Create an Index (page 520), Indexing Tutorials (page 519) and Index Concepts (page 485) for more information.

Create a Unique Index

On this page

• Unique Indexes (page 522)
• Drop Duplicates (page 523)

MongoDB allows you to specify a unique constraint (page 506) on an index. These constraints prevent applications
from inserting documents that have duplicate values for the inserted fields. Additionally, if you want to create an index
on a collection that has existing data that might have duplicate values for the indexed field, you may choose to combine
unique enforcement with duplicate dropping (page 511).

Unique Indexes

To create a unique index (page 506), consider the following prototype:

db.collection.ensureIndex({ a: 1 }, { unique: true })

For example, you may want to create a unique index on the "tax-id": of the accounts collection to prevent
storing multiple account records for the same legal entity:

db.accounts.ensureIndex({ "tax-id": 1 }, { unique: true })

The _id index (page 487) is a unique index. In some situations you may consider using the _id field itself for this
kind of data rather than using a unique index on another field.

If a document does not have a value for a field, the index entry for that item will be null in any index that includes
it. Thus, in many situations you will want to combine the unique constraint with the sparse option. Sparse
indexes skip over any document that is missing the indexed field, rather than storing null for the index entry. Since
unique indexes cannot have duplicate values for a field, without the sparse option, MongoDB will reject the second
document and all subsequent documents without the indexed field. Consider the following prototype.

db.collection.ensureIndex({ a: 1 }, { unique: true, sparse: true })

You can also enforce a unique constraint on compound indexes (page 489), as in the following prototype:

db.collection.ensureIndex({ a: 1, b: 1 }, { unique: true })

These indexes enforce uniqueness for the combination of index keys and not for either key individually.

522 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

Drop Duplicates

Deprecated since version 2.6: The dropDups option to ensureIndex(), createIndex(), and
createIndexes is deprecated.

To force the creation of a unique index (page 506) index on a collection with duplicate values in the field you are
indexing you can use the dropDups option. This will force MongoDB to create a unique index by deleting documents
with duplicate values when building the index. Consider the following prototype invocation of ensureIndex():

db.collection.ensureIndex({ a: 1 }, { unique: true, dropDups: true })

See the full documentation of duplicate dropping (page 511) for more information.

Warning: Specifying { dropDups: true } may delete data from your database. Use with extreme cau-
tion.

Refer to the ensureIndex() documentation for additional index creation options.

Create a Sparse Index

On this page

• Prototype (page 523)
• Example (page 523)
• Considerations (page 524)

Sparse indexes are like non-sparse indexes, except that they omit references to documents that do not include the
indexed field. For fields that are only present in some documents sparse indexes may provide a significant space
savings. See Sparse Indexes (page 507) for more information about sparse indexes and their use.

See also:

Index Concepts (page 485) and Indexing Tutorials (page 519) for more information.

Prototype

To create a sparse index (page 507) on a field, use an operation that resembles the following prototype:

db.collection.ensureIndex({ a: 1 }, { sparse: true })

Example

The following operation, creates a sparse index on the users collection that only includes a document in the index if
the twitter_name field exists in a document.

db.users.ensureIndex({ twitter_name: 1 }, { sparse: true })

The index excludes all documents that do not include the twitter_name field.

8.3. Indexing Tutorials 523

MongoDB Documentation, Release 2.6.11

Considerations

Note: Sparse indexes can affect the results returned by the query, particularly with respect to sorts on fields not
included in the index. See the sparse index (page 507) section for more information.

Create a Hashed Index

On this page

• Procedure (page 524)
• Considerations (page 524)

New in version 2.4.

Hashed indexes (page 504) compute a hash of the value of a field in a collection and index the hashed value. These
indexes permit equality queries and may be suitable shard keys for some collections.

Tip
MongoDB automatically computes the hashes when resolving queries using hashed indexes. Applications do not need
to compute hashes.

See
Hashed Shard Keys (page 689) for more information about hashed indexes in sharded clusters, as well as Index Con-
cepts (page 485) and Indexing Tutorials (page 519) for more information about indexes.

Procedure

To create a hashed index (page 504), specify hashed as the value of the index key, as in the following example:

Example
Specify a hashed index on _id

db.collection.ensureIndex({ _id: "hashed" })

Considerations

MongoDB supports hashed indexes of any single field. The hashing function collapses embedded documents and
computes the hash for the entire value, but does not support multi-key (i.e. arrays) indexes.

You may not create compound indexes that have hashed index fields.

Build Indexes on Replica Sets

524 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

On this page

• Considerations (page 525)
• Procedure (page 525)

For replica sets, secondaries will begin building indexes after the primary finishes building the index. In sharded
clusters, the mongos will send ensureIndex() to the primary members of the replica set for each shard, which
then replicate to the secondaries after the primary finishes building the index.

To minimize the impact of building an index on your replica set, use the following procedure to build indexes:

See
Indexing Tutorials (page 519) and Index Concepts (page 485) for more information.

Considerations

• Ensure that your oplog is large enough to permit the indexing or re-indexing operation to complete without
falling too far behind to catch up. See the oplog sizing (page 597) documentation for additional information.

• This procedure does take one member out of the replica set at a time. However, this procedure will only affect
one member of the set at a time rather than all secondaries at the same time.

• Do not use this procedure when building a unique index (page 506) with the dropDups option.

• Before version 2.6 Background index creation operations (page 510) become foreground indexing operations
on secondary members of replica sets. After 2.6, background index builds replicate as background index builds
on the secondaries.

Procedure

Note: If you need to build an index in a sharded cluster, repeat the following procedure for each replica set that
provides each shard.

Stop One Secondary Stop the mongod process on one secondary. Restart the mongod process without the
--replSet option and running on a different port. 7 This instance is now in “standalone” mode.

For example, if your mongod normally runs with on the default port of 27017 with the --replSet option you
would use the following invocation:

mongod --port 47017

Build the Index Create the new index using the ensureIndex() in the mongo shell, or comparable method in
your driver. This operation will create or rebuild the index on this mongod instance

For example, to create an ascending index on the username field of the records collection, use the following
mongo shell operation:

7 By running the mongod on a different port, you ensure that the other members of the replica set and all clients will not contact the member
while you are building the index.

8.3. Indexing Tutorials 525

MongoDB Documentation, Release 2.6.11

db.records.ensureIndex({ username: 1 })

See also:

Create an Index (page 520) and Create a Compound Index (page 521) for more information.

Restart the Program mongod When the index build completes, start the mongod instance with the --replSet
option on its usual port:

mongod --port 27017 --replSet rs0

Modify the port number (e.g. 27017) or the replica set name (e.g. rs0) as needed.

Allow replication to catch up on this member.

Build Indexes on all Secondaries Changed in version 2.6: Secondary members can now build indexes in the back-
ground (page 526). Previously all index builds on secondaries were in the foreground.

For each secondary in the set, build an index according to the following steps:

1. Stop One Secondary (page 525)

2. Build the Index (page 525)

3. Restart the Program mongod (page 526)

Build the Index on the Primary To build an index on the primary you can either:

1. Build the index in the background (page 526) on the primary.

2. Step down the primary using the rs.stepDown() method in the mongo shell to cause the current primary to
become a secondary graceful and allow the set to elect another member as primary.

Then repeat the index building procedure, listed below, to build the index on the primary:

(a) Stop One Secondary (page 525)

(b) Build the Index (page 525)

(c) Restart the Program mongod (page 526)

Building the index in the background takes longer than the foreground index build and results in a less compact index
structure. Additionally, the background index build may impact write performance on the primary. However, building
the index in the background allows the set to be continuously up for write operations while MongoDB builds the index.

Build Indexes in the Background

On this page

• Considerations (page 527)
• Procedure (page 527)

By default, MongoDB builds indexes in the foreground, which prevents all read and write operations to the database
while the index builds. Also, no operation that requires a read or write lock on all databases (e.g. listDatabases) can
occur during a foreground index build.

Background index construction (page 510) allows read and write operations to continue while building the index.

526 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

See also:

Index Concepts (page 485) and Indexing Tutorials (page 519) for more information.

Considerations

Background index builds take longer to complete and result in an index that is initially larger, or less compact, than an
index built in the foreground. Over time, the compactness of indexes built in the background will approach foreground-
built indexes.

After MongoDB finishes building the index, background-built indexes are functionally identical to any other index.

Procedure

To create an index in the background, add the background argument to the ensureIndex() operation, as in the
following index:

db.collection.ensureIndex({ a: 1 }, { background: true })

Consider the section on background index construction (page 510) for more information about these indexes and their
implications.

Build Old Style Indexes

Important: Use this procedure only if you must have indexes that are compatible with a version of MongoDB earlier
than 2.0.

MongoDB version 2.0 introduced the {v:1} index format. MongoDB versions 2.0 and later support both the {v:1}
format and the earlier {v:0} format.

MongoDB versions prior to 2.0, however, support only the {v:0} format. If you need to roll back MongoDB to a
version prior to 2.0, you must drop and re-create your indexes.

To build pre-2.0 indexes, use the dropIndexes() and ensureIndex() methods. You cannot simply reindex the
collection. When you reindex on versions that only support {v:0} indexes, the v fields in the index definition still
hold values of 1, even though the indexes would now use the {v:0} format. If you were to upgrade again to version
2.0 or later, these indexes would not work.

Example
Suppose you rolled back from MongoDB 2.0 to MongoDB 1.8, and suppose you had the following index on the
items collection:

{ "v" : 1, "key" : { "name" : 1 }, "ns" : "mydb.items", "name" : "name_1" }

The v field tells you the index is a {v:1} index, which is incompatible with version 1.8.

To drop the index, issue the following command:

db.items.dropIndex({ name : 1 })

To recreate the index as a {v:0} index, issue the following command:

db.foo.ensureIndex({ name : 1 } , { v : 0 })

8.3. Indexing Tutorials 527

MongoDB Documentation, Release 2.6.11

See also:

Index Performance Enhancements (page 893).

8.3.2 Index Management Tutorials

Instructions for managing indexes and assessing index performance and use.

Remove Indexes (page 528) Drop an index from a collection.

Modify an Index (page 529) Modify an existing index.

Rebuild Indexes (page 530) In a single operation, drop all indexes on a collection and then rebuild them.

Manage In-Progress Index Creation (page 531) Check the status of indexing progress, or terminate an ongoing in-
dex build.

Return a List of All Indexes (page 531) Obtain a list of all indexes on a collection or of all indexes on all collections
in a database.

Measure Index Use (page 532) Study query operations and observe index use for your database.

Remove Indexes

On this page

• Remove a Specific Index (page 528)
• Remove All Indexes (page 529)

To remove an index from a collection use the dropIndex() method and the following procedure. If you simply
need to rebuild indexes you can use the process described in the Rebuild Indexes (page 530) document.

See also:

Indexing Tutorials (page 519) and Index Concepts (page 485) for more information about indexes and indexing oper-
ations in MongoDB.

Remove a Specific Index

To remove an index, use the db.collection.dropIndex() method.

For example, the following operation removes an ascending index on the tax-id field in the accounts collection:

db.accounts.dropIndex({ "tax-id": 1 })

The operation returns a document with the status of the operation:

{ "nIndexesWas" : 3, "ok" : 1 }

Where the value of nIndexesWas reflects the number of indexes before removing this index.

For text (page 501) indexes, pass the index name to the db.collection.dropIndex() method. See Use the
Index Name to Drop a text Index (page 547) for details.

528 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

Remove All Indexes

You can also use the db.collection.dropIndexes() to remove all indexes, except for the _id index (page 487)
from a collection.

These shell helpers provide wrappers around the dropIndexes database command. Your client library may
have a different or additional interface for these operations.

Modify an Index

To modify an existing index, you need to drop and recreate the index.

Step 1: Create a unique index.

Use the ensureIndex() method create a unique index.

db.orders.ensureIndex(
{ "cust_id" : 1, "ord_date" : -1, "items" : 1 },
{ unique: true }

)

The method returns a document with the status of the results. The method only creates an index if the index does
not already exist. See Create an Index (page 520) and Index Creation Tutorials (page 519) for more information on
creating indexes.

Step 2: Attempt to modify the index.

To modify an existing index, you cannot just re-issue the ensureIndex() method with the updated specification
of the index.

For example, the following operation attempts to remove the unique constraint from the previously created index by
using the ensureIndex() method.

db.orders.ensureIndex(
{ "cust_id" : 1, "ord_date" : -1, "items" : 1 }

)

The status document returned by the operation shows an error.

Step 3: Drop the index.

To modify the index, you must drop the index first.

db.orders.dropIndex(
{ "cust_id" : 1, "ord_date" : -1, "items" : 1 }

)

The method returns a document with the status of the operation. Upon successful operation, the ok field in the returned
document should specify a 1. See Remove Indexes (page 528) for more information about dropping indexes.

8.3. Indexing Tutorials 529

MongoDB Documentation, Release 2.6.11

Step 4: Recreate the index without the unique constraint.

Recreate the index without the unique constraint.

db.orders.ensureIndex(
{ "cust_id" : 1, "ord_date" : -1, "items" : 1 }

)

The method returns a document with the status of the results. Upon successful operation, the returned document
should show the numIndexesAfter to be greater than numIndexesBefore by one.

See also:

Index Introduction (page 481), Index Concepts (page 485).

Rebuild Indexes

On this page

• Process (page 530)
• Additional Considerations (page 531)

If you need to rebuild indexes for a collection you can use the db.collection.reIndex() method to rebuild all
indexes on a collection in a single operation. This operation drops all indexes, including the _id index (page 487), and
then rebuilds all indexes.

See also:

Index Concepts (page 485) and Indexing Tutorials (page 519).

Process

The operation takes the following form:

db.accounts.reIndex()

MongoDB will return the following document when the operation completes:

{
"nIndexesWas" : 2,
"msg" : "indexes dropped for collection",
"nIndexes" : 2,
"indexes" : [

{
"key" : {

"_id" : 1,
"tax-id" : 1

},
"ns" : "records.accounts",
"name" : "_id_"

}
],
"ok" : 1

}

This shell helper provides a wrapper around the reIndex database command. Your client library may have
a different or additional interface for this operation.

530 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

Additional Considerations

Note: To build or rebuild indexes for a replica set see Build Indexes on Replica Sets (page 524).

Manage In-Progress Index Creation

On this page

• View Index Creation Operations (page 531)
• Terminate Index Creation (page 531)

View Index Creation Operations

To see the status of an indexing process, you can use the db.currentOp() method in the mongo shell. To filter
the current operations for index creation operations, see currentOp-index-creation for an example.

The msg field will include the percent of the build that is complete.

Terminate Index Creation

To terminate an ongoing index build, use the db.killOp() method in the mongo shell. For index builds, the effects
of db.killOp() may not be immediate and may occur well after much of the index build operation has completed.

You cannot terminate a replicated index build on secondary members of a replica set. To minimize the impact of
building an index on replica sets, see Build Indexes on Replica Sets (page 524).

Changed in version 2.4: Before MongoDB 2.4, you could only terminate background index builds. After 2.4, you can
terminate both background index builds and foreground index builds.

See also:

db.currentOp(), db.killOp()

Return a List of All Indexes

On this page

• List all Indexes on a Collection (page 532)
• List all Indexes for a Database (page 532)

When performing maintenance you may want to check which indexes exist on a collection. Every index on a collection
has a corresponding document in the system.indexes (page 304) collection, and you can use standard queries (i.e.
find()) to list the indexes, or in the mongo shell, the getIndexes() method to return a list of the indexes on a
collection, as in the following examples.

See also:

Index Concepts (page 485) and Indexing Tutorials (page 519) for more information about indexes in MongoDB and
common index management operations.

8.3. Indexing Tutorials 531

MongoDB Documentation, Release 2.6.11

List all Indexes on a Collection

To return a list of all indexes on a collection, use the db.collection.getIndexes() method or a similar
method for your driver8.

For example, to view all indexes on the people collection:

db.people.getIndexes()

List all Indexes for a Database

To return a list of all indexes on all collections in a database, use the following operation in the mongo shell:

db.system.indexes.find()

See system.indexes (page 304) for more information about these documents.

Measure Index Use

On this page

• Synopsis (page 532)
• Operations (page 532)

Synopsis

Query performance is a good general indicator of index use; however, for more precise insight into index use, Mon-
goDB provides a number of tools that allow you to study query operations and observe index use for your database.

See also:

Index Concepts (page 485) and Indexing Tutorials (page 519) for more information.

Operations

Return Query Plan with explain() Append the explain() method to any cursor (e.g. query) to return a
document with statistics about the query process, including the index used, the number of documents scanned, and the
time the query takes to process in milliseconds.

Control Index Use with hint() Append the hint() to any cursor (e.g. query) with the index as the argument to
force MongoDB to use a specific index to fulfill the query. Consider the following example:

db.people.find({ name: "John Doe", zipcode: { $gt: "63000" } }).hint({ zipcode: 1 })

You can use hint() and explain() in conjunction with each other to compare the effectiveness of a specific
index. Specify the $natural operator to the hint() method to prevent MongoDB from using any index:

db.people.find({ name: "John Doe", zipcode: { $gt: "63000" } }).hint({ $natural: 1 })

8https://api.mongodb.org/

532 Chapter 8. Indexes

https://api.mongodb.org/

MongoDB Documentation, Release 2.6.11

Instance Index Use Reporting MongoDB provides a number of metrics of index use and operation that you may
want to consider when analyzing index use for your database:

• In the output of serverStatus:

– indexCounters

– scanned

– scanAndOrder

• In the output of collStats:

– totalIndexSize

– indexSizes

• In the output of dbStats:

– dbStats.indexes

– dbStats.indexSize

8.3.3 Geospatial Index Tutorials

Instructions for creating and querying 2d, 2dsphere, and haystack indexes.

Create a 2dsphere Index (page 533) A 2dsphere index supports data stored as both GeoJSON objects and as
legacy coordinate pairs.

Query a 2dsphere Index (page 535) Search for locations within, near, or intersected by a GeoJSON shape, or within
a circle as defined by coordinate points on a sphere.

Create a 2d Index (page 537) Create a 2d index to support queries on data stored as legacy coordinate pairs.

Query a 2d Index (page 538) Search for locations using legacy coordinate pairs.

Create a Haystack Index (page 540) A haystack index is optimized to return results over small areas. For queries
that use spherical geometry, a 2dsphere index is a better option.

Query a Haystack Index (page 540) Search based on location and non-location data within a small area.

Calculate Distance Using Spherical Geometry (page 541) Convert distances to radians and back again.

Create a 2dsphere Index

On this page

• Procedure (page 534)
• Considerations (page 534)

To create a geospatial index for GeoJSON-formatted data, use the db.collection.ensureIndex()
method to create a 2dsphere index (page 497). In the index specification document for the
db.collection.ensureIndex() method, specify the location field as the index key and specify the
string literal "2dsphere" as the value:

db.collection.ensureIndex({ <location field> : "2dsphere" })

The following procedure presents steps to populate a collection with documents that contain a GeoJSON data field
and create 2dsphere indexes (page 497). Although the procedure populates the collection first, you can also create the
indexes before populating the collection.

8.3. Indexing Tutorials 533

MongoDB Documentation, Release 2.6.11

Procedure

First, populate a collection places with documents that store location data as GeoJSON Point (page 558) in a field
named loc. The coordinate order is longitude, then latitude.

db.places.insert(
{

loc : { type: "Point", coordinates: [-73.97, 40.77] },
name: "Central Park",
category : "Parks"

}
)

db.places.insert(
{

loc : { type: "Point", coordinates: [-73.88, 40.78] },
name: "La Guardia Airport",
category : "Airport"

}
)

Then, create the 2dsphere (page 497) index.

Create a 2dsphere Index For example, the following creates a 2dsphere (page 497) index on the location field
loc:

db.places.ensureIndex({ loc : "2dsphere" })

Create a Compound Index with 2dsphere Index Key A compound index (page 489) can include a 2dsphere
index key in combination with non-geospatial index keys. For example, the following operation creates a compound
index where the first key loc is a 2dsphere index key, and the remaining keys category and names are non-
geospatial index keys, specifically descending (-1) and ascending (1) keys respectively.

db.places.ensureIndex({ loc : "2dsphere" , category : -1, name: 1 })

Unlike the 2d (page 498) index, a compound 2dsphere index does not require the location field to be the first field
indexed. For example:

db.places.ensureIndex({ category : 1 , loc : "2dsphere" })

Considerations

Fields with 2dsphere (page 497) indexes must hold geometry data in the form of coordinate pairs or GeoJSON data. If
you attempt to insert a document with non-geometry data in a 2dsphere indexed field, or build a 2dsphere index
on a collection where the indexed field has non-geometry data, the operation will fail.

The geoNear command and the $geoNear pipeline stage require that a collection have at most only one 2dsphere
index and/or only one 2d (page 498) index whereas geospatial query operators (e.g. $near and $geoWithin)
permit collections to have multiple geospatial indexes.

The geospatial index restriction for the geoNear command and the $geoNear pipeline stage exists because neither
the geoNear command nor the $geoNear pipeline stage syntax includes the location field. As such, index selection
among multiple 2d indexes or 2dsphere indexes is ambiguous.

No such restriction applies for geospatial query operators since these operators take a location field, eliminating the
ambiguity.

534 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

As such, although this tutorial creates multiple 2dsphere indexes, to use the geoNear command or the $geoNear
pipeline stage against the example collection, you will need to drop all but one of the 2dsphere indexes.

To query using the 2dsphere index, see Query a 2dsphere Index (page 535).

Query a 2dsphere Index

On this page

• GeoJSON Objects Bounded by a Polygon (page 535)
• Intersections of GeoJSON Objects (page 535)
• Proximity to a GeoJSON Point (page 536)
• Points within a Circle Defined on a Sphere (page 536)

The following sections describe queries supported by the 2dsphere index.

GeoJSON Objects Bounded by a Polygon

The $geoWithin operator queries for location data found within a GeoJSON polygon. Your location data must be
stored in GeoJSON format. Use the following syntax:

db.<collection>.find({ <location field> :
{ $geoWithin :
{ $geometry :
{ type : "Polygon" ,
coordinates : [<coordinates>]

} } } })

The following example selects all points and shapes that exist entirely within a GeoJSON polygon:

db.places.find({ loc :
{ $geoWithin :
{ $geometry :
{ type : "Polygon" ,
coordinates : [[

[0 , 0] ,
[3 , 6] ,
[6 , 1] ,
[0 , 0]

]]
} } } })

Intersections of GeoJSON Objects

New in version 2.4.

The $geoIntersects operator queries for locations that intersect a specified GeoJSON object. A location inter-
sects the object if the intersection is non-empty. This includes documents that have a shared edge.

The $geoIntersects operator uses the following syntax:

db.<collection>.find({ <location field> :
{ $geoIntersects :
{ $geometry :

8.3. Indexing Tutorials 535

MongoDB Documentation, Release 2.6.11

{ type : "<GeoJSON object type>" ,
coordinates : [<coordinates>]

} } } })

The following example uses $geoIntersects to select all indexed points and shapes that intersect with the polygon
defined by the coordinates array.

db.places.find({ loc :
{ $geoIntersects :
{ $geometry :
{ type : "Polygon" ,
coordinates: [[

[0 , 0] ,
[3 , 6] ,
[6 , 1] ,
[0 , 0]

]]
} } } })

Proximity to a GeoJSON Point

Proximity queries return the points closest to the defined point and sorts the results by distance. A proximity query on
GeoJSON data requires a 2dsphere index.

To query for proximity to a GeoJSON point, use either the $near operator or geoNear command. Distance is in
meters.

The $near uses the following syntax:

db.<collection>.find({ <location field> :
{ $near :
{ $geometry :

{ type : "Point" ,
coordinates : [<longitude> , <latitude>] } ,

$maxDistance : <distance in meters>
} } })

For examples, see $near.

The geoNear command uses the following syntax:

db.runCommand({ geoNear : <collection> ,
near : { type : "Point" ,

coordinates: [<longitude>, <latitude>] } ,
spherical : true })

The geoNear command offers more options and returns more information than does the $near operator. To run the
command, see geoNear.

Points within a Circle Defined on a Sphere

To select all grid coordinates in a “spherical cap” on a sphere, use $geoWithinwith the $centerSphere operator.
Specify an array that contains:

• The grid coordinates of the circle’s center point

• The circle’s radius measured in radians. To calculate radians, see Calculate Distance Using Spherical Geometry
(page 541).

536 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

Use the following syntax:

db.<collection>.find({ <location field> :
{ $geoWithin :
{ $centerSphere :

[[<x>, <y>] , <radius>] }
} })

The following example queries grid coordinates and returns all documents within a 10 mile radius of longitude 88 W
and latitude 30 N. The example converts the distance, 10 miles, to radians by dividing by the approximate radius of
the earth, 3959 miles:

db.places.find({ loc :
{ $geoWithin :
{ $centerSphere :

[[-88 , 30] , 10 / 3959]
} } })

Create a 2d Index

On this page

• Define Location Range for a 2d Index (page 537)
• Define Location Precision for a 2d Index (page 538)

To build a geospatial 2d index, use the ensureIndex() method and specify 2d. Use the following syntax:

db.<collection>.ensureIndex({ <location field> : "2d" ,
<additional field> : <value> } ,

{ <index-specification options> })

The 2d index uses the following optional index-specification options:

{ min : <lower bound> , max : <upper bound> ,
bits : <bit precision> }

Define Location Range for a 2d Index

By default, a 2d index assumes longitude and latitude and has boundaries of -180 inclusive and 180 non-inclusive. If
documents contain coordinate data outside of the specified range, MongoDB returns an error.

Important: The default boundaries allow applications to insert documents with invalid latitudes greater than 90 or
less than -90. The behavior of geospatial queries with such invalid points is not defined.

On 2d indexes you can change the location range.

You can build a 2d geospatial index with a location range other than the default. Use the min and max options when
creating the index. Use the following syntax:

db.collection.ensureIndex({ <location field> : "2d" } ,
{ min : <lower bound> , max : <upper bound> })

8.3. Indexing Tutorials 537

MongoDB Documentation, Release 2.6.11

Define Location Precision for a 2d Index

By default, a 2d index on legacy coordinate pairs uses 26 bits of precision, which is roughly equivalent to 2 feet or 60
centimeters of precision using the default range of -180 to 180. Precision is measured by the size in bits of the geohash
values used to store location data. You can configure geospatial indexes with up to 32 bits of precision.

Index precision does not affect query accuracy. The actual grid coordinates are always used in the final query process-
ing. Advantages to lower precision are a lower processing overhead for insert operations and use of less space. An
advantage to higher precision is that queries scan smaller portions of the index to return results.

To configure a location precision other than the default, use the bits option when creating the index. Use following
syntax:

db.<collection>.ensureIndex({<location field> : "<index type>"} ,
{ bits : <bit precision> })

For information on the internals of geohash values, see Calculation of Geohash Values for 2d Indexes (page 500).

Query a 2d Index

On this page

• Points within a Shape Defined on a Flat Surface (page 538)
• Points within a Circle Defined on a Sphere (page 539)
• Proximity to a Point on a Flat Surface (page 539)
• Exact Matches on a Flat Surface (page 540)

The following sections describe queries supported by the 2d index.

Points within a Shape Defined on a Flat Surface

To select all legacy coordinate pairs found within a given shape on a flat surface, use the $geoWithin operator along
with a shape operator. Use the following syntax:

db.<collection>.find({ <location field> :
{ $geoWithin :

{ $box|$polygon|$center : <coordinates>
} } })

The following queries for documents within a rectangle defined by [0 , 0] at the bottom left corner and by [
100 , 100] at the top right corner.

db.places.find({ loc :
{ $geoWithin :

{ $box : [[0 , 0] ,
[100 , 100]]

} } })

The following queries for documents that are within the circle centered on [-74 , 40.74] and with a radius of
10:

db.places.find({ loc: { $geoWithin :
{ $center : [[-74, 40.74] , 10]

} } })

538 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

For syntax and examples for each shape, see the following:

• $box

• $polygon

• $center (defines a circle)

Points within a Circle Defined on a Sphere

MongoDB supports rudimentary spherical queries on flat 2d indexes for legacy reasons. In general, spherical calcula-
tions should use a 2dsphere index, as described in 2dsphere Indexes (page 497).

To query for legacy coordinate pairs in a “spherical cap” on a sphere, use $geoWithin with the $centerSphere
operator. Specify an array that contains:

• The grid coordinates of the circle’s center point

• The circle’s radius measured in radians. To calculate radians, see Calculate Distance Using Spherical Geometry
(page 541).

Use the following syntax:

db.<collection>.find({ <location field> :
{ $geoWithin :

{ $centerSphere : [[<x>, <y>] , <radius>] }
} })

The following example query returns all documents within a 10-mile radius of longitude 88 W and latitude 30 N.
The example converts distance to radians by dividing distance by the approximate radius of the earth, 3959 miles:

db.<collection>.find({ loc : { $geoWithin :
{ $centerSphere :

[[88 , 30] , 10 / 3959]
} } })

Proximity to a Point on a Flat Surface

Proximity queries return the 100 legacy coordinate pairs closest to the defined point and sort the results by distance.
Use either the $near operator or geoNear command. Both require a 2d index.

The $near operator uses the following syntax:

db.<collection>.find({ <location field> :
{ $near : [<x> , <y>]

} })

For examples, see $near.

The geoNear command uses the following syntax:

db.runCommand({ geoNear: <collection>, near: [<x> , <y>] })

The geoNear command offers more options and returns more information than does the $near operator. To run the
command, see geoNear.

8.3. Indexing Tutorials 539

MongoDB Documentation, Release 2.6.11

Exact Matches on a Flat Surface

Changed in version 2.6: Previously, 2d indexes would support exact-match queries for coordinate pairs.

You cannot use a 2d index to return an exact match for a coordinate pair. Use a scalar, ascending or descending, index
on a field that stores coordinates to return exact matches.

In the following example, the find() operation will return an exact match on a location if you have a { ’loc’:
1} index:

db.<collection>.find({ loc: [<x> , <y>] })

This query will return any documents with the value of [<x> , <y>].

Create a Haystack Index

A haystack index must reference two fields: the location field and a second field. The second field is used for exact
matches. Haystack indexes return documents based on location and an exact match on a single additional criterion.
These indexes are not necessarily suited to returning the closest documents to a particular location.

To build a haystack index, use the following syntax:

db.coll.ensureIndex({ <location field> : "geoHaystack" ,
<additional field> : 1 } ,

{ bucketSize : <bucket value> })

To build a haystack index, you must specify the bucketSize option when creating the index. A bucketSize
of 5 creates an index that groups location values that are within 5 units of the specified longitude and latitude. The
bucketSize also determines the granularity of the index. You can tune the parameter to the distribution of your
data so that in general you search only very small regions. The areas defined by buckets can overlap. A document can
exist in multiple buckets.

Example
If you have a collection with documents that contain fields similar to the following:

{ _id : 100, pos: { lng : 126.9, lat : 35.2 } , type : "restaurant"}
{ _id : 200, pos: { lng : 127.5, lat : 36.1 } , type : "restaurant"}
{ _id : 300, pos: { lng : 128.0, lat : 36.7 } , type : "national park"}

The following operations create a haystack index with buckets that store keys within 1 unit of longitude or latitude.

db.places.ensureIndex({ pos : "geoHaystack", type : 1 } ,
{ bucketSize : 1 })

This index stores the document with an _id field that has the value 200 in two different buckets:

• In a bucket that includes the document where the _id field has a value of 100

• In a bucket that includes the document where the _id field has a value of 300

To query using a haystack index you use the geoSearch command. See Query a Haystack Index (page 540).

By default, queries that use a haystack index return 50 documents.

Query a Haystack Index

A haystack index is a special 2d geospatial index that is optimized to return results over small areas. To create a
haystack index see Create a Haystack Index (page 540).

540 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

To query a haystack index, use the geoSearch command. You must specify both the coordinates and the additional
field to geoSearch. For example, to return all documents with the value restaurant in the type field near the
example point, the command would resemble:

db.runCommand({ geoSearch : "places" ,
search : { type: "restaurant" } ,
near : [-74, 40.74] ,
maxDistance : 10 })

Note: Haystack indexes are not suited to queries for the complete list of documents closest to a particular location.
The closest documents could be more distant compared to the bucket size.

Note: Spherical query operations (page 541) are not currently supported by haystack indexes.

The find() method and geoNear command cannot access the haystack index.

Calculate Distance Using Spherical Geometry

On this page

• Distance Multiplier (page 542)

Note: While basic queries using spherical distance are supported by the 2d index, consider moving to a 2dsphere
index if your data is primarily longitude and latitude.

The 2d index supports queries that calculate distances on a Euclidean plane (flat surface). The index also supports the
following query operators and command that calculate distances using spherical geometry:

• $nearSphere

• $centerSphere

• $near

• geoNear command with the { spherical: true } option.

Important: These three queries use radians for distance. Other query types do not.

For spherical query operators to function properly, you must convert distances to radians, and convert from radians to
the distances units used by your application.

To convert:

• distance to radians: divide the distance by the radius of the sphere (e.g. the Earth) in the same units as the
distance measurement.

• radians to distance: multiply the radian measure by the radius of the sphere (e.g. the Earth) in the units system
that you want to convert the distance to.

The radius of the Earth is approximately 3,959 miles or 6,371 kilometers.

The following query would return documents from the places collection within the circle described by the center [
-74, 40.74] with a radius of 100 miles:

db.places.find({ loc: { $geoWithin: { $centerSphere: [[-74, 40.74] ,
100 / 3959] } } })

8.3. Indexing Tutorials 541

MongoDB Documentation, Release 2.6.11

You may also use the distanceMultiplier option to the geoNear to convert radians in the mongod process,
rather than in your application code. See distance multiplier (page 542).

The following spherical query, returns all documents in the collection places within 100 miles from the point [
-74, 40.74].

db.runCommand({ geoNear: "places",
near: [-74, 40.74],
spherical: true

})

The output of the above command would be:

{
// [...]
"results" : [

{
"dis" : 0.01853688938212826,
"obj" : {

"_id" : ObjectId(...)
"loc" : [

-73,
40

]
}

}
],
"stats" : {

// [...]
"avgDistance" : 0.01853688938212826,
"maxDistance" : 0.01853714811400047

},
"ok" : 1

}

Warning: Spherical queries that wrap around the poles or at the transition from -180 to 180 longitude raise an
error.

Note: While the default Earth-like bounds for geospatial indexes are between -180 inclusive, and 180, valid values
for latitude are between -90 and 90.

Distance Multiplier

The distanceMultiplier option of the geoNear command returns distances only after multiplying the results
by an assigned value. This allows MongoDB to return converted values, and removes the requirement to convert units
in application logic.

Using distanceMultiplier in spherical queries provides results from the geoNear command that do not need
radian-to-distance conversion. The following example uses distanceMultiplier in the geoNear command
with a spherical (page 541) example:

db.runCommand({ geoNear: "places",
near: [-74, 40.74],
spherical: true,
distanceMultiplier: 3959

})

542 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

The output of the above operation would resemble the following:

{
// [...]
"results" : [

{
"dis" : 73.46525170413567,
"obj" : {

"_id" : ObjectId(...)
"loc" : [

-73,
40

]
}

}
],
"stats" : {

// [...]
"avgDistance" : 0.01853688938212826,
"maxDistance" : 0.01853714811400047

},
"ok" : 1

}

8.3.4 Text Search Tutorials

Instructions for enabling MongoDB’s text search feature, and for building and configuring text indexes.

Create a text Index (page 543) A text index allows searches on text strings in the index’s specified fields.

Specify a Language for Text Index (page 544) The specified language determines the list of stop words and the rules
for Text Search’s stemmer and tokenizer.

Specify Name for text Index (page 546) Override the text index name limit for long index names.

Control Search Results with Weights (page 547) Give priority to certain search values by denoting the significance
of an indexed field relative to other indexed fields

Limit the Number of Entries Scanned (page 548) Create an index to support queries that includes $text expres-
sions and equality conditions.

Text Search in the Aggregation Pipeline (page 549) Perform various text search in the aggregation pipeline.

Create a text Index

On this page

• Index Specific Fields (page 544)
• Index All Fields (page 544)

You can create a text index on the field or fields whose value is a string or an array of string elements. When creating
a text index on multiple fields, you can specify the individual fields or you can use wildcard specifier ($**).

8.3. Indexing Tutorials 543

MongoDB Documentation, Release 2.6.11

Index Specific Fields

The following example creates a text index on the fields subject and content:

db.collection.ensureIndex(
{
subject: "text",
content: "text"

}
)

This text index catalogs all string data in the subject field and the content field, where the field value is either
a string or an array of string elements.

Index All Fields

To allow for text search on all fields with string content, use the wildcard specifier ($**) to index all fields that contain
string content.

The following example indexes any string value in the data of every field of every document in collection and
names the index TextIndex:

db.collection.ensureIndex(
{ "$**": "text" },
{ name: "TextIndex" }

)

Note: In order to drop a text index, use the index name. See Use the Index Name to Drop a text Index (page 547)
for more information.

Specify a Language for Text Index

On this page

• Specify the Default Language for a text Index (page 544)
• Create a text Index for a Collection in Multiple Languages (page 545)

This tutorial describes how to specify the default language associated with the text index (page 544) and also how to
create text indexes for collections that contain documents in different languages (page 545).

Specify the Default Language for a text Index

The default language associated with the indexed data determines the rules to parse word roots (i.e. stemming) and
ignore stop words. The default language for the indexed data is english.

To specify a different language, use the default_language option when creating the text index. See Text Search
Languages (page 561) for the languages available for default_language.

The following example creates for the quotes collection a text index on the content field and sets the
default_language to spanish:

544 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

db.quotes.ensureIndex(
{ content : "text" },
{ default_language: "spanish" }

)

Create a text Index for a Collection in Multiple Languages

Changed in version 2.6: Added support for language overrides within embedded documents.

Specify the Index Language within the Document If a collection contains documents or embedded documents that
are in different languages, include a field named language in the documents or embedded documents and specify
as its value the language for that document or embedded document.

MongoDB will use the specified language for that document or embedded document when building the text index:

• The specified language in the document overrides the default language for the text index.

• The specified language in an embedded document override the language specified in an enclosing document or
the default language for the index.

See Text Search Languages (page 561) for a list of supported languages.

For example, a collection quotes contains multi-language documents that include the language field in the docu-
ment and/or the embedded document as needed:

{
_id: 1,
language: "portuguese",
original: "A sorte protege os audazes.",
translation:

[
{

language: "english",
quote: "Fortune favors the bold."

},
{

language: "spanish",
quote: "La suerte protege a los audaces."

}
]

}
{

_id: 2,
language: "spanish",
original: "Nada hay más surrealista que la realidad.",
translation:

[
{
language: "english",
quote: "There is nothing more surreal than reality."

},
{
language: "french",
quote: "Il n'y a rien de plus surréaliste que la réalité."

}
]

}

8.3. Indexing Tutorials 545

MongoDB Documentation, Release 2.6.11

{
_id: 3,
original: "is this a dagger which I see before me.",
translation:
{

language: "spanish",
quote: "Es este un puñal que veo delante de mí."

}
}

If you create a text index on the quote field with the default language of English.

db.quotes.ensureIndex({ original: "text", "translation.quote": "text" })

Then, for the documents and embedded documents that contain the language field, the text index uses that lan-
guage to parse word stems and other linguistic characteristics.

For embedded documents that do not contain the language field,

• If the enclosing document contains the language field, then the index uses the document’s language for the
embedded document.

• Otherwise, the index uses the default language for the embedded documents.

For documents that do not contain the language field, the index uses the default language, which is English.

Use any Field to Specify the Language for a Document To use a field with a name other than language, include
the language_override option when creating the index.

For example, give the following command to use idioma as the field name instead of language:

db.quotes.ensureIndex({ quote : "text" },
{ language_override: "idioma" })

The documents of the quotes collection may specify a language with the idioma field:

{ _id: 1, idioma: "portuguese", quote: "A sorte protege os audazes" }
{ _id: 2, idioma: "spanish", quote: "Nada hay más surrealista que la realidad." }
{ _id: 3, idioma: "english", quote: "is this a dagger which I see before me" }

Specify Name for text Index

On this page

• Specify a Name for text Index (page 547)
• Use the Index Name to Drop a text Index (page 547)

The default name for the index consists of each indexed field name concatenated with _text. For example, the
following command creates a text index on the fields content, users.comments, and users.profiles:

db.collection.ensureIndex(
{

content: "text",
"users.comments": "text",
"users.profiles": "text"

}
)

546 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

The default name for the index is:

"content_text_users.comments_text_users.profiles_text"

The text index, like other indexes, must fall within the index name length limit.

Specify a Name for text Index

To avoid creating an index with a name that exceeds the index name length limit, you can pass the name
option to the db.collection.ensureIndex() method:

db.collection.ensureIndex(
{

content: "text",
"users.comments": "text",
"users.profiles": "text"

},
{

name: "MyTextIndex"
}

)

Use the Index Name to Drop a text Index

Whether the text (page 501) index has the default name or you specified a name for the text (page 501) index, to drop
the text (page 501) index, pass the index name to the db.collection.dropIndex() method.

For example, consider the index created by the following operation:

db.collection.ensureIndex(
{

content: "text",
"users.comments": "text",
"users.profiles": "text"

},
{

name: "MyTextIndex"
}

)

Then, to remove this text index, pass the name "MyTextIndex" to the db.collection.dropIndex()
method, as in the following:

db.collection.dropIndex("MyTextIndex")

To get the names of the indexes, use the db.collection.getIndexes() method.

Control Search Results with Weights

This document describes how to create a text index with specified weights for results fields.

For a text index, the weight of an indexed field denotes the significance of the field relative to the other indexed fields
in terms of the score. The score for a given word in a document is derived from the weighted sum of the frequency for
each of the indexed fields in that document. See $meta operator for details on returning and sorting by text scores.

The default weight is 1 for the indexed fields. To adjust the weights for the indexed fields, include the weights
option in the db.collection.ensureIndex() method.

8.3. Indexing Tutorials 547

MongoDB Documentation, Release 2.6.11

Warning: Choose the weights carefully in order to prevent the need to reindex.

A collection blog has the following documents:

{ _id: 1,
content: "This morning I had a cup of coffee.",
about: "beverage",
keywords: ["coffee"]

}

{ _id: 2,
content: "Who doesn't like cake?",
about: "food",
keywords: ["cake", "food", "dessert"]

}

To create a text index with different field weights for the content field and the keywords field, include the
weights option to the ensureIndex() method. For example, the following command creates an index on three
fields and assigns weights to two of the fields:

db.blog.ensureIndex(
{
content: "text",
keywords: "text",
about: "text"

},
{
weights: {

content: 10,
keywords: 5

},
name: "TextIndex"

}
)

The text index has the following fields and weights:

• content has a weight of 10,

• keywords has a weight of 5, and

• about has the default weight of 1.

These weights denote the relative significance of the indexed fields to each other. For instance, a term match in the
content field has:

• 2 times (i.e. 10:5) the impact as a term match in the keywords field and

• 10 times (i.e. 10:1) the impact as a term match in the about field.

Limit the Number of Entries Scanned

This tutorial describes how to create indexes to limit the number of index entries scanned for queries that includes a
$text expression and equality conditions.

A collection inventory contains the following documents:

{ _id: 1, dept: "tech", description: "lime green computer" }
{ _id: 2, dept: "tech", description: "wireless red mouse" }

548 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

{ _id: 3, dept: "kitchen", description: "green placemat" }
{ _id: 4, dept: "kitchen", description: "red peeler" }
{ _id: 5, dept: "food", description: "green apple" }
{ _id: 6, dept: "food", description: "red potato" }

Consider the common use case that performs text searches by individual departments, such as:

db.inventory.find({ dept: "kitchen", $text: { $search: "green" } })

To limit the text search to scan only those documents within a specific dept, create a compound index that first spec-
ifies an ascending/descending index key on the field dept and then a text index key on the field description:

db.inventory.ensureIndex(
{

dept: 1,
description: "text"

}
)

Then, the text search 9 within a particular department will limit the scan of indexed documents. For example, the
following query scans only those documents with dept equal to kitchen:

db.inventory.find({ dept: "kitchen", $text: { $search: "green" } })

Note:
• A compound text index cannot include any other special index types, such as multi-key (page 491) or geospa-

tial (page 495) index fields.

• If the compound text index includes keys preceding the text index key, to perform a $text search, the
query predicate must include equality match conditions on the preceding keys.

See also:

Text Indexes (page 501)

Text Search in the Aggregation Pipeline

On this page

• Restrictions (page 549)
• Text Score (page 550)
• Calculate the Total Views for Articles that Contains a Word (page 550)
• Return Results Sorted by Text Search Score (page 550)
• Match on Text Score (page 551)
• Specify a Language for Text Search (page 551)

New in version 2.6. In the aggregation pipeline, text search is available via the use of the $text query operator in
the $match stage.

Restrictions

Text search in the aggregation pipeline has the following restrictions:
9 If using the deprecated text command, the text command must include the filter option that specifies an equality condition for the

prefix fields.

8.3. Indexing Tutorials 549

MongoDB Documentation, Release 2.6.11

• The $match stage that includes a $text must be the first stage in the pipeline.

• A text operator can only occur once in the stage.

• The text operator expression cannot appear in $or or $not expressions.

• The text search, by default, does not return the matching documents in order of matching scores. Use the $meta
aggregation expression in the $sort stage.

Text Score

The $text operator assigns a score to each document that contains the search term in the indexed fields. The score
represents the relevance of a document to a given text search query. The score can be part of a $sort pipeline
specification as well as part of the projection expression. The { $meta: "textScore" } expression provides
information on the processing of the $text operation. See $meta aggregation for details on accessing the score for
projection or sort.

The metadata is only available after the $match stage that includes the $text operation.

Examples The following examples assume a collection articles that has a text index on the field subject:

db.articles.ensureIndex({ subject: "text" })

Calculate the Total Views for Articles that Contains a Word

The following aggregation searches for the term cake in the $match stage and calculates the total views for the
matching documents in the $group stage.

db.articles.aggregate(
[

{ $match: { $text: { $search: "cake" } } },
{ $group: { _id: null, views: { $sum: "$views" } } }

]
)

Return Results Sorted by Text Search Score

To sort by the text search score, include a $meta expression in the $sort stage. The following example matches on
either the term cake or tea, sorts by the textScore in descending order, and returns only the title field in the
results set.

db.articles.aggregate(
[

{ $match: { $text: { $search: "cake tea" } } },
{ $sort: { score: { $meta: "textScore" } } },
{ $project: { title: 1, _id: 0 } }

]
)

The specified metadata determines the sort order. For example, the "textScore" metadata sorts in descending
order. See $meta for more information on metadata as well as an example of overriding the default sort order of the
metadata.

550 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

Match on Text Score

The "textScore" metadata is available for projections, sorts, and conditions subsequent the $match stage that
includes the $text operation.

The following example matches on either the term cake or tea, projects the title and the score fields, and then
returns only those documents with a score greater than 1.0.

db.articles.aggregate(
[

{ $match: { $text: { $search: "cake tea" } } },
{ $project: { title: 1, _id: 0, score: { $meta: "textScore" } } },
{ $match: { score: { $gt: 1.0 } } }

]
)

Specify a Language for Text Search

The following aggregation searches in spanish for documents that contain the term saber but not the term claro in
the $match stage and calculates the total views for the matching documents in the $group stage.

db.articles.aggregate(
[

{ $match: { $text: { $search: "saber -claro", $language: "es" } } },
{ $group: { _id: null, views: { $sum: "$views" } } }

]
)

8.3.5 Indexing Strategies

The best indexes for your application must take a number of factors into account, including the kinds of queries you
expect, the ratio of reads to writes, and the amount of free memory on your system.

When developing your indexing strategy you should have a deep understanding of your application’s queries. Before
you build indexes, map out the types of queries you will run so that you can build indexes that reference those fields.
Indexes come with a performance cost, but are more than worth the cost for frequent queries on large data set. Consider
the relative frequency of each query in the application and whether the query justifies an index.

The best overall strategy for designing indexes is to profile a variety of index configurations with data sets similar to
the ones you’ll be running in production to see which configurations perform best.Inspect the current indexes created
for your collections to ensure they are supporting your current and planned queries. If an index is no longer used, drop
the index.

Generally, MongoDB only uses one index to fulfill most queries. However, each clause of an $or query may use a
different index, and starting in 2.6, MongoDB can use an intersection (page 512) of multiple indexes.

The following documents introduce indexing strategies:

Create Indexes to Support Your Queries (page 552) An index supports a query when the index contains all the fields
scanned by the query. Creating indexes that supports queries results in greatly increased query performance.

Use Indexes to Sort Query Results (page 553) To support efficient queries, use the strategies here when you specify
the sequential order and sort order of index fields.

Ensure Indexes Fit in RAM (page 555) When your index fits in RAM, the system can avoid reading the index from
disk and you get the fastest processing.

8.3. Indexing Tutorials 551

MongoDB Documentation, Release 2.6.11

Create Queries that Ensure Selectivity (page 555) Selectivity is the ability of a query to narrow results using the
index. Selectivity allows MongoDB to use the index for a larger portion of the work associated with fulfilling
the query.

Create Indexes to Support Your Queries

On this page

• Create a Single-Key Index if All Queries Use the Same, Single Key (page 552)
• Create Compound Indexes to Support Several Different Queries (page 552)

An index supports a query when the index contains all the fields scanned by the query. The query scans the index and
not the collection. Creating indexes that support queries results in greatly increased query performance.

This document describes strategies for creating indexes that support queries.

Create a Single-Key Index if All Queries Use the Same, Single Key

If you only ever query on a single key in a given collection, then you need to create just one single-key index for that
collection. For example, you might create an index on category in the product collection:

db.products.ensureIndex({ "category": 1 })

Create Compound Indexes to Support Several Different Queries

If you sometimes query on only one key and at other times query on that key combined with a second key, then creating
a compound index is more efficient than creating a single-key index. MongoDB will use the compound index for both
queries. For example, you might create an index on both category and item.

db.products.ensureIndex({ "category": 1, "item": 1 })

This allows you both options. You can query on just category, and you also can query on category combined
with item. A single compound index (page 489) on multiple fields can support all the queries that search a “prefix”
subset of those fields.

Example
The following index on a collection:

{ x: 1, y: 1, z: 1 }

Can support queries that the following indexes support:

{ x: 1 }
{ x: 1, y: 1 }

There are some situations where the prefix indexes may offer better query performance: for example if z is a large
array.

The { x: 1, y: 1, z: 1 } index can also support many of the same queries as the following index:

{ x: 1, z: 1 }

Also, { x: 1, z: 1 } has an additional use. Given the following query:

552 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

db.collection.find({ x: 5 }).sort({ z: 1})

The { x: 1, z: 1 } index supports both the query and the sort operation, while the { x: 1, y: 1,
z: 1 } index only supports the query. For more information on sorting, see Use Indexes to Sort Query Results
(page 553).

Starting in version 2.6, MongoDB can use index intersection (page 512) to fulfill queries. The choice between creating
compound indexes that support your queries or relying on index intersection depends on the specifics of your system.
See Index Intersection and Compound Indexes (page 513) for more details.

Use Indexes to Sort Query Results

On this page

• Sort with a Single Field Index (page 553)
• Sort on Multiple Fields (page 553)

In MongoDB, sort operations can obtain the sort order by retrieving documents based on the ordering in an index. If
the query planner cannot obtain the sort order from an index, it will sort the results in memory. Sort operations that
use an index often have better performance than those that do not use an index. In addition, sort operations that do not
use an index will abort when they use 32 megabytes of memory.

Sort with a Single Field Index

If an ascending or a descending index is on a single field, the sort operation on the field can be in either direction.

For example, create an ascending index on the field a for a collection records:

db.records.ensureIndex({ a: 1 })

This index can support an ascending sort on a:

db.records.find().sort({ a: 1 })

The index can also support the following descending sort on a by traversing the index in reverse order:

db.records.find().sort({ a: -1 })

Sort on Multiple Fields

Create a compound index (page 489) to support sorting on multiple fields.

You can specify a sort on all the keys of the index or on a subset; however, the sort keys must be listed in the same
order as they appear in the index. For example, an index key pattern { a: 1, b: 1 } can support a sort on {
a: 1, b: 1 } but not on { b: 1, a: 1 }.

The sort must specify the same sort direction (i.e.ascending/descending) for all its keys as the index key pattern or
specify the reverse sort direction for all its keys as the index key pattern. For example, an index key pattern { a:
1, b: 1 } can support a sort on { a: 1, b: 1 } and { a: -1, b: -1 } but not on { a: -1,
b: 1 }.

8.3. Indexing Tutorials 553

MongoDB Documentation, Release 2.6.11

Sort and Index Prefix If the sort keys correspond to the index keys or an index prefix, MongoDB can use the index
to sort the query results. A prefix of a compound index is a subset that consists of one or more keys at the start of the
index key pattern.

For example, create a compound index on the data collection:

db.data.ensureIndex({ a:1, b: 1, c: 1, d: 1 })

Then, the following are prefixes for that index:

{ a: 1 }
{ a: 1, b: 1 }
{ a: 1, b: 1, c: 1 }

The following query and sort operations use the index prefixes to sort the results. These operations do not need to sort
the result set in memory.

Example Index Prefix
db.data.find().sort({ a: 1 }) { a: 1 }
db.data.find().sort({ a: -1 }) { a: 1 }
db.data.find().sort({ a: 1, b: 1 }) { a: 1, b: 1 }
db.data.find().sort({ a: -1, b: -1 }) { a: 1, b: 1 }
db.data.find().sort({ a: 1, b: 1, c: 1 }) { a: 1, b: 1, c:

1 }
db.data.find({ a: { $gt: 4 } }).sort({ a: 1, b:
1 })

{ a: 1, b: 1 }

Consider the following example in which the prefix keys of the index appear in both the query predicate and the sort:

db.data.find({ a: { $gt: 4 } }).sort({ a: 1, b: 1 })

In such cases, MongoDB can use the index to retrieve the documents in order specified by the sort. As the example
shows, the index prefix in the query predicate can be different from the prefix in the sort.

Sort and Non-prefix Subset of an Index An index can support sort operations on a non-prefix subset of the index
key pattern. To do so, the query must include equality conditions on all the prefix keys that precede the sort keys.

For example, the collection data has the following index:

{ a: 1, b: 1, c: 1, d: 1 }

The following operations can use the index to get the sort order:

Example Index Prefix
db.data.find({ a: 5 }).sort({ b: 1, c: 1 }) { a: 1 , b: 1, c:

1 }
db.data.find({ b: 3, a: 4 }).sort({ c: 1 }) { a: 1, b: 1, c: 1

}
db.data.find({ a: 5, b: { $lt: 3} }).sort({ b:
1 })

{ a: 1, b: 1 }

As the last operation shows, only the index fields preceding the sort subset must have the equality conditions in the
query document; the other index fields may specify other conditions.

If the query does not specify an equality condition on an index prefix that precedes or overlaps with the sort specifi-
cation, the operation will not efficiently use the index. For example, the following operations specify a sort document
of { c: 1 }, but the query documents do not contain equality matches on the preceding index fields a and b:

db.data.find({ a: { $gt: 2 } }).sort({ c: 1 })
db.data.find({ c: 5 }).sort({ c: 1 })

554 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

These operations will not efficiently use the index { a: 1, b: 1, c: 1, d: 1 } and may not even use
the index to retrieve the documents.

Ensure Indexes Fit in RAM

On this page

• Indexes that Hold Only Recent Values in RAM (page 555)

For the fastest processing, ensure that your indexes fit entirely in RAM so that the system can avoid reading the index
from disk.

To check the size of your indexes, use the db.collection.totalIndexSize() helper, which returns data in
bytes:

> db.collection.totalIndexSize()
4294976499

The above example shows an index size of almost 4.3 gigabytes. To ensure this index fits in RAM, you must not only
have more than that much RAM available but also must have RAM available for the rest of the working set. Also
remember:

If you have and use multiple collections, you must consider the size of all indexes on all collections. The indexes and
the working set must be able to fit in memory at the same time.

There are some limited cases where indexes do not need to fit in memory. See Indexes that Hold Only Recent Values
in RAM (page 555).

See also:

collStats and db.collection.stats()

Indexes that Hold Only Recent Values in RAM

Indexes do not have to fit entirely into RAM in all cases. If the value of the indexed field increments with every insert,
and most queries select recently added documents; then MongoDB only needs to keep the parts of the index that hold
the most recent or “right-most” values in RAM. This allows for efficient index use for read and write operations and
minimize the amount of RAM required to support the index.

Create Queries that Ensure Selectivity

Selectivity is the ability of a query to narrow results using the index. Effective indexes are more selective and allow
MongoDB to use the index for a larger portion of the work associated with fulfilling the query.

To ensure selectivity, write queries that limit the number of possible documents with the indexed field. Write queries
that are appropriately selective relative to your indexed data.

Example
Suppose you have a field called status where the possible values are new and processed. If you add an index
on status you’ve created a low-selectivity index. The index will be of little help in locating records.

A better strategy, depending on your queries, would be to create a compound index (page 489) that includes the low-
selectivity field and another field. For example, you could create a compound index on status and created_at.

Another option, again depending on your use case, might be to use separate collections, one for each status.

8.3. Indexing Tutorials 555

MongoDB Documentation, Release 2.6.11

Example
Consider an index { a : 1 } (i.e. an index on the key a sorted in ascending order) on a collection where a has
three values evenly distributed across the collection:

{ _id: ObjectId(), a: 1, b: "ab" }
{ _id: ObjectId(), a: 1, b: "cd" }
{ _id: ObjectId(), a: 1, b: "ef" }
{ _id: ObjectId(), a: 2, b: "jk" }
{ _id: ObjectId(), a: 2, b: "lm" }
{ _id: ObjectId(), a: 2, b: "no" }
{ _id: ObjectId(), a: 3, b: "pq" }
{ _id: ObjectId(), a: 3, b: "rs" }
{ _id: ObjectId(), a: 3, b: "tv" }

If you query for { a: 2, b: "no" } MongoDB must scan 3 documents in the collection to return the one
matching result. Similarly, a query for { a: { $gt: 1}, b: "tv" } must scan 6 documents, also to
return one result.

Consider the same index on a collection where a has nine values evenly distributed across the collection:

{ _id: ObjectId(), a: 1, b: "ab" }
{ _id: ObjectId(), a: 2, b: "cd" }
{ _id: ObjectId(), a: 3, b: "ef" }
{ _id: ObjectId(), a: 4, b: "jk" }
{ _id: ObjectId(), a: 5, b: "lm" }
{ _id: ObjectId(), a: 6, b: "no" }
{ _id: ObjectId(), a: 7, b: "pq" }
{ _id: ObjectId(), a: 8, b: "rs" }
{ _id: ObjectId(), a: 9, b: "tv" }

If you query for { a: 2, b: "cd" }, MongoDB must scan only one document to fulfill the query. The index
and query are more selective because the values of a are evenly distributed and the query can select a specific document
using the index.

However, although the index on a is more selective, a query such as { a: { $gt: 5 }, b: "tv" }would
still need to scan 4 documents.

If overall selectivity is low, and if MongoDB must read a number of documents to return results, then some queries
may perform faster without indexes. To determine performance, see Measure Index Use (page 532).

For a conceptual introduction to indexes in MongoDB see Index Concepts (page 485).

8.4 Indexing Reference

On this page

• Indexing Methods in the mongo Shell (page 557)
• Indexing Database Commands (page 557)
• Geospatial Query Selectors (page 557)
• Indexing Query Modifiers (page 558)
• Other Index References (page 558)

556 Chapter 8. Indexes

MongoDB Documentation, Release 2.6.11

8.4.1 Indexing Methods in the mongo Shell

Name Description
db.collection.createIndex()Builds an index on a collection. Use db.collection.ensureIndex().
db.collection.dropIndex()Removes a specified index on a collection.
db.collection.dropIndexes()Removes all indexes on a collection.
db.collection.ensureIndex()Creates an index if it does not currently exist. If the index exists ensureIndex()

does nothing.
db.collection.getIndexes()Returns an array of documents that describe the existing indexes on a collection.
db.collection.getIndexStats()Renders a human-readable view of the data collected by indexStats which

reflects B-tree utilization.
db.collection.indexStats()Renders a human-readable view of the data collected by indexStats which

reflects B-tree utilization.
db.collection.reIndex()Rebuilds all existing indexes on a collection.
db.collection.totalIndexSize()Reports the total size used by the indexes on a collection. Provides a wrapper around

the totalIndexSize field of the collStats output.
cursor.explain() Reports on the query execution plan, including index use, for a cursor.
cursor.hint() Forces MongoDB to use a specific index for a query.
cursor.max() Specifies an exclusive upper index bound for a cursor. For use with

cursor.hint()
cursor.min() Specifies an inclusive lower index bound for a cursor. For use with

cursor.hint()
cursor.snapshot() Forces the cursor to use the index on the _id field. Ensures that the cursor returns

each document, with regards to the value of the _id field, only once.

8.4.2 Indexing Database Commands

Name Description
createIndexes Builds one or more indexes for a collection.
dropIndexes Removes indexes from a collection.
compact Defragments a collection and rebuilds the indexes.
reIndex Rebuilds all indexes on a collection.
validate Internal command that scans for a collection’s data and indexes for correctness.
indexStats Experimental command that collects and aggregates statistics on all indexes.
geoNear Performs a geospatial query that returns the documents closest to a given point.
geoSearch Performs a geospatial query that uses MongoDB’s haystack index functionality.
geoWalk An internal command to support geospatial queries.
checkShardingIndex Internal command that validates index on shard key.

8.4.3 Geospatial Query Selectors

Name Description
$geoWithinSelects geometries within a bounding GeoJSON geometry (page 558). The 2dsphere (page 497)

and 2d (page 498) indexes support $geoWithin.
$geoIntersectsSelects geometries that intersect with a GeoJSON geometry. The 2dsphere (page 497) index

supports $geoIntersects.
$near Returns geospatial objects in proximity to a point. Requires a geospatial index. The 2dsphere

(page 497) and 2d (page 498) indexes support $near.
$nearSphereReturns geospatial objects in proximity to a point on a sphere. Requires a geospatial index. The

2dsphere (page 497) and 2d (page 498) indexes support $nearSphere.

8.4. Indexing Reference 557

MongoDB Documentation, Release 2.6.11

8.4.4 Indexing Query Modifiers

Name Description
$explain Forces MongoDB to report on query execution plans. See explain().
$hint Forces MongoDB to use a specific index. See hint()
$max Specifies an exclusive upper limit for the index to use in a query. See max().
$min Specifies an inclusive lower limit for the index to use in a query. See min().
$returnKey Forces the cursor to only return fields included in the index.
$snapshot Forces the query to use the index on the _id field. See snapshot().

8.4.5 Other Index References

GeoJSON Objects (page 558) Supported GeoJSON objects.

Text Search Languages (page 561) Supported languages for text indexes (page 501) and $text query operations.

GeoJSON Objects

On this page

• Overview (page 558)
• Point (page 558)
• LineString (page 559)
• Polygon (page 559)
• MultiPoint (page 560)
• MultiLineString (page 560)
• MultiPolygon (page 561)
• GeometryCollection (page 561)

Overview

MongoDB supports the GeoJSON object types listed on this page.

To specify GeoJSON data, use a document with a type field specifying the GeoJSON object type and a
coordinates field specifying the object’s coordinates:

{ type: "<GeoJSON type>" , coordinates: <coordinates> }

Important: Always list coordinates in longitude, latitude order.

The default coordinate reference system for GeoJSON uses the WGS84 datum.

Point

New in version 2.4.

The following example specifies a GeoJSON Point10:

10http://geojson.org/geojson-spec.html#point

558 Chapter 8. Indexes

http://geojson.org/geojson-spec.html#point

MongoDB Documentation, Release 2.6.11

{ type: "Point", coordinates: [40, 5] }

LineString

New in version 2.4.

The following example specifies a GeoJSON LineString11:

{ type: "LineString", coordinates: [[40, 5], [41, 6]] }

Polygon

New in version 2.4.

Polygons12 consist of an array of GeoJSON LinearRing coordinate arrays. These LinearRings are closed
LineStrings. Closed LineStrings have at least four coordinate pairs and specify the same position as the first
and last coordinates.

The line that joins two points on a curved surface may or may not contain the same set of co-ordinates that joins those
two points on a flat surface. The line that joins two points on a curved surface will be a geodesic. Carefully check
points to avoid errors with shared edges, as well as overlaps and other types of intersections.

Polygons with a Single Ring The following example specifies a GeoJSON Polygon with an exterior ring and no
interior rings (or holes). The first and last coordinates must match in order to close the polygon:

{
type: "Polygon",
coordinates: [[[0 , 0] , [3 , 6] , [6 , 1] , [0 , 0]]]

}

For Polygons with a single ring, the ring cannot self-intersect.

Polygons with Multiple Rings For Polygons with multiple rings:

• The first described ring must be the exterior ring.

• The exterior ring cannot self-intersect.

• Any interior ring must be entirely contained by the outer ring.

• Interior rings cannot intersect or overlap each other. Interior rings cannot share an edge.

The following example represents a GeoJSON polygon with an interior ring:

{
type : "Polygon",
coordinates : [

[[0 , 0] , [3 , 6] , [6 , 1] , [0 , 0]],
[[2 , 2] , [3 , 3] , [4 , 2] , [2 , 2]]

]
}

11http://geojson.org/geojson-spec.html#linestring
12http://geojson.org/geojson-spec.html#polygon

8.4. Indexing Reference 559

http://geojson.org/geojson-spec.html#linestring
http://geojson.org/geojson-spec.html#polygon

MongoDB Documentation, Release 2.6.11

MultiPoint

New in version 2.6: Requires 2dsphere (Version 2) (page 497)

The following example specifies a GeoJSON MultiPoint13:

{
type: "MultiPoint",
coordinates: [

[-73.9580, 40.8003],
[-73.9498, 40.7968],
[-73.9737, 40.7648],
[-73.9814, 40.7681]

]
}

MultiLineString

New in version 2.6: Requires 2dsphere (Version 2) (page 497)

The following example specifies a GeoJSON MultiLineString14:

{
type: "MultiLineString",
coordinates: [

[[-73.96943, 40.78519], [-73.96082, 40.78095]],
[[-73.96415, 40.79229], [-73.95544, 40.78854]],
[[-73.97162, 40.78205], [-73.96374, 40.77715]],
[[-73.97880, 40.77247], [-73.97036, 40.76811]]

]
}

13http://geojson.org/geojson-spec.html#multipoint
14http://geojson.org/geojson-spec.html#multilinestring

560 Chapter 8. Indexes

http://geojson.org/geojson-spec.html#multipoint
http://geojson.org/geojson-spec.html#multilinestring

MongoDB Documentation, Release 2.6.11

MultiPolygon

New in version 2.6: Requires 2dsphere (Version 2) (page 497)

The following example specifies a GeoJSON MultiPolygon15:

{
type: "MultiPolygon",
coordinates: [

[[[-73.958, 40.8003], [-73.9498, 40.7968], [-73.9737, 40.7648], [-73.9814, 40.7681], [-73.958, 40.8003]]],
[[[-73.958, 40.8003], [-73.9498, 40.7968], [-73.9737, 40.7648], [-73.958, 40.8003]]]

]
}

GeometryCollection

New in version 2.6: Requires 2dsphere (Version 2) (page 497)

The following example stores coordinates of GeoJSON type GeometryCollection16:

{
type: "GeometryCollection",
geometries: [

{
type: "MultiPoint",
coordinates: [

[-73.9580, 40.8003],
[-73.9498, 40.7968],
[-73.9737, 40.7648],
[-73.9814, 40.7681]

]
},
{

type: "MultiLineString",
coordinates: [

[[-73.96943, 40.78519], [-73.96082, 40.78095]],
[[-73.96415, 40.79229], [-73.95544, 40.78854]],
[[-73.97162, 40.78205], [-73.96374, 40.77715]],
[[-73.97880, 40.77247], [-73.97036, 40.76811]]

]
}

]
}

Text Search Languages

The text index (page 501), the $text operator, and the text command 17 support the following languages:

Changed in version 2.6: MongoDB introduces version 2 of the text search feature. With version 2, text search feature
supports using the two-letter language codes defined in ISO 639-1. Version 1 of text search only supported the long
form of each language name.

• da or danish
15http://geojson.org/geojson-spec.html#multipolygon
16http://geojson.org/geojson-spec.html#geometrycollection
17 The text command is deprecated in MongoDB 2.6.

8.4. Indexing Reference 561

http://geojson.org/geojson-spec.html#multipolygon
http://geojson.org/geojson-spec.html#geometrycollection

MongoDB Documentation, Release 2.6.11

• nl or dutch

• en or english

• fi or finnish

• fr or french

• de or german

• hu or hungarian

• it or italian

• nb or norwegian

• pt or portuguese

• ro or romanian

• ru or russian

• es or spanish

• sv or swedish

• tr or turkish

Note: If you specify a language value of "none", then the text search uses simple tokenization with no list of stop
words and no stemming.

562 Chapter 8. Indexes

CHAPTER 9

Replication

A replica set in MongoDB is a group of mongod processes that maintain the same data set. Replica sets provide
redundancy and high availability, and are the basis for all production deployments. This section introduces replication
in MongoDB as well as the components and architecture of replica sets. The section also provides tutorials for common
tasks related to replica sets.

Replication Introduction (page 563) An introduction to replica sets, their behavior, operation, and use.

Replication Concepts (page 567) The core documentation of replica set operations, configurations, architectures and
behaviors.

Replica Set Members (page 567) Introduces the components of replica sets.

Replica Set Deployment Architectures (page 575) Introduces architectural considerations related to replica
sets deployment planning.

Replica Set High Availability (page 583) Presents the details of the automatic failover and recovery process
with replica sets.

Replica Set Read and Write Semantics (page 588) Presents the semantics for targeting read and write opera-
tions to the replica set, with an awareness of location and set configuration.

Replica Set Tutorials (page 606) Tutorials for common tasks related to the use and maintenance of replica sets.

Replication Reference (page 658) Reference for functions and operations related to replica sets.

9.1 Replication Introduction

On this page

• Purpose of Replication (page 563)
• Replication in MongoDB (page 564)

Replication is the process of synchronizing data across multiple servers.

9.1.1 Purpose of Replication

Replication provides redundancy and increases data availability. With multiple copies of data on different database
servers, replication protects a database from the loss of a single server. Replication also allows you to recover from
hardware failure and service interruptions. With additional copies of the data, you can dedicate one to disaster recovery,
reporting, or backup.

563

MongoDB Documentation, Release 2.6.11

In some cases, you can use replication to increase read capacity. Clients have the ability to send read and write
operations to different servers. You can also maintain copies in different data centers to increase the locality and
availability of data for distributed applications.

9.1.2 Replication in MongoDB

A replica set is a group of mongod instances that host the same data set. One mongod, the primary, receives all write
operations. All other instances, secondaries, apply operations from the primary so that they have the same data set.

The primary (page 568) accepts all write operations from clients. A replica set can have only one primary. 1 To
support replication, the primary records all changes to its data sets in its oplog (page 596). For more information on
primary node operation, see Replica Set Primary (page 568).

The secondaries (page 569) replicate the primary’s oplog and apply the operations to their data sets such that the
secondaries’ data sets reflect the primary’s data set. If the primary is unavailable, the replica set will elect a secondary
to be primary. For more information on secondary members, see Replica Set Secondary Members (page 569).

1 In some circumstances, two nodes in a replica set may transiently believe that they are the primary, but at most, one of them will be able to
complete writes with {w: majority} write concern (page 135). The node that can complete {w: majority} (page 135) writes is the current primary,
and the other node is a former primary that has not yet recognized its demotion, typically due to a network partition. When this occurs, clients that
connect to the former primary may observe stale data despite having requested read preference primary (page 670).

564 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

You may add an extra mongod instance to a replica set as an arbiter (page 574). Arbiters do not maintain a data set.
The purpose of an arbiter is to maintain a quorum in a replica set by responding to heartbeat and election requests
by other replica set members. Because they do not store a data set, arbiters can be a good way to provide replica set
quorum functionality with a cheaper resource cost than a fully functional replica set member with a data set. If your
replica set has an even number of members, add an arbiter to obtain a majority of votes in an election for primary.
Arbiters do not require dedicated hardware. For more information on arbiters, see Replica Set Arbiter (page 574).

An arbiter (page 574) will always be an arbiter whereas a primary (page 568) may step down and become a secondary
(page 569) and a secondary (page 569) may become the primary during an election.

Asynchronous Replication

Secondaries apply operations from the primary asynchronously. By applying operations after the primary, sets can
continue to function despite the failure of one or more members. For more information on replication mechanics, see
Replica Set Oplog (page 596) and Replica Set Data Synchronization (page 598).

Automatic Failover

When a primary does not communicate with the other members of the set for more than 10 seconds, the replica set
will attempt to select another member to become the new primary. The first secondary that receives a majority of the

9.1. Replication Introduction 565

MongoDB Documentation, Release 2.6.11

votes becomes primary.

See Replica Set Elections (page 583) and Rollbacks During Replica Set Failover (page 587) for more information.

Read Operations

When a replica set has one and only one primary, reads from that primary provide strict consistency. 1

By default, clients read from the primary; however, clients can specify a read preference (page 591) to send read
operations to secondaries. Asynchronous replication (page 565) to secondaries means that reads from secondaries may
return data that does not reflect the state of the data on the primary. For information on reading from replica sets, see
Read Preference (page 591).

In MongoDB, clients can see the results of writes before they are made durable:

• Regardless of write concern (page 135), other clients can see the result of the write operations before the write
operation is acknowledged to the issuing client.

• Clients can read data which may be subsequently rolled back (page 587).

Additional Features

Replica sets provide a number of options to support application needs. For example, you may deploy a replica set
with members in multiple data centers (page 581), or control the outcome of elections by adjusting the priority

566 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

(page 662) of some members. Replica sets also support dedicated members for reporting, disaster recovery, or backup
functions.

See Priority 0 Replica Set Members (page 570), Hidden Replica Set Members (page 572) and Delayed Replica Set
Members (page 573) for more information.

9.2 Replication Concepts

These documents describe and provide examples of replica set operation, configuration, and behavior. For an overview
of replication, see Replication Introduction (page 563). For documentation of the administration of replica sets, see
Replica Set Tutorials (page 606). The Replication Reference (page 658) documents commands and operations specific
to replica sets.

Replica Set Members (page 567) Introduces the components of replica sets.

Replica Set Primary (page 568) The primary is the only member of a replica set that accepts write operations.

Replica Set Secondary Members (page 569) Secondary members replicate the primary’s data set and accept
read operations. If the set has no primary, a secondary can become primary.

Priority 0 Replica Set Members (page 570) Priority 0 members are secondaries that cannot become the pri-
mary.

Hidden Replica Set Members (page 572) Hidden members are secondaries that are invisible to applications.
These members support dedicated workloads, such as reporting or backup.

Replica Set Arbiter (page 574) An arbiter does not maintain a copy of the data set but participate in elections.

Replica Set Deployment Architectures (page 575) Introduces architectural considerations related to replica sets de-
ployment planning.

Replica Set High Availability (page 583) Presents the details of the automatic failover and recovery process with
replica sets.

Replica Set Elections (page 583) Elections occur when the primary becomes unavailable and the replica set
members autonomously select a new primary.

Read Preference (page 591) Applications specify read preference to control how drivers direct read operations
to members of the replica set.

Replication Processes (page 596) Mechanics of the replication process and related topics.

Master Slave Replication (page 600) Master-slave replication provided redundancy in early versions of MongoDB.
Replica sets replace master-slave for most use cases.

9.2.1 Replica Set Members

A replica set in MongoDB is a group of mongod processes that provide redundancy and high availability. The
members of a replica set are:

Primary (page ??). The primary receives all write operations.

Secondaries (page ??). Secondaries replicate operations from the primary to maintain an identical data set. Secon-
daries may have additional configurations for special usage profiles. For example, secondaries may be non-
voting (page 586) or priority 0 (page 570).

You can also maintain an arbiter (page ??) as part of a replica set. Arbiters do not keep a copy of the data. However,
arbiters play a role in the elections that select a primary if the current primary is unavailable.

9.2. Replication Concepts 567

MongoDB Documentation, Release 2.6.11

A replica set can have up to 12 members. 2 However, only 7 members can vote at a time.

The minimum requirements for a replica set are: A primary (page ??), a secondary (page ??), and an arbiter (page ??).
Most deployments, however, will keep three members that store data: A primary (page ??) and two secondary members
(page ??).

Replica Set Primary

The primary is the only member in the replica set that receives write operations. MongoDB applies write operations
on the primary and then records the operations on the primary’s oplog (page 596). Secondary (page ??) members
replicate this log and apply the operations to their data sets.

In the following three-member replica set, the primary accepts all write operations. Then the secondaries replicate the
oplog to apply to their data sets.

All members of the replica set can accept read operations. However, by default, an application directs its read opera-
tions to the primary member. See Read Preference (page 591) for details on changing the default read behavior.

2 While replica sets are the recommended solution for production, a replica set can support only 12 members in total. If your deployment requires
more than 12 members, you’ll need to use master-slave (page 600) replication. Master-slave replication lacks the automatic failover capabilities.

568 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

The replica set can have at most one primary. 3 If the current primary becomes unavailable, an election determines the
new primary. See Replica Set Elections (page 583) for more details.

In the following 3-member replica set, the primary becomes unavailable. This triggers an election which selects one
of the remaining secondaries as the new primary.

Replica Set Secondary Members

A secondary maintains a copy of the primary’s data set. To replicate data, a secondary applies operations from the
primary’s oplog (page 596) to its own data set in an asynchronous process. A replica set can have one or more
secondaries.

The following three-member replica set has two secondary members. The secondaries replicate the primary’s oplog
and apply the operations to their data sets.

Although clients cannot write data to secondaries, clients can read data from secondary members. See Read Preference
(page 591) for more information on how clients direct read operations to replica sets.

A secondary can become a primary. If the current primary becomes unavailable, the replica set holds an election to
choose which of the secondaries becomes the new primary.

3 In some circumstances, two nodes in a replica set may transiently believe that they are the primary, but at most, one of them will be able to
complete writes with {w: majority} write concern (page 135). The node that can complete {w: majority} (page 135) writes is the current primary,
and the other node is a former primary that has not yet recognized its demotion, typically due to a network partition. When this occurs, clients that
connect to the former primary may observe stale data despite having requested read preference primary (page 670).

9.2. Replication Concepts 569

MongoDB Documentation, Release 2.6.11

In the following three-member replica set, the primary becomes unavailable. This triggers an election where one of
the remaining secondaries becomes the new primary.

See Replica Set Elections (page 583) for more details.

You can configure a secondary member for a specific purpose. You can configure a secondary to:

• Prevent it from becoming a primary in an election, which allows it to reside in a secondary data center or to
serve as a cold standby. See Priority 0 Replica Set Members (page 570).

• Prevent applications from reading from it, which allows it to run applications that require separation from normal
traffic. See Hidden Replica Set Members (page 572).

• Keep a running “historical” snapshot for use in recovery from certain errors, such as unintentionally deleted
databases. See Delayed Replica Set Members (page 573).

Priority 0 Replica Set Members

On this page

• Priority 0 Members as Standbys (page 570)
• Priority 0 Members and Failover (page 572)
• Configuration (page 572)

A priority 0 member is a secondary that cannot become primary. Priority 0 members cannot trigger elections.
Otherwise these members function as normal secondaries. A priority 0 member maintains a copy of the data set,
accepts read operations, and votes in elections. Configure a priority 0 member to prevent secondaries from becoming
primary, which is particularly useful in multi-data center deployments.

In a three-member replica set, in one data center hosts the primary and a secondary. A second data center hosts one
priority 0 member that cannot become primary.

Priority 0 Members as Standbys A priority 0 member can function as a standby. In some replica sets, it might not
be possible to add a new member in a reasonable amount of time. A standby member keeps a current copy of the data
to be able to replace an unavailable member.

In many cases, you need not set standby to priority 0. However, in sets with varied hardware or geographic distribution
(page 581), a priority 0 standby ensures that only qualified members become primary.

570 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

9.2. Replication Concepts 571

MongoDB Documentation, Release 2.6.11

A priority 0 standby may also be valuable for some members of a set with different hardware or workload profiles.
In these cases, deploy a member with priority 0 so it can’t become primary. Also consider using an hidden member
(page 572) for this purpose.

If your set already has seven voting members, also configure the member as non-voting (page 586).

Priority 0 Members and Failover When configuring a priority 0 member, consider potential failover patterns,
including all possible network partitions. Always ensure that your main data center contains both a quorum of voting
members and contains members that are eligible to be primary.

Configuration To configure a priority 0 member, see Prevent Secondary from Becoming Primary (page 626).

Hidden Replica Set Members

On this page

• Behavior (page 572)
• Further Reading (page 573)

A hidden member maintains a copy of the primary’s data set but is invisible to client applications. Hidden members
are good for workloads with different usage patterns from the other members in the replica set. Hidden members must
always be priority 0 members (page 570) and so cannot become primary. The db.isMaster() method does not
display hidden members. Hidden members, however, may vote in elections (page 583).

In the following five-member replica set, all four secondary members have copies of the primary’s data set, but one of
the secondary members is hidden.

Behavior

Read Operations Clients will not distribute reads with the appropriate read preference (page 591) to hidden mem-
bers. As a result, these members receive no traffic other than basic replication. Use hidden members for dedicated
tasks such as reporting and backups. Delayed members (page 573) should be hidden.

In a sharded cluster, mongos do not interact with hidden members.

572 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Voting Hidden members may vote in replica set elections. If you stop a voting hidden member, ensure that the set
has an active majority or the primary will step down.

For the purposes of backups, you can avoid stopping a hidden member with the db.fsyncLock() and
db.fsyncUnlock() operations to flush all writes and lock the mongod instance for the duration of the backup
operation.

Further Reading For more information about backing up MongoDB databases, see MongoDB Backup Methods
(page 192). To configure a hidden member, see Configure a Hidden Replica Set Member (page 628).

Delayed Replica Set Members

On this page

• Considerations (page 573)
• Example (page 573)
• Configuration (page 574)

Delayed members contain copies of a replica set’s data set. However, a delayed member’s data set reflects an earlier,
or delayed, state of the set. For example, if the current time is 09:52 and a member has a delay of an hour, the delayed
member has no operation more recent than 08:52.

Because delayed members are a “rolling backup” or a running “historical” snapshot of the data set, they may help
you recover from various kinds of human error. For example, a delayed member can make it possible to recover from
unsuccessful application upgrades and operator errors including dropped databases and collections.

Considerations

Requirements Delayed members:

• Must be priority 0 (page 570) members. Set the priority to 0 to prevent a delayed member from becoming
primary.

• Should be hidden (page 572) members. Always prevent applications from seeing and querying delayed mem-
bers.

• do vote in elections for primary.

Behavior Delayed members apply operations from the oplog on a delay. When choosing the amount of delay,
consider that the amount of delay:

• must be is equal to or greater than your maintenance windows.

• must be smaller than the capacity of the oplog. For more information on oplog size, see Oplog Size (page 597).

Sharding In sharded clusters, delayed members have limited utility when the balancer is enabled. Because delayed
members replicate chunk migrations with a delay, the state of delayed members in a sharded cluster are not useful for
recovering to a previous state of the sharded cluster if any migrations occur during the delay window.

Example In the following 5-member replica set, the primary and all secondaries have copies of the data set. One
member applies operations with a delay of 3600 seconds, or an hour. This delayed member is also hidden and is a
priority 0 member.

9.2. Replication Concepts 573

MongoDB Documentation, Release 2.6.11

Configuration A delayed member has its priority (page 662) equal to 0, hidden (page 662) equal to true,
and its slaveDelay (page 663) equal to the number of seconds of delay:

{
"_id" : <num>,
"host" : <hostname:port>,
"priority" : 0,
"slaveDelay" : <seconds>,
"hidden" : true

}

To configure a delayed member, see Configure a Delayed Replica Set Member (page 629).

Replica Set Arbiter

On this page

• Example (page 574)
• Security (page 574)

An arbiter does not have a copy of data set and cannot become a primary. Replica sets may have arbiters to add a vote
in elections of for primary (page 583). Arbiters allow replica sets to have an uneven number of members, without the
overhead of a member that replicates data.

Important: Do not run an arbiter on systems that also host the primary or the secondary members of the replica set.

Only add an arbiter to sets with even numbers of members. If you add an arbiter to a set with an odd number of
members, the set may suffer from tied elections. To add an arbiter, see Add an Arbiter to Replica Set (page 618).

Example

For example, in the following replica set, an arbiter allows the set to have an odd number of votes for elections:

Security

574 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Authentication When running with authorization, arbiters exchange credentials with other members of the
set to authenticate. MongoDB encrypts the authentication process. The MongoDB authentication exchange is crypto-
graphically secure.

Arbiters use keyfiles to authenticate to the replica set.

Communication The only communication between arbiters and other set members are: votes during elections,
heartbeats, and configuration data. These exchanges are not encrypted.

However, if your MongoDB deployment uses TLS/SSL, MongoDB will encrypt all communication between replica
set members. See Configure mongod and mongos for TLS/SSL (page 338) for more information.

As with all MongoDB components, run arbiters in trusted network environments.

9.2.2 Replica Set Deployment Architectures

On this page

• Strategies (page 575)
• Replica Set Naming (page 577)
• Deployment Patterns (page 577)

The architecture of a replica set affects the set’s capacity and capability. This document provides strategies for replica
set deployments and describes common architectures.

The standard replica set deployment for production system is a three-member replica set. These sets provide re-
dundancy and fault tolerance. Avoid complexity when possible, but let your application requirements dictate the
architecture.

Strategies

Determine the Number of Members

Add members in a replica set according to these strategies.

9.2. Replication Concepts 575

MongoDB Documentation, Release 2.6.11

Deploy an Odd Number of Members An odd number of members ensures that the replica set is always able to
elect a primary. If you have an even number of members, add an arbiter to get an odd number. Arbiters do not store
a copy of the data and require fewer resources. As a result, you may run an arbiter on an application server or other
shared process.

Consider Fault Tolerance Fault tolerance for a replica set is the number of members that can become unavailable
and still leave enough members in the set to elect a primary. In other words, it is the difference between the number
of members in the set and the majority needed to elect a primary. Without a primary, a replica set cannot accept write
operations. Fault tolerance is an effect of replica set size, but the relationship is not direct. See the following table:

Number of Members. Majority Required to Elect a New Primary. Fault Tolerance.
3 2 1
4 3 1
5 3 2
6 4 2

Adding a member to the replica set does not always increase the fault tolerance. However, in these cases, additional
members can provide support for dedicated functions, such as backups or reporting.

Use Hidden and Delayed Members for Dedicated Functions Add hidden (page 572) or delayed (page 573) mem-
bers to support dedicated functions, such as backup or reporting.

Load Balance on Read-Heavy Deployments In a deployment with very high read traffic, you can improve read
throughput by distributing reads to secondary members. As your deployment grows, add or move members to alternate
data centers to improve redundancy and availability.

Always ensure that the main facility is able to elect a primary.

Add Capacity Ahead of Demand The existing members of a replica set must have spare capacity to support adding
a new member. Always add new members before the current demand saturates the capacity of the set.

Determine the Distribution of Members

Distribute Members Geographically To protect your data if your main data center fails, keep at least one member
in an alternate data center. Set these members’ priority (page 662) to 0 to prevent them from becoming primary.

Keep a Majority of Members in One Location When a replica set has members in multiple data centers, network
partitions can prevent communication between data centers. To replicate data, members must be able to communicate
to other members.

In an election, members must see each other to create a majority. To ensure that the replica set members can confirm
a majority and elect a primary, keep a majority of the set’s members in one location.

Target Operations with Tags

Use replica set tags (page 641) to ensure that operations replicate to specific data centers. Tags also support targeting
read operations to specific machines.

See also:

Data Center Awareness (page 218) and Operational Segregation in MongoDB Deployments (page 218).

576 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Use Journaling to Protect Against Power Failures

Enable journaling to protect data against service interruptions. Without journaling MongoDB cannot recover data after
unexpected shutdowns, including power failures and unexpected reboots.

All 64-bit versions of MongoDB after version 2.0 have journaling enabled by default.

Replica Set Naming

If your application connects to more than one replica set, each set should have a distinct name. Some drivers group
replica set connections by replica set name.

Deployment Patterns

The following documents describe common replica set deployment patterns. Other patterns are possible and effective
depending on the application’s requirements. If needed, combine features of each architecture in your own deployment:

Three Member Replica Sets (page 577) Three-member replica sets provide the minimum recommended architecture
for a replica set.

Replica Sets with Four or More Members (page 579) Four or more member replica sets provide greater redundancy
and can support greater distribution of read operations and dedicated functionality.

Geographically Distributed Replica Sets (page 581) Geographically distributed sets include members in multiple lo-
cations to protect against facility-specific failures, such as power outages.

Three Member Replica Sets

On this page

• Primary with Two Secondary Members (page 577)
• Primary with a Secondary and an Arbiter (page 577)

The minimum architecture of a replica set has three members. A three member replica set can have either three
members that hold data, or two members that hold data and an arbiter.

Primary with Two Secondary Members A replica set with three members that store data has:

• One primary (page 568).

• Two secondary (page 569) members. Both secondaries can become the primary in an election (page 583).

These deployments provide two complete copies of the data set at all times in addition to the primary. These replica
sets provide additional fault tolerance and high availability (page 583). If the primary is unavailable, the replica set
elects a secondary to be primary and continues normal operation. The old primary rejoins the set when available.

Primary with a Secondary and an Arbiter A three member replica set with a two members that store data has:

• One primary (page 568).

• One secondary (page 569) member. The secondary can become primary in an election (page 583).

• One arbiter (page 574). The arbiter only votes in elections.

9.2. Replication Concepts 577

MongoDB Documentation, Release 2.6.11

578 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Since the arbiter does not hold a copy of the data, these deployments provides only one complete copy of the data.
Arbiters require fewer resources, at the expense of more limited redundancy and fault tolerance.

However, a deployment with a primary, secondary, and an arbiter ensures that a replica set remains available if the
primary or the secondary is unavailable. If the primary is unavailable, the replica set will elect the secondary to be
primary.

See also:

Deploy a Replica Set (page 607).

Replica Sets with Four or More Members

On this page

• Overview (page 579)
• Considerations (page 579)

Overview Although the standard replica set configuration has three members, you can deploy larger sets. Add
additional members to a set to increase redundancy or to add capacity for distributing secondary read operations.

Considerations As you add new members to a replica set, consider the following:

Odd Number of Voting Members Ensure that the replica set has an odd number of voting members. If you have
an even number of voting members, deploy an arbiter (page ??) so that the set has an odd number.

For example, the following replica set includes an arbiter to ensure an odd number of voting members.

Maximum Number of Voting Members A replica set can have up to 12 members, 4 but only 7 voting members. If
the replica set already has 7 voting members, additional members must be non-voting members (page 586).

For example, the following 9 member replica set has 7 voting members and 2 non-voting members.

4 While replica sets are the recommended solution for production, a replica set can support only 12 members in total. If your deployment requires
more than 12 members, you’ll need to use master-slave (page 600) replication. Master-slave replication lacks the automatic failover capabilities.

9.2. Replication Concepts 579

MongoDB Documentation, Release 2.6.11

580 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

See Non-Voting Members (page 586) for more information.

Location of the Members A majority of the replica set’s members should be in your application’s main data center.

For example, the following 5 member replica set has the majority, 3, of its members in its main data center, Data
Center 1.

Electability of Members Some members of the replica set, such as members that have networking restraint or
limited resources, should not be able to become primary in a failover. Configure members that should not become
primary to have priority 0 (page 570).

For example, the secondary member in the third data center with a priority of 0 cannot become primary:

See also:

Deploy a Replica Set (page 607), Add an Arbiter to Replica Set (page 618), and Add Members to a Replica Set
(page 620).

Geographically Distributed Replica Sets

9.2. Replication Concepts 581

MongoDB Documentation, Release 2.6.11

On this page

• Additional Resource (page 583)

Adding members to a replica set in multiple data centers adds redundancy and provides fault tolerance if one data
center is unavailable. Members in additional data centers should have a priority of 0 (page 570) to prevent them from
becoming primary.

For example: the architecture of a geographically distributed replica set may be:

• One primary in the main data center.

• One secondary member in the main data center. This member can become primary at any time.

• One priority 0 (page 570) member in a second data center. This member cannot become primary.

In the following replica set, the primary and one secondary are in Data Center 1, while Data Center 2 has a priority 0
(page 570) secondary that cannot become a primary.

If the primary is unavailable, the replica set will elect a new primary from Data Center 1. If the data centers cannot
connect to each other, the member in Data Center 2 will not become the primary.

582 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

If Data Center 1 becomes unavailable, you can manually recover the data set from Data Center 2 with minimal
downtime. With sufficient write concern (page 82), there will be no data loss.

To facilitate elections, the main data center should hold a majority of members. Also ensure that the set has an odd
number of members. If adding a member in another data center results in a set with an even number of members,
deploy an arbiter (page ??). For more information on elections, see Replica Set Elections (page 583).

See also:

Deploy a Geographically Redundant Replica Set (page 612).

Additional Resource MongoDB Multi-Data Center Deployments Whitepaper5

9.2.3 Replica Set High Availability

On this page

• Failover Processes (page 583)

Replica sets provide high availability using automatic failover. Failover allows a secondary member to become pri-
mary if primary is unavailable. Failover, in most situations does not require manual intervention.

Replica set members keep the same data set but are otherwise independent. If the primary becomes unavailable, the
replica set holds an election (page 583) to select a new primary. In some situations, the failover process may require a
rollback (page 587). 6

The deployment of a replica set affects the outcome of failover situations. To support effective failover, ensure that one
facility can elect a primary if needed. Choose the facility that hosts the core application systems to host the majority
of the replica set. Place a majority of voting members and all the members that can become primary in this facility.
Otherwise, network partitions could prevent the set from being able to form a majority.

Failover Processes

The replica set recovers from the loss of a primary by holding an election. Consider the following:

Replica Set Elections (page 583) Elections occur when the primary becomes unavailable and the replica set members
autonomously select a new primary.

Rollbacks During Replica Set Failover (page 587) A rollback reverts write operations on a former primary when the
member rejoins the replica set after a failover.

Replica Set Elections

On this page

• Behavior (page 584)
• Factors and Conditions that Affect Elections (page 584)
• Election Mechanics (page 585)
• Non-Voting Members (page 586)

5http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs
6 Replica sets remove “rollback” data when needed without intervention. Administrators must apply or discard rollback data manually.

9.2. Replication Concepts 583

http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs

MongoDB Documentation, Release 2.6.11

Replica sets use elections to determine which set member will become primary. Elections occur after initiating a
replica set, and also any time the primary becomes unavailable. The primary is the only member in the set that can
accept write operations. If a primary becomes unavailable, elections allow the set to recover normal operations without
manual intervention. Elections are part of the failover process (page 583).

In the following three-member replica set, the primary is unavailable. The remaining secondaries hold an election to
choose a new primary.

Behavior Elections are essential for independent operation of a replica set; however, elections take time to complete.
While an election is in process, the replica set has no primary and cannot accept writes and all remaining members
become read-only. MongoDB avoids elections unless necessary.

If a majority of the replica set is inaccessible or unavailable, the replica set cannot accept writes and all remaining
members become read-only.

Factors and Conditions that Affect Elections

Heartbeats Replica set members send heartbeats (pings) to each other every two seconds. If a heartbeat does not
return within 10 seconds, the other members mark the delinquent member as inaccessible.

584 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Priority Comparisons The priority (page 662) setting affects elections. Members will prefer to vote for mem-
bers with the highest priority value.

Members with a priority value of 0 cannot become primary and do not seek election. For details, see Priority 0 Replica
Set Members (page 570).

A replica set does not hold an election as long as the current primary has the highest priority value or no secondary
with higher priority is within 10 seconds of the latest oplog entry in the set.

If a higher-priority member catches up to within 10 seconds of the latest oplog entry of the current primary, the set
holds an election in order to provide the higher-priority node a chance to become primary.

Optime The optime is the timestamp of the last operation that a member applied from the oplog. A replica set
member cannot become primary unless it has the highest (i.e. most recent) optime of any visible member in the set.

Connections A replica set member cannot become primary unless it can connect to a majority of the members in the
replica set. For the purposes of elections, a majority refers to the total number of votes, rather than the total number of
members.

If you have a three-member replica set, where every member has one vote, the set can elect a primary as long as two
members can connect to each other. If two members are unavailable, the remaining member remains a secondary
because it cannot connect to a majority of the set’s members. If the remaining member is a primary and two members
become unavailable, the primary steps down and becomes a secondary.

Network Partitions Network partitions affect the formation of a majority for an election. If a primary steps down
and neither portion of the replica set has a majority the set will not elect a new primary. The replica set becomes
read-only.

To avoid this situation, place a majority of instances in one data center and a minority of instances in any other data
centers combined.

Election Mechanics

Election Triggering Events Replica sets hold an election any time there is no primary. Specifically, the following:

• the initiation of a new replica set.

• a secondary loses contact with a primary. Secondaries call for elections when they cannot see a primary.

• a primary steps down.

Note: Priority 0 members (page 570), do not trigger elections, even when they cannot connect to the primary.

A primary will step down:

• after receiving the replSetStepDown command.

• if one of the current secondaries is eligible for election and has a higher priority.

• if primary cannot contact a majority of the members of the replica set.

In some cases, modifying a replica set’s configuration will trigger an election by modifying the set so that the primary
must step down.

Important: When a primary steps down, it closes all open client connections, so that clients don’t attempt to write
data to a secondary. This helps clients maintain an accurate view of the replica set and helps prevent rollbacks.

9.2. Replication Concepts 585

MongoDB Documentation, Release 2.6.11

Participation in Elections Every replica set member has a priority that helps determine its eligibility to become a
primary. In an election, the replica set elects an eligible member with the highest priority (page 662) value as
primary. By default, all members have a priority of 1 and have an equal chance of becoming primary. In the default,
all members also can trigger an election.

You can set the priority (page 662) value to weight the election in favor of a particular member or group of
members. For example, if you have a geographically distributed replica set (page 581), you can adjust priorities so
that only members in a specific data center can become primary.

The first member to receive the majority of votes becomes primary. By default, all members have a single vote, unless
you modify the votes (page 663) setting. Non-voting members (page 631) have votes (page 663) value of 0. All
other members have 1 vote.

Note: Deprecated since version 2.6: votes (page 663) values greater than 1.

Earlier versions of MongoDB allowed a member to have more than 1 vote by setting votes (page 663) to a value
greater than 1. Setting votes (page 663) to value greater than 1 now produces a warning message.

The state of a member also affects its eligibility to vote. Only members in the following states can vote: PRIMARY,
SECONDARY, RECOVERING, ARBITER, and ROLLBACK.

Important: Do not alter the number of votes in a replica set to control the outcome of an election. Instead, modify
the priority (page 662) value.

Vetoes in Elections All members of a replica set can veto an election, including non-voting members (page 586). A
member will veto an election:

• If the member seeking an election is not a member of the voter’s set.

• If the member seeking an election is not up-to-date with the most recent operation accessible in the replica set.

• If the member seeking an election has a lower priority than another member in the set that is also eligible for
election.

• If a priority 0 member (page 570) 7 is the most current member at the time of the election. In this case, another
eligible member of the set will catch up to the state of this secondary member and then attempt to become
primary.

• If the current primary has more recent operations (i.e. a higher optime) than the member seeking election,
from the perspective of the voting member.

• If the current primary has the same or more recent operations (i.e. a higher or equal optime) than the member
seeking election.

Non-Voting Members Non-voting members hold copies of the replica set’s data and can accept read operations from
client applications. Non-voting members do not vote in elections, but can veto (page 586) an election and become
primary.

Because a replica set can have up to 12 members but only up to seven voting members, non-voting members allow a
replica set to have more than seven members.

For instance, the following nine-member replica set has seven voting members and two non-voting members.

A non-voting member has a votes (page 663) setting equal to 0 in its member configuration:

7 Remember that hidden (page 572) and delayed (page 573) imply priority 0 (page 570) configuration.

586 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

{
"_id" : <num>
"host" : <hostname:port>,
"votes" : 0

}

Important: Do not alter the number of votes to control which members will become primary. Instead, modify the
priority (page 662) option. Only alter the number of votes in exceptional cases. For example, to permit more than
seven members.

When possible, all members should have one vote. Changing the number of votes can cause the wrong members to
become primary.

To configure a non-voting member, see Configure Non-Voting Replica Set Member (page 631).

Rollbacks During Replica Set Failover

On this page

• Collect Rollback Data (page 587)
• Avoid Replica Set Rollbacks (page 588)
• Rollback Limitations (page 588)

A rollback reverts write operations on a former primary when the member rejoins its replica set after a failover.
A rollback is necessary only if the primary had accepted write operations that the secondaries had not successfully
replicated before the primary stepped down. When the primary rejoins the set as a secondary, it reverts, or “rolls back,”
its write operations to maintain database consistency with the other members.

MongoDB attempts to avoid rollbacks, which should be rare. When a rollback does occur, it is often the result of a
network partition. Secondaries that can not keep up with the throughput of operations on the former primary, increase
the size and impact of the rollback.

A rollback does not occur if the write operations replicate to another member of the replica set before the primary
steps down and if that member remains available and accessible to a majority of the replica set.

9.2. Replication Concepts 587

MongoDB Documentation, Release 2.6.11

Collect Rollback Data When a rollback does occur, administrators must decide whether to apply or ignore the
rollback data. MongoDB writes the rollback data to BSON files in the rollback/ folder under the database’s
dbPath directory. The names of rollback files have the following form:

<database>.<collection>.<timestamp>.bson

For example:

records.accounts.2011-05-09T18-10-04.0.bson

Administrators must apply rollback data manually after the member completes the rollback and returns to secondary
status. Use bsondump to read the contents of the rollback files. Then use mongorestore to apply the changes to
the new primary.

Avoid Replica Set Rollbacks For replica sets, the default write concern {w: 1} (page 135) only provides acknowl-
edgement of write operations on the primary. With the default write concern, data may be rolled back if the primary
steps down before the write operations have replicated to any of the secondaries.

To prevent rollbacks of data that have been acknowledged to the client, use {w: majority} write concern (page 135)
to guarantee that the write operations propagate to a majority of the replica set nodes before returning with acknowl-
edgement to the issuing client.

Note:
• Regardless of write concern (page 135), other clients can see the result of the write operations before the write

operation is acknowledged to the issuing client.

• Clients can read data which may be subsequently rolled back (page 587).

Rollback Limitations A mongod instance will not rollback more than 300 megabytes of data. If your system must
rollback more than 300 megabytes, you must manually intervene to recover the data. If this is the case, the following
line will appear in your mongod log:

[replica set sync] replSet syncThread: 13410 replSet too much data to roll back

In this situation, save the data directly or force the member to perform an initial sync. To force initial sync, sync from
a “current” member of the set by deleting the content of the dbPath directory for the member that requires a larger
rollback.

See also:

Replica Set High Availability (page 583) and Replica Set Elections (page 583).

9.2.4 Replica Set Read and Write Semantics

From the perspective of a client application, whether a MongoDB instance is running as a single server (i.e. “stan-
dalone”) or a replica set is transparent.

By default, in MongoDB, read operations to a replica set return results from the primary (page 568).

Users may configure read preference on a per-connection basis to prefer that the read operations return results from
the secondary members. If clients configure the read preference to permit secondary reads, read operations can return
data from secondary members that have not replicated more recent write operations.

588 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

This behavior is sometimes characterized as eventual consistency because the secondary member’s state will eventually
reflect the primary’s state and MongoDB cannot guarantee strict consistency for read operations from secondary
members. 8

Note:
• In MongoDB, clients can see the results of writes before they are made durable:

– Regardless of write concern (page 135), other clients can see the result of the write operations before the
write operation is acknowledged to the issuing client.

– Clients can read data which may be subsequently rolled back (page 587).

• Sharded clusters where the shards are also replica sets provide the same operational semantics with regards to
write and read operations.

Write Concern for Replica Sets (page 589) Write concern is the guarantee an application requires from MongoDB
to consider a write operation successful.

Read Preference (page 591) Applications specify read preference to control how drivers direct read operations to
members of the replica set.

Read Preference Processes (page 594) With replica sets, read operations may have additional semantics and behav-
ior.

Write Concern for Replica Sets

On this page

• Verify Write Operations to Replica Sets (page 589)
• Modify Default Write Concern (page 591)
• Custom Write Concerns (page 591)

From the perspective of a client application, whether a MongoDB instance is running as a single server (i.e. “stan-
dalone”) or a replica set is transparent. However, replica sets offer some configuration options for write. 9

Verify Write Operations to Replica Sets

For a replica set, the default write concern (page 82) confirms write operations only on the primary. You can, how-
ever, override this default write concern, such as to confirm write operations on a specified number of the replica set
members.

To override the default write concern, specify a write concern with each write operation. For example, the following
method includes a write concern that specifies that the method return only after the write propagates to the primary
and at least one secondary or the method times out after 5 seconds.

db.products.insert(
{ item: "envelopes", qty : 100, type: "Clasp" },
{ writeConcern: { w: 2, wtimeout: 5000 } }

)

8 In some circumstances, two nodes in a replica set may transiently believe that they are the primary, but at most, one of them will be able to
complete writes with {w: majority} write concern (page 135). The node that can complete {w: majority} (page 135) writes is the current primary,
and the other node is a former primary that has not yet recognized its demotion, typically due to a network partition. When this occurs, clients that
connect to the former primary may observe stale data despite having requested read preference primary (page 670).

9 Sharded clusters where the shards are also replica sets provide the same configuration options with regards to write and read operations.

9.2. Replication Concepts 589

MongoDB Documentation, Release 2.6.11

590 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

You can include a timeout threshold for a write concern. This prevents write operations from blocking indefinitely
if the write concern is unachievable. For example, if the write concern requires acknowledgement from 4 members
of the replica set and the replica set has only available 3 members, the operation blocks until those members become
available. See wtimeout (page 136).

See also:

Write Method Acknowledgements (page 838)

Modify Default Write Concern

You can modify the default write concern for a replica set by setting the getLastErrorDefaults (page 664)
setting in the replica set configuration (page 659). The following sequence of commands creates a configuration that
waits for the write operation to complete on a majority of the set members before returning:

cfg = rs.conf()
cfg.settings = {}
cfg.settings.getLastErrorDefaults = { w: "majority", wtimeout: 5000 }
rs.reconfig(cfg)

If you issue a write operation with a specific write concern, the write operation uses its own write concern instead of
the default.

Note: Use of insufficient write concern can lead to rollbacks (page 587) in the case of replica set failover (page 583).
Always ensure that your operations have specified the required write concern for your application.

See also:

Write Concern (page 82) and connections-write-concern

Custom Write Concerns

You can tag (page 641) the members of replica sets and use the tags to create custom write concerns. See Configure
Replica Set Tag Sets (page 641) for information on configuring custom write concerns using tag sets.

Read Preference

On this page

• Use Cases (page 592)
• Read Preference Modes (page 593)
• Tag Sets (page 594)

Read preference describes how MongoDB clients route read operations to the members of a replica set.

By default, an application directs its read operations to the primary member in a replica set. Because write operations
are issued to the single primary, reading from the primary returns the latest version of a document 10.

For an application that does not require fully up-to-date data, you can improve read throughput or reduce latency by
distributing some or all reads to secondary members of the replica set.

10 In some circumstances, two nodes in a replica set may transiently believe that they are the primary, but at most, one of them will be able to
complete writes with {w: majority} write concern (page 135). The node that can complete {w: majority} (page 135) writes is the current primary,
and the other node is a former primary that has not yet recognized its demotion, typically due to a network partition. When this occurs, clients that
connect to the former primary may observe stale data despite having requested read preference primary (page 670).

9.2. Replication Concepts 591

MongoDB Documentation, Release 2.6.11

Important: Exercise care when specifying read preferences: Modes other than primary (page 670) may return
stale data because with asynchronous replication (page 565), data in the secondary may not reflect the most recent
write operations. 1

Note: The read preference does not affect the visibility of data; i.e, clients can see the results of writes before they
are made durable:

• Regardless of write concern (page 135), other clients can see the result of the write operations before the write
operation is acknowledged to the issuing client.

• Clients can read data which may be subsequently rolled back (page 587).

Use Cases

Indications The following are common use cases for using non-primary (page 670) read preference modes:

• Running systems operations that do not affect the front-end application.

Note: Read preferences aren’t relevant to direct connections to a single mongod instance. However, in order
to perform read operations on a direct connection to a secondary member of a replica set, you must set a read
preference, such as secondary.

• Providing local reads for geographically distributed applications.

If you have application servers in multiple data centers, you may consider having a geographically distributed
replica set (page 581) and using a non primary read preference or the nearest (page 671). This allows the
client to read from the lowest-latency members, rather than always reading from the primary.

592 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

• Maintaining availability during a failover.

Use primaryPreferred (page 670) if you want an application to read from the primary under normal
circumstances, but to allow stale reads from secondaries in an emergency. This provides a “read-only mode” for
your application during a failover.

Counter-Indications In general, do not use secondary (page 670) and secondaryPreferred (page 671) to
provide extra capacity for reads, because:

• All members of a replica have roughly equivalent write traffic, as a result secondaries will service reads at
roughly the same rate as the primary.

• Because replication is asynchronous and there is some amount of delay between a successful write operation
and its replication to secondaries, reading from a secondary can return out-of-date data.

• Distributing read operations to secondaries can compromise availability if any members of the set are unavailable
because the remaining members of the set will need to be able to handle all application requests.

• For queries of sharded collections, for clusters with the balancer (page 698) active, secondaries may return stale
results with missing or duplicated data because of incomplete or terminated migrations.

Sharding (page 675) increases read and write capacity by distributing read and write operations across a group of
machines, and is often a better strategy for adding capacity.

See Read Preference Processes (page 594) for more information about the internal application of read preferences.

Read Preference Modes

Important: All read preference modes except primary (page 670) may return stale data because secondaries
replicate operations from the primary with some delay. 1 Ensure that your application can tolerate stale data if you
choose to use a non-primary (page 670) mode.

MongoDB drivers support five read preference modes.

Read Preference
Mode

Description

primary (page 670) Default mode. All operations read from the current replica set primary.
primaryPreferred
(page 670)

In most situations, operations read from the primary but if it is unavailable, operations
read from secondary members.

secondary
(page 670)

All operations read from the secondary members of the replica set.

secondaryPreferred
(page 671)

In most situations, operations read from secondary members but if no secondary
members are available, operations read from the primary.

nearest (page 671) Operations read from member of the replica set with the least network latency,
irrespective of the member’s type.

The syntax for specifying the read preference mode is specific to the driver and to the idioms of the host language11.

Read preference modes are also available to clients connecting to a sharded cluster through a mongos. The mongos
instance obeys specified read preferences when connecting to the replica set that provides each shard in the cluster.

In the mongo shell, the readPref() cursor method provides access to read preferences.

For more information, see read preference background (page 591) and read preference behavior (page 594). See also
the documentation for your driver12.

11https://api.mongodb.org/
12https://api.mongodb.org/

9.2. Replication Concepts 593

https://api.mongodb.org/
https://api.mongodb.org/

MongoDB Documentation, Release 2.6.11

Tag Sets

Tag sets allow you to target read operations to specific members of a replica set.

Custom read preferences and write concerns evaluate tags sets in different ways. Read preferences consider the value
of a tag when selecting a member to read from. Write concerns ignore the value of a tag to when selecting a member,
except to consider whether or not the value is unique.

You can specify tag sets with the following read preference modes:

• primaryPreferred (page 670)

• secondary (page 670)

• secondaryPreferred (page 671)

• nearest (page 671)

Tags are not compatible with mode primary (page 670) and, in general, only apply when selecting (page 594) a
secondary member of a set for a read operation. However, the nearest (page 671) read mode, when combined with
a tag set, selects the matching member with the lowest network latency. This member may be a primary or secondary.

All interfaces use the same member selection logic (page 594) to choose the member to which to direct read operations,
basing the choice on read preference mode and tag sets.

For information on configuring tag sets, see the Configure Replica Set Tag Sets (page 641) tutorial.

For more information on how read preference modes (page 670) interact with tag sets, see the documentation for each
read preference mode (page 669).

Read Preference Processes

On this page

• Member Selection (page 594)
• Request Association (page 595)
• Auto-Retry (page 595)
• Read Preference in Sharded Clusters (page 596)

Changed in version 2.2.

MongoDB drivers use the following procedures to direct operations to replica sets and sharded clusters. To determine
how to route their operations, applications periodically update their view of the replica set’s state, identifying which
members are up or down, which member is primary, and verifying the latency to each mongod instance.

Member Selection

Clients, by way of their drivers, and mongos instances for sharded clusters, periodically update their view of the
replica set’s state.

When you select non-primary (page 670) read preference, the driver will determine which member to target using
the following process:

1. Assembles a list of suitable members, taking into account member type (i.e. secondary, primary, or all members).

2. Excludes members not matching the tag sets, if specified.

3. Determines which suitable member is the closest to the client in absolute terms.

594 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

4. Builds a list of members that are within a defined ping distance (in milliseconds) of the “absolute nearest”
member.

Applications can configure the threshold used in this stage. The default “acceptable latency” is 15 milliseconds,
which you can override in the drivers with their own secondaryAcceptableLatencyMS option. For
mongos you can use the --localThreshold or localPingThresholdMs runtime options to set this
value.

5. Selects a member from these hosts at random. The member receives the read operation.

Drivers can then associate the thread or connection with the selected member. This request association (page 595) is
configurable by the application. See your driver documentation about request association configuration and default
behavior.

Request Association

Important: Request association is configurable by the application. See your driver documentation about request
association configuration and default behavior.

Because secondary members of a replica set may lag behind the current primary by different amounts, reads for
secondary members may reflect data at different points in time. To prevent sequential reads from jumping around in
time, the driver can associate application threads to a specific member of the set after the first read, thereby preventing
reads from other members. The thread will continue to read from the same member until:

• The application performs a read with a different read preference,

• The thread terminates, or

• The client receives a socket exception, as is the case when there’s a network error or when the mongod closes
connections during a failover. This triggers a retry (page 595), which may be transparent to the application.

When using request association, if the client detects that the set has elected a new primary, the driver will discard all
associations between threads and members.

Auto-Retry

Connections between MongoDB drivers and mongod instances in a replica set must balance two concerns:

1. The client should attempt to prefer current results, and any connection should read from the same member of
the replica set as much as possible. Requests should prefer request association (page 595) (e.g. pinning).

2. The client should minimize the amount of time that the database is inaccessible as the result of a connection
issue, networking problem, or failover in a replica set.

As a result, MongoDB drivers:

• Reuse a connection to a specific mongod for as long as possible after establishing a connection to that instance.
This connection is pinned to this mongod.

• Attempt to reconnect to a new member, obeying existing read preference modes (page 670), if the connection to
mongod is lost.

Reconnections are transparent to the application itself. If the connection permits reads from secondary mem-
bers, after reconnecting, the application can receive two sequential reads returning from different secondaries.
Depending on the state of the individual secondary member’s replication, the documents can reflect the state of
your database at different moments.

9.2. Replication Concepts 595

MongoDB Documentation, Release 2.6.11

• Return an error only after attempting to connect to three members of the set that match the read preference mode
(page 670) and tag set (page 594). If there are fewer than three members of the set, the client will error after
connecting to all existing members of the set.

After this error, the driver selects a new member using the specified read preference mode. In the absence of a
specified read preference, the driver uses primary (page 670).

• After detecting a failover situation, 13 the driver attempts to refresh the state of the replica set as quickly as
possible.

Read Preference in Sharded Clusters

Changed in version 2.2: Before version 2.2, mongos did not support the read preference mode semantics (page 670).

In most sharded clusters, each shard consists of a replica set. As such, read preferences are also applicable. With
regard to read preference, read operations in a sharded cluster are identical to unsharded replica sets.

Unlike simple replica sets, in sharded clusters, all interactions with the shards pass from the clients to the mongos
instances that are actually connected to the set members. mongos is then responsible for the application of read
preferences, which is transparent to applications.

There are no configuration changes required for full support of read preference modes in sharded environments, as long
as the mongos is at least version 2.2. All mongos maintain their own connection pool to the replica set members.
As a result:

• A request without a specified preference has primary (page 670), the default, unless, the mongos reuses an
existing connection that has a different mode set.

To prevent confusion, always explicitly set your read preference mode.

• All nearest (page 671) and latency calculations reflect the connection between the mongos and the mongod
instances, not the client and the mongod instances.

This produces the desired result, because all results must pass through the mongos before returning to the
client.

9.2.5 Replication Processes

Members of a replica set replicate data continuously. First, a member uses initial sync to capture the data set. Then the
member continuously records and applies every operation that modifies the data set. Every member records operations
in its oplog (page 596), which is a capped collection.

Replica Set Oplog (page 596) The oplog records all operations that modify the data in the replica set.

Replica Set Data Synchronization (page 598) Secondaries must replicate all changes accepted by the primary. This
process is the basis of replica set operations.

Replica Set Oplog

13 When a failover occurs, all members of the set close all client connections that produce a socket error in the driver. This behavior prevents or
minimizes rollback.

596 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

On this page

• Oplog Size (page 597)
• Workloads that Might Require a Larger Oplog Size (page 597)
• Oplog Status (page 598)

The oplog (operations log) is a special capped collection that keeps a rolling record of all operations that modify the
data stored in your databases. MongoDB applies database operations on the primary and then records the operations
on the primary’s oplog. The secondary members then copy and apply these operations in an asynchronous process.
All replica set members contain a copy of the oplog, in the local.oplog.rs (page 666) collection, which allows
them to maintain the current state of the database.

To facilitate replication, all replica set members send heartbeats (pings) to all other members. Any member can import
oplog entries from any other member.

Whether applied once or multiple times to the target dataset, each operation in the oplog produces the same results, i.e.
each operation in the oplog is idempotent. For proper replication operations, entries in the oplog must be idempotent:

• initial sync

• post-rollback catch-up

• sharding chunk migrations

Oplog Size

When you start a replica set member for the first time, MongoDB creates an oplog of a default size. The size depends
on the architectural details of your operating system.

In most cases, the default oplog size is sufficient. For example, if an oplog is 5% of free disk space and fills up in 24
hours of operations, then secondaries can stop copying entries from the oplog for up to 24 hours without becoming
too stale to continue replicating. However, most replica sets have much lower operation volumes, and their oplogs can
hold much higher numbers of operations.

Before mongod creates an oplog, you can specify its size with the oplogSizeMB option. However, after you have
started a replica set member for the first time, you can only change the size of the oplog using the Change the Size of
the Oplog (page 634) procedure.

By default, the size of the oplog is as follows:

• For 64-bit Linux, Solaris, FreeBSD, and Windows systems, MongoDB allocates 5% of the available free disk
space, but will always allocate at least 1 gigabyte and never more than 50 gigabytes.

• For 64-bit OS X systems, MongoDB allocates 183 megabytes of space to the oplog.

• For 32-bit systems, MongoDB allocates about 48 megabytes of space to the oplog.

Workloads that Might Require a Larger Oplog Size

If you can predict your replica set’s workload to resemble one of the following patterns, then you might want to create
an oplog that is larger than the default. Conversely, if your application predominantly performs reads with a minimal
amount of write operations, a smaller oplog may be sufficient.

The following workloads might require a larger oplog size.

9.2. Replication Concepts 597

MongoDB Documentation, Release 2.6.11

Updates to Multiple Documents at Once The oplog must translate multi-updates into individual operations in order
to maintain idempotency. This can use a great deal of oplog space without a corresponding increase in data size or
disk use.

Deletions Equal the Same Amount of Data as Inserts If you delete roughly the same amount of data as you insert,
the database will not grow significantly in disk use, but the size of the operation log can be quite large.

Significant Number of In-Place Updates If a significant portion of the workload is in-place updates, the database
records a large number of operations but does not change the quantity of data on disk.

Oplog Status

To view oplog status, including the size and the time range of operations, issue the
rs.printReplicationInfo() method. For more information on oplog status, see Check the Size of the
Oplog (page 657).

Under various exceptional situations, updates to a secondary’s oplog might lag behind the desired performance time.
Use db.getReplicationInfo() from a secondary member and the replication status output to assess
the current state of replication and determine if there is any unintended replication delay.

See Replication Lag (page 654) for more information.

Replica Set Data Synchronization

On this page

• Initial Sync (page 598)
• Replication (page 599)
• Validity and Durability (page 599)
• Multithreaded Replication (page 599)
• Pre-Fetching Indexes to Improve Replication Throughput (page 599)

In order to maintain up-to-date copies of the shared data set, members of a replica set sync or replicate data from other
members. MongoDB uses two forms of data synchronization: initial sync (page 598) to populate new members with
the full data set, and replication to apply ongoing changes to the entire data set.

Initial Sync

Initial sync copies all the data from one member of the replica set to another member. A member uses initial sync
when the member has no data, such as when the member is new, or when the member has data but is missing a history
of the set’s replication.

When you perform an initial sync, MongoDB does the following:

1. Clones all databases. To clone, the mongod queries every collection in each source database and inserts all data
into its own copies of these collections. At this time, _id indexes are also built.

2. Applies all changes to the data set. Using the oplog from the source, the mongod updates its data set to reflect
the current state of the replica set.

3. Builds all indexes on all collections (except _id indexes, which were already completed).

When the mongod finishes building all index builds, the member can transition to a normal state, i.e. secondary.

598 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

To perform an initial sync, see Resync a Member of a Replica Set (page 640).

Replication

Replica set members replicate data continuously after the initial sync. This process keeps the members up to date
with all changes to the replica set’s data. In most cases, secondaries synchronize from the primary. Secondaries
may automatically change their sync targets if needed based on changes in the ping time and state of other members’
replication.

For a member to sync from another, both members must have the same value for the buildIndexes (page 661)
setting.

Beginning in version 2.2, secondaries avoid syncing from delayed members (page 573) and hidden members
(page 572).

Validity and Durability

In a replica set, the set can have at most one primary and only the primary can accept write operations. 14 Secondaries
apply operations from the primary asynchronously to provide eventual consistency.

Journaling provides single-instance write durability. Without journaling, if a MongoDB instance terminates ungrace-
fully, you must assume that the database is in an invalid state.

In MongoDB, clients can see the results of writes before they are made durable:

• Regardless of write concern (page 135), other clients can see the result of the write operations before the write
operation is acknowledged to the issuing client.

• Clients can read data which may be subsequently rolled back (page 587).

Multithreaded Replication

MongoDB applies write operations in batches using multiple threads to improve concurrency. MongoDB groups
batches by namespace and applies operations using a group of threads, but always applies the write operations to a
namespace in order.

While applying a batch, MongoDB blocks all reads. As a result, secondaries can never return data that reflects a state
that never existed on the primary.

Pre-Fetching Indexes to Improve Replication Throughput

To help improve the performance of applying oplog entries, MongoDB fetches memory pages that hold affected data
and indexes. This pre-fetch stage minimizes the amount of time MongoDB holds the write lock while applying oplog
entries. By default, secondaries will pre-fetch all Indexes (page 481).

Optionally, you can disable all pre-fetching or only pre-fetch the index on the _id field. See the
secondaryIndexPrefetch setting for more information.

14 In some circumstances, two nodes in a replica set may transiently believe that they are the primary, but at most, one of them will be able to
complete writes with {w: majority} write concern (page 135). The node that can complete {w: majority} (page 135) writes is the current primary,
and the other node is a former primary that has not yet recognized its demotion, typically due to a network partition. When this occurs, clients that
connect to the former primary may observe stale data despite having requested read preference primary (page 670).

9.2. Replication Concepts 599

MongoDB Documentation, Release 2.6.11

9.2.6 Master Slave Replication

On this page

• Fundamental Operations (page 600)
• Run time Master-Slave Configuration (page 601)
• Security (page 602)
• Ongoing Administration and Operation of Master-Slave Deployments (page 602)

Important: Replica sets (page 567) replace master-slave replication for most use cases. If possible, use replica
sets rather than master-slave replication for all new production deployments. This documentation remains to support
legacy deployments and for archival purposes only.

In addition to providing all the functionality of master-slave deployments, replica sets are also more robust for pro-
duction use. Master-slave replication preceded replica sets and made it possible to have a large number of non-master
(i.e. slave) nodes, as well as to restrict replicated operations to only a single database; however, master-slave repli-
cation provides less redundancy and does not automate failover. See Deploy Master-Slave Equivalent using Replica
Sets (page 602) for a replica set configuration that is equivalent to master-slave replication. If you wish to convert an
existing master-slave deployment to a replica set, see Convert a Master-Slave Deployment to a Replica Set (page 602).

Fundamental Operations

Initial Deployment

To configure a master-slave deployment, start two mongod instances: one in master mode, and the other in slave
mode.

To start a mongod instance in master mode, invoke mongod as follows:

mongod --master --dbpath /data/masterdb/

With the --master option, the mongodwill create a local.oplog.$main (page 666) collection, which the “op-
eration log” that queues operations that the slaves will apply to replicate operations from the master. The --dbpath
is optional.

To start a mongod instance in slave mode, invoke mongod as follows:

mongod --slave --source <masterhostname><:<port>> --dbpath /data/slavedb/

Specify the hostname and port of the master instance to the --source argument. The --dbpath is optional.

For slave instances, MongoDB stores data about the source server in the local.sources (page 667) collection.

Configuration Options for Master-Slave Deployments

As an alternative to specifying the --source run-time option, can add a document to local.sources (page 667)
specifying the master instance, as in the following operation in the mongo shell:

use local
db.sources.find()
db.sources.insert({ host: <masterhostname> <,only: databasename> });

In line 1, you switch context to the local database. In line 2, the find() operation should return no documents, to
ensure that there are no documents in the sources collection. Finally, line 3 uses db.collection.insert()

600 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

to insert the source document into the local.sources (page 667) collection. The model of the local.sources
(page 667) document is as follows:

host
The host field specifies the mastermongod instance, and holds a resolvable hostname, i.e. IP address, or a name
from a host file, or preferably a fully qualified domain name.

You can append <:port> to the host name if the mongod is not running on the default 27017 port.

only
Optional. Specify a name of a database. When specified, MongoDB will only replicate the indicated database.

Operational Considerations for Replication with Master Slave Deployments

Master instances store operations in an oplog which is a capped collection (page 219). As a result, if a slave falls too
far behind the state of the master, it cannot “catchup” and must re-sync from scratch. Slave may become out of sync
with a master if:

• The slave falls far behind the data updates available from that master.

• The slave stops (i.e. shuts down) and restarts later after the master has overwritten the relevant operations from
the master.

When slaves are out of sync, replication stops. Administrators must intervene manually to restart replication. Use the
resync command. Alternatively, the --autoresync allows a slave to restart replication automatically, after ten
second pause, when the slave falls out of sync with the master. With --autoresync specified, the slave will only
attempt to re-sync once in a ten minute period.

To prevent these situations you should specify a larger oplog when you start the master instance, by adding the
--oplogSize option when starting mongod. If you do not specify --oplogSize, mongod will allocate 5%
of available disk space on start up to the oplog, with a minimum of 1GB for 64bit machines and 50MB for 32bit
machines.

Run time Master-Slave Configuration

MongoDB provides a number of command line options for mongod instances in master-slave deployments. See the
Master-Slave Replication Command Line Options for options.

Diagnostics

On a master instance, issue the following operation in the mongo shell to return replication status from the perspective
of the master:

rs.printReplicationInfo()

New in version 2.6: rs.printReplicationInfo(). For previous versions, use
db.printReplicationInfo().

On a slave instance, use the following operation in the mongo shell to return the replication status from the perspective
of the slave:

rs.printSlaveReplicationInfo()

New in version 2.6: rs.printSlaveReplicationInfo(). For previous versions, use
db.printSlaveReplicationInfo().

Use the serverStatus as in the following operation, to return status of the replication:

9.2. Replication Concepts 601

MongoDB Documentation, Release 2.6.11

db.serverStatus()

See server status repl fields for documentation of the relevant section of output.

Security

When running with authorization enabled, in master-slave deployments configure a keyFile so that slave
mongod instances can authenticate and communicate with the master mongod instance.

To enable authentication and configure the keyFile add the following option to your configuration file:

keyFile = /srv/mongodb/keyfile

Note: You may chose to set these run-time configuration options using the --keyFile option on the command line.

Setting keyFile enables authentication and specifies a key file for the mongod instances to use when authenticating
to each other. The content of the key file is arbitrary but must be the same on all members of the deployment can
connect to each other.

The key file must be less one kilobyte in size and may only contain characters in the base64 set. The key file must not
have group or “world” permissions on UNIX systems. Use the following command to use the OpenSSL package to
generate “random” content for use in a key file:

openssl rand -base64 741

See also:

Security (page 313) for more information about security in MongoDB

Ongoing Administration and Operation of Master-Slave Deployments

Deploy Master-Slave Equivalent using Replica Sets

If you want a replication configuration that resembles master-slave replication, using replica sets replica sets, con-
sider the following replica configuration document. In this deployment hosts <master> and <slave> 15 provide
replication that is roughly equivalent to a two-instance master-slave deployment:

{
_id : 'setName',
members : [
{ _id : 0, host : "<master>", priority : 1 },
{ _id : 1, host : "<slave>", priority : 0, votes : 0 }

]
}

See Replica Set Configuration (page 659) for more information about replica set configurations.

Convert a Master-Slave Deployment to a Replica Set

To convert a master-slave deployment to a replica set, restart the current master as a one-member replica set. Then
remove the data directories from previous secondaries and add them as new secondaries to the new replica set.

1. To confirm that the current instance is master, run:

15 In replica set configurations, the host (page 661) field must hold a resolvable hostname.

602 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

db.isMaster()

This should return a document that resembles the following:

{
"ismaster" : true,
"maxBsonObjectSize" : 16777216,
"maxMessageSizeBytes" : 48000000,
"localTime" : ISODate("2013-07-08T20:15:13.664Z"),
"ok" : 1

}

2. Shut down the mongod processes on the master and all slave(s), using the following command while connected
to each instance:

db.adminCommand({shutdown : 1, force : true})

3. Back up your /data/db directories, in case you need to revert to the master-slave deployment.

4. Start the former master with the --replSet option, as in the following:

mongod --replSet <setname>

5. Connect to the mongod with the mongo shell, and initiate the replica set with the following command:

rs.initiate()

When the command returns, you will have successfully deployed a one-member replica set. You can check the
status of your replica set at any time by running the following command:

rs.status()

You can now follow the convert a standalone to a replica set (page 619) tutorial to deploy your replica set, picking up
from the Expand the Replica Set (page 620) section.

Failing over to a Slave (Promotion)

To permanently failover from a unavailable or damaged master (A in the following example) to a slave (B):

1. Shut down A.

2. Stop mongod on B.

3. Back up and move all data files that begin with local on B from the dbPath.

Warning: Removing local.* is irrevocable and cannot be undone. Perform this step with extreme
caution.

4. Restart mongod on B with the --master option.

Note: This is a one time operation, and is not reversible. A cannot become a slave of B until it completes a full resync.

Inverting Master and Slave

If you have a master (A) and a slave (B) and you would like to reverse their roles, follow this procedure. The procedure
assumes A is healthy, up-to-date and available.

9.2. Replication Concepts 603

MongoDB Documentation, Release 2.6.11

If A is not healthy but the hardware is okay (power outage, server crash, etc.), skip steps 1 and 2 and in step 8 replace
all of A‘s files with B‘s files in step 8.

If A is not healthy and the hardware is not okay, replace A with a new machine. Also follow the instructions in the
previous paragraph.

To invert the master and slave in a deployment:

1. Halt writes on A using the fsync command.

2. Make sure B is up to date with the state of A.

3. Shut down B.

4. Back up and move all data files that begin with local on B from the dbPath to remove the existing
local.sources data.

Warning: Removing local.* is irrevocable and cannot be undone. Perform this step with extreme
caution.

5. Start B with the --master option.

6. Do a write on B, which primes the oplog to provide a new sync start point.

7. Shut down B. B will now have a new set of data files that start with local.

8. Shut down A and replace all files in the dbPath of A that start with local with a copy of the files in the
dbPath of B that begin with local.

Considering compressing the local files from B while you copy them, as they may be quite large.

9. Start B with the --master option.

10. Start A with all the usual slave options, but include fastsync.

Creating a Slave from an Existing Master’s Disk Image

If you can stop write operations to the master for an indefinite period, you can copy the data files from the master to
the new slave and then start the slave with --fastsync.

Warning: Be careful with --fastsync. If the data on both instances is not identical, a discrepancy will exist
forever.

fastsync is a way to start a slave by starting with an existing master disk image/backup. This option declares that
the administrator guarantees the image is correct and completely up-to-date with that of the master. If you have a full
and complete copy of data from a master you can use this option to avoid a full synchronization upon starting the
slave.

Creating a Slave from an Existing Slave’s Disk Image

You can just copy the other slave’s data file snapshot without any special options. Only take data snapshots when a
mongod process is down or locked using db.fsyncLock().

604 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Resyncing a Slave that is too Stale to Recover

Slaves asynchronously apply write operations from the master that the slaves poll from the master’s oplog. The oplog
is finite in length, and if a slave is too far behind, a full resync will be necessary. To resync the slave, connect to a
slave using the mongo and issue the resync command:

use admin
db.runCommand({ resync: 1 })

This forces a full resync of all data (which will be very slow on a large database). You can achieve the same effect by
stopping mongod on the slave, deleting the entire content of the dbPath on the slave, and restarting the mongod.

Slave Chaining

Slaves cannot be “chained.” They must all connect to the master directly.

If a slave attempts “slave from” another slave you will see the following line in the mongod long of the shell:

assertion 13051 tailable cursor requested on non capped collection ns:local.oplog.$main

Correcting a Slave’s Source

To change a slave’s source, manually modify the slave’s local.sources (page 667) collection.

Example
Consider the following: If you accidentally set an incorrect hostname for the slave’s source, as in the following
example:

mongod --slave --source prod.mississippi

You can correct this, by restarting the slave without the --slave and --source arguments:

mongod

Connect to this mongod instance using the mongo shell and update the local.sources (page 667) collection,
with the following operation sequence:

use local

db.sources.update({ host : "prod.mississippi" },
{ $set : { host : "prod.mississippi.example.net" } })

Restart the slave with the correct command line arguments or with no --source option. After configuring
local.sources (page 667) the first time, the --source will have no subsequent effect. Therefore, both of
the following invocations are correct:

mongod --slave --source prod.mississippi.example.net

or

mongod --slave

The slave now polls data from the correct master.

9.2. Replication Concepts 605

MongoDB Documentation, Release 2.6.11

9.3 Replica Set Tutorials

The administration of replica sets includes the initial deployment of the set, adding and removing members to a set,
and configuring the operational parameters and properties of the set. Administrators generally need not intervene in
failover or replication processes as MongoDB automates these functions. In the exceptional situations that require
manual interventions, the tutorials in these sections describe processes such as resyncing a member. The tutorials in
this section form the basis for all replica set administration.

Replica Set Deployment Tutorials (page 606) Instructions for deploying replica sets, as well as adding and removing
members from an existing replica set.

Deploy a Replica Set (page 607) Configure a three-member replica set for production systems.

Convert a Standalone to a Replica Set (page 619) Convert an existing standalone mongod instance into a
three-member replica set.

Add Members to a Replica Set (page 620) Add a new member to an existing replica set.

Remove Members from Replica Set (page 622) Remove a member from a replica set.

Continue reading from Replica Set Deployment Tutorials (page 606) for additional tutorials of related to setting
up replica set deployments.

Member Configuration Tutorials (page 625) Tutorials that describe the process for configuring replica set members.

Adjust Priority for Replica Set Member (page 625) Change the precedence given to a replica set members in
an election for primary.

Prevent Secondary from Becoming Primary (page 626) Make a secondary member ineligible for election as
primary.

Configure a Hidden Replica Set Member (page 628) Configure a secondary member to be invisible to appli-
cations in order to support significantly different usage, such as a dedicated backups.

Continue reading from Member Configuration Tutorials (page 625) for more tutorials that describe replica set
configuration.

Replica Set Maintenance Tutorials (page 634) Procedures and tasks for common operations on active replica set
deployments.

Change the Size of the Oplog (page 634) Increase the size of the oplog which logs operations. In most cases,
the default oplog size is sufficient.

Resync a Member of a Replica Set (page 640) Sync the data on a member. Either perform initial sync on a
new member or resync the data on an existing member that has fallen too far behind to catch up by way of
normal replication.

Force a Member to Become Primary (page 638) Force a replica set member to become primary.

Change Hostnames in a Replica Set (page 649) Update the replica set configuration to reflect changes in
members’ hostnames.

Continue reading from Replica Set Maintenance Tutorials (page 634) for descriptions of additional replica set
maintenance procedures.

Troubleshoot Replica Sets (page 654) Describes common issues and operational challenges for replica sets. For ad-
ditional diagnostic information, see FAQ: MongoDB Diagnostics (page 799).

9.3.1 Replica Set Deployment Tutorials

The following tutorials provide information in deploying replica sets.

606 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

See also:

Security Deployment Tutorials (page 348) for additional related tutorials.

Deploy a Replica Set (page 607) Configure a three-member replica set for production systems.

Deploy a Replica Set for Testing and Development (page 610) Configure a three-member replica set for either de-
velopment or testing systems.

Deploy a Geographically Redundant Replica Set (page 612) Create a geographically redundant replica set to protect
against location-centered availability limitations (e.g. network and power interruptions).

Add an Arbiter to Replica Set (page 618) Add an arbiter give a replica set an odd number of voting members to
prevent election ties.

Convert a Standalone to a Replica Set (page 619) Convert an existing standalone mongod instance into a three-
member replica set.

Add Members to a Replica Set (page 620) Add a new member to an existing replica set.

Remove Members from Replica Set (page 622) Remove a member from a replica set.

Replace a Replica Set Member (page 624) Update the replica set configuration when the hostname of a member’s
corresponding mongod instance has changed.

Deploy a Replica Set

On this page

• Overview (page 607)
• Requirements (page 607)
• Considerations When Deploying a Replica Set (page 608)
• Procedure (page 608)

This tutorial describes how to create a three-member replica set from three existing mongod instances running with
access control (page 320) disabled.

To deploy a replica set with enabled access control (page 320), see Deploy Replica Set and Configure Authentication
and Authorization (page 348). If you wish to deploy a replica set from a single MongoDB instance, see Convert
a Standalone to a Replica Set (page 619). For more information on replica set deployments, see the Replication
(page 563) and Replica Set Deployment Architectures (page 575) documentation.

Overview

Three member replica sets provide enough redundancy to survive most network partitions and other system failures.
These sets also have sufficient capacity for many distributed read operations. Replica sets should always have an odd
number of members. This ensures that elections (page 583) will proceed smoothly. For more about designing replica
sets, see the Replication overview (page 563).

The basic procedure is to start the mongod instances that will become members of the replica set, configure the replica
set itself, and then add the mongod instances to it.

Requirements

For production deployments, you should maintain as much separation between members as possible by hosting the
mongod instances on separate machines. When using virtual machines for production deployments, you should place

9.3. Replica Set Tutorials 607

MongoDB Documentation, Release 2.6.11

each mongod instance on a separate host server serviced by redundant power circuits and redundant network paths.

Before you can deploy a replica set, you must install MongoDB on each system that will be part of your replica set. If
you have not already installed MongoDB, see the installation tutorials (page 5).

Before creating your replica set, you should verify that your network configuration allows all possible connections
between each member. For a successful replica set deployment, every member must be able to connect to every other
member. For instructions on how to check your connection, see Test Connections Between all Members (page 655).

Considerations When Deploying a Replica Set

Architecture In a production, deploy each member of the replica set to its own machine and if possible bind to the
standard MongoDB port of 27017. Use the bind_ip option to ensure that MongoDB listens for connections from
applications on configured addresses.

For a geographically distributed replica sets, ensure that the majority of the set’s mongod instances reside in the
primary site.

See Replica Set Deployment Architectures (page 575) for more information.

Connectivity Ensure that network traffic can pass between all members of the set and all clients in the network
securely and efficiently. Consider the following:

• Establish a virtual private network. Ensure that your network topology routes all traffic between members within
a single site over the local area network.

• Configure access control to prevent connections from unknown clients to the replica set.

• Configure networking and firewall rules so that incoming and outgoing packets are permitted only on the default
MongoDB port and only from within your deployment.

Finally ensure that each member of a replica set is accessible by way of resolvable DNS or hostnames. You should
either configure your DNS names appropriately or set up your systems’ /etc/hosts file to reflect this configuration.

Configuration Specify the run time configuration on each system in a configuration file stored in
/etc/mongod.conf or a related location. Create the directory where MongoDB stores data files before deploying
MongoDB.

For more information about the run time options used above and other configuration options, see
http://docs.mongodb.org/manual/reference/configuration-options.

Procedure

The following procedure outlines the steps to deploy a replica set when access control is disabled.

Step 1: Start each member of the replica set with the appropriate options. For each member, start a mongod and
specify the replica set name through the replSet option. Specify any other parameters specific to your deployment.
For replication-specific parameters, see cli-mongod-replica-set.

If your application connects to more than one replica set, each set should have a distinct name. Some drivers group
replica set connections by replica set name.

The following example specifies the replica set name through the --replSet command-line option:

mongod --replSet "rs0"

608 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

You can also specify the replica set name in the configuration file. To start mongod with a configu-
ration file, specify the file with the --config option:

mongod --config $HOME/.mongodb/config

In production deployments, you can configure a control script to manage this process. Control scripts are beyond the
scope of this document.

Step 2: Connect a mongo shell to a replica set member. For example, to connect to a mongod running on
localhost on the default port of 27017, simply issue:

mongo

Step 3: Initiate the replica set. Use rs.initiate() on the replica set member:

rs.initiate()

MongoDB initiates a set that consists of the current member and that uses the default replica set configuration.

Step 4: Verify the initial replica set configuration. Use rs.conf() to display the replica set configuration object
(page 659):

rs.conf()

The replica set configuration object resembles the following:

{
"_id" : "rs0",
"version" : 1,
"members" : [

{
"_id" : 1,
"host" : "mongodb0.example.net:27017"

}
]

}

Step 5: Add the remaining members to the replica set. Add the remaining members with the rs.add() method.

The following example adds two members:

rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")

When complete, you have a fully functional replica set. The new replica set will elect a primary.

Step 6: Check the status of the replica set. Use the rs.status() operation:

rs.status()

See also:

Deploy Replica Set and Configure Authentication and Authorization (page 348)

9.3. Replica Set Tutorials 609

MongoDB Documentation, Release 2.6.11

Deploy a Replica Set for Testing and Development

On this page

• Overview (page 610)
• Requirements (page 610)
• Considerations (page 610)
• Procedure (page 611)

This procedure describes deploying a replica set in a development or test environment. For a production deployment,
refer to the Deploy a Replica Set (page 607) tutorial.

This tutorial describes how to create a three-member replica set from three existing mongod instances running with
access control (page 320) disabled.

To deploy a replica set with enabled access control (page 320), see Deploy Replica Set and Configure Authentication
and Authorization (page 348). If you wish to deploy a replica set from a single MongoDB instance, see Convert
a Standalone to a Replica Set (page 619). For more information on replica set deployments, see the Replication
(page 563) and Replica Set Deployment Architectures (page 575) documentation.

Overview

Three member replica sets provide enough redundancy to survive most network partitions and other system failures.
These sets also have sufficient capacity for many distributed read operations. Replica sets should always have an odd
number of members. This ensures that elections (page 583) will proceed smoothly. For more about designing replica
sets, see the Replication overview (page 563).

The basic procedure is to start the mongod instances that will become members of the replica set, configure the replica
set itself, and then add the mongod instances to it.

Requirements

For test and development systems, you can run your mongod instances on a local system, or within a virtual instance.

Before you can deploy a replica set, you must install MongoDB on each system that will be part of your replica set. If
you have not already installed MongoDB, see the installation tutorials (page 5).

Before creating your replica set, you should verify that your network configuration allows all possible connections
between each member. For a successful replica set deployment, every member must be able to connect to every other
member. For instructions on how to check your connection, see Test Connections Between all Members (page 655).

Considerations

Replica Set Naming
Important: These instructions should only be used for test or development deployments.

The examples in this procedure create a new replica set named rs0.

If your application connects to more than one replica set, each set should have a distinct name. Some drivers group
replica set connections by replica set name.

You will begin by starting three mongod instances as members of a replica set named rs0.

610 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Procedure

1. Create the necessary data directories for each member by issuing a command similar to the following:

mkdir -p /srv/mongodb/rs0-0 /srv/mongodb/rs0-1 /srv/mongodb/rs0-2

This will create directories called “rs0-0”, “rs0-1”, and “rs0-2”, which will contain the instances’ database files.

2. Start your mongod instances in their own shell windows by issuing the following commands:

First member:

mongod --port 27017 --dbpath /srv/mongodb/rs0-0 --replSet rs0 --smallfiles --oplogSize 128

Second member:

mongod --port 27018 --dbpath /srv/mongodb/rs0-1 --replSet rs0 --smallfiles --oplogSize 128

Third member:

mongod --port 27019 --dbpath /srv/mongodb/rs0-2 --replSet rs0 --smallfiles --oplogSize 128

This starts each instance as a member of a replica set named rs0, each running on a distinct port, and specifies
the path to your data directory with the --dbpath setting. If you are already using the suggested ports, select
different ports.

The --smallfiles and --oplogSize settings reduce the disk space that each mongod
instance uses. This is ideal for testing and development deployments as it prevents over-
loading your machine. For more information on these and other configuration options, see
http://docs.mongodb.org/manual/reference/configuration-options.

3. Connect to one of your mongod instances through the mongo shell. You will need to indicate which instance
by specifying its port number. For the sake of simplicity and clarity, you may want to choose the first one, as in
the following command;

mongo --port 27017

4. In the mongo shell, use rs.initiate() to initiate the replica set. You can create a replica set configuration
object in the mongo shell environment, as in the following example:

rsconf = {
_id: "rs0",
members: [

{
_id: 0,
host: "<hostname>:27017"

}
]

}

replacing <hostname> with your system’s hostname, and then pass the rsconf file to rs.initiate() as
follows:

rs.initiate(rsconf)

5. Display the current replica configuration (page 659) by issuing the following command:

rs.conf()

The replica set configuration object resembles the following

9.3. Replica Set Tutorials 611

MongoDB Documentation, Release 2.6.11

{
"_id" : "rs0",
"version" : 4,
"members" : [

{
"_id" : 1,
"host" : "localhost:27017"

}
]

}

6. In the mongo shell connected to the primary, add the second and third mongod instances to the replica set
using the rs.add() method. Replace <hostname> with your system’s hostname in the following examples:

rs.add("<hostname>:27018")
rs.add("<hostname>:27019")

When complete, you should have a fully functional replica set. The new replica set will elect a primary.

Check the status of your replica set at any time with the rs.status() operation.

See also:

The documentation of the following shell functions for more information:

• rs.initiate()

• rs.conf()

• rs.reconfig()

• rs.add()

You may also consider the simple setup script16 as an example of a basic automatically-configured replica set.

Refer to Replica Set Read and Write Semantics (page 588) for a detailed explanation of read and write semantics in
MongoDB.

Deploy a Geographically Redundant Replica Set

On this page

• Overview (page 612)
• Considerations (page 613)
• Prerequisites (page 613)
• Procedures (page 613)

Overview

This tutorial outlines the process for deploying a replica set with members in multiple locations. The tutorial addresses
three-member sets, four-member sets, and sets with more than four members.

For appropriate background, see Replication (page 563) and Replica Set Deployment Architectures (page 575). For
related tutorials, see Deploy a Replica Set (page 607) and Add Members to a Replica Set (page 620).

16https://github.com/mongodb/mongo-snippets/blob/master/replication/simple-setup.py

612 Chapter 9. Replication

https://github.com/mongodb/mongo-snippets/blob/master/replication/simple-setup.py

MongoDB Documentation, Release 2.6.11

Considerations

While replica sets provide basic protection against single-instance failure, replica sets whose members are all located
in a single facility are susceptible to errors in that facility. Power outages, network interruptions, and natural disasters
are all issues that can affect replica sets whose members are colocated. To protect against these classes of failures,
deploy a replica set with one or more members in a geographically distinct facility or data center to provide redundancy.

Prerequisites

In general, the requirements for any geographically redundant replica set are as follows:

• Ensure that a majority of the voting members (page 586) are within a primary facility, “Site A”. This includes
priority 0 members (page 570) and arbiters (page 574). Deploy other members in secondary facilities, “Site B”,
“Site C”, etc., to provide additional copies of the data. See Determine the Distribution of Members (page 576)
for more information on the voting requirements for geographically redundant replica sets.

• If you deploy a replica set with an even number of members, deploy an arbiter (page 574) on Site A. The arbiter
must be on site A to keep the majority there.

For instance, for a three-member replica set you need two instances in a Site A, and one member in a secondary facility,
Site B. Site A should be the same facility or very close to your primary application infrastructure (i.e. application
servers, caching layer, users, etc.)

A four-member replica set should have at least two members in Site A, with the remaining members in one or more
secondary sites, as well as a single arbiter in Site A.

For all configurations in this tutorial, deploy each replica set member on a separate system. Although you may deploy
more than one replica set member on a single system, doing so reduces the redundancy and capacity of the replica set.
Such deployments are typically for testing purposes and beyond the scope of this tutorial.

This tutorial assumes you have installed MongoDB on each system that will be part of your replica set. If you have
not already installed MongoDB, see the installation tutorials (page 5).

Procedures

General Considerations

Architecture In a production, deploy each member of the replica set to its own machine and if possible bind to the
standard MongoDB port of 27017. Use the bind_ip option to ensure that MongoDB listens for connections from
applications on configured addresses.

For a geographically distributed replica sets, ensure that the majority of the set’s mongod instances reside in the
primary site.

See Replica Set Deployment Architectures (page 575) for more information.

Connectivity Ensure that network traffic can pass between all members of the set and all clients in the network
securely and efficiently. Consider the following:

• Establish a virtual private network. Ensure that your network topology routes all traffic between members within
a single site over the local area network.

• Configure access control to prevent connections from unknown clients to the replica set.

• Configure networking and firewall rules so that incoming and outgoing packets are permitted only on the default
MongoDB port and only from within your deployment.

9.3. Replica Set Tutorials 613

MongoDB Documentation, Release 2.6.11

Finally ensure that each member of a replica set is accessible by way of resolvable DNS or hostnames. You should
either configure your DNS names appropriately or set up your systems’ /etc/hosts file to reflect this configuration.

Configuration Specify the run time configuration on each system in a configuration file stored in
/etc/mongod.conf or a related location. Create the directory where MongoDB stores data files before deploying
MongoDB.

For more information about the run time options used above and other configuration options, see
http://docs.mongodb.org/manual/reference/configuration-options.

Deploy a Geographically Redundant Three-Member Replica Set

Step 1: Start each member of the replica set with the appropriate options. For each member, start a mongod and
specify the replica set name through the replSet option. Specify any other parameters specific to your deployment.
For replication-specific parameters, see cli-mongod-replica-set.

If your application connects to more than one replica set, each set should have a distinct name. Some drivers group
replica set connections by replica set name.

The following example specifies the replica set name through the --replSet command-line option:

mongod --replSet "rs0"

You can also specify the replica set name in the configuration file. To start mongod with a configu-
ration file, specify the file with the --config option:

mongod --config $HOME/.mongodb/config

In production deployments, you can configure a control script to manage this process. Control scripts are beyond the
scope of this document.

Step 2: Connect a mongo shell to a replica set member. For example, to connect to a mongod running on
localhost on the default port of 27017, simply issue:

mongo

614 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Step 3: Initiate the replica set. Use rs.initiate() on the replica set member:

rs.initiate()

MongoDB initiates a set that consists of the current member and that uses the default replica set configuration.

Step 4: Verify the initial replica set configuration. Use rs.conf() to display the replica set configuration object
(page 659):

rs.conf()

The replica set configuration object resembles the following:

{
"_id" : "rs0",
"version" : 1,
"members" : [

{
"_id" : 1,
"host" : "mongodb0.example.net:27017"

}
]

}

Step 5: Add the remaining members to the replica set. Add the remaining members with the rs.add() method.

The following example adds two members:

rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")

When complete, you have a fully functional replica set. The new replica set will elect a primary.

Step 6: Configure the outside member as priority 0 members. Configure the member located in Site B (in this
example, mongodb2.example.net) as a priority 0 member (page 570).

1. View the replica set configuration to determine the members (page 661) array position for the member. Keep
in mind the array position is not the same as the _id:

rs.conf()

2. Copy the replica set configuration object to a variable (to cfg in the example below). Then, in the variable,
set the correct priority for the member. Then pass the variable to rs.reconfig() to update the replica set
configuration.

For example, to set priority for the third member in the array (i.e., the member at position 2), issue the following
sequence of commands:

cfg = rs.conf()
cfg.members[2].priority = 0
rs.reconfig(cfg)

Note: The rs.reconfig() shell method can force the current primary to step down, causing an election.
When the primary steps down, all clients will disconnect. This is the intended behavior. While most elec-
tions complete within a minute, always make sure any replica configuration changes occur during scheduled
maintenance periods.

After these commands return, you have a geographically redundant three-member replica set.

9.3. Replica Set Tutorials 615

MongoDB Documentation, Release 2.6.11

Step 7: Check the status of the replica set. Use the rs.status() operation:

rs.status()

Deploy a Geographically Redundant Four-Member Replica Set A geographically redundant four-member de-
ployment has two additional considerations:

• One host (e.g. mongodb4.example.net) must be an arbiter. This host can run on a system that is also used
for an application server or on the same machine as another MongoDB process.

• You must decide how to distribute your systems. There are three possible architectures for the four-member
replica set:

– Three members in Site A, one priority 0 member (page 570) in Site B, and an arbiter in Site A.

– Two members in Site A, two priority 0 members (page 570) in Site B, and an arbiter in Site A.

– Two members in Site A, one priority 0 member in Site B, one priority 0 member in Site C, and an arbiter
in site A.

In most cases, the first architecture is preferable because it is the least complex.

To deploy a geographically redundant four-member set:

Step 1: Start each member of the replica set with the appropriate options. For each member, start a mongod and
specify the replica set name through the replSet option. Specify any other parameters specific to your deployment.
For replication-specific parameters, see cli-mongod-replica-set.

If your application connects to more than one replica set, each set should have a distinct name. Some drivers group
replica set connections by replica set name.

The following example specifies the replica set name through the --replSet command-line option:

mongod --replSet "rs0"

You can also specify the replica set name in the configuration file. To start mongod with a configu-
ration file, specify the file with the --config option:

mongod --config $HOME/.mongodb/config

In production deployments, you can configure a control script to manage this process. Control scripts are beyond the
scope of this document.

Step 2: Connect a mongo shell to a replica set member. For example, to connect to a mongod running on
localhost on the default port of 27017, simply issue:

mongo

Step 3: Initiate the replica set. Use rs.initiate() on the replica set member:

rs.initiate()

MongoDB initiates a set that consists of the current member and that uses the default replica set configuration.

616 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Step 4: Verify the initial replica set configuration. Use rs.conf() to display the replica set configuration object
(page 659):

rs.conf()

The replica set configuration object resembles the following:

{
"_id" : "rs0",
"version" : 1,
"members" : [

{
"_id" : 1,
"host" : "mongodb0.example.net:27017"

}
]

}

Step 5: Add the remaining members to the replica set. Use rs.add() in a mongo shell connected to the current
primary. The commands should resemble the following:

rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")
rs.add("mongodb3.example.net")

When complete, you should have a fully functional replica set. The new replica set will elect a primary.

Step 6: Add the arbiter. In the same shell session, issue the following command to add the arbiter (e.g.
mongodb4.example.net):

rs.addArb("mongodb4.example.net")

Step 7: Configure outside members as priority 0 members. Configure each member located outside of Site A (e.g.
mongodb3.example.net) as a priority 0 member (page 570).

1. View the replica set configuration to determine the members (page 661) array position for the member. Keep
in mind the array position is not the same as the _id:

rs.conf()

2. Copy the replica set configuration object to a variable (to cfg in the example below). Then, in the variable,
set the correct priority for the member. Then pass the variable to rs.reconfig() to update the replica set
configuration.

For example, to set priority for the third member in the array (i.e., the member at position 2), issue the following
sequence of commands:

cfg = rs.conf()
cfg.members[2].priority = 0
rs.reconfig(cfg)

Note: The rs.reconfig() shell method can force the current primary to step down, causing an election.
When the primary steps down, all clients will disconnect. This is the intended behavior. While most elec-
tions complete within a minute, always make sure any replica configuration changes occur during scheduled
maintenance periods.

After these commands return, you have a geographically redundant four-member replica set.

9.3. Replica Set Tutorials 617

MongoDB Documentation, Release 2.6.11

Step 8: Check the status of the replica set. Use the rs.status() operation:

rs.status()

Deploy a Geographically Redundant Set with More than Four Members The above procedures detail the steps
necessary for deploying a geographically redundant replica set. Larger replica set deployments follow the same steps,
but have additional considerations:

• Never deploy more than seven voting members.

• If you have an even number of members, use the procedure for a four-member set (page 616)). Ensure that
a single facility, “Site A”, always has a majority of the members by deploying the arbiter in that site. For
example, if a set has six members, deploy at least three voting members in addition to the arbiter in Site A, and
the remaining members in alternate sites.

• If you have an odd number of members, use the procedure for a three-member set (page 614). Ensure that a
single facility, “Site A” always has a majority of the members of the set. For example, if a set has five members,
deploy three members within Site A and two members in other facilities.

• If you have a majority of the members of the set outside of Site A and the network partitions to prevent com-
munication between sites, the current primary in Site A will step down, even if none of the members outside of
Site A are eligible to become primary.

Add an Arbiter to Replica Set

On this page

• Considerations (page 618)
• Add an Arbiter (page 619)

Arbiters are mongod instances that are part of a replica set but do not hold data. Arbiters participate in elections
(page 583) in order to break ties. If a replica set has an even number of members, add an arbiter.

Arbiters have minimal resource requirements and do not require dedicated hardware. You can deploy an arbiter on an
application server or a monitoring host.

Important: Do not run an arbiter on the same system as a member of the replica set.

Considerations

An arbiter does not store data, but until the arbiter’s mongod process is added to the replica set, the arbiter will act
like any other mongod process and start up with a set of data files and with a full-sized journal.

To minimize the default creation of data, set the following in the arbiter’s configuration file:

• journal.enabled to false

Warning: Never set journal.enabled to false on a data-bearing node.

• smallFiles to true

These settings are specific to arbiters. Do not set journal.enabled to false on a data-bearing node. Similarly,
do not set smallFiles unless specifically indicated.

618 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Add an Arbiter

1. Create a data directory (e.g. dbPath) for the arbiter. The mongod instance uses the directory for configuration
data. The directory will not hold the data set. For example, create the /data/arb directory:

mkdir /data/arb

2. Start the arbiter. Specify the data directory and the replica set name. The following, starts an arbiter using the
/data/arb dbPath for the rs replica set:

mongod --port 30000 --dbpath /data/arb --replSet rs

3. Connect to the primary and add the arbiter to the replica set. Use the rs.addArb()method, as in the following
example:

rs.addArb("m1.example.net:30000")

This operation adds the arbiter running on port 30000 on the m1.example.net host.

Convert a Standalone to a Replica Set

On this page

• Procedure (page 619)

This tutorial describes the process for converting a standalone mongod instance into a three-member replica set. Use
standalone instances for testing and development, but always use replica sets in production. To install a standalone
instance, see the installation tutorials (page 5).

To deploy a replica set without using a pre-existing mongod instance, see Deploy a Replica Set (page 607).

Procedure

1. Shut down the standalone mongod instance.

2. Restart the instance. Use the --replSet option to specify the name of the new replica set.

For example, the following command starts a standalone instance as a member of a new replica set named rs0.
The command uses the standalone’s existing database path of /srv/mongodb/db0:

mongod --port 27017 --dbpath /srv/mongodb/db0 --replSet rs0

If your application connects to more than one replica set, each set should have a distinct name. Some drivers
group replica set connections by replica set name.

For more information on configuration options, see http://docs.mongodb.org/manual/reference/configuration-options
and the mongod manual page.

3. Connect to the mongod instance.

4. Use rs.initiate() to initiate the new replica set:

rs.initiate()

The replica set is now operational.

To view the replica set configuration, use rs.conf(). To check the status of the replica set, use
rs.status().

9.3. Replica Set Tutorials 619

MongoDB Documentation, Release 2.6.11

Expand the Replica Set Add additional replica set members by doing the following:

1. On two distinct systems, start two new standalone mongod instances. For information on starting a standalone
instance, see the installation tutorial (page 5) specific to your environment.

2. On your connection to the original mongod instance (the former standalone instance), issue a command in the
following form for each new instance to add to the replica set:

rs.add("<hostname><:port>")

Replace <hostname> and <port> with the resolvable hostname and port of the mongod instance to add to
the set. For more information on adding a host to a replica set, see Add Members to a Replica Set (page 620).

Sharding Considerations If the new replica set is part of a sharded cluster, change the shard host information in
the config database by doing the following:

1. Connect to one of the sharded cluster’s mongos instances and issue a command in the following form:

db.getSiblingDB("config").shards.save({_id: "<name>", host: "<replica-set>/<member,><member,><...>" })

Replace <name> with the name of the shard. Replace <replica-set> with the name of the replica set.
Replace <member,><member,><> with the list of the members of the replica set.

2. Restart all mongos instances. If possible, restart all components of the replica sets (i.e., all mongos and all
shard mongod instances).

Add Members to a Replica Set

On this page

• Overview (page 620)
• Requirements (page 621)
• Procedures (page 621)

Overview

This tutorial explains how to add an additional member to an existing replica set. For background on replication
deployment patterns, see the Replica Set Deployment Architectures (page 575) document.

Maximum Voting Members A replica set can have a maximum of seven voting members (page 583). To add
a member to a replica set that already has seven votes, you must either add the member as a non-voting member
(page 586) or remove a vote from an existing member (page 663).

Control Scripts In production deployments you can configure a control script to manage member processes.

Existing Members You can use these procedures to add new members to an existing set. You can also use the same
procedure to “re-add” a removed member. If the removed member’s data is still relatively recent, it can recover and
catch up easily.

620 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Data Files If you have a backup or snapshot of an existing member, you can move the data files (e.g. the dbPath
directory) to a new system and use them to quickly initiate a new member. The files must be:

• A valid copy of the data files from a member of the same replica set. See Backup and Restore with Filesystem
Snapshots (page 256) document for more information.

Important: Always use filesystem snapshots to create a copy of a member of the existing replica set. Do not
use mongodump and mongorestore to seed a new replica set member.

• More recent than the oldest operation in the primary’s oplog. The new member must be able to become current
by applying operations from the primary’s oplog.

Requirements

1. An active replica set.

2. A new MongoDB system capable of supporting your data set, accessible by the active replica set through the
network.

Otherwise, use the MongoDB installation tutorial (page 5) and the Deploy a Replica Set (page 607) tutorials.

Procedures

Prepare the Data Directory Before adding a new member to an existing replica set, prepare the new member’s data
directory using one of the following strategies:

• Make sure the new member’s data directory does not contain data. The new member will copy the data from an
existing member.

If the new member is in a recovering state, it must exit and become a secondary before MongoDB can copy all
data as part of the replication process. This process takes time but does not require administrator intervention.

• Manually copy the data directory from an existing member. The new member becomes a secondary member
and will catch up to the current state of the replica set. Copying the data over may shorten the amount of time
for the new member to become current.

Ensure that you can copy the data directory to the new member and begin replication within the window allowed
by the oplog (page 597). Otherwise, the new instance will have to perform an initial sync, which completely
resynchronizes the data, as described in Resync a Member of a Replica Set (page 640).

Use rs.printReplicationInfo() to check the current state of replica set members with regards to the
oplog.

For background on replication deployment patterns, see the Replica Set Deployment Architectures (page 575) docu-
ment.

Add a Member to an Existing Replica Set

1. Start the new mongod instance. Specify the data directory and the replica set name. The following example
specifies the /srv/mongodb/db0 data directory and the rs0 replica set:

mongod --dbpath /srv/mongodb/db0 --replSet rs0

Take note of the host name and port information for the new mongod instance.

For more information on configuration options, see the mongod manual page.

9.3. Replica Set Tutorials 621

MongoDB Documentation, Release 2.6.11

Optional
You can specify the data directory and replica set in the mongod.conf configuration file, and start
the mongod with the following command:

mongod --config /etc/mongod.conf

2. Connect to the replica set’s primary.

You can only add members while connected to the primary. If you do not know which member is the primary,
log into any member of the replica set and issue the db.isMaster() command.

3. Use rs.add() to add the new member to the replica set. For example, to add a member at host
mongodb3.example.net, issue the following command:

rs.add("mongodb3.example.net")

You can include the port number, depending on your setup:

rs.add("mongodb3.example.net:27017")

4. Verify that the member is now part of the replica set. Call the rs.conf() method, which displays the replica
set configuration (page 659):

rs.conf()

To view replica set status, issue the rs.status() method. For a description of the status fields, see
http://docs.mongodb.org/manual/reference/command/replSetGetStatus.

Configure and Add a Member You can add a member to a replica set by passing to the rs.add() method a
members (page 661) document. The document must be in the form of a local.system.replset.members
(page 661) document. These documents define a replica set member in the same form as the replica set configuration
document (page 660).

Important: Specify a value for the _id field of the members (page 661) document. MongoDB does not automat-
ically populate the _id field in this case. Finally, the members (page 661) document must declare the host value.
All other fields are optional.

Example
To add a member with the following configuration:

• an _id of 1.

• a hostname and port number (page 661) of mongodb3.example.net:27017.

• a priority (page 662) value within the replica set of 0.

• a configuration as hidden (page 662),

Issue the following:

rs.add({_id: 1, host: "mongodb3.example.net:27017", priority: 0, hidden: true})

Remove Members from Replica Set

622 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

On this page

• Remove a Member Using rs.remove() (page 623)
• Remove a Member Using rs.reconfig() (page 623)

To remove a member of a replica set use either of the following procedures.

Remove a Member Using rs.remove()

1. Shut down the mongod instance for the member you wish to remove. To shut down the instance, connect using
the mongo shell and the db.shutdownServer() method.

2. Connect to the replica set’s current primary. To determine the current primary, use db.isMaster() while
connected to any member of the replica set.

3. Use rs.remove() in either of the following forms to remove the member:

rs.remove("mongod3.example.net:27017")
rs.remove("mongod3.example.net")

MongoDB disconnects the shell briefly as the replica set elects a new primary. The shell then automatically
reconnects. The shell displays a DBClientCursor::init call() failed error even though the com-
mand succeeds.

Remove a Member Using rs.reconfig()

To remove a member you can manually edit the replica set configuration document (page 659), as described here.

1. Shut down the mongod instance for the member you wish to remove. To shut down the instance, connect using
the mongo shell and the db.shutdownServer() method.

2. Connect to the replica set’s current primary. To determine the current primary, use db.isMaster() while
connected to any member of the replica set.

3. Issue the rs.conf() method to view the current configuration document and determine the position in the
members array of the member to remove:

Example
mongod_C.example.net is in position 2 of the following configuration file:

{
"_id" : "rs",
"version" : 7,
"members" : [

{
"_id" : 0,
"host" : "mongod_A.example.net:27017"

},
{

"_id" : 1,
"host" : "mongod_B.example.net:27017"

},
{

"_id" : 2,
"host" : "mongod_C.example.net:27017"

9.3. Replica Set Tutorials 623

MongoDB Documentation, Release 2.6.11

}
]

}

4. Assign the current configuration document to the variable cfg:

cfg = rs.conf()

5. Modify the cfg object to remove the member.

Example
To remove mongod_C.example.net:27017 use the following JavaScript operation:

cfg.members.splice(2,1)

6. Overwrite the replica set configuration document with the new configuration by issuing the following:

rs.reconfig(cfg)

As a result of rs.reconfig() the shell will disconnect while the replica set renegotiates which member is
primary. The shell displays a DBClientCursor::init call() failed error even though the com-
mand succeeds, and will automatically reconnected.

7. To confirm the new configuration, issue rs.conf().

For the example above the output would be:

{
"_id" : "rs",
"version" : 8,
"members" : [

{
"_id" : 0,
"host" : "mongod_A.example.net:27017"

},
{

"_id" : 1,
"host" : "mongod_B.example.net:27017"

}
]

}

Replace a Replica Set Member

On this page

• Operation (page 625)
• Example (page 625)

If you need to change the hostname of a replica set member without changing the configuration of that member or the
set, you can use the operation outlined in this tutorial. For example if you must re-provision systems or rename hosts,
you can use this pattern to minimize the scope of that change.

624 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Operation

To change the hostname for a replica set member modify the host (page 661) field. The value of _id (page 661)
field will not change when you reconfigure the set.

See Replica Set Configuration (page 659) and rs.reconfig() for more information.

Note: Any replica set configuration change can trigger the current primary to step down, which forces an election
(page 583). During the election, the current shell session and clients connected to this replica set disconnect, which
produces an error even when the operation succeeds.

Example

To change the hostname to mongo2.example.net for the replica set member configured at members[0], issue
the following sequence of commands:

cfg = rs.conf()
cfg.members[0].host = "mongo2.example.net"
rs.reconfig(cfg)

9.3.2 Member Configuration Tutorials

The following tutorials provide information in configuring replica set members to support specific operations, such as
to provide dedicated backups, to support reporting, or to act as a cold standby.

Adjust Priority for Replica Set Member (page 625) Change the precedence given to a replica set members in an elec-
tion for primary.

Prevent Secondary from Becoming Primary (page 626) Make a secondary member ineligible for election as pri-
mary.

Configure a Hidden Replica Set Member (page 628) Configure a secondary member to be invisible to applications
in order to support significantly different usage, such as a dedicated backups.

Configure a Delayed Replica Set Member (page 629) Configure a secondary member to keep a delayed copy of the
data set in order to provide a rolling backup.

Configure Non-Voting Replica Set Member (page 631) Create a secondary member that keeps a copy of the data set
but does not vote in an election.

Convert a Secondary to an Arbiter (page 632) Convert a secondary to an arbiter.

Adjust Priority for Replica Set Member

On this page

• Overview (page 626)
• Considerations (page 626)
• Procedure (page 626)

9.3. Replica Set Tutorials 625

MongoDB Documentation, Release 2.6.11

Overview

The priority settings of replica set members affect the outcomes of elections (page 583) for primary. Use this setting
to ensure that some members are more likely to become primary and that others can never become primary.

The value of the member’s priority (page 662) setting determines the member’s priority in elections. The higher
the number, the higher the priority.

Considerations

To modify priorities, you update the members (page 661) array in the replica configuration object. The array index
begins with 0. Do not confuse this index value with the value of the replica set member’s _id (page 661) field in the
array.

The value of priority (page 662) can be any floating point (i.e. decimal) number between 0 and 1000. The default
value for the priority (page 662) field is 1.

To block a member from seeking election as primary, assign it a priority of 0. Hidden members (page 572), delayed
members (page 573), and arbiters (page ??) all have priority (page 662) set to 0.

Adjust priority during a scheduled maintenance window. Reconfiguring priority can force the current primary to step
down, leading to an election. Before an election the primary closes all open client connections.

Procedure

Step 1: Copy the replica set configuration to a variable. In the mongo shell, use rs.conf() to retrieve the
replica set configuration and assign it to a variable. For example:

cfg = rs.conf()

Step 2: Change each member’s priority value. Change each member’s priority (page 662) value, as config-
ured in the members (page 661) array.

cfg.members[0].priority = 0.5
cfg.members[1].priority = 2
cfg.members[2].priority = 2

This sequence of operations modifies the value of cfg to set the priority for the first three members defined in the
members (page 661) array.

Step 3: Assign the replica set the new configuration. Use rs.reconfig() to apply the new configuration.

rs.reconfig(cfg)

This operation updates the configuration of the replica set using the configuration defined by the value of cfg.

Prevent Secondary from Becoming Primary

626 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

On this page

• Overview (page 627)
• Considerations (page 627)
• Procedure (page 627)
• Related Documents (page 628)

Overview

In a replica set, by default all secondary members are eligible to become primary through the election process. You
can use the priority (page 662) to affect the outcome of these elections by making some members more likely to
become primary and other members less likely or unable to become primary.

Secondaries that cannot become primary are also unable to trigger elections. In all other respects these secondaries
are identical to other secondaries.

To prevent a secondary member from ever becoming a primary in a failover, assign the secondary a priority of 0, as
described here. For a detailed description of secondary-only members and their purposes, see Priority 0 Replica Set
Members (page 570).

Considerations

When updating the replica configuration object, access the replica set members in the members (page 661) array with
the array index. The array index begins with 0. Do not confuse this index value with the value of the _id (page 661)
field in each document in the members (page 661) array.

Note: MongoDB does not permit the current primary to have a priority of 0. To prevent the current primary from
again becoming a primary, you must first step down the current primary using rs.stepDown().

Procedure

This tutorial uses a sample replica set with 5 members.

Warning:
• The rs.reconfig() shell method can force the current primary to step down, which causes an election

(page 583). When the primary steps down, the mongod closes all client connections. While this typically
takes 10-20 seconds, try to make these changes during scheduled maintenance periods.

• To successfully reconfigure a replica set, a majority of the members must be accessible. If your replica set
has an even number of members, add an arbiter (page 618) to ensure that members can quickly obtain a
majority of votes in an election for primary.

Step 1: Retrieve the current replica set configuration. The rs.conf() method returns a replica set configura-
tion document (page 659) that contains the current configuration for a replica set.

In a mongo shell connected to a primary, run the rs.conf() method and assign the result to a variable:

cfg = rs.conf()

The returned document contains a members (page 661) field which contains an array of member configuration docu-
ments, one document for each member of the replica set.

9.3. Replica Set Tutorials 627

MongoDB Documentation, Release 2.6.11

Step 2: Assign priority value of 0. To prevent a secondary member from becoming a primary, update the secondary
member’s priority (page 662) to 0.

To assign a priority value to a member of the replica set, access the member configuration document using the array
index. In this tutorial, the secondary member to change corresponds to the configuration document found at position
2 of the members (page 661) array.

cfg.members[2].priority = 0

The configuration change does not take effect until you reconfigure the replica set.

Step 3: Reconfigure the replica set. Use rs.reconfig() method to reconfigure the replica set with the updated
replica set configuration document.

Pass the cfg variable to the rs.reconfig() method:

rs.reconfig(cfg)

Related Documents

• priority (page 662)

• Adjust Priority for Replica Set Member (page 625)

• Replica Set Reconfiguration

• Replica Set Elections (page 583)

Configure a Hidden Replica Set Member

On this page

• Considerations (page 628)
• Examples (page 629)
• Related Documents (page 629)

Hidden members are part of a replica set but cannot become primary and are invisible to client applications. Hidden
members may vote in elections (page 583). For a more information on hidden members and their uses, see Hidden
Replica Set Members (page 572).

Considerations

The most common use of hidden nodes is to support delayed members (page 573). If you only need to prevent a
member from becoming primary, configure a priority 0 member (page 570).

If the chainingAllowed (page 663) setting allows secondary members to sync from other secondaries, MongoDB
by default prefers non-hidden members over hidden members when selecting a sync target. MongoDB will only choose
hidden members as a last resort. If you want a secondary to sync from a hidden member, use the replSetSyncFrom
database command to override the default sync target. See the documentation for replSetSyncFrom before using
the command.

See also:

Manage Chained Replication (page 647)

628 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Changed in version 2.0: For sharded clusters running with replica sets before 2.0, if you reconfigured a member as
hidden, you had to restart mongos to prevent queries from reaching the hidden member.

Examples

Member Configuration Document To configure a secondary member as hidden, set its priority (page 662)
value to 0 and set its hidden (page 662) value to true in its member configuration:

{
"_id" : <num>
"host" : <hostname:port>,
"priority" : 0,
"hidden" : true

}

Configuration Procedure The following example hides the secondary member currently at the index 0 in the
members (page 661) array. To configure a hidden member, use the following sequence of operations in a mongo
shell connected to the primary, specifying the member to configure by its array index in the members (page 661)
array:

cfg = rs.conf()
cfg.members[0].priority = 0
cfg.members[0].hidden = true
rs.reconfig(cfg)

After re-configuring the set, this secondary member has a priority of 0 so that it cannot become primary and is hidden.
The other members in the set will not advertise the hidden member in the isMaster or db.isMaster() output.

When updating the replica configuration object, access the replica set members in the members (page 661) array with
the array index. The array index begins with 0. Do not confuse this index value with the value of the _id (page 661)
field in each document in the members (page 661) array.

Warning:
• The rs.reconfig() shell method can force the current primary to step down, which causes an election

(page 583). When the primary steps down, the mongod closes all client connections. While this typically
takes 10-20 seconds, try to make these changes during scheduled maintenance periods.

• To successfully reconfigure a replica set, a majority of the members must be accessible. If your replica set
has an even number of members, add an arbiter (page 618) to ensure that members can quickly obtain a
majority of votes in an election for primary.

Related Documents

• Replica Set Reconfiguration

• Replica Set Elections (page 583)

• Read Preference (page 591)

Configure a Delayed Replica Set Member

9.3. Replica Set Tutorials 629

MongoDB Documentation, Release 2.6.11

On this page

• Example (page 630)
• Related Documents (page 630)

To configure a delayed secondary member, set its priority (page 662) value to 0, its hidden (page 662) value to
true, and its slaveDelay (page 663) value to the number of seconds to delay.

Important: The length of the secondary slaveDelay (page 663) must fit within the window of the oplog. If
the oplog is shorter than the slaveDelay (page 663) window, the delayed member cannot successfully replicate
operations.

When you configure a delayed member, the delay applies both to replication and to the member’s oplog. For details
on delayed members and their uses, see Delayed Replica Set Members (page 573).

Example

The following example sets a 1-hour delay on a secondary member currently at the index 0 in the members (page 661)
array. To set the delay, issue the following sequence of operations in a mongo shell connected to the primary:

cfg = rs.conf()
cfg.members[0].priority = 0
cfg.members[0].hidden = true
cfg.members[0].slaveDelay = 3600
rs.reconfig(cfg)

After the replica set reconfigures, the delayed secondary member cannot become primary and is hidden from appli-
cations. The slaveDelay (page 663) value delays both replication and the member’s oplog by 3600 seconds (1
hour).

When updating the replica configuration object, access the replica set members in the members (page 661) array with
the array index. The array index begins with 0. Do not confuse this index value with the value of the _id (page 661)
field in each document in the members (page 661) array.

Warning:
• The rs.reconfig() shell method can force the current primary to step down, which causes an election

(page 583). When the primary steps down, the mongod closes all client connections. While this typically
takes 10-20 seconds, try to make these changes during scheduled maintenance periods.

• To successfully reconfigure a replica set, a majority of the members must be accessible. If your replica set
has an even number of members, add an arbiter (page 618) to ensure that members can quickly obtain a
majority of votes in an election for primary.

Related Documents

• slaveDelay (page 663)

• Replica Set Reconfiguration

• Oplog Size (page 597)

• Change the Size of the Oplog (page 634) tutorial

• Replica Set Elections (page 583)

630 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Configure Non-Voting Replica Set Member

On this page

• Example (page 631)
• Related Documents (page 631)

Non-voting members allow you to add additional members for read distribution beyond the maximum seven voting
members. To configure a member as non-voting, set its votes (page 663) value to 0.

Example

To disable the ability to vote in elections for the fourth, fifth, and sixth replica set members, use the following command
sequence in the mongo shell connected to the primary. You identify each replica set member by its array index in the
members (page 661) array:

cfg = rs.conf()
cfg.members[3].votes = 0
cfg.members[4].votes = 0
cfg.members[5].votes = 0
rs.reconfig(cfg)

This sequence gives 0 votes to the fourth, fifth, and sixth members of the set according to the order of the members
(page 661) array in the output of rs.conf(). This setting allows the set to elect these members as primary but does
not allow them to vote in elections. Place voting members so that your designated primary or primaries can reach a
majority of votes in the event of a network partition.

When updating the replica configuration object, access the replica set members in the members (page 661) array with
the array index. The array index begins with 0. Do not confuse this index value with the value of the _id (page 661)
field in each document in the members (page 661) array.

Warning:
• The rs.reconfig() shell method can force the current primary to step down, which causes an election

(page 583). When the primary steps down, the mongod closes all client connections. While this typically
takes 10-20 seconds, try to make these changes during scheduled maintenance periods.

• To successfully reconfigure a replica set, a majority of the members must be accessible. If your replica set
has an even number of members, add an arbiter (page 618) to ensure that members can quickly obtain a
majority of votes in an election for primary.

In general and when possible, all members should have only 1 vote. This prevents intermittent ties, deadlocks, or the
wrong members from becoming primary. Use priority (page 662) to control which members are more likely to
become primary.

Related Documents

• votes (page 663)

• Replica Set Reconfiguration

• Replica Set Elections (page 583)

9.3. Replica Set Tutorials 631

MongoDB Documentation, Release 2.6.11

Convert a Secondary to an Arbiter

On this page

• Convert Secondary to Arbiter and Reuse the Port Number (page 632)
• Convert Secondary to Arbiter Running on a New Port Number (page 633)

If you have a secondary in a replica set that no longer needs to hold data but that needs to remain in the set to ensure that
the set can elect a primary (page 583), you may convert the secondary to an arbiter (page ??) using either procedure
in this tutorial. Both procedures are operationally equivalent:

• You may operate the arbiter on the same port as the former secondary. In this procedure, you must shut down
the secondary and remove its data before restarting and reconfiguring it as an arbiter.

For this procedure, see Convert Secondary to Arbiter and Reuse the Port Number (page 632).

• Run the arbiter on a new port. In this procedure, you can reconfigure the server as an arbiter before shutting
down the instance running as a secondary.

For this procedure, see Convert Secondary to Arbiter Running on a New Port Number (page 633).

Convert Secondary to Arbiter and Reuse the Port Number

1. If your application is connecting directly to the secondary, modify the application so that MongoDB queries
don’t reach the secondary.

2. Shut down the secondary.

3. Remove the secondary from the replica set by calling the rs.remove()method. Perform this operation while
connected to the current primary in the mongo shell:

rs.remove("<hostname><:port>")

4. Verify that the replica set no longer includes the secondary by calling the rs.conf() method in the mongo
shell:

rs.conf()

5. Move the secondary’s data directory to an archive folder. For example:

mv /data/db /data/db-old

Optional
You may remove the data instead.

6. Create a new, empty data directory to point to when restarting the mongod instance. You can reuse the previous
name. For example:

mkdir /data/db

7. Restart the mongod instance for the secondary, specifying the port number, the empty data directory, and the
replica set. You can use the same port number you used before. Issue a command similar to the following:

mongod --port 27021 --dbpath /data/db --replSet rs

8. In the mongo shell convert the secondary to an arbiter using the rs.addArb() method:

632 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

rs.addArb("<hostname><:port>")

9. Verify the arbiter belongs to the replica set by calling the rs.conf() method in the mongo shell.

rs.conf()

The arbiter member should include the following:

"arbiterOnly" : true

Convert Secondary to Arbiter Running on a New Port Number

1. If your application is connecting directly to the secondary or has a connection string referencing the secondary,
modify the application so that MongoDB queries don’t reach the secondary.

2. Create a new, empty data directory to be used with the new port number. For example:

mkdir /data/db-temp

3. Start a new mongod instance on the new port number, specifying the new data directory and the existing replica
set. Issue a command similar to the following:

mongod --port 27021 --dbpath /data/db-temp --replSet rs

4. In the mongo shell connected to the current primary, convert the new mongod instance to an arbiter using the
rs.addArb() method:

rs.addArb("<hostname><:port>")

5. Verify the arbiter has been added to the replica set by calling the rs.conf() method in the mongo shell.

rs.conf()

The arbiter member should include the following:

"arbiterOnly" : true

6. Shut down the secondary.

7. Remove the secondary from the replica set by calling the rs.remove() method in the mongo shell:

rs.remove("<hostname><:port>")

8. Verify that the replica set no longer includes the old secondary by calling the rs.conf()method in the mongo
shell:

rs.conf()

9. Move the secondary’s data directory to an archive folder. For example:

mv /data/db /data/db-old

Optional
You may remove the data instead.

9.3. Replica Set Tutorials 633

MongoDB Documentation, Release 2.6.11

9.3.3 Replica Set Maintenance Tutorials

The following tutorials provide information in maintaining existing replica sets.

Change the Size of the Oplog (page 634) Increase the size of the oplog which logs operations. In most cases, the
default oplog size is sufficient.

Perform Maintenance on Replica Set Members (page 636) Perform maintenance on a member of a replica set while
minimizing downtime.

Force a Member to Become Primary (page 638) Force a replica set member to become primary.

Resync a Member of a Replica Set (page 640) Sync the data on a member. Either perform initial sync on a new
member or resync the data on an existing member that has fallen too far behind to catch up by way of normal
replication.

Configure Replica Set Tag Sets (page 641) Assign tags to replica set members for use in targeting read and write
operations to specific members.

Reconfigure a Replica Set with Unavailable Members (page 645) Reconfigure a replica set when a majority of
replica set members are down or unreachable.

Manage Chained Replication (page 647) Disable or enable chained replication. Chained replication occurs when a
secondary replicates from another secondary instead of the primary.

Change Hostnames in a Replica Set (page 649) Update the replica set configuration to reflect changes in members’
hostnames.

Configure a Secondary’s Sync Target (page 652) Specify the member that a secondary member synchronizes from.

Change the Size of the Oplog

On this page

• Overview (page 634)
• Procedure (page 635)

The oplog exists internally as a capped collection, so you cannot modify its size in the course of normal operations. In
most cases the default oplog size (page 597) is an acceptable size; however, in some situations you may need a larger
or smaller oplog. For example, you might need to change the oplog size if your applications perform large numbers of
multi-updates or deletes in short periods of time.

This tutorial describes how to resize the oplog. For a detailed explanation of oplog sizing, see Oplog Size (page 597).
For details how oplog size affects delayed members and affects replication lag, see Delayed Replica Set Members
(page 573).

Overview

To change the size of the oplog, you must perform maintenance on each member of the replica set in turn. The
procedure requires: stopping the mongod instance and starting as a standalone instance, modifying the oplog size,
and restarting the member.

Important: Always start rolling replica set maintenance with the secondaries, and finish with the maintenance on
primary member.

634 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Procedure

• Restart the member in standalone mode.

Tip
Always use rs.stepDown() to force the primary to become a secondary, before stopping the server. This
facilitates a more efficient election process.

• Recreate the oplog with the new size and with an old oplog entry as a seed.

• Restart the mongod instance as a member of the replica set.

Restart a Secondary in Standalone Mode on a Different Port Shut down the mongod instance for one of the
non-primary members of your replica set. For example, to shut down, use the db.shutdownServer() method:

db.shutdownServer()

Restart this mongod as a standalone instance running on a different port and without the --replSet parameter. Use
a command similar to the following:

mongod --port 37017 --dbpath /srv/mongodb

Create a Backup of the Oplog (Optional) Optionally, backup the existing oplog on the standalone instance, as in
the following example:

mongodump --db local --collection 'oplog.rs' --port 37017

Recreate the Oplog with a New Size and a Seed Entry Save the last entry from the oplog. For example, connect
to the instance using the mongo shell, and enter the following command to switch to the local database:

use local

In mongo shell scripts you can use the following operation to set the db object:

db = db.getSiblingDB('local')

Ensure that the temp temporary collection is empty by dropping the collection:

db.temp.drop()

Use the db.collection.save() method and a sort on reverse natural order to find the last entry and save it to a
temporary collection:

db.temp.save(db.oplog.rs.find({ }, { ts: 1, h: 1 }).sort({$natural : -1}).limit(1).next())

To see this oplog entry, use the following operation:

db.temp.find()

Remove the Existing Oplog Collection Drop the old oplog.rs collection in the local database. Use the fol-
lowing command:

db = db.getSiblingDB('local')
db.oplog.rs.drop()

This returns true in the shell.

9.3. Replica Set Tutorials 635

MongoDB Documentation, Release 2.6.11

Create a New Oplog Use the create command to create a new oplog of a different size. Specify the size
argument in bytes. A value of 2 * 1024 * 1024 * 1024 will create a new oplog that’s 2 gigabytes:

db.runCommand({ create: "oplog.rs", capped: true, size: (2 * 1024 * 1024 * 1024) })

Upon success, this command returns the following status:

{ "ok" : 1 }

Insert the Last Entry of the Old Oplog into the New Oplog Insert the previously saved last entry from the old
oplog into the new oplog. For example:

db.oplog.rs.save(db.temp.findOne())

To confirm the entry is in the new oplog, use the following operation:

db.oplog.rs.find()

Restart the Member Restart the mongod as a member of the replica set on its usual port. For example:

db.shutdownServer()
mongod --replSet rs0 --dbpath /srv/mongodb

The replica set member will recover and “catch up” before it is eligible for election to primary.

Repeat Process for all Members that may become Primary Repeat this procedure for all members you want to
change the size of the oplog. Repeat the procedure for the primary as part of the following step.

Change the Size of the Oplog on the Primary To finish the rolling maintenance operation, step down the primary
with the rs.stepDown() method and repeat the oplog resizing procedure above.

Perform Maintenance on Replica Set Members

On this page

• Overview (page 636)
• Procedure (page 637)

Overview

Replica sets allow a MongoDB deployment to remain available during the majority of a maintenance window.

This document outlines the basic procedure for performing maintenance on each of the members of a replica set.
Furthermore, this particular sequence strives to minimize the amount of time that the primary is unavailable and
controlling the impact on the entire deployment.

Use these steps as the basis for common replica set operations, particularly for procedures such as upgrading to the
latest version of MongoDB (page 247) and changing the size of the oplog (page 634).

636 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Procedure

For each member of a replica set, starting with a secondary member, perform the following sequence of events, ending
with the primary:

• Restart the mongod instance as a standalone.

• Perform the task on the standalone instance.

• Restart the mongod instance as a member of the replica set.

Step 1: Stop a secondary. In the mongo shell, shut down the mongod instance:

db.shutdownServer()

Step 2: Restart the secondary as a standalone on a different port. At the operating system shell prompt, restart
mongod as a standalone instance running on a different port and without the --replSet parameter:

mongod --port 37017 --dbpath /srv/mongodb

Always start mongod with the same user, even when restarting a replica set member as a standalone instance.

Step 3: Perform maintenance operations on the secondary. While the member is a standalone, use the mongo
shell to perform maintenance:

mongo --port 37017

Step 4: Restart mongod as a member of the replica set. After performing all maintenance tasks, use the following
procedure to restart the mongod as a member of the replica set on its usual port.

From the mongo shell, shut down the standalone server after completing the maintenance:

db.shutdownServer()

Restart the mongod instance as a member of the replica set using its normal command-line arguments or configuration
file.

The secondary takes time to catch up to the primary (page 598). From the mongo shell, use the following command
to verify that the member has caught up from the RECOVERING (page 668) state to the SECONDARY (page 667) state.

rs.status()

Step 5: Perform maintenance on the primary last. To perform maintenance on the primary after completing
maintenance tasks on all secondaries, use rs.stepDown() in the mongo shell to step down the primary and allow
one of the secondaries to be elected the new primary. Specify a 300 second waiting period to prevent the member from
being elected primary again for five minutes:

rs.stepDown(300)

After the primary steps down, the replica set will elect a new primary. See Replica Set Elections (page 583) for more
information about replica set elections.

9.3. Replica Set Tutorials 637

MongoDB Documentation, Release 2.6.11

Force a Member to Become Primary

On this page

• Overview (page 638)
• Consideration (page 638)
• Procedures (page 638)

Overview

You can force a replica set member to become primary by giving it a higher priority (page 662) value than any
other member in the set.

Optionally, you also can force a member never to become primary by setting its priority (page 662) value to 0,
which means the member can never seek election (page 583) as primary. For more information, see Priority 0 Replica
Set Members (page 570).

For more information on priorities, see priority (page 662).

Consideration

A majority of the configured members of a replica set must be available for a set to reconfigure a set or elect a primary.
See Replica Set Elections (page 583) for more information.

Procedures

Force a Member to be Primary by Setting its Priority High This procedure assumes your current primary is
m1.example.net and that you’d like to instead make m3.example.net primary. The procedure also assumes
you have a three-member replica set with the configuration below. For more information on configurations, see Replica
Set Configuration Use.

This procedure assumes this configuration:

{
"_id" : "rs",
"version" : 7,
"members" : [

{
"_id" : 0,
"host" : "m1.example.net:27017"

},
{

"_id" : 1,
"host" : "m2.example.net:27017"

},
{

"_id" : 2,
"host" : "m3.example.net:27017"

}
]

}

638 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

1. In a mongo shell connected to the primary, use the following sequence of operations to make
m3.example.net the primary:

cfg = rs.conf()
cfg.members[0].priority = 0.5
cfg.members[1].priority = 0.5
cfg.members[2].priority = 1
rs.reconfig(cfg)

The last statement calls rs.reconfig() with the modified configuration document to configure
m3.example.net to have a higher local.system.replset.members[n].priority (page 662)
value than the other mongod instances.

The following sequence of events occur:

• m3.example.net and m2.example.net sync with m1.example.net (typically within 10 sec-
onds).

• m1.example.net sees that it no longer has highest priority and, in most cases, steps down.
m1.example.net does not step down if m3.example.net‘s sync is far behind. In that case,
m1.example.net waits until m3.example.net is within 10 seconds of its optime and then steps
down. This minimizes the amount of time with no primary following failover.

• The step down forces on election in which m3.example.net becomes primary based on its priority
(page 662) setting.

2. Optionally, if m3.example.net is more than 10 seconds behind m1.example.net‘s optime, and if you
don’t need to have a primary designated within 10 seconds, you can force m1.example.net to step down by
running:

db.adminCommand({replSetStepDown: 86400, force: 1})

This prevents m1.example.net from being primary for 86,400 seconds (24 hours), even if there is no other
member that can become primary. When m3.example.net catches up with m1.example.net it will
become primary.

If you later want to make m1.example.net primary again while it waits for m3.example.net to catch
up, issue the following command to make m1.example.net seek election again:

rs.freeze()

The rs.freeze() provides a wrapper around the replSetFreeze database command.

Force a Member to be Primary Using Database Commands Changed in version 1.8.

Consider a replica set with the following members:

• mdb0.example.net - the current primary.

• mdb1.example.net - a secondary.

• mdb2.example.net - a secondary .

To force a member to become primary use the following procedure:

1. In a mongo shell, run rs.status() to ensure your replica set is running as expected.

2. In a mongo shell connected to the mongod instance running on mdb2.example.net, freeze
mdb2.example.net so that it does not attempt to become primary for 120 seconds.

rs.freeze(120)

9.3. Replica Set Tutorials 639

MongoDB Documentation, Release 2.6.11

3. In a mongo shell connected the mongod running on mdb0.example.net, step down this instance that the
mongod is not eligible to become primary for 120 seconds:

rs.stepDown(120)

mdb1.example.net becomes primary.

Note: During the transition, there is a short window where the set does not have a primary.

For more information, consider the rs.freeze() and rs.stepDown() methods that wrap the
replSetFreeze and replSetStepDown commands.

Resync a Member of a Replica Set

On this page

• Procedures (page 640)

A replica set member becomes “stale” when its replication process falls so far behind that the primary overwrites
oplog entries the member has not yet replicated. The member cannot catch up and becomes “stale.” When this occurs,
you must completely resynchronize the member by removing its data and performing an initial sync (page 598).

This tutorial addressed both resyncing a stale member and to creating a new member using seed data from another
member. When syncing a member, choose a time when the system has the bandwidth to move a large amount of data.
Schedule the synchronization during a time of low usage or during a maintenance window.

MongoDB provides two options for performing an initial sync:

• Restart the mongod with an empty data directory and let MongoDB’s normal initial syncing feature restore the
data. This is the more simple option but may take longer to replace the data.

See Procedures (page 640).

• Restart the machine with a copy of a recent data directory from another member in the replica set. This procedure
can replace the data more quickly but requires more manual steps.

See Sync by Copying Data Files from Another Member (page 641).

Procedures

Automatically Sync a Member Warning: During initial sync, mongod will remove the content of the dbPath.

This procedure relies on MongoDB’s regular process for initial sync (page 598). This will store the current data on the
member. For an overview of MongoDB initial sync process, see the Replication Processes (page 596) section.

If the instance has no data, you can simply follow the Add Members to a Replica Set (page 620) or Replace a Replica
Set Member (page 624) procedure to add a new member to a replica set.

You can also force a mongod that is already a member of the set to to perform an initial sync by restarting the instance
without the content of the dbPath as follows:

1. Stop the member’s mongod instance. To ensure a clean shutdown, use the db.shutdownServer() method
from the mongo shell or on Linux systems, the mongod --shutdown option.

2. Delete all data and sub-directories from the member’s data directory. By removing the data dbPath, MongoDB
will perform a complete resync. Consider making a backup first.

640 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

At this point, the mongod will perform an initial sync. The length of the initial sync process depends on the size of
the database and network connection between members of the replica set.

Initial sync operations can impact the other members of the set and create additional traffic to the primary and can only
occur if another member of the set is accessible and up to date.

Sync by Copying Data Files from Another Member This approach “seeds” a new or stale member using the data
files from an existing member of the replica set. The data files must be sufficiently recent to allow the new member to
catch up with the oplog. Otherwise the member would need to perform an initial sync.

Copy the Data Files You can capture the data files as either a snapshot or a direct copy. However, in most cases you
cannot copy data files from a running mongod instance to another because the data files will change during the file
copy operation.

Important: If copying data files, you must copy the content of the local database.

You cannot use a mongodump backup for the data files, only a snapshot backup. For approaches to capturing a
consistent snapshot of a running mongod instance, see the MongoDB Backup Methods (page 192) documentation.

Sync the Member After you have copied the data files from the “seed” source, start the mongod instance and allow
it to apply all operations from the oplog until it reflects the current state of the replica set.

Configure Replica Set Tag Sets

On this page

• Differences Between Read Preferences and Write Concerns (page 641)
• Add Tag Sets to a Replica Set (page 642)
• Custom Multi-Datacenter Write Concerns (page 643)
• Configure Tag Sets for Functional Segregation of Read and Write Operations (page 644)

Tag sets let you customize write concern and read preferences for a replica set. MongoDB stores tag sets in the replica
set configuration object, which is the document returned by rs.conf(), in the members[n].tags (page 662)
embedded document.

This section introduces the configuration of tag sets. For an overview on tag sets and their use, see Replica Set Write
Concern (page 83) and Tag Sets (page 594).

Differences Between Read Preferences and Write Concerns

Custom read preferences and write concerns evaluate tags sets in different ways:

• Read preferences consider the value of a tag when selecting a member to read from.

• Write concerns do not use the value of a tag to select a member except to consider whether or not the value is
unique.

For example, a tag set for a read operation may resemble the following document:

{ "disk": "ssd", "use": "reporting" }

9.3. Replica Set Tutorials 641

MongoDB Documentation, Release 2.6.11

To fulfill such a read operation, a member would need to have both of these tags. Any of the following tag sets would
satisfy this requirement:

{ "disk": "ssd", "use": "reporting" }
{ "disk": "ssd", "use": "reporting", "rack": "a" }
{ "disk": "ssd", "use": "reporting", "rack": "d" }
{ "disk": "ssd", "use": "reporting", "mem": "r"}

The following tag sets would not be able to fulfill this query:

{ "disk": "ssd" }
{ "use": "reporting" }
{ "disk": "ssd", "use": "production" }
{ "disk": "ssd", "use": "production", "rack": "k" }
{ "disk": "spinning", "use": "reporting", "mem": "32" }

Add Tag Sets to a Replica Set

Given the following replica set configuration:

{
"_id" : "rs0",
"version" : 1,
"members" : [

{
"_id" : 0,
"host" : "mongodb0.example.net:27017"

},
{

"_id" : 1,
"host" : "mongodb1.example.net:27017"

},
{

"_id" : 2,
"host" : "mongodb2.example.net:27017"

}
]

}

You could add tag sets to the members of this replica set with the following command sequence in the mongo shell:

conf = rs.conf()
conf.members[0].tags = { "dc": "east", "use": "production" }
conf.members[1].tags = { "dc": "east", "use": "reporting" }
conf.members[2].tags = { "use": "production" }
rs.reconfig(conf)

After this operation the output of rs.conf() would resemble the following:

{
"_id" : "rs0",
"version" : 2,
"members" : [

{
"_id" : 0,
"host" : "mongodb0.example.net:27017",
"tags" : {

"dc": "east",

642 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

"use": "production"
}

},
{

"_id" : 1,
"host" : "mongodb1.example.net:27017",
"tags" : {

"dc": "east",
"use": "reporting"

}
},
{

"_id" : 2,
"host" : "mongodb2.example.net:27017",
"tags" : {

"use": "production"
}

}
]

}

Important: In tag sets, all tag values must be strings.

Custom Multi-Datacenter Write Concerns

Given a five member replica set with members in two data centers:

1. a facility VA tagged dc_va

2. a facility GTO tagged dc_gto

Create a custom write concern to require confirmation from two data centers using replica set tags, using the following
sequence of operations in the mongo shell:

1. Create a replica set configuration JavaScript object conf:

conf = rs.conf()

2. Add tags to the replica set members reflecting their locations:

conf.members[0].tags = { "dc_va": "rack1"}
conf.members[1].tags = { "dc_va": "rack2"}
conf.members[2].tags = { "dc_gto": "rack1"}
conf.members[3].tags = { "dc_gto": "rack2"}
conf.members[4].tags = { "dc_va": "rack1"}
rs.reconfig(conf)

3. Create a custom getLastErrorModes (page 664) setting to ensure that the write operation will propagate
to at least one member of each facility:

conf.settings = { getLastErrorModes: { MultipleDC : { "dc_va": 1, "dc_gto": 1 } } }

4. Reconfigure the replica set using the modified conf configuration object:

rs.reconfig(conf)

To ensure that a write operation propagates to at least one member of the set in both data centers, use the MultipleDC
write concern mode as follows:

9.3. Replica Set Tutorials 643

MongoDB Documentation, Release 2.6.11

db.users.insert({ id: "xyz", status: "A" }, { writeConcern: { w: "MultipleDC" } })

Alternatively, if you want to ensure that each write operation propagates to at least 2 racks in each facility, reconfigure
the replica set as follows in the mongo shell:

1. Create a replica set configuration object conf:

conf = rs.conf()

2. Redefine the getLastErrorModes (page 664) value to require two different values of both dc_va and
dc_gto:

conf.settings = { getLastErrorModes: { MultipleDC : { "dc_va": 2, "dc_gto": 2}}

3. Reconfigure the replica set using the modified conf configuration object:

rs.reconfig(conf)

Now, the following write operation will only return after the write operation propagates to at least two different racks
in the each facility:

Changed in version 2.6: A new protocol for write operations (page 832) integrates write concerns with the write
operations. Previous versions used the getLastError command to specify the write concerns.

db.users.insert({ id: "xyz", status: "A" }, { writeConcern: { w: "MultipleDC" } })

Configure Tag Sets for Functional Segregation of Read and Write Operations

Given a replica set with tag sets that reflect:

• data center facility,

• physical rack location of instance, and

• storage system (i.e. disk) type.

Where each member of the set has a tag set that resembles one of the following: 17

{"dc_va": "rack1", disk:"ssd", ssd: "installed" }
{"dc_va": "rack2", disk:"raid"}
{"dc_gto": "rack1", disk:"ssd", ssd: "installed" }
{"dc_gto": "rack2", disk:"raid"}
{"dc_va": "rack1", disk:"ssd", ssd: "installed" }

To target a read operation to a member of the replica set with a disk type of ssd, you could use the following tag set:

{ disk: "ssd" }

However, to create comparable write concern modes, you would specify a different set of getLastErrorModes
(page 664) configuration. Consider the following sequence of operations in the mongo shell:

1. Create a replica set configuration object conf:

conf = rs.conf()

2. Redefine the getLastErrorModes (page 664) value to configure two write concern modes:

17 Since read preferences and write concerns use the value of fields in tag sets differently, larger deployments may have some redundancy.

644 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

conf.settings = {
"getLastErrorModes" : {

"ssd" : {
"ssd" : 1

},
"MultipleDC" : {

"dc_va" : 1,
"dc_gto" : 1

}
}

}

3. Reconfigure the replica set using the modified conf configuration object:

rs.reconfig(conf)

Now you can specify the MultipleDC write concern mode, as in the following, to ensure that a write operation
propagates to each data center.

Changed in version 2.6: A new protocol for write operations (page 832) integrates write concerns with the write
operations. Previous versions used the getLastError command to specify the write concerns.

db.users.insert({ id: "xyz", status: "A" }, { writeConcern: { w: "MultipleDC" } })

Additionally, you can specify the ssd write concern mode to ensure that a write operation propagates to at least one
instance with an SSD.

Reconfigure a Replica Set with Unavailable Members

On this page

• Reconfigure by Forcing the Reconfiguration (page 645)
• Reconfigure by Replacing the Replica Set (page 646)

To reconfigure a replica set when a majority of members are available, use the rs.reconfig() operation on the
current primary, following the example in the Replica Set Reconfiguration Procedure.

This document provides the following options for re-configuring a replica set when only a minority of members are
accessible:

• Reconfigure by Forcing the Reconfiguration (page 645)

• Reconfigure by Replacing the Replica Set (page 646)

You may need to use one of these procedures, for example, in a geographically distributed replica set, where no local
group of members can reach a majority. See Replica Set Elections (page 583) for more information on this situation.

Reconfigure by Forcing the Reconfiguration

Changed in version 2.0.

This procedure lets you recover while a majority of replica set members are down or unreachable. You connect to any
surviving member and use the force option to the rs.reconfig() method.

The force option forces a new configuration onto the member. Use this procedure only to recover from catastrophic
interruptions. Do not use force every time you reconfigure. Also, do not use the force option in any automatic
scripts and do not use force when there is still a primary.

9.3. Replica Set Tutorials 645

MongoDB Documentation, Release 2.6.11

To force reconfiguration:

1. Back up a surviving member.

2. Connect to a surviving member and save the current configuration. Consider the following example commands
for saving the configuration:

cfg = rs.conf()

printjson(cfg)

3. On the same member, remove the down and unreachable members of the replica set from the members
(page 661) array by setting the array equal to the surviving members alone. Consider the following example,
which uses the cfg variable created in the previous step:

cfg.members = [cfg.members[0] , cfg.members[4] , cfg.members[7]]

4. On the same member, reconfigure the set by using the rs.reconfig() command with the force option set
to true:

rs.reconfig(cfg, {force : true})

This operation forces the secondary to use the new configuration. The configuration is then propagated to all the
surviving members listed in the members array. The replica set then elects a new primary.

Note: When you use force : true, the version number in the replica set configuration increases signif-
icantly, by tens or hundreds of thousands. This is normal and designed to prevent set version collisions if you
accidentally force re-configurations on both sides of a network partition and then the network partitioning ends.

5. If the failure or partition was only temporary, shut down or decommission the removed members as soon as
possible.

Reconfigure by Replacing the Replica Set

Use the following procedure only for versions of MongoDB prior to version 2.0. If you’re running MongoDB 2.0 or
later, use the above procedure, Reconfigure by Forcing the Reconfiguration (page 645).

These procedures are for situations where a majority of the replica set members are down or unreachable. If a majority
is running, then skip these procedures and instead use the rs.reconfig() command according to the examples in
replica-set-reconfiguration-usage.

If you run a pre-2.0 version and a majority of your replica set is down, you have the two options described here. Both
involve replacing the replica set.

Reconfigure by Turning Off Replication This option replaces the replica set with a standalone server.

1. Stop the surviving mongod instances. To ensure a clean shutdown, use an existing control script or use the
db.shutdownServer() method.

For example, to use the db.shutdownServer() method, connect to the server using the mongo shell and
issue the following sequence of commands:

use admin
db.shutdownServer()

2. Create a backup of the data directory (i.e. dbPath) of the surviving members of the set.

Optional

646 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

If you have a backup of the database you may instead remove this data.

3. Restart one of the mongod instances without the --replSet parameter.

The data is now accessible and provided by a single server that is not a replica set member. Clients can use this
server for both reads and writes.

When possible, re-deploy a replica set to provide redundancy and to protect your deployment from operational inter-
ruption.

Reconfigure by “Breaking the Mirror” This option selects a surviving replica set member to be the new primary
and to “seed” a new replica set. In the following procedure, the new primary is db0.example.net. MongoDB
copies the data from db0.example.net to all the other members.

1. Stop the surviving mongod instances. To ensure a clean shutdown, use an existing control script or use the
db.shutdownServer() method.

For example, to use the db.shutdownServer() method, connect to the server using the mongo shell and
issue the following sequence of commands:

use admin
db.shutdownServer()

2. Move the data directories (i.e. dbPath) for all the members except db0.example.net, so that all the
members except db0.example.net have empty data directories. For example:

mv /data/db /data/db-old

3. Move the data files for local database (i.e. local.*) so that db0.example.net has no local database.
For example

mkdir /data/local-old
mv /data/db/local* /data/local-old/

4. Start each member of the replica set normally.

5. Connect to db0.example.net in a mongo shell and run rs.initiate() to initiate the replica set.

6. Add the other set members using rs.add(). For example, to add a member running on db1.example.net
at port 27017, issue the following command:

rs.add("db1.example.net:27017")

MongoDB performs an initial sync on the added members by copying all data from db0.example.net to
the added members.

See also:

Resync a Member of a Replica Set (page 640)

Manage Chained Replication

On this page

• Disable Chained Replication (page 648)
• Re-enable Chained Replication (page 648)

9.3. Replica Set Tutorials 647

MongoDB Documentation, Release 2.6.11

Starting in version 2.0, MongoDB supports chained replication. A chained replication occurs when a secondary
member replicates from another secondary member instead of from the primary. This might be the case, for example,
if a secondary selects its replication target based on ping time and if the closest member is another secondary.

Chained replication can reduce load on the primary. But chained replication can also result in increased replication
lag, depending on the topology of the network.

New in version 2.2.2.

You can use the chainingAllowed (page 663) setting in Replica Set Configuration (page 659) to disable chained
replication for situations where chained replication is causing lag.

MongoDB enables chained replication by default. This procedure describes how to disable it and how to re-enable it.

Note: If chained replication is disabled, you still can use replSetSyncFrom to specify that a secondary replicates
from another secondary. But that configuration will last only until the secondary recalculates which member to sync
from.

Disable Chained Replication

To disable chained replication, set the chainingAllowed (page 663) field in Replica Set Configuration (page 659)
to false.

You can use the following sequence of commands to set chainingAllowed (page 663) to false:

1. Copy the configuration settings into the cfg object:

cfg = rs.config()

2. Take note of whether the current configuration settings contain the settings embedded document. If they do,
skip this step.

Warning: To avoid data loss, skip this step if the configuration settings contain the settings embedded
document.

If the current configuration settings do not contain the settings embedded document, create the embedded
document by issuing the following command:

cfg.settings = { }

3. Issue the following sequence of commands to set chainingAllowed (page 663) to false:

cfg.settings.chainingAllowed = false
rs.reconfig(cfg)

Re-enable Chained Replication

To re-enable chained replication, set chainingAllowed (page 663) to true. You can use the following sequence
of commands:

cfg = rs.config()
cfg.settings.chainingAllowed = true
rs.reconfig(cfg)

648 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Change Hostnames in a Replica Set

On this page

• Overview (page 649)
• Assumptions (page 649)
• Change Hostnames while Maintaining Replica Set Availability (page 650)
• Change All Hostnames at the Same Time (page 651)

For most replica sets, the hostnames in the host (page 661) field never change. However, if organizational needs
change, you might need to migrate some or all host names.

Note: Always use resolvable hostnames for the value of the host (page 661) field in the replica set configuration to
avoid confusion and complexity.

Overview

This document provides two separate procedures for changing the hostnames in the host (page 661) field. Use either
of the following approaches:

• Change hostnames without disrupting availability (page 650). This approach ensures your applications will
always be able to read and write data to the replica set, but the approach can take a long time and may incur
downtime at the application layer.

If you use the first procedure, you must configure your applications to connect to the replica set at both the old
and new locations, which often requires a restart and reconfiguration at the application layer and which may
affect the availability of your applications. Re-configuring applications is beyond the scope of this document.

• Stop all members running on the old hostnames at once (page 651). This approach has a shorter maintenance
window, but the replica set will be unavailable during the operation.

See also:

Replica Set Reconfiguration Process, Deploy a Replica Set (page 607), and Add Members to a Replica Set (page 620).

Assumptions

Given a replica set with three members:

• database0.example.com:27017 (the primary)

• database1.example.com:27017

• database2.example.com:27017

And with the following rs.conf() output:

{
"_id" : "rs",
"version" : 3,
"members" : [

{
"_id" : 0,
"host" : "database0.example.com:27017"

},
{

9.3. Replica Set Tutorials 649

MongoDB Documentation, Release 2.6.11

"_id" : 1,
"host" : "database1.example.com:27017"

},
{

"_id" : 2,
"host" : "database2.example.com:27017"

}
]

}

The following procedures change the members’ hostnames as follows:

• mongodb0.example.net:27017 (the primary)

• mongodb1.example.net:27017

• mongodb2.example.net:27017

Use the most appropriate procedure for your deployment.

Change Hostnames while Maintaining Replica Set Availability

This procedure uses the above assumptions (page 649).

1. For each secondary in the replica set, perform the following sequence of operations:

(a) Stop the secondary.

(b) Restart the secondary at the new location.

(c) Open a mongo shell connected to the replica set’s primary. In our example, the primary runs on port
27017 so you would issue the following command:

mongo --port 27017

(d) Use rs.reconfig() to update the replica set configuration document (page 659) with the new host-
name.

For example, the following sequence of commands updates the hostname for the secondary at the array
index 1 of the members array (i.e. members[1]) in the replica set configuration document:

cfg = rs.conf()
cfg.members[1].host = "mongodb1.example.net:27017"
rs.reconfig(cfg)

For more information on updating the configuration document, see replica-set-reconfiguration-usage.

(e) Make sure your client applications are able to access the set at the new location and that the secondary has
a chance to catch up with the other members of the set.

Repeat the above steps for each non-primary member of the set.

2. Open a mongo shell connected to the primary and step down the primary using the rs.stepDown() method:

rs.stepDown()

The replica set elects another member to the become primary.

3. When the step down succeeds, shut down the old primary.

4. Start the mongod instance that will become the new primary in the new location.

650 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

5. Connect to the current primary, which was just elected, and update the replica set configuration document
(page 659) with the hostname of the node that is to become the new primary.

For example, if the old primary was at position 0 and the new primary’s hostname is
mongodb0.example.net:27017, you would run:

cfg = rs.conf()
cfg.members[0].host = "mongodb0.example.net:27017"
rs.reconfig(cfg)

6. Open a mongo shell connected to the new primary.

7. To confirm the new configuration, call rs.conf() in the mongo shell.

Your output should resemble:

{
"_id" : "rs",
"version" : 4,
"members" : [

{
"_id" : 0,
"host" : "mongodb0.example.net:27017"

},
{

"_id" : 1,
"host" : "mongodb1.example.net:27017"

},
{

"_id" : 2,
"host" : "mongodb2.example.net:27017"

}
]

}

Change All Hostnames at the Same Time

This procedure uses the above assumptions (page 649).

1. Stop all members in the replica set.

2. Restart each member on a different port and without using the --replSet run-time option. Changing the port
number during maintenance prevents clients from connecting to this host while you perform maintenance. Use
the member’s usual --dbpath, which in this example is /data/db1. Use a command that resembles the
following:

mongod --dbpath /data/db1/ --port 37017

3. For each member of the replica set, perform the following sequence of operations:

(a) Open a mongo shell connected to the mongod running on the new, temporary port. For example, for a
member running on a temporary port of 37017, you would issue this command:

mongo --port 37017

(b) Edit the replica set configuration manually. The replica set configuration is the only document in the
system.replset collection in the local database. Edit the replica set configuration with the new
hostnames and correct ports for all the members of the replica set. Consider the following sequence of
commands to change the hostnames in a three-member set:

9.3. Replica Set Tutorials 651

MongoDB Documentation, Release 2.6.11

use local

cfg = db.system.replset.findOne({ "_id": "rs" })

cfg.members[0].host = "mongodb0.example.net:27017"

cfg.members[1].host = "mongodb1.example.net:27017"

cfg.members[2].host = "mongodb2.example.net:27017"

db.system.replset.update({ "_id": "rs" } , cfg)

(c) Stop the mongod process on the member.

4. After re-configuring all members of the set, start each mongod instance in the normal way: use the usual port
number and use the --replSet option. For example:

mongod --dbpath /data/db1/ --port 27017 --replSet rs

5. Connect to one of the mongod instances using the mongo shell. For example:

mongo --port 27017

6. To confirm the new configuration, call rs.conf() in the mongo shell.

Your output should resemble:

{
"_id" : "rs",
"version" : 4,
"members" : [

{
"_id" : 0,
"host" : "mongodb0.example.net:27017"

},
{

"_id" : 1,
"host" : "mongodb1.example.net:27017"

},
{

"_id" : 2,
"host" : "mongodb2.example.net:27017"

}
]

}

Configure a Secondary’s Sync Target

On this page

• Overview (page 653)
• Considerations (page 653)
• Procedure (page 654)

652 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Overview

Secondaries capture data from the primary member to maintain an up to date copy of the sets’ data. However, by
default secondaries may automatically change their sync targets to secondary members based on changes in the ping
time between members and the state of other members’ replication. See Replica Set Data Synchronization (page 598)
and Manage Chained Replication (page 647) for more information.

For some deployments, implementing a custom replication sync topology may be more effective than the default sync
target selection logic. MongoDB provides the ability to specify a host to use as a sync target.

To override the default sync target selection logic, you may manually configure a secondary member’s sync target to
temporarily pull oplog entries. The following provide access to this functionality:

• replSetSyncFrom command, or

• rs.syncFrom() helper in the mongo shell

Considerations

Sync Logic Only modify the default sync logic as needed, and always exercise caution. rs.syncFrom() will
not affect an in-progress initial sync operation. To affect the sync target for the initial sync, run rs.syncFrom()
operation before initial sync.

If you run rs.syncFrom() during initial sync, MongoDB produces no error messages, but the sync target will not
change until after the initial sync operation.

Persistence replSetSyncFrom and rs.syncFrom() provide a temporary override of default behavior.
mongod will revert to the default sync behavior in the following situations:

• The mongod instance restarts.

• The connection between the mongod and the sync target closes.

Changed in version 2.4: The sync target falls more than 30 seconds behind another member of the replica set; the
mongod will revert to the default sync target.

Target The member to sync from must be a valid source for data in the set. To sync from a member, the member
must:

• Have data. It cannot be an arbiter, in startup or recovering mode, and must be able to answer data queries.

• Be accessible.

• Be a member of the same set in the replica set configuration.

• Build indexes with the buildIndexes (page 661) setting.

• A different member of the set, to prevent syncing from itself.

If you attempt to replicate from a member that is more than 10 seconds behind the current member, mongod will log
a warning but will still replicate from the lagging member.

If you run replSetSyncFrom during initial sync, MongoDB produces no error messages, but the sync target will
not change until after the initial sync operation.

9.3. Replica Set Tutorials 653

MongoDB Documentation, Release 2.6.11

Procedure

To use the replSetSyncFrom command in the mongo shell:

db.adminCommand({ replSetSyncFrom: "hostname<:port>" });

To use the rs.syncFrom() helper in the mongo shell:

rs.syncFrom("hostname<:port>");

9.3.4 Troubleshoot Replica Sets

On this page

• Check Replica Set Status (page 654)
• Check the Replication Lag (page 654)
• Test Connections Between all Members (page 655)
• Socket Exceptions when Rebooting More than One Secondary (page 656)
• Check the Size of the Oplog (page 657)
• Oplog Entry Timestamp Error (page 657)
• Duplicate Key Error on local.slaves (page 658)

This section describes common strategies for troubleshooting replica set deployments.

Check Replica Set Status

To display the current state of the replica set and current state of each member, run the rs.status() method in a
mongo shell connected to the replica set’s primary. For descriptions of the information displayed by rs.status(),
see http://docs.mongodb.org/manual/reference/command/replSetGetStatus.

Note: The rs.status() method is a wrapper that runs the replSetGetStatus database command.

Check the Replication Lag

Replication lag is a delay between an operation on the primary and the application of that operation from the oplog to
the secondary. Replication lag can be a significant issue and can seriously affect MongoDB replica set deployments.
Excessive replication lag makes “lagged” members ineligible to quickly become primary and increases the possibility
that distributed read operations will be inconsistent.

To check the current length of replication lag:

• In a mongo shell connected to the primary, call the rs.printSlaveReplicationInfo() method.

Returns the syncedTo value for each member, which shows the time when the last oplog entry was written to
the secondary, as shown in the following example:

source: m1.example.net:27017
syncedTo: Thu Apr 10 2014 10:27:47 GMT-0400 (EDT)
0 secs (0 hrs) behind the primary

source: m2.example.net:27017
syncedTo: Thu Apr 10 2014 10:27:47 GMT-0400 (EDT)
0 secs (0 hrs) behind the primary

654 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

A delayed member (page 573) may show as 0 seconds behind the primary when the inactivity period on the
primary is greater than the slaveDelay (page 663) value.

Note: The rs.status() method is a wrapper around the replSetGetStatus database command.

• Monitor the rate of replication by watching the oplog time in the “replica” graph in the MongoDB Cloud Man-
ager18. For more information, see the MongoDB Cloud Manager documentation19.

Possible causes of replication lag include:

• Network Latency

Check the network routes between the members of your set to ensure that there is no packet loss or network
routing issue.

Use tools including ping to test latency between set members and traceroute to expose the routing of
packets network endpoints.

• Disk Throughput

If the file system and disk device on the secondary is unable to flush data to disk as quickly as the primary, then
the secondary will have difficulty keeping state. Disk-related issues are incredibly prevalent on multi-tenant
systems, including virtualized instances, and can be transient if the system accesses disk devices over an IP
network (as is the case with Amazon’s EBS system.)

Use system-level tools to assess disk status, including iostat or vmstat.

• Concurrency

In some cases, long-running operations on the primary can block replication on secondaries. For best results,
configure write concern (page 82) to require confirmation of replication to secondaries, as described in replica
set write concern (page 83). This prevents write operations from returning if replication cannot keep up with
the write load.

Use the database profiler to see if there are slow queries or long-running operations that correspond to the
incidences of lag.

• Appropriate Write Concern

If you are performing a large data ingestion or bulk load operation that requires a large number of writes to the
primary, particularly with unacknowledged write concern (page 82), the secondaries will not be able to read the
oplog fast enough to keep up with changes.

To prevent this, require write acknowledgment or journaled write concern (page 82) after every 100, 1,000, or
an another interval to provide an opportunity for secondaries to catch up with the primary.

For more information see:

– Replica Acknowledge Write Concern (page 83)

– Replica Set Write Concern (page 88)

– Oplog Size (page 597)

Test Connections Between all Members

All members of a replica set must be able to connect to every other member of the set to support replication. Always
verify connections in both “directions.” Networking topologies and firewall configurations can prevent normal and
required connectivity, which can block replication.

18https://cloud.mongodb.com/?jmp=docs
19https://docs.cloud.mongodb.com/

9.3. Replica Set Tutorials 655

https://cloud.mongodb.com/?jmp=docs
https://cloud.mongodb.com/?jmp=docs
https://docs.cloud.mongodb.com/

MongoDB Documentation, Release 2.6.11

Consider the following example of a bidirectional test of networking:

Example
Given a replica set with three members running on three separate hosts:

• m1.example.net

• m2.example.net

• m3.example.net

1. Test the connection from m1.example.net to the other hosts with the following operation set
m1.example.net:

mongo --host m2.example.net --port 27017

mongo --host m3.example.net --port 27017

2. Test the connection from m2.example.net to the other two hosts with the following operation set from
m2.example.net, as in:

mongo --host m1.example.net --port 27017

mongo --host m3.example.net --port 27017

You have now tested the connection between m2.example.net and m1.example.net in both directions.

3. Test the connection from m3.example.net to the other two hosts with the following operation set from the
m3.example.net host, as in:

mongo --host m1.example.net --port 27017

mongo --host m2.example.net --port 27017

If any connection, in any direction fails, check your networking and firewall configuration and reconfigure your envi-
ronment to allow these connections.

Socket Exceptions when Rebooting More than One Secondary

When you reboot members of a replica set, ensure that the set is able to elect a primary during the maintenance. This
means ensuring that a majority of the set’s ‘votes (page 663) are available.

When a set’s active members can no longer form a majority, the set’s primary steps down and becomes a secondary.
The former primary closes all open connections to client applications. Clients attempting to write to the former primary
receive socket exceptions and Connection reset errors until the set can elect a primary.

Example
Given a three-member replica set where every member has one vote, the set can elect a primary if at least two members
can connect to each other. If you reboot the two secondaries at once, the primary steps down and becomes a secondary.
Until at least another secondary becomes available, i.e. at least one of the rebooted secondaries also becomes available,
the set has no primary and cannot elect a new primary.

For more information on votes, see Replica Set Elections (page 583). For related information on connection errors,
see Does TCP keepalive time affect sharded clusters and replica sets? (page 800).

656 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Check the Size of the Oplog

A larger oplog can give a replica set a greater tolerance for lag, and make the set more resilient.

To check the size of the oplog for a given replica set member, connect to the member in a mongo shell and run the
rs.printReplicationInfo() method.

The output displays the size of the oplog and the date ranges of the operations contained in the oplog. In the following
example, the oplog is about 10MB and is able to fit about 26 hours (94400 seconds) of operations:

configured oplog size: 10.10546875MB
log length start to end: 94400 (26.22hrs)
oplog first event time: Mon Mar 19 2012 13:50:38 GMT-0400 (EDT)
oplog last event time: Wed Oct 03 2012 14:59:10 GMT-0400 (EDT)
now: Wed Oct 03 2012 15:00:21 GMT-0400 (EDT)

The oplog should be long enough to hold all transactions for the longest downtime you expect on a secondary. At a
minimum, an oplog should be able to hold minimum 24 hours of operations; however, many users prefer to have 72
hours or even a week’s work of operations.

For more information on how oplog size affects operations, see:

• Oplog Size (page 597),

• Delayed Replica Set Members (page 573), and

• Check the Replication Lag (page 654).

Note: You normally want the oplog to be the same size on all members. If you resize the oplog, resize it on all
members.

To change oplog size, see the Change the Size of the Oplog (page 634) tutorial.

Oplog Entry Timestamp Error

Consider the following error in mongod output and logs:

replSet error fatal couldn't query the local local.oplog.rs collection. Terminating mongod after 30 seconds.
<timestamp> [rsStart] bad replSet oplog entry?

Often, an incorrectly typed value in the ts field in the last oplog entry causes this error. The correct data type is
Timestamp.

Check the type of the ts value using the following two queries against the oplog collection:

db = db.getSiblingDB("local")
db.oplog.rs.find().sort({$natural:-1}).limit(1)
db.oplog.rs.find({ts:{$type:17}}).sort({$natural:-1}).limit(1)

The first query returns the last document in the oplog, while the second returns the last document in the oplog where
the ts value is a Timestamp. The $type operator allows you to select BSON type 17, is the Timestamp data type.

If the queries don’t return the same document, then the last document in the oplog has the wrong data type in the ts
field.

Example
If the first query returns this as the last oplog entry:

9.3. Replica Set Tutorials 657

MongoDB Documentation, Release 2.6.11

{ "ts" : {t: 1347982456000, i: 1},
"h" : NumberLong("8191276672478122996"),
"op" : "n",
"ns" : "",
"o" : { "msg" : "Reconfig set", "version" : 4 } }

And the second query returns this as the last entry where ts has the Timestamp type:

{ "ts" : Timestamp(1347982454000, 1),
"h" : NumberLong("6188469075153256465"),
"op" : "n",
"ns" : "",
"o" : { "msg" : "Reconfig set", "version" : 3 } }

Then the value for the ts field in the last oplog entry is of the wrong data type.

To set the proper type for this value and resolve this issue, use an update operation that resembles the following:

db.oplog.rs.update({ ts: { t:1347982456000, i:1 } },
{ $set: { ts: new Timestamp(1347982456000, 1)}})

Modify the timestamp values as needed based on your oplog entry. This operation may take some period to complete
because the update must scan and pull the entire oplog into memory.

Duplicate Key Error on local.slaves

The duplicate key on local.slaves error, occurs when a secondary or slave changes its hostname and the primary or
master tries to update its local.slaves collection with the new name. The update fails because it contains the
same _id value as the document containing the previous hostname. The error itself will resemble the following.

exception: E11000 duplicate key error index: local.slaves.$_id_ dup key: { : ObjectId('<object ID>') } 0ms

This is a benign error and does not affect replication operations on the secondary or slave.

To prevent the error from appearing, drop the local.slaves collection from the primary or master, with the
following sequence of operations in the mongo shell:

use local
db.slaves.drop()

The next time a secondary or slave polls the primary or master, the primary or master recreates the local.slaves
collection.

9.4 Replication Reference

On this page

• Replication Methods in the mongo Shell (page 659)
• Replication Database Commands (page 659)
• Replica Set Reference Documentation (page 659)

658 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

9.4.1 Replication Methods in the mongo Shell

Name Description
rs.add() Adds a member to a replica set.
rs.addArb() Adds an arbiter to a replica set.
rs.conf() Returns the replica set configuration document.
rs.freeze() Prevents the current member from seeking election as primary for a period of time.
rs.help() Returns basic help text for replica set functions.
rs.initiate() Initializes a new replica set.
rs.printReplicationInfo()Prints a report of the status of the replica set from the perspective of the primary.
rs.printSlaveReplicationInfo()Prints a report of the status of the replica set from the perspective of the secondaries.
rs.reconfig() Re-configures a replica set by applying a new replica set configuration object.
rs.remove() Remove a member from a replica set.
rs.slaveOk() Sets the slaveOk property for the current connection. Deprecated. Use

readPref() and Mongo.setReadPref() to set read preference.
rs.status() Returns a document with information about the state of the replica set.
rs.stepDown() Causes the current primary to become a secondary which forces an election.
rs.syncFrom() Sets the member that this replica set member will sync from, overriding the default

sync target selection logic.

9.4.2 Replication Database Commands

Name Description
replSetFreeze Prevents the current member from seeking election as primary for a period of time.
replSetGetStatus Returns a document that reports on the status of the replica set.
replSetInitiate Initializes a new replica set.
replSetMaintenanceEnables or disables a maintenance mode, which puts a secondary node in a

RECOVERING state.
replSetReconfig Applies a new configuration to an existing replica set.
replSetStepDown Forces the current primary to step down and become a secondary, forcing an election.
replSetSyncFrom Explicitly override the default logic for selecting a member to replicate from.
resync Forces a mongod to re-synchronize from the master. For master-slave replication only.
applyOps Internal command that applies oplog entries to the current data set.
isMaster Displays information about this member’s role in the replica set, including whether it is

the master.
getoptime Internal command to support replication, returns the optime.

9.4.3 Replica Set Reference Documentation

Replica Set Configuration (page 659) Complete documentation of the replica set configuration object returned by
rs.conf().

The local Database (page 664) Complete documentation of the content of the local database that mongod in-
stances use to support replication.

Replica Set Member States (page 667) Reference for the replica set member states.

Read Preference Reference (page 669) Complete documentation of the five read preference modes that the Mon-
goDB drivers support.

Replica Set Configuration

9.4. Replication Reference 659

MongoDB Documentation, Release 2.6.11

On this page

• Replica Set Configuration Document (page 660)
• Configuration Settings (page 660)
• View Replica Set Configuration (page 664)
• Modify Replica Set Configuration (page 664)

The configuration for a replica set is stored as a document in the system.replset (page 666) collection in the
local database (page 664).

Replica Set Configuration Document

The following document provides a representation of a replica set configuration document. The configuration of your
replica set may include only a subset of these settings:

{
_id: <string>,
version: <int>,
members: [
{

_id: <int>,
host: <string>,
arbiterOnly: <boolean>,
buildIndexes: <boolean>,
hidden: <boolean>,
priority: <number>,
tags: <document>,
slaveDelay: <int>,
votes: <number>

},
...

],
settings: {
getLastErrorDefaults : <document>,
chainingAllowed : <boolean>,
getLastErrorModes : <document>,
heartbeatTimeoutSecs: <int>

}
}

Configuration Settings

local.system.replset._id
Type: string

The name of the replica set. Once set, you cannot change the name of a replica set.

See
replSetName or --replSet for information on setting the replica set name.

local.system.replset.version
An incrementing number used to distinguish revisions of the replica set configuration object from previous
iterations of the configuration.

660 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

replset.members
local.system.replset.members

Type: array

An array of member configuration documents, one for each member of the replica set. The members (page 661)
array is a zero-indexed array.

Each member-specific configuration document can contain the following fields:

local.system.replset.members[n]._id
Type: integer

A numeric identifier of every member in the replica set. Once set, you cannot change the _id (page 661)
of a member.

Note: When updating the replica configuration object, access the replica set members in the members
(page 661) array with the array index. The array index begins with 0. Do not confuse this index value
with the value of the _id (page 661) field in each document in the members (page 661) array.

local.system.replset.members[n].host
Type: string

The hostname and, if specified, the port number, of the set member.

The hostname name must be resolvable for every host in the replica set.

Warning: host (page 661) cannot hold a value that resolves to localhost or the local interface
unless all members of the set are on hosts that resolve to localhost.

local.system.replset.members[n].arbiterOnly
Optional.

Type: boolean

Default: false

A boolean that identifies an arbiter. A value of true indicates that the member is an arbiter.

When using the rs.addArb() method to add an arbiter, the method automatically sets arbiterOnly
(page 661) to true for the added member.

local.system.replset.members[n].buildIndexes
Optional.

Type: boolean

Default: true

A boolean that indicates whether the mongod builds indexes on this member. You can only set this value
when adding a member to a replica set. You cannot change buildIndexes (page 661) field after the
member has been added to the set. To add a member, see rs.add() and rs.reconfig().

Do not set to false for mongod instances that receive queries from clients.

Setting buildIndexes to false may be useful if all the following conditions are true:

•you are only using this instance to perform backups using mongodump, and

•this member will receive no queries, and

•index creation and maintenance overburdens the host system.

9.4. Replication Reference 661

MongoDB Documentation, Release 2.6.11

Even if set to false, secondaries will build indexes on the _id field in order to facilitate operations
required for replication.

Warning: If you set buildIndexes (page 661) to false, you must also set priority
(page 662) to 0. If priority (page 662) is not 0, MongoDB will return an error when attempt-
ing to add a member with buildIndexes (page 661) equal to false.
To ensure the member receives no queries, you should make all instances that do not build indexes
hidden.
Other secondaries cannot replicate from a member where buildIndexes (page 661) is false.

local.system.replset.members[n].hidden
Optional.

Type: boolean

Default: false

When this value is true, the replica set hides this instance and does not include the member in the output
of db.isMaster() or isMaster. This prevents read operations (i.e. queries) from ever reaching this
host by way of secondary read preference.

See also:

Hidden Replica Set Members (page 572)

local.system.replset.members[n].priority
Optional.

Type: Number, between 0 and 1000.

Default: 1.0

A number that indicates the relative eligibility of a member to become a primary.

Specify higher values to make a member more eligible to become primary, and lower values to make the
member less eligible. Priorities are only used in comparison to each other. Members of the set will veto
election requests from members when another eligible member has a higher priority value. Changing the
balance of priority in a replica set will trigger an election.

A priority (page 662) of 0 makes it impossible for a member to become primary.

See also:

Replica Set Elections (page 583).

local.system.replset.members[n].tags
Optional.

Type: document

Default: none

A document that contains arbitrary field and value pairs for describing or tagging members in order to
extend write concern (page 135) and read preference (page 669) and thereby allowing configurable data
center awareness.

Use tags to configure write concerns in conjunction with getLastErrorModes (page 664) and
getLastErrorDefaults (page 664).

Important: In tag sets, all tag values must be strings.

662 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

For more information on configuring tag sets for read preference and write concern, see Configure Replica
Set Tag Sets (page 641).

local.system.replset.members[n].slaveDelay
Optional.

Type: integer

Default: 0

The number of seconds “behind” the primary that this replica set member should “lag”.

Use this option to create delayed members (page 573). Delayed members maintain a copy of the data that
reflects the state of the data at some time in the past.

See also:

Delayed Replica Set Members (page 573)

local.system.replset.members[n].votes
Optional.

Type: integer

Default: 1

The number of votes a server will cast in a replica set election (page 583). The number of votes each
member has can be either 1 or 0.

A replica set can have up to 12 members, but can have at most only 7 voting members. If you need more
than 7 members in one replica set, set votes (page 663) to 0 for the additional non-voting members.

Note: Deprecated since version 2.6: votes (page 663) values greater than 1.

Earlier versions of MongoDB allowed a member to have more than 1 vote by setting votes (page 663)
to a value greater than 1. Setting votes (page 663) to value greater than 1 now produces a warning
message.

replset.settings
local.system.replset.settings

Optional.

Type: document

A document that contains configuration options that apply to the whole replica set.

The settings (page 663) document contain the following fields:

local.system.replset.settings.chainingAllowed
New in version 2.2.4.

Optional.

Type: boolean

Default: true

When chainingAllowed (page 663) is true, the replica set allows secondary members to replicate
from other secondary members. When chainingAllowed (page 663) is false, secondaries can repli-
cate only from the primary.

When you run rs.conf() to view a replica set’s configuration, the chainingAllowed (page 663)
field appears only when set to false. If not set, chainingAllowed (page 663) is true.

9.4. Replication Reference 663

MongoDB Documentation, Release 2.6.11

See also:

Manage Chained Replication (page 647)

local.system.replset.settings.getLastErrorDefaults
Optional.

Type: document

A document that specifies the write concern (page 589) for the replica set. The replica set will use this
write concern only when write operations (page 838) or getLastError specify no other write concern.

If getLastErrorDefaults (page 664) is not set, the default write concern for the replica set only
requires confirmation from the primary.

local.system.replset.settings.getLastErrorModes
Optional.

Type: document

A document used to define an extended write concern through the use of tags (page 662). The extended
write concern can provide data-center awareness.

For example, the following document defines an extended write concern named eastCoast and asso-
ciates with a write to a member that has the east tag.

{ getLastErrorModes: { eastCoast: { "east": 1 } } }

Write operations to the replica set can use the extended write concern, e.g. { w: "eastCoast" }.

See Configure Replica Set Tag Sets (page 641) for more information and example.

local.system.replset.settings.heartbeatTimeoutSecs
Optional.

Type: int

Default: 10

Number of seconds that the replica set members wait for a successful heartbeat from each other. If a
member does not respond in time, other members mark the delinquent member as inaccessible.

View Replica Set Configuration

To view the current configuration for a replica set, use the rs.conf() method. See rs.conf() for more informa-
tion.

Modify Replica Set Configuration

To modify the configuration for a replica set, use the rs.reconfig() method, passing a configuration document to
the method. See rs.reconfig() for more information.

The local Database

664 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

On this page

• Overview (page 665)
• Collection on all mongod Instances (page 665)
• Collections on Replica Set Members (page 666)
• Collections used in Master/Slave Replication (page 666)

Overview

Every mongod instance has its own local database, which stores data used in the replication process, and other
instance-specific data. The local database is invisible to replication: collections in the local database are not
replicated.

In replication, the local database store stores internal replication data for each member of a replica set. The local
stores the following collections:

Changed in version 2.4: When running with authentication (i.e. authorization), authenticating to the local
database is not equivalent to authenticating to the admin database. In previous versions, authenticating to the local
database provided access to all databases.

Collection on all mongod Instances

local.startup_log
On startup, each mongod instance inserts a document into startup_log (page 665) with diagnostic informa-
tion about the mongod instance itself and host information. startup_log (page 665) is a capped collection.
This information is primarily useful for diagnostic purposes.

Example
Consider the following prototype of a document from the startup_log (page 665) collection:

{
"_id" : "<string>",
"hostname" : "<string>",
"startTime" : ISODate("<date>"),
"startTimeLocal" : "<string>",
"cmdLine" : {

"dbpath" : "<path>",
"<option>" : <value>

},
"pid" : <number>,
"buildinfo" : {

"version" : "<string>",
"gitVersion" : "<string>",
"sysInfo" : "<string>",
"loaderFlags" : "<string>",
"compilerFlags" : "<string>",
"allocator" : "<string>",
"versionArray" : [<num>, <num>, <...>],
"javascriptEngine" : "<string>",
"bits" : <number>,
"debug" : <boolean>,
"maxBsonObjectSize" : <number>

9.4. Replication Reference 665

MongoDB Documentation, Release 2.6.11

}
}

Documents in the startup_log (page 665) collection contain the following fields:

local.startup_log._id
Includes the system hostname and a millisecond epoch value.

local.startup_log.hostname
The system’s hostname.

local.startup_log.startTime
A UTC ISODate value that reflects when the server started.

local.startup_log.startTimeLocal
A string that reports the startTime (page 666) in the system’s local time zone.

local.startup_log.cmdLine
An embedded document that reports the mongod runtime options and their values.

local.startup_log.pid
The process identifier for this process.

local.startup_log.buildinfo
An embedded document that reports information about the build environment and settings used to compile
this mongod. This is the same output as buildInfo. See buildInfo.

Collections on Replica Set Members

local.system.replset
local.system.replset (page 666) holds the replica set’s configuration object as its single document. To
view the object’s configuration information, issue rs.conf() from the mongo shell. You can also query this
collection directly.

local.oplog.rs
local.oplog.rs (page 666) is the capped collection that holds the oplog. You set its size at creation using
the oplogSizeMB setting. To resize the oplog after replica set initiation, use the Change the Size of the Oplog
(page 634) procedure. For additional information, see the Oplog Size (page 597) section.

local.replset.minvalid
This contains an object used internally by replica sets to track replication status.

local.slaves
This contains information about each member of the set and the latest point in time that this member has synced
to. If this collection becomes out of date, you can refresh it by dropping the collection and allowing MongoDB
to automatically refresh it during normal replication:

db.getSiblingDB("local").slaves.drop()

Collections used in Master/Slave Replication

In master/slave replication, the local database contains the following collections:

• On the master:

local.oplog.$main
This is the oplog for the master-slave configuration.

666 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

local.slaves
This contains information about each slave.

• On each slave:

local.sources
This contains information about the slave’s master server.

Replica Set Member States

On this page

• States (page 667)

Each member of a replica set has a state that reflects its disposition within the set.

Num-
ber

Name State Description

0 STARTUP
(page 668)

Not yet an active member of any set. All members start up in this state. The mongod
parses the replica set configuration document (page 625) while in STARTUP (page 668).

1 PRIMARY
(page 667)

The member in state primary (page 568) is the only member that can accept write
operations.

2 SECONDARY
(page 667)

A member in state secondary (page 569) is replicating the data store. Data is available
for reads, although they may be stale.

3 RECOVERING
(page 668)

A member in this state is replicating the data store but does not yet have a consistent
view of the data. Data is not available for reads until the member transitions to state
secondary (page 569).

5 STARTUP2
(page 668)

The member has joined the set and is running an initial sync.

6 UNKNOWN
(page 668)

The member’s state, as seen from another member of the set, is not yet known.

7 ARBITER
(page 667)

Arbiters (page ??) do not replicate data and exist solely to participate in elections.

8 DOWN
(page 668)

The member, as seen from another member of the set, is unreachable.

9 ROLLBACK
(page 668)

This member is actively performing a rollback (page 587). Data is not available for
reads.

10 REMOVED
(page 668)

This member was once in a replica set but was subsequently removed.

States

Core States
PRIMARY

Members in PRIMARY (page 667) state accept write operations. A replica set has at most one primary at a time.
A SECONDARY (page 667) member becomes primary after an election (page 583). Members in the PRIMARY
(page 667) state are eligible to vote.

SECONDARY
Members in SECONDARY (page 667) state replicate the primary’s data set and can be configured to accept read
operations. Secondaries are eligible to vote in elections, and may be elected to the PRIMARY (page 667) state if
the primary becomes unavailable.

9.4. Replication Reference 667

MongoDB Documentation, Release 2.6.11

ARBITER
Members in ARBITER (page 667) state do not replicate data or accept write operations. They are eligible to
vote, and exist solely to break a tie during elections. Replica sets should only have a member in the ARBITER
(page 667) state if the set would otherwise have an even number of members, and could suffer from tied elec-
tions. There should only be at most one arbiter configured in any replica set.

See Replica Set Members (page 567) for more information on core states.

Other States
STARTUP

Each member of a replica set starts up in STARTUP (page 668) state. mongod then loads that member’s
replica set configuration, and transitions the member’s state to STARTUP2 (page 668). Members in STARTUP
(page 668) are not eligible to vote, as they are not yet a recognized member of any replica set.

STARTUP2
Each member of a replica set enters the STARTUP2 (page 668) state as soon as mongod finishes loading
that member’s configuration, at which time it becomes an active member of the replica set. The member then
decides whether or not to undertake an initial sync. If a member begins an initial sync, the member remains in
STARTUP2 (page 668) until all data is copied and all indexes are built. Afterwards, the member transitions to
RECOVERING (page 668).

RECOVERING
A member of a replica set enters RECOVERING (page 668) state when it is not ready to accept reads. The
RECOVERING (page 668) state can occur during normal operation, and doesn’t necessarily reflect an error
condition. Members in the RECOVERING (page 668) state are eligible to vote in elections, but are not eligible
to enter the PRIMARY (page 667) state.

A member transitions from RECOVERING (page 668) to SECONDARY (page 667) after replicating enough
data to guarantee a consistent view of the data for client reads. The only difference between RECOVERING
(page 668) and SECONDARY (page 667) states is that RECOVERING (page 668) prohibits client reads and
SECONDARY (page 667) permits them. SECONDARY (page 667) state does not guarantee anything about the
staleness of the data with respect to the primary.

Due to overload, a secondary may fall far enough behind the other members of the replica set such that it may
need to resync (page 640) with the rest of the set. When this happens, the member enters the RECOVERING
(page 668) state and requires manual intervention.

Members in SECONDARY (page 667) state can be forced into state RECOVERING (page 668) to prevent client
reads by using maintenance mode. You can toggle maintenance mode with the replSetMaintenance
command. Maintenance mode is also enabled automatically by the compact and touch commands. While
maintenance mode is on, a member will remain in RECOVERING (page 668) state and will reject client reads.

UNKNOWN
Members that have never communicated status information to the replica set are in the UNKNOWN (page 668)
state.

DOWN
Members that lose their connection to the replica set are seen as DOWN (page 668) by the remaining members of
the set.

REMOVED
Members that are removed from the replica set enter the REMOVED (page 668) state. When members enter the
REMOVED (page 668) state, the logs will mark this event with a replSet REMOVED message entry.

ROLLBACK
Whenever the replica set replaces a primary in an election, the old primary may contain documents that did not
replicate to the secondary members. In this case, the old primary member reverts those writes. During rollback
(page 587), the member will have ROLLBACK (page 668) state.

668 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

FATAL
A member in FATAL (page 668) encountered an unrecoverable error. The member must be shut down and
restarted; a resync may be required as well.

Read Preference Reference

On this page

• Read Preference Modes (page 670)
• Use Cases (page 671)
• Read Preferences for Database Commands (page 672)

Read preference describes how MongoDB clients route read operations to the members of a replica set.

By default, an application directs its read operations to the primary member in a replica set. Because write operations
are issued to the single primary, reading from the primary returns the latest version of a document 20.

For an application that does not require fully up-to-date data, you can improve read throughput or reduce latency by
distributing some or all reads to secondary members of the replica set.

20 In some circumstances, two nodes in a replica set may transiently believe that they are the primary, but at most, one of them will be able to
complete writes with {w: majority} write concern (page 135). The node that can complete {w: majority} (page 135) writes is the current primary,
and the other node is a former primary that has not yet recognized its demotion, typically due to a network partition. When this occurs, clients that
connect to the former primary may observe stale data despite having requested read preference primary (page 670).

9.4. Replication Reference 669

MongoDB Documentation, Release 2.6.11

Read Preference
Mode

Description

primary (page 670) Default mode. All operations read from the current replica set primary.
primaryPreferred
(page 670)

In most situations, operations read from the primary but if it is unavailable, operations
read from secondary members.

secondary
(page 670)

All operations read from the secondary members of the replica set.

secondaryPreferred
(page 671)

In most situations, operations read from secondary members but if no secondary
members are available, operations read from the primary.

nearest (page 671) Operations read from member of the replica set with the least network latency,
irrespective of the member’s type.

Note: The read preference does not affect the visibility of data; i.e, clients can see the results of writes before they
are made durable:

• Regardless of write concern (page 135), other clients can see the result of the write operations before the write
operation is acknowledged to the issuing client.

• Clients can read data which may be subsequently rolled back (page 587).

Read Preference Modes

primary
All read operations use only the current replica set primary. 5 This is the default read mode. If the primary is
unavailable, read operations produce an error or throw an exception.

The primary (page 670) read preference mode is not compatible with read preference modes that use tag sets
(page 594). If you specify a tag set with primary (page 670), the driver will produce an error.

primaryPreferred
In most situations, operations read from the primary member of the set. However, if the primary is unavailable,
as is the case during failover situations, operations read from secondary members.

When the read preference includes a tag set (page 594), the client reads first from the primary, if available, and
then from secondaries that match the specified tags. If no secondaries have matching tags, the read operation
produces an error.

Since the application may receive data from a secondary, read operations using the primaryPreferred
(page 670) mode may return stale data in some situations.

Warning: Changed in version 2.2: mongos added full support for read preferences.
When connecting to a mongos instance older than 2.2, using a client that supports read preference modes,
primaryPreferred (page 670) will send queries to secondaries.

secondary
Operations read only from the secondary members of the set. If no secondaries are available, then this read
operation produces an error or exception.

Most sets have at least one secondary, but there are situations where there may be no available secondary. For
example, a set with a primary, a secondary, and an arbiter may not have any secondaries if a member is in
recovering state or unavailable.

When the read preference includes a tag set (page 594), the client attempts to find secondary members that
match the specified tag set and directs reads to a random secondary from among the nearest group (page 594).
If no secondaries have matching tags, the read operation produces an error. 21

21 If your set has more than one secondary, and you use the secondary (page 670) read preference mode, consider the following effect. If

670 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

Read operations using the secondary (page 670) mode may return stale data.

secondaryPreferred
In most situations, operations read from secondary members, but in situations where the set consists of a single
primary (and no other members), the read operation will use the set’s primary.

When the read preference includes a tag set (page 594), the client attempts to find a secondary member that
matches the specified tag set and directs reads to a random secondary from among the nearest group (page 594).
If no secondaries have matching tags, the client ignores tags and reads from the primary.

Read operations using the secondaryPreferred (page 671) mode may return stale data.

nearest
The driver reads from the nearest member of the set according to the member selection (page 594) process.
Reads in the nearest (page 671) mode do not consider the member’s type. Reads in nearest (page 671)
mode may read from both primaries and secondaries.

Set this mode to minimize the effect of network latency on read operations without preference for current or
stale data.

If you specify a tag set (page 594), the client attempts to find a replica set member that matches the specified
tag set and directs reads to an arbitrary member from among the nearest group (page 594).

Read operations using the nearest (page 671) mode may return stale data.

Note: All operations read from a member of the nearest group of the replica set that matches the specified
read preference mode. The nearest (page 671) mode prefers low latency reads over a member’s primary or
secondary status.

For nearest (page 671), the client assembles a list of acceptable hosts based on tag set and then narrows that
list to the host with the shortest ping time and all other members of the set that are within the “local threshold,”
or acceptable latency. See Member Selection (page 594) for more information.

Use Cases

Depending on the requirements of an application, you can configure different applications to use different read prefer-
ences, or use different read preferences for different queries in the same application. Consider the following applica-
tions for different read preference strategies.

Maximize Consistency To avoid stale reads, use primary (page 670) read preference. If the primary is unavail-
able, e.g. during elections or when a majority of the replica set is not accessible, read operations produce an error or
throw an exception.

In some rare edge cases, it may be possible for a replica set to temporarily have two primaries. For example,

• A partial network partition may segregate a primary (pold) into a partition with a minority of the nodes, while the
other side of the partition contains a majority of nodes. The partition with the majority will elect a new primary
(Pnew), but for a brief period, the old primary (pold) may still continue to serve reads and writes, as it has not yet
detected that it can only see a minority of nodes in the replica set. During this period, if the old primary (pold) is
still visible to clients as a primary, reads from this primary may reflect stale data.

• A primary (pold) may become unresponsive, which will trigger an election and a new primary (Pnew) can be
elected, serving reads and writes. If the unresponsive primary (pold) starts responding again, two primaries will

you have a three member replica set (page 577) with a primary and two secondaries, and one secondary becomes unavailable, all secondary
(page 670) queries must target the remaining secondary. This will double the load on this secondary. Plan and provide capacity to support this as
needed.

9.4. Replication Reference 671

MongoDB Documentation, Release 2.6.11

be visible for a brief period. The brief period will end when pold steps down. However, during the brief period,
clients might read from the old primary pold, which can provide stale data.

To increase consistency, you can disable automatic failover; however, disabling automatic failover sacrifices availabil-
ity.

Maximize Availability To permit read operations when possible, use primaryPreferred (page 670). When
there’s a primary you will get consistent reads 5, but if there is no primary you can still query secondaries. However,
when using this read mode, consider the situation described in Reduce load on the primary (page 672).

Minimize Latency To always read from a low-latency node, use nearest (page 671). The driver or mongos will
read from the nearest member and those no more than 15 milliseconds 22 further away than the nearest member.

nearest (page 671) does not guarantee consistency. If the nearest member to your application server is a secondary
with some replication lag, queries could return stale data. nearest (page 671) only reflects network distance and
does not reflect I/O or CPU load.

Query From Geographically Distributed Members If the members of a replica set are geographically distributed,
you can create replica tags based that reflect the location of the instance and then configure your application to query
the members nearby.

For example, if members in “east” and “west” data centers are tagged (page 641) {’dc’: ’east’} and {’dc’:
’west’}, your application servers in the east data center can read from nearby members with the following read
preference:

db.collection.find().readPref({ mode: 'nearest',
tags: [{'dc': 'east'}] })

Although nearest (page 671) already favors members with low network latency, including the tag makes the choice
more predictable.

Reduce load on the primary To shift read load from the primary, use mode secondary (page 670). Although
secondaryPreferred (page 671) is tempting for this use case, it carries some risk: if all secondaries are unavail-
able and your set has enough arbiters to prevent the primary from stepping down, then the primary will receive all
traffic from clients. If the primary is unable to handle this load, queries will compete with writes. For this reason, use
secondary (page 670) to distribute read load to replica sets, not secondaryPreferred (page 671).

Read Preferences for Database Commands

Because some database commands read and return data from the database, all of the official drivers support full read
preference mode semantics (page 670) for the following commands:

• group

• mapReduce 23

• aggregate 24

• collStats

• dbStats

22 This threshold is configurable. See localPingThresholdMs for mongos or your driver documentation for the appropriate setting.
23 Only “inline” mapReduce operations that do not write data support read preference, otherwise these operations must run on the primary

members.
24 Using the $out pipeline operator forces the aggregation pipeline to run on the primary.

672 Chapter 9. Replication

MongoDB Documentation, Release 2.6.11

• count

• distinct

• geoNear

• geoSearch

• geoWalk

• parallelCollectionScan

New in version 2.4: mongos adds support for routing commands to shards using read preferences. Previously
mongos sent all commands to shards’ primaries.

9.4. Replication Reference 673

MongoDB Documentation, Release 2.6.11

674 Chapter 9. Replication

CHAPTER 10

Sharding

Sharding is the process of storing data records across multiple machines and is MongoDB’s approach to meeting the
demands of data growth. As the size of the data increases, a single machine may not be sufficient to store the data nor
provide an acceptable read and write throughput. Sharding solves the problem with horizontal scaling. With sharding,
you add more machines to support data growth and the demands of read and write operations.

Sharding Introduction (page 675) A high-level introduction to horizontal scaling, data partitioning, and sharded
clusters in MongoDB.

Sharding Concepts (page 681) The core documentation of sharded cluster features, configuration, architecture and
behavior.

Sharded Cluster Components (page 681) A sharded cluster consists of shards, config servers, and mongos
instances.

Sharded Cluster Architectures (page 685) Outlines the requirements for sharded clusters, and provides exam-
ples of several possible architectures for sharded clusters.

Sharded Cluster Behavior (page 687) Discusses the operations of sharded clusters with regards to the auto-
matic balancing of data in a cluster and other related availability and security considerations.

Sharding Mechanics (page 697) Discusses the internal operation and behavior of sharded clusters, including
chunk migration, balancing, and the cluster metadata.

Sharded Cluster Tutorials (page 704) Tutorials that describe common procedures and administrative operations rel-
evant to the use and maintenance of sharded clusters.

Sharding Reference (page 753) Reference for sharding-related functions and operations.

10.1 Sharding Introduction

On this page

• Purpose of Sharding (page 676)
• Sharding in MongoDB (page 677)
• Data Partitioning (page 677)
• Maintaining a Balanced Data Distribution (page 679)
• Additional Resources (page 680)

Sharding is a method for storing data across multiple machines. MongoDB uses sharding to support deployments with
very large data sets and high throughput operations.

675

MongoDB Documentation, Release 2.6.11

10.1.1 Purpose of Sharding

Database systems with large data sets and high throughput applications can challenge the capacity of a single server.
High query rates can exhaust the CPU capacity of the server. Larger data sets exceed the storage capacity of a single
machine. Finally, working set sizes larger than the system’s RAM stress the I/O capacity of disk drives.

To address these issues of scales, database systems have two basic approaches: vertical scaling and sharding.

Vertical scaling adds more CPU and storage resources to increase capacity. Scaling by adding capacity has lim-
itations: high performance systems with large numbers of CPUs and large amount of RAM are disproportionately
more expensive than smaller systems. Additionally, cloud-based providers may only allow users to provision smaller
instances. As a result there is a practical maximum capability for vertical scaling.

Sharding, or horizontal scaling, by contrast, divides the data set and distributes the data over multiple servers, or
shards. Each shard is an independent database, and collectively, the shards make up a single logical database.

Sharding addresses the challenge of scaling to support high throughput and large data sets:

• Sharding reduces the number of operations each shard handles. Each shard processes fewer operations as the
cluster grows. As a result, a cluster can increase capacity and throughput horizontally.

For example, to insert data, the application only needs to access the shard responsible for that record.

• Sharding reduces the amount of data that each server needs to store. Each shard stores less data as the cluster
grows.

676 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

For example, if a database has a 1 terabyte data set, and there are 4 shards, then each shard might hold only
256GB of data. If there are 40 shards, then each shard might hold only 25GB of data.

10.1.2 Sharding in MongoDB

MongoDB supports sharding through the configuration of a sharded clusters.

Sharded cluster has the following components: shards, query routers and config servers.

Shards store the data. To provide high availability and data consistency, in a production sharded cluster, each shard is
a replica set 1. For more information on replica sets, see Replica Sets (page 567).

Query Routers, or mongos instances, interface with client applications and direct operations to the appropriate shard
or shards. The query router processes and targets operations to shards and then returns results to the clients. A sharded
cluster can contain more than one query router to divide the client request load. A client sends requests to one query
router. Most sharded clusters have many query routers.

Config servers store the cluster’s metadata. This data contains a mapping of the cluster’s data set to the shards. The
query router uses this metadata to target operations to specific shards. Production sharded clusters have exactly 3
config servers.

10.1.3 Data Partitioning

MongoDB distributes data, or shards, at the collection level. Sharding partitions a collection’s data by the shard key.
1 For development and testing purposes only, each shard can be a single mongod instead of a replica set. Do not deploy production clusters

without 3 config servers.

10.1. Sharding Introduction 677

MongoDB Documentation, Release 2.6.11

Shard Keys

To shard a collection, you need to select a shard key. A shard key is either an indexed field or an indexed compound
field that exists in every document in the collection. MongoDB divides the shard key values into chunks and distributes
the chunks evenly across the shards. To divide the shard key values into chunks, MongoDB uses either range based
partitioning or hash based partitioning. See the Shard Key (page 687) documentation for more information.

Range Based Sharding

For range-based sharding, MongoDB divides the data set into ranges determined by the shard key values to provide
range based partitioning. Consider a numeric shard key: If you visualize a number line that goes from negative
infinity to positive infinity, each value of the shard key falls at some point on that line. MongoDB partitions this line
into smaller, non-overlapping ranges called chunks where a chunk is range of values from some minimum value to
some maximum value.

Given a range based partitioning system, documents with “close” shard key values are likely to be in the same chunk,
and therefore on the same shard.

Hash Based Sharding

For hash based partitioning, MongoDB computes a hash of a field’s value, and then uses these hashes to create chunks.

With hash based partitioning, two documents with “close” shard key values are unlikely to be part of the same chunk.
This ensures a more random distribution of a collection in the cluster.

678 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

Performance Distinctions between Range and Hash Based Partitioning

Range based partitioning supports more efficient range queries. Given a range query on the shard key, the query router
can easily determine which chunks overlap that range and route the query to only those shards that contain these
chunks.

However, range based partitioning can result in an uneven distribution of data, which may negate some of the benefits
of sharding. For example, if the shard key is a linearly increasing field, such as time, then all requests for a given time
range will map to the same chunk, and thus the same shard. In this situation, a small set of shards may receive the
majority of requests and the system would not scale very well.

Hash based partitioning, by contrast, ensures an even distribution of data at the expense of efficient range queries.
Hashed key values results in random distribution of data across chunks and therefore shards. But random distribution
makes it more likely that a range query on the shard key will not be able to target a few shards but would more likely
query every shard in order to return a result.

Customized Data Distribution with Tag Aware Sharding

MongoDB allows administrators to direct the balancing policy using tag aware sharding. Administrators create and
associate tags with ranges of the shard key, and then assign those tags to the shards. Then, the balancer migrates
tagged data to the appropriate shards and ensures that the cluster always enforces the distribution of data that the tags
describe.

Tags are the primary mechanism to control the behavior of the balancer and the distribution of chunks in a cluster.
Most commonly, tag aware sharding serves to improve the locality of data for sharded clusters that span multiple data
centers.

See Tag Aware Sharding (page 746) for more information.

10.1.4 Maintaining a Balanced Data Distribution

The addition of new data or the addition of new servers can result in data distribution imbalances within the cluster,
such as a particular shard contains significantly more chunks than another shard or a size of a chunk is significantly
greater than other chunk sizes.

MongoDB ensures a balanced cluster using two background process: splitting and the balancer.

Splitting

Splitting is a background process that keeps chunks from growing too large. When a chunk grows beyond a specified
chunk size (page 702), MongoDB splits the chunk in half. Inserts and updates triggers splits. Splits are an efficient
meta-data change. To create splits, MongoDB does not migrate any data or affect the shards.

Balancing

The balancer (page 698) is a background process that manages chunk migrations. The balancer can run from any of
the query routers in a cluster.

When the distribution of a sharded collection in a cluster is uneven, the balancer process migrates chunks from the
shard that has the largest number of chunks to the shard with the least number of chunks until the collection balances.
For example: if collection users has 100 chunks on shard 1 and 50 chunks on shard 2, the balancer will migrate
chunks from shard 1 to shard 2 until the collection achieves balance.

The shards manage chunk migrations as a background operation between an origin shard and a destination shard.
During a chunk migration, the destination shard is sent all the current documents in the chunk from the origin shard.

10.1. Sharding Introduction 679

MongoDB Documentation, Release 2.6.11

Next, the destination shard captures and applies all changes made to the data during the migration process. Finally,
the metadata regarding the location of the chunk on config server is updated.

If there’s an error during the migration, the balancer aborts the process leaving the chunk unchanged on the origin
shard. MongoDB removes the chunk’s data from the origin shard after the migration completes successfully.

Adding and Removing Shards from the Cluster

Adding a shard to a cluster creates an imbalance since the new shard has no chunks. While MongoDB begins migrating
data to the new shard immediately, it can take some time before the cluster balances.

When removing a shard, the balancer migrates all chunks from a shard to other shards. After migrating all data and
updating the meta data, you can safely remove the shard.

10.1.5 Additional Resources

• Sharding Methods for MongoDB (Presentation)2

• Everything You Need to Know About Sharding (Presentation)3

• MongoDB for Time Series Data: Sharding4

• MongoDB Operations Best Practices White Paper5

2http://www.mongodb.com/presentations/webinar-sharding-methods-mongodb?jmp=docs
3http://www.mongodb.com/presentations/webinar-everything-you-need-know-about-sharding?jmp=docs
4http://www.mongodb.com/presentations/mongodb-time-series-data-part-3-sharding?jmp=docs
5http://www.mongodb.com/lp/white-paper/ops-best-practices?jmp=docs

680 Chapter 10. Sharding

http://www.mongodb.com/presentations/webinar-sharding-methods-mongodb?jmp=docs
http://www.mongodb.com/presentations/webinar-everything-you-need-know-about-sharding?jmp=docs
http://www.mongodb.com/presentations/mongodb-time-series-data-part-3-sharding?jmp=docs
http://www.mongodb.com/lp/white-paper/ops-best-practices?jmp=docs

MongoDB Documentation, Release 2.6.11

• Talk to a MongoDB Expert About Scaling6

• MongoDB Deployment Topology Consulting Package7

10.2 Sharding Concepts

These documents present the details of sharding in MongoDB. These include the components, the architectures, and the
behaviors of MongoDB sharded clusters. For an overview of sharding and sharded clusters, see Sharding Introduction
(page 675).

Sharded Cluster Components (page 681) A sharded cluster consists of shards, config servers, and mongos in-
stances.

Shards (page 682) A shard is a single server or replica set that holds a part of the sharded collection.

Config Servers (page 684) Config servers hold the metadata about the cluster, such as the shard location of the
data.

Sharded Cluster Architectures (page 685) Outlines the requirements for sharded clusters, and provides examples of
several possible architectures for sharded clusters.

Sharded Cluster Requirements (page 685) Discusses the requirements for sharded clusters in MongoDB.

Production Cluster Architecture (page 686) Outlines the components required to deploy a redundant and
highly available sharded cluster.

Continue reading from Sharded Cluster Architectures (page 685) for additional descriptions of sharded cluster
deployments.

Sharded Cluster Behavior (page 687) Discusses the operations of sharded clusters with regards to the automatic bal-
ancing of data in a cluster and other related availability and security considerations.

Shard Keys (page 687) MongoDB uses the shard key to divide a collection’s data across the cluster’s shards.

Sharded Cluster High Availability (page 691) Sharded clusters provide ways to address some availability con-
cerns.

Sharded Cluster Query Routing (page 692) The cluster’s routers, or mongos instances, send reads and writes
to the relevant shard or shards.

Sharding Mechanics (page 697) Discusses the internal operation and behavior of sharded clusters, including chunk
migration, balancing, and the cluster metadata.

Sharded Collection Balancing (page 698) Balancing distributes a sharded collection’s data cluster to all of the
shards.

Sharded Cluster Metadata (page 703) The cluster maintains internal metadata that reflects the location of data
within the cluster.

Continue reading from Sharding Mechanics (page 697) for more documentation of the behavior and operation
of sharded clusters.

10.2.1 Sharded Cluster Components

Sharded clusters implement sharding. A sharded cluster consists of the following components:

6http://www.mongodb.com/lp/contact/planning-for-scale?jmp=docs
7https://www.mongodb.com/products/consulting#deployment_topology?jmp=docs

10.2. Sharding Concepts 681

http://www.mongodb.com/lp/contact/planning-for-scale?jmp=docs
https://www.mongodb.com/products/consulting#deployment_topology?jmp=docs

MongoDB Documentation, Release 2.6.11

Shards A shard is a MongoDB instance that holds a subset of a collection’s data. Each shard is either a single
mongod instance or a replica set. In production, all shards are replica sets. For more information see Shards
(page 682).

Config Servers Each config server (page 684) is a mongod instance that holds metadata about the cluster. The
metadata maps chunks to shards. For more information, see Config Servers (page 684).

Routing Instances Each router is a mongos instance that routes the reads and writes from applications to the shards.
Applications do not access the shards directly. For more information see Sharded Cluster Query Routing
(page 692).

Enable sharding in MongoDB on a per-collection basis. For each collection you shard, you will specify a shard key
for that collection.

Deploy a sharded cluster, see Deploy a Sharded Cluster (page 705).

Shards

682 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

On this page

• Primary Shard (page 683)
• Shard Status (page 684)

A shard is a replica set or a single mongod that contains a subset of the data for the sharded cluster. Together, the
cluster’s shards hold the entire data set for the cluster.

Typically each shard is a replica set. The replica set provides redundancy and high availability for the data in each
shard.

Important: MongoDB shards data on a per collection basis. You must access all data in a sharded cluster via the
mongos instances. If you connect directly to a shard, you will see only its fraction of the cluster’s data. There is no
particular order to the data set on a specific shard. MongoDB does not guarantee that any two contiguous chunks will
reside on a single shard.

Primary Shard

Every database has a “primary” 8 shard that holds all the un-sharded collections in that database.

To change the primary shard for a database, use the movePrimary command. The process of migrating the primary
shard may take significant time to complete, and you should not access the collections until it completes.

When you deploy a new sharded cluster with shards that were previously used as replica sets, all existing databases
continue to reside on their original shard. Databases created subsequently may reside on any shard in the cluster.

8 The term “primary” shard has nothing to do with the term primary in the context of replica sets.

10.2. Sharding Concepts 683

MongoDB Documentation, Release 2.6.11

Shard Status

Use the sh.status() method in the mongo shell to see an overview of the cluster. This reports includes which
shard is primary for the database and the chunk distribution across the shards. See sh.status() method for more
details.

Config Servers

On this page

• Read and Write Operations on Config Servers (page 684)
• Config Server Availability (page 685)

Config servers are special mongod instances that store the metadata (page 703) for a sharded cluster.

A production sharded cluster has exactly three config servers. All config servers must be available to deploy a sharded
cluster or to make any changes to cluster metadata. Config servers do not run as replica sets.

For testing purposes you may deploy a cluster with a single config server. But to ensure redundancy and safety in
production, you should always use three.

Warning: If your cluster has a single config server, then the config server is a single point of failure. If the config
server is inaccessible, the cluster is not accessible. If you cannot recover the data on a config server, the cluster
will be inoperable.
Always use three config servers for production deployments.

Each sharded cluster must have its own config servers. Do not use the same config servers for different sharded
clusters.

Tip
Use CNAMEs to identify your config servers to the cluster so that you can rename and renumber your config servers
without downtime.

Read and Write Operations on Config Servers

Config servers store the cluster’s metadata in the config database (page 754). The mongos instances cache this data
and use it to route reads and writes to shards.

MongoDB only writes data to the config server when the metadata changes, such as

• after a chunk migration (page 700), or

• after a chunk split (page 702).

When writing to the three config servers, a coordinator dispatches the same write commands to the three config servers
and collects the results. Differing results indicate an inconsistent writes to the config servers and may require manual
intervention. Once the config servers become inconsistent, the balancer will not perform any chunk migration and
mongos will not perform auto-splits of chunks.

MongoDB reads data from the config server in the following cases:

• A new mongos starts for the first time, or an existing mongos restarts.

• After change in the cluster metadata, such as after a chunk migration.

684 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

MongoDB also uses the config server to manage distributed locks.

Config Server Availability

If one or two config servers become unavailable, the cluster’s metadata becomes read only. You can still read and
write data from the shards, but no chunk migrations or splits will occur until all three servers are available.

If all three config servers are unavailable, you can still use the cluster if you do not restart the mongos instances
until after the config servers are accessible again. If you restart the mongos instances before the config servers are
available, the mongos will be unable to route reads and writes.

Clusters become inoperable without the cluster metadata. To ensure that the config servers remain available and intact,
backups of config servers are critical. The data on the config server is small compared to the data stored in a cluster,
and the config server has a relatively low activity load. These properties facilitate finding a window to back up the
config servers.

If the name or address that a sharded cluster uses to connect to a config server changes, you must restart every mongod
and mongos instance in the sharded cluster. Avoid downtime by using CNAMEs to identify config servers within the
MongoDB deployment.

See Renaming Config Servers and Cluster Availability (page 692) for more information.

10.2.2 Sharded Cluster Architectures

The following documents introduce deployment patterns for sharded clusters.

Sharded Cluster Requirements (page 685) Discusses the requirements for sharded clusters in MongoDB.

Production Cluster Architecture (page 686) Outlines the components required to deploy a redundant and highly
available sharded cluster.

Sharded Cluster Test Architecture (page 686) Sharded clusters for testing and development can include fewer com-
ponents.

Sharded Cluster Requirements

On this page

• Data Quantity Requirements (page 686)

While sharding is a powerful and compelling feature, sharded clusters have significant infrastructure requirements
and increases the overall complexity of a deployment. As a result, only deploy sharded clusters when indicated by
application and operational requirements

Sharding is the only solution for some classes of deployments. Use sharded clusters if:

• your data set approaches or exceeds the storage capacity of a single MongoDB instance.

• the size of your system’s active working set will soon exceed the capacity of your system’s maximum RAM.

• a single MongoDB instance cannot meet the demands of your write operations, and all other approaches have
not reduced contention.

If these attributes are not present in your system, sharding will only add complexity to your system without adding
much benefit.

10.2. Sharding Concepts 685

MongoDB Documentation, Release 2.6.11

Important: It takes time and resources to deploy sharding. If your system has already reached or exceeded its
capacity, it will be difficult to deploy sharding without impacting your application.

As a result, if you think you will need to partition your database in the future, do not wait until your system is over
capacity to enable sharding.

When designing your data model, take into consideration your sharding needs.

Data Quantity Requirements

Your cluster should manage a large quantity of data if sharding is to have an effect. The default chunk size is 64
megabytes. And the balancer (page 698) will not begin moving data across shards until the imbalance of chunks among
the shards exceeds the migration threshold (page 699). In practical terms, unless your cluster has many hundreds of
megabytes of data, your data will remain on a single shard.

In some situations, you may need to shard a small collection of data. But most of the time, sharding a small collection
is not worth the added complexity and overhead unless you need additional write capacity. If you have a small data
set, a properly configured single MongoDB instance or a replica set will usually be enough for your persistence layer
needs.

Chunk size is user configurable. For most deployments, the default value is of 64 megabytes is ideal. See
Chunk Size (page 702) for more information.

Production Cluster Architecture

In a production cluster, you must ensure that data is redundant and that your systems are highly available. To that end,
a production cluster must have the following components:

• Three Config Servers Each config server (page 684) must be on separate machines. A single sharded cluster
must have exclusive use of its config servers (page 684). If you have multiple sharded clusters, you will
need to have a group of config servers for each cluster.

• Two or More Replica Sets As Shards These replica sets are the shards. For information on replica sets, see
Replication (page 563).

• One or More Query Routers (mongos) The mongos instances are the routers for the cluster. Typically, de-
ployments have one mongos instance on each application server.

You may also deploy a group of mongos instances and use a proxy/load balancer between the application
and the mongos. In these deployments, you must configure the load balancer for client affinity so that
every connection from a single client reaches the same mongos.

Because cursors and other resources are specific to an single mongos instance, each client must interact
with only one mongos instance.

See also:

Deploy a Sharded Cluster (page 705)

Sharded Cluster Test Architecture

Warning: Use the test cluster architecture for testing and development only.

For testing and development, you can deploy a minimal sharded clusters cluster. These non-production clusters have
the following components:

686 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

• One config server (page 684).

• At least one shard. Shards are either replica sets or a standalone mongod instances.

• One mongos instance.

See
Production Cluster Architecture (page 686)

10.2.3 Sharded Cluster Behavior

These documents address the distribution of data and queries to a sharded cluster as well as specific security and
availability considerations for sharded clusters.

Shard Keys (page 687) MongoDB uses the shard key to divide a collection’s data across the cluster’s shards.

Sharded Cluster High Availability (page 691) Sharded clusters provide ways to address some availability concerns.

Sharded Cluster Query Routing (page 692) The cluster’s routers, or mongos instances, send reads and writes to the
relevant shard or shards.

Shard Keys

10.2. Sharding Concepts 687

MongoDB Documentation, Release 2.6.11

On this page

• Considerations (page 689)
• Hashed Shard Keys (page 689)
• Impacts of Shard Keys on Cluster Operations (page 689)
• Additional Information (page 690)

The shard key determines the distribution of the collection’s documents among the cluster’s shards. The shard key is
either an indexed field or an indexed compound field that exists in every document in the collection.

MongoDB partitions data in the collection using ranges of shard key values. Each range, or chunk, defines a non-
overlapping range of shard key values. MongoDB distributes the chunks, and their documents, among the shards in
the cluster.

When a chunk grows beyond the chunk size (page 702), MongoDB attempts to split the chunk into smaller chunks,
always based on ranges in the shard key.

688 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

Considerations

Shard keys are immutable and cannot be changed after insertion. See the system limits for sharded cluster for more
information.

The index on the shard key cannot be a multikey index (page 491).

Hashed Shard Keys

New in version 2.4.

Hashed shard keys use a hashed index (page 524) of a single field as the shard key to partition data across your sharded
cluster.

The field you choose as your hashed shard key should have a good cardinality, or large number of different values.
Hashed keys work well with fields that increase monotonically like ObjectId values or timestamps.

If you shard an empty collection using a hashed shard key, MongoDB will automatically create and migrate
chunks so that each shard has two chunks. You can control how many chunks MongoDB will create with the
numInitialChunks parameter to shardCollection or by manually creating chunks on the empty collection
using the split command.

To shard a collection using a hashed shard key, see Shard a Collection Using a Hashed Shard Key (page 711).

Tip
MongoDB automatically computes the hashes when resolving queries using hashed indexes. Applications do not need
to compute hashes.

Impacts of Shard Keys on Cluster Operations

The shard key affects write and query performance by determining how the MongoDB partitions data in the cluster
and how effectively the mongos instances can direct operations to the cluster. Consider the following operational
impacts of shard key selection:

Write Scaling Some possible shard keys will allow your application to take advantage of the increased write capacity
that the cluster can provide, while others do not. Consider the following example where you shard by the values of the
default _id field, which is ObjectId.

MongoDB generates ObjectId values upon document creation to produce a unique identifier for the object. How-
ever, the most significant bits of data in this value represent a time stamp, which means that they increment in a regular
and predictable pattern. Even though this value has high cardinality (page 710), when using this, any date, or other
monotonically increasing number as the shard key, all insert operations will be storing data into a single chunk, and
therefore, a single shard. As a result, the write capacity of this shard will define the effective write capacity of the
cluster.

A shard key that increases monotonically will not hinder performance if you have a very low insert rate, or if most
of your write operations are update() operations distributed through your entire data set. Generally, choose shard
keys that have both high cardinality and will distribute write operations across the entire cluster.

Typically, a computed shard key that has some amount of “randomness,” such as ones that include a cryptographic
hash (i.e. MD5 or SHA1) of other content in the document, will allow the cluster to scale write operations. However,
random shard keys do not typically provide query isolation (page 690), which is another important characteristic of
shard keys.

10.2. Sharding Concepts 689

MongoDB Documentation, Release 2.6.11

New in version 2.4: MongoDB makes it possible to shard a collection on a hashed index. This can greatly improve
write scaling. See Shard a Collection Using a Hashed Shard Key (page 711).

Querying The mongos provides an interface for applications to interact with sharded clusters that hides the com-
plexity of data partitioning. A mongos receives queries from applications, and uses metadata from the config server
(page 684), to route queries to the mongod instances with the appropriate data. While the mongos succeeds in mak-
ing all querying operational in sharded environments, the shard key you select can have a profound affect on query
performance.

See also:

The Sharded Cluster Query Routing (page 692) and config server (page 684) sections for a more general overview of
querying in sharded environments.

Query Isolation Generally, the fastest queries in a sharded environment are those that mongos will route to a single
shard, using the shard key and the cluster meta data from the config server (page 684). For queries that don’t include
the shard key, mongos must query all shards, wait for their responses and then return the result to the application.
These “scatter/gather” queries can be long running operations.

If your query includes the first component of a compound shard key 9, the mongos can route the query directly to a
single shard, or a small number of shards, which provides better performance. Even if you query values of the shard
key that reside in different chunks, the mongos will route queries directly to specific shards.

To select a shard key for a collection:

• determine the most commonly included fields in queries for a given application

• find which of these operations are most performance dependent.

If this field has low cardinality (i.e not sufficiently selective) you should add a second field to the shard key making a
compound shard key. The data may become more splittable with a compound shard key.

See
Sharded Cluster Query Routing (page 692) for more information on query operations in the context of sharded clusters.

Sorting In sharded systems, the mongos performs a merge-sort of all sorted query results from the shards. See
Sharded Cluster Query Routing (page 692) and Use Indexes to Sort Query Results (page 553) for more information.

Indivisible Chunks An insufficiently granular shard key can result in chunks that are “unsplittable”. See Create a
Shard Key that is Easily Divisible (page 710) for more information.

Additional Information

• Considerations for Selecting Shard Keys (page 709)

• Shard a Collection Using a Hashed Shard Key (page 711).

9 In many ways, you can think of the shard key a cluster-wide index. However, be aware that sharded systems cannot enforce cluster-wide unique
indexes unless the unique field is in the shard key. Consider the Index Concepts (page 485) page for more information on indexes and compound
indexes.

690 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

Sharded Cluster High Availability

On this page

• Application Servers or mongos Instances Become Unavailable (page 691)
• A Single mongod Becomes Unavailable in a Shard (page 691)
• All Members of a Replica Set Become Unavailable (page 691)
• One or Two Config Servers Become Unavailable (page 691)
• Renaming Config Servers and Cluster Availability (page 692)
• Shard Keys and Cluster Availability (page 692)

A production (page 686) cluster has no single point of failure. This section introduces the availability concerns for
MongoDB deployments in general and highlights potential failure scenarios and available resolutions.

Application Servers or mongos Instances Become Unavailable

If each application server has its own mongos instance, other application servers can continue access the database.
Furthermore, mongos instances do not maintain persistent state, and they can restart and become unavailable without
losing any state or data. When a mongos instance starts, it retrieves a copy of the config database and can begin
routing queries.

A Single mongod Becomes Unavailable in a Shard

Replica sets (page 563) provide high availability for shards. If the unavailable mongod is a primary, then the replica
set will elect (page 583) a new primary. If the unavailable mongod is a secondary, and it disconnects the primary and
secondary will continue to hold all data. In a three member replica set, even if a single member of the set experiences
catastrophic failure, two other members have full copies of the data. 10

Always investigate availability interruptions and failures. If a system is unrecoverable, replace it and create a new
member of the replica set as soon as possible to replace the lost redundancy.

All Members of a Replica Set Become Unavailable

If all members of a replica set within a shard are unavailable, all data held in that shard is unavailable. However, the
data on all other shards will remain available, and it’s possible to read and write data to the other shards. However,
your application must be able to deal with partial results, and you should investigate the cause of the interruption and
attempt to recover the shard as soon as possible.

One or Two Config Servers Become Unavailable

Three distinct mongod instances provide the config servers (page 684).

If one or two config servers become unavailable, the cluster’s metadata becomes read only. You can still read and write
data from the shards, but no chunk migration (page 698) or chunk splits (page 738) will occur until all three servers
are available. Replace the config server as soon as possible. If all config databases become unavailable, the cluster can
become inoperable.

If the config servers are inconsistent, the balancer will not perform any chunk migration (page 698) nor will the
mongos perform auto-chunk splits (page 738).

10 If an unavailable secondary becomes available while it still has current oplog entries, it can catch up to the latest state of the set using the
normal replication process, otherwise it must perform an initial sync.

10.2. Sharding Concepts 691

MongoDB Documentation, Release 2.6.11

Note: All config servers must be running and available when you first initiate a sharded cluster.

Renaming Config Servers and Cluster Availability

If the name or address that a sharded cluster uses to connect to a config server changes, you must restart every mongod
and mongos instance in the sharded cluster. Avoid downtime by using CNAMEs to identify config servers within the
MongoDB deployment.

To avoid downtime when renaming config servers, use DNS names unrelated to physical or virtual hostnames to refer
to your config servers (page 684).

Generally, refer to each config server using the DNS alias (e.g. a CNAME record). When specifying the config server
connection string to mongos, use these names. These records make it possible to change the IP address or rename
config servers without changing the connection string and without having to restart the entire cluster.

Shard Keys and Cluster Availability

The most important consideration when choosing a shard key are:

• to ensure that MongoDB will be able to distribute data evenly among shards, and

• to scale writes across the cluster, and

• to ensure that mongos can isolate most queries to a specific mongod.

Furthermore:

• Each shard should be a replica set, if a specific mongod instance fails, the replica set members will elect another
to be primary and continue operation. However, if an entire shard is unreachable or fails for some reason, that
data will be unavailable.

• If the shard key allows the mongos to isolate most operations to a single shard, then the failure of a single shard
will only render some data unavailable.

• If your shard key distributes data required for every operation throughout the cluster, then the failure of the entire
shard will render the entire cluster unavailable.

In essence, this concern for reliability simply underscores the importance of choosing a shard key that isolates query
operations to a single shard.

Sharded Cluster Query Routing

On this page

• Routing Process (page 693)
• Detect Connections to mongos Instances (page 694)
• Broadcast Operations and Targeted Operations (page 694)
• Sharded and Non-Sharded Data (page 697)

MongoDB mongos instances route queries and write operations to shards in a sharded cluster. mongos provide the
only interface to a sharded cluster from the perspective of applications. Applications never connect or communicate
directly with the shards.

692 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

The mongos tracks what data is on which shard by caching the metadata from the config servers (page 684). The
mongos uses the metadata to route operations from applications and clients to the mongod instances. A mongos
has no persistent state and consumes minimal system resources.

The most common practice is to run mongos instances on the same systems as your application servers, but you can
maintain mongos instances on the shards or on other dedicated resources.

Note: Changed in version 2.1.

Some aggregation operations using the aggregate command (i.e. db.collection.aggregate()) will cause
mongos instances to require more CPU resources than in previous versions. This modified performance profile may
dictate alternate architecture decisions if you use the aggregation framework extensively in a sharded environment.

Routing Process

A mongos instance uses the following processes to route queries and return results.

How mongos Determines which Shards Receive a Query A mongos instance routes a query to a cluster by:

1. Determining the list of shards that must receive the query.

2. Establishing a cursor on all targeted shards.

In some cases, when the shard key or a prefix of the shard key is a part of the query, the mongos can route the query
to a subset of the shards. Otherwise, the mongos must direct the query to all shards that hold documents for that
collection.

Example
Given the following shard key:

{ zipcode: 1, u_id: 1, c_date: 1 }

Depending on the distribution of chunks in the cluster, the mongos may be able to target the query at a subset of
shards, if the query contains the following fields:

{ zipcode: 1 }
{ zipcode: 1, u_id: 1 }
{ zipcode: 1, u_id: 1, c_date: 1 }

How mongos Handles Query Modifiers If the result of the query is not sorted, the mongos instance opens a result
cursor that “round robins” results from all cursors on the shards.

Changed in version 2.0.5: In versions prior to 2.0.5, the mongos exhausted each cursor, one by one.

If the query specifies sorted results using the sort() cursor method, the mongos instance passes the $orderby
option to the shards. The primary shard for the database receives and performs a merge sort for all results before
returning the data to the client via the mongos.

If the query limits the size of the result set using the limit() cursor method, the mongos instance passes that limit
to the shards and then re-applies the limit to the result before returning the result to the client.

If the query specifies a number of records to skip using the skip() cursor method, the mongos cannot pass the skip
to the shards, but rather retrieves unskipped results from the shards and skips the appropriate number of documents
when assembling the complete result. However, when used in conjunction with a limit(), the mongos will pass
the limit plus the value of the skip() to the shards to improve the efficiency of these operations.

10.2. Sharding Concepts 693

MongoDB Documentation, Release 2.6.11

Detect Connections to mongos Instances

To detect if the MongoDB instance that your client is connected to is mongos, use the isMaster command. When
a client connects to a mongos, isMaster returns a document with a msg field that holds the string isdbgrid. For
example:

{
"ismaster" : true,
"msg" : "isdbgrid",
"maxBsonObjectSize" : 16777216,
"ok" : 1

}

If the application is instead connected to a mongod, the returned document does not include the isdbgrid string.

Broadcast Operations and Targeted Operations

In general, operations in a sharded environment are either:

• Broadcast to all shards in the cluster that hold documents in a collection

• Targeted at a single shard or a limited group of shards, based on the shard key

For best performance, use targeted operations whenever possible. While some operations must broadcast to all shards,
you can ensure MongoDB uses targeted operations whenever possible by always including the shard key.

Broadcast Operations mongos instances broadcast queries to all shards for the collection unless the mongos can
determine which shard or subset of shards stores this data.

Multi-update operations are always broadcast operations.

The remove() operation is always a broadcast operation, unless the operation specifies the shard key in full.

Targeted Operations All insert() operations target to one shard.

All single update() (including upsert operations) and remove() operations must target to one shard.

Important: All update() and remove() operations for a sharded collection that specify the justOne or
multi: false option must include the shard key or the _id field in the query specification. update() and
remove() operations specifying justOne or multi: false in a sharded collection without the shard key or
the _id field return an error.

For queries that include the shard key or portion of the shard key, mongos can target the query at a specific shard or
set of shards. This is the case only if the portion of the shard key included in the query is a prefix of the shard key. For
example, if the shard key is:

{ a: 1, b: 1, c: 1 }

The mongos program can route queries that include the full shard key or either of the following shard key prefixes at
a specific shard or set of shards:

{ a: 1 }
{ a: 1, b: 1 }

Depending on the distribution of data in the cluster and the selectivity of the query, mongos may still have to contact
multiple shards 11 to fulfill these queries.

11 mongos will route some queries, even some that include the shard key, to all shards, if needed.

694 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

10.2. Sharding Concepts 695

MongoDB Documentation, Release 2.6.11

696 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

Sharded and Non-Sharded Data

Sharding operates on the collection level. You can shard multiple collections within a database or have multiple
databases with sharding enabled. 12 However, in production deployments, some databases and collections will use
sharding, while other databases and collections will only reside on a single shard.

Regardless of the data architecture of your sharded cluster, ensure that all queries and operations use the mongos
router to access the data cluster. Use the mongos even for operations that do not impact the sharded data.

10.2.4 Sharding Mechanics

The following documents describe sharded cluster processes.

Sharded Collection Balancing (page 698) Balancing distributes a sharded collection’s data cluster to all of the
shards.

Chunk Migration Across Shards (page 700) MongoDB migrates chunks to shards as part of the balancing process.

Chunk Splits in a Sharded Cluster (page 702) When a chunk grows beyond the configured size, MongoDB splits the
chunk in half.

Shard Key Indexes (page 703) Sharded collections must keep an index that starts with the shard key.

Sharded Cluster Metadata (page 703) The cluster maintains internal metadata that reflects the location of data within
the cluster.

12 As you configure sharding, you will use the enableSharding command to enable sharding for a database. This simply makes it possible
to use the shardCollection command on a collection within that database.

10.2. Sharding Concepts 697

MongoDB Documentation, Release 2.6.11

Sharded Collection Balancing

On this page

• Cluster Balancer (page 698)
• Migration Thresholds (page 699)
• Shard Size (page 699)

Balancing is the process MongoDB uses to distribute data of a sharded collection evenly across a sharded cluster.
When a shard has too many of a sharded collection’s chunks compared to other shards, MongoDB automatically
balances the chunks across the shards. The balancing procedure for sharded clusters is entirely transparent to the user
and application layer.

Cluster Balancer

The balancer process is responsible for redistributing the chunks of a sharded collection evenly among the shards for
every sharded collection. By default, the balancer process is always enabled.

Any mongos instance in the cluster can start a balancing round. When a balancer process is active, the responsible
mongos acquires a “lock” by modifying a document in the lock collection in the Config Database (page 754).

Note: Changed in version 2.0: Before MongoDB version 2.0, large differences in timekeeping (i.e. clock skew)
between mongos instances could lead to failed distributed locks. This carries the possibility of data loss, particularly
with skews larger than 5 minutes. Always use the network time protocol (NTP) by running ntpd on your servers to
minimize clock skew.

To address uneven chunk distribution for a sharded collection, the balancer migrates chunks (page 700) from shards
with more chunks to shards with a fewer number of chunks. The balancer migrates the chunks, one at a time, until
there is an even distribution of chunks for the collection across the shards. For details about chunk migration, see
Chunk Migration Procedure (page 700).

698 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

Changed in version 2.6: Chunk migrations can have an impact on disk space. Starting in MongoDB 2.6, the source
shard automatically archives the migrated documents by default. For details, see moveChunk directory (page 701).

Chunk migrations carry some overhead in terms of bandwidth and workload, both of which can impact database
performance. The balancer attempts to minimize the impact by:

• Moving only one chunk at a time. See also Chunk Migration Queuing (page 701).

• Starting a balancing round only when the difference in the number of chunks between the shard with the greatest
number of chunks for a sharded collection and the shard with the lowest number of chunks for that collection
reaches the migration threshold (page 699).

You may disable the balancer temporarily for maintenance. See Disable the Balancer (page 732) for details.

You can also limit the window during which the balancer runs to prevent it from impacting production traffic. See
Schedule the Balancing Window (page 731) for details.

Note: The specification of the balancing window is relative to the local time zone of all individual mongos instances
in the cluster.

See also:

Manage Sharded Cluster Balancer (page 730).

Migration Thresholds

To minimize the impact of balancing on the cluster, the balancer will not begin balancing until the distribution of
chunks for a sharded collection has reached certain thresholds. The thresholds apply to the difference in number
of chunks between the shard with the most chunks for the collection and the shard with the fewest chunks for that
collection. The balancer has the following thresholds:

Changed in version 2.2: The following thresholds appear first in 2.2. Prior to this release, a balancing round would
only start if the shard with the most chunks had 8 more chunks than the shard with the least number of chunks.

Number of Chunks Migration Threshold
Fewer than 20 2
20-79 4
80 and greater 8

Once a balancing round starts, the balancer will not stop until, for the collection, the difference between the number
of chunks on any two shards for that collection is less than two or a chunk migration fails.

Shard Size

By default, MongoDB will attempt to fill all available disk space with data on every shard as the data set grows. To
ensure that the cluster always has the capacity to handle data growth, monitor disk usage as well as other performance
metrics.

When adding a shard, you may set a “maximum size” for that shard. This prevents the balancer from migrating chunks
to the shard when the value of mapped exceeds the “maximum size”. Use the maxSize parameter of the addShard
command to set the “maximum size” for the shard.

See also:

Change the Maximum Storage Size for a Given Shard (page 729) and Monitoring for MongoDB (page 195).

10.2. Sharding Concepts 699

MongoDB Documentation, Release 2.6.11

Chunk Migration Across Shards

On this page

• Chunk Migration (page 700)
• moveChunk directory (page 701)
• Jumbo Chunks (page 702)

Chunk migration moves the chunks of a sharded collection from one shard to another and is part of the balancer
(page 698) process.

Chunk Migration

MongoDB migrates chunks in a sharded cluster to distribute the chunks of a sharded collection evenly among shards.
Migrations may be either:

• Manual. Only use manual migration in limited cases, such as to distribute data during bulk inserts. See Migrating
Chunks Manually (page 739) for more details.

• Automatic. The balancer (page 698) process automatically migrates chunks when there is an uneven distribution
of a sharded collection’s chunks across the shards. See Migration Thresholds (page 699) for more details.

Chunk Migration Procedure All chunk migrations use the following procedure:

1. The balancer process sends the moveChunk command to the source shard.

2. The source starts the move with an internal moveChunk command. During the migration process, operations
to the chunk route to the source shard. The source shard is responsible for incoming write operations for the
chunk.

3. The destination shard builds any indexes required by the source that do not exist on the destination.

4. The destination shard begins requesting documents in the chunk and starts receiving copies of the data.

5. After receiving the final document in the chunk, the destination shard starts a synchronization process to ensure
that it has the changes to the migrated documents that occurred during the migration.

6. When fully synchronized, the destination shard connects to the config database and updates the cluster metadata
with the new location for the chunk.

7. After the destination shard completes the update of the metadata, and once there are no open cursors on the
chunk, the source shard deletes its copy of the documents.

700 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

Changed in version 2.6: The source shard automatically archives the migrated documents by default. For more
information, see moveChunk directory (page 701).

Changed in version 2.4: If the balancer needs to perform additional chunk migrations from the source shard,
the balancer can start the next chunk migration without waiting for the current migration process to finish this
deletion step. See Chunk Migration Queuing (page 701).

The migration process ensures consistency and maximizes the availability of chunks during balancing.

Chunk Migration Queuing Changed in version 2.4.

To migrate multiple chunks from a shard, the balancer migrates the chunks one at a time. However, the balancer does
not wait for the current migration’s delete phase to complete before starting the next chunk migration. See Chunk
Migration (page 700) for the chunk migration process and the delete phase.

This queuing behavior allows shards to unload chunks more quickly in cases of heavily imbalanced cluster, such as
when performing initial data loads without pre-splitting and when adding new shards.

This behavior also affect the moveChunk command, and migration scripts that use the moveChunk command may
proceed more quickly.

In some cases, the delete phases may persist longer. If multiple delete phases are queued but not yet complete, a crash
of the replica set’s primary can orphan data from multiple migrations.

Chunk Migration and Replication By default, each document operation during chunk migration propagates to at
least one secondary before the balancer proceeds with the next document.

To override this behavior and allow the balancer to continue without waiting for replication to a secondary, set the
_secondaryThrottle parameter to false. See Change Replication Behavior for Chunk Migration (Secondary
Throttle) (page 730) to update the _secondaryThrottle parameter for the balancer.

When called directly, moveChunk does not require that operations propagate to shards during operation: its
secondaryThrottle defaults to false.

Independent of the secondaryThrottle setting, certain phases of the chunk migration have the following repli-
cation policy:

• MongoDB briefly pauses all application writes to the source shard before updating the config servers with the
new location for the chunk, and resumes the application writes after the update. The chunk move requires all
writes to be acknowledged by majority of the members of the replica set both before and after committing the
chunk move to config servers.

• When an outgoing chunk migration finishes and cleanup occurs, all writes must be replicated to a majority of
servers before further cleanup (from other outgoing migrations) or new incoming migrations can proceed.

Changed in version 2.4: In previous versions, the balancer did not wait for the document move to replicate to a
secondary. For details, see Secondary Throttle in the v2.2 Manual13

moveChunk directory

Starting in MongoDB 2.6, sharding.archiveMovedChunks is enabled by default. With
sharding.archiveMovedChunks enabled, the source shard archives the documents in the migrated chunks in
a directory named after the collection namespace under the moveChunk directory in the storage.dbPath.

13http://docs.mongodb.org/v2.2/tutorial/configure-sharded-cluster-balancer/#sharded-cluster-config-secondary-throttle

10.2. Sharding Concepts 701

http://docs.mongodb.org/v2.2/tutorial/configure-sharded-cluster-balancer/#sharded-cluster-config-secondary-throttle

MongoDB Documentation, Release 2.6.11

Jumbo Chunks

During chunk migration, if the chunk exceeds the specified chunk size (page 702) or if the number of documents in the
chunk exceeds Maximum Number of Documents Per Chunk to Migrate, MongoDB does not migrate
the chunk. Instead, MongoDB attempts to split (page 702) the chunk. If the split is unsuccessful, MongoDB labels the
chunk as jumbo to avoid repeated attempts to migrate the chunk.

Chunk Splits in a Sharded Cluster

On this page

• Chunk Size (page 702)
• Limitations (page 703)
• Indivisible Chunks (page 703)

As chunks grow beyond the specified chunk size (page 702) a mongos instance will attempt to split the chunk in half.
Splits may lead to an uneven distribution of the chunks for a collection across the shards. In such cases, the mongos
instances will initiate a round of migrations to redistribute chunks across shards. See Sharded Collection Balancing
(page 698) for more details on balancing chunks across shards.

Chunk Size

The default chunk size in MongoDB is 64 megabytes. You can increase or reduce the chunk size (page 743), mindful
of its effect on the cluster’s efficiency.

1. Small chunks lead to a more even distribution of data at the expense of more frequent migrations. This creates
expense at the query routing (mongos) layer.

2. Large chunks lead to fewer migrations. This is more efficient both from the networking perspective and in terms
of internal overhead at the query routing layer. But, these efficiencies come at the expense of a potentially more
uneven distribution of data.

3. Chunk size affects the Maximum Number of Documents Per Chunk to Migrate.

For many deployments, it makes sense to avoid frequent and potentially spurious migrations at the expense of a slightly
less evenly distributed data set.

702 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

Limitations

Changing the chunk size affects when chunks split but there are some limitations to its effects.

• Automatic splitting only occurs during inserts or updates. If you lower the chunk size, it may take time for all
chunks to split to the new size.

• Splits cannot be “undone”. If you increase the chunk size, existing chunks must grow through inserts or updates
until they reach the new size.

Note: Chunk ranges are inclusive of the lower boundary and exclusive of the upper boundary.

Indivisible Chunks

In some cases, chunks can grow beyond the specified chunk size (page 702) but cannot undergo a split; e.g. if a chunk
represents a single shard key value. See Considerations for Selecting Shard Keys (page 709) for considerations for
selecting a shard key.

Shard Key Indexes

All sharded collections must have an index that starts with the shard key. If you shard a collection without any
documents and without such an index, the shardCollection command will create the index on the shard key. If
the collection already has documents, you must create the index before using shardCollection.

Changed in version 2.2: The index on the shard key no longer needs to be only on the shard key. This index can be an
index of the shard key itself, or a compound index where the shard key is a prefix of the index.

Important: The index on the shard key cannot be a multikey index (page 491).

A sharded collection named people has for its shard key the field zipcode. It currently has the index {
zipcode: 1 }. You can replace this index with a compound index { zipcode: 1, username: 1 },
as follows:

1. Create an index on { zipcode: 1, username: 1 }:

db.people.ensureIndex({ zipcode: 1, username: 1 });

2. When MongoDB finishes building the index, you can safely drop the existing index on { zipcode: 1 }:

db.people.dropIndex({ zipcode: 1 });

Since the index on the shard key cannot be a multikey index, the index { zipcode: 1, username: 1 }
can only replace the index { zipcode: 1 } if there are no array values for the username field.

If you drop the last valid index for the shard key, recover by recreating an index on just the shard key.

For restrictions on shard key indexes, see limits-shard-keys.

Sharded Cluster Metadata

Config servers (page 684) store the metadata for a sharded cluster. The metadata reflects state and organization of the
sharded data sets and system. The metadata includes the list of chunks on every shard and the ranges that define the
chunks. The mongos instances cache this data and use it to route read and write operations to shards.

Config servers store the metadata in the Config Database (page 754).

10.2. Sharding Concepts 703

MongoDB Documentation, Release 2.6.11

Important: Always back up the config database before doing any maintenance on the config server.

To access the config database, issue the following command from the mongo shell:

use config

In general, you should never edit the content of the config database directly. The config database contains the
following collections:

• changelog (page 755)

• chunks (page 756)

• collections (page 757)

• databases (page 757)

• lockpings (page 757)

• locks (page 758)

• mongos (page 758)

• settings (page 758)

• shards (page 759)

• version (page 759)

For more information on these collections and their role in sharded clusters, see Config Database (page 754). See Read
and Write Operations on Config Servers (page 684) for more information about reads and updates to the metadata.

10.3 Sharded Cluster Tutorials

The following tutorials provide instructions for administering sharded clusters. For a higher-level overview, see Shard-
ing (page 675).

Sharded Cluster Deployment Tutorials (page 705) Instructions for deploying sharded clusters, adding shards, select-
ing shard keys, and the initial configuration of sharded clusters.

Deploy a Sharded Cluster (page 705) Set up a sharded cluster by creating the needed data directories, starting
the required MongoDB instances, and configuring the cluster settings.

Considerations for Selecting Shard Keys (page 709) Choose the field that MongoDB uses to parse a collec-
tion’s documents for distribution over the cluster’s shards. Each shard holds documents with values within
a certain range.

Shard a Collection Using a Hashed Shard Key (page 711) Shard a collection based on hashes of a field’s val-
ues in order to ensure even distribution over the collection’s shards.

Add Shards to a Cluster (page 712) Add a shard to add capacity to a sharded cluster.

Continue reading from Sharded Cluster Deployment Tutorials (page 705) for additional tutorials.

Sharded Cluster Maintenance Tutorials (page 720) Procedures and tasks for common operations on active sharded
clusters.

View Cluster Configuration (page 721) View status information about the cluster’s databases, shards, and
chunks.

Remove Shards from an Existing Sharded Cluster (page 734) Migrate a single shard’s data and remove the
shard.

704 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

Migrate Config Servers with Different Hostnames (page 723) Migrate a config server to a new system that
uses a new hostname. If possible, avoid changing the hostname and instead use the Migrate Config Servers
with the Same Hostname (page 722) procedure.

Manage Shard Tags (page 747) Use tags to associate specific ranges of shard key values with specific shards.

Continue reading from Sharded Cluster Maintenance Tutorials (page 720) for additional tutorials.

Sharded Cluster Data Management (page 737) Practices that address common issues in managing large sharded
data sets.

Troubleshoot Sharded Clusters (page 752) Presents solutions to common issues and concerns relevant to the admin-
istration and use of sharded clusters. Refer to FAQ: MongoDB Diagnostics (page 799) for general diagnostic
information.

10.3.1 Sharded Cluster Deployment Tutorials

The following tutorials provide information on deploying sharded clusters.

Deploy a Sharded Cluster (page 705) Set up a sharded cluster by creating the needed data directories, starting the
required MongoDB instances, and configuring the cluster settings.

Considerations for Selecting Shard Keys (page 709) Choose the field that MongoDB uses to parse a collection’s doc-
uments for distribution over the cluster’s shards. Each shard holds documents with values within a certain range.

Shard a Collection Using a Hashed Shard Key (page 711) Shard a collection based on hashes of a field’s values in
order to ensure even distribution over the collection’s shards.

Add Shards to a Cluster (page 712) Add a shard to add capacity to a sharded cluster.

Deploy Three Config Servers for Production Deployments (page 713) Convert a test deployment with one config
server to a production deployment with three config servers.

Convert a Replica Set to a Replicated Sharded Cluster (page 714) Convert a replica set to a sharded cluster in which
each shard is its own replica set.

Convert Sharded Cluster to Replica Set (page 719) Replace your sharded cluster with a single replica set.

See also:

Enable Authentication in a Sharded Cluster (page 354)

Deploy a Sharded Cluster

On this page

• Start the Config Server Database Instances (page 706)
• Start the mongos Instances (page 706)
• Add Shards to the Cluster (page 707)
• Enable Sharding for a Database (page 708)
• Enable Sharding for a Collection (page 708)

Use the following sequence of tasks to deploy a sharded cluster:

10.3. Sharded Cluster Tutorials 705

MongoDB Documentation, Release 2.6.11

Warning: Sharding and “localhost” Addresses
If you use either “localhost” or 127.0.0.1 as the hostname portion of any host identifier, for example as the
host argument to addShard or the value to the --configdb run time option, then you must use “localhost”
or 127.0.0.1 for all host settings for any MongoDB instances in the cluster. If you mix localhost addresses and
remote host address, MongoDB will error.

Start the Config Server Database Instances

The config server processes are mongod instances that store the cluster’s metadata. You designate a mongod as a
config server using the --configsvr option. Each config server stores a complete copy of the cluster’s metadata.

In production deployments, you must deploy exactly three config server instances, each running on different servers
to assure good uptime and data safety. In test environments, you can run all three instances on a single server.

Important: All members of a sharded cluster must be able to connect to all other members of a sharded cluster,
including all shards and all config servers. Ensure that the network and security systems including all interfaces and
firewalls, allow these connections.

1. Create data directories for each of the three config server instances. By default, a config server stores its data
files in the /data/configdb directory. You can choose a different location. To create a data directory, issue a
command similar to the following:

mkdir /data/configdb

2. Start the three config server instances. Start each by issuing a command using the following syntax:

mongod --configsvr --dbpath <path> --port <port>

The default port for config servers is 27019. You can specify a different port. The following example starts a
config server using the default port and default data directory:

mongod --configsvr --dbpath /data/configdb --port 27019

For additional command options, see http://docs.mongodb.org/manual/reference/program/mongod
or http://docs.mongodb.org/manual/reference/configuration-options.

Note: All config servers must be running and available when you first initiate a sharded cluster.

Start the mongos Instances

The mongos instances are lightweight and do not require data directories. You can run a mongos instance on a
system that runs other cluster components, such as on an application server or a server running a mongod process. By
default, a mongos instance runs on port 27017.

When you start the mongos instance, specify the hostnames of the three config servers, either in the configuration file
or as command line parameters.

Tip
To avoid downtime, give each config server a logical DNS name (unrelated to the server’s physical or virtual host-
name). Without logical DNS names, moving or renaming a config server requires shutting down every mongod and
mongos instance in the sharded cluster.

706 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

To start a mongos instance, issue a command using the following syntax:

mongos --configdb <config server hostnames>

For example, to start a mongos that connects to config server instance running on the following hosts and on the
default ports:

• cfg0.example.net

• cfg1.example.net

• cfg2.example.net

You would issue the following command:

mongos --configdb cfg0.example.net:27019,cfg1.example.net:27019,cfg2.example.net:27019

Each mongos in a sharded cluster must use the same configDB string, with identical host names listed in identical
order.

If you start a mongos instance with a string that does not exactly match the string used by the other mongos instances
in the cluster, the mongos return a Config Database String Error (page 752) error and refuse to start.

Add Shards to the Cluster

A shard can be a standalone mongod or a replica set. In a production environment, each shard should be a replica set.
Use the procedure in Deploy a Replica Set (page 607) to deploy replica sets for each shard.

1. From a mongo shell, connect to the mongos instance. Issue a command using the following syntax:

mongo --host <hostname of machine running mongos> --port <port mongos listens on>

For example, if a mongos is accessible at mongos0.example.net on port 27017, issue the following
command:

mongo --host mongos0.example.net --port 27017

2. Add each shard to the cluster using the sh.addShard() method, as shown in the examples below. Issue
sh.addShard() separately for each shard. If the shard is a replica set, specify the name of the replica set and
specify a member of the set. In production deployments, all shards should be replica sets.

Optional
You can instead use the addShard database command, which lets you specify a name and maximum size for
the shard. If you do not specify these, MongoDB automatically assigns a name and maximum size. To use the
database command, see addShard.

The following are examples of adding a shard with sh.addShard():

• To add a shard for a replica set named rs1 with a member running on port 27017 on
mongodb0.example.net, issue the following command:

sh.addShard("rs1/mongodb0.example.net:27017")

Changed in version 2.0.3.

For MongoDB versions prior to 2.0.3, you must specify all members of the replica set. For example:

sh.addShard("rs1/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017")

10.3. Sharded Cluster Tutorials 707

MongoDB Documentation, Release 2.6.11

• To add a shard for a standalone mongod on port 27017 of mongodb0.example.net, issue the fol-
lowing command:

sh.addShard("mongodb0.example.net:27017")

Note: It might take some time for chunks to migrate to the new shard.

Enable Sharding for a Database

Before you can shard a collection, you must enable sharding for the collection’s database. Enabling sharding for a
database does not redistribute data but make it possible to shard the collections in that database.

Once you enable sharding for a database, MongoDB assigns a primary shard for that database where MongoDB stores
all data before sharding begins.

1. From a mongo shell, connect to the mongos instance. Issue a command using the following syntax:

mongo --host <hostname of machine running mongos> --port <port mongos listens on>

2. Issue the sh.enableSharding()method, specifying the name of the database for which to enable sharding.
Use the following syntax:

sh.enableSharding("<database>")

Optionally, you can enable sharding for a database using the enableSharding command, which uses the following
syntax:

db.runCommand({ enableSharding: <database> })

Enable Sharding for a Collection

You enable sharding on a per-collection basis.

1. Determine what you will use for the shard key. Your selection of the shard key affects the efficiency of sharding.
See the selection considerations listed in the Considerations for Selecting Shard Key (page 710).

2. If the collection already contains data you must create an index on the shard key using ensureIndex(). If
the collection is empty then MongoDB will create the index as part of the sh.shardCollection() step.

3. Enable sharding for a collection by issuing the sh.shardCollection() method in the mongo shell. The
method uses the following syntax:

sh.shardCollection("<database>.<collection>", shard-key-pattern)

Replace the <database>.<collection> string with the full namespace of your database, which consists
of the name of your database, a dot (e.g. .), and the full name of the collection. The shard-key-pattern
represents your shard key, which you specify in the same form as you would an index key pattern.

Example
The following sequence of commands shards four collections:

sh.shardCollection("records.people", { "zipcode": 1, "name": 1 })
sh.shardCollection("people.addresses", { "state": 1, "_id": 1 })
sh.shardCollection("assets.chairs", { "type": 1, "_id": 1 })
sh.shardCollection("events.alerts", { "_id": "hashed" })

708 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

In order, these operations shard:

(a) The people collection in the records database using the shard key { "zipcode": 1, "name":
1 }.

This shard key distributes documents by the value of the zipcode field. If a number of documents have
the same value for this field, then that chunk will be splittable (page 710) by the values of the name field.

(b) The addresses collection in the people database using the shard key { "state": 1, "_id":
1 }.

This shard key distributes documents by the value of the state field. If a number of documents have the
same value for this field, then that chunk will be splittable (page 710) by the values of the _id field.

(c) The chairs collection in the assets database using the shard key { "type": 1, "_id": 1
}.

This shard key distributes documents by the value of the type field. If a number of documents have the
same value for this field, then that chunk will be splittable (page 710) by the values of the _id field.

(d) The alerts collection in the events database using the shard key { "_id": "hashed" }.

New in version 2.4.

This shard key distributes documents by a hash of the value of the _id field. MongoDB computes the hash
of the _id field for the hashed index (page 524), which should provide an even distribution of documents
across a cluster.

Considerations for Selecting Shard Keys

Choosing a Shard Key

For many collections there may be no single, naturally occurring key that possesses all the qualities of a good shard
key. The following strategies may help construct a useful shard key from existing data:

1. Compute a more ideal shard key in your application layer, and store this in all of your documents, potentially in
the _id field.

2. Use a compound shard key that uses two or three values from all documents that provide the right mix of
cardinality with scalable write operations and query isolation.

3. Determine that the impact of using a less than ideal shard key is insignificant in your use case, given:

• limited write volume,

• expected data size, or

• application query patterns.

4. New in version 2.4: Use a hashed shard key. Choose a field that has high cardinality and create a hashed index
(page 524) on that field. MongoDB uses these hashed index values as shard key values, which ensures an even
distribution of documents across the shards.

Tip
MongoDB automatically computes the hashes when resolving queries using hashed indexes. Applications do
not need to compute hashes.

10.3. Sharded Cluster Tutorials 709

MongoDB Documentation, Release 2.6.11

Considerations for Selecting Shard Key

Choosing the correct shard key can have a great impact on the performance, capability, and functioning of your
database and cluster. Appropriate shard key choice depends on the schema of your data and the way that your appli-
cations query and write data.

Create a Shard Key that is Easily Divisible An easily divisible shard key makes it easy for MongoDB to distribute
content among the shards. Shard keys that have a limited number of possible values can result in chunks that are
“unsplittable”.

For instance, if a chunk represents a single shard key value, then MongoDB cannot split the chunk even when the
chunk exceeds the size at which splits (page 702) occur.

See also:

Cardinality (page 710)

Create a Shard Key that has High Degree of Randomness A shard key with high degree of randomness prevents
any single shard from becoming a bottleneck and will distribute write operations among the cluster.

See also:

Write Scaling (page 689)

Create a Shard Key that Targets a Single Shard A shard key that targets a single shard makes it possible for the
mongos program to return most query operations directly from a single specific mongod instance. Your shard key
should be the primary field used by your queries. Fields with a high degree of “randomness” make it difficult to target
operations to specific shards.

See also:

Query Isolation (page 690)

Shard Using a Compound Shard Key The challenge when selecting a shard key is that there is not always an
obvious choice. Often, an existing field in your collection may not be the optimal key. In those situations, computing
a special purpose shard key into an additional field or using a compound shard key may help produce one that is more
ideal.

Cardinality Cardinality in the context of MongoDB, refers to the ability of the system to partition data into chunks.
For example, consider a collection of data such as an “address book” that stores address records:

• Consider the use of a state field as a shard key:

The state key’s value holds the US state for a given address document. This field has a low cardinality as all
documents that have the same value in the state field must reside on the same shard, even if a particular state’s
chunk exceeds the maximum chunk size.

Since there are a limited number of possible values for the state field, MongoDB may distribute data unevenly
among a small number of fixed chunks. This may have a number of effects:

– If MongoDB cannot split a chunk because all of its documents have the same shard key, migrations involv-
ing these un-splittable chunks will take longer than other migrations, and it will be more difficult for your
data to stay balanced.

– If you have a fixed maximum number of chunks, you will never be able to use more than that number of
shards for this collection.

710 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

• Consider the use of a zipcode field as a shard key:

While this field has a large number of possible values, and thus has potentially higher cardinality, it’s possible
that a large number of users could have the same value for the shard key, which would make this chunk of users
un-splittable.

In these cases, cardinality depends on the data. If your address book stores records for a geographically dis-
tributed contact list (e.g. “Dry cleaning businesses in America,”) then a value like zipcode would be sufficient.
However, if your address book is more geographically concentrated (e.g “ice cream stores in Boston Mas-
sachusetts,”) then you may have a much lower cardinality.

• Consider the use of a phone-number field as a shard key:

Phone number has a high cardinality, because users will generally have a unique value for this field, MongoDB
will be able to split as many chunks as needed.

While “high cardinality,” is necessary for ensuring an even distribution of data, having a high cardinality does not
guarantee sufficient query isolation (page 690) or appropriate write scaling (page 689).

If you choose a shard key with low cardinality, some chunks may grow too large for MongoDB to migrate. See Jumbo
Chunks (page 702) for more information.

Shard Key Selection Strategy

When selecting a shard key, it is difficult to balance the qualities of an ideal shard key, which sometimes dictate
opposing strategies. For instance, it’s difficult to produce a key that has both a high degree randomness for even data
distribution and a shard key that allows your application to target specific shards. For some workloads, it’s more
important to have an even data distribution, and for others targeted queries are essential.

Therefore, the selection of a shard key is about balancing both your data and the performance characteristics caused
by different possible data distributions and system workloads.

Shard a Collection Using a Hashed Shard Key

On this page

• Shard the Collection (page 711)
• Specify the Initial Number of Chunks (page 712)

New in version 2.4.

Hashed shard keys (page 689) use a hashed index (page 524) of a field as the shard key to partition data across your
sharded cluster.

For suggestions on choosing the right field as your hashed shard key, see Hashed Shard Keys (page 689). For limita-
tions on hashed indexes, see Create a Hashed Index (page 524).

Note: If chunk migrations are in progress while creating a hashed shard key collection, the initial chunk distribution
may be uneven until the balancer automatically balances the collection.

Shard the Collection

To shard a collection using a hashed shard key, use an operation in the mongo that resembles the following:

10.3. Sharded Cluster Tutorials 711

MongoDB Documentation, Release 2.6.11

sh.shardCollection("records.active", { a: "hashed" })

This operation shards the active collection in the records database, using a hash of the a field as the shard key.

Specify the Initial Number of Chunks

If you shard an empty collection using a hashed shard key, MongoDB automatically creates and migrates empty chunks
so that each shard has two chunks. To control how many chunks MongoDB creates when sharding the collection, use
shardCollection with the numInitialChunks parameter.

Important: MongoDB 2.4 adds support for hashed shard keys. After sharding a collection with a hashed shard key,
you must use the MongoDB 2.4 or higher mongos and mongod instances in your sharded cluster.

Warning: MongoDB hashed indexes truncate floating point numbers to 64-bit integers before hashing. For
example, a hashed index would store the same value for a field that held a value of 2.3, 2.2, and 2.9. To
prevent collisions, do not use a hashed index for floating point numbers that cannot be reliably converted to
64-bit integers (and then back to floating point). MongoDB hashed indexes do not support floating point values
larger than 253.

Add Shards to a Cluster

On this page

• Considerations (page 712)
• Add a Shard to a Cluster (page 712)

You add shards to a sharded cluster after you create the cluster or any time that you need to add capacity to the cluster.
If you have not created a sharded cluster, see Deploy a Sharded Cluster (page 705).

In production environments, all shards should be replica sets.

Considerations

Balancing When you add a shard to a sharded cluster, you affect the balance of chunks among the shards of a cluster
for all existing sharded collections. The balancer will begin migrating chunks so that the cluster will achieve balance.
See Sharded Collection Balancing (page 698) for more information.

Changed in version 2.6: Chunk migrations can have an impact on disk space. Starting in MongoDB 2.6, the source
shard automatically archives the migrated documents by default. For details, see moveChunk directory (page 701).

Capacity Planning When adding a shard to a cluster, always ensure that the cluster has enough capacity to support
the migration required for balancing the cluster without affecting legitimate production traffic.

Add a Shard to a Cluster

You interact with a sharded cluster by connecting to a mongos instance.

1. From a mongo shell, connect to the mongos instance. For example, if a mongos is accessible at
mongos0.example.net on port 27017, issue the following command:

712 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

mongo --host mongos0.example.net --port 27017

2. Add a shard to the cluster using the sh.addShard() method, as shown in the examples below. Issue
sh.addShard() separately for each shard. If the shard is a replica set, specify the name of the replica
set and specify a member of the set. In production deployments, all shards should be replica sets.

Optional
You can instead use the addShard database command, which lets you specify a name and maximum size for
the shard. If you do not specify these, MongoDB automatically assigns a name and maximum size. To use the
database command, see addShard.

The following are examples of adding a shard with sh.addShard():

• To add a shard for a replica set named rs1 with a member running on port 27017 on
mongodb0.example.net, issue the following command:

sh.addShard("rs1/mongodb0.example.net:27017")

Changed in version 2.0.3.

For MongoDB versions prior to 2.0.3, you must specify all members of the replica set. For example:

sh.addShard("rs1/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017")

• To add a shard for a standalone mongod on port 27017 of mongodb0.example.net, issue the fol-
lowing command:

sh.addShard("mongodb0.example.net:27017")

Note: It might take some time for chunks to migrate to the new shard.

Deploy Three Config Servers for Production Deployments

This procedure converts a test deployment with only one config server (page 684) to a production deployment with
three config servers.

Tip
Use CNAMEs to identify your config servers to the cluster so that you can rename and renumber your config servers
without downtime.

For redundancy, all production sharded clusters (page 675) should deploy three config servers on three different
machines. Use a single config server only for testing deployments, never for production deployments. When you shift
to production, upgrade immediately to three config servers.

To convert a test deployment with one config server to a production deployment with three config servers:

1. Shut down all existing MongoDB processes in the cluster. This includes:

• all mongod instances or replica sets that provide your shards.

• all mongos instances in your cluster.

2. Copy the entire dbPath file system tree from the existing config server to the two machines that will provide the
additional config servers. These commands, issued on the system with the existing Config Database (page 754),
mongo-config0.example.net may resemble the following:

10.3. Sharded Cluster Tutorials 713

MongoDB Documentation, Release 2.6.11

rsync -az /data/configdb mongo-config1.example.net:/data/configdb
rsync -az /data/configdb mongo-config2.example.net:/data/configdb

3. Start all three config servers, using the same invocation that you used for the single config server.

mongod --configsvr

4. Restart all shard mongod and mongos processes.

Convert a Replica Set to a Replicated Sharded Cluster

On this page

• Overview (page 714)
• Prerequisites (page 714)
• Considerations (page 714)
• Procedures (page 715)

Overview

This tutorial converts a single three-member replica set to a sharded cluster with two shards. Each shard is an inde-
pendent three-member replica set. The procedure is as follows:

1. Create the initial three-member replica set and insert data into a collection. See Set Up Initial Replica Set
(page 715).

2. Start the config databases and a mongos. See Deploy Config Databases and mongos (page 715).

3. Add the initial replica set as a shard. See Add Initial Replica Set as a Shard (page 716).

4. Create a second shard and add to the cluster. See Add Second Shard (page 716).

5. Shard the desired collection. See Shard a Collection (page 717).

Prerequisites

This tutorial uses a total of ten servers: one server for the mongos and three servers each for the first replica set, the
second replica set, and the config servers (page 684).

Each server must have a resolvable domain, hostname, or IP address within your system.

The tutorial uses the default data directories (e.g. /data/db and /data/configdb). Cre-
ate the appropriate directories with appropriate permissions. To use different paths, see
http://docs.mongodb.org/manual/reference/configuration-options .

The tutorial uses the default ports (page 424) (e.g. 27017 and 27019). To use different ports, see
http://docs.mongodb.org/manual/reference/configuration-options.

Considerations

In production deployments, use exactly three config servers. Each config server must be on a separate machine.

In development and testing environments, you can deploy a cluster with a single config server.

714 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

Procedures

Set Up Initial Replica Set This procedure creates the initial three-member replica set rs0. The replica
set members are on the following hosts: mongodb0.example.net, mongodb1.example.net, and
mongodb2.example.net.

Step 1: Start each member of the replica set with the appropriate options. For each member, start a mongod,
specifying the replica set name through the replSet option. Include any other parameters specific to your deploy-
ment. For replication-specific parameters, see cli-mongod-replica-set.

mongod --replSet "rs0"

Repeat this step for the other two members of the rs0 replica set.

Step 2: Connect a mongo shell to a replica set member. Connect a mongo shell to one member of the replica set
(e.g. mongodb0.example.net)

mongo mongodb0.example.net

Step 3: Initiate the replica set. From the mongo shell, run rs.initiate() to initiate a replica set that consists
of the current member.

rs.initiate()

Step 4: Add the remaining members to the replica set.
rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")

Step 5: Create and populate a new collection. The following step adds one million documents to the collection
test_collection and can take several minutes depending on your system.

Issue the following operations on the primary of the replica set:

use test
var bulk = db.test_collection.initializeUnorderedBulkOp();
people = ["Marc", "Bill", "George", "Eliot", "Matt", "Trey", "Tracy", "Greg", "Steve", "Kristina", "Katie", "Jeff"];
for(var i=0; i<1000000; i++){

user_id = i;
name = people[Math.floor(Math.random()*people.length)];
number = Math.floor(Math.random()*10001);
bulk.insert({ "user_id":user_id, "name":name, "number":number });

}
bulk.execute();

For more information on deploying a replica set, see Deploy a Replica Set (page 607).

Deploy Config Databases and mongos This procedure deploys the three config servers and the mongos.
The config servers use the following hosts: mongodb7.example.net, mongodb8.example.net, and
mongodb9.example.net; the mongos uses mongodb6.example.net.

10.3. Sharded Cluster Tutorials 715

MongoDB Documentation, Release 2.6.11

Step 1: Start three config databases. On each mongodb7.example.net, mongodb8.example.net, and
mongodb9.example.net server, start the config server using default data directory /data/configdb and the
default port 27019:

mongod --configsvr

To modify the default settings or to include additional options specific to your deployment, see
http://docs.mongodb.org/manual/reference/configuration-options.

Step 2: Start a mongos instance. On mongodb6.example.net, start the mongos specifying the config
servers. The mongos runs on the default port 27017.

This tutorial specifies a small --chunkSize of 1 MB to test sharding with the test_collection created earlier.

Note: In production environments, do not use a small chunkSize size.

mongos --configdb mongodb07.example.net:27019,mongodb08.example.net:27019,mongodb09.example.net:27019 --chunkSize 1

Add Initial Replica Set as a Shard The following procedure adds the initial replica set rs0 as a shard.

Step 1: Connect a mongo shell to the mongos.
mongo mongodb6.example.net:27017/admin

Step 2: Add the shard. Add a shard to the cluster with the sh.addShard method:

sh.addShard("rs0/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017")

Add Second Shard The following procedure deploys a new replica set rs1 for the second shard and
adds it to the cluster. The replica set members are on the following hosts: mongodb3.example.net,
mongodb4.example.net, and mongodb5.example.net.

Step 1: Start each member of the replica set with the appropriate options. For each member, start a mongod,
specifying the replica set name through the replSet option. Include any other parameters specific to your deploy-
ment. For replication-specific parameters, see cli-mongod-replica-set.

mongod --replSet "rs1"

Repeat this step for the other two members of the rs1 replica set.

Step 2: Connect a mongo shell to a replica set member. Connect a mongo shell to one member of the replica set
(e.g. mongodb3.example.net)

mongo mongodb3.example.net

Step 3: Initiate the replica set. From the mongo shell, run rs.initiate() to initiate a replica set that consists
of the current member.

rs.initiate()

716 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

Step 4: Add the remaining members to the replica set. Add the remaining members with the rs.add() method.

rs.add("mongodb4.example.net")
rs.add("mongodb5.example.net")

Step 5: Connect a mongo shell to the mongos.
mongo mongodb6.example.net:27017/admin

Step 6: Add the shard. In a mongo shell connected to the mongos, add the shard to the cluster with the
sh.addShard() method:

sh.addShard("rs1/mongodb3.example.net:27017,mongodb4.example.net:27017,mongodb5.example.net:27017")

Shard a Collection

Step 1: Connect a mongo shell to the mongos.
mongo mongodb6.example.net:27017/admin

Step 2: Enable sharding for a database. Before you can shard a collection, you must first enable sharding for the
collection’s database. Enabling sharding for a database does not redistribute data but makes it possible to shard the
collections in that database.

The following operation enables sharding on the test database:

sh.enableSharding("test")

The operation returns the status of the operation:

{ "ok" : 1 }

Step 3: Determine the shard key. For the collection to shard, determine the shard key. The shard key (page 687)
determines how MongoDB distributes the documents between shards. Good shard keys:

• have values that are evenly distributed among all documents,

• group documents that are often accessed at the same time into contiguous chunks, and

• allow for effective distribution of activity among shards.

Once you shard a collection with the specified shard key, you cannot change the shard key. For more information on
shard keys, see Shard Keys (page 687) and Considerations for Selecting Shard Keys (page 709).

This procedure will use the number field as the shard key for test_collection.

Step 4: Create an index on the shard key. Before sharding a non-empty collection, create an index on the shard
key (page 703).

use test
db.test_collection.ensureIndex({ number : 1 })

10.3. Sharded Cluster Tutorials 717

MongoDB Documentation, Release 2.6.11

Step 5: Shard the collection. In the test database, shard the test_collection, specifying number as the
shard key.

use test
sh.shardCollection("test.test_collection", { "number" : 1 })

The method returns the status of the operation:

{ "collectionsharded" : "test.test_collection", "ok" : 1 }

The balancer (page 698) will redistribute chunks of documents when it next runs. As clients insert additional docu-
ments into this collection, the mongos will route the documents between the shards.

Step 6: Confirm the shard is balancing. To confirm balancing activity, run db.stats() or
db.printShardingStatus() in the test database.

use test
db.stats()
db.printShardingStatus()

Example output of the db.stats():

{
"raw" : {

"rs0/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017" : {
"db" : "test",
"collections" : 3,
"objects" : 989316,
"avgObjSize" : 111.99974123535857,
"dataSize" : 110803136,
"storageSize" : 174751744,
"numExtents" : 14,
"indexes" : 2,
"indexSize" : 57370992,
"fileSize" : 469762048,
"nsSizeMB" : 16,
"dataFileVersion" : {

"major" : 4,
"minor" : 5

},
"extentFreeList" : {

"num" : 0,
"totalSize" : 0

},
"ok" : 1

},
"rs1/mongodb3.example.net:27017,mongodb4.example.net:27017,mongodb5.example.net:27017" : {

"db" : "test",
"collections" : 3,
"objects" : 14697,
"avgObjSize" : 111.98258147921345,
"dataSize" : 1645808,
"storageSize" : 2809856,
"numExtents" : 7,
"indexes" : 2,
"indexSize" : 1169168,
"fileSize" : 67108864,
"nsSizeMB" : 16,
"dataFileVersion" : {

718 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

"major" : 4,
"minor" : 5

},
"extentFreeList" : {

"num" : 0,
"totalSize" : 0

},
"ok" : 1

}
},
"objects" : 1004013,
"avgObjSize" : 111,
"dataSize" : 112448944,
"storageSize" : 177561600,
"numExtents" : 21,
"indexes" : 4,
"indexSize" : 58540160,
"fileSize" : 536870912,
"extentFreeList" : {

"num" : 0,
"totalSize" : 0

},
"ok" : 1

}

Example output of the db.printShardingStatus():

--- Sharding Status ---
sharding version: {

"_id" : 1,
"version" : 4,
"minCompatibleVersion" : 4,
"currentVersion" : 5,
"clusterId" : ObjectId("5446970c04ad5132c271597c")

}
shards:

{ "_id" : "rs0", "host" : "rs0/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017" }
{ "_id" : "rs1", "host" : "rs1/mongodb3.example.net:27017,mongodb4.example.net:27017,mongodb5.example.net:27017" }

databases:
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "test", "partitioned" : true, "primary" : "rs0" }

test.test_collection
shard key: { "number" : 1 }
chunks:

rs1 5
rs0 186

too many chunks to print, use verbose if you want to force print

Run these commands for a second time to demonstrate that chunks are migrating from rs0 to rs1.

Convert Sharded Cluster to Replica Set

10.3. Sharded Cluster Tutorials 719

MongoDB Documentation, Release 2.6.11

On this page

• Convert a Cluster with a Single Shard into a Replica Set (page 720)
• Convert a Sharded Cluster into a Replica Set (page 720)

This tutorial describes the process for converting a sharded cluster to a non-sharded replica set. To convert a replica set
into a sharded cluster Convert a Replica Set to a Replicated Sharded Cluster (page 714). See the Sharding (page 675)
documentation for more information on sharded clusters.

Convert a Cluster with a Single Shard into a Replica Set

In the case of a sharded cluster with only one shard, that shard contains the full data set. Use the following procedure
to convert that cluster into a non-sharded replica set:

1. Reconfigure the application to connect to the primary member of the replica set hosting the single shard that
system will be the new replica set.

2. Optionally remove the --shardsrv option, if your mongod started with this option.

Tip
Changing the --shardsrv option will change the port that mongod listens for incoming connections on.

The single-shard cluster is now a non-sharded replica set that will accept read and write operations on the data set.

You may now decommission the remaining sharding infrastructure.

Convert a Sharded Cluster into a Replica Set

Use the following procedure to transition from a sharded cluster with more than one shard to an entirely new replica
set.

1. With the sharded cluster running, deploy a new replica set (page 607) in addition to your sharded cluster. The
replica set must have sufficient capacity to hold all of the data files from all of the current shards combined. Do
not configure the application to connect to the new replica set until the data transfer is complete.

2. Stop all writes to the sharded cluster. You may reconfigure your application or stop all mongos instances.
If you stop all mongos instances, the applications will not be able to read from the database. If you stop all
mongos instances, start a temporary mongos instance on that applications cannot access for the data migration
procedure.

3. Use mongodump and mongorestore (page 261) to migrate the data from the mongos instance to the new replica
set.

Note: Not all collections on all databases are necessarily sharded. Do not solely migrate the sharded collections.
Ensure that all databases and all collections migrate correctly.

4. Reconfigure the application to use the non-sharded replica set instead of the mongos instance.

The application will now use the un-sharded replica set for reads and writes. You may now decommission the remain-
ing unused sharded cluster infrastructure.

10.3.2 Sharded Cluster Maintenance Tutorials

The following tutorials provide information in maintaining sharded clusters.

720 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

View Cluster Configuration (page 721) View status information about the cluster’s databases, shards, and chunks.

Migrate Config Servers with the Same Hostname (page 722) Migrate a config server to a new system while keeping
the same hostname. This procedure requires changing the DNS entry to point to the new system.

Migrate Config Servers with Different Hostnames (page 723) Migrate a config server to a new system that uses a
new hostname. If possible, avoid changing the hostname and instead use the Migrate Config Servers with the
Same Hostname (page 722) procedure.

Replace Disabled Config Server (page 724) Replaces a config server that has become inoperable. This procedure
assumes that the hostname does not change.

Migrate a Sharded Cluster to Different Hardware (page 725) Migrate a sharded cluster to a different hardware sys-
tem, for example, when moving a pre-production environment to production.

Backup Cluster Metadata (page 728) Create a backup of a sharded cluster’s metadata while keeping the cluster op-
erational.

Configure Behavior of Balancer Process in Sharded Clusters (page 728) Manage the balancer’s behavior by
scheduling a balancing window, changing size settings, or requiring replication before migration.

Manage Sharded Cluster Balancer (page 730) View balancer status and manage balancer behavior.

Remove Shards from an Existing Sharded Cluster (page 734) Migrate a single shard’s data and remove the shard.

View Cluster Configuration

On this page

• List Databases with Sharding Enabled (page 721)
• List Shards (page 722)
• View Cluster Details (page 722)

List Databases with Sharding Enabled

To list the databases that have sharding enabled, query the databases collection in the Config Database (page 754).
A database has sharding enabled if the value of the partitioned field is true. Connect to a mongos instance
with a mongo shell, and run the following operation to get a full list of databases with sharding enabled:

use config
db.databases.find({ "partitioned": true })

Example
You can use the following sequence of commands when to return a list of all databases in the cluster:

use config
db.databases.find()

If this returns the following result set:

{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "animals", "partitioned" : true, "primary" : "m0.example.net:30001" }
{ "_id" : "farms", "partitioned" : false, "primary" : "m1.example2.net:27017" }

Then sharding is only enabled for the animals database.

10.3. Sharded Cluster Tutorials 721

MongoDB Documentation, Release 2.6.11

List Shards

To list the current set of configured shards, use the listShards command, as follows:

use admin
db.runCommand({ listShards : 1 })

View Cluster Details

To view cluster details, issue db.printShardingStatus() or sh.status(). Both methods return the same
output.

Example
In the following example output from sh.status()

• sharding version displays the version number of the shard metadata.

• shards displays a list of the mongod instances used as shards in the cluster.

• databases displays all databases in the cluster, including database that do not have sharding enabled.

• The chunks information for the foo database displays how many chunks are on each shard and displays the
range of each chunk.

--- Sharding Status ---
sharding version: { "_id" : 1, "version" : 3 }
shards:
{ "_id" : "shard0000", "host" : "m0.example.net:30001" }
{ "_id" : "shard0001", "host" : "m3.example2.net:50000" }

databases:
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "contacts", "partitioned" : true, "primary" : "shard0000" }

foo.contacts
shard key: { "zip" : 1 }
chunks:

shard0001 2
shard0002 3
shard0000 2

{ "zip" : { "$minKey" : 1 } } -->> { "zip" : "56000" } on : shard0001 { "t" : 2, "i" : 0 }
{ "zip" : 56000 } -->> { "zip" : "56800" } on : shard0002 { "t" : 3, "i" : 4 }
{ "zip" : 56800 } -->> { "zip" : "57088" } on : shard0002 { "t" : 4, "i" : 2 }
{ "zip" : 57088 } -->> { "zip" : "57500" } on : shard0002 { "t" : 4, "i" : 3 }
{ "zip" : 57500 } -->> { "zip" : "58140" } on : shard0001 { "t" : 4, "i" : 0 }
{ "zip" : 58140 } -->> { "zip" : "59000" } on : shard0000 { "t" : 4, "i" : 1 }
{ "zip" : 59000 } -->> { "zip" : { "$maxKey" : 1 } } on : shard0000 { "t" : 3, "i" : 3 }

{ "_id" : "test", "partitioned" : false, "primary" : "shard0000" }

Migrate Config Servers with the Same Hostname

This procedure migrates a config server (page 684) in a sharded cluster (page 681) to a new system that uses the same
hostname.

To migrate all the config servers in a cluster, perform this procedure for each config server separately and migrate the
config servers in reverse order from how they are listed in the mongos instances’ configDB string. Start with the
last config server listed in the configDB string.

722 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

1. Shut down the config server.

This renders all config data for the sharded cluster “read only.”

2. Change the DNS entry that points to the system that provided the old config server, so that the same hostname
points to the new system. How you do this depends on how you organize your DNS and hostname resolution
services.

3. Copy the contents of dbPath from the old config server to the new config server.

For example, to copy the contents of dbPath to a machine named mongodb.config2.example.net,
you might issue a command similar to the following:

rsync -az /data/configdb/ mongodb.config2.example.net:/data/configdb

4. Start the config server instance on the new system. The default invocation is:

mongod --configsvr

When you start the third config server, your cluster will become writable and it will be able to create new splits and
migrate chunks as needed.

Migrate Config Servers with Different Hostnames

On this page

• Overview (page 723)
• Considerations (page 723)
• Procedure (page 723)

Overview

Sharded clusters use a group of three config servers to store cluster meta data, and all three config servers must be
available to support cluster metadata changes that include chunk splits and migrations. If one of the config servers is
unavailable or inoperable, you must replace it as soon as possible.

This procedure migrates a config server (page 684) in a sharded cluster (page 681) to a new server that uses a different
hostname. Use this procedure only if the config server will not be accessible via the same hostname. If possible, avoid
changing the hostname so that you can instead use the procedure to migrate a config server and use the same hostname
(page 722).

Considerations

Changing a config server’s (page 684) hostname requires downtime and requires restarting every process in the
sharded cluster.

While migrating config servers, always make sure that all mongos instances have three config servers specified in the
configDB setting at all times. Also ensure that you specify the config servers in the same order for each mongos
instance’s configDB setting.

Procedure

1. Disable the cluster balancer process temporarily. See Disable the Balancer (page 732) for more information.

10.3. Sharded Cluster Tutorials 723

MongoDB Documentation, Release 2.6.11

2. Shut down the config server to migrate.

This renders all config data for the sharded cluster “read only.”

3. Copy the contents of dbPath from the old config server to the new config server. For example, to copy
the contents of dbPath to a machine named mongodb.config2.example.net, use a command that
resembles the following:

rsync -az /data/configdb mongodb.config2.example.net:/data/configdb

4. Start the config server instance on the new system. The default invocation is:

mongod --configsvr

5. Shut down all existing MongoDB processes. This includes:

• the mongod instances for the shards.

• the mongod instances for the existing config databases (page 754).

• the mongos instances.

6. Restart all shard mongod instances.

7. Restart the mongod instances for the two existing non-migrated config servers.

8. Update the configDB setting for each mongos instances.

9. Restart the mongos instances.

10. Re-enable the balancer to allow the cluster to resume normal balancing operations. See the Disable the Balancer
(page 732) section for more information on managing the balancer process.

Replace Disabled Config Server

On this page

• Overview (page 724)
• Considerations (page 724)
• Procedure (page 725)

Overview

Sharded clusters use a group of three config servers to store cluster meta data, and all three config servers must be
available to support cluster metadata changes that include chunk splits and migrations. If one of the config servers is
unavailable or inoperable you must replace it as soon as possible.

This procedure replaces an inoperable config server (page 684) in a sharded cluster (page 681). Use this procedure
only to replace a config server that has become inoperable (e.g. hardware failure).

This process assumes that the hostname of the instance will not change. If you must change the hostname of the
instance, use the procedure to migrate a config server and use a new hostname (page 723).

Considerations

In the course of this procedure never remove a config server from the configDB parameter on any of the mongos
instances.

724 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

Procedure

Step 1: Provision a new system, with the same IP address and hostname as the previous host. You will have to
ensure the new system has the same IP address and hostname as the system it’s replacing or you will need to modify
the DNS records and wait for them to propagate.

Step 2: Shut down one of the remaining config servers. Copy all of this host’s dbPath path from the current
system to the system that will provide the new config server. This command, issued on the system with the data files,
may resemble the following:

rsync -az /data/configdb mongodb.config2.example.net:/data/configdb

Step 3: If necessary, update DNS and/or networking. Ensure the new config server is accessible by the same
name as the previous config server.

Step 4: Start the new config server.
mongod --configsvr

Migrate a Sharded Cluster to Different Hardware

On this page

• Disable the Balancer (page 725)
• Migrate Each Config Server Separately (page 726)
• Restart the mongos Instances (page 726)
• Migrate the Shards (page 727)
• Re-Enable the Balancer (page 728)

This procedure moves the components of the sharded cluster to a new hardware system without downtime for reads
and writes.

Important: While the migration is in progress, do not attempt to change to the cluster metadata (page 703). Do not
use any operation that modifies the cluster metadata in any way. For example, do not create or drop databases, create
or drop collections, or use any sharding commands.

If your cluster includes a shard backed by a standalone mongod instance, consider converting the standalone to a
replica set (page 619) to simplify migration and to let you keep the cluster online during future maintenance. Migrating
a shard as standalone is a multi-step process that may require downtime.

To migrate a cluster to new hardware, perform the following tasks.

Disable the Balancer

Disable the balancer to stop chunk migration (page 700) and do not perform any metadata write operations until the
process finishes. If a migration is in progress, the balancer will complete the in-progress migration before stopping.

To disable the balancer, connect to one of the cluster’s mongos instances and issue the following method:

sh.stopBalancer()

10.3. Sharded Cluster Tutorials 725

MongoDB Documentation, Release 2.6.11

To check the balancer state, issue the sh.getBalancerState() method.

For more information, see Disable the Balancer (page 732).

Migrate Each Config Server Separately

Migrate each config server (page 684) by starting with the last config server listed in the configDB string. Proceed
in reverse order of the configDB string. Migrate and restart a config server before proceeding to the next. Do not
rename a config server during this process.

Note: If the name or address that a sharded cluster uses to connect to a config server changes, you must restart every
mongod and mongos instance in the sharded cluster. Avoid downtime by using CNAMEs to identify config servers
within the MongoDB deployment.

See Migrate Config Servers with Different Hostnames (page 723) for more information.

Important: Start with the last config server listed in configDB.

1. Shut down the config server.

This renders all config data for the sharded cluster “read only.”

2. Change the DNS entry that points to the system that provided the old config server, so that the same hostname
points to the new system. How you do this depends on how you organize your DNS and hostname resolution
services.

3. Copy the contents of dbPath from the old config server to the new config server.

For example, to copy the contents of dbPath to a machine named mongodb.config2.example.net,
you might issue a command similar to the following:

rsync -az /data/configdb/ mongodb.config2.example.net:/data/configdb

4. Start the config server instance on the new system. The default invocation is:

mongod --configsvr

Restart the mongos Instances

If the configDB string will change as part of the migration, you must shut down all mongos instances before
changing the configDB string. This avoids errors in the sharded cluster over configDB string conflicts.

If the configDB string will remain the same, you can migrate the mongos instances sequentially or all at once.

1. Shut down the mongos instances using the shutdown command. If the configDB string is changing, shut
down all mongos instances.

2. If the hostname has changed for any of the config servers, update the configDB string for each mongos
instance. The mongos instances must all use the same configDB string. The strings must list identical host
names in identical order.

Tip
To avoid downtime, give each config server a logical DNS name (unrelated to the server’s physical or virtual
hostname). Without logical DNS names, moving or renaming a config server requires shutting down every
mongod and mongos instance in the sharded cluster.

726 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

3. Restart the mongos instances being sure to use the updated configDB string if hostnames have changed.

For more information, see Start the mongos Instances (page 706).

Migrate the Shards

Migrate the shards one at a time. For each shard, follow the appropriate procedure in this section.

Migrate a Replica Set Shard To migrate a sharded cluster, migrate each member separately. First migrate the
non-primary members, and then migrate the primary last.

If the replica set has two voting members, add an arbiter (page 574) to the replica set to ensure the set keeps a majority
of its votes available during the migration. You can remove the arbiter after completing the migration.

Migrate a Member of a Replica Set Shard

1. Shut down the mongod process. To ensure a clean shutdown, use the shutdown command.

2. Move the data directory (i.e., the dbPath) to the new machine.

3. Restart the mongod process at the new location.

4. Connect to the replica set’s current primary.

5. If the hostname of the member has changed, use rs.reconfig() to update the replica set configuration
document (page 659) with the new hostname.

For example, the following sequence of commands updates the hostname for the instance at position 2 in the
members array:

cfg = rs.conf()
cfg.members[2].host = "pocatello.example.net:27017"
rs.reconfig(cfg)

For more information on updating the configuration document, see replica-set-reconfiguration-usage.

6. To confirm the new configuration, issue rs.conf().

7. Wait for the member to recover. To check the member’s state, issue rs.status().

Migrate the Primary in a Replica Set Shard While migrating the replica set’s primary, the set must elect a new
primary. This failover process which renders the replica set unavailable to perform reads or accept writes for the
duration of the election, which typically completes quickly. If possible, plan the migration during a maintenance
window.

1. Step down the primary to allow the normal failover (page 583) process. To step down the primary, connect to
the primary and issue the either the replSetStepDown command or the rs.stepDown() method. The
following example shows the rs.stepDown() method:

rs.stepDown()

2. Once the primary has stepped down and another member has become PRIMARY (page 667) state. To migrate
the stepped-down primary, follow the Migrate a Member of a Replica Set Shard (page 727) procedure

You can check the output of rs.status() to confirm the change in status.

10.3. Sharded Cluster Tutorials 727

MongoDB Documentation, Release 2.6.11

Migrate a Standalone Shard The ideal procedure for migrating a standalone shard is to convert the standalone to a
replica set (page 619) and then use the procedure for migrating a replica set shard (page 727). In production clusters,
all shards should be replica sets, which provides continued availability during maintenance windows.

Migrating a shard as standalone is a multi-step process during which part of the shard may be unavailable. If the shard
is the primary shard for a database,the process includes the movePrimary command. While the movePrimary
runs, you should stop modifying data in that database. To migrate the standalone shard, use the Remove Shards from
an Existing Sharded Cluster (page 734) procedure.

Re-Enable the Balancer

To complete the migration, re-enable the balancer to resume chunk migrations (page 700).

Connect to one of the cluster’s mongos instances and pass true to the sh.setBalancerState() method:

sh.setBalancerState(true)

To check the balancer state, issue the sh.getBalancerState() method.

For more information, see Enable the Balancer (page 733).

Backup Cluster Metadata

This procedure shuts down the mongod instance of a config server (page 684) in order to create a backup of a sharded
cluster’s (page 675) metadata. The cluster’s config servers store all of the cluster’s metadata, most importantly the
mapping from chunks to shards.

When you perform this procedure, the cluster remains operational 14.

1. Disable the cluster balancer process temporarily. See Disable the Balancer (page 732) for more information.

2. Shut down one of the config databases.

3. Create a full copy of the data files (i.e. the path specified by the dbPath option for the config instance.)

4. Restart the original configuration server.

5. Re-enable the balancer to allow the cluster to resume normal balancing operations. See the Disable the Balancer
(page 732) section for more information on managing the balancer process.

See also:

MongoDB Backup Methods (page 192).

Configure Behavior of Balancer Process in Sharded Clusters

On this page

• Schedule a Window of Time for Balancing to Occur (page 729)
• Configure Default Chunk Size (page 729)
• Change the Maximum Storage Size for a Given Shard (page 729)
• Change Replication Behavior for Chunk Migration (Secondary Throttle) (page 730)

14 While one of the three config servers is unavailable, the cluster cannot split any chunks nor can it migrate chunks between shards. Your
application will be able to write data to the cluster. See Config Servers (page 684) for more information.

728 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

The balancer is a process that runs on one of the mongos instances in a cluster and ensures that chunks are evenly
distributed throughout a sharded cluster. In most deployments, the default balancer configuration is sufficient for
normal operation. However, administrators might need to modify balancer behavior depending on application or
operational requirements. If you encounter a situation where you need to modify the behavior of the balancer, use the
procedures described in this document.

For conceptual information about the balancer, see Sharded Collection Balancing (page 698) and Cluster Balancer
(page 698).

Schedule a Window of Time for Balancing to Occur

You can schedule a window of time during which the balancer can migrate chunks, as described in the following
procedures:

• Schedule the Balancing Window (page 731)

• Remove a Balancing Window Schedule (page 732).

The mongos instances use their own local timezones when respecting balancer window.

Configure Default Chunk Size

The default chunk size for a sharded cluster is 64 megabytes. In most situations, the default size is appropriate for
splitting and migrating chunks. For information on how chunk size affects deployments, see details, see Chunk Size
(page 702).

Changing the default chunk size affects chunks that are processes during migrations and auto-splits but does not
retroactively affect all chunks.

To configure default chunk size, see Modify Chunk Size in a Sharded Cluster (page 743).

Change the Maximum Storage Size for a Given Shard

The maxSize field in the shards (page 759) collection in the config database (page 754) sets the maximum size
for a shard, allowing you to control whether the balancer will migrate chunks to a shard. If mapped size 15 is above
a shard’s maxSize, the balancer will not move chunks to the shard. Also, the balancer will not move chunks off an
overloaded shard. This must happen manually. The maxSize value only affects the balancer’s selection of destination
shards.

By default, maxSize is not specified, allowing shards to consume the total amount of available space on their ma-
chines if necessary.

You can set maxSize both when adding a shard and once a shard is running.

To set maxSize when adding a shard, set the addShard command’s maxSize parameter to the maximum size in
megabytes. For example, the following command run in the mongo shell adds a shard with a maximum size of 125
megabytes:

db.runCommand({ addshard : "example.net:34008", maxSize : 125 })

To set maxSize on an existing shard, insert or update the maxSize field in the shards (page 759) collection in the
config database (page 754). Set the maxSize in megabytes.

Example
15 This value includes the mapped size of all data files including the‘‘local‘‘ and admin databases. Account for this when setting maxSize.

10.3. Sharded Cluster Tutorials 729

MongoDB Documentation, Release 2.6.11

Assume you have the following shard without a maxSize field:

{ "_id" : "shard0000", "host" : "example.net:34001" }

Run the following sequence of commands in the mongo shell to insert a maxSize of 125 megabytes:

use config
db.shards.update({ _id : "shard0000" }, { $set : { maxSize : 125 } })

To later increase the maxSize setting to 250 megabytes, run the following:

use config
db.shards.update({ _id : "shard0000" }, { $set : { maxSize : 250 } })

Change Replication Behavior for Chunk Migration (Secondary Throttle)

The _secondaryThrottle parameter of the balancer and the moveChunk command affects the replication be-
havior during chunk migration (page 701). By default, _secondaryThrottle is true, which means each doc-
ument move during chunk migration propagates to at least one secondary before the balancer proceeds with its next
operation. For more information on the replication behavior during various steps of chunk migration, see Chunk
Migration and Replication (page 701).

To change the balancer’s _secondaryThrottle value, connect to a mongos instance and directly update the
_secondaryThrottle value in the settings (page 758) collection of the config database (page 754). For
example, from a mongo shell connected to a mongos, issue the following command:

use config
db.settings.update(

{ "_id" : "balancer" },
{ $set : { "_secondaryThrottle" : false } },
{ upsert : true }

)

The effects of changing the _secondaryThrottle value may not be immediate. To ensure an immediate effect,
stop and restart the balancer to enable the selected value of _secondaryThrottle. See Manage Sharded Cluster
Balancer (page 730) for details.

Manage Sharded Cluster Balancer

On this page

• Check the Balancer State (page 731)
• Check the Balancer Lock (page 731)
• Schedule the Balancing Window (page 731)
• Remove a Balancing Window Schedule (page 732)
• Disable the Balancer (page 732)
• Enable the Balancer (page 733)
• Disable Balancing During Backups (page 733)
• Disable Balancing on a Collection (page 734)
• Enable Balancing on a Collection (page 734)
• Confirm Balancing is Enabled or Disabled (page 734)

This page describes common administrative procedures related to balancing. For an introduction to balancing, see
Sharded Collection Balancing (page 698). For lower level information on balancing, see Cluster Balancer (page 698).

730 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

See also:

Configure Behavior of Balancer Process in Sharded Clusters (page 728)

Check the Balancer State

The following command checks if the balancer is enabled (i.e. that the balancer is allowed to run). The command does
not check if the balancer is active (i.e. if it is actively balancing chunks).

To see if the balancer is enabled in your cluster, issue the following command, which returns a boolean:

sh.getBalancerState()

Check the Balancer Lock

To see if the balancer process is active in your cluster, do the following:

1. Connect to any mongos in the cluster using the mongo shell.

2. Issue the following command to switch to the Config Database (page 754):

use config

3. Use the following query to return the balancer lock:

db.locks.find({ _id : "balancer" }).pretty()

When this command returns, you will see output like the following:

{ "_id" : "balancer",
"process" : "mongos0.example.net:1292810611:1804289383",

"state" : 2,
"ts" : ObjectId("4d0f872630c42d1978be8a2e"),

"when" : "Mon Dec 20 2010 11:41:10 GMT-0500 (EST)",
"who" : "mongos0.example.net:1292810611:1804289383:Balancer:846930886",
"why" : "doing balance round" }

This output confirms that:

• The balancer originates from the mongos running on the system with the hostname
mongos0.example.net.

• The value in the state field indicates that a mongos has the lock. For version 2.0 and later, the value of an
active lock is 2; for earlier versions the value is 1.

Schedule the Balancing Window

In some situations, particularly when your data set grows slowly and a migration can impact performance, it’s useful
to be able to ensure that the balancer is active only at certain times. Use the following procedure to specify a window
during which the balancer will be able to migrate chunks:

1. Connect to any mongos in the cluster using the mongo shell.

2. Issue the following command to switch to the Config Database (page 754):

use config

3. Issue the following operation to ensure the balancer is not in the stopped state:

10.3. Sharded Cluster Tutorials 731

MongoDB Documentation, Release 2.6.11

sh.setBalancerState(true)

The balancer will not activate if in the stopped state or outside the activeWindow timeframe.

4. Use an operation modeled on the following update() operation to modify the balancer’s window:

db.settings.update(
{ _id: "balancer" },
{ $set: { activeWindow : { start : "<start-time>", stop : "<stop-time>" } } },
{ upsert: true }

)

Replace <start-time> and <end-time> with time values using two digit hour and minute values (i.e.
HH:MM) that specify the beginning and end boundaries of the balancing window.

• For HH values, use hour values ranging from 00 - 23.

• For MM value, use minute values ranging from 00 - 59.

The start and stop times will be evaluated relative to the time zone of each individual mongos instance in the
sharded cluster. If your mongos instances are physically located in different time zones, use a common time
zone (e.g. GMT) to ensure that the balancer window is interpreted correctly.

For instance, running the following will force the balancer to run between 11PM and 6AM local time only:

db.settings.update(
{ _id: "balancer" },
{ $set: { activeWindow : { start: "23:00", stop: "6:00" } } },
{ upsert: true }

)

Note: The balancer window must be sufficient to complete the migration of all data inserted during the day.

As data insert rates can change based on activity and usage patterns, it is important to ensure that the balancing window
you select will be sufficient to support the needs of your deployment.

Do not use the sh.startBalancer() method when you have set an activeWindow.

Remove a Balancing Window Schedule

If you have set the balancing window (page 731) and wish to remove the schedule so that the balancer is always
running, issue the following sequence of operations:

use config
db.settings.update({ _id : "balancer" }, { $unset : { activeWindow : true } })

Disable the Balancer

By default the balancer may run at any time and only moves chunks as needed. To disable the balancer for a short
period of time and prevent all migration, use the following procedure:

1. Connect to any mongos in the cluster using the mongo shell.

2. Issue the following operation to disable the balancer:

sh.stopBalancer()

If a migration is in progress, the system will complete the in-progress migration before stopping.

732 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

3. To verify that the balancer will not start, issue the following command, which returns false if the balancer is
disabled:

sh.getBalancerState()

Optionally, to verify no migrations are in progress after disabling, issue the following operation in the mongo
shell:

use config
while(sh.isBalancerRunning()) {

print("waiting...");
sleep(1000);

}

Note: To disable the balancer from a driver that does not have the sh.stopBalancer() or
sh.setBalancerState() helpers, issue the following command from the config database:

db.settings.update({ _id: "balancer" }, { $set : { stopped: true } } , { upsert: true })

Enable the Balancer

Use this procedure if you have disabled the balancer and are ready to re-enable it:

1. Connect to any mongos in the cluster using the mongo shell.

2. Issue one of the following operations to enable the balancer:

From the mongo shell, issue:

sh.setBalancerState(true)

From a driver that does not have the sh.startBalancer() helper, issue the following from the config
database:

db.settings.update({ _id: "balancer" }, { $set : { stopped: false } } , { upsert: true })

Disable Balancing During Backups

If MongoDB migrates a chunk during a backup (page 192), you can end with an inconsistent snapshot of your sharded
cluster. Never run a backup while the balancer is active. To ensure that the balancer is inactive during your backup
operation:

• Set the balancing window (page 731) so that the balancer is inactive during the backup. Ensure that the backup
can complete while you have the balancer disabled.

• manually disable the balancer (page 732) for the duration of the backup procedure.

If you turn the balancer off while it is in the middle of a balancing round, the shut down is not instantaneous. The
balancer completes the chunk move in-progress and then ceases all further balancing rounds.

Before starting a backup operation, confirm that the balancer is not active. You can use the following command to
determine if the balancer is active:

!sh.getBalancerState() && !sh.isBalancerRunning()

When the backup procedure is complete you can reactivate the balancer process.

10.3. Sharded Cluster Tutorials 733

MongoDB Documentation, Release 2.6.11

Disable Balancing on a Collection

You can disable balancing for a specific collection with the sh.disableBalancing() method. You may want
to disable the balancer for a specific collection to support maintenance operations or atypical workloads, for example,
during data ingestions or data exports.

When you disable balancing on a collection, MongoDB will not interrupt in progress migrations.

To disable balancing on a collection, connect to a mongos with the mongo shell and call the
sh.disableBalancing() method.

For example:

sh.disableBalancing("students.grades")

The sh.disableBalancing() method accepts as its parameter the full namespace of the collection.

Enable Balancing on a Collection

You can enable balancing for a specific collection with the sh.enableBalancing() method.

When you enable balancing for a collection, MongoDB will not immediately begin balancing data. However, if the
data in your sharded collection is not balanced, MongoDB will be able to begin distributing the data more evenly.

To enable balancing on a collection, connect to a mongos with the mongo shell and call the
sh.enableBalancing() method.

For example:

sh.enableBalancing("students.grades")

The sh.enableBalancing() method accepts as its parameter the full namespace of the collection.

Confirm Balancing is Enabled or Disabled

To confirm whether balancing for a collection is enabled or disabled, query the collections collection in the
config database for the collection namespace and check the noBalance field. For example:

db.getSiblingDB("config").collections.findOne({_id : "students.grades"}).noBalance;

This operation will return a null error, true, false, or no output:

• A null error indicates the collection namespace is incorrect.

• If the result is true, balancing is disabled.

• If the result is false, balancing is enabled currently but has been disabled in the past for the collection.
Balancing of this collection will begin the next time the balancer runs.

• If the operation returns no output, balancing is enabled currently and has never been disabled in the past for this
collection. Balancing of this collection will begin the next time the balancer runs.

Remove Shards from an Existing Sharded Cluster

734 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

On this page

• Ensure the Balancer Process is Enabled (page 735)
• Determine the Name of the Shard to Remove (page 735)
• Remove Chunks from the Shard (page 735)
• Check the Status of the Migration (page 736)
• Move Unsharded Data (page 736)
• Finalize the Migration (page 737)

To remove a shard you must ensure the shard’s data is migrated to the remaining shards in the cluster. This procedure
describes how to safely migrate data and how to remove a shard.

This procedure describes how to safely remove a single shard. Do not use this procedure to migrate an entire cluster
to new hardware. To migrate an entire shard to new hardware, migrate individual shards as if they were independent
replica sets.

To remove a shard, first connect to one of the cluster’s mongos instances using mongo shell. Then use the sequence
of tasks in this document to remove a shard from the cluster.

Ensure the Balancer Process is Enabled

To successfully migrate data from a shard, the balancer process must be enabled. Check the balancer state using
the sh.getBalancerState() helper in the mongo shell. For more information, see the section on balancer
operations (page 732).

Determine the Name of the Shard to Remove

To determine the name of the shard, connect to a mongos instance with the mongo shell and either:

• Use the listShards command, as in the following:

db.adminCommand({ listShards: 1 })

• Run either the sh.status() or the db.printShardingStatus() method.

The shards._id field lists the name of each shard.

Remove Chunks from the Shard

From the admin database, run the removeShard command. This begins “draining” chunks from the shard you are
removing to other shards in the cluster. For example, for a shard named mongodb0, run:

use admin
db.runCommand({ removeShard: "mongodb0" })

This operation returns immediately, with the following response:

{
"msg" : "draining started successfully",
"state" : "started",
"shard" : "mongodb0",
"ok" : 1

}

10.3. Sharded Cluster Tutorials 735

MongoDB Documentation, Release 2.6.11

Depending on your network capacity and the amount of data, this operation can take from a few minutes to several
days to complete.

Check the Status of the Migration

To check the progress of the migration at any stage in the process, run removeShard from the admin database
again. For example, for a shard named mongodb0, run:

use admin
db.runCommand({ removeShard: "mongodb0" })

The command returns output similar to the following:

{
"msg" : "draining ongoing",

"state" : "ongoing",
"remaining" : {

"chunks" : 42,
"dbs" : 1

},
"ok" : 1

}

In the output, the remaining document displays the remaining number of chunks that MongoDB must migrate to
other shards and the number of MongoDB databases that have “primary” status on this shard.

Continue checking the status of the removeShard command until the number of chunks remaining is 0. Always run the
command on the admin database. If you are on a database other than admin, you can use sh._adminCommand
to run the command on admin.

Move Unsharded Data

If the shard is the primary shard for one or more databases in the cluster, then the shard will have unsharded data. If
the shard is not the primary shard for any databases, skip to the next task, Finalize the Migration (page 737).

In a cluster, a database with unsharded collections stores those collections only on a single shard. That shard becomes
the primary shard for that database. (Different databases in a cluster can have different primary shards.)

Warning: Do not perform this procedure until you have finished draining the shard.

1. To determine if the shard you are removing is the primary shard for any of the cluster’s databases, issue one of
the following methods:

• sh.status()

• db.printShardingStatus()

In the resulting document, the databases field lists each database and its primary shard. For example, the
following database field shows that the products database uses mongodb0 as the primary shard:

{ "_id" : "products", "partitioned" : true, "primary" : "mongodb0" }

2. To move a database to another shard, use the movePrimary command. For example, to migrate all remaining
unsharded data from mongodb0 to mongodb1, issue the following command:

db.runCommand({ movePrimary: "products", to: "mongodb1" })

736 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

This command does not return until MongoDB completes moving all data, which may take a long time. The
response from this command will resemble the following:

{ "primary" : "mongodb1", "ok" : 1 }

Finalize the Migration

To clean up all metadata information and finalize the removal, run removeShard again. For example, for a shard
named mongodb0, run:

use admin
db.runCommand({ removeShard: "mongodb0" })

A success message appears at completion:

{
"msg" : "removeshard completed successfully",
"state" : "completed",
"shard" : "mongodb0",
"ok" : 1

}

Once the value of the state field is “completed”, you may safely stop the processes comprising the mongodb0
shard.

See also:

Backup and Restore Sharded Clusters (page 265)

10.3.3 Sharded Cluster Data Management

The following documents provide information in managing data in sharded clusters.

Create Chunks in a Sharded Cluster (page 738) Create chunks, or pre-split empty collection to ensure an even dis-
tribution of chunks during data ingestion.

Split Chunks in a Sharded Cluster (page 738) Manually create chunks in a sharded collection.

Migrate Chunks in a Sharded Cluster (page 739) Manually migrate chunks without using the automatic balance
process.

Merge Chunks in a Sharded Cluster (page 740) Use the mergeChunks to manually combine chunk ranges.

Modify Chunk Size in a Sharded Cluster (page 743) Modify the default chunk size in a sharded collection

Clear jumbo Flag (page 744) Clear jumbo flag from a shard.

Tag Aware Sharding (page 746) Tags associate specific ranges of shard key values with specific shards for use in
managing deployment patterns.

Manage Shard Tags (page 747) Use tags to associate specific ranges of shard key values with specific shards.

Enforce Unique Keys for Sharded Collections (page 749) Ensure that a field is always unique in all collections in a
sharded cluster.

Shard GridFS Data Store (page 751) Choose whether to shard GridFS data in a sharded collection.

10.3. Sharded Cluster Tutorials 737

MongoDB Documentation, Release 2.6.11

Create Chunks in a Sharded Cluster

Pre-splitting the chunk ranges in an empty sharded collection allows clients to insert data into an already partitioned
collection. In most situations a sharded cluster will create and distribute chunks automatically without user interven-
tion. However, in a limited number of cases, MongoDB cannot create enough chunks or distribute data fast enough to
support required throughput. For example:

• If you want to partition an existing data collection that resides on a single shard.

• If you want to ingest a large volume of data into a cluster that isn’t balanced, or where the ingestion of data will
lead to data imbalance. For example, monotonically increasing or decreasing shard keys insert all data into a
single chunk.

These operations are resource intensive for several reasons:

• Chunk migration requires copying all the data in the chunk from one shard to another.

• MongoDB can migrate only a single chunk at a time.

• MongoDB creates splits only after an insert operation.

Warning: Only pre-split an empty collection. If a collection already has data, MongoDB automatically splits the
collection’s data when you enable sharding for the collection. Subsequent attempts to manually create splits can
lead to unpredictable chunk ranges and sizes as well as inefficient or ineffective balancing behavior.

To create chunks manually, use the following procedure:

1. Split empty chunks in your collection by manually performing the split command on chunks.

Example
To create chunks for documents in the myapp.users collection using the email field as the shard key, use
the following operation in the mongo shell:

for (var x=97; x<97+26; x++){
for(var y=97; y<97+26; y+=6) {
var prefix = String.fromCharCode(x) + String.fromCharCode(y);
db.runCommand({ split : "myapp.users" , middle : { email : prefix } });

}
}

This assumes a collection size of 100 million documents.

For information on the balancer and automatic distribution of chunks across shards, see Cluster Balancer
(page 698) and Chunk Migration (page 700). For information on manually migrating chunks, see Migrate
Chunks in a Sharded Cluster (page 739).

Split Chunks in a Sharded Cluster

Normally, MongoDB splits a chunk after an insert if the chunk exceeds the maximum chunk size (page 702). However,
you may want to split chunks manually if:

• you have a large amount of data in your cluster and very few chunks, as is the case after deploying a cluster
using existing data.

• you expect to add a large amount of data that would initially reside in a single chunk or shard. For example, you
plan to insert a large amount of data with shard key values between 300 and 400, but all values of your shard
keys are between 250 and 500 are in a single chunk.

738 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

Note: New in version 2.6: MongoDB provides the mergeChunks command to combine contiguous chunk ranges
into a single chunk. See Merge Chunks in a Sharded Cluster (page 740) for more information.

The balancer may migrate recently split chunks to a new shard immediately if mongos predicts future insertions will
benefit from the move. The balancer does not distinguish between chunks split manually and those split automatically
by the system.

Warning: Be careful when splitting data in a sharded collection to create new chunks. When you shard a
collection that has existing data, MongoDB automatically creates chunks to evenly distribute the collection. To
split data effectively in a sharded cluster you must consider the number of documents in a chunk and the average
document size to create a uniform chunk size. When chunks have irregular sizes, shards may have an equal number
of chunks but have very different data sizes. Avoid creating splits that lead to a collection with differently sized
chunks.

Use sh.status() to determine the current chunk ranges across the cluster.

To split chunks manually, use the split command with either fields middle or find. The mongo shell provides
the helper methods sh.splitFind() and sh.splitAt().

splitFind() splits the chunk that contains the first document returned that matches this query into two equally
sized chunks. You must specify the full namespace (i.e. “<database>.<collection>”) of the sharded collection
to splitFind(). The query in splitFind() does not need to use the shard key, though it nearly always makes
sense to do so.

Example
The following command splits the chunk that contains the value of 63109 for the zipcode field in the people
collection of the records database:

sh.splitFind("records.people", { "zipcode": "63109" })

Use splitAt() to split a chunk in two, using the queried document as the lower bound in the new chunk:

Example
The following command splits the chunk that contains the value of 63109 for the zipcode field in the people
collection of the records database.

sh.splitAt("records.people", { "zipcode": "63109" })

Note: splitAt() does not necessarily split the chunk into two equally sized chunks. The split occurs at the location
of the document matching the query, regardless of where that document is in the chunk.

Migrate Chunks in a Sharded Cluster

In most circumstances, you should let the automatic balancer migrate chunks between shards. However, you may
want to migrate chunks manually in a few cases:

• When pre-splitting an empty collection, migrate chunks manually to distribute them evenly across the shards.
Use pre-splitting in limited situations to support bulk data ingestion.

• If the balancer in an active cluster cannot distribute chunks within the balancing window (page 731), then you
will have to migrate chunks manually.

10.3. Sharded Cluster Tutorials 739

MongoDB Documentation, Release 2.6.11

To manually migrate chunks, use the moveChunk command. For more information on how the automatic balancer
moves chunks between shards, see Cluster Balancer (page 698) and Chunk Migration (page 700).

Example
Migrate a single chunk

The following example assumes that the field username is the shard key for a collection named users in the
myapp database, and that the value smith exists within the chunk to migrate. Migrate the chunk using the following
command in the mongo shell.

db.adminCommand({ moveChunk : "myapp.users",
find : {username : "smith"},
to : "mongodb-shard3.example.net" })

This command moves the chunk that includes the shard key value “smith” to the shard named
mongodb-shard3.example.net. The command will block until the migration is complete.

Tip
To return a list of shards, use the listShards command.

Example
Evenly migrate chunks

To evenly migrate chunks for the myapp.users collection, put each prefix chunk on the next shard from the other
and run the following commands in the mongo shell:

var shServer = ["sh0.example.net", "sh1.example.net", "sh2.example.net", "sh3.example.net", "sh4.example.net"];
for (var x=97; x<97+26; x++){
for(var y=97; y<97+26; y+=6) {
var prefix = String.fromCharCode(x) + String.fromCharCode(y);
db.adminCommand({moveChunk : "myapp.users", find : {email : prefix}, to : shServer[(y-97)/6]})

}
}

See Create Chunks in a Sharded Cluster (page 738) for an introduction to pre-splitting.

New in version 2.2: The moveChunk command has the: _secondaryThrottle parameter. When set to true,
MongoDB ensures that changes to shards as part of chunk migrations replicate to secondaries throughout the migra-
tion operation. For more information, see Change Replication Behavior for Chunk Migration (Secondary Throttle)
(page 730).

Changed in version 2.4: In 2.4, _secondaryThrottle is true by default.

Warning: The moveChunk command may produce the following error message:

The collection's metadata lock is already taken.

This occurs when clients have too many open cursors that access the migrating chunk. You may either wait until
the cursors complete their operations or close the cursors manually.

Merge Chunks in a Sharded Cluster

740 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

On this page

• Overview (page 741)
• Procedure (page 741)

Overview

The mergeChunks command allows you to collapse empty chunks into neighboring chunks on the same shard. A
chunk is empty if it has no documents associated with its shard key range.

Important: Empty chunks can make the balancer assess the cluster as properly balanced when it is not.

Empty chunks can occur under various circumstances, including:

• If a pre-split (page 738) creates too many chunks, the distribution of data to chunks may be uneven.

• If you delete many documents from a sharded collection, some chunks may no longer contain data.

This tutorial explains how to identify chunks available to merge, and how to merge those chunks with neighboring
chunks.

Procedure

Note: Examples in this procedure use a users collection in the test database, using the username filed as a
shard key.

Identify Chunk Ranges In the mongo shell, identify the chunk ranges with the following operation:

sh.status()

The output of the sh.status() will resemble the following:

--- Sharding Status ---
sharding version: {

"_id" : 1,
"version" : 4,
"minCompatibleVersion" : 4,
"currentVersion" : 5,
"clusterId" : ObjectId("5260032c901f6712dcd8f400")

}
shards:

{ "_id" : "shard0000", "host" : "localhost:30000" }
{ "_id" : "shard0001", "host" : "localhost:30001" }

databases:
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "test", "partitioned" : true, "primary" : "shard0001" }

test.users
shard key: { "username" : 1 }
chunks:

shard0000 7
shard0001 7

{ "username" : { "$minKey" : 1 } } -->> { "username" : "user16643" } on : shard0000 Timestamp(2, 0)
{ "username" : "user16643" } -->> { "username" : "user2329" } on : shard0000 Timestamp(3, 0)

10.3. Sharded Cluster Tutorials 741

MongoDB Documentation, Release 2.6.11

{ "username" : "user2329" } -->> { "username" : "user29937" } on : shard0000 Timestamp(4, 0)
{ "username" : "user29937" } -->> { "username" : "user36583" } on : shard0000 Timestamp(5, 0)
{ "username" : "user36583" } -->> { "username" : "user43229" } on : shard0000 Timestamp(6, 0)
{ "username" : "user43229" } -->> { "username" : "user49877" } on : shard0000 Timestamp(7, 0)
{ "username" : "user49877" } -->> { "username" : "user56522" } on : shard0000 Timestamp(8, 0)
{ "username" : "user56522" } -->> { "username" : "user63169" } on : shard0001 Timestamp(8, 1)
{ "username" : "user63169" } -->> { "username" : "user69816" } on : shard0001 Timestamp(1, 8)
{ "username" : "user69816" } -->> { "username" : "user76462" } on : shard0001 Timestamp(1, 9)
{ "username" : "user76462" } -->> { "username" : "user83108" } on : shard0001 Timestamp(1, 10)
{ "username" : "user83108" } -->> { "username" : "user89756" } on : shard0001 Timestamp(1, 11)
{ "username" : "user89756" } -->> { "username" : "user96401" } on : shard0001 Timestamp(1, 12)
{ "username" : "user96401" } -->> { "username" : { "$maxKey" : 1 } } on : shard0001 Timestamp(1, 13)

The chunk ranges appear after the chunk counts for each sharded collection, as in the following excerpts:

Chunk counts:

chunks:
shard0000 7
shard0001 7

Chunk range:

{ "username" : "user36583" } -->> { "username" : "user43229" } on : shard0000 Timestamp(6, 0)

Verify a Chunk is Empty The mergeChunks command requires at least one empty input chunk. In the mongo
shell, check the amount of data in a chunk using an operation that resembles:

db.runCommand({
"dataSize": "test.users",
"keyPattern": { username: 1 },
"min": { "username": "user36583" },
"max": { "username": "user43229" }

})

If the input chunk to dataSize is empty, dataSize produces output similar to:

{ "size" : 0, "numObjects" : 0, "millis" : 0, "ok" : 1 }

Merge Chunks Merge two contiguous chunks on the same shard, where at least one of the contains no data, with an
operation that resembles the following:

db.runCommand({ mergeChunks: "test.users",
bounds: [{ "username": "user68982" },

{ "username": "user95197" }]
})

On success, mergeChunks produces the following output:

{ "ok" : 1 }

On any failure condition, mergeChunks returns a document where the value of the ok field is 0.

View Merged Chunks Ranges After merging all empty chunks, confirm the new chunk, as follows:

sh.status()

742 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

The output of sh.status() should resemble:

--- Sharding Status ---
sharding version: {

"_id" : 1,
"version" : 4,
"minCompatibleVersion" : 4,
"currentVersion" : 5,
"clusterId" : ObjectId("5260032c901f6712dcd8f400")

}
shards:

{ "_id" : "shard0000", "host" : "localhost:30000" }
{ "_id" : "shard0001", "host" : "localhost:30001" }

databases:
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "test", "partitioned" : true, "primary" : "shard0001" }

test.users
shard key: { "username" : 1 }
chunks:

shard0000 2
shard0001 2

{ "username" : { "$minKey" : 1 } } -->> { "username" : "user16643" } on : shard0000 Timestamp(2, 0)
{ "username" : "user16643" } -->> { "username" : "user56522" } on : shard0000 Timestamp(3, 0)
{ "username" : "user56522" } -->> { "username" : "user96401" } on : shard0001 Timestamp(8, 1)
{ "username" : "user96401" } -->> { "username" : { "$maxKey" : 1 } } on : shard0001 Timestamp(1, 13)

Modify Chunk Size in a Sharded Cluster

When the first mongos connects to a set of config servers, it initializes the sharded cluster with a default chunk size
of 64 megabytes. This default chunk size works well for most deployments; however, if you notice that automatic
migrations have more I/O than your hardware can handle, you may want to reduce the chunk size. For automatic splits
and migrations, a small chunk size leads to more rapid and frequent migrations. The allowed range of the chunk size
is between 1 and 1024 megabytes, inclusive.

To modify the chunk size, use the following procedure:

1. Connect to any mongos in the cluster using the mongo shell.

2. Issue the following command to switch to the Config Database (page 754):

use config

3. Issue the following save() operation to store the global chunk size configuration value:

db.settings.save({ _id:"chunksize", value: <sizeInMB> })

Note: The chunkSize and --chunkSize options, passed at startup to the mongos, do not affect the chunk size
after you have initialized the cluster.

To avoid confusion, always set the chunk size using the above procedure instead of the startup options.

Modifying the chunk size has several limitations:

• Automatic splitting only occurs on insert or update.

• If you lower the chunk size, it may take time for all chunks to split to the new size.

• Splits cannot be undone.

10.3. Sharded Cluster Tutorials 743

MongoDB Documentation, Release 2.6.11

• If you increase the chunk size, existing chunks grow only through insertion or updates until they reach the new
size.

• The allowed range of the chunk size is between 1 and 1024 megabytes, inclusive.

Clear jumbo Flag

On this page

• Procedures (page 744)

If MongoDB cannot split a chunk that exceeds the specified chunk size (page 702) or contains a number of documents
that exceeds the max, MongoDB labels the chunk as jumbo (page 702).

If the chunk size no longer hits the limits, MongoDB clears the jumbo flag for the chunk when the mongos reloads
or rewrites the chunk metadata.

In cases where you need to clear the flag manually, the following procedures outline the steps to manually clear the
jumbo flag.

Procedures

Divisible Chunks The preferred way to clear the jumbo flag from a chunk is to attempt to split the chunk. If the
chunk is divisible, MongoDB removes the flag upon successful split of the chunk.

Step 1: Connect to mongos. Connect a mongo shell to a mongos.

Step 2: Find the jumbo Chunk. Run sh.status(true) to find the chunk labeled jumbo.

sh.status(true)

For example, the following output from sh.status(true) shows that chunk with shard key range { "x" : 2 }
-->> { "x" : 4 } is jumbo.

--- Sharding Status ---
sharding version: {

...
}
shards:

...
databases:

...
test.foo

shard key: { "x" : 1 }
chunks:

shard-b 2
shard-a 2

{ "x" : { "$minKey" : 1 } } -->> { "x" : 1 } on : shard-b Timestamp(2, 0)
{ "x" : 1 } -->> { "x" : 2 } on : shard-a Timestamp(3, 1)
{ "x" : 2 } -->> { "x" : 4 } on : shard-a Timestamp(2, 2) jumbo
{ "x" : 4 } -->> { "x" : { "$maxKey" : 1 } } on : shard-b Timestamp(3, 0)

744 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

Step 3: Split the jumbo Chunk. Use either sh.splitAt() or sh.splitFind() to split the jumbo chunk.

sh.splitAt("test.foo", { x: 3 })

MongoDB removes the jumbo flag upon successful split of the chunk.

Indivisible Chunks In some instances, MongoDB cannot split the no-longer jumbo chunk, such as a chunk with
a range of single shard key value, and the preferred method to clear the flag is not applicable. In such cases, you can
clear the flag using the following steps.

Important: Only use this method if the preferred method (page 744) is not applicable.

Before modifying the config database (page 754), always back up the config database.

If you clear the jumbo flag for a chunk that still exceeds the chunk size and/or the document number limit, MongoDB
will re-label the chunk as jumbo when MongoDB tries to move the chunk.

Step 1: Stop the balancer. Disable the cluster balancer process temporarily, following the steps outlined in Disable
the Balancer (page 732).

Step 2: Create a backup of config database. Use mongodump against a config server to create a backup of the
config database. For example:

mongodump --db config --port <config server port> --out <output file>

Step 3: Connect to mongos. Connect a mongo shell to a mongos.

Step 4: Find the jumbo Chunk. Run sh.status(true) to find the chunk labeled jumbo.

sh.status(true)

For example, the following output from sh.status(true) shows that chunk with shard key range { "x" : 2 }
-->> { "x" : 3 } is jumbo.

--- Sharding Status ---
sharding version: {

...
}
shards:

...
databases:

...
test.foo

shard key: { "x" : 1 }
chunks:

shard-b 2
shard-a 2

{ "x" : { "$minKey" : 1 } } -->> { "x" : 1 } on : shard-b Timestamp(2, 0)
{ "x" : 1 } -->> { "x" : 2 } on : shard-a Timestamp(3, 1)
{ "x" : 2 } -->> { "x" : 3 } on : shard-a Timestamp(2, 2) jumbo
{ "x" : 3 } -->> { "x" : { "$maxKey" : 1 } } on : shard-b Timestamp(3, 0)

10.3. Sharded Cluster Tutorials 745

MongoDB Documentation, Release 2.6.11

Step 5: Update chunks collection. In the chunks collection of the config database, unset the jumbo flag for
the chunk. For example,

db.getSiblingDB("config").chunks.update(
{ ns: "test.foo", min: { x: 2 }, jumbo: true },
{ $unset: { jumbo: "" } }

)

Step 6: Restart the balancer. Restart the balancer, following the steps in Enable the Balancer (page 733).

Step 7: Optional. Clear current cluster meta information. To ensure that mongos instances update their cluster
information cache, run flushRouterConfig in the admin database.

db.adminCommand({ flushRouterConfig: 1 })

Tag Aware Sharding

On this page

• Considerations (page 746)
• Behavior and Operations (page 746)
• Additional Resource (page 747)

MongoDB supports tagging a range of shard key values to associate that range with a shard or group of shards. Those
shards receive all inserts within the tagged range.

The balancer obeys tagged range associations, which enables the following deployment patterns:

• isolate a specific subset of data on a specific set of shards.

• ensure that the most relevant data reside on shards that are geographically closest to the application servers.

This document describes the behavior, operation, and use of tag aware sharding in MongoDB deployments.

Considerations

• Shard key range tags are distinct from replica set member tags (page 594).

• Hash-based sharding only supports tag-aware sharding on entire collection.

• Shard ranges are always inclusive of the lower value and exclusive of the upper boundary.

Behavior and Operations

The balancer migrates chunks of documents in a sharded collections to the shards associated with a tag that has a shard
key range with an upper bound greater than the chunk’s lower bound.

During balancing rounds, if the balancer detects that any chunks violate configured tags, the balancer migrates chunks
in tagged ranges to shards associated with those tags.

After configuring tags with a shard key range, and associating it with a shard or shards, the cluster may take some time
to balance the data among the shards. This depends on the division of chunks and the current distribution of data in
the cluster.

746 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

Once configured, the balancer respects tag ranges during future balancing rounds (page 698).

See also:

Manage Shard Tags (page 747)

Additional Resource

MongoDB Multi-Data Center Deployments Whitepaper16

Manage Shard Tags

On this page

• Tag a Shard (page 747)
• Tag a Shard Key Range (page 747)
• Remove a Tag From a Shard Key Range (page 748)
• View Existing Shard Tags (page 748)
• Additional Resource (page 748)

In a sharded cluster, you can use tags to associate specific ranges of a shard key with a specific shard or subset of
shards.

Tag a Shard

Associate tags with a particular shard using the sh.addShardTag() method when connected to a mongos in-
stance. A single shard may have multiple tags, and multiple shards may also have the same tag.

Example
The following example adds the tag NYC to two shards, and the tags SFO and NRT to a third shard:

sh.addShardTag("shard0000", "NYC")
sh.addShardTag("shard0001", "NYC")
sh.addShardTag("shard0002", "SFO")
sh.addShardTag("shard0002", "NRT")

You may remove tags from a particular shard using the sh.removeShardTag() method when connected to a
mongos instance, as in the following example, which removes the NRT tag from a shard:

sh.removeShardTag("shard0002", "NRT")

Tag a Shard Key Range

To assign a tag to a range of shard keys use the sh.addTagRange()method when connected to a mongos instance.
Any given shard key range may only have one assigned tag. You cannot overlap defined ranges, or tag the same range
more than once.

Example
16http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs

10.3. Sharded Cluster Tutorials 747

http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs

MongoDB Documentation, Release 2.6.11

Given a collection named users in the records database, sharded by the zipcode field. The following operations
assign:

• two ranges of zip codes in Manhattan and Brooklyn the NYC tag

• one range of zip codes in San Francisco the SFO tag

sh.addTagRange("records.users", { zipcode: "10001" }, { zipcode: "10281" }, "NYC")
sh.addTagRange("records.users", { zipcode: "11201" }, { zipcode: "11240" }, "NYC")
sh.addTagRange("records.users", { zipcode: "94102" }, { zipcode: "94135" }, "SFO")

Note: Shard ranges are always inclusive of the lower value and exclusive of the upper boundary.

Remove a Tag From a Shard Key Range

The mongod does not provide a helper for removing a tag range. You may delete tag assignment from a shard key
range by removing the corresponding document from the tags (page 759) collection of the config database.

Each document in the tags (page 759) holds the namespace of the sharded collection and a minimum shard key
value.

Example
The following example removes the NYC tag assignment for the range of zip codes within Manhattan:

use config
db.tags.remove({ _id: { ns: "records.users", min: { zipcode: "10001" }}, tag: "NYC" })

View Existing Shard Tags

The output from sh.status() lists tags associated with a shard, if any, for each shard. A shard’s tags exist in the
shard’s document in the shards (page 759) collection of the config database. To return all shards with a specific
tag, use a sequence of operations that resemble the following, which will return only those shards tagged with NYC:

use config
db.shards.find({ tags: "NYC" })

You can find tag ranges for all namespaces in the tags (page 759) collection of the config database. The output of
sh.status() displays all tag ranges. To return all shard key ranges tagged with NYC, use the following sequence
of operations:

use config
db.tags.find({ tags: "NYC" })

Additional Resource

MongoDB Multi-Data Center Deployments Whitepaper17

17http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs

748 Chapter 10. Sharding

http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs

MongoDB Documentation, Release 2.6.11

Enforce Unique Keys for Sharded Collections

On this page

• Overview (page 749)
• Procedures (page 749)

Overview

The unique constraint on indexes ensures that only one document can have a value for a field in a collection. For
sharded collections these unique indexes cannot enforce uniqueness because insert and indexing operations are local
to each shard.

MongoDB does not support creating new unique indexes in sharded collections and will not allow you to shard col-
lections with unique indexes on fields other than the _id field.

If you need to ensure that a field is always unique in a sharded collection, there are three options:

1. Enforce uniqueness of the shard key (page 687).

MongoDB can enforce uniqueness for the shard key. For compound shard keys, MongoDB will enforce unique-
ness on the entire key combination, and not for a specific component of the shard key.

You cannot specify a unique constraint on a hashed index (page 504).

2. Use a secondary collection to enforce uniqueness.

Create a minimal collection that only contains the unique field and a reference to a document in the main
collection. If you always insert into a secondary collection before inserting to the main collection, MongoDB
will produce an error if you attempt to use a duplicate key.

If you have a small data set, you may not need to shard this collection and you can create multiple unique
indexes. Otherwise you can shard on a single unique key.

3. Use guaranteed unique identifiers.

Universally unique identifiers (i.e. UUID) like the ObjectId are guaranteed to be unique.

Procedures

Unique Constraints on the Shard Key

Process To shard a collection using the unique constraint, specify the shardCollection command in the
following form:

db.runCommand({ shardCollection : "test.users" , key : { email : 1 } , unique : true });

Remember that the _id field index is always unique. By default, MongoDB inserts an ObjectId into the _id field.
However, you can manually insert your own value into the _id field and use this as the shard key. To use the _id
field as the shard key, use the following operation:

db.runCommand({ shardCollection : "test.users" })

10.3. Sharded Cluster Tutorials 749

MongoDB Documentation, Release 2.6.11

Limitations

• You can only enforce uniqueness on one single field in the collection using this method.

• If you use a compound shard key, you can only enforce uniqueness on the combination of component keys in
the shard key.

In most cases, the best shard keys are compound keys that include elements that permit write scaling (page 689) and
query isolation (page 690), as well as high cardinality (page 710). These ideal shard keys are not often the same keys
that require uniqueness and enforcing unique values in these collections requires a different approach.

Unique Constraints on Arbitrary Fields If you cannot use a unique field as the shard key or if you need to enforce
uniqueness over multiple fields, you must create another collection to act as a “proxy collection”. This collection must
contain both a reference to the original document (i.e. its ObjectId) and the unique key.

If you must shard this “proxy” collection, then shard on the unique key using the above procedure (page 749); other-
wise, you can simply create multiple unique indexes on the collection.

Process Consider the following for the “proxy collection:”

{
"_id" : ObjectId("...")
"email" ": "..."

}

The _id field holds the ObjectId of the document it reflects, and the email field is the field on which you want to
ensure uniqueness.

To shard this collection, use the following operation using the email field as the shard key:

db.runCommand({ shardCollection : "records.proxy" ,
key : { email : 1 } ,
unique : true });

If you do not need to shard the proxy collection, use the following command to create a unique index on the email
field:

db.proxy.ensureIndex({ "email" : 1 }, { unique : true })

You may create multiple unique indexes on this collection if you do not plan to shard the proxy collection.

To insert documents, use the following procedure in the JavaScript shell:

db = db.getSiblingDB('records');

var primary_id = ObjectId();

db.proxy.insert({
"_id" : primary_id
"email" : "example@example.net"

})

// if: the above operation returns successfully,
// then continue:

db.information.insert({
"_id" : primary_id
"email": "example@example.net"
// additional information...

})

750 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

You must insert a document into the proxy collection first. If this operation succeeds, the email field is unique, and
you may continue by inserting the actual document into the information collection.

See
The full documentation of: ensureIndex() and shardCollection.

Considerations

• Your application must catch errors when inserting documents into the “proxy” collection and must enforce
consistency between the two collections.

• If the proxy collection requires sharding, you must shard on the single field on which you want to enforce
uniqueness.

• To enforce uniqueness on more than one field using sharded proxy collections, you must have one proxy col-
lection for every field for which to enforce uniqueness. If you create multiple unique indexes on a single proxy
collection, you will not be able to shard proxy collections.

Use Guaranteed Unique Identifier The best way to ensure a field has unique values is to generate universally
unique identifiers (UUID,) such as MongoDB’s ‘ObjectId values.

This approach is particularly useful for the‘‘_id‘‘ field, which must be unique: for collections where you are not
sharding by the _id field the application is responsible for ensuring that the _id field is unique.

Shard GridFS Data Store

On this page

• files Collection (page 751)
• chunks Collection (page 751)

When sharding a GridFS store, consider the following:

files Collection

Most deployments will not need to shard the files collection. The files collection is typically small, and only
contains metadata. None of the required keys for GridFS lend themselves to an even distribution in a sharded situation.
If you must shard the files collection, use the _id field possibly in combination with an application field.

Leaving files unsharded means that all the file metadata documents live on one shard. For production GridFS stores
you must store the files collection on a replica set.

chunks Collection

To shard the chunks collection by { files_id : 1 , n : 1 }, issue commands similar to the following:

db.fs.chunks.ensureIndex({ files_id : 1 , n : 1 })

db.runCommand({ shardCollection : "test.fs.chunks" , key : { files_id : 1 , n : 1 } })

You may also want to shard using just the file_id field, as in the following operation:

10.3. Sharded Cluster Tutorials 751

MongoDB Documentation, Release 2.6.11

db.runCommand({ shardCollection : "test.fs.chunks" , key : { files_id : 1 } })

Important: { files_id : 1 , n : 1 } and { files_id : 1 } are the only supported shard keys
for the chunks collection of a GridFS store.

Note: Changed in version 2.2.

Before 2.2, you had to create an additional index on files_id to shard using only this field.

The default files_id value is an ObjectId, as a result the values of files_id are always ascending, and applica-
tions will insert all new GridFS data to a single chunk and shard. If your write load is too high for a single server to
handle, consider a different shard key or use a different value for _id in the files collection.

10.3.4 Troubleshoot Sharded Clusters

On this page

• Config Database String Error (page 752)
• Cursor Fails Because of Stale Config Data (page 752)
• Avoid Downtime when Moving Config Servers (page 752)

This section describes common strategies for troubleshooting sharded cluster deployments.

Config Database String Error

Start all mongos instances in a sharded cluster with an identical configDB string. If a mongos instance tries
to connect to the sharded cluster with a configDB string that does not exactly match the string used by the other
mongos instances, including the order of the hosts, the following errors occur:

could not initialize sharding on connection

And:

mongos specified a different config database string

To solve the issue, restart the mongos with the correct string.

Cursor Fails Because of Stale Config Data

A query returns the following warning when one or more of the mongos instances has not yet updated its cache of
the cluster’s metadata from the config database:

could not initialize cursor across all shards because : stale config detected

This warning should not propagate back to your application. The warning will repeat until all the mongos instances
refresh their caches. To force an instance to refresh its cache, run the flushRouterConfig command.

Avoid Downtime when Moving Config Servers

Use CNAMEs to identify your config servers to the cluster so that you can rename and renumber your config servers
without downtime.

752 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

10.4 Sharding Reference

On this page

• Sharding Methods in the mongo Shell (page 753)
• Sharding Database Commands (page 753)
• Reference Documentation (page 754)

10.4.1 Sharding Methods in the mongo Shell

Name Description
sh._adminCommand Runs a database command against the admin database, like db.runCommand(), but

can confirm that it is issued against a mongos.
sh._checkFullName()Tests a namespace to determine if its well formed.
sh._checkMongos()Tests to see if the mongo shell is connected to a mongos instance.
sh._lastMigration()Reports on the last chunk migration.
sh.addShard() Adds a shard to a sharded cluster.
sh.addShardTag() Associates a shard with a tag, to support tag aware sharding (page 746).
sh.addTagRange() Associates range of shard keys with a shard tag, to support tag aware sharding

(page 746).
sh.disableBalancing()Disable balancing on a single collection in a sharded database. Does not affect

balancing of other collections in a sharded cluster.
sh.enableBalancing()Activates the sharded collection balancer process if previously disabled using

sh.disableBalancing().
sh.enableSharding()Enables sharding on a specific database.
sh.getBalancerHost()Returns the name of a mongos that’s responsible for the balancer process.
sh.getBalancerState()Returns a boolean to report if the balancer is currently enabled.
sh.help() Returns help text for the sh methods.
sh.isBalancerRunning()Returns a boolean to report if the balancer process is currently migrating chunks.
sh.moveChunk() Migrates a chunk in a sharded cluster.
sh.removeShardTag()Removes the association between a shard and a shard tag.
sh.setBalancerState()Enables or disables the balancer which migrates chunks between shards.
sh.shardCollection()Enables sharding for a collection.
sh.splitAt() Divides an existing chunk into two chunks using a specific value of the shard key as the

dividing point.
sh.splitFind() Divides an existing chunk that contains a document matching a query into two

approximately equal chunks.
sh.startBalancer()Enables the balancer and waits for balancing to start.
sh.status() Reports on the status of a sharded cluster, as db.printShardingStatus().
sh.stopBalancer()Disables the balancer and waits for any in progress balancing rounds to complete.
sh.waitForBalancer()Internal. Waits for the balancer state to change.
sh.waitForBalancerOff()Internal. Waits until the balancer stops running.
sh.waitForDLock() Internal. Waits for a specified distributed sharded cluster lock.
sh.waitForPingChange()Internal. Waits for a change in ping state from one of the mongos in the sharded cluster.

10.4.2 Sharding Database Commands

The following database commands support sharded clusters.

10.4. Sharding Reference 753

MongoDB Documentation, Release 2.6.11

Name Description
flushRouterConfig Forces an update to the cluster metadata cached by a mongos.
addShard Adds a shard to a sharded cluster.
cleanupOrphaned Removes orphaned data with shard key values outside of the ranges of the chunks

owned by a shard.
checkShardingIndexInternal command that validates index on shard key.
enableSharding Enables sharding on a specific database.
listShards Returns a list of configured shards.
removeShard Starts the process of removing a shard from a sharded cluster.
getShardMap Internal command that reports on the state of a sharded cluster.
getShardVersion Internal command that returns the config server version.
mergeChunks Provides the ability to combine chunks on a single shard.
setShardVersion Internal command to sets the config server version.
shardCollection Enables the sharding functionality for a collection, allowing the collection to be

sharded.
shardingState Reports whether the mongod is a member of a sharded cluster.
unsetSharding Internal command that affects connections between instances in a MongoDB

deployment.
split Creates a new chunk.
splitChunk Internal command to split chunk. Instead use the methods sh.splitFind() and

sh.splitAt().
splitVector Internal command that determines split points.
medianKey Deprecated internal command. See splitVector.
moveChunk Internal command that migrates chunks between shards.
movePrimary Reassigns the primary shard when removing a shard from a sharded cluster.
isdbgrid Verifies that a process is a mongos.

10.4.3 Reference Documentation

Config Database (page 754) Complete documentation of the content of the local database that MongoDB uses to
store sharded cluster metadata.

Config Database

On this page

• Collections (page 755)

The config database supports sharded cluster operation. See the Sharding (page 675) section of this manual for full
documentation of sharded clusters.

Important: Consider the schema of the config database internal and may change between releases of MongoDB.
The config database is not a dependable API, and users should not write data to the config database in the course
of normal operation or maintenance.

Warning: Modification of the config database on a functioning system may lead to instability or inconsistent
data sets. If you must modify the config database, use mongodump to create a full backup of the config
database.

To access the config database, connect to a mongos instance in a sharded cluster, and use the following helper:

754 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

use config

You can return a list of the collections, with the following helper:

show collections

Collections

config

config.changelog

Internal MongoDB Metadata
The config (page 755) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The changelog (page 755) collection stores a document for each change to the metadata of a sharded collec-
tion.

Example
The following example displays a single record of a chunk split from a changelog (page 755) collection:

{
"_id" : "<hostname>-<timestamp>-<increment>",
"server" : "<hostname><:port>",
"clientAddr" : "127.0.0.1:63381",
"time" : ISODate("2012-12-11T14:09:21.039Z"),
"what" : "split",
"ns" : "<database>.<collection>",
"details" : {

"before" : {
"min" : {

"<database>" : { $minKey : 1 }
},
"max" : {

"<database>" : { $maxKey : 1 }
},
"lastmod" : Timestamp(1000, 0),
"lastmodEpoch" : ObjectId("000000000000000000000000")

},
"left" : {

"min" : {
"<database>" : { $minKey : 1 }

},
"max" : {

"<database>" : "<value>"
},
"lastmod" : Timestamp(1000, 1),
"lastmodEpoch" : ObjectId(<...>)

},
"right" : {

"min" : {
"<database>" : "<value>"

},
"max" : {

10.4. Sharding Reference 755

MongoDB Documentation, Release 2.6.11

"<database>" : { $maxKey : 1 }
},
"lastmod" : Timestamp(1000, 2),
"lastmodEpoch" : ObjectId("<...>")

}
}
}

Each document in the changelog (page 755) collection contains the following fields:

config.changelog._id
The value of changelog._id is: <hostname>-<timestamp>-<increment>.

config.changelog.server
The hostname of the server that holds this data.

config.changelog.clientAddr
A string that holds the address of the client, a mongos instance that initiates this change.

config.changelog.time
A ISODate timestamp that reflects when the change occurred.

config.changelog.what
Reflects the type of change recorded. Possible values are:

•dropCollection

•dropCollection.start

•dropDatabase

•dropDatabase.start

•moveChunk.start

•moveChunk.commit

•split

•multi-split

config.changelog.ns
Namespace where the change occurred.

config.changelog.details
A document that contains additional details regarding the change. The structure of the details
(page 756) document depends on the type of change.

config.chunks

Internal MongoDB Metadata
The config (page 755) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The chunks (page 756) collection stores a document for each chunk in the cluster. Consider the following
example of a document for a chunk named records.pets-animal_\"cat\":

{
"_id" : "mydb.foo-a_\"cat\"",
"lastmod" : Timestamp(1000, 3),

756 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

"lastmodEpoch" : ObjectId("5078407bd58b175c5c225fdc"),
"ns" : "mydb.foo",
"min" : {

"animal" : "cat"
},
"max" : {

"animal" : "dog"
},
"shard" : "shard0004"

}

These documents store the range of values for the shard key that describe the chunk in the min and max fields.
Additionally the shard field identifies the shard in the cluster that “owns” the chunk.

config.collections

Internal MongoDB Metadata
The config (page 755) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The collections (page 757) collection stores a document for each sharded collection in the cluster. Given
a collection named pets in the records database, a document in the collections (page 757) collection
would resemble the following:

{
"_id" : "records.pets",
"lastmod" : ISODate("1970-01-16T15:00:58.107Z"),
"dropped" : false,
"key" : {

"a" : 1
},
"unique" : false,
"lastmodEpoch" : ObjectId("5078407bd58b175c5c225fdc")

}

config.databases

Internal MongoDB Metadata
The config (page 755) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The databases (page 757) collection stores a document for each database in the cluster, and tracks if the
database has sharding enabled. databases (page 757) represents each database in a distinct document. When
a databases have sharding enabled, the primary field holds the name of the primary shard.

{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "mydb", "partitioned" : true, "primary" : "shard0000" }

config.lockpings

Internal MongoDB Metadata
The config (page 755) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

10.4. Sharding Reference 757

MongoDB Documentation, Release 2.6.11

The lockpings (page 757) collection keeps track of the active components in the sharded cluster. Given
a cluster with a mongos running on example.com:30000, the document in the lockpings (page 757)
collection would resemble:

{ "_id" : "example.com:30000:1350047994:16807", "ping" : ISODate("2012-10-12T18:32:54.892Z") }

config.locks

Internal MongoDB Metadata
The config (page 755) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The locks (page 758) collection stores a distributed lock. This ensures that only one mongos instance can
perform administrative tasks on the cluster at once. The mongos acting as balancer takes a lock by inserting a
document resembling the following into the locks collection.

{
"_id" : "balancer",
"process" : "example.net:40000:1350402818:16807",
"state" : 2,
"ts" : ObjectId("507daeedf40e1879df62e5f3"),
"when" : ISODate("2012-10-16T19:01:01.593Z"),
"who" : "example.net:40000:1350402818:16807:Balancer:282475249",
"why" : "doing balance round"

}

If a mongos holds the balancer lock, the state field has a value of 2, which means that balancer is active.
The when field indicates when the balancer began the current operation.

Changed in version 2.0: The value of the state field was 1 before MongoDB 2.0.

config.mongos

Internal MongoDB Metadata
The config (page 755) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The mongos (page 758) collection stores a document for each mongos instance affiliated with the cluster.
mongos instances send pings to all members of the cluster every 30 seconds so the cluster can verify that the
mongos is active. The ping field shows the time of the last ping, while the up field reports the uptime of the
mongos as of the last ping. The cluster maintains this collection for reporting purposes.

The following document shows the status of the mongos running on example.com:30000.

{ "_id" : "example.com:30000", "ping" : ISODate("2012-10-12T17:08:13.538Z"), "up" : 13699, "waiting" : true }

config.settings

Internal MongoDB Metadata
The config (page 755) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

758 Chapter 10. Sharding

MongoDB Documentation, Release 2.6.11

The settings (page 758) collection holds the following sharding configuration settings:

•Chunk size. To change chunk size, see Modify Chunk Size in a Sharded Cluster (page 743).

•Balancer status. To change status, see Disable the Balancer (page 732).

The following is an example settings collection:

{ "_id" : "chunksize", "value" : 64 }
{ "_id" : "balancer", "stopped" : false }

config.shards

Internal MongoDB Metadata
The config (page 755) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The shards (page 759) collection represents each shard in the cluster in a separate document. If the shard
is a replica set, the host field displays the name of the replica set, then a slash, then the hostname, as in the
following example:

{ "_id" : "shard0000", "host" : "shard1/localhost:30000" }

If the shard has tags (page 746) assigned, this document has a tags field, that holds an array of the tags, as in
the following example:

{ "_id" : "shard0001", "host" : "localhost:30001", "tags": ["NYC"] }

config.tags

Internal MongoDB Metadata
The config (page 755) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The tags (page 759) collection holds documents for each tagged shard key range in the cluster. The documents
in the tags (page 759) collection resemble the following:

{
"_id" : { "ns" : "records.users", "min" : { "zipcode" : "10001" } },
"ns" : "records.users",
"min" : { "zipcode" : "10001" },
"max" : { "zipcode" : "10281" },
"tag" : "NYC"

}

config.version

Internal MongoDB Metadata
The config (page 755) database is internal: applications and administrators should not modify or depend upon
its content in the course of normal operation.

The version (page 759) collection holds the current metadata version number. This collection contains only
one document:

10.4. Sharding Reference 759

MongoDB Documentation, Release 2.6.11

To access the version (page 759) collection you must use the db.getCollection() method. For exam-
ple, to display the collection’s document:

mongos> db.getCollection("version").find()
{ "_id" : 1, "version" : 3 }

Note: Like all databases in MongoDB, the config database contains a system.indexes (page 304) collection
contains metadata for all indexes in the database for information on indexes, see Indexes (page 481).

760 Chapter 10. Sharding

CHAPTER 11

Frequently Asked Questions

11.1 FAQ: MongoDB Fundamentals

On this page

• What kind of database is MongoDB? (page 761)
• Do MongoDB databases have tables? (page 762)
• Do MongoDB databases have schemas? (page 762)
• What languages can I use to work with MongoDB? (page 762)
• Does MongoDB support SQL? (page 762)
• What are typical uses for MongoDB? (page 762)
• Does MongoDB support transactions? (page 763)
• Does MongoDB require a lot of RAM? (page 763)
• How do I configure the cache size? (page 763)
• Does MongoDB require a separate caching layer for application-level caching? (page 763)
• Does MongoDB handle caching? (page 763)
• Are writes written to disk immediately, or lazily? (page 764)
• What language is MongoDB written in? (page 764)
• What are the limitations of 32-bit versions of MongoDB? (page 764)

This document addresses basic high level questions about MongoDB and its use.

If you don’t find the answer you’re looking for, check the complete list of FAQs (page 761) or post your question to
the MongoDB User Mailing List1.

11.1.1 What kind of database is MongoDB?

MongoDB is a document-oriented DBMS. Think of MySQL but with JSON-like objects comprising the data model,
rather than RDBMS tables. Significantly, MongoDB supports neither joins nor transactions. However, it features
secondary indexes, an expressive query language, and atomic writes on a per-document level.

Operationally, MongoDB features master-slave replication with automated failover and built-in horizontal scaling via
automated range-based partitioning.

Note: MongoDB uses BSON, a binary object format similar to, but more expressive than JSON.

1https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

761

https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

MongoDB Documentation, Release 2.6.11

11.1.2 Do MongoDB databases have tables?

Instead of tables, a MongoDB database stores its data in collections, which are the rough equivalent of RDBMS tables.
A collection holds one or more documents, which corresponds to a record or a row in a relational database table, and
each document has one or more fields, which corresponds to a column in a relational database table.

Collections have important differences from RDBMS tables. Documents in a single collection may have a unique
combination and set of fields. Documents need not have identical fields. You can add a field to some documents in a
collection without adding that field to all documents in the collection.

See
SQL to MongoDB Mapping Chart (page 136)

11.1.3 Do MongoDB databases have schemas?

MongoDB uses dynamic schemas. You can create collections without defining the structure, i.e. the fields or the types
of their values, of the documents in the collection. You can change the structure of documents simply by adding new
fields or deleting existing ones. Documents in a collection need not have an identical set of fields.

In practice, it is common for the documents in a collection to have a largely homogeneous structure; however, this
is not a requirement. MongoDB’s flexible schemas mean that schema migration and augmentation are very easy in
practice, and you will rarely, if ever, need to write scripts that perform “alter table” type operations, which simplifies
and facilitates iterative software development with MongoDB.

See
SQL to MongoDB Mapping Chart (page 136)

11.1.4 What languages can I use to work with MongoDB?

MongoDB client drivers exist for all of the most popular programming languages, and many other ones. See the latest
list of drivers2 for details.

See also:

http://docs.mongodb.org/manual/applications/drivers.

11.1.5 Does MongoDB support SQL?

No.

However, MongoDB does support a rich, ad-hoc query language of its own.

See also:

http://docs.mongodb.org/manual/reference/operator

11.1.6 What are typical uses for MongoDB?

MongoDB has a general-purpose design, making it appropriate for a large number of use cases. Examples include
content management systems, mobile applications, gaming, e-commerce, analytics, archiving, and logging.

2https://docs.mongodb.org/ecosystem/drivers

762 Chapter 11. Frequently Asked Questions

https://docs.mongodb.org/ecosystem/drivers
https://docs.mongodb.org/ecosystem/drivers

MongoDB Documentation, Release 2.6.11

Do not use MongoDB for systems that require SQL, joins, and multi-object transactions.

11.1.7 Does MongoDB support transactions?

MongoDB does not support multi-document transactions. However, MongoDB does provide atomic operations on a
single document.

For more details on MongoDB’s isolation guarantees and behavior under concurrency, see FAQ: Concurrency
(page 777).

11.1.8 Does MongoDB require a lot of RAM?

Not necessarily. It’s certainly possible to run MongoDB on a machine with a small amount of free RAM.

MongoDB automatically uses all free memory on the machine as its cache. System resource monitors show that
MongoDB uses a lot of memory, but its usage is dynamic. If another process suddenly needs half the server’s RAM,
MongoDB will yield cached memory to the other process.

Technically, the operating system’s virtual memory subsystem manages MongoDB’s memory. This means that Mon-
goDB will use as much free memory as it can, swapping to disk as needed. Deployments with enough memory to fit
the application’s working data set in RAM will achieve the best performance.

See also:

FAQ: MongoDB Diagnostics (page 799) for answers to additional questions about MongoDB and Memory use.

11.1.9 How do I configure the cache size?

MongoDB has no configurable cache. MongoDB uses all free memory on the system automatically by way of memory-
mapped files. Operating systems use the same approach with their file system caches.

11.1.10 Does MongoDB require a separate caching layer for application-level
caching?

No. In MongoDB, a document’s representation in the database is similar to its representation in application memory.
This means the database already stores the usable form of data, making the data usable in both the persistent store and
in the application cache. This eliminates the need for a separate caching layer in the application.

This differs from relational databases, where caching data is more expensive. Relational databases must transform
data into object representations that applications can read and must store the transformed data in a separate cache: if
these transformation from data to application objects require joins, this process increases the overhead related to using
the database which increases the importance of the caching layer.

11.1.11 Does MongoDB handle caching?

Yes. MongoDB keeps all of the most recently used data in RAM. If you have created indexes for your queries and
your working data set fits in RAM, MongoDB serves all queries from memory.

MongoDB does not implement a query cache: MongoDB serves all queries directly from the indexes and/or data files.

11.1. FAQ: MongoDB Fundamentals 763

MongoDB Documentation, Release 2.6.11

11.1.12 Are writes written to disk immediately, or lazily?

Writes are physically written to the journal (page 309) within 100 milliseconds, by default. At that point, the write is
“durable” in the sense that after a pull-plug-from-wall event, the data will still be recoverable after a hard restart. See
commitIntervalMs for more information on the journal commit window.

While the journal commit is nearly instant, MongoDB writes to the data files lazily. MongoDB may wait to write
data to the data files for as much as one minute by default. This does not affect durability, as the journal has enough
information to ensure crash recovery. To change the interval for writing to the data files, see syncPeriodSecs.

11.1.13 What language is MongoDB written in?

MongoDB is implemented in C++. Drivers and client libraries are typically written in their respective languages,
although some drivers use C extensions for better performance.

11.1.14 What are the limitations of 32-bit versions of MongoDB?

MongoDB uses memory-mapped files (page 793). When running a 32-bit build of MongoDB, the total storage size
for the server, including data and indexes, is 2 gigabytes. For this reason, do not deploy MongoDB to production on
32-bit machines.

If you’re running a 64-bit build of MongoDB, there’s virtually no limit to storage size. For production deployments,
64-bit builds and operating systems are strongly recommended.

See also:

“Blog Post: 32-bit Limitations3“

Note: 32-bit builds disable journaling by default because journaling further limits the maximum amount of data that
the database can store.

11.2 FAQ: MongoDB for Application Developers

3http://blog.mongodb.org/post/137788967/32-bit-limitations

764 Chapter 11. Frequently Asked Questions

http://blog.mongodb.org/post/137788967/32-bit-limitations

MongoDB Documentation, Release 2.6.11

On this page

• What is a namespace in MongoDB? (page 765)
• How do you copy all objects from one collection to another? (page 765)
• If you remove a document, does MongoDB remove it from disk? (page 766)
• When does MongoDB write updates to disk? (page 766)
• How do I do transactions and locking in MongoDB? (page 766)
• How do you aggregate data with MongoDB? (page 766)
• Why does MongoDB log so many “Connection Accepted” events? (page 767)
• Does MongoDB run on Amazon EBS? (page 767)
• Why are MongoDB’s data files so large? (page 767)
• How do I optimize storage use for small documents? (page 767)
• When should I use GridFS? (page 768)
• How does MongoDB address SQL or Query injection? (page 768)
• How does MongoDB provide concurrency? (page 770)
• What is the compare order for BSON types? (page 770)
• When multiplying values of mixed types, what type conversion rules apply? (page 771)
• How do I query for fields that have null values? (page 771)
• Are there any restrictions on the names of Collections? (page 772)
• How do I isolate cursors from intervening write operations? (page 773)
• When should I embed documents within other documents? (page 773)
• Where can I learn more about data modeling in MongoDB? (page 774)
• Can I manually pad documents to prevent moves during updates? (page 774)

This document answers common questions about application development using MongoDB.

If you don’t find the answer you’re looking for, check the complete list of FAQs (page 761) or post your question to
the MongoDB User Mailing List4.

11.2.1 What is a namespace in MongoDB?

A “namespace” is the concatenation of the database name and the collection names 5 with a period character in
between.

Collections are containers for documents that share one or more indexes. Databases are groups of collections stored
on disk using a single set of data files. 6

For an example acme.users namespace, acme is the database name and users is the collection name. Period
characters can occur in collection names, so that acme.user.history is a valid namespace, with acme as the
database name, and user.history as the collection name.

While data models like this appear to support nested collections, the collection namespace is flat, and there is no
difference from the perspective of MongoDB between acme, acme.users, and acme.records.

11.2.2 How do you copy all objects from one collection to another?

In the mongo shell, you can use the following operation to duplicate the entire collection:

db.source.copyTo(newCollection)

4https://groups.google.com/forum/?fromgroups#!forum/mongodb-user
5 Each index also has its own namespace.
6 MongoDB database have a configurable limit on the number of namespaces in a database.

11.2. FAQ: MongoDB for Application Developers 765

https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

MongoDB Documentation, Release 2.6.11

Warning: When using db.collection.copyTo() check field types to ensure that the operation does not
remove type information from documents during the translation from BSON to JSON.
The db.collection.copyTo() method uses the eval command internally. As a result, the
db.collection.copyTo() operation takes a global lock that blocks all other read and write operations until
the db.collection.copyTo() completes.

Also consider the cloneCollection command that may provide some of this functionality.

11.2.3 If you remove a document, does MongoDB remove it from disk?

Yes.

When you use remove(), the object will no longer exist in MongoDB’s on-disk data storage.

11.2.4 When does MongoDB write updates to disk?

MongoDB flushes writes to disk on a regular interval. In the default configuration, MongoDB writes data to the
main data files on disk every 60 seconds and commits the journal roughly every 100 milliseconds. These values are
configurable with the commitIntervalMs and syncPeriodSecs.

These values represent the maximum amount of time between the completion of a write operation and the point when
the write is durable in the journal, if enabled, and when MongoDB flushes data to the disk. In many cases MongoDB
and the operating system flush data to disk more frequently, so that the above values represents a theoretical maximum.

However, by default, MongoDB uses a “lazy” strategy to write to disk. This is advantageous in situations where the
database receives a thousand increments to an object within one second, MongoDB only needs to flush this data to disk
once. In addition to the aforementioned configuration options, you can also use fsync and Write Concern Reference
(page 135) to modify this strategy.

11.2.5 How do I do transactions and locking in MongoDB?

MongoDB does not have support for traditional locking or complex transactions with rollback. MongoDB aims to be
lightweight, fast, and predictable in its performance. This is similar to the MySQL MyISAM autocommit model. By
keeping transaction support extremely simple, MongoDB can provide greater performance especially for partitioned
or replicated systems with a number of database server processes.

MongoDB does have support for atomic operations within a single document. Given the possibilities provided by
nested documents, this feature provides support for a large number of use-cases.

See also:

The Atomicity and Transactions (page 86) page.

11.2.6 How do you aggregate data with MongoDB?

In version 2.1 and later, you can use the new aggregation framework (page 439), with the aggregate command.

MongoDB also supports map-reduce with the mapReduce command, as well as basic aggregation with the group,
count, and distinct. commands.

See also:

The Aggregation (page 435) page.

766 Chapter 11. Frequently Asked Questions

MongoDB Documentation, Release 2.6.11

11.2.7 Why does MongoDB log so many “Connection Accepted” events?

If you see a very large number connection and re-connection messages in your MongoDB log, then clients are fre-
quently connecting and disconnecting to the MongoDB server. This is normal behavior for applications that do not use
request pooling, such as CGI. Consider using FastCGI, an Apache Module, or some other kind of persistent application
server to decrease the connection overhead.

If these connections do not impact your performance you can use the run-time quiet option or the command-line
option --quiet to suppress these messages from the log.

11.2.8 Does MongoDB run on Amazon EBS?

Yes.

MongoDB users of all sizes have had a great deal of success using MongoDB on the EC2 platform using EBS disks.

See also:

Amazon EC27

11.2.9 Why are MongoDB’s data files so large?

MongoDB aggressively preallocates data files to reserve space and avoid file system fragmentation. You can use the
storage.smallFiles setting to modify the file preallocation strategy.

See also:

Why are the files in my data directory larger than the data in my database? (page 794)

11.2.10 How do I optimize storage use for small documents?

Each MongoDB document contains a certain amount of overhead. This overhead is normally insignificant but becomes
significant if all documents are just a few bytes, as might be the case if the documents in your collection only have one
or two fields.

Consider the following suggestions and strategies for optimizing storage utilization for these collections:

• Use the _id field explicitly.

MongoDB clients automatically add an _id field to each document and generate a unique 12-byte ObjectId for
the _id field. Furthermore, MongoDB always indexes the _id field. For smaller documents this may account
for a significant amount of space.

To optimize storage use, users can specify a value for the _id field explicitly when inserting documents into the
collection. This strategy allows applications to store a value in the _id field that would have occupied space in
another portion of the document.

You can store any value in the _id field, but because this value serves as a primary key for documents in the
collection, it must uniquely identify them. If the field’s value is not unique, then it cannot serve as a primary key
as there would be collisions in the collection.

• Use shorter field names.

MongoDB stores all field names in every document. For most documents, this represents a small fraction of the
space used by a document; however, for small documents the field names may represent a proportionally large
amount of space. Consider a collection of documents that resemble the following:

7https://docs.mongodb.org/ecosystem/platforms/amazon-ec2

11.2. FAQ: MongoDB for Application Developers 767

https://docs.mongodb.org/ecosystem/platforms/amazon-ec2

MongoDB Documentation, Release 2.6.11

{ last_name : "Smith", best_score: 3.9 }

If you shorten the field named last_name to lname and the field named best_score to score, as follows,
you could save 9 bytes per document.

{ lname : "Smith", score : 3.9 }

Shortening field names reduces expressiveness and does not provide considerable benefit for larger documents
and where document overhead is not of significant concern. Shorter field names do not reduce the size of
indexes, because indexes have a predefined structure.

In general it is not necessary to use short field names.

• Embed documents.

In some cases you may want to embed documents in other documents and save on the per-document overhead.

11.2.11 When should I use GridFS?

For documents in a MongoDB collection, you should always use GridFS for storing files larger than 16 MB.

In some situations, storing large files may be more efficient in a MongoDB database than on a system-level filesystem.

• If your filesystem limits the number of files in a directory, you can use GridFS to store as many files as needed.

• When you want to keep your files and metadata automatically synced and deployed across a number of systems
and facilities. When using geographically distributed replica sets (page 581) MongoDB can distribute files and
their metadata automatically to a number of mongod instances and facilities.

• When you want to access information from portions of large files without having to load whole files into memory,
you can use GridFS to recall sections of files without reading the entire file into memory.

Do not use GridFS if you need to update the content of the entire file atomically. As an alternative you can store
multiple versions of each file and specify the current version of the file in the metadata. You can update the metadata
field that indicates “latest” status in an atomic update after uploading the new version of the file, and later remove
previous versions if needed.

Furthermore, if your files are all smaller the 16 MB BSON Document Size limit, consider storing the file man-
ually within a single document. You may use the BinData data type to store the binary data. See your drivers
documentation for details on using BinData.

For more information on GridFS, see GridFS (page 156).

11.2.12 How does MongoDB address SQL or Query injection?

BSON

As a client program assembles a query in MongoDB, it builds a BSON object, not a string. Thus traditional SQL
injection attacks are not a problem. More details and some nuances are covered below.

MongoDB represents queries as BSON objects. Typically client libraries provide a convenient, injection free,
process to build these objects. Consider the following C++ example:

BSONObj my_query = BSON("name" << a_name);
auto_ptr<DBClientCursor> cursor = c.query("tutorial.persons", my_query);

Here, my_query then will have a value such as { name : "Joe" }. If my_query contained special charac-
ters, for example ,, :, and {, the query simply wouldn’t match any documents. For example, users cannot hijack a
query and convert it to a delete.

768 Chapter 11. Frequently Asked Questions

MongoDB Documentation, Release 2.6.11

JavaScript

Note: You can disable all server-side execution of JavaScript, by passing the --noscripting option on the
command line or setting security.javascriptEnabled in a configuration file.

All of the following MongoDB operations permit you to run arbitrary JavaScript expressions directly on the server:

• $where

• db.eval()

• mapReduce

• group

You must exercise care in these cases to prevent users from submitting malicious JavaScript.

Fortunately, you can express most queries in MongoDB without JavaScript and for queries that require JavaScript, you
can mix JavaScript and non-JavaScript in a single query. Place all the user-supplied fields directly in a BSON field and
pass JavaScript code to the $where field.

• If you need to pass user-supplied values in a $where clause, you may escape these values with the
CodeWScope mechanism. When you set user-submitted values as variables in the scope document, you can
avoid evaluating them on the database server.

• If you need to use db.eval()with user supplied values, you can either use a CodeWScope or you can supply
extra arguments to your function. For instance:

db.eval(function(userVal){...},
user_value);

This will ensure that your application sends user_value to the database server as data rather than code.

Dollar Sign Operator Escaping

Field names in MongoDB’s query language have semantic meaning. The dollar sign (i.e $) is a reserved character used
to represent operators (i.e. $inc.) Thus, you should ensure that your application’s users cannot inject operators
into their inputs.

In some cases, you may wish to build a BSON object with a user-provided key. In these situations, keys will need
to substitute the reserved $ and . characters. Any character is sufficient, but consider using the Unicode full width
equivalents: U+FF04 (i.e. “$”) and U+FF0E (i.e. “.”).

Consider the following example:

BSONObj my_object = BSON(a_key << a_name);

The user may have supplied a $ value in the a_key value. At the same time, my_object might be { $where :
"things" }. Consider the following cases:

• Insert. Inserting this into the database does no harm. The insert process does not evaluate the object as a query.

Note: MongoDB client drivers, if properly implemented, check for reserved characters in keys on inserts.

• Update. The update() operation permits $ operators in the update argument but does not support the
$where operator. Still, some users may be able to inject operators that can manipulate a single document
only. Therefore your application should escape keys, as mentioned above, if reserved characters are possible.

11.2. FAQ: MongoDB for Application Developers 769

MongoDB Documentation, Release 2.6.11

• Query Generally this is not a problem for queries that resemble { x : user_obj }: dollar signs are
not top level and have no effect. Theoretically it may be possible for the user to build a query themselves.
But checking the user-submitted content for $ characters in key names may help protect against this kind of
injection.

Driver-Specific Issues

See the “PHP MongoDB Driver Security Notes8” page in the PHP driver documentation for more information

11.2.13 How does MongoDB provide concurrency?

MongoDB implements a readers-writer lock. This means that at any one time, only one client may be writing or any
number of clients may be reading, but that reading and writing cannot occur simultaneously.

In standalone and replica sets the lock’s scope applies to a single mongod instance or primary instance. In a sharded
cluster, locks apply to each individual shard, not to the whole cluster.

For more information, see FAQ: Concurrency (page 777).

11.2.14 What is the compare order for BSON types?

MongoDB permits documents within a single collection to have fields with different BSON types. For instance, the
following documents may exist within a single collection.

{ x: "string" }
{ x: 42 }

When comparing values of different BSON types, MongoDB uses the following comparison order, from lowest to
highest:

1. MinKey (internal type)

2. Null

3. Numbers (ints, longs, doubles)

4. Symbol, String

5. Object

6. Array

7. BinData

8. ObjectId

9. Boolean

10. Date, Timestamp

11. Regular Expression

12. MaxKey (internal type)

MongoDB treats some types as equivalent for comparison purposes. For instance, numeric types undergo conversion
before comparison.

The comparison treats a non-existent field as it would an empty BSON Object. As such, a sort on the a field in
documents { } and { a: null } would treat the documents as equivalent in sort order.

8http://us.php.net/manual/en/mongo.security.php

770 Chapter 11. Frequently Asked Questions

http://us.php.net/manual/en/mongo.security.php

MongoDB Documentation, Release 2.6.11

With arrays, a less-than comparison or an ascending sort compares the smallest element of arrays, and a greater-than
comparison or a descending sort compares the largest element of the arrays. As such, when comparing a field whose
value is a single-element array (e.g. [1]) with non-array fields (e.g. 2), the comparison is between 1 and 2. A
comparison of an empty array (e.g. []) treats the empty array as less than null or a missing field.

MongoDB sorts BinData in the following order:

1. First, the length or size of the data.

2. Then, by the BSON one-byte subtype.

3. Finally, by the data, performing a byte-by-byte comparison.

Consider the following mongo example:

db.test.insert({x : 3 });
db.test.insert({x : 2.9 });
db.test.insert({x : new Date() });
db.test.insert({x : true });

db.test.find().sort({x:1});
{ "_id" : ObjectId("4b03155dce8de6586fb002c7"), "x" : 2.9 }
{ "_id" : ObjectId("4b03154cce8de6586fb002c6"), "x" : 3 }
{ "_id" : ObjectId("4b031566ce8de6586fb002c9"), "x" : true }
{ "_id" : ObjectId("4b031563ce8de6586fb002c8"), "x" : "Tue Nov 17 2009 16:28:03 GMT-0500 (EST)" }

The $type operator provides access to BSON type comparison in the MongoDB query syntax. See the documentation
on BSON types and the $type operator for additional information.

Warning: Data models that associate a field name with different data types within a collection are strongly
discouraged.
Without internal consistency complicates application code, and can lead to unnecessary complexity for application
developers.

See also:

• The Tailable Cursors (page 128) page for an example of a C++ use of MinKey.

11.2.15 When multiplying values of mixed types, what type conversion rules apply?

The $mul multiplies the numeric value of a field by a number. For multiplication with values of mixed numeric types
(32-bit integer, 64-bit integer, float), the following type conversion rules apply:

32-bit Integer 64-bit Integer Float
32-bit Integer 32-bit or 64-bit Integer 64-bit Integer Float
64-bit Integer 64-bit Integer 64-bit Integer Float
Float Float Float Float

Note:
• If the product of two 32-bit integers exceeds the maximum value for a 32-bit integer, the result is a 64-bit integer.

• Integer operations of any type that exceed the maximum value for a 64-bit integer produce an error.

11.2.16 How do I query for fields that have null values?

Different query operators treat null values differently.

11.2. FAQ: MongoDB for Application Developers 771

MongoDB Documentation, Release 2.6.11

Consider the collection test with the following documents:

{ _id: 1, cancelDate: null }
{ _id: 2 }

Comparison with Null

The { cancelDate : null } query matches documents that either contain the cancelDate field whose
value is null or that do not contain the cancelDate field. If the queried index is sparse (page 507), however, then
the query will only match null values, not missing fields.

Changed in version 2.6: If using the sparse index results in an incomplete result, MongoDB will not use the index
unless a hint() explicitly specifies the index. See Sparse Indexes (page 507) for more information.

Given the following query:

db.test.find({ cancelDate: null })

The query returns both documents:

{ "_id" : 1, "cancelDate" : null }
{ "_id" : 2 }

Type Check

The { cancelDate : { $type: 10 } } query matches documents that contains the cancelDate field
whose value is null only; i.e. the value of the cancelDate field is of BSON Type Null (i.e. 10) :

db.test.find({ cancelDate : { $type: 10 } })

The query returns only the document that contains the null value:

{ "_id" : 1, "cancelDate" : null }

Existence Check

The { cancelDate : { $exists: false } } query matches documents that do not contain the
cancelDate field:

db.test.find({ cancelDate : { $exists: false } })

The query returns only the document that does not contain the cancelDate field:

{ "_id" : 2 }

See also:

The reference documentation for the $type and $exists operators.

11.2.17 Are there any restrictions on the names of Collections?

Collection names can be any UTF-8 string with the following exceptions:

• A collection name should begin with a letter or an underscore.

• The empty string ("") is not a valid collection name.

772 Chapter 11. Frequently Asked Questions

MongoDB Documentation, Release 2.6.11

• Collection names cannot contain the $ character. (version 2.2 only)

• Collection names cannot contain the null character: \0

• Do not name a collection using the system. prefix. MongoDB reserves system. for system collections,
such as the system.indexes collection.

• The maximum length of the collection namespace, which includes the database name, the dot (.) separator, and
the collection name (i.e. <database>.<collection>), is 120 bytes.

However, for maximum flexibility, collections should have names less than 80 characters.

If your collection name includes special characters, such as the underscore character, then to access the collection use
the db.getCollection() method or a similar method for your driver9.

Example
To create a collection _foo and insert the { a : 1 } document, use the following operation:

db.getCollection("_foo").insert({ a : 1 })

To perform a query, use the find() method, in as the following:

db.getCollection("_foo").find()

11.2.18 How do I isolate cursors from intervening write operations?

MongoDB cursors can return the same document more than once in some situations. 10 You can use the snapshot()
method on a cursor to isolate the operation for a very specific case.

snapshot() traverses the index on the _id field and guarantees that the query will return each document (with
respect to the value of the _id field) no more than once. 11

The snapshot() does not guarantee that the data returned by the query will reflect a single moment in time nor
does it provide isolation from insert or delete operations.

Warning:
• You cannot use snapshot() with sharded collections.
• You cannot use snapshot() with sort() or hint() cursor methods.

As an alternative, if your collection has a field or fields that are never modified, you can use a unique index on this
field or these fields to achieve a similar result as the snapshot(). Query with hint() to explicitly force the query
to use that index.

11.2.19 When should I embed documents within other documents?

When modeling data in MongoDB (page 151), embedding is frequently the choice for:

• “contains” relationships between entities.

• one-to-many relationships when the “many” objects always appear with or are viewed in the context of their
parents.

9https://api.mongodb.org/
10 As a cursor returns documents other operations may interleave with the query: if some of these operations are updates (page 77) that cause the

document to move (in the case of a table scan, caused by document growth) or that change the indexed field on the index used by the query; then
the cursor will return the same document more than once.

11 MongoDB does not permit changes to the value of the _id field; it is not possible for a cursor that transverses this index to pass the same
document more than once.

11.2. FAQ: MongoDB for Application Developers 773

https://api.mongodb.org/

MongoDB Documentation, Release 2.6.11

You should also consider embedding for performance reasons if you have a collection with a large number of small
documents. Nevertheless, if small, separate documents represent the natural model for the data, then you should
maintain that model.

If, however, you can group these small documents by some logical relationship and you frequently retrieve the doc-
uments by this grouping, you might consider “rolling-up” the small documents into larger documents that contain an
array of embedded documents. Keep in mind that if you often only need to retrieve a subset of the documents within
the group, then “rolling-up” the documents may not provide better performance.

“Rolling up” these small documents into logical groupings means that queries to retrieve a group of documents involve
sequential reads and fewer random disk accesses.

Additionally, “rolling up” documents and moving common fields to the larger document benefit the index on these
fields. There would be fewer copies of the common fields and there would be fewer associated key entries in the
corresponding index. See Index Concepts (page 485) for more information on indexes.

11.2.20 Where can I learn more about data modeling in MongoDB?

Begin by reading the documents in the Data Models (page 149) section. These documents contain a high level intro-
duction to data modeling considerations in addition to practical examples of data models targeted at particular issues.

Additionally, consider the following external resources that provide additional examples:

• Schema Design by Example12

• Dynamic Schema Blog Post13

• MongoDB Data Modeling and Rails14

• Ruby Example of Materialized Paths15

• Sean Cribs Blog Post16 which was the source for much of the data-modeling-trees content.

11.2.21 Can I manually pad documents to prevent moves during updates?

An update can cause a document to move on disk if the document grows in size. To minimize document movements,
MongoDB uses padding.

You should not have to pad manually because MongoDB adds padding automatically (page 95) and can adaptively
adjust the amount of padding added to documents to prevent document relocations following updates. You can change
the default paddingFactor calculation by using the collMod command with the usePowerOf2Sizes flag.
The usePowerOf2Sizes flag ensures that MongoDB allocates document space in sizes that are powers of 2, which
helps ensure that MongoDB can efficiently reuse free space created by document deletion or relocation.

However, if you must pad a document manually, you can add a temporary field to the document and then $unset the
field, as in the following example.

Warning: Do not manually pad documents in a capped collection. Applying manual padding to a document in a
capped collection can break replication. Also, the padding is not preserved if you re-sync the MongoDB instance.

12http://www.mongodb.com/presentations/mongodb-melbourne-2012/schema-design-example
13http://dmerr.tumblr.com/post/6633338010/schemaless
14https://docs.mongodb.org/ecosystem/tutorial/model-data-for-ruby-on-rails/
15http://github.com/banker/newsmonger/blob/master/app/models/comment.rb
16http://seancribbs.com/tech/2009/09/28/modeling-a-tree-in-a-document-database

774 Chapter 11. Frequently Asked Questions

http://www.mongodb.com/presentations/mongodb-melbourne-2012/schema-design-example
http://dmerr.tumblr.com/post/6633338010/schemaless
https://docs.mongodb.org/ecosystem/tutorial/model-data-for-ruby-on-rails/
http://github.com/banker/newsmonger/blob/master/app/models/comment.rb
http://seancribbs.com/tech/2009/09/28/modeling-a-tree-in-a-document-database

MongoDB Documentation, Release 2.6.11

var myTempPadding = ["aaa",
"aaa",
"aaa",
"aaa"];

db.myCollection.insert({ _id: 5, paddingField: myTempPadding });

db.myCollection.update({ _id: 5 },
{ $unset: { paddingField: "" } }

)

db.myCollection.update({ _id: 5 },
{ $set: { realField: "Some text that I might have needed padding for" } }

)

See also:

Record Allocation Strategies (page 95)

11.3 FAQ: The mongo Shell

On this page

• How can I enter multi-line operations in the mongo shell? (page 775)
• How can I access different databases temporarily? (page 775)
• Does the mongo shell support tab completion and other keyboard shortcuts? (page 776)
• How can I customize the mongo shell prompt? (page 776)
• Can I edit long shell operations with an external text editor? (page 776)

11.3.1 How can I enter multi-line operations in the mongo shell?

If you end a line with an open parenthesis (’(’), an open brace (’{’), or an open bracket (’[’), then the subsequent
lines start with ellipsis ("...") until you enter the corresponding closing parenthesis (’)’), the closing brace (’}’)
or the closing bracket (’]’). The mongo shell waits for the closing parenthesis, closing brace, or the closing bracket
before evaluating the code, as in the following example:

> if (x > 0) {
... count++;
... print (x);
... }

You can exit the line continuation mode if you enter two blank lines, as in the following example:

> if (x > 0
...
...
>

11.3.2 How can I access different databases temporarily?

You can use db.getSiblingDB() method to access another database without switching databases, as in the fol-
lowing example which first switches to the test database and then accesses the sampleDB database from the test

11.3. FAQ: The mongo Shell 775

MongoDB Documentation, Release 2.6.11

database:

use test

db.getSiblingDB('sampleDB').getCollectionNames();

11.3.3 Does the mongo shell support tab completion and other keyboard shortcuts?

The mongo shell supports keyboard shortcuts. For example,

• Use the up/down arrow keys to scroll through command history. See .dbshell documentation for more informa-
tion on the .dbshell file.

• Use <Tab> to autocomplete or to list the completion possibilities, as in the following example which uses
<Tab> to complete the method name starting with the letter ’c’:

db.myCollection.c<Tab>

Because there are many collection methods starting with the letter ’c’, the <Tab> will list the various methods
that start with ’c’.

For a full list of the shortcuts, see Shell Keyboard Shortcuts

11.3.4 How can I customize the mongo shell prompt?

New in version 1.9.

You can change the mongo shell prompt by setting the prompt variable. This makes it possible to display additional
information in the prompt.

Set prompt to any string or arbitrary JavaScript code that returns a string, consider the following examples:

• Set the shell prompt to display the hostname and the database issued:

var host = db.serverStatus().host;
var prompt = function() { return db+"@"+host+"> "; }

The mongo shell prompt should now reflect the new prompt:

test@my-machine.local>

• Set the shell prompt to display the database statistics:

var prompt = function() {
return "Uptime:"+db.serverStatus().uptime+" Documents:"+db.stats().objects+" > ";

}

The mongo shell prompt should now reflect the new prompt:

Uptime:1052 Documents:25024787 >

You can add the logic for the prompt in the .mongorc.js file to set the prompt each time you start up the mongo shell.

11.3.5 Can I edit long shell operations with an external text editor?

You can use your own editor in the mongo shell by setting the EDITOR environment variable before starting the
mongo shell. Once in the mongo shell, you can edit with the specified editor by typing edit <variable> or
edit <function>, as in the following example:

776 Chapter 11. Frequently Asked Questions

MongoDB Documentation, Release 2.6.11

1. Set the EDITOR variable from the command line prompt:

EDITOR=vim

2. Start the mongo shell:

mongo

3. Define a function myFunction:

function myFunction () { }

4. Edit the function using your editor:

edit myFunction

The command should open the vim edit session. Remember to save your changes.

5. Type myFunction to see the function definition:

myFunction

The result should be the changes from your saved edit:

function myFunction() {
print("This was edited");

}

11.4 FAQ: Concurrency

On this page

• What type of locking does MongoDB use? (page 778)
• How granular are locks in MongoDB? (page 778)
• How do I see the status of locks on my mongod instances? (page 778)
• Does a read or write operation ever yield the lock? (page 778)
• Which operations lock the database? (page 779)
• Which administrative commands lock the database? (page 779)
• Does a MongoDB operation ever lock more than one database? (page 780)
• How does sharding affect concurrency? (page 780)
• How does concurrency affect a replica set primary? (page 780)
• How does concurrency affect secondaries? (page 780)
• What kind of concurrency does MongoDB provide for JavaScript operations? (page 781)
• Does MongoDB support transactions? (page 781)
• What isolation guarantees does MongoDB provide? (page 781)
• Can reads see changes that have not been committed to disk? (page 782)

Changed in version 2.2.

MongoDB allows multiple clients to read and write a single corpus of data using a locking system to ensure that all
clients receive the same view of the data and to prevent multiple applications from modifying the exact same pieces
of data at the same time. Locks help guarantee that all writes to a single document occur either in full or not at all.

See also:

Presentation on Concurrency and Internals in 2.217

17http://www.mongodb.com/presentations/concurrency-internals-mongodb-2-2

11.4. FAQ: Concurrency 777

http://www.mongodb.com/presentations/concurrency-internals-mongodb-2-2

MongoDB Documentation, Release 2.6.11

11.4.1 What type of locking does MongoDB use?

MongoDB uses a readers-writer 18 lock that allows concurrent reads access to a database but gives exclusive access to
a single write operation.

When a read lock exists, many read operations may use this lock. However, when a write lock exists, a single write
operation holds the lock exclusively, and no other read or write operations may share the lock.

Locks are “writer greedy,” which means write locks have preference over reads. When both a read and write are
waiting for a lock, MongoDB grants the lock to the write.

11.4.2 How granular are locks in MongoDB?

Changed in version 2.2.

Beginning with version 2.2, MongoDB implements locks on a per-database basis for most read and write operations.
Some global operations, typically short lived operations involving multiple databases, still require a global “instance”
wide lock. Before 2.2, there is only one “global” lock per mongod instance.

For example, if you have six databases and one takes a database-level write lock, the other five are still available for
read and write. A global lock makes all six databases unavailable during the operation.

11.4.3 How do I see the status of locks on my mongod instances?

For reporting on lock utilization information on locks, use any of the following methods:

• db.serverStatus(),

• db.currentOp(),

• mongotop,

• mongostat, and/or

• the MongoDB Cloud Manager19 or Ops Manager, an on-premise solution available in MongoDB Enterprise
Advanced20

Specifically, the locks document in the output of serverStatus, or the locks field in the current
operation reporting provides insight into the type of locks and amount of lock contention in your mongod
instance.

To terminate an operation, use db.killOp().

11.4.4 Does a read or write operation ever yield the lock?

In some situations, read and write operations can yield their locks.

Long running read and write operations, such as queries, updates, and deletes, yield under many conditions. MongoDB
uses an adaptive algorithms to allow operations to yield locks based on predicted disk access patterns (i.e. page faults.)

MongoDB operations can also yield locks between individual document modification in write operations that affect
multiple documents like update() with the multi parameter.

18 You may be familiar with a “readers-writer” lock as “multi-reader” or “shared exclusive” lock. See the Wikipedia page on Readers-Writer
Locks (http://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock) for more information.

19https://cloud.mongodb.com/?jmp=docs
20https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

778 Chapter 11. Frequently Asked Questions

https://cloud.mongodb.com/?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
http://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
http://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock

MongoDB Documentation, Release 2.6.11

MongoDB uses heuristics based on its access pattern to predict whether data is likely in physical memory before
performing a read. If MongoDB predicts that the data is not in physical memory an operation will yield its lock
while MongoDB loads the data to memory. Once data is available in memory, the operation will reacquire the lock to
complete the operation.

Changed in version 2.6: MongoDB does not yield locks when scanning an index even if it predicts that the index is
not in memory.

11.4.5 Which operations lock the database?

Changed in version 2.2.

The following table lists common database operations and the types of locks they use.

Operation Lock Type
Issue a query Read lock
Get more data
from a cursor

Read lock

Insert data Write lock
Remove data Write lock
Update data Write lock
Map-reduce Read lock and write lock, unless operations are specified as non-atomic. Portions of

map-reduce jobs can run concurrently.
Create an index Building an index in the foreground, which is the default, locks the database for extended

periods of time.
db.eval() Write lock. The db.eval() method takes a global write lock while evaluating the JavaScript

function. To avoid taking this global write lock, you can use the eval command with
nolock: true.

eval Write lock. By default, eval command takes a global write lock while evaluating the
JavaScript function. If used with nolock: true, the eval command does not take a
global write lock while evaluating the JavaScript function. However, the logic within the
JavaScript function may take write locks for write operations.

aggregate() Read lock

11.4.6 Which administrative commands lock the database?

Certain administrative commands can exclusively lock the database for extended periods of time. In some deploy-
ments, for large databases, you may consider taking the mongod instance offline so that clients are not affected. For
example, if a mongod is part of a replica set, take the mongod offline and let other members of the set service load
while maintenance is in progress.

The following administrative operations require an exclusive (i.e. write) lock on the database for extended periods:

• db.collection.ensureIndex(), when issued without setting background to true,

• reIndex,

• compact,

• db.repairDatabase(),

• db.createCollection(), when creating a very large (i.e. many gigabytes) capped collection,

• db.collection.validate(), and

• db.copyDatabase(). This operation may lock all databases. See Does a MongoDB operation ever lock
more than one database? (page 780).

11.4. FAQ: Concurrency 779

MongoDB Documentation, Release 2.6.11

The following administrative commands lock the database but only hold the lock for a very short time:

• db.collection.dropIndex(),

• db.getLastError(),

• db.isMaster(),

• rs.status() (i.e. replSetGetStatus),

• db.serverStatus(),

• db.auth(), and

• db.addUser().

11.4.7 Does a MongoDB operation ever lock more than one database?

The following MongoDB operations lock multiple databases:

• db.copyDatabase() must lock the entire mongod instance at once.

• db.repairDatabase() obtains a global write lock and will block other operations until it finishes.

• Journaling, which is an internal operation, locks all databases for short intervals. All databases share a single
journal.

• User authentication (page 316) requires a read lock on the admin database for deployments using 2.6 user
credentials (page 415). For deployments using the 2.4 schema for user credentials, authentication locks the
admin database as well as the database the user is accessing.

• All writes to a replica set’s primary lock both the database receiving the writes and then the local database for
a short time. The lock for the local database allows the mongod to write to the primary’s oplog and accounts
for a small portion of the total time of the operation.

11.4.8 How does sharding affect concurrency?

Sharding improves concurrency by distributing collections over multiple mongod instances, allowing shard servers
(i.e. mongos processes) to perform any number of operations concurrently to the various downstream mongod
instances.

Each mongod instance is independent of the others in the shard cluster and uses the MongoDB readers-writer lock
(page 778). The operations on one mongod instance do not block the operations on any others.

11.4.9 How does concurrency affect a replica set primary?

In replication, when MongoDB writes to a collection on the primary, MongoDB also writes to the primary’s oplog,
which is a special collection in the local database. Therefore, MongoDB must lock both the collection’s database
and the local database. The mongod must lock both databases at the same time to keep the database consistent and
ensure that write operations, even with replication, are “all-or-nothing” operations.

11.4.10 How does concurrency affect secondaries?

In replication, MongoDB does not apply writes serially to secondaries. Secondaries collect oplog entries in batches
and then apply those batches in parallel. Secondaries do not allow reads while applying the write operations, and apply
write operations in the order that they appear in the oplog.

MongoDB can apply several writes in parallel on replica set secondaries, in two phases:

780 Chapter 11. Frequently Asked Questions

MongoDB Documentation, Release 2.6.11

1. During the first prefer phase, under a read lock, the mongod ensures that all documents affected by the opera-
tions are in memory. During this phase, other clients may execute queries against this member.

2. A thread pool using write locks applies all write operations in the batch as part of a coordinated write phase.

11.4.11 What kind of concurrency does MongoDB provide for JavaScript opera-
tions?

Changed in version 2.4: The V8 JavaScript engine added in 2.4 allows multiple JavaScript operations to run at the
same time. Prior to 2.4, a single mongod could only run a single JavaScript operation at once.

11.4.12 Does MongoDB support transactions?

MongoDB does not support multi-document transactions.

However, MongoDB does provide atomic operations on a single document. Often these document-level atomic oper-
ations are sufficient to solve problems that would require ACID transactions in a relational database.

For example, in MongoDB, you can embed related data in nested arrays or nested documents within a single document
and update the entire document in a single atomic operation. Relational databases might represent the same kind of
data with multiple tables and rows, which would require transaction support to update the data atomically.

See also:

Atomicity and Transactions (page 86)

11.4.13 What isolation guarantees does MongoDB provide?

MongoDB provides the following guarantees in the presence of concurrent read and write operations.

1. Read and write operations are atomic with respect to a single document and will always leave the document in
a consistent state. This means that readers will never see a partially updated document, and indices will always
be consistent with the contents of the collection. Furthermore, a set of read and write operations to a single
document are serializable.

2. Correctness with respect to query predicates, e.g. db.collection.find() will only return documents that
match and db.collection.update() will only write to matching documents.

3. Correctness with respect to sort. For read operations that request a sort order (e.g. db.collection.find()
or db.collection.aggregate()), the sort order will not be violated due to concurrent writes.

Although MongoDB provides these strong guarantees for single-document operations, read and write operations may
access an arbitrary number of documents during execution. Multi-document operations do not occur transactionally
and are not isolated from concurrent writes. This means that the following behaviors are expected under the normal
operation of the system:

1. Non-point-in-time read operations. Suppose a read operation begins at time t1 and starts reading documents. A
write operation then commits an update to a document at some later time t2. The reader may see the updated
version of the document, and therefore does not see a point-in-time snapshot of the data.

2. Non-serializable operations. Suppose a read operation reads a document d1 at time t1 and a write operation
updates d1 at some later time t3. This introduces a read-write dependency such that, if the operations were to be
serialized, the read operation must precede the write operation. But also suppose that the write operation updates
document d2 at time t2 and the read operation subsequently reads d2 at some later time t4. This introduces a
write-read dependency which would instead require the read operation to come after the write operation in a
serializable schedule. There is a dependency cycle which makes serializability impossible.

11.4. FAQ: Concurrency 781

MongoDB Documentation, Release 2.6.11

3. Dropped results. Reads may miss matching documents that are updated or deleted during the course of the read
operation. However, data that has not been modified during the operation will always be visible.

See also:

Atomicity and Transactions (page 86)

11.4.14 Can reads see changes that have not been committed to disk?

Yes, readers can see the results of writes before they are made durable, regardless of write concern level or journaling
configuration. As a result, applications may observe the following behaviors:

1. MongoDB will allow a concurrent reader to see the result of the write operation before the write is acknowledged
to the client application. For details on when writes are acknowledged for different write concern levels, see
Write Concern (page 82).

2. Reads can see data which may subsequently be rolled back in rare cases such as replica set failover or power
loss. It does not mean that read operations can see documents in a partially written or otherwise inconsistent
state.

Other systems refer to these semantics as read uncommitted.

11.5 FAQ: Sharding with MongoDB

782 Chapter 11. Frequently Asked Questions

MongoDB Documentation, Release 2.6.11

On this page

• Is sharding appropriate for a new deployment? (page 783)
• How does sharding work with replication? (page 783)
• Can I change the shard key after sharding a collection? (page 784)
• What happens to unsharded collections in sharded databases? (page 784)
• How does MongoDB distribute data across shards? (page 784)
• What happens if a client updates a document in a chunk during a migration? (page 784)
• What happens to queries if a shard is inaccessible or slow? (page 784)
• How does MongoDB distribute queries among shards? (page 784)
• How does MongoDB sort queries in sharded environments? (page 785)
• How does MongoDB ensure unique _id field values when using a shard key other than _id? (page 785)
• I’ve enabled sharding and added a second shard, but all the data is still on one server. Why? (page 785)
• Is it safe to remove old files in the moveChunk directory? (page 785)
• How does mongos use connections? (page 786)
• Why does mongos hold connections open? (page 786)
• Where does MongoDB report on connections used by mongos? (page 786)
• What does writebacklisten in the log mean? (page 786)
• How should administrators deal with failed migrations? (page 786)
• What is the process for moving, renaming, or changing the number of config servers? (page 786)
• When do the mongos servers detect config server changes? (page 787)
• Is it possible to quickly update mongos servers after updating a replica set configuration? (page 787)
• What does the maxConns setting on mongos do? (page 787)
• How do indexes impact queries in sharded systems? (page 787)
• Can shard keys be randomly generated? (page 787)
• Can shard keys have a non-uniform distribution of values? (page 787)
• Can you shard on the _id field? (page 788)
• What do moveChunk commit failed errors mean? (page 788)
• How does draining a shard affect the balancing of uneven chunk distribution? (page 788)

This document answers common questions about horizontal scaling using MongoDB’s sharding.

If you don’t find the answer you’re looking for, check the complete list of FAQs (page 761) or post your question to
the MongoDB User Mailing List21.

11.5.1 Is sharding appropriate for a new deployment?

Sometimes.

If your data set fits on a single server, you should begin with an unsharded deployment.

Converting an unsharded database to a sharded cluster is easy and seamless, so there is little advantage in configuring
sharding while your data set is small.

Still, all production deployments should use replica sets to provide high availability and disaster recovery.

11.5.2 How does sharding work with replication?

To use replication with sharding, deploy each shard as a replica set.

21https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

11.5. FAQ: Sharding with MongoDB 783

https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

MongoDB Documentation, Release 2.6.11

11.5.3 Can I change the shard key after sharding a collection?

No.

There is no automatic support in MongoDB for changing a shard key after sharding a collection. This reality un-
derscores the importance of choosing a good shard key (page 687). If you must change a shard key after sharding a
collection, the best option is to:

• dump all data from MongoDB into an external format.

• drop the original sharded collection.

• configure sharding using a more ideal shard key.

• pre-split (page 738) the shard key range to ensure initial even distribution.

• restore the dumped data into MongoDB.

See shardCollection, sh.shardCollection(), the Shard Key (page 687), Deploy a Sharded Cluster
(page 705), and SERVER-400022 for more information.

11.5.4 What happens to unsharded collections in sharded databases?

In the current implementation, all databases in a sharded cluster have a “primary shard.” All unsharded collection
within that database will reside on the same shard.

11.5.5 How does MongoDB distribute data across shards?

Sharding must be specifically enabled on a collection. After enabling sharding on the collection, MongoDB will assign
various ranges of collection data to the different shards in the cluster. The cluster automatically corrects imbalances
between shards by migrating ranges of data from one shard to another.

11.5.6 What happens if a client updates a document in a chunk during a migration?

The mongos routes the operation to the “old” shard, where it will succeed immediately. Then the shard mongod in-
stances will replicate the modification to the “new” shard before the sharded cluster updates that chunk’s “ownership,”
which effectively finalizes the migration process.

11.5.7 What happens to queries if a shard is inaccessible or slow?

If a shard is inaccessible or unavailable, queries will return with an error.

However, a client may set the partial query bit, which will then return results from all available shards, regardless
of whether a given shard is unavailable.

If a shard is responding slowly, mongos will merely wait for the shard to return results.

11.5.8 How does MongoDB distribute queries among shards?

Changed in version 2.0.

22https://jira.mongodb.org/browse/SERVER-4000

784 Chapter 11. Frequently Asked Questions

https://jira.mongodb.org/browse/SERVER-4000

MongoDB Documentation, Release 2.6.11

The exact method for distributing queries to shards in a cluster depends on the nature of the query and the configuration
of the sharded cluster. Consider a sharded collection, using the shard key user_id, that has last_login and
email attributes:

• For a query that selects one or more values for the user_id key:

mongos determines which shard or shards contains the relevant data, based on the cluster metadata, and directs
a query to the required shard or shards, and returns those results to the client.

• For a query that selects user_id and also performs a sort:

mongos can make a straightforward translation of this operation into a number of queries against the relevant
shards, ordered by user_id. When the sorted queries return from all shards, the mongos merges the sorted
results and returns the complete result to the client.

• For queries that select on last_login:

These queries must run on all shards: mongos must parallelize the query over the shards and perform a merge-
sort on the email of the documents found.

11.5.9 How does MongoDB sort queries in sharded environments?

If you call the cursor.sort() method on a query in a sharded environment, the mongod for each shard will sort
its results, and the mongos merges each shard’s results before returning them to the client.

11.5.10 How does MongoDB ensure unique _id field values when using a shard
key other than _id?

If you do not use _id as the shard key, then your application/client layer must be responsible for keeping the _id
field unique. It is problematic for collections to have duplicate _id values.

If you’re not sharding your collection by the _id field, then you should be sure to store a globally unique identifier in
that field. The default BSON ObjectId (page 184) works well in this case.

11.5.11 I’ve enabled sharding and added a second shard, but all the data is still on
one server. Why?

First, ensure that you’ve declared a shard key for your collection. Until you have configured the shard key, MongoDB
will not create chunks, and sharding will not occur.

Next, keep in mind that the default chunk size is 64 MB. As a result, in most situations, the collection needs to have at
least 64 MB of data before a migration will occur.

Additionally, the system which balances chunks among the servers attempts to avoid superfluous migrations. Depend-
ing on the number of shards, your shard key, and the amount of data, systems often require at least 10 chunks of data
to trigger migrations.

You can run db.printShardingStatus() to see all the chunks present in your cluster.

11.5.12 Is it safe to remove old files in the moveChunk directory?

Yes. mongod creates these files as backups during normal shard balancing operations. If some error occurs during a
migration (page 700), these files may be helpful in recovering documents affected during the migration.

11.5. FAQ: Sharding with MongoDB 785

MongoDB Documentation, Release 2.6.11

Once the migration has completed successfully and there is no need to recover documents from these files, you may
safely delete these files. Or, if you have an existing backup of the database that you can use for recovery, you may also
delete these files after migration.

To determine if all migrations are complete, run sh.isBalancerRunning() while connected to a mongos in-
stance.

11.5.13 How does mongos use connections?

Each client maintains a connection to a mongos instance. Each mongos instance maintains a pool of connections to
the members of a replica set supporting the sharded cluster. Clients use connections between mongos and mongod
instances one at a time. Requests are not multiplexed or pipelined. When client requests complete, the mongos
returns the connection to the pool.

See the System Resource Utilization (page 300) section of the UNIX ulimit Settings (page 300) document.

11.5.14 Why does mongos hold connections open?

mongos uses a set of connection pools to communicate with each shard. These pools do not shrink when the number
of clients decreases.

This can lead to an unused mongos with a large number of open connections. If the mongos is no longer in use, it is
safe to restart the process to close existing connections.

11.5.15 Where does MongoDB report on connections used by mongos?

Connect to the mongos with the mongo shell, and run the following command:

db._adminCommand("connPoolStats");

11.5.16 What does writebacklisten in the log mean?

The writeback listener is a process that opens a long poll to relay writes back from a mongod or mongos after
migrations to make sure they have not gone to the wrong server. The writeback listener sends writes back to the
correct server if necessary.

These messages are a key part of the sharding infrastructure and should not cause concern.

11.5.17 How should administrators deal with failed migrations?

Failed migrations require no administrative intervention. Chunk migrations always preserve a consistent state. If a mi-
gration fails to complete for some reason, the cluster retries the operation. When the migration completes successfully,
the data resides only on the new shard.

11.5.18 What is the process for moving, renaming, or changing the number of con-
fig servers?

See Sharded Cluster Tutorials (page 704) for information on migrating and replacing config servers.

786 Chapter 11. Frequently Asked Questions

MongoDB Documentation, Release 2.6.11

11.5.19 When do the mongos servers detect config server changes?

mongos instances maintain a cache of the config database that holds the metadata for the sharded cluster. This
metadata includes the mapping of chunks to shards.

mongos updates its cache lazily by issuing a request to a shard and discovering that its metadata is out of date. There
is no way to control this behavior from the client, but you can run the flushRouterConfig command against any
mongos to force it to refresh its cache.

11.5.20 Is it possible to quickly update mongos servers after updating a replica set
configuration?

The mongos instances will detect these changes without intervention over time. However, if you want to force the
mongos to reload its configuration, run the flushRouterConfig command against to each mongos directly.

11.5.21 What does the maxConns setting on mongos do?

The maxIncomingConnections option limits the number of connections accepted by mongos.

If your client driver or application creates a large number of connections but allows them to time out rather than closing
them explicitly, then it might make sense to limit the number of connections at the mongos layer.

Set maxIncomingConnections to a value slightly higher than the maximum number of connections that the
client creates, or the maximum size of the connection pool. This setting prevents the mongos from causing connection
spikes on the individual shards. Spikes like these may disrupt the operation and memory allocation of the sharded
cluster.

11.5.22 How do indexes impact queries in sharded systems?

If the query does not include the shard key, the mongos must send the query to all shards as a “scatter/gather”
operation. Each shard will, in turn, use either the shard key index or another more efficient index to fulfill the query.

If the query includes multiple sub-expressions that reference the fields indexed by the shard key and the secondary
index, the mongos can route the queries to a specific shard and the shard will use the index that will allow it to fulfill
most efficiently. See this presentation23 for more information.

11.5.23 Can shard keys be randomly generated?

Shard keys can be random. Random keys ensure optimal distribution of data across the cluster.

Sharded clusters, attempt to route queries to specific shards when queries include the shard key as a parameter, because
these directed queries are more efficient. In many cases, random keys can make it difficult to direct queries to specific
shards.

11.5.24 Can shard keys have a non-uniform distribution of values?

Yes. There is no requirement that documents be evenly distributed by the shard key.

However, documents that have the same shard key must reside in the same chunk and therefore on the same server. If
your sharded data set has too many documents with the exact same shard key you will not be able to distribute those
documents across your sharded cluster.

23http://www.slideshare.net/mongodb/how-queries-work-with-sharding

11.5. FAQ: Sharding with MongoDB 787

http://www.slideshare.net/mongodb/how-queries-work-with-sharding

MongoDB Documentation, Release 2.6.11

11.5.25 Can you shard on the _id field?

You can use any field for the shard key. The _id field is a common shard key.

Be aware that ObjectId() values, which are the default value of the _id field, increment as a timestamp. As a
result, when used as a shard key, all new documents inserted into the collection will initially belong to the same chunk
on a single shard. Although the system will eventually divide this chunk and migrate its contents to distribute data
more evenly, at any moment the cluster can only direct insert operations at a single shard. This can limit the throughput
of inserts. If most of your write operations are updates, this limitation should not impact your performance. However,
if you have a high insert volume, this may be a limitation.

To address this issue, MongoDB 2.4 provides hashed shard keys (page 689).

11.5.26 What do moveChunk commit failed errors mean?

At the end of a chunk migration (page 700), the shard must connect to the config database to update the chunk’s record
in the cluster metadata. If the shard fails to connect to the config database, MongoDB reports the following error:

ERROR: moveChunk commit failed: version is at <n>|<nn> instead of
<N>|<NN>" and "ERROR: TERMINATING"

When this happens, the primary member of the shard’s replica set then terminates to protect data consistency. If a
secondary member can access the config database, data on the shard becomes accessible again after an election.

The user will need to resolve the chunk migration failure independently. If you encounter this issue, contact the
MongoDB User Group24 or MongoDB Support25 to address this issue.

11.5.27 How does draining a shard affect the balancing of uneven chunk distribu-
tion?

The sharded cluster balancing process controls both migrating chunks from decommissioned shards (i.e. draining) and
normal cluster balancing activities. Consider the following behaviors for different versions of MongoDB in situations
where you remove a shard in a cluster with an uneven chunk distribution:

• After MongoDB 2.2, the balancer first removes the chunks from the draining shard and then balances the re-
maining uneven chunk distribution.

• Before MongoDB 2.2, the balancer handles the uneven chunk distribution and then removes the chunks from
the draining shard.

11.6 FAQ: Replication and Replica Sets

24http://groups.google.com/group/mongodb-user
25https://www.mongodb.org/about/support

788 Chapter 11. Frequently Asked Questions

http://groups.google.com/group/mongodb-user
https://www.mongodb.org/about/support

MongoDB Documentation, Release 2.6.11

On this page

• What kinds of replication does MongoDB support? (page 789)
• What do the terms “primary” and “master” mean? (page 789)
• What do the terms “secondary” and “slave” mean? (page 789)
• How long does replica set failover take? (page 789)
• Does replication work over the Internet and WAN connections? (page 790)
• Can MongoDB replicate over a “noisy” connection? (page 790)
• What is the preferred replication method: master/slave or replica sets? (page 790)
• What is the preferred replication method: replica sets or replica pairs? (page 790)
• Why use journaling if replication already provides data redundancy? (page 790)
• Are write operations durable if write concern does not acknowledge writes? (page 791)
• How many arbiters do replica sets need? (page 791)
• What information do arbiters exchange with the rest of the replica set? (page 791)
• Which members of a replica set vote in elections? (page 792)
• Do hidden members vote in replica set elections? (page 792)
• Is it normal for replica set members to use different amounts of disk space? (page 792)

This document answers common questions about database replication in MongoDB.

If you don’t find the answer you’re looking for, check the complete list of FAQs (page 761) or post your question to
the MongoDB User Mailing List26.

11.6.1 What kinds of replication does MongoDB support?

MongoDB supports master-slave replication and a variation on master-slave replication known as replica sets. Replica
sets are the recommended replication topology.

11.6.2 What do the terms “primary” and “master” mean?

Primary and master nodes are the nodes that can accept writes. MongoDB’s replication is “single-master:” only one
node can accept write operations at a time.

In a replica set, if the current “primary” node fails or becomes inaccessible, the other members can autonomously elect
one of the other members of the set to be the new “primary”.

By default, clients send all reads to the primary; however, read preference is configurable at the client level on a
per-connection basis, which makes it possible to send reads to secondary nodes instead.

11.6.3 What do the terms “secondary” and “slave” mean?

Secondary and slave nodes are read-only nodes that replicate from the primary.

Replication operates by way of an oplog, from which secondary/slave members apply new operations to themselves.
This replication process is asynchronous, so secondary/slave nodes may not always reflect the latest writes to the
primary. But usually, the gap between the primary and secondary nodes is just few milliseconds on a local network
connection.

11.6.4 How long does replica set failover take?

It varies, but a replica set will select a new primary within a minute.

26https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

11.6. FAQ: Replication and Replica Sets 789

https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

MongoDB Documentation, Release 2.6.11

It may take 10-30 seconds for the members of a replica set to declare a primary inaccessible. This triggers an election.
During the election, the cluster is unavailable for writes.

The election itself may take another 10-30 seconds.

Note: Eventually consistent reads, like the ones that will return from a replica set are only possible with a write
concern that permits reads from secondary members.

11.6.5 Does replication work over the Internet and WAN connections?

Yes.

For example, a deployment may maintain a primary and secondary in an East-coast data center along with a secondary
member for disaster recovery in a West-coast data center.

See also:

Deploy a Geographically Redundant Replica Set (page 612)

11.6.6 Can MongoDB replicate over a “noisy” connection?

Yes, but not without connection failures and the obvious latency.

Members of the set will attempt to reconnect to the other members of the set in response to networking flaps. This
does not require administrator intervention. However, if the network connections among the nodes in the replica set
are very slow, it might not be possible for the members of the node to keep up with the replication.

If the TCP connection between the secondaries and the primary instance breaks, a replica set will automatically elect
one of the secondary members of the set as primary.

11.6.7 What is the preferred replication method: master/slave or replica sets?

New in version 1.8.

Replica sets are the preferred replication mechanism in MongoDB. However, if your deployment requires more than
12 nodes, you must use master/slave replication.

11.6.8 What is the preferred replication method: replica sets or replica pairs?

Deprecated since version 1.6.

Replica sets replaced replica pairs in version 1.6. Replica sets are the preferred replication mechanism in MongoDB.

11.6.9 Why use journaling if replication already provides data redundancy?

Journaling facilitates faster crash recovery. Prior to journaling, crashes often required database repairs or full
data resync. Both were slow, and the first was unreliable.

Journaling is particularly useful for protection against power failures, especially if your replica set resides in a single
data center or power circuit.

When a replica set runs with journaling, mongod instances can safely restart without any administrator intervention.

Note: Journaling requires some resource overhead for write operations. Journaling has no effect on read performance,

790 Chapter 11. Frequently Asked Questions

MongoDB Documentation, Release 2.6.11

however.

Journaling is enabled by default on all 64-bit builds of MongoDB v2.0 and greater.

11.6.10 Are write operations durable if write concern does not acknowledge
writes?

Yes.

However, if you want confirmation that a given write has arrived at the server, use write concern (page 82).

After the default write concern change (page 907), the default write concern acknowledges
all write operations, and unacknowledged writes must be explicitly configured. See the
http://docs.mongodb.org/manual/applications/drivers documentation for your driver for
more information.

Changed in version 2.6: The mongo shell now defaults to use safe writes (page 82). See Write Method Acknowledge-
ments (page 838) for more information.

A new protocol for write operations (page 832) integrates write concerns with the write operations. Previous versions
issued a getLastError command after a write to specify a write concern.

11.6.11 How many arbiters do replica sets need?

Some configurations do not require any arbiter instances. Arbiters vote in elections for primary but do not replicate
the data like secondary members.

Replica sets require a majority of the remaining nodes present to elect a primary. Arbiters allow you to construct this
majority without the overhead of adding replicating nodes to the system.

There are many possible replica set architectures (page 575).

A replica set with an odd number of voting nodes does not need an arbiter.

A common configuration consists of two replicating nodes that include a primary and a secondary, as well as an
arbiter for the third node. This configuration makes it possible for the set to elect a primary in the event of failure,
without requiring three replicating nodes.

You may also consider adding an arbiter to a set if it has an equal number of nodes in two facilities and network
partitions between the facilities are possible. In these cases, the arbiter will break the tie between the two facilities and
allow the set to elect a new primary.

See also:

Replica Set Deployment Architectures (page 575)

11.6.12 What information do arbiters exchange with the rest of the replica set?

Arbiters never receive the contents of a collection but do exchange the following data with the rest of the replica set:

• Credentials used to authenticate the arbiter with the replica set. All MongoDB processes within a replica set use
keyfiles. These exchanges are encrypted.

• Replica set configuration data and voting data. This information is not encrypted. Only credential exchanges
are encrypted.

11.6. FAQ: Replication and Replica Sets 791

MongoDB Documentation, Release 2.6.11

If your MongoDB deployment uses TLS/SSL, then all communications between arbiters and the other members of
the replica set are secure. See the documentation for Configure mongod and mongos for TLS/SSL (page 338) for more
information. Run all arbiters on secure networks, as with all MongoDB components.

See
The overview of Arbiter Members of Replica Sets (page ??).

11.6.13 Which members of a replica set vote in elections?

All members of a replica set, unless the value of votes (page 663) is equal to 0, vote in elections. This includes all
delayed (page 573), hidden (page 572) and secondary-only (page 570) members, as well as the arbiters (page ??).

Additionally, the state of the voting members also determine whether the member can vote. Only voting members
in the following states are eligible to vote:

• PRIMARY

• SECONDARY

• RECOVERING

• ARBITER

• ROLLBACK

See also:

Replica Set Elections (page 583)

11.6.14 Do hidden members vote in replica set elections?

Hidden members (page 572) of replica sets do vote in elections. To exclude a member from voting in an election,
change the value of the member’s votes (page 663) configuration to 0.

See also:

Replica Set Elections (page 583)

11.6.15 Is it normal for replica set members to use different amounts of disk space?

Yes.

Factors including: different oplog sizes, different levels of storage fragmentation, and MongoDB’s data file pre-
allocation can lead to some variation in storage utilization between nodes. Storage use disparities will be most pro-
nounced when you add members at different times.

11.7 FAQ: MongoDB Storage

792 Chapter 11. Frequently Asked Questions

MongoDB Documentation, Release 2.6.11

On this page

• What are memory mapped files? (page 793)
• How do memory mapped files work? (page 793)
• How does MongoDB work with memory mapped files? (page 793)
• What are page faults? (page 793)
• What is the difference between soft and hard page faults? (page 794)
• What tools can I use to investigate storage use in MongoDB? (page 794)
• What is the working set? (page 794)
• Why are the files in my data directory larger than the data in my database? (page 794)
• How do I reclaim disk space? (page 795)
• How can I check the size of a collection? (page 796)
• How can I check the size of indexes? (page 796)
• How do I know when the server runs out of disk space? (page 797)

This document addresses common questions regarding MongoDB’s storage system.

If you don’t find the answer you’re looking for, check the complete list of FAQs (page 761) or post your question to
the MongoDB User Mailing List27.

11.7.1 What are memory mapped files?

A memory-mapped file is a file with data that the operating system places in memory by way of the mmap() system
call. mmap() thus maps the file to a region of virtual memory. Memory-mapped files are the critical piece of the
storage engine in MongoDB. By using memory mapped files MongoDB can treat the contents of its data files as if they
were in memory. This provides MongoDB with an extremely fast and simple method for accessing and manipulating
data.

11.7.2 How do memory mapped files work?

Memory mapping assigns files to a block of virtual memory with a direct byte-for-byte correlation. Once mapped, the
relationship between file and memory allows MongoDB to interact with the data in the file as if it were memory.

11.7.3 How does MongoDB work with memory mapped files?

MongoDB uses memory mapped files for managing and interacting with all data. MongoDB memory maps data files
to memory as it accesses documents. Data that isn’t accessed is not mapped to memory.

11.7.4 What are page faults?

Page faults can occur as MongoDB reads from or writes data to parts of its data files that are not currently located in
physical memory. In contrast, operating system page faults happen when physical memory is exhausted and pages of
physical memory are swapped to disk.

If there is free memory, then the operating system can find the page on disk and load it to memory directly. However,
if there is no free memory, the operating system must:

• find a page in memory that is stale or no longer needed, and write the page to disk.

• read the requested page from disk and load it into memory.

27https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

11.7. FAQ: MongoDB Storage 793

https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

MongoDB Documentation, Release 2.6.11

This process, particularly on an active system can take a long time, particularly in comparison to reading a page that
is already in memory.

See Page Faults (page 229) for more information.

11.7.5 What is the difference between soft and hard page faults?

Page faults occur when MongoDB needs access to data that isn’t currently in active memory. A “hard” page fault
refers to situations when MongoDB must access a disk to access the data. A “soft” page fault, by contrast, merely
moves memory pages from one list to another, such as from an operating system file cache. In production, MongoDB
will rarely encounter soft page faults.

See Page Faults (page 229) for more information.

11.7.6 What tools can I use to investigate storage use in MongoDB?

The db.stats() method in the mongo shell, returns the current state of the “active” database. The dbStats
command document describes the fields in the db.stats() output.

11.7.7 What is the working set?

Working set represents the total body of data that the application uses in the course of normal operation. Often this is
a subset of the total data size, but the specific size of the working set depends on actual moment-to-moment use of the
database.

If you run a query that requires MongoDB to scan every document in a collection, the working set will expand to
include every document. Depending on physical memory size, this may cause documents in the working set to “page
out,” or to be removed from physical memory by the operating system. The next time MongoDB needs to access these
documents, MongoDB may incur a hard page fault.

If you run a query that requires MongoDB to scan every document in a collection, the working set includes every
active document in memory.

For best performance, the majority of your active set should fit in RAM.

11.7.8 Why are the files in my data directory larger than the data in my database?

The data files in your data directory, which is the /data/db directory in default configurations, might be larger than
the data set inserted into the database. Consider the following possible causes:

Preallocated data files

In the data directory, MongoDB preallocates data files to a particular size, in part to prevent file system fragmenta-
tion. MongoDB names the first data file <databasename>.0, the next <databasename>.1, etc. The first file
mongod allocates is 64 megabytes, the next 128 megabytes, and so on, up to 2 gigabytes, at which point all subsequent
files are 2 gigabytes. The data files include files with allocated space but that hold no data. mongod may allocate a 1
gigabyte data file that may be 90% empty. For most larger databases, unused allocated space is small compared to the
database.

794 Chapter 11. Frequently Asked Questions

MongoDB Documentation, Release 2.6.11

The oplog

If this mongod is a member of a replica set, the data directory includes the oplog.rs file, which is a preallocated
capped collection in the local database.

The default allocation is approximately 5% of disk space on 64-bit installations. In most cases, you should not need
to resize the oplog. See Oplog Sizing (page 597) for more information

The journal

The data directory contains the journal files, which store write operations on disk before MongoDB applies them to
databases. See Journaling Mechanics (page 309).

Empty records

MongoDB maintains lists of empty records in data files as it deletes documents and collections. MongoDB can reuse
this space, but will not, by default, return this space to the operating system.

To allow MongoDB to more effectively reuse the space, you can de-fragment your data. To de-fragment, use the
compact command. The compact requires up to 2 gigabytes of extra disk space to run. Do not use compact if
you are critically low on disk space. For more information on its behavior and other considerations, see compact.

compact only removes fragmentation from MongoDB data files within a collection and does not return any disk space
to the operating system. To return disk space to the operating system, see How do I reclaim disk space? (page 795).

11.7.9 How do I reclaim disk space?

The following provides some options to consider when reclaiming disk space.

Note: You do not need to reclaim disk space for MongoDB to reuse freed space. See Empty records (page 795) for
information on reuse of freed space.

repairDatabase

You can use repairDatabase on a database to rebuilds the database, de-fragmenting the associated storage in the
process.

repairDatabase requires free disk space equal to the size of your current data set plus 2 gigabytes. If the volume
that holds dbpath lacks sufficient space, you can mount a separate volume and use that for the repair. For additional
information and considerations, see repairDatabase.

Warning: Do not use repairDatabase if you are critically low on disk space.
repairDatabase will block all other operations and may take a long time to complete.

You can only run repairDatabase on a standalone mongod instance.

You can also run the repairDatabase operation for all databases on the server by restarting your mongod stan-
dalone instance with the --repair and --repairpath options. All databases on the server will be unavailable
during this operation.

11.7. FAQ: MongoDB Storage 795

MongoDB Documentation, Release 2.6.11

Resync the Member of the Replica Set

For a secondary member of a replica set, you can perform a resync of the member (page 640) by: stopping the
secondary member to resync, deleting all data and subdirectories from the member’s data directory, and restarting.

For details, see Resync a Member of a Replica Set (page 640).

11.7.10 How can I check the size of a collection?

To view the size of a collection and other information, use the db.collection.stats()method from the mongo
shell. The following example issues db.collection.stats() for the orders collection:

db.orders.stats();

To view specific measures of size, use these methods:

• db.collection.dataSize(): data size in bytes for the collection.

• db.collection.storageSize(): allocation size in bytes, including unused space.

• db.collection.totalSize(): the data size plus the index size in bytes.

• db.collection.totalIndexSize(): the index size in bytes.

Also, the following scripts print the statistics for each database and collection:

db._adminCommand("listDatabases").databases.forEach(function (d) {mdb = db.getSiblingDB(d.name); printjson(mdb.stats())})

db._adminCommand("listDatabases").databases.forEach(function (d) {mdb = db.getSiblingDB(d.name); mdb.getCollectionNames().forEach(function(c) {s = mdb[c].stats(); printjson(s)})})

11.7.11 How can I check the size of indexes?

To view the size of the data allocated for an index, use one of the following procedures in the mongo shell:

• Use the db.collection.stats() method using the index namespace. To retrieve a list of namespaces,
issue the following command:

db.system.namespaces.find()

• Check the value of indexSizes in the output of the db.collection.stats() command.

Example
Issue the following command to retrieve index namespaces:

db.system.namespaces.find()

The command returns a list similar to the following:

{"name" : "test.orders"}
{"name" : "test.system.indexes"}
{"name" : "test.orders.$_id_"}

View the size of the data allocated for the orders.$_id_ index with the following sequence of operations:

use test
db.orders.$_id_.stats().indexSizes

796 Chapter 11. Frequently Asked Questions

MongoDB Documentation, Release 2.6.11

11.7.12 How do I know when the server runs out of disk space?

If your server runs out of disk space for data files, you will see something like this in the log:

Thu Aug 11 13:06:09 [FileAllocator] allocating new data file dbms/test.13, filling with zeroes...
Thu Aug 11 13:06:09 [FileAllocator] error failed to allocate new file: dbms/test.13 size: 2146435072 errno:28 No space left on device
Thu Aug 11 13:06:09 [FileAllocator] will try again in 10 seconds
Thu Aug 11 13:06:19 [FileAllocator] allocating new data file dbms/test.13, filling with zeroes...
Thu Aug 11 13:06:19 [FileAllocator] error failed to allocate new file: dbms/test.13 size: 2146435072 errno:28 No space left on device
Thu Aug 11 13:06:19 [FileAllocator] will try again in 10 seconds

The server remains in this state forever, blocking all writes including deletes. However, reads still work. To delete
some data and compact, using the compact command, you must restart the server first.

If your server runs out of disk space for journal files, the server process will exit. By default, mongod creates journal
files in a sub-directory of dbPath named journal. You may elect to put the journal files on another storage device
using a filesystem mount or a symlink.

Note: If you place the journal files on a separate storage device you will not be able to use a file system snapshot tool
to capture a valid snapshot of your data files and journal files.

11.8 FAQ: Indexes

On this page

• Should you run ensureIndex() after every insert? (page 797)
• How do you know what indexes exist in a collection? (page 798)
• How do you determine the size of an index? (page 798)
• What happens if an index does not fit into RAM? (page 798)
• How do you know what index a query used? (page 798)
• How do you determine what fields to index? (page 798)
• How do write operations affect indexes? (page 798)
• Will building a large index affect database performance? (page 798)
• Can I use index keys to constrain query matches? (page 799)
• Using $ne and $nin in a query is slow. Why? (page 799)
• Can I use a multi-key index to support a query for a whole array? (page 799)
• How can I effectively use indexes strategy for attribute lookups? (page 799)

This document addresses common questions regarding MongoDB indexes.

If you don’t find the answer you’re looking for, check the complete list of FAQs (page 761) or post your question to
the MongoDB User Mailing List28. See also Indexing Tutorials (page 519).

11.8.1 Should you run ensureIndex() after every insert?

No. You only need to create an index once for a single collection. After initial creation, MongoDB automatically
updates the index as data changes.

While running ensureIndex() is usually ok, if an index doesn’t exist because of ongoing administrative work,
a call to ensureIndex() may disrupt database availability. Running ensureIndex() can render a replica set
inaccessible as the index creation is happening. See Build Indexes on Replica Sets (page 524).

28https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

11.8. FAQ: Indexes 797

https://groups.google.com/forum/?fromgroups#!forum/mongodb-user

MongoDB Documentation, Release 2.6.11

11.8.2 How do you know what indexes exist in a collection?

To list a collection’s indexes, use the db.collection.getIndexes() method or a similar method for your
driver29.

11.8.3 How do you determine the size of an index?

To check the sizes of the indexes on a collection, use db.collection.stats().

11.8.4 What happens if an index does not fit into RAM?

When an index is too large to fit into RAM, MongoDB must read the index from disk, which is a much slower operation
than reading from RAM. Keep in mind an index fits into RAM when your server has RAM available for the index
combined with the rest of the working set.

In certain cases, an index does not need to fit entirely into RAM. For details, see Indexes that Hold Only Recent Values
in RAM (page 555).

11.8.5 How do you know what index a query used?

To inspect how MongoDB processes a query, use the explain() method in the mongo shell, or in your application
driver.

11.8.6 How do you determine what fields to index?

A number of factors determine what fields to index, including selectivity (page 555), fitting indexes into RAM, reusing
indexes in multiple queries when possible, and creating indexes that can support all the fields in a given query. For
detailed documentation on choosing which fields to index, see Indexing Tutorials (page 519).

11.8.7 How do write operations affect indexes?

Any write operation that alters an indexed field requires an update to the index in addition to the document itself. If
you update a document that causes the document to grow beyond the allotted record size, then MongoDB must update
all indexes that include this document as part of the update operation.

Therefore, if your application is write-heavy, creating too many indexes might affect performance.

11.8.8 Will building a large index affect database performance?

Building an index can be an IO-intensive operation, especially if you have a large collection. This is true on any
database system that supports secondary indexes, including MySQL. If you need to build an index on a large collection,
consider building the index in the background. See Index Creation (page 509).

If you build a large index without the background option, and if doing so causes the database to stop responding, do
one of the following:

• Wait for the index to finish building.

• Kill the current operation (see db.killOp()). The partially built index will be deleted.

29https://api.mongodb.org/

798 Chapter 11. Frequently Asked Questions

https://api.mongodb.org/
https://api.mongodb.org/

MongoDB Documentation, Release 2.6.11

11.8.9 Can I use index keys to constrain query matches?

You can use the min() and max() methods to constrain the results of the cursor returned from find() by using
index keys.

11.8.10 Using $ne and $nin in a query is slow. Why?

The $ne and $nin operators are not selective. See Create Queries that Ensure Selectivity (page 555). If you need to
use these, it is often best to make sure that an additional, more selective criterion is part of the query.

11.8.11 Can I use a multi-key index to support a query for a whole array?

Not entirely. The index can partially support these queries because it can speed the selection of the first element of
the array; however, comparing all subsequent items in the array cannot use the index and must scan the documents
individually.

11.8.12 How can I effectively use indexes strategy for attribute lookups?

For simple attribute lookups that don’t require sorted result sets or range queries, consider creating a field that contains
an array of documents where each document has a field (e.g. attrib) that holds a specific type of attribute. You can
index this attrib field.

For example, the attrib field in the following document allows you to add an unlimited number of attributes types:

{ _id : ObjectId(...),
attrib : [

{ k: "color", v: "red" },
{ k: "shape": v: "rectangle" },
{ k: "color": v: "blue" },
{ k: "avail": v: true }

]
}

Both of the following queries could use the same { "attrib.k": 1, "attrib.v": 1 } index:

db.mycollection.find({ attrib: { $elemMatch : { k: "color", v: "blue" } } })
db.mycollection.find({ attrib: { $elemMatch : { k: "avail", v: true } } })

11.9 FAQ: MongoDB Diagnostics

On this page

• Where can I find information about a mongod process that stopped running unexpectedly? (page 800)
• Does TCP keepalive time affect sharded clusters and replica sets? (page 800)
• What tools are available for monitoring MongoDB? (page 800)
• Memory Diagnostics (page 801)
• Sharded Cluster Diagnostics (page 802)

This document provides answers to common diagnostic questions and issues.

11.9. FAQ: MongoDB Diagnostics 799

MongoDB Documentation, Release 2.6.11

If you don’t find the answer you’re looking for, check the complete list of FAQs (page 761) or post your question to
the MongoDB User Mailing List30.

11.9.1 Where can I find information about a mongod process that stopped running
unexpectedly?

If mongod shuts down unexpectedly on a UNIX or UNIX-based platform, and if mongod fails to log a shutdown or
error message, then check your system logs for messages pertaining to MongoDB. For example, for logs located in
/var/log/messages, use the following commands:

sudo grep mongod /var/log/messages
sudo grep score /var/log/messages

11.9.2 Does TCP keepalive time affect sharded clusters and replica sets?

If you experience socket errors between members of a sharded cluster or replica set, that do not have other reason-
able causes, check the TCP keep alive value, which Linux systems store as the tcp_keepalive_time value. A
common keep alive period is 7200 seconds (2 hours); however, different distributions and OS X may have different
settings. For MongoDB, you will have better experiences with shorter keepalive periods, on the order of 300 seconds
(five minutes).

On Linux systems you can use the following operation to check the value of tcp_keepalive_time:

cat /proc/sys/net/ipv4/tcp_keepalive_time

You can change the tcp_keepalive_time value with the following operation:

echo 300 > /proc/sys/net/ipv4/tcp_keepalive_time

The new tcp_keepalive_time value takes effect without requiring you to restart the mongod or mongos
servers. When you reboot or restart your system you will need to set the new tcp_keepalive_time value, or
see your operating system’s documentation for setting the TCP keepalive value persistently.

For OS X systems, issue the following command to view the keep alive setting:

sysctl net.inet.tcp.keepinit

To set a shorter keep alive period use the following invocation:

sysctl -w net.inet.tcp.keepinit=300

If your replica set or sharded cluster experiences keepalive-related issues, you must alter the
tcp_keepalive_time value on all machines hosting MongoDB processes. This includes all machines
hosting mongos or mongod servers.

Windows users should consider the Windows Server Technet Article on KeepAliveTime configuration31 for more
information on setting keep alive for MongoDB deployments on Windows systems.

11.9.3 What tools are available for monitoring MongoDB?

The MongoDB Cloud Manager32 and Ops Manager, an on-premise solution available in MongoDB Enterprise Ad-
vanced33 include monitoring functionality, which collects data from running MongoDB deployments and provides

30https://groups.google.com/forum/?fromgroups#!forum/mongodb-user
31http://technet.microsoft.com/en-us/library/dd349797.aspx#BKMK_2
32https://cloud.mongodb.com/?jmp=docs
33https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

800 Chapter 11. Frequently Asked Questions

https://groups.google.com/forum/?fromgroups#!forum/mongodb-user
http://technet.microsoft.com/en-us/library/dd349797.aspx#BKMK_2
https://cloud.mongodb.com/?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

MongoDB Documentation, Release 2.6.11

visualization and alerts based on that data.

For more information, see also the MongoDB Cloud Manager documentation34 and Ops Manager documentation35.

A full list of third-party tools is available as part of the Monitoring for MongoDB (page 195) documentation.

11.9.4 Memory Diagnostics

Do I need to configure swap space?

Always configure systems to have swap space. Without swap, your system may not be reliant in some situations with
extreme memory constraints, memory leaks, or multiple programs using the same memory. Think of the swap space
as something like a steam release valve that allows the system to release extra pressure without affecting the overall
functioning of the system.

Nevertheless, systems running MongoDB do not need swap for routine operation. Database files are memory-mapped
(page 793) and should constitute most of your MongoDB memory use. Therefore, it is unlikely that mongod will ever
use any swap space in normal operation. The operating system will release memory from the memory mapped files
without needing swap and MongoDB can write data to the data files without needing the swap system.

What is “working set” and how can I estimate its size?

The working set for a MongoDB database is the portion of your data that clients access most often. You can es-
timate size of the working set, using the workingSet document in the output of serverStatus. To return
serverStatus with the workingSet document, issue a command in the following form:

db.runCommand({ serverStatus: 1, workingSet: 1 })

Must my working set size fit RAM?

Your working set should stay in memory to achieve good performance. Otherwise many random disk IO’s will occur,
and unless you are using SSD, this can be quite slow.

One area to watch specifically in managing the size of your working set is index access patterns. If you are inserting
into indexes at random locations (as would happen with id’s that are randomly generated by hashes), you will contin-
ually be updating the whole index. If instead you are able to create your id’s in approximately ascending order (for
example, day concatenated with a random id), all the updates will occur at the right side of the b-tree and the working
set size for index pages will be much smaller.

It is fine if databases and thus virtual size are much larger than RAM.

How do I calculate how much RAM I need for my application?

The amount of RAM you need depends on several factors, including but not limited to:

• The relationship between database storage (page 792) and working set.

• The operating system’s cache strategy for LRU (Least Recently Used)

• The impact of journaling (page 309)

• The number or rate of page faults and other MongoDB Cloud Manager gauges to detect when you need more
RAM

34https://docs.cloud.mongodb.com/
35https://docs.opsmanager.mongodb.com/current/application

11.9. FAQ: MongoDB Diagnostics 801

https://docs.cloud.mongodb.com/
https://docs.opsmanager.mongodb.com/current/application

MongoDB Documentation, Release 2.6.11

• Each database connection thread will need up to 1 MB of RAM.

MongoDB defers to the operating system when loading data into memory from disk. It simply memory maps
(page 793) all its data files and relies on the operating system to cache data. The OS typically evicts the least-
recently-used data from RAM when it runs low on memory. For example if clients access indexes more frequently
than documents, then indexes will more likely stay in RAM, but it depends on your particular usage.

To calculate how much RAM you need, you must calculate your working set size, or the portion of your data that
clients use most often. This depends on your access patterns, what indexes you have, and the size of your documents.
Because MongoDB uses a thread per connection model, each database connection also will need up to 1MB of RAM,
whether active or idle.

If page faults are infrequent, your working set fits in RAM. If fault rates rise higher than that, you risk performance
degradation. This is less critical with SSD drives than with spinning disks.

How do I read memory statistics in the UNIX top command

Because mongod uses memory-mapped files (page 793), the memory statistics in top require interpretation in a
special way. On a large database, VSIZE (virtual bytes) tends to be the size of the entire database. If the mongod
doesn’t have other processes running, RSIZE (resident bytes) is the total memory of the machine, as this counts file
system cache contents.

For Linux systems, use the vmstat command to help determine how the system uses memory. On OS X systems use
vm_stat.

11.9.5 Sharded Cluster Diagnostics

The two most important factors in maintaining a successful sharded cluster are:

• choosing an appropriate shard key (page 687) and

• sufficient capacity to support current and future operations (page 685).

You can prevent most issues encountered with sharding by ensuring that you choose the best possible shard key for
your deployment and ensure that you are always adding additional capacity to your cluster well before the current
resources become saturated. Continue reading for specific issues you may encounter in a production environment.

In a new sharded cluster, why does all data remains on one shard?

Your cluster must have sufficient data for sharding to make sense. Sharding works by migrating chunks between the
shards until each shard has roughly the same number of chunks.

The default chunk size is 64 megabytes. MongoDB will not begin migrations until the imbalance of chunks in the
cluster exceeds the migration threshold (page 699). While the default chunk size is configurable with the chunkSize
setting, these behaviors help prevent unnecessary chunk migrations, which can degrade the performance of your cluster
as a whole.

If you have just deployed a sharded cluster, make sure that you have enough data to make sharding effective. If you do
not have sufficient data to create more than eight 64 megabyte chunks, then all data will remain on one shard. Either
lower the chunk size (page 702) setting, or add more data to the cluster.

As a related problem, the system will split chunks only on inserts or updates, which means that if you configure
sharding and do not continue to issue insert and update operations, the database will not create any chunks. You can
either wait until your application inserts data or split chunks manually (page 738).

Finally, if your shard key has a low cardinality (page 710), MongoDB may not be able to create sufficient splits among
the data.

802 Chapter 11. Frequently Asked Questions

MongoDB Documentation, Release 2.6.11

Why would one shard receive a disproportion amount of traffic in a sharded cluster?

In some situations, a single shard or a subset of the cluster will receive a disproportionate portion of the traffic and
workload. In almost all cases this is the result of a shard key that does not effectively allow write scaling (page 689).

It’s also possible that you have “hot chunks.” In this case, you may be able to solve the problem by splitting and then
migrating parts of these chunks.

In the worst case, you may have to consider re-sharding your data and choosing a different shard key (page 709) to
correct this pattern.

What can prevent a sharded cluster from balancing?

If you have just deployed your sharded cluster, you may want to consider the troubleshooting suggestions for a new
cluster where data remains on a single shard (page 802).

If the cluster was initially balanced, but later developed an uneven distribution of data, consider the following possible
causes:

• You have deleted or removed a significant amount of data from the cluster. If you have added additional data, it
may have a different distribution with regards to its shard key.

• Your shard key has low cardinality (page 710) and MongoDB cannot split the chunks any further.

• Your data set is growing faster than the balancer can distribute data around the cluster. This is uncommon and
typically is the result of:

– a balancing window (page 731) that is too short, given the rate of data growth.

– an uneven distribution of write operations (page 689) that requires more data migration. You may have to
choose a different shard key to resolve this issue.

– poor network connectivity between shards, which may lead to chunk migrations that take too long to
complete. Investigate your network configuration and interconnections between shards.

Why do chunk migrations affect sharded cluster performance?

If migrations impact your cluster or application’s performance, consider the following options, depending on the nature
of the impact:

1. If migrations only interrupt your clusters sporadically, you can limit the balancing window (page 731) to prevent
balancing activity during peak hours. Ensure that there is enough time remaining to keep the data from becoming
out of balance again.

2. If the balancer is always migrating chunks to the detriment of overall cluster performance:

• You may want to attempt decreasing the chunk size (page 743) to limit the size of the migration.

• Your cluster may be over capacity, and you may want to attempt to add one or two shards (page 712) to
the cluster to distribute load.

It’s also possible that your shard key causes your application to direct all writes to a single shard. This kind of activity
pattern can require the balancer to migrate most data soon after writing it. Consider redeploying your cluster with a
shard key that provides better write scaling (page 689).

11.9. FAQ: MongoDB Diagnostics 803

MongoDB Documentation, Release 2.6.11

804 Chapter 11. Frequently Asked Questions

CHAPTER 12

Release Notes

Always install the latest, stable version of MongoDB. See MongoDB Version Numbers (page 908) for more informa-
tion.

See the following release notes for an account of the changes in major versions. Release notes also include instructions
for upgrade.

12.1 Current Stable Release

(2.6-series)

12.1.1 Release Notes for MongoDB 2.6

On this page

• Minor Releases (page 805)
• Major Changes (page 831)
• Security Improvements (page 833)
• Query Engine Improvements (page 833)
• Improvements (page 833)
• Operational Changes (page 834)
• MongoDB Enterprise Features (page 835)
• Additional Information (page 836)

April 8, 2014

MongoDB 2.6 is now available. Key features include aggregation enhancements, text-search integration, query-engine
improvements, a new write-operation protocol, and security enhancements.

Minor Releases

2.6 Changelog

805

MongoDB Documentation, Release 2.6.11

On this page

• 2.6.11 – Changes (page 806)
• 2.6.10 – Changes (page 807)
• 2.6.9 – Changes (page 809)
• 2.6.8 – Changes (page 810)
• 2.6.7 – Changes (page 812)
• 2.6.6 – Changes (page 812)
• 2.6.5 – Changes (page 815)
• 2.6.4 – Changes (page 818)
• 2.6.3 – Changes (page 822)
• 2.6.2 – Changes (page 822)
• 2.6.1 – Changes (page 826)

2.6.11 – Changes

Querying

• SERVER-195531 mongod shouldn’t use sayPiggyBack to send killCursor messages

• SERVER-186202 Reduce frequency of “staticYield can’t unlock” log message

• SERVER-184613 Range predicates comparing against a BinData value should be covered, but are not in 2.6

• SERVER-178154 Plan ranking tie breaker is computed incorrectly

• SERVER-162655 Add query details to getmore entry in profiler and db.currentOp()

• SERVER-152176 v2.6 query plan ranking test “NonCoveredIxisectFetchesLess” relies on order of
deleted record list

• SERVER-140707 Compound index not providing sort if equality predicate given on sort field

Replication

• SERVER-182808 ReplicaSetMonitor should use electionId to avoid talking to old primaries

• SERVER-187959 db.printSlaveReplicationInfo()/rs.printSlaveReplicationInfo()
can not work with ARBITER role

Sharding

• SERVER-1946410 $sort stage in aggregation doesn’t call scoped connections done ()

• SERVER-1895511 mongos doesn’t set batch size (and keeps the old one, 0) on getMore if performed on first
_cursor->more()

1https://jira.mongodb.org/browse/SERVER-19553
2https://jira.mongodb.org/browse/SERVER-18620
3https://jira.mongodb.org/browse/SERVER-18461
4https://jira.mongodb.org/browse/SERVER-17815
5https://jira.mongodb.org/browse/SERVER-16265
6https://jira.mongodb.org/browse/SERVER-15217
7https://jira.mongodb.org/browse/SERVER-14070
8https://jira.mongodb.org/browse/SERVER-18280
9https://jira.mongodb.org/browse/SERVER-18795

10https://jira.mongodb.org/browse/SERVER-19464
11https://jira.mongodb.org/browse/SERVER-18955

806 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-19553
https://jira.mongodb.org/browse/SERVER-18620
https://jira.mongodb.org/browse/SERVER-18461
https://jira.mongodb.org/browse/SERVER-17815
https://jira.mongodb.org/browse/SERVER-16265
https://jira.mongodb.org/browse/SERVER-15217
https://jira.mongodb.org/browse/SERVER-14070
https://jira.mongodb.org/browse/SERVER-18280
https://jira.mongodb.org/browse/SERVER-18795
https://jira.mongodb.org/browse/SERVER-19464
https://jira.mongodb.org/browse/SERVER-18955

MongoDB Documentation, Release 2.6.11

Indexing

• SERVER-1955912 Document growth of “key too large” document makes it disappear from the index

• SERVER-1634813 Assertion failure n >= 0 && n < static_cast<int>(_files.size())
src/mongo/db/storage/extent_manager.cpp 109

• SERVER-1387514 ensureIndex() of 2dsphere index breaks after upgrading to 2.6 (with the new
createIndex command)

Networking SERVER-1938915 Remove wire level endianness check

Build and Testing

• SERVER-1809716 Remove mongosTest_auth and mongosTest_WT tasks from evergreen.yml

• SERVER-1806817 Coverity analysis defect 72413: Resource leak

• SERVER-1837118 Add SSL library config detection

2.6.10 – Changes

Security

• SERVER-1831219 Upgrade PCRE to latest

• SERVER-1781220 LockPinger has audit-related GLE failure

• SERVER-1764721 Compute BinData length in v8

• SERVER-1759122 Add SSL flag to select supported protocols

• SERVER-1684923 On mongos we always invalidate the user cache once, even if no user definitions are changing

• SERVER-1198024 Improve user cache invalidation enforcement on mongos

Querying

• SERVER-1836425 Ensure non-negation predicates get chosen over negation predicates for multikey index
bounds construction

• SERVER-1781526 Plan ranking tie breaker is computed incorrectly

• SERVER-1625627 $all clause with elemMatch uses wider bounds than needed
12https://jira.mongodb.org/browse/SERVER-19559
13https://jira.mongodb.org/browse/SERVER-16348
14https://jira.mongodb.org/browse/SERVER-13875
15https://jira.mongodb.org/browse/SERVER-19389
16https://jira.mongodb.org/browse/SERVER-18097
17https://jira.mongodb.org/browse/SERVER-18068
18https://jira.mongodb.org/browse/SERVER-18371
19https://jira.mongodb.org/browse/SERVER-18312
20https://jira.mongodb.org/browse/SERVER-17812
21https://jira.mongodb.org/browse/SERVER-17647
22https://jira.mongodb.org/browse/SERVER-17591
23https://jira.mongodb.org/browse/SERVER-16849
24https://jira.mongodb.org/browse/SERVER-11980
25https://jira.mongodb.org/browse/SERVER-18364
26https://jira.mongodb.org/browse/SERVER-17815
27https://jira.mongodb.org/browse/SERVER-16256

12.1. Current Stable Release 807

https://jira.mongodb.org/browse/SERVER-19559
https://jira.mongodb.org/browse/SERVER-16348
https://jira.mongodb.org/browse/SERVER-13875
https://jira.mongodb.org/browse/SERVER-19389
https://jira.mongodb.org/browse/SERVER-18097
https://jira.mongodb.org/browse/SERVER-18068
https://jira.mongodb.org/browse/SERVER-18371
https://jira.mongodb.org/browse/SERVER-18312
https://jira.mongodb.org/browse/SERVER-17812
https://jira.mongodb.org/browse/SERVER-17647
https://jira.mongodb.org/browse/SERVER-17591
https://jira.mongodb.org/browse/SERVER-16849
https://jira.mongodb.org/browse/SERVER-11980
https://jira.mongodb.org/browse/SERVER-18364
https://jira.mongodb.org/browse/SERVER-17815
https://jira.mongodb.org/browse/SERVER-16256

MongoDB Documentation, Release 2.6.11

Replication

• SERVER-1821128 MongoDB fails to correctly roll back collection creation

• SERVER-1777129 Reconfiguring a replica set to remove a node causes a segmentation fault on 2.6.8

• SERVER-1354230 Expose electionId on primary in isMaster

Sharding

• SERVER-1781231 LockPinger has audit-related GLE failure

• SERVER-1780532 logOp / OperationObserver should always check shardversion

• SERVER-1774933 collMod usePowerOf2Sizes fails on mongos

• SERVER-1198034 Improve user cache invalidation enforcement on mongos

Storage

• SERVER-1821135 MongoDB fails to correctly roll back collection creation

• SERVER-1765336 ERROR: socket XXX is higher than 1023; not supported on 2.6.*

Indexing SERVER-1701837 Assertion failure false src/mongo/db/structure/btree/key.cpp Line 433
on remove operation

Write Ops

• SERVER-1811138 mongod allows user inserts into system.profile collection

• SERVER-1354239 Expose electionId on primary in isMaster

Networking

• SERVER-1809640 Shard primary incorrectly reuses closed sockets after relinquish and re-election

• SERVER-1759141 Add SSL flag to select supported protocols

Build and Packaging

• SERVER-1834442 logs should be sent to updated logkeeper server

• SERVER-1808243 Change smoke.py buildlogger command line options to environment variables

28https://jira.mongodb.org/browse/SERVER-18211
29https://jira.mongodb.org/browse/SERVER-17771
30https://jira.mongodb.org/browse/SERVER-13542
31https://jira.mongodb.org/browse/SERVER-17812
32https://jira.mongodb.org/browse/SERVER-17805
33https://jira.mongodb.org/browse/SERVER-17749
34https://jira.mongodb.org/browse/SERVER-11980
35https://jira.mongodb.org/browse/SERVER-18211
36https://jira.mongodb.org/browse/SERVER-17653
37https://jira.mongodb.org/browse/SERVER-17018
38https://jira.mongodb.org/browse/SERVER-18111
39https://jira.mongodb.org/browse/SERVER-13542
40https://jira.mongodb.org/browse/SERVER-18096
41https://jira.mongodb.org/browse/SERVER-17591
42https://jira.mongodb.org/browse/SERVER-18344
43https://jira.mongodb.org/browse/SERVER-18082

808 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-18211
https://jira.mongodb.org/browse/SERVER-17771
https://jira.mongodb.org/browse/SERVER-13542
https://jira.mongodb.org/browse/SERVER-17812
https://jira.mongodb.org/browse/SERVER-17805
https://jira.mongodb.org/browse/SERVER-17749
https://jira.mongodb.org/browse/SERVER-11980
https://jira.mongodb.org/browse/SERVER-18211
https://jira.mongodb.org/browse/SERVER-17653
https://jira.mongodb.org/browse/SERVER-17018
https://jira.mongodb.org/browse/SERVER-18111
https://jira.mongodb.org/browse/SERVER-13542
https://jira.mongodb.org/browse/SERVER-18096
https://jira.mongodb.org/browse/SERVER-17591
https://jira.mongodb.org/browse/SERVER-18344
https://jira.mongodb.org/browse/SERVER-18082

MongoDB Documentation, Release 2.6.11

• SERVER-1831244 Upgrade PCRE to latest

• SERVER-1778045 Init script sets process ulimit to different value compared to documentation

• SERVER-1656346 Debian repo component mismatch - mongodb/10gen

Shell SERVER-1795147 db.currentOp() fails with read preference set

Testing

• SERVER-1826248 setup_multiversion_mongodb should retry links download on timeouts

• SERVER-1822949 smoke.py with PyMongo 3.0.1 fails to run certain tests

• SERVER-1807350 Fix smoke.py to work with PyMongo 3.0

2.6.9 – Changes

Security SERVER-1607351 Create hidden net.ssl.sslCipherConfig flag

Querying

• SERVER-1472352 Crash during query planning for geoNear with multiple 2dsphere indexes

• SERVER-1407153 For queries with sort(), bad non-blocking plan can be cached if there are zero results

• SERVER-818854 Configurable idle cursor timeout

Replication and Sharding

• SERVER-1742955 the message logged when changing sync target due to stale data should format OpTimes in a
consistent way

• SERVER-1744156 mongos crash right after “not master” error

Storage SERVER-1590757 Use ftruncate rather than fallocate when running on tmpfs

44https://jira.mongodb.org/browse/SERVER-18312
45https://jira.mongodb.org/browse/SERVER-17780
46https://jira.mongodb.org/browse/SERVER-16563
47https://jira.mongodb.org/browse/SERVER-17951
48https://jira.mongodb.org/browse/SERVER-18262
49https://jira.mongodb.org/browse/SERVER-18229
50https://jira.mongodb.org/browse/SERVER-18073
51https://jira.mongodb.org/browse/SERVER-16073
52https://jira.mongodb.org/browse/SERVER-14723
53https://jira.mongodb.org/browse/SERVER-14071
54https://jira.mongodb.org/browse/SERVER-8188
55https://jira.mongodb.org/browse/SERVER-17429
56https://jira.mongodb.org/browse/SERVER-17441
57https://jira.mongodb.org/browse/SERVER-15907

12.1. Current Stable Release 809

https://jira.mongodb.org/browse/SERVER-18312
https://jira.mongodb.org/browse/SERVER-17780
https://jira.mongodb.org/browse/SERVER-16563
https://jira.mongodb.org/browse/SERVER-17951
https://jira.mongodb.org/browse/SERVER-18262
https://jira.mongodb.org/browse/SERVER-18229
https://jira.mongodb.org/browse/SERVER-18073
https://jira.mongodb.org/browse/SERVER-16073
https://jira.mongodb.org/browse/SERVER-14723
https://jira.mongodb.org/browse/SERVER-14071
https://jira.mongodb.org/browse/SERVER-8188
https://jira.mongodb.org/browse/SERVER-17429
https://jira.mongodb.org/browse/SERVER-17441
https://jira.mongodb.org/browse/SERVER-15907

MongoDB Documentation, Release 2.6.11

Aggregation Framework

• SERVER-1742658 Aggregation framework query by _id returns duplicates in sharded cluster (orphan docu-
ments)

• SERVER-1722459 Aggregation pipeline with 64MB document can terminate server

Build and Platform

• SERVER-1748460 Migrate server MCI config into server repo

• SERVER-1725261 Upgrade PCRE Version from 8.30 to Latest

Diagnostics and Internal Code

• SERVER-1722662 top command with 64MB result document can terminate server

• SERVER-1733863 NULL pointer crash when running copydb against stepped-down 2.6 primary

• SERVER-1499264 Query for Windows 7 File Allocation Fix, and other hotfixes

2.6.8 – Changes

Security and Networking

• SERVER-1727865 BSON BinData validation enforcement

• SERVER-1702266 No SSL Session Caching may not be respected

• SERVER-1726467 improve bson validation

Query and Aggregation

• SERVER-1665568 Geo predicate is unable to use compound 2dsphere index if it is root of $or clause

• SERVER-1652769 2dsphere explain reports “works” for nscanned & nscannedObjects

• SERVER-1580270 Query optimizer should always use equality predicate over unique index when possible

• SERVER-1404471 Incorrect {$meta: ’text’} reference in aggregation $sort error message

58https://jira.mongodb.org/browse/SERVER-17426
59https://jira.mongodb.org/browse/SERVER-17224
60https://jira.mongodb.org/browse/SERVER-17484
61https://jira.mongodb.org/browse/SERVER-17252
62https://jira.mongodb.org/browse/SERVER-17226
63https://jira.mongodb.org/browse/SERVER-17338
64https://jira.mongodb.org/browse/SERVER-14992
65https://jira.mongodb.org/browse/SERVER-17278
66https://jira.mongodb.org/browse/SERVER-17022
67https://jira.mongodb.org/browse/SERVER-17264
68https://jira.mongodb.org/browse/SERVER-16655
69https://jira.mongodb.org/browse/SERVER-16527
70https://jira.mongodb.org/browse/SERVER-15802
71https://jira.mongodb.org/browse/SERVER-14044

810 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-17426
https://jira.mongodb.org/browse/SERVER-17224
https://jira.mongodb.org/browse/SERVER-17484
https://jira.mongodb.org/browse/SERVER-17252
https://jira.mongodb.org/browse/SERVER-17226
https://jira.mongodb.org/browse/SERVER-17338
https://jira.mongodb.org/browse/SERVER-14992
https://jira.mongodb.org/browse/SERVER-17278
https://jira.mongodb.org/browse/SERVER-17022
https://jira.mongodb.org/browse/SERVER-17264
https://jira.mongodb.org/browse/SERVER-16655
https://jira.mongodb.org/browse/SERVER-16527
https://jira.mongodb.org/browse/SERVER-15802
https://jira.mongodb.org/browse/SERVER-14044

MongoDB Documentation, Release 2.6.11

Replication

• SERVER-1659972 copydb and clone commands can crash the server if a primary steps down

• SERVER-1631573 Replica set nodes should not threaten to veto nodes whose config version is higher than their
own

• SERVER-1627474 secondary fasserts trying to replicate an index

• SERVER-1547175 Better error message when replica is not found in GhostSync::associateSlave

Sharding

• SERVER-1719176 Spurious warning during upgrade of sharded cluster

• SERVER-1716377 Fatal error “logOp but not primary” in MigrateStatus::go

• SERVER-1698478 UpdateLifecycleImpl can return empty collectionMetadata even if ns is
sharded

• SERVER-1090479 Possible for _master and _slaveConn to be pointing to different connections even with
primary read pref

Storage

• SERVER-1708780 Add listCollections command functionality to 2.6 shell & client

• SERVER-1457281 Increase C runtime stdio file limit

Tools

• SERVER-1721682 2.6 mongostat cannot be used with 3.0 mongod

• SERVER-1419083 mongorestore parseMetadataFile passes non-null terminated string to
‘fromjson‘

Build and Packaging

• SERVER-1480384 Support static libstdc++ builds for non-Linux builds

• SERVER-1540085 Create Windows Enterprise Zip File with vcredist and dependent dlls

Usability SERVER-1475686 The YAML storage.quota.enforced option is not found

72https://jira.mongodb.org/browse/SERVER-16599
73https://jira.mongodb.org/browse/SERVER-16315
74https://jira.mongodb.org/browse/SERVER-16274
75https://jira.mongodb.org/browse/SERVER-15471
76https://jira.mongodb.org/browse/SERVER-17191
77https://jira.mongodb.org/browse/SERVER-17163
78https://jira.mongodb.org/browse/SERVER-16984
79https://jira.mongodb.org/browse/SERVER-10904
80https://jira.mongodb.org/browse/SERVER-17087
81https://jira.mongodb.org/browse/SERVER-14572
82https://jira.mongodb.org/browse/SERVER-17216
83https://jira.mongodb.org/browse/SERVER-14190
84https://jira.mongodb.org/browse/SERVER-14803
85https://jira.mongodb.org/browse/SERVER-15400
86https://jira.mongodb.org/browse/SERVER-14756

12.1. Current Stable Release 811

https://jira.mongodb.org/browse/SERVER-16599
https://jira.mongodb.org/browse/SERVER-16315
https://jira.mongodb.org/browse/SERVER-16274
https://jira.mongodb.org/browse/SERVER-15471
https://jira.mongodb.org/browse/SERVER-17191
https://jira.mongodb.org/browse/SERVER-17163
https://jira.mongodb.org/browse/SERVER-16984
https://jira.mongodb.org/browse/SERVER-10904
https://jira.mongodb.org/browse/SERVER-17087
https://jira.mongodb.org/browse/SERVER-14572
https://jira.mongodb.org/browse/SERVER-17216
https://jira.mongodb.org/browse/SERVER-14190
https://jira.mongodb.org/browse/SERVER-14803
https://jira.mongodb.org/browse/SERVER-15400
https://jira.mongodb.org/browse/SERVER-14756

MongoDB Documentation, Release 2.6.11

Testing SERVER-1642187 sharding_rs2.js should clean up data on all replicas

2.6.7 – Changes

Stability

• SERVER-1623788 Don’t check the shard version if the primary server is down

Querying

• SERVER-1640889 max_time_ms.js should not run in parallel suite.

Replication

• SERVER-1673290 SyncSourceFeedback::replHandshake() may perform an illegal erase from a
std::map in some circumstances

Sharding

• SERVER-1668391 Decrease mongos memory footprint when shards have several tags

• SERVER-1576692 prefix_shard_key.js depends on primary allocation to particular shards

• SERVER-1430693 mongos can cause shards to hit the in-memory sort limit by requesting more results than
needed.

Packaging

• SERVER-1608194 /etc/init.d/mongod startup script fails, with dirname message

2.6.6 – Changes

Security

• SERVER-1567395 Disable SSLv3 ciphers

• SERVER-1551596 New test for mixed version replSet, 2.4 primary, user updates

• SERVER-1550097 New test for system.user operations

87https://jira.mongodb.org/browse/SERVER-16421
88https://jira.mongodb.org/browse/SERVER-16237
89https://jira.mongodb.org/browse/SERVER-16408
90https://jira.mongodb.org/browse/SERVER-16732
91https://jira.mongodb.org/browse/SERVER-16683
92https://jira.mongodb.org/browse/SERVER-15766
93https://jira.mongodb.org/browse/SERVER-14306
94https://jira.mongodb.org/browse/SERVER-16081
95https://jira.mongodb.org/browse/SERVER-15673
96https://jira.mongodb.org/browse/SERVER-15515
97https://jira.mongodb.org/browse/SERVER-15500

812 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-16421
https://jira.mongodb.org/browse/SERVER-16237
https://jira.mongodb.org/browse/SERVER-16408
https://jira.mongodb.org/browse/SERVER-16732
https://jira.mongodb.org/browse/SERVER-16683
https://jira.mongodb.org/browse/SERVER-15766
https://jira.mongodb.org/browse/SERVER-14306
https://jira.mongodb.org/browse/SERVER-16081
https://jira.mongodb.org/browse/SERVER-15673
https://jira.mongodb.org/browse/SERVER-15515
https://jira.mongodb.org/browse/SERVER-15500

MongoDB Documentation, Release 2.6.11

Stability

• SERVER-1206198 Do not silently ignore read errors when syncing a replica set node

• SERVER-1205899 Primary should abort if encountered problems writing to the oplog

Querying

• SERVER-16291100 Cannot set/list/clear index filters on the secondary

• SERVER-15958101 The “isMultiKey” value is not correct in the output of aggregation explain plan

• SERVER-15899102 Querying against path in document containing long array of subdocuments with nested
arrays causes stack overflow

• SERVER-15696103 $regex, $in and $sort with index returns too many results

• SERVER-15639104 Text queries can return incorrect results and leak memory when multiple predicates given
on same text index prefix field

• SERVER-15580105 Evaluating candidate query plans with concurrent writes on same collection may crash
mongod

• SERVER-15528106 Distinct queries can scan many index keys without yielding read lock

• SERVER-15485107 CanonicalQuery::canonicalize can leak a LiteParsedQuery

• SERVER-15403108 $min and $max equal errors in 2.6 but not in 2.4

• SERVER-15233109 Cannot run planCacheListQueryShapes on a Secondary

• SERVER-14799110 count with hint doesn’t work when hint is a document

Replication

• SERVER-16107111 2.6 mongod crashes with segfault when added to a 2.8 replica set with >= 12 nodes.

• SERVER-15994112 listIndexes and listCollections can be run on secondaries without slaveOk bit

• SERVER-15849113 do not forward replication progress for nodes that are no longer part of a replica set

• SERVER-15491114 SyncSourceFeedback can crash due to a SocketException in
authenticateInternalUser

98https://jira.mongodb.org/browse/SERVER-12061
99https://jira.mongodb.org/browse/SERVER-12058

100https://jira.mongodb.org/browse/SERVER-16291
101https://jira.mongodb.org/browse/SERVER-15958
102https://jira.mongodb.org/browse/SERVER-15899
103https://jira.mongodb.org/browse/SERVER-15696
104https://jira.mongodb.org/browse/SERVER-15639
105https://jira.mongodb.org/browse/SERVER-15580
106https://jira.mongodb.org/browse/SERVER-15528
107https://jira.mongodb.org/browse/SERVER-15485
108https://jira.mongodb.org/browse/SERVER-15403
109https://jira.mongodb.org/browse/SERVER-15233
110https://jira.mongodb.org/browse/SERVER-14799
111https://jira.mongodb.org/browse/SERVER-16107
112https://jira.mongodb.org/browse/SERVER-15994
113https://jira.mongodb.org/browse/SERVER-15849
114https://jira.mongodb.org/browse/SERVER-15491

12.1. Current Stable Release 813

https://jira.mongodb.org/browse/SERVER-12061
https://jira.mongodb.org/browse/SERVER-12058
https://jira.mongodb.org/browse/SERVER-16291
https://jira.mongodb.org/browse/SERVER-15958
https://jira.mongodb.org/browse/SERVER-15899
https://jira.mongodb.org/browse/SERVER-15696
https://jira.mongodb.org/browse/SERVER-15639
https://jira.mongodb.org/browse/SERVER-15580
https://jira.mongodb.org/browse/SERVER-15528
https://jira.mongodb.org/browse/SERVER-15485
https://jira.mongodb.org/browse/SERVER-15403
https://jira.mongodb.org/browse/SERVER-15233
https://jira.mongodb.org/browse/SERVER-14799
https://jira.mongodb.org/browse/SERVER-16107
https://jira.mongodb.org/browse/SERVER-15994
https://jira.mongodb.org/browse/SERVER-15849
https://jira.mongodb.org/browse/SERVER-15491

MongoDB Documentation, Release 2.6.11

Sharding

• SERVER-15318115 copydb should not use exhaust flag when used against mongos

• SERVER-14728116 Shard depends on string comparison of replica set connection string

• SERVER-14506117 special top chunk logic can move max chunk to a shard with incompatible tag

• SERVER-14299118 For sharded limit=N queries with sort, mongos can request >N results from shard

• SERVER-14080119 Have migration result reported in the changelog correctly

• SERVER-12472120 Fail MoveChunk if an index is needed on TO shard and data exists

Storage

• SERVER-16283121 Can’t start new wiredtiger node with log file or config file in data directory - false detection
of old mmapv1 files

• SERVER-15986122 Starting with different storage engines in the same dbpath should error/warn

• SERVER-14057123 Changing TTL expiration time with collMod does not correctly update index definition

Indexing and write Operations

• SERVER-14287124 ensureIndex can abort reIndex and lose indexes

• SERVER-14886125 Updates against paths composed with array index notation and positional operator fail with
error

Data Aggregation SERVER-15552126 Errors writing to temporary collections during mapReduce command exe-
cution should be operation-fatal

Build and Packaging

• SERVER-14184127 Unused preprocessor macros from s2 conflict on OS X Yosemite

• SERVER-14015128 S2 Compilation on GCC 4.9/Solaris fails

• SERVER-16017129 Suse11 enterprise packages fail due to unmet dependencies

• SERVER-15598130 Ubuntu 14.04 Enterprise packages depend on unavailable libsnmp15 package

• SERVER-13595131 Red Hat init.d script error: YAML config file parsing

115https://jira.mongodb.org/browse/SERVER-15318
116https://jira.mongodb.org/browse/SERVER-14728
117https://jira.mongodb.org/browse/SERVER-14506
118https://jira.mongodb.org/browse/SERVER-14299
119https://jira.mongodb.org/browse/SERVER-14080
120https://jira.mongodb.org/browse/SERVER-12472
121https://jira.mongodb.org/browse/SERVER-16283
122https://jira.mongodb.org/browse/SERVER-15986
123https://jira.mongodb.org/browse/SERVER-14057
124https://jira.mongodb.org/browse/SERVER-14287
125https://jira.mongodb.org/browse/SERVER-14886
126https://jira.mongodb.org/browse/SERVER-15552
127https://jira.mongodb.org/browse/SERVER-14184
128https://jira.mongodb.org/browse/SERVER-14015
129https://jira.mongodb.org/browse/SERVER-16017
130https://jira.mongodb.org/browse/SERVER-15598
131https://jira.mongodb.org/browse/SERVER-13595

814 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-15318
https://jira.mongodb.org/browse/SERVER-14728
https://jira.mongodb.org/browse/SERVER-14506
https://jira.mongodb.org/browse/SERVER-14299
https://jira.mongodb.org/browse/SERVER-14080
https://jira.mongodb.org/browse/SERVER-12472
https://jira.mongodb.org/browse/SERVER-16283
https://jira.mongodb.org/browse/SERVER-15986
https://jira.mongodb.org/browse/SERVER-14057
https://jira.mongodb.org/browse/SERVER-14287
https://jira.mongodb.org/browse/SERVER-14886
https://jira.mongodb.org/browse/SERVER-15552
https://jira.mongodb.org/browse/SERVER-14184
https://jira.mongodb.org/browse/SERVER-14015
https://jira.mongodb.org/browse/SERVER-16017
https://jira.mongodb.org/browse/SERVER-15598
https://jira.mongodb.org/browse/SERVER-13595

MongoDB Documentation, Release 2.6.11

Logging and Diagnostics

• SERVER-13471132 Increase log level of “did reduceInMemory” message in map/reduce

• SERVER-16324133 Command execution log line displays “query not recording (too large)” in-
stead of abbreviated command object

• SERVER-10069134 Improve errorcodes.py so it captures multiline messages

Testing and Internals

• SERVER-15632135 MultiHostQueryOp::PendingQueryContext::doBlockingQuery can leak a
cursor object

• SERVER-15629136 GeoParser::parseMulti{Line|Polygon} does not clear objects owned by out
parameter

• SERVER-16316137 Remove unsupported behavior in shard3.js

• SERVER-14763138 Update jstests/sharding/split_large_key.js

• SERVER-14249139 Add tests for querying oplog via mongodump using –dbpath

• SERVER-13726140 indexbg_drop.js

2.6.5 – Changes

Security

• SERVER-15465141 OpenSSL crashes on stepdown

• SERVER-15360142 User document changes made on a 2.4 primary and replicated to a 2.6 secondary don’t make
the 2.6 secondary invalidate its user cache

• SERVER-14887143 Allow user document changes made on a 2.4 primary to replicate to a 2.6 secondary

• SERVER-14727144 Details of SASL failures aren’t logged

• SERVER-12551145 Audit DML/CRUD operations

Stability SERVER-9032146 mongod fails when launched with misconfigured locale

132https://jira.mongodb.org/browse/SERVER-13471
133https://jira.mongodb.org/browse/SERVER-16324
134https://jira.mongodb.org/browse/SERVER-10069
135https://jira.mongodb.org/browse/SERVER-15632
136https://jira.mongodb.org/browse/SERVER-15629
137https://jira.mongodb.org/browse/SERVER-16316
138https://jira.mongodb.org/browse/SERVER-14763
139https://jira.mongodb.org/browse/SERVER-14249
140https://jira.mongodb.org/browse/SERVER-13726
141https://jira.mongodb.org/browse/SERVER-15465
142https://jira.mongodb.org/browse/SERVER-15360
143https://jira.mongodb.org/browse/SERVER-14887
144https://jira.mongodb.org/browse/SERVER-14727
145https://jira.mongodb.org/browse/SERVER-12551
146https://jira.mongodb.org/browse/SERVER-9032

12.1. Current Stable Release 815

https://jira.mongodb.org/browse/SERVER-13471
https://jira.mongodb.org/browse/SERVER-16324
https://jira.mongodb.org/browse/SERVER-10069
https://jira.mongodb.org/browse/SERVER-15632
https://jira.mongodb.org/browse/SERVER-15629
https://jira.mongodb.org/browse/SERVER-16316
https://jira.mongodb.org/browse/SERVER-14763
https://jira.mongodb.org/browse/SERVER-14249
https://jira.mongodb.org/browse/SERVER-13726
https://jira.mongodb.org/browse/SERVER-15465
https://jira.mongodb.org/browse/SERVER-15360
https://jira.mongodb.org/browse/SERVER-14887
https://jira.mongodb.org/browse/SERVER-14727
https://jira.mongodb.org/browse/SERVER-12551
https://jira.mongodb.org/browse/SERVER-9032

MongoDB Documentation, Release 2.6.11

Querying

• SERVER-15287147 Query planner sort analysis incorrectly allows index key pattern plugin fields to provide sort

• SERVER-15286148 Assertion in date indexes when opposite-direction-sorted and double “or” filtered

• SERVER-15279149 Disable hash-based index intersection (AND_HASH) by default

• SERVER-15152150 When evaluating plans, some index candidates cause complete index scan

• SERVER-15015151 Assertion failure when combining $max and $min and reverse index scan

• SERVER-15012152 Server crashes on indexed rooted $or queries using a 2d index

• SERVER-14969153 Dropping index during active aggregation operation can crash server

• SERVER-14961154 Plan ranker favors intersection plans if predicate generates empty range index scan

• SERVER-14892155 Invalid {$elemMatch: {$where}} query causes memory leak

• SERVER-14706156 Queries that use negated $type predicate over a field may return incomplete results when an
index is present on that field

• SERVER-13104157 Plan enumerator doesn’t enumerate all possibilities for a nested $or

• SERVER-14984158 Server aborts when running $centerSphere query with NaN radius

• SERVER-14981159 Server aborts when querying against 2dsphere index with
coarsestIndexedLevel:0

• SERVER-14831160 Text search trips assertion when default language only supported in
textIndexVersion=1 used

Replication

• SERVER-15038161 Multiple background index builds may not interrupt cleanly for commands, on secondaries

• SERVER-14887162 Allow user document changes made on a 2.4 primary to replicate to a 2.6 secondary

• SERVER-14805163 Use multithreaded oplog replay during initial sync

Sharding

• SERVER-15056164 Sharded connection cleanup on setup error can crash mongos

• SERVER-13702165 Commands without optional query may target to wrong shards on mongos

147https://jira.mongodb.org/browse/SERVER-15287
148https://jira.mongodb.org/browse/SERVER-15286
149https://jira.mongodb.org/browse/SERVER-15279
150https://jira.mongodb.org/browse/SERVER-15152
151https://jira.mongodb.org/browse/SERVER-15015
152https://jira.mongodb.org/browse/SERVER-15012
153https://jira.mongodb.org/browse/SERVER-14969
154https://jira.mongodb.org/browse/SERVER-14961
155https://jira.mongodb.org/browse/SERVER-14892
156https://jira.mongodb.org/browse/SERVER-14706
157https://jira.mongodb.org/browse/SERVER-13104
158https://jira.mongodb.org/browse/SERVER-14984
159https://jira.mongodb.org/browse/SERVER-14981
160https://jira.mongodb.org/browse/SERVER-14831
161https://jira.mongodb.org/browse/SERVER-15038
162https://jira.mongodb.org/browse/SERVER-14887
163https://jira.mongodb.org/browse/SERVER-14805
164https://jira.mongodb.org/browse/SERVER-15056
165https://jira.mongodb.org/browse/SERVER-13702

816 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-15287
https://jira.mongodb.org/browse/SERVER-15286
https://jira.mongodb.org/browse/SERVER-15279
https://jira.mongodb.org/browse/SERVER-15152
https://jira.mongodb.org/browse/SERVER-15015
https://jira.mongodb.org/browse/SERVER-15012
https://jira.mongodb.org/browse/SERVER-14969
https://jira.mongodb.org/browse/SERVER-14961
https://jira.mongodb.org/browse/SERVER-14892
https://jira.mongodb.org/browse/SERVER-14706
https://jira.mongodb.org/browse/SERVER-13104
https://jira.mongodb.org/browse/SERVER-14984
https://jira.mongodb.org/browse/SERVER-14981
https://jira.mongodb.org/browse/SERVER-14831
https://jira.mongodb.org/browse/SERVER-15038
https://jira.mongodb.org/browse/SERVER-14887
https://jira.mongodb.org/browse/SERVER-14805
https://jira.mongodb.org/browse/SERVER-15056
https://jira.mongodb.org/browse/SERVER-13702

MongoDB Documentation, Release 2.6.11

• SERVER-15156166 MongoDB upgrade 2.4 to 2.6 check returns error in config.changelog collection

Storage

• SERVER-15369167 explicitly zero .ns files on creation

• SERVER-15319168 Verify 2.8 freelist is upgrade-downgrade safe with 2.6

• SERVER-15111169 partially written journal last section causes recovery to fail

Indexing

• SERVER-14848170 Port index_id_desc.js to v2.6 and master branches

• SERVER-14205171 ensureIndex failure reports ok: 1 on some failures

Write Operations

• SERVER-15106172 Incorrect nscanned and nscannedObjects for idhack updates in 2.6.4 profiler or slow query
log

• SERVER-15029173 The $rename modifier uses incorrect dotted source path

• SERVER-14829174 UpdateIndexData::clear() should reset all member variables

Data Aggregation

• SERVER-15087175 Server crashes when running concurrent mapReduce and dropDatabase commands

• SERVER-14969176 Dropping index during active aggregation operation can crash server

• SERVER-14168177 Warning logged when incremental MR collections are unsuccessfully dropped on secon-
daries

Packaging

• SERVER-14679178 (CentOS 7/RHEL 7) init.d script should create directory for pid file if it is missing

• SERVER-14023179 Support for RHEL 7 Enterprise .rpm packages

• SERVER-13243180 Support for Ubuntu 14 “Trusty” Enterprise .deb packages

• SERVER-11077181 Support for Debian 7 Enterprise .deb packages

• SERVER-10642182 Generate Community and Enterprise packages for SUSE 11
166https://jira.mongodb.org/browse/SERVER-15156
167https://jira.mongodb.org/browse/SERVER-15369
168https://jira.mongodb.org/browse/SERVER-15319
169https://jira.mongodb.org/browse/SERVER-15111
170https://jira.mongodb.org/browse/SERVER-14848
171https://jira.mongodb.org/browse/SERVER-14205
172https://jira.mongodb.org/browse/SERVER-15106
173https://jira.mongodb.org/browse/SERVER-15029
174https://jira.mongodb.org/browse/SERVER-14829
175https://jira.mongodb.org/browse/SERVER-15087
176https://jira.mongodb.org/browse/SERVER-14969
177https://jira.mongodb.org/browse/SERVER-14168
178https://jira.mongodb.org/browse/SERVER-14679
179https://jira.mongodb.org/browse/SERVER-14023
180https://jira.mongodb.org/browse/SERVER-13243
181https://jira.mongodb.org/browse/SERVER-11077
182https://jira.mongodb.org/browse/SERVER-10642

12.1. Current Stable Release 817

https://jira.mongodb.org/browse/SERVER-15156
https://jira.mongodb.org/browse/SERVER-15369
https://jira.mongodb.org/browse/SERVER-15319
https://jira.mongodb.org/browse/SERVER-15111
https://jira.mongodb.org/browse/SERVER-14848
https://jira.mongodb.org/browse/SERVER-14205
https://jira.mongodb.org/browse/SERVER-15106
https://jira.mongodb.org/browse/SERVER-15029
https://jira.mongodb.org/browse/SERVER-14829
https://jira.mongodb.org/browse/SERVER-15087
https://jira.mongodb.org/browse/SERVER-14969
https://jira.mongodb.org/browse/SERVER-14168
https://jira.mongodb.org/browse/SERVER-14679
https://jira.mongodb.org/browse/SERVER-14023
https://jira.mongodb.org/browse/SERVER-13243
https://jira.mongodb.org/browse/SERVER-11077
https://jira.mongodb.org/browse/SERVER-10642

MongoDB Documentation, Release 2.6.11

Logging and Diagnostics

• SERVER-14964183 nscanned not written to the logs at logLevel 1 unless slowms exceeded or profiling
enabled

• SERVER-12551184 Audit DML/CRUD operations

• SERVER-14904185 Adjust dates in tool/exportimport_date.js to account for different timezones

Internal Code and Testing

• SERVER-13770186 Helpers::removeRange should check all runner states

• SERVER-14284187 jstests should not leave profiler enabled at test run end

• SERVER-14076188 remove test replset_remove_node.js

• SERVER-14778189 Hide function and data pointers for natively-injected v8 functions

2.6.4 – Changes

Security

• SERVER-14701190 The “backup” auth role should allow running the “collstats” command for all resources

• SERVER-14518191 Allow disabling hostname validation for SSL

• SERVER-14268192 Potential information leak

• SERVER-14170193 Cannot read from secondary if both audit and auth are enabled in a sharded cluster

• SERVER-13833194 userAdminAnyDatabase role should be able to create indexes on admin.system.users and
admin.system.roles

• SERVER-12512195 Add role-based, selective audit logging.

• SERVER-9482196 Add build flag for sslFIPSMode

Querying

• SERVER-14625197 Query planner can construct incorrect bounds for negations inside $elemMatch

• SERVER-14607198 hash intersection of fetched and non-fetched data can discard data from a result

• SERVER-14532199 Improve logging in the case of plan ranker ties

183https://jira.mongodb.org/browse/SERVER-14964
184https://jira.mongodb.org/browse/SERVER-12551
185https://jira.mongodb.org/browse/SERVER-14904
186https://jira.mongodb.org/browse/SERVER-13770
187https://jira.mongodb.org/browse/SERVER-14284
188https://jira.mongodb.org/browse/SERVER-14076
189https://jira.mongodb.org/browse/SERVER-14778
190https://jira.mongodb.org/browse/SERVER-14701
191https://jira.mongodb.org/browse/SERVER-14518
192https://jira.mongodb.org/browse/SERVER-14268
193https://jira.mongodb.org/browse/SERVER-14170
194https://jira.mongodb.org/browse/SERVER-13833
195https://jira.mongodb.org/browse/SERVER-12512
196https://jira.mongodb.org/browse/SERVER-9482
197https://jira.mongodb.org/browse/SERVER-14625
198https://jira.mongodb.org/browse/SERVER-14607
199https://jira.mongodb.org/browse/SERVER-14532

818 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-14964
https://jira.mongodb.org/browse/SERVER-12551
https://jira.mongodb.org/browse/SERVER-14904
https://jira.mongodb.org/browse/SERVER-13770
https://jira.mongodb.org/browse/SERVER-14284
https://jira.mongodb.org/browse/SERVER-14076
https://jira.mongodb.org/browse/SERVER-14778
https://jira.mongodb.org/browse/SERVER-14701
https://jira.mongodb.org/browse/SERVER-14518
https://jira.mongodb.org/browse/SERVER-14268
https://jira.mongodb.org/browse/SERVER-14170
https://jira.mongodb.org/browse/SERVER-13833
https://jira.mongodb.org/browse/SERVER-12512
https://jira.mongodb.org/browse/SERVER-9482
https://jira.mongodb.org/browse/SERVER-14625
https://jira.mongodb.org/browse/SERVER-14607
https://jira.mongodb.org/browse/SERVER-14532

MongoDB Documentation, Release 2.6.11

• SERVER-14350200 Server crash when $centerSphere has non-positive radius

• SERVER-14317201 Dead code in IDHackRunner::applyProjection

• SERVER-14311202 skipping of index keys is not accounted for in plan ranking by the index scan stage

• SERVER-14123203 some operations can create BSON object larger than the 16MB limit

• SERVER-14034204 Sorted $in query with large number of elements can’t use merge sort

• SERVER-13994205 do not aggressively pre-fetch data for parallelCollectionScan

Replication

• SERVER-14665206 Build failure for v2.6 in closeall.js caused by access violation reading _me

• SERVER-14505207 cannot dropAllIndexes when index builds in progress assertion failure

• SERVER-14494208 Dropping collection during active background index build on secondary triggers segfault

• SERVER-13822209 Running resync before replset config is loaded can crash mongod

• SERVER-11776210 Replication ‘isself’ check should allow mapped ports

Sharding

• SERVER-14551211 Runner yield during migration cleanup (removeRange) results in fassert

• SERVER-14431212 Invalid chunk data after splitting on a key that’s too large

• SERVER-14261213 stepdown during migration range delete can abort mongod

• SERVER-14032214 v2.6 mongos doesn’t verify _id is present for config server upserts

• SERVER-13648215 better stats from migration cleanup

• SERVER-12750216 mongos shouldn’t accept initial query with “exhaust” flag set

• SERVER-9788217 mongos does not re-evaluate read preference once a valid replica set member is chosen

• SERVER-9526218 Log messages regarding chunks not very informative when the shard key is of type BinData

200https://jira.mongodb.org/browse/SERVER-14350
201https://jira.mongodb.org/browse/SERVER-14317
202https://jira.mongodb.org/browse/SERVER-14311
203https://jira.mongodb.org/browse/SERVER-14123
204https://jira.mongodb.org/browse/SERVER-14034
205https://jira.mongodb.org/browse/SERVER-13994
206https://jira.mongodb.org/browse/SERVER-14665
207https://jira.mongodb.org/browse/SERVER-14505
208https://jira.mongodb.org/browse/SERVER-14494
209https://jira.mongodb.org/browse/SERVER-13822
210https://jira.mongodb.org/browse/SERVER-11776
211https://jira.mongodb.org/browse/SERVER-14551
212https://jira.mongodb.org/browse/SERVER-14431
213https://jira.mongodb.org/browse/SERVER-14261
214https://jira.mongodb.org/browse/SERVER-14032
215https://jira.mongodb.org/browse/SERVER-13648
216https://jira.mongodb.org/browse/SERVER-12750
217https://jira.mongodb.org/browse/SERVER-9788
218https://jira.mongodb.org/browse/SERVER-9526

12.1. Current Stable Release 819

https://jira.mongodb.org/browse/SERVER-14350
https://jira.mongodb.org/browse/SERVER-14317
https://jira.mongodb.org/browse/SERVER-14311
https://jira.mongodb.org/browse/SERVER-14123
https://jira.mongodb.org/browse/SERVER-14034
https://jira.mongodb.org/browse/SERVER-13994
https://jira.mongodb.org/browse/SERVER-14665
https://jira.mongodb.org/browse/SERVER-14505
https://jira.mongodb.org/browse/SERVER-14494
https://jira.mongodb.org/browse/SERVER-13822
https://jira.mongodb.org/browse/SERVER-11776
https://jira.mongodb.org/browse/SERVER-14551
https://jira.mongodb.org/browse/SERVER-14431
https://jira.mongodb.org/browse/SERVER-14261
https://jira.mongodb.org/browse/SERVER-14032
https://jira.mongodb.org/browse/SERVER-13648
https://jira.mongodb.org/browse/SERVER-12750
https://jira.mongodb.org/browse/SERVER-9788
https://jira.mongodb.org/browse/SERVER-9526

MongoDB Documentation, Release 2.6.11

Storage

• SERVER-14198219 Std::set<pointer> and Windows Heap Allocation Reuse produces non-deterministic results

• SERVER-13975220 Creating index on collection named “system” can cause server to abort

• SERVER-13729221 Reads & Writes are blocked during data file allocation on Windows

• SERVER-13681222 mongod B stalls during background flush on Windows

Indexing SERVER-14494223 Dropping collection during active background index build on secondary triggers seg-
fault

Write Ops

• SERVER-14257224 “remove” command can cause process termination by throwing unhandled exception if pro-
filing is enabled

• SERVER-14024225 Update fails when query contains part of a DBRef and results in an insert (upsert:true)

• SERVER-13764226 debug mechanisms report incorrect nscanned / nscannedObjects for updates

Networking SERVER-13734227 Remove catch (...) from handleIncomingMsg

Geo

• SERVER-14039228 $nearSphere query with 2d index, skip, and limit returns incomplete results

• SERVER-13701229 Query using 2d index throws exception when using explain()

Text Search

• SERVER-14738230 Updates to documents with text-indexed fields may lead to incorrect entries

• SERVER-14027231 Renaming collection within same database fails if wildcard text index present

Tools

• SERVER-14212232 mongorestore may drop system users and roles

• SERVER-14048233 mongodump against mongos can’t send dump to standard output

219https://jira.mongodb.org/browse/SERVER-14198
220https://jira.mongodb.org/browse/SERVER-13975
221https://jira.mongodb.org/browse/SERVER-13729
222https://jira.mongodb.org/browse/SERVER-13681
223https://jira.mongodb.org/browse/SERVER-14494
224https://jira.mongodb.org/browse/SERVER-14257
225https://jira.mongodb.org/browse/SERVER-14024
226https://jira.mongodb.org/browse/SERVER-13764
227https://jira.mongodb.org/browse/SERVER-13734
228https://jira.mongodb.org/browse/SERVER-14039
229https://jira.mongodb.org/browse/SERVER-13701
230https://jira.mongodb.org/browse/SERVER-14738
231https://jira.mongodb.org/browse/SERVER-14027
232https://jira.mongodb.org/browse/SERVER-14212
233https://jira.mongodb.org/browse/SERVER-14048

820 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-14198
https://jira.mongodb.org/browse/SERVER-13975
https://jira.mongodb.org/browse/SERVER-13729
https://jira.mongodb.org/browse/SERVER-13681
https://jira.mongodb.org/browse/SERVER-14494
https://jira.mongodb.org/browse/SERVER-14257
https://jira.mongodb.org/browse/SERVER-14024
https://jira.mongodb.org/browse/SERVER-13764
https://jira.mongodb.org/browse/SERVER-13734
https://jira.mongodb.org/browse/SERVER-14039
https://jira.mongodb.org/browse/SERVER-13701
https://jira.mongodb.org/browse/SERVER-14738
https://jira.mongodb.org/browse/SERVER-14027
https://jira.mongodb.org/browse/SERVER-14212
https://jira.mongodb.org/browse/SERVER-14048

MongoDB Documentation, Release 2.6.11

Admin

• SERVER-14556234 Default dbpath for mongod --configsvr changes in 2.6

• SERVER-14355235 Allow dbAdmin role to manually create system.profile collections

Packaging SERVER-14283236 Parameters in installed config file are out of date

JavaScript

• SERVER-14254237 Do not store native function pointer as a property in function prototype

• SERVER-13798238 v8 garbage collection can cause crash due to independent lifetime of DBClient and Cursor
objects

• SERVER-13707239 mongo shell may crash when converting invalid regular expression

Shell

• SERVER-14341240 negative opcounter values in serverStatus

• SERVER-14107241 Querying for a document containing a value of either type Javascript or JavascriptWithScope
crashes the shell

Usability SERVER-13833242 userAdminAnyDatabase role should be able to create indexes on admin.system.users
and admin.system.roles

Logging and Diagnostics

• SERVER-12512243 Add role-based, selective audit logging.

• SERVER-14341244 negative opcounter values in serverStatus

Testing

• SERVER-14731245 plan_cache_ties.js sometimes fails

• SERVER-14147246 make index_multi.js retry on connection failure

• SERVER-13615247 sharding_rs2.js intermittent failure due to reliance on opcounters

234https://jira.mongodb.org/browse/SERVER-14556
235https://jira.mongodb.org/browse/SERVER-14355
236https://jira.mongodb.org/browse/SERVER-14283
237https://jira.mongodb.org/browse/SERVER-14254
238https://jira.mongodb.org/browse/SERVER-13798
239https://jira.mongodb.org/browse/SERVER-13707
240https://jira.mongodb.org/browse/SERVER-14341
241https://jira.mongodb.org/browse/SERVER-14107
242https://jira.mongodb.org/browse/SERVER-13833
243https://jira.mongodb.org/browse/SERVER-12512
244https://jira.mongodb.org/browse/SERVER-14341
245https://jira.mongodb.org/browse/SERVER-14731
246https://jira.mongodb.org/browse/SERVER-14147
247https://jira.mongodb.org/browse/SERVER-13615

12.1. Current Stable Release 821

https://jira.mongodb.org/browse/SERVER-14556
https://jira.mongodb.org/browse/SERVER-14355
https://jira.mongodb.org/browse/SERVER-14283
https://jira.mongodb.org/browse/SERVER-14254
https://jira.mongodb.org/browse/SERVER-13798
https://jira.mongodb.org/browse/SERVER-13707
https://jira.mongodb.org/browse/SERVER-14341
https://jira.mongodb.org/browse/SERVER-14107
https://jira.mongodb.org/browse/SERVER-13833
https://jira.mongodb.org/browse/SERVER-12512
https://jira.mongodb.org/browse/SERVER-14341
https://jira.mongodb.org/browse/SERVER-14731
https://jira.mongodb.org/browse/SERVER-14147
https://jira.mongodb.org/browse/SERVER-13615

MongoDB Documentation, Release 2.6.11

2.6.3 – Changes

• SERVER-14302248 Fixed: “Equality queries on _id with projection may return no results on sharded collec-
tions”

• SERVER-14304249 Fixed: “Equality queries on _id with projection on _id may return orphan documents on
sharded collections”

2.6.2 – Changes

Security

• SERVER-13727250 The backup (page 410) authorization role now includes privileges to run the collStats
command.

• SERVER-13804251 The built-in role restore (page 410) now has privileges on system.roles collection.

• SERVER-13612252 Fixed: “SSL-enabled server appears not to be sending the list of supported certificate issuers
to the client”

• SERVER-13753253 Fixed: “mongod may terminate if x.509 authentication certificate is invalid”

• SERVER-13945254 For replica set/sharded cluster member authentication (page 359), now matches x.509 clus-
ter certificates by attributes instead of by substring comparison.

• SERVER-13868255 Now marks V1 users as probed on databases that do not have surrogate user documents.

• SERVER-13850256 Now ensures that the user cache entry is up to date before using it to determine a user’s roles
in user management commands on mongos.

• SERVER-13588257 Fixed: “Shell prints startup warning when auth enabled”

Querying

• SERVER-13731258 Fixed: “Stack overflow when parsing deeply nested $not query”

• SERVER-13890259 Fixed: “Index bounds builder constructs invalid bounds for multiple negations joined by an
$or“

• SERVER-13752260 Verified assertion on empty $in clause and sort on second field in a compound index.

• SERVER-13337261 Re-enabled idhack for queries with projection.

• SERVER-13715262 Fixed: “Aggregation pipeline execution can fail with $or and blocking sorts”

• SERVER-13714263 Fixed: “non-top-level indexable $not triggers query planning bug”

248https://jira.mongodb.org/browse/SERVER-14302
249https://jira.mongodb.org/browse/SERVER-14304
250https://jira.mongodb.org/browse/SERVER-13727
251https://jira.mongodb.org/browse/SERVER-13804
252https://jira.mongodb.org/browse/SERVER-13612
253https://jira.mongodb.org/browse/SERVER-13753
254https://jira.mongodb.org/browse/SERVER-13945
255https://jira.mongodb.org/browse/SERVER-13868
256https://jira.mongodb.org/browse/SERVER-13850
257https://jira.mongodb.org/browse/SERVER-13588
258https://jira.mongodb.org/browse/SERVER-13731
259https://jira.mongodb.org/browse/SERVER-13890
260https://jira.mongodb.org/browse/SERVER-13752
261https://jira.mongodb.org/browse/SERVER-13337
262https://jira.mongodb.org/browse/SERVER-13715
263https://jira.mongodb.org/browse/SERVER-13714

822 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-14302
https://jira.mongodb.org/browse/SERVER-14304
https://jira.mongodb.org/browse/SERVER-13727
https://jira.mongodb.org/browse/SERVER-13804
https://jira.mongodb.org/browse/SERVER-13612
https://jira.mongodb.org/browse/SERVER-13753
https://jira.mongodb.org/browse/SERVER-13945
https://jira.mongodb.org/browse/SERVER-13868
https://jira.mongodb.org/browse/SERVER-13850
https://jira.mongodb.org/browse/SERVER-13588
https://jira.mongodb.org/browse/SERVER-13731
https://jira.mongodb.org/browse/SERVER-13890
https://jira.mongodb.org/browse/SERVER-13752
https://jira.mongodb.org/browse/SERVER-13337
https://jira.mongodb.org/browse/SERVER-13715
https://jira.mongodb.org/browse/SERVER-13714

MongoDB Documentation, Release 2.6.11

• SERVER-13769264 Fixed: “distinct command on indexed field with geo predicate fails to execute”

• SERVER-13675265 Fixed “Plans with differing performance can tie during plan ranking”

• SERVER-13899266 Fixed: “‘Whole index scan’ query solutions can use incompatible indexes, return incorrect
results”

• SERVER-13852267 Fixed “IndexBounds::endKeyInclusive not initialized by constructor”

• SERVER-14073268 planSummary no longer truncated at 255 characters

• SERVER-14174269 Fixed: “If ntoreturn is a limit (rather than batch size) extra data gets buffered during plan
ranking”

• SERVER-13789270 Some nested queries no longer trigger an assertion error

• SERVER-14064271 Added planSummary information for count command log message.

• SERVER-13960272 Queries containing $or no longer miss results if multiple clauses use the same index.

• SERVER-14180273 Fixed: “Crash with ‘and’ clause, $elemMatch, and nested $mod or regex”

• SERVER-14176274 Natural order sort specification no longer ignored if query is specified.

• SERVER-13754275 Bounds no longer combined for $or queries that can use merge sort.

Geospatial SERVER-13687276 Results of $near query on compound multi-key 2dsphere index are now sorted by
distance.

Write Operations SERVER-13802277 Insert field validation no longer stops at first Timestamp() field.

Replication

• SERVER-13993278 Fixed: “log a message when shouldChangeSyncTarget() believes a node should
change sync targets”

• SERVER-13976279 Fixed: “Cloner needs to detect failure to create collection”

Sharding

• SERVER-13616280 Resolved: “‘type 7’ (OID) error when acquiring distributed lock for first time”

• SERVER-13812281 Now catches exception thrown by getShardsForQuery for geo query.

264https://jira.mongodb.org/browse/SERVER-13769
265https://jira.mongodb.org/browse/SERVER-13675
266https://jira.mongodb.org/browse/SERVER-13899
267https://jira.mongodb.org/browse/SERVER-13852
268https://jira.mongodb.org/browse/SERVER-14073
269https://jira.mongodb.org/browse/SERVER-14174
270https://jira.mongodb.org/browse/SERVER-13789
271https://jira.mongodb.org/browse/SERVER-14064
272https://jira.mongodb.org/browse/SERVER-13960
273https://jira.mongodb.org/browse/SERVER-14180
274https://jira.mongodb.org/browse/SERVER-14176
275https://jira.mongodb.org/browse/SERVER-13754
276https://jira.mongodb.org/browse/SERVER-13687
277https://jira.mongodb.org/browse/SERVER-13802
278https://jira.mongodb.org/browse/SERVER-13993
279https://jira.mongodb.org/browse/SERVER-13976
280https://jira.mongodb.org/browse/SERVER-13616
281https://jira.mongodb.org/browse/SERVER-13812

12.1. Current Stable Release 823

https://jira.mongodb.org/browse/SERVER-13769
https://jira.mongodb.org/browse/SERVER-13675
https://jira.mongodb.org/browse/SERVER-13899
https://jira.mongodb.org/browse/SERVER-13852
https://jira.mongodb.org/browse/SERVER-14073
https://jira.mongodb.org/browse/SERVER-14174
https://jira.mongodb.org/browse/SERVER-13789
https://jira.mongodb.org/browse/SERVER-14064
https://jira.mongodb.org/browse/SERVER-13960
https://jira.mongodb.org/browse/SERVER-14180
https://jira.mongodb.org/browse/SERVER-14176
https://jira.mongodb.org/browse/SERVER-13754
https://jira.mongodb.org/browse/SERVER-13687
https://jira.mongodb.org/browse/SERVER-13802
https://jira.mongodb.org/browse/SERVER-13993
https://jira.mongodb.org/browse/SERVER-13976
https://jira.mongodb.org/browse/SERVER-13616
https://jira.mongodb.org/browse/SERVER-13812

MongoDB Documentation, Release 2.6.11

• SERVER-14138282 mongos will now correctly target multiple shards for nested field shard key predicates.

• SERVER-11332283 Fixed: “Authentication requests delayed if first config server is unresponsive”

Map/Reduce

• SERVER-14186284 Resolved: “rs.stepDown during mapReduce causes fassert in logOp”

• SERVER-13981285 Temporary map/reduce collections are now correctly replicated to secondaries.

Storage

• SERVER-13750286 convertToCapped on empty collection no longer aborts after invariant() failure.

• SERVER-14056287 Moving large collection across databases with renameCollection no longer triggers fatal
assertion.

• SERVER-14082288 Fixed: “Excessive freelist scanning for MaxBucket”

• SERVER-13737289 CollectionOptions parser now skips non-numeric for “size”/”max” elements if values non-
numeric.

Build and Packaging

• SERVER-13950290 MongoDB Enterprise now includes required dependency list.

• SERVER-13862291 Support for mongodb-org-server installation 2.6.1-1 on RHEL5 via RPM.

• SERVER-13724292 Added SCons flag to override treating all warnings as errors.

Diagnostics

• SERVER-13587293 Resolved: “ndeleted (page 307) in system.profile documents reports 1 too few
documents removed”

• SERVER-13368294 Improved exposure of timing information in currentOp.

Administration SERVER-13954295 security.javascriptEnabled option is now available in the YAML
configuration file.

282https://jira.mongodb.org/browse/SERVER-14138
283https://jira.mongodb.org/browse/SERVER-11332
284https://jira.mongodb.org/browse/SERVER-14186
285https://jira.mongodb.org/browse/SERVER-13981
286https://jira.mongodb.org/browse/SERVER-13750
287https://jira.mongodb.org/browse/SERVER-14056
288https://jira.mongodb.org/browse/SERVER-14082
289https://jira.mongodb.org/browse/SERVER-13737
290https://jira.mongodb.org/browse/SERVER-13950
291https://jira.mongodb.org/browse/SERVER-13862
292https://jira.mongodb.org/browse/SERVER-13724
293https://jira.mongodb.org/browse/SERVER-13587
294https://jira.mongodb.org/browse/SERVER-13368
295https://jira.mongodb.org/browse/SERVER-13954

824 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-14138
https://jira.mongodb.org/browse/SERVER-11332
https://jira.mongodb.org/browse/SERVER-14186
https://jira.mongodb.org/browse/SERVER-13981
https://jira.mongodb.org/browse/SERVER-13750
https://jira.mongodb.org/browse/SERVER-14056
https://jira.mongodb.org/browse/SERVER-14082
https://jira.mongodb.org/browse/SERVER-13737
https://jira.mongodb.org/browse/SERVER-13950
https://jira.mongodb.org/browse/SERVER-13862
https://jira.mongodb.org/browse/SERVER-13724
https://jira.mongodb.org/browse/SERVER-13587
https://jira.mongodb.org/browse/SERVER-13368
https://jira.mongodb.org/browse/SERVER-13954

MongoDB Documentation, Release 2.6.11

Tools

• SERVER-10464296 mongodump can now query oplog.$main and oplog.rs when using --dbpath.

• SERVER-13760297 mongoexport can now handle large timestamps on Windows.

Shell

• SERVER-13865298 Shell now returns correct WriteResult for compatibility-mode upsert with non-OID
equality predicate on _id field.

• SERVER-13037299 Fixed typo in error message for “compatibility mode”.

Internal Code

• SERVER-13794300 Fixed: “Unused snapshot history consuming significant heap space”

• SERVER-13446301 Removed Solaris builds dependency on ILLUMOS libc.

• SERVER-14092302 MongoDB upgrade 2.4 to 2.6 check no longer returns an error in internal collections.

• SERVER-14000303 Added new lsb file location for Debian 7.1

Testing

• SERVER-13723304 Stabilized tags.js after a change in its timeout when it was ported to use write commands.

• SERVER-13494305 Fixed: “setup_multiversion_mongodb.py doesn’t download 2.4.10 because of
non-numeric version sorting”

• SERVER-13603306 Fixed: “Test suites with options tests fail when run with --nopreallocj“

• SERVER-13948307 Fixed: “awaitReplication() failures related to getting a config version from master
causing test failures”

• SERVER-13839308 Fixed sync2.js failure.

• SERVER-13972309 Fixed connections_opened.js failure.

• SERVER-13712310 Reduced peak disk usage of test suites.

• SERVER-14249311 Added tests for querying oplog via mongodump using --dbpath

• SERVER-10462312 Fixed: “Windows file locking related buildbot failures”

296https://jira.mongodb.org/browse/SERVER-10464
297https://jira.mongodb.org/browse/SERVER-13760
298https://jira.mongodb.org/browse/SERVER-13865
299https://jira.mongodb.org/browse/SERVER-13037
300https://jira.mongodb.org/browse/SERVER-13794
301https://jira.mongodb.org/browse/SERVER-13446
302https://jira.mongodb.org/browse/SERVER-14092
303https://jira.mongodb.org/browse/SERVER-14000
304https://jira.mongodb.org/browse/SERVER-13723
305https://jira.mongodb.org/browse/SERVER-13494
306https://jira.mongodb.org/browse/SERVER-13603
307https://jira.mongodb.org/browse/SERVER-13948
308https://jira.mongodb.org/browse/SERVER-13839
309https://jira.mongodb.org/browse/SERVER-13972
310https://jira.mongodb.org/browse/SERVER-13712
311https://jira.mongodb.org/browse/SERVER-14249
312https://jira.mongodb.org/browse/SERVER-10462

12.1. Current Stable Release 825

https://jira.mongodb.org/browse/SERVER-10464
https://jira.mongodb.org/browse/SERVER-13760
https://jira.mongodb.org/browse/SERVER-13865
https://jira.mongodb.org/browse/SERVER-13037
https://jira.mongodb.org/browse/SERVER-13794
https://jira.mongodb.org/browse/SERVER-13446
https://jira.mongodb.org/browse/SERVER-14092
https://jira.mongodb.org/browse/SERVER-14000
https://jira.mongodb.org/browse/SERVER-13723
https://jira.mongodb.org/browse/SERVER-13494
https://jira.mongodb.org/browse/SERVER-13603
https://jira.mongodb.org/browse/SERVER-13948
https://jira.mongodb.org/browse/SERVER-13839
https://jira.mongodb.org/browse/SERVER-13972
https://jira.mongodb.org/browse/SERVER-13712
https://jira.mongodb.org/browse/SERVER-14249
https://jira.mongodb.org/browse/SERVER-10462

MongoDB Documentation, Release 2.6.11

2.6.1 – Changes

Stability SERVER-13739313 Repair database failure can delete database files

Build and Packaging

• SERVER-13287314 Addition of debug symbols has doubled compile time

• SERVER-13563315 Upgrading from 2.4.x to 2.6.0 via yum clobbers configuration file

• SERVER-13691316 yum and apt “stable” repositories contain release candidate 2.6.1-rc0 packages

• SERVER-13515317 Cannot install MongoDB as a service on Windows

Querying

• SERVER-13066318 Negations over multikey fields do not use index

• SERVER-13495319 Concurrent GETMORE and KILLCURSORS operations can cause race condition and server
crash

• SERVER-13503320 The $where operator should not be allowed under $elemMatch

• SERVER-13537321 Large skip and and limit values can cause crash in blocking sort stage

• SERVER-13557322 Incorrect negation of $elemMatch value in 2.6

• SERVER-13562323 Queries that use tailable cursors do not stream results if skip() is applied

• SERVER-13566324 Using the OplogReplay flag with extra predicates can yield incorrect results

• SERVER-13611325 Missing sort order for compound index leads to unnecessary in-memory sort

• SERVER-13618326 Optimization for sorted $in queries not applied to reverse sort order

• SERVER-13661327 Increase the maximum allowed depth of query objects

• SERVER-13664328 Query with $elemMatch using a compound multikey index can generate incorrect results

• SERVER-13677329 Query planner should traverse through $all while handling $elemMatch object predicates

• SERVER-13766330 Dropping index or collection while $or query is yielding triggers fatal assertion

313https://jira.mongodb.org/browse/SERVER-13739
314https://jira.mongodb.org/browse/SERVER-13287
315https://jira.mongodb.org/browse/SERVER-13563
316https://jira.mongodb.org/browse/SERVER-13691
317https://jira.mongodb.org/browse/SERVER-13515
318https://jira.mongodb.org/browse/SERVER-13066
319https://jira.mongodb.org/browse/SERVER-13495
320https://jira.mongodb.org/browse/SERVER-13503
321https://jira.mongodb.org/browse/SERVER-13537
322https://jira.mongodb.org/browse/SERVER-13557
323https://jira.mongodb.org/browse/SERVER-13562
324https://jira.mongodb.org/browse/SERVER-13566
325https://jira.mongodb.org/browse/SERVER-13611
326https://jira.mongodb.org/browse/SERVER-13618
327https://jira.mongodb.org/browse/SERVER-13661
328https://jira.mongodb.org/browse/SERVER-13664
329https://jira.mongodb.org/browse/SERVER-13677
330https://jira.mongodb.org/browse/SERVER-13766

826 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-13739
https://jira.mongodb.org/browse/SERVER-13287
https://jira.mongodb.org/browse/SERVER-13563
https://jira.mongodb.org/browse/SERVER-13691
https://jira.mongodb.org/browse/SERVER-13515
https://jira.mongodb.org/browse/SERVER-13066
https://jira.mongodb.org/browse/SERVER-13495
https://jira.mongodb.org/browse/SERVER-13503
https://jira.mongodb.org/browse/SERVER-13537
https://jira.mongodb.org/browse/SERVER-13557
https://jira.mongodb.org/browse/SERVER-13562
https://jira.mongodb.org/browse/SERVER-13566
https://jira.mongodb.org/browse/SERVER-13611
https://jira.mongodb.org/browse/SERVER-13618
https://jira.mongodb.org/browse/SERVER-13661
https://jira.mongodb.org/browse/SERVER-13664
https://jira.mongodb.org/browse/SERVER-13677
https://jira.mongodb.org/browse/SERVER-13766

MongoDB Documentation, Release 2.6.11

Geospatial

• SERVER-13666331 $near queries with out-of-bounds points in legacy format can lead to crashes

• SERVER-13540332 The geoNear command no longer returns distance in radians for legacy point

• SERVER-13486333: The geoNear command can create too large BSON objects for aggregation.

Replication

• SERVER-13500334 Changing replica set configuration can crash running members

• SERVER-13589335 Background index builds from a 2.6.0 primary fail to complete on 2.4.x secondaries

• SERVER-13620336 Replicated data definition commands will fail on secondaries during background index build

• SERVER-13496337 Creating index with same name but different spec in mixed version replicaset can abort
replication

Sharding

• SERVER-12638338 Initial sharding with hashed shard key can result in duplicate split points

• SERVER-13518339 The _id field is no longer automatically generated by mongos when missing

• SERVER-13777340 Migrated ranges waiting for deletion do not report cursors still open

Security

• SERVER-9358341 Log rotation can overwrite previous log files

• SERVER-13644342 Sensitive credentials in startup options are not redacted and may be exposed

• SERVER-13441343 Inconsistent error handling in user management shell helpers

Write Operations

• SERVER-13466344 Error message in collection creation failure contains incorrect namespace

• SERVER-13499345 Yield policy for batch-inserts should be the same as for batch-updates/deletes

• SERVER-13516346 Array updates on documents with more than 128 BSON elements may crash mongod

331https://jira.mongodb.org/browse/SERVER-13666
332https://jira.mongodb.org/browse/SERVER-13540
333https://jira.mongodb.org/browse/SERVER-13486
334https://jira.mongodb.org/browse/SERVER-13500
335https://jira.mongodb.org/browse/SERVER-13589
336https://jira.mongodb.org/browse/SERVER-13620
337https://jira.mongodb.org/browse/SERVER-13496
338https://jira.mongodb.org/browse/SERVER-12638
339https://jira.mongodb.org/browse/SERVER-13518
340https://jira.mongodb.org/browse/SERVER-13777
341https://jira.mongodb.org/browse/SERVER-9358
342https://jira.mongodb.org/browse/SERVER-13644
343https://jira.mongodb.org/browse/SERVER-13441
344https://jira.mongodb.org/browse/SERVER-13466
345https://jira.mongodb.org/browse/SERVER-13499
346https://jira.mongodb.org/browse/SERVER-13516

12.1. Current Stable Release 827

https://jira.mongodb.org/browse/SERVER-13666
https://jira.mongodb.org/browse/SERVER-13540
https://jira.mongodb.org/browse/SERVER-13486
https://jira.mongodb.org/browse/SERVER-13500
https://jira.mongodb.org/browse/SERVER-13589
https://jira.mongodb.org/browse/SERVER-13620
https://jira.mongodb.org/browse/SERVER-13496
https://jira.mongodb.org/browse/SERVER-12638
https://jira.mongodb.org/browse/SERVER-13518
https://jira.mongodb.org/browse/SERVER-13777
https://jira.mongodb.org/browse/SERVER-9358
https://jira.mongodb.org/browse/SERVER-13644
https://jira.mongodb.org/browse/SERVER-13441
https://jira.mongodb.org/browse/SERVER-13466
https://jira.mongodb.org/browse/SERVER-13499
https://jira.mongodb.org/browse/SERVER-13516

MongoDB Documentation, Release 2.6.11

2.6.11 – Aug 12, 2015

• Improvements to query plan ranking SERVER-17815347

• Improved ability for mongos to detect replica set failover and correctly route read operations to the new primary
SERVER-18280348

• Improved reporting of queries in getMore operation in db.currentOp() and the database profiler
SERVER-16265349

• All issues closed in 2.6.11350

2.6.10 – May 19, 2015

• Improve user cache invalidation enforcement on mongos SERVER-11980351

• Provide correct rollbacks for collection creation SERVER-18211352

• Allow user inserts into the system.profile collection SERVER-18211353

• Fix to query system to ensure non-negation predicates get chosen over negation predicates for multikey index
bounds construction SERVER-18364354

• All issues closed in 2.6.10355

2.6.9 – March 24, 2015

• Resolve connection handling related crash with mongos instances SERVER-17441356

• Add server parameter to configure idle cursor timeout SERVER-8188357

• Remove duplicated (orphan) documents from aggregation pipelines with _id queries in sharded clusters
SERVER-17426358

• Fixed crash in geoNear queries with multiple 2dsphere indexes SERVER-14723359

• All issues closed in 2.6.9360

2.6.8 – February 25, 2015

• Add listCollections command functionality to 2.6 shell and client SERVER-17087361

• copydb/clone commands can crash the server if a primary steps down SERVER-16599362

347https://jira.mongodb.org/browse/SERVER-17815
348https://jira.mongodb.org/browse/SERVER-18280
349https://jira.mongodb.org/browse/SERVER-16265
350https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.11%22%20AND%20project%20%3D%20SERVER
351https://jira.mongodb.org/browse/SERVER-11980
352https://jira.mongodb.org/browse/SERVER-18211
353https://jira.mongodb.org/browse/SERVER-18211
354https://jira.mongodb.org/browse/SERVER-18364
355https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.10%22%20AND%20project%20%3D%20SERVER
356https://jira.mongodb.org/browse/SERVER-17441
357https://jira.mongodb.org/browse/SERVER-8188
358https://jira.mongodb.org/browse/SERVER-17426
359https://jira.mongodb.org/browse/SERVER-14723
360https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.9%22%20AND%20project%20%3D%20SERVER
361https://jira.mongodb.org/browse/SERVER-17087
362https://jira.mongodb.org/browse/SERVER-16599

828 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-17815
https://jira.mongodb.org/browse/SERVER-18280
https://jira.mongodb.org/browse/SERVER-16265
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.11%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-11980
https://jira.mongodb.org/browse/SERVER-18211
https://jira.mongodb.org/browse/SERVER-18211
https://jira.mongodb.org/browse/SERVER-18364
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.10%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-17441
https://jira.mongodb.org/browse/SERVER-8188
https://jira.mongodb.org/browse/SERVER-17426
https://jira.mongodb.org/browse/SERVER-14723
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.9%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-17087
https://jira.mongodb.org/browse/SERVER-16599

MongoDB Documentation, Release 2.6.11

• Secondary fasserts trying to replicate an index SERVER-16274363

• Query optimizer should always use equality predicate over unique index when possible SERVER-15802364

• All issues closed in 2.6.8365

2.6.7 – January 13, 2015

• Decreased mongos memory footprint when shards have several tags SERVER-16683366

• Removed check for shard version if the primary server is down SERVER-16237367

• Fixed: /etc/init.d/mongod startup script failure with dirname message SERVER-16081368

• Fixed: mongos can cause shards to hit the in-memory sort limit by requesting more results than needed
SERVER-14306369

• All issues closed in 2.6.7370

2.6.6 – December 09, 2014

• Fixed: Evaluating candidate query plans with concurrent writes on same collection may crash mongod
SERVER-15580371

• Fixed: 2.6 mongod crashes with segfault when added to a 2.8 replica set with 12 or more members SERVER-
16107372

• Fixed: $regex, $in and $sort with index returns too many results SERVER-15696373

• Change: moveChunk will fail if there is data on the target shard and a required index does not exist. SERVER-
12472374

• Primary should abort if encountered problems writing to the oplog SERVER-12058375

• All issues closed in 2.6.6376

2.6.5 – October 07, 2014

• $rename now uses correct dotted source paths SERVER-15029377

• Partially written journal last section does not affect recovery SERVER-15111378

• Explicitly zero .ns files on creation SERVER-15369379

363https://jira.mongodb.org/browse/SERVER-16274
364https://jira.mongodb.org/browse/SERVER-15802
365https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.8%22%20AND%20project%20%3D%20SERVER
366https://jira.mongodb.org/browse/SERVER-16683
367https://jira.mongodb.org/browse/SERVER-16237
368https://jira.mongodb.org/browse/SERVER-16081
369https://jira.mongodb.org/browse/SERVER-14306
370https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.7%22%20AND%20project%20%3D%20SERVER
371https://jira.mongodb.org/browse/SERVER-15580
372https://jira.mongodb.org/browse/SERVER-16107
373https://jira.mongodb.org/browse/SERVER-15696
374https://jira.mongodb.org/browse/SERVER-12472
375https://jira.mongodb.org/browse/SERVER-12058
376https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.6%22%20AND%20project%20%3D%20SERVER
377https://jira.mongodb.org/browse/SERVER-15029
378https://jira.mongodb.org/browse/SERVER-15111
379https://jira.mongodb.org/browse/SERVER-15369

12.1. Current Stable Release 829

https://jira.mongodb.org/browse/SERVER-16274
https://jira.mongodb.org/browse/SERVER-15802
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.8%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-16683
https://jira.mongodb.org/browse/SERVER-16237
https://jira.mongodb.org/browse/SERVER-16081
https://jira.mongodb.org/browse/SERVER-14306
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.7%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-15580
https://jira.mongodb.org/browse/SERVER-16107
https://jira.mongodb.org/browse/SERVER-16107
https://jira.mongodb.org/browse/SERVER-15696
https://jira.mongodb.org/browse/SERVER-12472
https://jira.mongodb.org/browse/SERVER-12472
https://jira.mongodb.org/browse/SERVER-12058
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.6%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-15029
https://jira.mongodb.org/browse/SERVER-15111
https://jira.mongodb.org/browse/SERVER-15369

MongoDB Documentation, Release 2.6.11

• Plan ranker will no longer favor intersection plans if predicate generates empty range index scan SERVER-
14961380

• Generate Community and Enterprise packages for SUSE 11 SERVER-10642381

• All issues closed in 2.6.5382

2.6.4 – August 11, 2014

• Fix for text index where under specific circumstances, in-place updates to a text-indexed field may result in
incorrect/incomplete results SERVER-14738383

• Check the size of the split point before performing a manual split chunk operation SERVER-14431384

• Ensure read preferences are re-evaluated by drawing secondary connections from a global pool and releasing
back to the pool at the end of a query/command SERVER-9788385

• Allow read from secondaries when both audit and authorization are enabled in a sharded cluster SERVER-
14170386

• All issues closed in 2.6.4387

2.6.3 – June 19, 2014

• Equality queries on _id with projection may return no results on sharded collections SERVER-14302388.

• Equality queries on _idwith projection on _idmay return orphan documents on sharded collections SERVER-
14304389.

• All issues closed in 2.6.3390.

2.6.2 – June 16, 2014

• Query plans with differing performance can tie during plan ranking SERVER-13675391.

• mongod may terminate if x.509 authentication certificate is invalid SERVER-13753392.

• Temporary map/reduce collections are incorrectly replicated to secondaries SERVER-13981393.

• mongos incorrectly targets multiple shards for nested field shard key predicates SERVER-14138394.

• rs.stepDown() during mapReduce causes fassert when writing to op log SERVER-14186395.

380https://jira.mongodb.org/browse/SERVER-14961
381https://jira.mongodb.org/browse/SERVER-10642
382https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.5%22%20AND%20project%20%3D%20SERVER
383https://jira.mongodb.org/browse/SERVER-14738
384https://jira.mongodb.org/browse/SERVER-14431
385https://jira.mongodb.org/browse/SERVER-9788
386https://jira.mongodb.org/browse/SERVER-14170
387https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.4%22%20AND%20project%20%3D%20SERVER
388https://jira.mongodb.org/browse/SERVER-14302
389https://jira.mongodb.org/browse/SERVER-14304
390https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.3%22%20AND%20project%20%3D%20SERVER
391https://jira.mongodb.org/browse/SERVER-13675
392https://jira.mongodb.org/browse/SERVER-13753
393https://jira.mongodb.org/browse/SERVER-13981
394https://jira.mongodb.org/browse/SERVER-14138
395https://jira.mongodb.org/browse/SERVER-14186

830 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-14961
https://jira.mongodb.org/browse/SERVER-14961
https://jira.mongodb.org/browse/SERVER-10642
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.5%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-14738
https://jira.mongodb.org/browse/SERVER-14431
https://jira.mongodb.org/browse/SERVER-9788
https://jira.mongodb.org/browse/SERVER-14170
https://jira.mongodb.org/browse/SERVER-14170
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.4%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-14302
https://jira.mongodb.org/browse/SERVER-14304
https://jira.mongodb.org/browse/SERVER-14304
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.3%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-13675
https://jira.mongodb.org/browse/SERVER-13753
https://jira.mongodb.org/browse/SERVER-13981
https://jira.mongodb.org/browse/SERVER-14138
https://jira.mongodb.org/browse/SERVER-14186

MongoDB Documentation, Release 2.6.11

• All issues closed in 2.6.2396.

2.6.1 – May 5, 2014

• Fix to install MongoDB service on Windows with the --install option SERVER-13515397.

• Allow direct upgrade from 2.4.x to 2.6.0 via yum SERVER-13563398.

• Fix issues with background index builds on secondaries: SERVER-13589399 and SERVER-13620400.

• Redact credential information passed as startup options SERVER-13644401.

• 2.6.1 Changelog (page 826).

• All issues closed in 2.6.1402.

Major Changes

The following changes in MongoDB affect both the standard and Enterprise editions:

Aggregation Enhancements

The aggregation pipeline adds the ability to return result sets of any size, either by returning a cursor or writing the
output to a collection. Additionally, the aggregation pipeline supports variables and adds new operations to handle sets
and redact data.

• The db.collection.aggregate() now returns a cursor, which enables the aggregation pipeline to return
result sets of any size.

• Aggregation pipelines now support an explain operation to aid analysis of aggregation operations.

• Aggregation can now use a more efficient external-disk-based sorting process.

• New pipeline stages:

– $out stage to output to a collection.

– $redact stage to allow additional control to accessing the data.

• New or modified operators:

– set expression operators.

– $let and $map operators to allow for the use of variables.

– $literal operator and $size operator.

– $cond expression now accepts either an object or an array.

396https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.2%22%20AND%20project%20%3D%20SERVER
397https://jira.mongodb.org/browse/SERVER-13515
398https://jira.mongodb.org/browse/SERVER-13563
399https://jira.mongodb.org/browse/SERVER-13589
400https://jira.mongodb.org/browse/SERVER-13620
401https://jira.mongodb.org/browse/SERVER-13644
402https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.1%22%20AND%20project%20%3D%20SERVER

12.1. Current Stable Release 831

https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.2%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-13515
https://jira.mongodb.org/browse/SERVER-13563
https://jira.mongodb.org/browse/SERVER-13589
https://jira.mongodb.org/browse/SERVER-13620
https://jira.mongodb.org/browse/SERVER-13644
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.6.1%22%20AND%20project%20%3D%20SERVER

MongoDB Documentation, Release 2.6.11

Text Search Integration

Text search is now enabled by default, and the query system, including the aggregation pipeline $match stage,
includes the $text operator, which resolves text-search queries.

MongoDB 2.6 includes an updated text index (page 501) format and deprecates the text command.

Insert and Update Improvements

Improvements to the update and insert systems include additional operations and improvements that increase consis-
tency of modified data.

• MongoDB preserves the order of the document fields following write operations except for the following cases:

– The _id field is always the first field in the document.

– Updates that include renaming of field names may result in the reordering of fields in the document.

• New or enhanced update operators:

– $bit operator supports bitwise xor operation.

– $min and $max operators that perform conditional update depending on the relative size of the specified
value and the current value of a field.

– $push operator has enhanced support for the $sort, $slice, and $each modifiers and supports a new
$position modifier.

– $currentDate operator to set the value of a field to the current date.

• The $mul operator for multiplicative increments for insert and update operations.

See also:

Update Operator Syntax Validation (page 842)

New Write Operation Protocol

A new write protocol integrates write operations with write concerns. The protocol also provides improved support
for bulk operations.

MongoDB 2.6 adds the write commands insert, update, and delete, which provide the basis for the improved
bulk insert. All officially supported MongoDB drivers support the new write commands.

The mongo shell now includes methods to perform bulk-write operations. See Bulk() for more information.

See also:

Write Method Acknowledgements (page 838)

MSI Package for MongoDB Available for Windows

MongoDB now distributes MSI packages for Microsoft Windows. This is the recommended method for MongoDB
installation under Windows.

832 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

Security Improvements

MongoDB 2.6 enhances support for secure deployments through improved TLS/SSL support, x.509-based authenti-
cation, an improved authorization system with more granular controls, as well as centralized credential storage, and
improved user management tools.

Specifically these changes include:

• A new authorization model (page 320) that provides the ability to create custom User-Defined Roles (page 321)
and the ability to specify user privileges at a collection-level granularity.

• Global user management, which stores all user and user-defined role data in the admin database and provides
a new set of commands for managing users and roles.

• x.509 certificate authentication for client authentication (page 357) as well as for internal authentication
(page 359) of sharded and/or replica set cluster members. x.509 authentication is only available for deploy-
ments using TLS/SSL.

• Enhanced TLS/SSL Support:

– Rolling upgrades of clusters (page 346) to use TLS/SSL.

– MongoDB Tools (page 345) support connections to mongod and mongos instances using TLS/SSL con-
nections.

– Prompt for passphrase (page 341) by mongod or mongos at startup.

– Require the use of strong TLS/SSL ciphers, with a minimum 128-bit key length for all connections. The
strong-cipher requirement prevents an old or malicious client from forcing use of a weak cipher.

• MongoDB disables the http interface by default, limiting network exposure (page 322). To enable the interface,
see enabled.

See also:

New Authorization Model (page 840), TLS/SSL Certificate Hostname Validation (page 840), and Security Checklist
(page 431).

Query Engine Improvements

• MongoDB can now use index intersection (page 512) to fulfill queries supported by more than one index.

• Index Filters (page 73) to limit which indexes can become the winning plan for a query.

• http://docs.mongodb.org/manual/reference/method/js-plan-cache methods to view
and clear the query plans (page 72) cached by the query optimizer.

• MongoDB can now use count() with hint(). See count() for details.

Improvements

Geospatial Enhancements

• 2dsphere indexes version 2 (page 497).

• Support for MultiPoint (page 560), MultiLineString (page 560), MultiPolygon (page 561), and GeometryCollec-
tion (page 561).

• Support for geospatial query clauses in $or expressions.

12.1. Current Stable Release 833

MongoDB Documentation, Release 2.6.11

See also:

2dsphere Index Version 2 (page 841), $maxDistance Changes (page 843), Deprecated $uniqueDocs (page 844),
Stronger Validation of Geospatial Queries (page 844)

Index Build Enhancements

• Background index build (page 511) allowed on secondaries. If you initiate a background index build on a
primary, the secondaries will replicate the index build in the background.

• Automatic rebuild of interrupted index builds after a restart.

– If a standalone or a primary instance terminates during an index build without a clean shutdown, mongod
now restarts the index build when the instance restarts. If the instance shuts down cleanly or if a user kills
the index build, the interrupted index builds do not automatically restart upon the restart of the server.

– If a secondary instance terminates during an index build, the mongod instance will now restart the inter-
rupted index build when the instance restarts.

To disable this behavior, use the --noIndexBuildRetry command-line option.

• ensureIndex() now wraps a new createIndex command.

• The dropDups option to ensureIndex() and createIndex is deprecated.

See also:

Enforce Index Key Length Limit (page 837)

Enhanced Sharding and Replication Administration

• New cleanupOrphaned command to remove orphaned documents from a shard.

• New mergeChunks command to combine contiguous chunks located on a single shard. See mergeChunks
and Merge Chunks in a Sharded Cluster (page 740).

• New rs.printReplicationInfo() and rs.printSlaveReplicationInfo() methods to pro-
vide a formatted report of the status of a replica set from the perspective of the primary and the secondary,
respectively.

Configuration Options YAML File Format

MongoDB 2.6 supports a YAML-based configuration file format in addition to the previous configuration file format.
See the documentation of the Configuration File for more information.

Operational Changes

Storage

usePowerOf2Sizes is now the default allocation strategy for all new collections. The new allocation strategy uses
more storage relative to total document size but results in lower levels of storage fragmentation and more predictable
storage capacity planning over time.

To use the previous exact-fit allocation strategy:

• For a specific collection, use collMod with usePowerOf2Sizes set to false.

834 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

• For all new collections on an entire mongod instance, set newCollectionsUsePowerOf2Sizes to
false.

New collections include those: created during initial sync (page 598), as well as those created by the
mongorestore and mongoimport tools, by running mongod with the --repair option, as well as the
restoreDatabase command.

See Storage (page 94) for more information about MongoDB’s storage system.

Networking

• Removed upward limit for the maxIncomingConnections for mongod and mongos. Previous versions
capped the maximum possible maxIncomingConnections setting at 20,000 connections.

• Connection pools for a mongos instance may be used by multiple MongoDB servers. This can reduce the
number of connections needed for high-volume workloads and reduce resource consumption in sharded clusters.

• The C++ driver now monitors replica set health with the isMaster command instead of
replSetGetStatus. This allows the C++ driver to support systems that require authentication.

• New cursor.maxTimeMS() and corresponding maxTimeMS option for commands to specify a time limit.

Tool Improvements

• mongo shell supports a global /etc/mongorc.js.

• All MongoDB executable files now support the --quiet option to suppress all logging output except
for error messages.

• mongoimport uses the input filename, without the file extension if any, as the collection name if run without
the -c or --collection specification.

• mongoexport can now constrain export data using --skip and --limit, as well as order the documents
in an export using the --sort option.

• mongostat can support the use of --rowcount (-n) with the --discover option to produce the specified
number of output lines.

• Add strict mode representation for data_numberlong for use by mongoexport and mongoimport.

MongoDB Enterprise Features

The following changes are specific to MongoDB Enterprise Editions:

MongoDB Enterprise for Windows

MongoDB Enterprise for Windows (page 44) is now available. It includes support for Kerberos, SSL, and SNMP.

MongoDB Enterprise for Windows does not include LDAP support for authentication. However, MongoDB Enterprise
for Linux supports using LDAP authentication with an ActiveDirectory server.

MongoDB Enterprise for Windows includes OpenSSL version 1.0.1g.

12.1. Current Stable Release 835

MongoDB Documentation, Release 2.6.11

Auditing

MongoDB Enterprise adds auditing (page 325) capability for mongod and mongos instances. See Auditing
(page 325) for details.

LDAP Support for Authentication

MongoDB Enterprise provides support for proxy authentication of users. This allows administrators to configure a
MongoDB cluster to authenticate users by proxying authentication requests to a specified Lightweight Directory Ac-
cess Protocol (LDAP) service. See Authenticate Using SASL and LDAP with OpenLDAP (page 366) and Authenticate
Using SASL and LDAP with ActiveDirectory (page 363) for details.

MongoDB Enterprise for Windows does not include LDAP support for authentication. However, MongoDB Enterprise
for Linux supports using LDAP authentication with an ActiveDirectory server.

MongoDB does not support LDAP authentication in mixed sharded cluster deployments that contain both version 2.4
and version 2.6 shards. See Upgrade MongoDB to 2.6 (page 847) for upgrade instructions.

Expanded SNMP Support

MongoDB Enterprise has greatly expanded its SNMP support to provide SNMP access to nearly the full range of
metrics provided by db.serverStatus().

See also:

SNMP Changes (page 841)

Additional Information

Changes Affecting Compatibility

Compatibility Changes in MongoDB 2.6

On this page

• Index Changes (page 837)
• Write Method Acknowledgements (page 838)
• db.collection.aggregate() Change (page 839)
• Write Concern Validation (page 840)
• Security Changes (page 840)
• 2dsphere Index Version 2 (page 841)
• Log Messages (page 841)
• Package Configuration Changes (page 841)
• Remove Method Signature Change (page 842)
• Update Operator Syntax Validation (page 842)
• Updates Enforce Field Name Restrictions (page 842)
• Query and Sort Changes (page 842)
• Replica Set/Sharded Cluster Validation (page 846)
• Time Format Changes (page 846)
• Other Resources (page 846)

The following 2.6 changes can affect the compatibility with older versions of MongoDB. See Release Notes for
MongoDB 2.6 (page 805) for the full list of the 2.6 changes.

836 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

Index Changes

Enforce Index Key Length Limit

Description MongoDB 2.6 implements a stronger enforcement of the limit on index key.

Creating indexes will error if an index key in an existing document exceeds the limit:

• db.collection.ensureIndex(), db.collection.reIndex(), compact, and
repairDatabase will error and not create the index. Previous versions of MongoDB would
create the index but not index such documents.

• Because db.collection.reIndex(), compact, and repairDatabase drop all the indexes
from a collection and then recreate them sequentially, the error from the index key limit prevents these oper-
ations from rebuilding any remaining indexes for the collection and, in the case of the repairDatabase
command, from continuing with the remainder of the process.

Inserts will error:

• db.collection.insert() and other operations that perform inserts (e.g.
db.collection.save() and db.collection.update() with upsert that result in in-
serts) will fail to insert if the new document has an indexed field whose corresponding index entry exceeds
the limit. Previous versions of MongoDB would insert but not index such documents.

• mongorestore and mongoimport will fail to insert if the new document has an indexed field whose
corresponding index entry exceeds the limit.

Updates will error:

• db.collection.update() and db.collection.save() operations on an indexed field will
error if the updated value causes the index entry to exceed the limit.

• If an existing document contains an indexed field whose index entry exceeds the limit, updates on other
fields that result in the relocation of a document on disk will error.

Chunk Migration will fail:

• Migrations will fail for a chunk that has a document with an indexed field whose index entry exceeds the
limit.

• If left unfixed, the chunk will repeatedly fail migration, effectively ceasing chunk balancing for that col-
lection. Or, if chunk splits occur in response to the migration failures, this response would lead to unnec-
essarily large number of chunks and an overly large config databases.

Secondary members of replica sets will warn:

• Secondaries will continue to replicate documents with an indexed field whose corresponding index entry
exceeds the limit on initial sync but will print warnings in the logs.

• Secondaries allow index build and rebuild operations on a collection that contains an indexed field whose
corresponding index entry exceeds the limit but with warnings in the logs.

• With mixed version replica sets where the secondaries are version 2.6 and the primary is version 2.4,
secondaries will replicate documents inserted or updated on the 2.4 primary, but will print error messages
in the log if the documents contain an indexed field whose corresponding index entry exceeds the limit.

Solution Run db.upgradeCheckAllDBs() to find current keys that violate this limit and correct as appropriate.
Preferably, run the test before upgrading; i.e. connect the 2.6 mongo shell to your MongoDB 2.4 database and
run the method.

If you have an existing data set and want to disable the default index key length validation so that you can upgrade
before resolving these indexing issues, use the failIndexKeyTooLong parameter.

12.1. Current Stable Release 837

MongoDB Documentation, Release 2.6.11

Index Specifications Validate Field Names

Description In MongoDB 2.6, create and re-index operations fail when the index key refers to an empty field, e.g.
"a..b" : 1 or the field name starts with a dollar sign ($).

• db.collection.ensureIndex() will not create a new index with an invalid or empty key name.

• db.collection.reIndex(), compact, and repairDatabase will error if an index exists with
an invalid or empty key name.

• Chunk migration will fail if an index exists with an invalid or empty key name.

Previous versions of MongoDB allow the index.

Solution Run db.upgradeCheckAllDBs() to find current keys that violate this limit and correct as appropriate.
Preferably, run the test before upgrading; i.e. connect the 2.6 mongo shell to your MongoDB 2.4 database and
run the method.

ensureIndex and Existing Indexes

Description db.collection.ensureIndex() now errors:

• if you try to create an existing index but with different options; e.g. in the following example, the second
db.collection.ensureIndex() will error.

db.mycollection.ensureIndex({ x: 1 })
db.mycollection.ensureIndex({ x: 1 }, { unique: 1 })

• if you specify an index name that already exists but the key specifications differ; e.g. in the following
example, the second db.collection.ensureIndex() will error.

db.mycollection.ensureIndex({ a: 1 }, { name: "myIdx" })
db.mycollection.ensureIndex({ z: 1 }, { name: "myIdx" })

Previous versions did not create the index but did not error.

Write Method Acknowledgements

Description The mongo shell write methods db.collection.insert(), db.collection.update(),
db.collection.save() and db.collection.remove() now integrate the write concern (page 82)
directly into the method rather than with a separate getLastError command to provide safe writes (page 82)
whether run interactively in the mongo shell or non-interactively in a script. In previous versions, these methods
exhibited a “fire-and-forget” behavior. 403

• Existing scripts for the mongo shell that used these methods will now observe safe writes which take longer
than the previous “fire-and-forget” behavior.

• The write methods now return a WriteResult object that contains the results of the operation, in-
cluding any write errors and write concern errors, and obviates the need to call getLastError com-
mand to get the status of the results. See db.collection.insert(), db.collection.update(),
db.collection.save() and db.collection.remove() for details.

• In sharded environments, mongos no longer supports “fire-and-forget” behavior. This limits throughput when
writing data to sharded clusters.

403 In previous versions, when using the mongo shell interactively, the mongo shell automatically called the getLastError command after a
write method to provide “safe writes”. Scripts, however, would observe “fire-and-forget” behavior in previous versions unless the scripts included
an explicit call to the getLastError command after a write method.

838 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

Solution Scripts that used these mongo shell methods for bulk write operations with “fire-and-forget” behavior should
use the Bulk() methods.

In sharded environments, applications using any driver or mongo shell should use Bulk()methods for optimal
performance when inserting or modifying groups of documents.

For example, instead of:

for (var i = 1; i <= 1000000; i++) {
db.test.insert({ x : i });

}

In MongoDB 2.6, replace with Bulk() operation:

var bulk = db.test.initializeUnorderedBulkOp();

for (var i = 1; i <= 1000000; i++) {
bulk.insert({ x : i});

}

bulk.execute({ w: 1 });

Bulk method returns a BulkWriteResult object that contains the result of the operation.

See also:

New Write Operation Protocol (page 832), Bulk(), Bulk.execute(),
db.collection.initializeUnorderedBulkOp(), db.collection.initializeOrderedBulkOp()

db.collection.aggregate() Change

Description The db.collection.aggregate() method in the mongo shell defaults to returning a cursor to
the results set. This change enables the aggregation pipeline to return result sets of any size and requires cursor
iteration to access the result set. For example:

var myCursor = db.orders.aggregate([
{
$group: {

_id: "$cust_id",
total: { $sum: "$price" }

}
}

]);

myCursor.forEach(function(x) { printjson (x); });

Previous versions returned a single document with a field results that contained an array of the result set,
subject to the BSON Document size limit. Accessing the result set in the previous versions of MongoDB required
accessing the results field and iterating the array. For example:

var returnedDoc = db.orders.aggregate([
{
$group: {

_id: "$cust_id",
total: { $sum: "$price" }

}
}

]);

var myArray = returnedDoc.result; // access the result field

12.1. Current Stable Release 839

MongoDB Documentation, Release 2.6.11

myArray.forEach(function(x) { printjson (x); });

Solution Update scripts that currently expect db.collection.aggregate() to return a document with a
results array to handle cursors instead.

See also:

Aggregation Enhancements (page 831), db.collection.aggregate(),

Write Concern Validation

Description Specifying a write concern that includes j: true to a mongod or mongos instance running with
--nojournal option now errors. Previous versions would ignore the j: true.

Solution Either remove the j: true specification from the write concern when issued against a mongod or
mongos instance with --nojournal or run mongod or mongos with journaling.

Security Changes

New Authorization Model

Description MongoDB 2.6 authorization model (page 320) changes how MongoDB stores and manages user privi-
lege information:

• Before the upgrade, MongoDB 2.6 requires at least one user in the admin database.

• MongoDB versions using older models cannot create/modify users or create user-defined roles.

Solution Ensure that at least one user exists in the admin database. If no user exists in the admin database, add a
user. Then upgrade to MongoDB 2.6. Finally, upgrade the user privilege model. See Upgrade MongoDB to 2.6
(page 847).

Important: Before upgrading the authorization model, you should first upgrade MongoDB binaries to 2.6.
For sharded clusters, ensure that all cluster components are 2.6. If there are users in any database, be sure you
have at least one user in the admin database with the role userAdminAnyDatabase (page 411) before
upgrading the MongoDB binaries.

See also:

Security Improvements (page 833)

TLS/SSL Certificate Hostname Validation

Description The TLS/SSL certificate validation now checks the Common Name (CN) and the Subject Alternative
Name (SAN) fields to ensure that either the CN or one of the SAN entries matches the hostname of the server. As
a result, if you currently use TLS/SSL and neither the CN nor any of the SAN entries of your current TLS/SSL
certificates match the hostnames, upgrading to version 2.6 will cause the TLS/SSL connections to fail.

Solution To allow for the continued use of these certificates, MongoDB provides the
allowInvalidCertificates setting. The setting is available for:

• mongod and mongos to bypass the validation of TLS/SSL certificates on other servers in the cluster.

• mongo shell, MongoDB tools that support TLS/SSL (page 345), and the C++ driver to bypass the validation
of server certificates.

840 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

When using the allowInvalidCertificates setting, MongoDB logs as a warning the use of the invalid
certificates.

Warning: The allowInvalidCertificates setting bypasses the other certificate validation, such as
checks for expiration and valid signatures.

2dsphere Index Version 2

Description MongoDB 2.6 introduces a version 2 of the 2dsphere index (page 497). If a document lacks a 2dsphere
index field (or the field is null or an empty array), MongoDB does not add an entry for the document to the
2dsphere index. For inserts, MongoDB inserts the document but does not add to the 2dsphere index.

Previous version would not insert documents where the 2dsphere index field is a null or an empty array.
For documents that lack the 2dsphere index field, previous versions would insert and index the document.

Solution To revert to old behavior, create the 2dsphere index with { "2dsphereIndexVersion" : 1 }
to create a version 1 index. However, version 1 index cannot use the new GeoJSON geometries.

See also:

2dsphere (Version 2) (page 497)

Log Messages

Timestamp Format Change

Description Each message now starts with the timestamp format given in Time Format Changes (page 846). Previous
versions used the ctime format.

Solution MongoDB adds a new option --timeStampFormat which supports timestamp format in ctime,
iso8601-utc, and iso8601-local (new default).

Package Configuration Changes

Default bindIp for RPM/DEB Packages

Description In the official MongoDB packages in RPM (Red Hat, CentOS, Fedora Linux, and derivatives) and DEB
(Debian, Ubuntu, and derivatives), the default bindIp value attaches MongoDB components to the localhost
interface only. These packages set this default in the default configuration file (i.e. /etc/mongod.conf.)

Solution If you use one of these packages and have not modified the default /etc/mongod.conf file, you will
need to set bindIp before or during the upgrade.

There is no default bindIp setting in any other official MongoDB packages.

SNMP Changes

Description

• The IANA enterprise identifier for MongoDB changed from 37601 to 34601.

• MongoDB changed the MIB field name globalopcounts to globalOpcounts.

Solution

• Users of SNMP monitoring must modify their SNMP configuration (i.e. MIB) from 37601 to 34601.

• Update references to globalopcounts to globalOpcounts.

12.1. Current Stable Release 841

MongoDB Documentation, Release 2.6.11

Remove Method Signature Change

Description db.collection.remove() requires a query document as a parameter. In previous versions, the
method invocation without a query document deleted all documents in a collection.

Solution For existing db.collection.remove() invocations without a query document, modify the invocations
to include an empty document db.collection.remove({}).

Update Operator Syntax Validation

Description

• Update operators (e.g $set) must specify a non-empty operand expression. For example, the
following expression is now invalid:

{ $set: { } }

• Update operators (e.g $set) cannot repeat in the update statement. For example, the following
expression is invalid:

{ $set: { a: 5 }, $set: { b: 5 } }

Updates Enforce Field Name Restrictions

Description

• Updates cannot use update operators (e.g $set) to target fields with empty field names (i.e.
"").

• Updates no longer support saving field names that contain a dot (.) or a field name that starts with a dollar
sign ($).

Solution

• For existing documents that have fields with empty names "", replace the whole document. See
db.collection.update() and db.collection.save() for details on replacing an existing
document.

• For existing documents that have fields with names that contain a dot (.), either replace the whole docu-
ment or unset the field. To find fields whose names contain a dot, run db.upgradeCheckAllDBs().

• For existing documents that have fields with names that start with a dollar sign ($), unset or rename
those fields. To find fields whose names start with a dollar sign, run db.upgradeCheckAllDBs().

See New Write Operation Protocol (page 832) for the changes to the write operation protocol, and Insert and Update
Improvements (page 832) for the changes to the insert and update operations. Also consider the documentation of the
Restrictions on Field Names.

Query and Sort Changes

Enforce Field Name Restrictions

Description Queries cannot specify conditions on fields with names that start with a dollar sign ($).

Solution Unset or rename existing fields whose names start with a dollar sign ($). Run
db.upgradeCheckAllDBs() to find fields whose names start with a dollar sign.

842 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

Sparse Index and Incomplete Results

Description If a sparse index (page 507) results in an incomplete result set for queries and sort operations, MongoDB
will not use that index unless a hint() explicitly specifies the index.

For example, the query { x: { $exists: false } } will no longer use a sparse index on the x field,
unless explicitly hinted.

Solution To override the behavior to use the sparse index and return incomplete results, explicitly specify the index
with a hint().

See Sparse Index On A Collection Cannot Return Complete Results (page 508) for an example that details the new
behavior.

sort() Specification Values

Description The sort() method only accepts the following values for the sort keys:

• 1 to specify ascending order for a field,

• -1 to specify descending order for a field, or

• $meta expression to specify sort by the text search score.

Any other value will result in an error.

Previous versions also accepted either true or false for ascending.

Solution Update sort key values that use true or false to 1.

skip() and _id Queries

Description Equality match on the _id field obeys skip().

Previous versions ignored skip() when performing an equality match on the _id field.

explain() Retains Query Plan Cache

Description explain() no longer clears the query plans (page 72) cached for that query shape.

In previous versions, explain() would have the side effect of clearing the query plan cache for that query
shape.

See also:

The PlanCache() reference.

Geospatial Changes

$maxDistance Changes

Description

• For $near queries on GeoJSON data, if the queries specify a $maxDistance, $maxDistance must
be inside of the $near document.

In previous version, $maxDistance could be either inside or outside the $near document.

• $maxDistance must be a positive value.

Solution

12.1. Current Stable Release 843

MongoDB Documentation, Release 2.6.11

• Update any existing $near queries on GeoJSON data that currently have the $maxDistance outside
the $near document

• Update any existing queries where $maxDistance is a negative value.

Deprecated $uniqueDocs

Description MongoDB 2.6 deprecates $uniqueDocs, and geospatial queries no longer return duplicated results
when a document matches the query multiple times.

Stronger Validation of Geospatial Queries

Description MongoDB 2.6 enforces a stronger validation of geospatial queries, such as validating the options or
GeoJSON specifications, and errors if the geospatial query is invalid. Previous versions allowed/ignored invalid
options.

Query Operator Changes

$not Query Behavior Changes

Description

• Queries with $not expressions on an indexed field now match:

– Documents that are missing the indexed field. Previous versions would not return these documents
using the index.

– Documents whose indexed field value is a different type than that of the specified value. Previous
versions would not return these documents using the index.

For example, if a collection orders contains the following documents:

{ _id: 1, status: "A", cust_id: "123", price: 40 }
{ _id: 2, status: "A", cust_id: "xyz", price: "N/A" }
{ _id: 3, status: "D", cust_id: "xyz" }

If the collection has an index on the price field:

db.orders.ensureIndex({ price: 1 })

The following query uses the index to search for documents where price is not greater than or equal to
50:

db.orders.find({ price: { $not: { $gte: 50 } } })

In 2.6, the query returns the following documents:

{ "_id" : 3, "status" : "D", "cust_id" : "xyz" }
{ "_id" : 1, "status" : "A", "cust_id" : "123", "price" : 40 }
{ "_id" : 2, "status" : "A", "cust_id" : "xyz", "price" : "N/A" }

In previous versions, indexed plans would only return matching documents where the type of the field
matches the type of the query predicate:

{ "_id" : 1, "status" : "A", "cust_id" : "123", "price" : 40 }

If using a collection scan, previous versions would return the same results as those in 2.6.

• MongoDB 2.6 allows chaining of $not expressions.

844 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

null Comparison Queries

Description

• $lt and $gt comparisons to null no longer match documents that are missing the field.

• null equality conditions on array elements (e.g. "a.b": null) no longer match document missing
the nested field a.b (e.g. a: [2, 3]).

• null equality queries (i.e. field: null) now match fields with values undefined.

$all Operator Behavior Change

Description

• The $all operator is now equivalent to an $and operation of the specified values. This change in behavior
can allow for more matches than previous versions when passed an array of a single nested array (e.g. [
["A"]]). When passed an array of a nested array, $all can now match documents where the field
contains the nested array as an element (e.g. field: [["A"], ...]), or the field equals the
nested array (e.g. field: ["A", "B"]). Earlier version could only match documents where the
field contains the nested array.

• The $all operator returns no match if the array field contains nested arrays (e.g. field: ["a",
["b"]]) and $all on the nested field is the element of the nested array (e.g. "field.1": {
$all: ["b"] }). Previous versions would return a match.

$mod Operator Enforces Strict Syntax

Description The $mod operator now only accepts an array with exactly two elements, and errors when passed an
array with fewer or more elements. See mod-not-enough-elements and mod-too-many-elements for details.

In previous versions, if passed an array with one element, the $mod operator uses 0 as the second element,
and if passed an array with more than two elements, the $mod ignores all but the first two elements. Previous
versions do return an error when passed an empty array.

Solution Ensure that the array passed to $mod contains exactly two elements:

• If the array contains the a single element, add 0 as the second element.

• If the array contains more than two elements, remove the extra elements.

$where Must Be Top-Level

Description $where expressions can now only be at top level and cannot be nested within another expression, such
as $elemMatch.

Solution Update existing queries that nest $where.

$exists and notablescan If the MongoDB server has disabled collection scans, i.e. notablescan, then
$exists queries that have no indexed solution will error.

MinKey and MaxKey Queries

Description Equality match for either MinKey or MaxKey no longer match documents missing the field.

12.1. Current Stable Release 845

MongoDB Documentation, Release 2.6.11

Nested Array Queries with $elemMatch

Description The $elemMatch query operator no longer traverses recursively into nested arrays.

For example, if a collection test contains the following document:

{ "_id": 1, "a" : [[1, 2, 5]] }

In 2.6, the following $elemMatch query does not match the document:

db.test.find({ a: { $elemMatch: { $gt: 1, $lt: 5 } } })

Solution Update existing queries that rely upon the old behavior.

Text Search Compatibility MongoDB does not support the use of the $text query operator in mixed sharded
cluster deployments that contain both version 2.4 and version 2.6 shards. See Upgrade MongoDB to 2.6 (page 847)
for upgrade instructions.

Replica Set/Sharded Cluster Validation

Shard Name Checks on Metadata Refresh

Description For sharded clusters, MongoDB 2.6 disallows a shard from refreshing the metadata if the shard name
has not been explicitly set.

For mixed sharded cluster deployments that contain both version 2.4 and version 2.6 shards, this change can
cause errors when migrating chunks from version 2.4 shards to version 2.6 shards if the shard name is unknown
to the version 2.6 shards. MongoDB does not support migrations in mixed sharded cluster deployments.

Solution Upgrade all components of the cluster to 2.6. See Upgrade MongoDB to 2.6 (page 847).

Replica Set Vote Configuration Validation

Description MongoDB now deprecates giving any replica set member more than a single vote. During configuration,
local.system.replset.members[n].votes (page 663) should only have a value of 1 for voting
members and 0 for non-voting members. MongoDB treats values other than 1 or 0 as a value of 1 and produces
a warning message.

Solution Update local.system.replset.members[n].votes (page 663) with values other than 1 or 0 to
1 or 0 as appropriate.

Time Format Changes MongoDB now uses iso8601-local when formatting time data in many out-
puts. This format follows the template YYYY-MM-DDTHH:mm:ss.mmm<+/-Offset>. For example,
2014-03-04T20:13:38.944-0500.

This change impacts all clients using Extended JSON in Strict mode, such as mongoexport and the REST and
HTTP Interfaces404.

Other Resources

• All backwards incompatible changes (JIRA)405.

• Release Notes for MongoDB 2.6 (page 805).

404https://docs.mongodb.org/ecosystem/tools/http-interfaces
405https://jira.mongodb.org/issues/?jql=project%20%3D%20SERVER%20AND%20fixVersion%20in%20(%222.5.0%22%2C%20%222.5.1%22%2C%20%222.5.2%22%2C%20%222.5.3%22%2C%20%222.5.4%22%2C%20%222.5.5%22%2C%20%222.6.0-

rc1%22%2C%20%222.6.0-rc2%22)%20AND%20%22Backwards%20Compatibility%22%20in%20%20(%22Major%20Change%22%2C%20%22Minor%20Change%22)%20ORDER%20BY%20votes%20DESC%2C%20issuetype%20DESC%2C%20key%20DESC

846 Chapter 12. Release Notes

https://docs.mongodb.org/ecosystem/tools/http-interfaces
https://docs.mongodb.org/ecosystem/tools/http-interfaces
https://jira.mongodb.org/issues/?jql=project%20%3D%20SERVER%20AND%20fixVersion%20in%20(%222.5.0%22%2C%20%222.5.1%22%2C%20%222.5.2%22%2C%20%222.5.3%22%2C%20%222.5.4%22%2C%20%222.5.5%22%2C%20%222.6.0-rc1%22%2C%20%222.6.0-rc2%22)%20AND%20%22Backwards%20Compatibility%22%20in%20%20(%22Major%20Change%22%2C%20%22Minor%20Change%22)%20ORDER%20BY%20votes%20DESC%2C%20issuetype%20DESC%2C%20key%20DESC

MongoDB Documentation, Release 2.6.11

• Upgrade MongoDB to 2.6 (page 847) for the upgrade process.

Some changes in 2.6 can affect compatibility (page 836) and may require user actions. The 2.6 mongo shell provides
a db.upgradeCheckAllDBs() method to perform a check for upgrade preparedness for some of these changes.

See Compatibility Changes in MongoDB 2.6 (page 836) for a detailed list of compatibility changes.

See also:

All Backwards incompatible changes (JIRA)406.

Upgrade Process

Upgrade MongoDB to 2.6

On this page

• Upgrade Recommendations and Checklists (page 847)
• Upgrade MongoDB Processes (page 848)
• Upgrade Procedure (page 850)
• Additional Resources (page 851)

In the general case, the upgrade from MongoDB 2.4 to 2.6 is a binary-compatible “drop-in” upgrade: shut down the
mongod instances and replace them with mongod instances running 2.6. However, before you attempt any upgrade,
familiarize yourself with the content of this document, particularly the Upgrade Recommendations and Checklists
(page 847), the procedure for upgrading sharded clusters (page 849), and the considerations for reverting to 2.4 after
running 2.6 (page 853).

Upgrade Recommendations and Checklists When upgrading, consider the following:

Upgrade Requirements To upgrade an existing MongoDB deployment to 2.6, you must be running 2.4. If you’re
running a version of MongoDB before 2.4, you must upgrade to 2.4 before upgrading to 2.6. See Upgrade MongoDB
to 2.4 (page 874) for the procedure to upgrade from 2.2 to 2.4.

If you use MongoDB Cloud Manager407 Backup, ensure that you’re running at least version v20131216.1 of the
Backup agent before upgrading. Version 1.4.0 of the backup agent followed v20131216.1

Preparedness Before upgrading MongoDB always test your application in a staging environment before deploying
the upgrade to your production environment.

To begin the upgrade procedure, connect a 2.6 mongo shell to your MongoDB 2.4 mongos or mongod and run the
db.upgradeCheckAllDBs() to check your data set for compatibility. This is a preliminary automated check.
Assess and resolve all issues identified by db.upgradeCheckAllDBs().

Some changes in MongoDB 2.6 require manual checks and intervention. See Compatibility Changes in MongoDB 2.6
(page 836) for an explanation of these changes. Resolve all incompatibilities in your deployment before continuing.

For a deployment that uses authentication and authorization, be sure you have at least one user in the admin database
with the role userAdminAnyDatabase (page 411) before upgrading the MongoDB binaries. For deployments
currently using authentication and authorization, see the consideration for deployments that use authentication and
authorization (page 848).

406https://jira.mongodb.org/issues/?jql=project%20%3D%20SERVER%20AND%20fixVersion%20in%20(%222.5.0%22%2C%20%222.5.1%22%2C%20%222.5.2%22%2C%20%222.5.3%22%2C%20%222.5.4%22%2C%20%222.5.5%22%2C%20%222.6.0-
rc1%22%2C%20%222.6.0-rc2%22%2C%20%222.6.0-rc3%22)%20AND%20%22Backwards%20Compatibility%22%20in%20(%20%22Minor%20Change%22%2C%22Major%20Change%22%20)%20ORDER%20BY%20votes%20DESC%2C%20issuetype%20DESC%2C%20key%20DESC

407https://cloud.mongodb.com/?jmp=docs

12.1. Current Stable Release 847

https://jira.mongodb.org/issues/?jql=project%20%3D%20SERVER%20AND%20fixVersion%20in%20(%222.5.0%22%2C%20%222.5.1%22%2C%20%222.5.2%22%2C%20%222.5.3%22%2C%20%222.5.4%22%2C%20%222.5.5%22%2C%20%222.6.0-rc1%22%2C%20%222.6.0-rc2%22%2C%20%222.6.0-rc3%22)%20AND%20%22Backwards%20Compatibility%22%20in%20(%20%22Minor%20Change%22%2C%22Major%20Change%22%20)%20ORDER%20BY%20votes%20DESC%2C%20issuetype%20DESC%2C%20key%20DESC
https://cloud.mongodb.com/?jmp=docs

MongoDB Documentation, Release 2.6.11

Authentication MongoDB 2.6 includes significant changes to the authorization model, which requires changes to
the way that MongoDB stores users’ credentials. As a result, in addition to upgrading MongoDB processes, if your
deployment uses authentication and authorization, after upgrading all MongoDB process to 2.6 you must also upgrade
the authorization model.

Before beginning the upgrade process for a deployment that uses authentication and authorization:

• Ensure that at least one user exists in the admin database with the role userAdminAnyDatabase
(page 411).

• If your application performs CRUD operations on the <database>.system.users collection or uses a
db.addUser()-like method, then you must upgrade those drivers (i.e. client libraries) before mongod or
mongos instances.

• You must fully complete the upgrade procedure for all MongoDB processes before upgrading the authorization
model.

After you begin to upgrade a MongoDB deployment that uses authentication to 2.6, you cannot modify existing user
data until you complete the authorization user schema upgrade (page 851).

See Upgrade User Authorization Data to 2.6 Format (page 851) for a complete discussion of the upgrade procedure
for the authorization model including additional requirements and procedures.

Downgrade Limitations Once upgraded to MongoDB 2.6, you cannot downgrade to any version earlier than Mon-
goDB 2.4. If you created text or 2dsphere indexes while running 2.6, you can only downgrade to MongoDB
2.4.10 or later.

Package Upgrades If you installed MongoDB from the MongoDB apt or yum repositories, upgrade to 2.6 using
the package manager.

For Debian, Ubuntu, and related operating systems, type these commands:

sudo apt-get update
sudo apt-get install mongodb-org

For Red Hat Enterprise, CentOS, Fedora, or Amazon Linux:

sudo yum install mongodb-org

If you did not install the mongodb-org package, and installed a subset of MongoDB components replace
mongodb-org in the commands above with the appropriate package names.

See installation instructions for Ubuntu (page 10), RHEL (page 6), Debian (page 13), or other Linux Systems (page 16)
for a list of the available packages and complete MongoDB installation instructions.

Upgrade MongoDB Processes

Upgrade Standalone mongod Instance to MongoDB 2.6 The following steps outline the procedure to upgrade a
standalone mongod from version 2.4 to 2.6. To upgrade from version 2.2 to 2.6, upgrade to version 2.4 (page 874)
first, and then follow the procedure to upgrade from 2.4 to 2.6.

1. Download binaries of the latest release in the 2.6 series from the MongoDB Download Page408. See Install
MongoDB (page 5) for more information.

2. Shut down your mongod instance. Replace the existing binary with the 2.6 mongod binary and restart
mongod.

408http://www.mongodb.org/downloads

848 Chapter 12. Release Notes

http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.6.11

Upgrade a Replica Set to 2.6 The following steps outline the procedure to upgrade a replica set from MongoDB
2.4 to MongoDB 2.6. To upgrade from MongoDB 2.2 to 2.6, upgrade all members of the replica set to version 2.4
(page 874) first, and then follow the procedure to upgrade from MongoDB 2.4 to 2.6.

You can upgrade from MongoDB 2.4 to 2.6 using a “rolling” upgrade to minimize downtime by upgrading the mem-
bers individually while the other members are available:

Step 1: Upgrade secondary members of the replica set. Upgrade the secondary members of the set one at a time
by shutting down the mongod and replacing the 2.4 binary with the 2.6 binary. After upgrading a mongod instance,
wait for the member to recover to SECONDARY state before upgrading the next instance. To check the member’s state,
issue rs.status() in the mongo shell.

Step 2: Step down the replica set primary. Use rs.stepDown() in the mongo shell to step down the primary
and force the set to failover (page 583). rs.stepDown() expedites the failover procedure and is preferable to
shutting down the primary directly.

Step 3: Upgrade the primary. When rs.status() shows that the primary has stepped down and another mem-
ber has assumed PRIMARY state, shut down the previous primary and replace the mongod binary with the 2.6 binary
and start the new instance.

Replica set failover is not instant but will render the set unavailable accept writes until the failover process completes.
Typically this takes 30 seconds or more: schedule the upgrade procedure during a scheduled maintenance window.

Upgrade a Sharded Cluster to 2.6 Only upgrade sharded clusters to 2.6 if all members of the cluster are currently
running instances of 2.4. The only supported upgrade path for sharded clusters running 2.2 is via 2.4. The upgrade
process checks all components of the cluster and will produce warnings if any component is running version 2.2.

Considerations The upgrade process does not require any downtime. However, while you upgrade the sharded
cluster, ensure that clients do not make changes to the collection meta-data. For example, during the upgrade, do not
do any of the following:

• sh.enableSharding()

• sh.shardCollection()

• sh.addShard()

• db.createCollection()

• db.collection.drop()

• db.dropDatabase()

• any operation that creates a database

• any other operation that modifies the cluster metadata in any way. See Sharding Reference (page 753) for a com-
plete list of sharding commands. Note, however, that not all commands on the Sharding Reference (page 753)
page modifies the cluster meta-data.

Upgrade Sharded Clusters Optional but Recommended. As a precaution, take a backup of the config database
before upgrading the sharded cluster.

Step 1: Disable the Balancer. Turn off the balancer (page 698) in the sharded cluster, as described in Disable the
Balancer (page 732).

12.1. Current Stable Release 849

MongoDB Documentation, Release 2.6.11

Step 2: Upgrade the cluster’s meta data. Start a single 2.6 mongos instance with the configDB pointing to the
cluster’s config servers and with the --upgrade option.

To run a mongos with the --upgrade option, you can upgrade an existing mongos instance to 2.6, or if you need
to avoid reconfiguring a production mongos instance, you can use a new 2.6 mongos that can reach all the config
servers.

To upgrade the meta data, run:

mongos --configdb <configDB string> --upgrade

You can include the --logpath option to output the log messages to a file instead of the standard output. Also
include any other options required to start mongos instances in your cluster, such as --sslOnNormalPorts or
--sslPEMKeyFile.

The mongos will exit upon completion of the --upgrade process.

The upgrade will prevent any chunk moves or splits from occurring during the upgrade process. If the data files have
many sharded collections or if failed processes hold stale locks, acquiring the locks for all collections can take seconds
or minutes. Watch the log for progress updates.

Step 3: Ensure mongos --upgrade process completes successfully. The mongos will exit upon completion
of the meta data upgrade process. If successful, the process will log the following messages:

upgrade of config server to v5 successful
Config database is at version v5

After a successful upgrade, restart the mongos instance. If mongos fails to start, check the log for more information.

If the mongos instance loses its connection to the config servers during the upgrade or if the upgrade is otherwise
unsuccessful, you may always safely retry the upgrade.

Step 4: Upgrade the remaining mongos instances to v2.6. Upgrade and restart without the --upgrade option
the other mongos instances in the sharded cluster. After upgrading all the mongos, see Complete Sharded Cluster
Upgrade (page 850) for information on upgrading the other cluster components.

Complete Sharded Cluster Upgrade After you have successfully upgraded all mongos instances, you can upgrade
the other instances in your MongoDB deployment.

Warning: Do not upgrade mongod instances until after you have upgraded all mongos instances.

While the balancer is still disabled, upgrade the components of your sharded cluster in the following order:

• Upgrade all 3 mongod config server instances, leaving the first system in the mongos --configdb argu-
ment to upgrade last.

• Upgrade each shard, one at a time, upgrading the mongod secondaries before running replSetStepDown
and upgrading the primary of each shard.

When this process is complete, re-enable the balancer (page 733).

Upgrade Procedure Once upgraded to MongoDB 2.6, you cannot downgrade to any version earlier than MongoDB
2.4. If you have text or 2dsphere indexes, you can only downgrade to MongoDB 2.4.10 or later.

Except as described on this page, moving between 2.4 and 2.6 is a drop-in replacement:

850 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

Step 1: Stop the existing mongod instance. For example, on Linux, run 2.4 mongod with the --shutdown
option as follows:

mongod --dbpath /var/mongod/data --shutdown

Replace /var/mongod/data with your MongoDB dbPath. See also the Stop mongod Processes (page 237) for
alternate methods of stopping a mongod instance.

Step 2: Start the new mongod instance. Ensure you start the 2.6 mongod with the same dbPath:

mongod --dbpath /var/mongod/data

Replace /var/mongod/data with your MongoDB dbPath.

Additional Resources

• MongoDB Major Version Upgrade Consulting Package409

Upgrade User Authorization Data to 2.6 Format

On this page

• Considerations (page 851)
• Requirements (page 852)
• Procedure (page 852)
• Result (page 852)

MongoDB 2.6 includes significant changes to the authorization model, which requires changes to the way that Mon-
goDB stores users’ credentials. As a result, in addition to upgrading MongoDB processes, if your deployment uses
authentication and authorization, after upgrading all MongoDB process to 2.6 you must also upgrade the authorization
model.

Considerations

Complete all other Upgrade Requirements Before upgrading the authorization model, you should first upgrade
MongoDB binaries to 2.6. For sharded clusters, ensure that all cluster components are 2.6. If there are users in
any database, be sure you have at least one user in the admin database with the role userAdminAnyDatabase
(page 411) before upgrading the MongoDB binaries.

Timing Because downgrades are more difficult after you upgrade the user authorization model, once you upgrade
the MongoDB binaries to version 2.6, allow your MongoDB deployment to run a day or two without upgrading the
user authorization model.

This allows 2.6 some time to “burn in” and decreases the likelihood of downgrades occurring after the user privilege
model upgrade. The user authentication and access control will continue to work as it did in 2.4, but it will be
impossible to create or modify users or to use user-defined roles until you run the authorization upgrade.

If you decide to upgrade the user authorization model immediately instead of waiting the recommended “burn in”
period, then for sharded clusters, you must wait at least 10 seconds after upgrading the sharded clusters to run the
authorization upgrade script.

409https://www.mongodb.com/products/consulting?jmp=docs#major_version_upgrade

12.1. Current Stable Release 851

https://www.mongodb.com/products/consulting?jmp=docs#major_version_upgrade

MongoDB Documentation, Release 2.6.11

Replica Sets For a replica set, it is only necessary to run the upgrade process on the primary as the changes will
automatically replicate to the secondaries.

Sharded Clusters For a sharded cluster, connect to a mongos and run the upgrade procedure to upgrade the cluster’s
authorization data. By default, the procedure will upgrade the authorization data of the shards as well.

To override this behavior, run the upgrade command with the additional parameter upgradeShards: false. If
you choose to override, you must run the upgrade procedure on the mongos first, and then run the procedure on the
primary members of each shard.

For a sharded cluster, do not run the upgrade process directly against the config servers (page 684). Instead, perform
the upgrade process using one mongos instance to interact with the config database.

Requirements To upgrade the authorization model, you must have a user in the admin database with the role
userAdminAnyDatabase (page 411).

Procedure

Step 1: Connect to MongoDB instance. Connect and authenticate to the mongod instance for a single deployment
or a mongos for a sharded cluster as an admin database user with the role userAdminAnyDatabase (page 411).

Step 2: Upgrade authorization schema. Use the authSchemaUpgrade command in the admin database to
update the user data using the mongo shell.

Run authSchemaUpgrade command.
db.getSiblingDB("admin").runCommand({authSchemaUpgrade: 1 });

In case of error, you may safely rerun the authSchemaUpgrade command.

Sharded cluster authSchemaUpgrade consideration. For a sharded cluster, authSchemaUpgrade will up-
grade the authorization data of the shards as well and the upgrade is complete. You can, however, override this behavior
by including upgradeShards: false in the command, as in the following example:

db.getSiblingDB("admin").runCommand({authSchemaUpgrade: 1,
upgradeShards: false });

If you override the behavior, after running authSchemaUpgrade on a mongos instance, you will need to connect
to the primary for each shard and repeat the upgrade process after upgrading on the mongos.

Result All users in a 2.6 system are stored in the admin.system.users (page 304) collection. To manipulate
these users, use the user management methods.

The upgrade procedure copies the version 2.4 admin.system.users collection to
admin.system.backup_users.

The upgrade procedure leaves the version 2.4 <database>.system.users collection(s) intact.

852 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

Downgrade MongoDB from 2.6

On this page

• Downgrade Recommendations and Checklist (page 853)
• Downgrade 2.6 User Authorization Model (page 853)
• Downgrade Updated Indexes (page 856)
• Downgrade MongoDB Processes (page 857)
• Downgrade Procedure (page 858)

Before you attempt any downgrade, familiarize yourself with the content of this document, particularly the Downgrade
Recommendations and Checklist (page 853) and the procedure for downgrading sharded clusters (page 857).

Downgrade Recommendations and Checklist When downgrading, consider the following:

Downgrade Path Once upgraded to MongoDB 2.6, you cannot downgrade to any version earlier than MongoDB
2.4. If you created text or 2dsphere indexes while running 2.6, you can only downgrade to MongoDB 2.4.10 or
later.

Preparedness

• Remove or downgrade version 2 text indexes (page 856) before downgrading MongoDB 2.6 to 2.4.

• Remove or downgrade version 2 2dsphere indexes (page 856) before downgrading MongoDB 2.6 to 2.4.

• Downgrade 2.6 User Authorization Model (page 853). If you have upgraded to the 2.6 user authorization model,
you must downgrade the user model to 2.4 before downgrading MongoDB 2.6 to 2.4.

Procedures Follow the downgrade procedures:

• To downgrade sharded clusters, see Downgrade a 2.6 Sharded Cluster (page 857).

• To downgrade replica sets, see Downgrade a 2.6 Replica Set (page 857).

• To downgrade a standalone MongoDB instance, see Downgrade 2.6 Standalone mongod Instance (page 857).

Downgrade 2.6 User Authorization Model If you have upgraded to the 2.6 user authorization model, you must
first downgrade the user authorization model to 2.4 before before downgrading MongoDB 2.6 to 2.4.

Considerations

• For a replica set, it is only necessary to run the downgrade process on the primary as the changes will automati-
cally replicate to the secondaries.

• For sharded clusters, although the procedure lists the downgrade of the cluster’s authorization data first, you
may downgrade the authorization data of the cluster or shards first.

• You must have the admin.system.backup_users and admin.system.new_users collections cre-
ated during the upgrade process.

• Important. The downgrade process returns the user data to its state prior to upgrading to 2.6 authorization
model. Any changes made to the user/role data using the 2.6 users model will be lost.

12.1. Current Stable Release 853

MongoDB Documentation, Release 2.6.11

Access Control Prerequisites To downgrade the authorization model, you must connect as a user with the following
privileges:

{ resource: { db: "admin", collection: "system.new_users" }, actions: ["find", "insert", "update"] }
{ resource: { db: "admin", collection: "system.backup_users" }, actions: ["find"] }
{ resource: { db: "admin", collection: "system.users" }, actions: ["find", "remove", "insert"] }
{ resource: { db: "admin", collection: "system.version" }, actions: ["find", "update"] }

If no user exists with the appropriate privileges, create an authorization model downgrade user:

Step 1: Connect as user with privileges to manage users and roles. Connect and authenticate as a user with
userAdminAnyDatabase (page 411).

Step 2: Create a role with required privileges. Using the db.createRole method, create a role (page 321)
with the required privileges.

use admin
db.createRole(

{
role: "downgradeAuthRole",
privileges: [

{ resource: { db: "admin", collection: "system.new_users" }, actions: ["find", "insert", "update"] },
{ resource: { db: "admin", collection: "system.backup_users" }, actions: ["find"] },
{ resource: { db: "admin", collection: "system.users" }, actions: ["find", "remove", "insert"] },
{ resource: { db: "admin", collection: "system.version" }, actions: ["find", "update"] }

],
roles: []

}
)

Step 3: Create a user with the new role. Create a user and assign the user the downgradeRole.

use admin
db.createUser(

{
user: "downgradeAuthUser",
pwd: "somePass123",
roles: [{ role: "downgradeAuthRole", db: "admin" }]

}
)

Note: Instead of creating a new user, you can also grant the role to an existing user. See
db.grantRolesToUser() method.

Step 4: Authenticate as the new user. Authenticate as the newly created user.

use admin
db.auth("downgradeAuthUser", "somePass123")

The method returns 1 upon successful authentication.

Procedure The following downgrade procedure requires <database>.system.users collections used in ver-
sion 2.4. to be intact for non-admin databases.

854 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

Step 1: Connect and authenticate to MongoDB instance. Connect and authenticate to the mongod instance for a
single deployment or a mongos for a sharded cluster with the appropriate privileges. See Access Control Prerequisites
(page 854) for details.

Step 2: Create backup of 2.6 admin.system.users collection. Copy all documents in the
admin.system.users (page 304) collection to the admin.system.new_users collection:

db.getSiblingDB("admin").system.users.find().forEach(function(userDoc) {
status = db.getSiblingDB("admin").system.new_users.save(userDoc);
if (status.hasWriteError()) {

print(status.writeError);
}

}
);

Step 3: Update the version document for the authSchema.
db.getSiblingDB("admin").system.version.update(

{ _id: "authSchema" },
{ $set: { currentVersion: 2 } }

);

The method returns a WriteResult object with the status of the operation. Upon successful update, the
WriteResult object should have "nModified" equal to 1.

Step 4: Remove existing documents from the admin.system.users collection.
db.getSiblingDB("admin").system.users.remove({})

The method returns a WriteResult object with the number of documents removed in the "nRemoved" field.

Step 5: Copy documents from the admin.system.backup_users collection. Copy all documents from the
admin.system.backup_users, created during the 2.6 upgrade, to admin.system.users.

db.getSiblingDB("admin").system.backup_users.find().forEach(
function (userDoc) {

status = db.getSiblingDB("admin").system.users.insert(userDoc);
if (status.hasWriteError()) {

print(status.writeError);
}

}
);

Step 6: Update the version document for the authSchema.
db.getSiblingDB("admin").system.version.update(

{ _id: "authSchema" },
{ $set: { currentVersion: 1 } }

)

For a sharded cluster, repeat the downgrade process by connecting to the primary replica set member for each shard.

Note: The cluster’s mongos instances will fail to detect the authorization model downgrade until the user cache
is refreshed. You can run invalidateUserCache on each mongos instance to refresh immediately, or you can
wait until the cache is refreshed automatically at the end of the user cache invalidation interval. To

12.1. Current Stable Release 855

MongoDB Documentation, Release 2.6.11

run invalidateUserCache, you must have privilege with invalidateUserCache (page 420) action, which
is granted by userAdminAnyDatabase (page 411) and hostManager (page 409) roles.

Result The downgrade process returns the user data to its state prior to upgrading to 2.6 authorization model. Any
changes made to the user/role data using the 2.6 users model will be lost.

Downgrade Updated Indexes

Text Index Version Check If you have version 2 text indexes (i.e. the default version for text indexes in MongoDB
2.6), drop the version 2 text indexes before downgrading MongoDB. After the downgrade, enable text search and
recreate the dropped text indexes.

To determine the version of your text indexes, run db.collection.getIndexes() to view index specifica-
tions. For text indexes, the method returns the version information in the field textIndexVersion. For example,
the following shows that the text index on the quotes collection is version 2.

{
"v" : 1,
"key" : {

"_fts" : "text",
"_ftsx" : 1

},
"name" : "quote_text_translation.quote_text",
"ns" : "test.quotes",
"weights" : {

"quote" : 1,
"translation.quote" : 1

},
"default_language" : "english",
"language_override" : "language",
"textIndexVersion" : 2

}

2dsphere Index Version Check If you have version 2 2dsphere indexes (i.e. the default version for 2dsphere
indexes in MongoDB 2.6), drop the version 2 2dsphere indexes before downgrading MongoDB. After the down-
grade, recreate the 2dsphere indexes.

To determine the version of your 2dsphere indexes, run db.collection.getIndexes() to view
index specifications. For 2dsphere indexes, the method returns the version information in the field
2dsphereIndexVersion. For example, the following shows that the 2dsphere index on the locations
collection is version 2.

{
"v" : 1,
"key" : {

"geo" : "2dsphere"
},
"name" : "geo_2dsphere",
"ns" : "test.locations",
"sparse" : true,
"2dsphereIndexVersion" : 2

}

856 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

Downgrade MongoDB Processes

Downgrade 2.6 Standalone mongod Instance The following steps outline the procedure to downgrade a stan-
dalone mongod from version 2.6 to 2.4.

1. Download binaries of the latest release in the 2.4 series from the MongoDB Download Page410. See Install
MongoDB (page 5) for more information.

2. Shut down your mongod instance. Replace the existing binary with the 2.4 mongod binary and restart
mongod.

Downgrade a 2.6 Replica Set The following steps outline a “rolling” downgrade process for the replica set. The
“rolling” downgrade process minimizes downtime by downgrading the members individually while the other members
are available:

Step 1: Downgrade each secondary member, one at a time. For each secondary in a replica set:

Replace and restart secondary mongod instances. First, shut down the mongod, then replace these binaries with
the 2.4 binary and restart mongod. See Stop mongod Processes (page 237) for instructions on safely terminating
mongod processes.

Allow secondary to recover. Wait for the member to recover to SECONDARY state before upgrading the next sec-
ondary.

To check the member’s state, use the rs.status() method in the mongo shell.

Step 2: Step down the primary. Use rs.stepDown() in the mongo shell to step down the primary and force
the normal failover (page 583) procedure.

rs.stepDown()

rs.stepDown() expedites the failover procedure and is preferable to shutting down the primary directly.

Step 3: Replace and restart former primary mongod. When rs.status() shows that the primary has stepped
down and another member has assumed PRIMARY state, shut down the previous primary and replace the mongod
binary with the 2.4 binary and start the new instance.

Replica set failover is not instant but will render the set unavailable to writes and interrupt reads until the failover pro-
cess completes. Typically this takes 10 seconds or more. You may wish to plan the downgrade during a predetermined
maintenance window.

Downgrade a 2.6 Sharded Cluster

Requirements While the downgrade is in progress, you cannot make changes to the collection meta-data. For
example, during the downgrade, do not do any of the following:

• sh.enableSharding()

• sh.shardCollection()

• sh.addShard()

410http://www.mongodb.org/downloads

12.1. Current Stable Release 857

http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.6.11

• db.createCollection()

• db.collection.drop()

• db.dropDatabase()

• any operation that creates a database

• any other operation that modifies the cluster meta-data in any way. See Sharding Reference (page 753) for a com-
plete list of sharding commands. Note, however, that not all commands on the Sharding Reference (page 753)
page modifies the cluster meta-data.

Procedure The downgrade procedure for a sharded cluster reverses the order of the upgrade procedure.

1. Turn off the balancer (page 698) in the sharded cluster, as described in Disable the Balancer (page 732).

2. Downgrade each shard, one at a time. For each shard,

(a) Downgrade the mongod secondaries before downgrading the primary.

(b) To downgrade the primary, run replSetStepDown and downgrade.

3. Downgrade all 3 mongod config server instances, leaving the first system in the mongos --configdb
argument to downgrade last.

4. Downgrade and restart each mongos, one at a time. The downgrade process is a binary drop-in replacement.

5. Turn on the balancer, as described in Enable the Balancer (page 733).

Downgrade Procedure Once upgraded to MongoDB 2.6, you cannot downgrade to any version earlier than Mon-
goDB 2.4. If you have text or 2dsphere indexes, you can only downgrade to MongoDB 2.4.10 or later.

Except as described on this page, moving between 2.4 and 2.6 is a drop-in replacement:

Step 1: Stop the existing mongod instance. For example, on Linux, run 2.6 mongod with the --shutdown
option as follows:

mongod --dbpath /var/mongod/data --shutdown

Replace /var/mongod/data with your MongoDB dbPath. See also the Stop mongod Processes (page 237) for
alternate methods of stopping a mongod instance.

Step 2: Start the new mongod instance. Ensure you start the 2.4 mongod with the same dbPath:

mongod --dbpath /var/mongod/data

Replace /var/mongod/data with your MongoDB dbPath.

See Upgrade MongoDB to 2.6 (page 847) for full upgrade instructions.

Download

To download MongoDB 2.6, go to the downloads page411.

411http://www.mongodb.org/downloads

858 Chapter 12. Release Notes

http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.6.11

Other Resources

• All JIRA issues resolved in 2.6412.

• All Third Party License Notices413.

12.2 Previous Stable Releases

12.2.1 Release Notes for MongoDB 2.4

March 19, 2013

On this page

• Minor Releases (page 859)
• Major New Features (page 866)
• Security Enhancements (page 867)
• Performance Improvements (page 867)
• Enterprise (page 873)
• Additional Information (page 874)

MongoDB 2.4 includes enhanced geospatial support, switch to V8 JavaScript engine, security enhancements, and text
search (beta) and hashed index.

Minor Releases

2.4 Changelog

On this page

• 2.4.14 (page 859)
• 2.4.13 - Changes (page 860)
• 2.4.12 - Changes (page 860)
• 2.4.11 - Changes (page 860)
• 2.4.10 - Changes (page 860)
• Previous Releases (page 862)

2.4.14

• Packaging: Init script sets process ulimit to different value compared to documentation (SERVER-17780414)

• Security: Compute BinData length in v8 (SERVER-17647415)

• Build: Upgrade PCRE Version from 8.30 to Latest (SERVER-17252416)

412https://jira.mongodb.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+SERVER+AND+fixVersion+in+%28%222.5.0%22%2C+%222.5.1%22%2C+%222.5.2%22%2C+%222.5.3%22%2C+%222.5.4%22%2C+%222.5.5%22%2C+%222.6.0-
rc1%22%2C+%222.6.0-rc2%22%2C+%222.6.0-rc3%22%29

413https://github.com/mongodb/mongo/blob/v2.6/distsrc/THIRD-PARTY-NOTICES
414https://jira.mongodb.org/browse/SERVER-17780
415https://jira.mongodb.org/browse/SERVER-17647
416https://jira.mongodb.org/browse/SERVER-17252

12.2. Previous Stable Releases 859

https://jira.mongodb.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+SERVER+AND+fixVersion+in+%28%222.5.0%22%2C+%222.5.1%22%2C+%222.5.2%22%2C+%222.5.3%22%2C+%222.5.4%22%2C+%222.5.5%22%2C+%222.6.0-rc1%22%2C+%222.6.0-rc2%22%2C+%222.6.0-rc3%22%29
https://github.com/mongodb/mongo/blob/v2.6/distsrc/THIRD-PARTY-NOTICES
https://jira.mongodb.org/browse/SERVER-17780
https://jira.mongodb.org/browse/SERVER-17647
https://jira.mongodb.org/browse/SERVER-17252

MongoDB Documentation, Release 2.6.11

2.4.13 - Changes

• Security: Enforce BSON BinData length validation (SERVER-17278417)

• Security: Disable SSLv3 ciphers (SERVER-15673418)

• Networking: Improve BSON validation (SERVER-17264419)

2.4.12 - Changes

• Sharding: Sharded connection cleanup on setup error can crash mongos (SERVER-15056420)

• Sharding: “type 7” (OID) error when acquiring distributed lock for first time (SERVER-13616421)

• Storage: explicitly zero .ns files on creation (SERVER-15369422)

• Storage: partially written journal last section causes recovery to fail (SERVER-15111423)

2.4.11 - Changes

• Security: Potential information leak (SERVER-14268424)

• Replication: _id with $prefix field causes replication failure due to unvalidated insert (SERVER-12209425)

• Sharding: Invalid access: seg fault in SplitChunkCommand::run (SERVER-14342426)

• Indexing: Creating descending index on _id can corrupt namespace (SERVER-14833427)

• Text Search: Updates to documents with text-indexed fields may lead to incorrect entries (SERVER-14738428)

• Build: Add SCons flag to override treating all warnings as errors (SERVER-13724429)

• Packaging: Fix mongodb enterprise 2.4 init script to allow multiple processes per host (SERVER-14336430)

• JavaScript: Do not store native function pointer as a property in function prototype (SERVER-14254431)

2.4.10 - Changes

• Indexes: Fixed issue that can cause index corruption when building indexes concurrently (SERVER-12990432)

• Indexes: Fixed issue that can cause index corruption when shutting down secondary node during index build
(SERVER-12956433)

• Indexes: Mongod now recognizes incompatible “future” text and geo index versions and exits gracefully
(SERVER-12914434)

417https://jira.mongodb.org/browse/SERVER-17278
418https://jira.mongodb.org/browse/SERVER-15673
419https://jira.mongodb.org/browse/SERVER-17264
420https://jira.mongodb.org/browse/SERVER-15056
421https://jira.mongodb.org/browse/SERVER-13616
422https://jira.mongodb.org/browse/SERVER-15369
423https://jira.mongodb.org/browse/SERVER-15111
424https://jira.mongodb.org/browse/SERVER-14268
425https://jira.mongodb.org/browse/SERVER-12209
426https://jira.mongodb.org/browse/SERVER-14342
427https://jira.mongodb.org/browse/SERVER-14833
428https://jira.mongodb.org/browse/SERVER-14738
429https://jira.mongodb.org/browse/SERVER-13724
430https://jira.mongodb.org/browse/SERVER-14336
431https://jira.mongodb.org/browse/SERVER-14254
432https://jira.mongodb.org/browse/SERVER-12990
433https://jira.mongodb.org/browse/SERVER-12956
434https://jira.mongodb.org/browse/SERVER-12914

860 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-17278
https://jira.mongodb.org/browse/SERVER-15673
https://jira.mongodb.org/browse/SERVER-17264
https://jira.mongodb.org/browse/SERVER-15056
https://jira.mongodb.org/browse/SERVER-13616
https://jira.mongodb.org/browse/SERVER-15369
https://jira.mongodb.org/browse/SERVER-15111
https://jira.mongodb.org/browse/SERVER-14268
https://jira.mongodb.org/browse/SERVER-12209
https://jira.mongodb.org/browse/SERVER-14342
https://jira.mongodb.org/browse/SERVER-14833
https://jira.mongodb.org/browse/SERVER-14738
https://jira.mongodb.org/browse/SERVER-13724
https://jira.mongodb.org/browse/SERVER-14336
https://jira.mongodb.org/browse/SERVER-14254
https://jira.mongodb.org/browse/SERVER-12990
https://jira.mongodb.org/browse/SERVER-12956
https://jira.mongodb.org/browse/SERVER-12914

MongoDB Documentation, Release 2.6.11

• Indexes: Fixed issue that can cause secondaries to fail replication when building the same index multiple times
concurrently (SERVER-12662435)

• Indexes: Fixed issue that can cause index corruption on the tenth index in a collection if the index build fails
(SERVER-12481436)

• Indexes: Introduced versioning for text and geo indexes to ensure backwards compatibility (SERVER-12175437)

• Indexes: Disallowed building indexes on the system.indexes collection, which can lead to initial sync failure on
secondaries (SERVER-10231438)

• Sharding: Avoid frequent immediate balancer retries when config servers are out of sync (SERVER-12908439)

• Sharding: Add indexes to locks collection on config servers to avoid long queries in case of large numbers of
collections (SERVER-12548440)

• Sharding: Fixed issue that can corrupt the config metadata cache when sharding collections concurrently
(SERVER-12515441)

• Sharding: Don’t move chunks created on collections with a hashed shard key if the collection already contains
data (SERVER-9259442)

• Replication: Fixed issue where node appears to be down in a replica set during a compact operation (SERVER-
12264443)

• Replication: Fixed issue that could cause delays in elections when a node is not vetoing an election (SERVER-
12170444)

• Replication: Step down all primaries if multiple primaries are detected in replica set to ensure correct election
result (SERVER-10793445)

• Replication: Upon clock skew detection, secondaries will switch to sync directly from the primary to avoid sync
cycles (SERVER-8375446)

• Runtime: The SIGXCPU signal is now caught and mongod writes a log message and exits gracefully (SERVER-
12034447)

• Runtime: Fixed issue where mongod fails to start on Linux when /sys/dev/block directory is not readable
(SERVER-9248448)

• Windows: No longer zero-fill newly allocated files on systems other than Windows 7 or Windows Server 2008
R2 (SERVER-8480449)

• GridFS: Chunk size is decreased to 255 KB (from 256 KB) to avoid overhead with usePowerOf2Sizes option
(SERVER-13331450)

• SNMP: Fixed MIB file validation under smilint (SERVER-12487451)
435https://jira.mongodb.org/browse/SERVER-12662
436https://jira.mongodb.org/browse/SERVER-12481
437https://jira.mongodb.org/browse/SERVER-12175
438https://jira.mongodb.org/browse/SERVER-10231
439https://jira.mongodb.org/browse/SERVER-12908
440https://jira.mongodb.org/browse/SERVER-12548
441https://jira.mongodb.org/browse/SERVER-12515
442https://jira.mongodb.org/browse/SERVER-9259
443https://jira.mongodb.org/browse/SERVER-12264
444https://jira.mongodb.org/browse/SERVER-12170
445https://jira.mongodb.org/browse/SERVER-10793
446https://jira.mongodb.org/browse/SERVER-8375
447https://jira.mongodb.org/browse/SERVER-12034
448https://jira.mongodb.org/browse/SERVER-9248
449https://jira.mongodb.org/browse/SERVER-8480
450https://jira.mongodb.org/browse/SERVER-13331
451https://jira.mongodb.org/browse/SERVER-12487

12.2. Previous Stable Releases 861

https://jira.mongodb.org/browse/SERVER-12662
https://jira.mongodb.org/browse/SERVER-12481
https://jira.mongodb.org/browse/SERVER-12175
https://jira.mongodb.org/browse/SERVER-10231
https://jira.mongodb.org/browse/SERVER-12908
https://jira.mongodb.org/browse/SERVER-12548
https://jira.mongodb.org/browse/SERVER-12515
https://jira.mongodb.org/browse/SERVER-9259
https://jira.mongodb.org/browse/SERVER-12264
https://jira.mongodb.org/browse/SERVER-12264
https://jira.mongodb.org/browse/SERVER-12170
https://jira.mongodb.org/browse/SERVER-12170
https://jira.mongodb.org/browse/SERVER-10793
https://jira.mongodb.org/browse/SERVER-8375
https://jira.mongodb.org/browse/SERVER-12034
https://jira.mongodb.org/browse/SERVER-12034
https://jira.mongodb.org/browse/SERVER-9248
https://jira.mongodb.org/browse/SERVER-8480
https://jira.mongodb.org/browse/SERVER-13331
https://jira.mongodb.org/browse/SERVER-12487

MongoDB Documentation, Release 2.6.11

• Shell: Fixed issue in V8 memory allocation that could cause long-running shell commands to crash (SERVER-
11871452)

• Shell: Fixed memory leak in the md5sumFile shell utility method (SERVER-11560453)

Previous Releases

• All 2.4.9 improvements454.

• All 2.4.8 improvements455.

• All 2.4.7 improvements456.

• All 2.4.6 improvements457.

• All 2.4.5 improvements458.

• All 2.4.4 improvements459.

• All 2.4.3 improvements460.

• All 2.4.2 improvements461

• All 2.4.1 improvements462.

2.4.14 – April 28, 2015

• Init script sets process ulimit to different value compared to documentation SERVER-17780463

• Compute BinData length in v8 SERVER-17647464

• Upgrade PCRE Version from 8.30 to Latest SERVER-17252465

• 2.4.14 Changelog (page 859).

• All 2.4.14 improvements466.

2.4.13 – February 25, 2015

• Enforce BSON BinData length validation SERVER-17278467

• Disable SSLv3 ciphers SERVER-15673468

• Improve BSON validation SERVER-17264469

452https://jira.mongodb.org/browse/SERVER-11871
453https://jira.mongodb.org/browse/SERVER-11560
454https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.9%22%20AND%20project%20%3D%20SERVER
455https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.8%22%20AND%20project%20%3D%20SERVER
456https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.7%22%20AND%20project%20%3D%20SERVER
457https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.6%22%20AND%20project%20%3D%20SERVER
458https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.5%22%20AND%20project%20%3D%20SERVER
459https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.4%22%20AND%20project%20%3D%20SERVER
460https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.3%22%20AND%20project%20%3D%20SERVER
461https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.2%22%20AND%20project%20%3D%20SERVER
462https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.1%22%20AND%20project%20%3D%20SERVER
463https://jira.mongodb.org/browse/SERVER-17780
464https://jira.mongodb.org/browse/SERVER-17647
465https://jira.mongodb.org/browse/SERVER-17252
466https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.14%22%20AND%20project%20%3D%20SERVER
467https://jira.mongodb.org/browse/SERVER-17278
468https://jira.mongodb.org/browse/SERVER-15673
469https://jira.mongodb.org/browse/SERVER-17264

862 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-11871
https://jira.mongodb.org/browse/SERVER-11871
https://jira.mongodb.org/browse/SERVER-11560
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.9%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.8%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.7%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.6%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.5%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.4%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.3%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.2%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.1%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-17780
https://jira.mongodb.org/browse/SERVER-17647
https://jira.mongodb.org/browse/SERVER-17252
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.14%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-17278
https://jira.mongodb.org/browse/SERVER-15673
https://jira.mongodb.org/browse/SERVER-17264

MongoDB Documentation, Release 2.6.11

• 2.4.13 Changelog (page 860).

• All 2.4.13 improvements470.

2.4.12 – October 16, 2014

• Partially written journal last section causes recovery to fail SERVER-15111471.

• Explicitly zero .ns files on creation SERVER-15369472.

• 2.4.12 Changelog (page 860).

• All 2.4.12 improvements473.

2.4.11 – August 18, 2014

• Fixed potential information leak: SERVER-14268474.

• Resolved issue were an _idwith a $prefix field caused replication failure due to unvalidated insert SERVER-
12209475.

• Addressed issue where updates to documents with text-indexed fields could lead to incorrect entries SERVER-
14738476.

• Resolved issue where creating descending index on _id could corrupt namespace SERVER-14833477.

• 2.4.11 Changelog (page 860).

• All 2.4.11 improvements478.

2.4.10 – April 4, 2014

• Performs fast file allocation on Windows when available SERVER-8480479.

• Start elections if more than one primary is detected SERVER-10793480.

• Changes to allow safe downgrading from v2.6 to v2.4 SERVER-12914481, SERVER-12175482.

• Fixes for edge cases in index creation SERVER-12481483, SERVER-12956484.

• 2.4.10 Changelog (page 860).

• All 2.4.10 improvements485.

470https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.13%22%20AND%20project%20%3D%20SERVER
471https://jira.mongodb.org/browse/SERVER-15111
472https://jira.mongodb.org/browse/SERVER-15369
473https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.12%22%20AND%20project%20%3D%20SERVER
474https://jira.mongodb.org/browse/SERVER-14268
475https://jira.mongodb.org/browse/SERVER-12209
476https://jira.mongodb.org/browse/SERVER-14738
477https://jira.mongodb.org/browse/SERVER-14833
478https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.11%22%20AND%20project%20%3D%20SERVER
479https://jira.mongodb.org/browse/SERVER-8480
480https://jira.mongodb.org/browse/SERVER-10793
481https://jira.mongodb.org/browse/SERVER-12914
482https://jira.mongodb.org/browse/SERVER-12175
483https://jira.mongodb.org/browse/SERVER-12481
484https://jira.mongodb.org/browse/SERVER-12956
485https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.10%22%20AND%20project%20%3D%20SERVER

12.2. Previous Stable Releases 863

https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.13%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-15111
https://jira.mongodb.org/browse/SERVER-15369
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.12%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-14268
https://jira.mongodb.org/browse/SERVER-12209
https://jira.mongodb.org/browse/SERVER-12209
https://jira.mongodb.org/browse/SERVER-14738
https://jira.mongodb.org/browse/SERVER-14738
https://jira.mongodb.org/browse/SERVER-14833
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.11%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-8480
https://jira.mongodb.org/browse/SERVER-10793
https://jira.mongodb.org/browse/SERVER-12914
https://jira.mongodb.org/browse/SERVER-12175
https://jira.mongodb.org/browse/SERVER-12481
https://jira.mongodb.org/browse/SERVER-12956
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.10%22%20AND%20project%20%3D%20SERVER

MongoDB Documentation, Release 2.6.11

2.4.9 – January 10, 2014

• Fix for instances where mongos incorrectly reports a successful write SERVER-12146486.

• Make non-primary read preferences consistent with slaveOK versioning logic SERVER-11971487.

• Allow new sharded cluster connections to read from secondaries when primary is down SERVER-7246488.

• All 2.4.9 improvements489.

2.4.8 – November 1, 2013

• Increase future compatibility for 2.6 authorization features SERVER-11478490.

• Fix dbhash cache issue for config servers SERVER-11421491.

• All 2.4.8 improvements492.

2.4.7 – October 21, 2013

• Fixed over-aggressive caching of V8 Isolates SERVER-10596493.

• Removed extraneous initial count during mapReduce SERVER-9907494.

• Cache results of dbhash command SERVER-11021495.

• Fixed memory leak in aggregation SERVER-10554496.

• All 2.4.7 improvements497.

2.4.6 – August 20, 2013

• Fix for possible loss of documents during the chunk migration process if a document in the chunk is very large
SERVER-10478498.

• Fix for C++ client shutdown issues SERVER-8891499.

• Improved replication robustness in presence of high network latency SERVER-10085500.

• Improved Solaris support SERVER-9832501, SERVER-9786502, and SERVER-7080503.

486https://jira.mongodb.org/browse/SERVER-12146
487https://jira.mongodb.org/browse/SERVER-11971
488https://jira.mongodb.org/browse/SERVER-7246
489https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.9%22%20AND%20project%20%3D%20SERVER
490https://jira.mongodb.org/browse/SERVER-11478
491https://jira.mongodb.org/browse/SERVER-11421
492https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.8%22%20AND%20project%20%3D%20SERVER
493https://jira.mongodb.org/browse/SERVER-10596
494https://jira.mongodb.org/browse/SERVER-9907
495https://jira.mongodb.org/browse/SERVER-11021
496https://jira.mongodb.org/browse/SERVER-10554
497https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.7%22%20AND%20project%20%3D%20SERVER
498https://jira.mongodb.org/browse/SERVER-10478
499https://jira.mongodb.org/browse/SERVER-8891
500https://jira.mongodb.org/browse/SERVER-10085
501https://jira.mongodb.org/browse/SERVER-9832
502https://jira.mongodb.org/browse/SERVER-9786
503https://jira.mongodb.org/browse/SERVER-7080

864 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-12146
https://jira.mongodb.org/browse/SERVER-11971
https://jira.mongodb.org/browse/SERVER-7246
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.9%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-11478
https://jira.mongodb.org/browse/SERVER-11421
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.8%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-10596
https://jira.mongodb.org/browse/SERVER-9907
https://jira.mongodb.org/browse/SERVER-11021
https://jira.mongodb.org/browse/SERVER-10554
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.7%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-10478
https://jira.mongodb.org/browse/SERVER-8891
https://jira.mongodb.org/browse/SERVER-10085
https://jira.mongodb.org/browse/SERVER-9832
https://jira.mongodb.org/browse/SERVER-9786
https://jira.mongodb.org/browse/SERVER-7080

MongoDB Documentation, Release 2.6.11

• All 2.4.6 improvements504.

2.4.5 – July 3, 2013

• Fix for CVE-2013-4650 Improperly grant user system privileges on databases other than local SERVER-
9983505.

• Fix for CVE-2013-3969 Remotely triggered segmentation fault in Javascript engine SERVER-9878506.

• Fix to prevent identical background indexes from being built SERVER-9856507.

• Config server performance improvements SERVER-9864508 and SERVER-5442509.

• Improved initial sync resilience to network failure SERVER-9853510.

• All 2.4.5 improvements511.

2.4.4 – June 4, 2013

• Performance fix for Windows version SERVER-9721512

• Fix for config upgrade failure SERVER-9661513.

• Migration to Cyrus SASL library for MongoDB Enterprise SERVER-8813514.

• All 2.4.4 improvements515.

2.4.3 – April 23, 2013

• Fix for mongo shell ignoring modified object’s _id field SERVER-9385516.

• Fix for race condition in log rotation SERVER-4739517.

• Fix for copydb command with authorization in a sharded cluster SERVER-9093518.

• All 2.4.3 improvements519.

2.4.2 – April 17, 2013

• Several V8 memory leak and performance fixes SERVER-9267520 and SERVER-9230521.

504https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.6%22%20AND%20project%20%3D%20SERVER
505https://jira.mongodb.org/browse/SERVER-9983
506https://jira.mongodb.org/browse/SERVER-9878
507https://jira.mongodb.org/browse/SERVER-9856
508https://jira.mongodb.org/browse/SERVER-9864
509https://jira.mongodb.org/browse/SERVER-5442
510https://jira.mongodb.org/browse/SERVER-9853
511https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.5%22%20AND%20project%20%3D%20SERVER
512https://jira.mongodb.org/browse/SERVER-9721
513https://jira.mongodb.org/browse/SERVER-9661
514https://jira.mongodb.org/browse/SERVER-8813
515https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.4%22%20AND%20project%20%3D%20SERVER
516https://jira.mongodb.org/browse/SERVER-9385
517https://jira.mongodb.org/browse/SERVER-4739
518https://jira.mongodb.org/browse/SERVER-9093
519https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.3%22%20AND%20project%20%3D%20SERVER
520https://jira.mongodb.org/browse/SERVER-9267
521https://jira.mongodb.org/browse/SERVER-9230

12.2. Previous Stable Releases 865

https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.6%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-9983
https://jira.mongodb.org/browse/SERVER-9983
https://jira.mongodb.org/browse/SERVER-9878
https://jira.mongodb.org/browse/SERVER-9856
https://jira.mongodb.org/browse/SERVER-9864
https://jira.mongodb.org/browse/SERVER-5442
https://jira.mongodb.org/browse/SERVER-9853
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.5%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-9721
https://jira.mongodb.org/browse/SERVER-9661
https://jira.mongodb.org/browse/SERVER-8813
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.4%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-9385
https://jira.mongodb.org/browse/SERVER-4739
https://jira.mongodb.org/browse/SERVER-9093
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.3%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-9267
https://jira.mongodb.org/browse/SERVER-9230

MongoDB Documentation, Release 2.6.11

• Fix for upgrading sharded clusters SERVER-9125522.

• Fix for high volume connection crash SERVER-9014523.

• All 2.4.2 improvements524

2.4.1 – April 17, 2013

• Fix for losing index changes during initial sync SERVER-9087525

• All 2.4.1 improvements526.

Major New Features

The following changes in MongoDB affect both standard and Enterprise editions:

Text Search

Add support for text search of content in MongoDB databases as a beta feature. See Text Indexes (page 501) for more
information.

Geospatial Support Enhancements

• Add new 2dsphere index (page 497). The new index supports GeoJSON527 objects Point, LineString, and
Polygon. See 2dsphere Indexes (page 497) and Geospatial Indexes and Queries (page 494).

• Introduce operators $geometry, $geoWithin and $geoIntersects to work with the GeoJSON data.

Hashed Index

Add new hashed index (page 504) to index documents using hashes of field values. When used to index a shard key,
the hashed index ensures an evenly distributed shard key. See also Hashed Shard Keys (page 689).

Improvements to the Aggregation Framework

• Improve support for geospatial queries. See the $geoWithin operator and the $geoNear pipeline stage.

• Improve sort efficiency when the $sort stage immediately precedes a $limit in the pipeline.

• Add new operators $millisecond and $concat and modify how $min operator processes null values.

522https://jira.mongodb.org/browse/SERVER-9125
523https://jira.mongodb.org/browse/SERVER-9014
524https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.2%22%20AND%20project%20%3D%20SERVER
525https://jira.mongodb.org/browse/SERVER-9087
526https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.1%22%20AND%20project%20%3D%20SERVER
527http://geojson.org/geojson-spec.html

866 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-9125
https://jira.mongodb.org/browse/SERVER-9014
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.2%22%20AND%20project%20%3D%20SERVER
https://jira.mongodb.org/browse/SERVER-9087
https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.1%22%20AND%20project%20%3D%20SERVER
http://geojson.org/geojson-spec.html

MongoDB Documentation, Release 2.6.11

Changes to Update Operators

• Add new $setOnInsert operator for use with upsert .

• Enhance functionality of the $push operator, supporting its use with the $each, the $sort, and the $slice
modifiers.

Additional Limitations for Map-Reduce and $where Operations

The mapReduce command, group command, and the $where operator expressions cannot access certain global
functions or properties, such as db, that are available in the mongo shell. See the individual command or operator for
details.

Improvements to serverStatus Command

Provide additional metrics and customization for the serverStatus command. See db.serverStatus() and
serverStatus for more information.

Security Enhancements

• Introduce a role-based access control system User Privileges528 now use a new format for Privilege
Documents.

• Enforce uniqueness of the user in user privilege documents per database. Previous versions of MongoDB did
not enforce this requirement, and existing databases may have duplicates.

• Support encrypted connections using SSL certificates signed by a Certificate Authority. See Configure mongod
and mongos for TLS/SSL (page 338).

For more information on security and risk management strategies, see MongoDB Security Practices and Procedures
(page 313).

Performance Improvements

V8 JavaScript Engine

JavaScript Changes in MongoDB 2.4

On this page

• Improved Concurrency (page 868)
• Modernized JavaScript Implementation (ES5) (page 868)
• Removed Non-Standard SpiderMonkey Features (page 868)

Consider the following impacts of V8 JavaScript Engine (page 867) in MongoDB 2.4:

Tip
Use the new interpreterVersion() method in the mongo shell and the javascriptEngine field in the
output of db.serverBuildInfo() to determine which JavaScript engine a MongoDB binary uses.

528http://docs.mongodb.org/v2.4/reference/user-privileges

12.2. Previous Stable Releases 867

http://docs.mongodb.org/v2.4/reference/user-privileges

MongoDB Documentation, Release 2.6.11

Improved Concurrency Previously, MongoDB operations that required the JavaScript interpreter had to acquire
a lock, and a single mongod could only run a single JavaScript operation at a time. The switch to V8 improves
concurrency by permitting multiple JavaScript operations to run at the same time.

Modernized JavaScript Implementation (ES5) The 5th edition of ECMAscript529, abbreviated as ES5, adds many
new language features, including:

• standardized JSON530,

• strict mode531,

• function.bind()532,

• array extensions533, and

• getters and setters.

With V8, MongoDB supports the ES5 implementation of Javascript with the following exceptions.

Note: The following features do not work as expected on documents returned from MongoDB queries:

• Object.seal() throws an exception on documents returned from MongoDB queries.

• Object.freeze() throws an exception on documents returned from MongoDB queries.

• Object.preventExtensions() incorrectly allows the addition of new properties on documents returned
from MongoDB queries.

• enumerable properties, when added to documents returned from MongoDB queries, are not saved during
write operations.

See SERVER-8216534, SERVER-8223535, SERVER-8215536, and SERVER-8214537 for more information.

For objects that have not been returned from MongoDB queries, the features work as expected.

Removed Non-Standard SpiderMonkey Features V8 does not support the following non-standard SpiderMon-
key538 JavaScript extensions, previously supported by MongoDB’s use of SpiderMonkey as its JavaScript engine.

E4X Extensions V8 does not support the non-standard E4X539 extensions. E4X provides a native XML540 object
to the JavaScript language and adds the syntax for embedding literal XML documents in JavaScript code.

You need to use alternative XML processing if you used any of the following constructors/methods:

• XML()

• Namespace()

• QName()

529http://www.ecma-international.org/publications/standards/Ecma-262.htm
530http://www.ecma-international.org/ecma-262/5.1/#sec-15.12.1
531http://www.ecma-international.org/ecma-262/5.1/#sec-4.2.2
532http://www.ecma-international.org/ecma-262/5.1/#sec-15.3.4.5
533http://www.ecma-international.org/ecma-262/5.1/#sec-15.4.4.16
534https://jira.mongodb.org/browse/SERVER-8216
535https://jira.mongodb.org/browse/SERVER-8223
536https://jira.mongodb.org/browse/SERVER-8215
537https://jira.mongodb.org/browse/SERVER-8214
538https://developer.mozilla.org/en-US/docs/SpiderMonkey
539https://developer.mozilla.org/en-US/docs/E4X
540https://developer.mozilla.org/en-US/docs/E4X/Processing_XML_with_E4X

868 Chapter 12. Release Notes

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/ecma-262/5.1/#sec-15.12.1
http://www.ecma-international.org/ecma-262/5.1/#sec-4.2.2
http://www.ecma-international.org/ecma-262/5.1/#sec-15.3.4.5
http://www.ecma-international.org/ecma-262/5.1/#sec-15.4.4.16
https://jira.mongodb.org/browse/SERVER-8216
https://jira.mongodb.org/browse/SERVER-8223
https://jira.mongodb.org/browse/SERVER-8215
https://jira.mongodb.org/browse/SERVER-8214
https://developer.mozilla.org/en-US/docs/SpiderMonkey
https://developer.mozilla.org/en-US/docs/SpiderMonkey
https://developer.mozilla.org/en-US/docs/E4X
https://developer.mozilla.org/en-US/docs/E4X/Processing_XML_with_E4X

MongoDB Documentation, Release 2.6.11

• XMLList()

• isXMLName()

Destructuring Assignment V8 does not support the non-standard destructuring assignments. Destructuring assign-
ment “extract[s] data from arrays or objects using a syntax that mirrors the construction of array and object literals.” -
Mozilla docs541

Example
The following destructuring assignment is invalid with V8 and throws a SyntaxError:

original = [4, 8, 15];
var [b, ,c] = a; // <== destructuring assignment
print(b) // 4
print(c) // 15

Iterator(), StopIteration(), and Generators V8 does not support Iterator(), StopIteration(), and gener-
ators542.

InternalError() V8 does not support InternalError(). Use Error() instead.

for each...in Construct V8 does not support the use of for each...in543 construct. Use for (var x in
y) construct instead.

Example
The following for each (var x in y) construct is invalid with V8:

var o = { name: 'MongoDB', version: 2.4 };

for each (var value in o) {
print(value);

}

Instead, in version 2.4, you can use the for (var x in y) construct:

var o = { name: 'MongoDB', version: 2.4 };

for (var prop in o) {
var value = o[prop];
print(value);

}

You can also use the array instance method forEach() with the ES5 method Object.keys():

Object.keys(o).forEach(function (key) {
var value = o[key];
print(value);

});

541https://developer.mozilla.org/en-US/docs/JavaScript/New_in_JavaScript/1.7#Destructuring_assignment_(Merge_into_own_page.2Fsection)
542https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Iterators_and_Generators
543https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Statements/for_each...in

12.2. Previous Stable Releases 869

https://developer.mozilla.org/en-US/docs/JavaScript/New_in_JavaScript/1.7#Destructuring_assignment_(Merge_into_own_page.2Fsection)
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Iterators_and_Generators
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Iterators_and_Generators
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Statements/for_each...in

MongoDB Documentation, Release 2.6.11

Array Comprehension V8 does not support Array comprehensions544.

Use other methods such as the Array instance methods map(), filter(), or forEach().

Example
With V8, the following array comprehension is invalid:

var a = { w: 1, x: 2, y: 3, z: 4 }

var arr = [i * i for each (i in a) if (i > 2)]
printjson(arr)

Instead, you can implement using the Array instance method forEach() and the ES5 method Object.keys()
:

var a = { w: 1, x: 2, y: 3, z: 4 }

var arr = [];
Object.keys(a).forEach(function (key) {
var val = a[key];
if (val > 2) arr.push(val * val);

})
printjson(arr)

Note: The new logic uses the Array instance method forEach() and not the generic method
Array.forEach(); V8 does not support Array generic methods. See Array Generic Methods (page 872) for
more information.

Multiple Catch Blocks V8 does not support multiple catch blocks and will throw a SyntaxError.

Example
The following multiple catch blocks is invalid with V8 and will throw "SyntaxError: Unexpected token
if":

try {
something()

} catch (err if err instanceof SomeError) {
print('some error')

} catch (err) {
print('standard error')

}

Conditional Function Definition V8 will produce different outcomes than SpiderMonkey with conditional function
definitions545.

Example
The following conditional function definition produces different outcomes in SpiderMonkey versus V8:

function test () {
if (false) {

544https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Predefined_Core_Objects#Array_comprehensions
545https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Functions

870 Chapter 12. Release Notes

https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Predefined_Core_Objects#Array_comprehensions
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Functions
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Functions

MongoDB Documentation, Release 2.6.11

function go () {};
}
print(typeof go)

}

With SpiderMonkey, the conditional function outputs undefined, whereas with V8, the conditional function outputs
function.

If your code defines functions this way, it is highly recommended that you refactor the code. The following example
refactors the conditional function definition to work in both SpiderMonkey and V8.

function test () {
var go;
if (false) {
go = function () {}

}
print(typeof go)

}

The refactored code outputs undefined in both SpiderMonkey and V8.

Note: ECMAscript prohibits conditional function definitions. To force V8 to throw an Error, enable strict mode546.

function test () {
'use strict';

if (false) {
function go () {}

}
}

The JavaScript code throws the following syntax error:

SyntaxError: In strict mode code, functions can only be declared at top level or immediately within another function.

String Generic Methods V8 does not support String generics547. String generics are a set of methods on the
String class that mirror instance methods.

Example
The following use of the generic method String.toLowerCase() is invalid with V8:

var name = 'MongoDB';

var lower = String.toLowerCase(name);

With V8, use the String instance method toLowerCase() available through an instance of the String class
instead:

var name = 'MongoDB';

var lower = name.toLowerCase();
print(name + ' becomes ' + lower);

546http://www.nczonline.net/blog/2012/03/13/its-time-to-start-using-javascript-strict-mode/
547https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/String#String_generic_methods

12.2. Previous Stable Releases 871

http://www.nczonline.net/blog/2012/03/13/its-time-to-start-using-javascript-strict-mode/
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/String#String_generic_methods

MongoDB Documentation, Release 2.6.11

With V8, use the String instance methods instead of following generic methods:

String.charAt() String.quote() String.toLocaleLowerCase()
String.charCodeAt() String.replace() String.toLocaleUpperCase()
String.concat() String.search() String.toLowerCase()
String.endsWith() String.slice() String.toUpperCase()
String.indexOf() String.split() String.trim()
String.lastIndexOf() String.startsWith() String.trimLeft()
String.localeCompare() String.substr() String.trimRight()
String.match() String.substring()

Array Generic Methods V8 does not support Array generic methods548. Array generics are a set of methods on the
Array class that mirror instance methods.

Example
The following use of the generic method Array.every() is invalid with V8:

var arr = [4, 8, 15, 16, 23, 42];

function isEven (val) {
return 0 === val % 2;

}

var allEven = Array.every(arr, isEven);
print(allEven);

With V8, use the Array instance method every() available through an instance of the Array class instead:

var allEven = arr.every(isEven);
print(allEven);

With V8, use the Array instance methods instead of the following generic methods:

Array.concat() Array.lastIndexOf() Array.slice()
Array.every() Array.map() Array.some()
Array.filter() Array.pop() Array.sort()
Array.forEach() Array.push() Array.splice()
Array.indexOf() Array.reverse() Array.unshift()
Array.join() Array.shift()

Array Instance Method toSource() V8 does not support the Array instance method toSource()549. Use the
Array instance method toString() instead.

uneval() V8 does not support the non-standard method uneval(). Use the standardized JSON.stringify()550

method instead.

Change default JavaScript engine from SpiderMonkey to V8. The change provides improved concurrency for
JavaScript operations, modernized JavaScript implementation, and the removal of non-standard SpiderMonkey fea-
tures, and affects all JavaScript behavior including the commands mapReduce, group, and eval and the query
operator $where.

548https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Array#Array_generic_methods
549https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Array/toSource
550https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/JSON/stringify

872 Chapter 12. Release Notes

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Array#Array_generic_methods
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Array/toSource
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/JSON/stringify

MongoDB Documentation, Release 2.6.11

See JavaScript Changes in MongoDB 2.4 (page 867) for more information about all changes .

BSON Document Validation Enabled by Default for mongod and mongorestore

Enable basic BSON object validation for mongod and mongorestore when writing to MongoDB data files. See
wireObjectCheck for details.

Index Build Enhancements

• Add support for multiple concurrent index builds in the background by a single mongod instance. See building
indexes in the background (page 510) for more information on background index builds.

• Allow the db.killOp() method to terminate a foreground index build.

• Improve index validation during index creation. See Compatibility and Index Type Changes in MongoDB 2.4
(page 881) for more information.

Set Parameters as Command Line Options

Provide --setParameter as a command line option for mongos and mongod. See mongod and mongos for
list of available options for setParameter.

Changed Replication Behavior for Chunk Migration

By default, each document move during chunk migration (page 700) in a sharded cluster propagates to at least one
secondary before the balancer proceeds with its next operation. See Chunk Migration and Replication (page 701).

Improved Chunk Migration Queue Behavior

Increase performance for moving multiple chunks off an overloaded shard. The balancer no longer waits for the
current migration’s delete phase to complete before starting the next chunk migration. See Chunk Migration Queuing
(page 701) for details.

Enterprise

The following changes are specific to MongoDB Enterprise Editions:

SASL Library Change

In 2.4.4, MongoDB Enterprise uses Cyrus SASL. Earlier 2.4 Enterprise versions use GNU SASL (libgsasl). To
upgrade to 2.4.4 MongoDB Enterprise or greater, you must install all package dependencies related to this change,
including the appropriate Cyrus SASL GSSAPI library. See Install MongoDB Enterprise (page 27) for details of the
dependencies.

12.2. Previous Stable Releases 873

MongoDB Documentation, Release 2.6.11

New Modular Authentication System with Support for Kerberos

In 2.4, the MongoDB Enterprise now supports authentication via a Kerberos mechanism. See Configure MongoDB
with Kerberos Authentication on Linux (page 369) for more information. For drivers that provide support for Kerberos
authentication to MongoDB, refer to Driver Support (page 329).

For more information on security and risk management strategies, see MongoDB Security Practices and Procedures
(page 313).

Additional Information

Platform Notes

For OS X, MongoDB 2.4 only supports OS X versions 10.6 (Snow Leopard) and later. There are no other platform
support changes in MongoDB 2.4. See the downloads page551 for more information on platform support.

Upgrade Process

Upgrade MongoDB to 2.4

On this page

• Upgrade Recommendations and Checklist (page 874)
• Upgrade Standalone mongod Instance to MongoDB 2.4 (page 875)
• Upgrade a Replica Set from MongoDB 2.2 to MongoDB 2.4 (page 875)
• Upgrade a Sharded Cluster from MongoDB 2.2 to MongoDB 2.4 (page 875)
• Rolling Upgrade Limitation for 2.2.0 Deployments Running with auth Enabled (page 879)
• Upgrade from 2.3 to 2.4 (page 879)
• Downgrade MongoDB from 2.4 to Previous Versions (page 879)
• Additional Resources (page 881)

In the general case, the upgrade from MongoDB 2.2 to 2.4 is a binary-compatible “drop-in” upgrade: shut down the
mongod instances and replace them with mongod instances running 2.4. However, before you attempt any upgrade
please familiarize yourself with the content of this document, particularly the procedure for upgrading sharded clusters
(page 875) and the considerations for reverting to 2.2 after running 2.4 (page 879).

Upgrade Recommendations and Checklist When upgrading, consider the following:

• For all deployments using authentication, upgrade the drivers (i.e. client libraries), before upgrading the
mongod instance or instances.

• To upgrade to 2.4 sharded clusters must upgrade following the meta-data upgrade procedure (page 875).

• If you’re using 2.2.0 and running with authorization enabled, you will need to upgrade first to 2.2.1
and then upgrade to 2.4. See Rolling Upgrade Limitation for 2.2.0 Deployments Running with auth Enabled
(page 879).

• If you have system.users documents (i.e. for authorization) that you created before 2.4 you must
ensure that there are no duplicate values for the user field in the system.users collection in any database.
If you do have documents with duplicate user fields, you must remove them before upgrading.

See Security Enhancements (page 867) for more information.

551http://www.mongodb.org/downloads/

874 Chapter 12. Release Notes

http://www.mongodb.org/downloads/

MongoDB Documentation, Release 2.6.11

Upgrade Standalone mongod Instance to MongoDB 2.4

1. Download binaries of the latest release in the 2.4 series from the MongoDB Download Page552. See Install
MongoDB (page 5) for more information.

2. Shutdown your mongod instance. Replace the existing binary with the 2.4 mongod binary and restart mongod.

Upgrade a Replica Set from MongoDB 2.2 to MongoDB 2.4 You can upgrade to 2.4 by performing a “rolling” up-
grade of the set by upgrading the members individually while the other members are available to minimize downtime.
Use the following procedure:

1. Upgrade the secondary members of the set one at a time by shutting down the mongod and replacing the 2.2
binary with the 2.4 binary. After upgrading a mongod instance, wait for the member to recover to SECONDARY
state before upgrading the next instance. To check the member’s state, issue rs.status() in the mongo
shell.

2. Use the mongo shell method rs.stepDown() to step down the primary to allow the normal failover
(page 583) procedure. rs.stepDown() expedites the failover procedure and is preferable to shutting down
the primary directly.

Once the primary has stepped down and another member has assumed PRIMARY state, as observed in the output
of rs.status(), shut down the previous primary and replace mongod binary with the 2.4 binary and start
the new process.

Note: Replica set failover is not instant but will render the set unavailable to read or accept writes until the
failover process completes. Typically this takes 10 seconds or more. You may wish to plan the upgrade during
a predefined maintenance window.

Upgrade a Sharded Cluster from MongoDB 2.2 to MongoDB 2.4
Important: Only upgrade sharded clusters to 2.4 if all members of the cluster are currently running instances of 2.2.
The only supported upgrade path for sharded clusters running 2.0 is via 2.2.

Overview Upgrading a sharded cluster from MongoDB version 2.2 to 2.4 (or 2.3) requires that you run a 2.4
mongos with the --upgrade option, described in this procedure. The upgrade process does not require down-
time.

The upgrade to MongoDB 2.4 adds epochs to the meta-data for all collections and chunks in the existing cluster.
MongoDB 2.2 processes are capable of handling epochs, even though 2.2 did not require them. This procedure applies
only to upgrades from version 2.2. Earlier versions of MongoDB do not correctly handle epochs. See Cluster Meta-
data Upgrade (page 875) for more information.

After completing the meta-data upgrade you can fully upgrade the components of the cluster. With the balancer
disabled:

• Upgrade all mongos instances in the cluster.

• Upgrade all 3 mongod config server instances.

• Upgrade the mongod instances for each shard, one at a time.

See Upgrade Sharded Cluster Components (page 879) for more information.

Cluster Meta-data Upgrade
552http://www.mongodb.org/downloads

12.2. Previous Stable Releases 875

http://www.mongodb.org/downloads

MongoDB Documentation, Release 2.6.11

Considerations Beware of the following properties of the cluster upgrade process:

• Before you start the upgrade, ensure that the amount of free space on the filesystem for the config database
(page 754) is at least 4 to 5 times the amount of space currently used by the config database (page 754) data
files.

Additionally, ensure that all indexes in the config database (page 754) are {v:1} indexes. If a critical index is
a {v:0} index, chunk splits can fail due to known issues with the {v:0} format. {v:0} indexes are present
on clusters created with MongoDB 2.0 or earlier.

The duration of the metadata upgrade depends on the network latency between the node performing the upgrade
and the three config servers. Ensure low latency between the upgrade process and the config servers.

• While the upgrade is in progress, you cannot make changes to the collection meta-data. For example, during the
upgrade, do not perform:

– sh.enableSharding(),

– sh.shardCollection(),

– sh.addShard(),

– db.createCollection(),

– db.collection.drop(),

– db.dropDatabase(),

– any operation that creates a database, or

– any other operation that modifies the cluster meta-data in any way. See Sharding Reference (page 753) for
a complete list of sharding commands. Note, however, that not all commands on the Sharding Reference
(page 753) page modifies the cluster meta-data.

• Once you upgrade to 2.4 and complete the upgrade procedure do not use 2.0 mongod and mongos processes
in your cluster. 2.0 process may re-introduce old meta-data formats into cluster meta-data.

The upgraded config database will require more storage space than before, to make backup and working copies of the
config.chunks (page 756) and config.collections (page 757) collections. As always, if storage require-
ments increase, the mongod might need to pre-allocate additional data files. See What tools can I use to investigate
storage use in MongoDB? (page 794) for more information.

Meta-data Upgrade Procedure Changes to the meta-data format for sharded clusters, stored in the config database
(page 754), require a special meta-data upgrade procedure when moving to 2.4.

Do not perform operations that modify meta-data while performing this procedure. See Upgrade a Sharded Cluster
from MongoDB 2.2 to MongoDB 2.4 (page 875) for examples of prohibited operations.

1. Before you start the upgrade, ensure that the amount of free space on the filesystem for the config database
(page 754) is at least 4 to 5 times the amount of space currently used by the config database (page 754) data
files.

Additionally, ensure that all indexes in the config database (page 754) are {v:1} indexes. If a critical index is
a {v:0} index, chunk splits can fail due to known issues with the {v:0} format. {v:0} indexes are present
on clusters created with MongoDB 2.0 or earlier.

The duration of the metadata upgrade depends on the network latency between the node performing the upgrade
and the three config servers. Ensure low latency between the upgrade process and the config servers.

To check the version of your indexes, use db.collection.getIndexes().

If any index on the config database is {v:0}, you should rebuild those indexes by connecting to the mongos
and either: rebuild all indexes using the db.collection.reIndex() method, or drop and rebuild specific

876 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

indexes using db.collection.dropIndex() and then db.collection.ensureIndex(). If you
need to upgrade the _id index to {v:1} use db.collection.reIndex().

You may have {v:0} indexes on other databases in the cluster.

2. Turn off the balancer (page 698) in the sharded cluster, as described in Disable the Balancer (page 732).

Optional
For additional security during the upgrade, you can make a backup of the config database using mongodump
or other backup tools.

3. Ensure there are no version 2.0 mongod or mongos processes still active in the sharded cluster. The automated
upgrade process checks for 2.0 processes, but network availability can prevent a definitive check. Wait 5 minutes
after stopping or upgrading version 2.0 mongos processes to confirm that none are still active.

4. Start a single 2.4 mongos process with configDB pointing to the sharded cluster’s config servers (page 684)
and with the --upgrade option. The upgrade process happens before the process becomes a daemon (i.e.
before --fork.)

You can upgrade an existing mongos instance to 2.4 or you can start a new mongos instance that can reach all
config servers if you need to avoid reconfiguring a production mongos.

Start the mongos with a command that resembles the following:

mongos --configdb <config servers> --upgrade

Without the --upgrade option 2.4 mongos processes will fail to start until the upgrade process is complete.

The upgrade will prevent any chunk moves or splits from occurring during the upgrade process. If there are
very many sharded collections or there are stale locks held by other failed processes, acquiring the locks for all
collections can take seconds or minutes. See the log for progress updates.

5. When the mongos process starts successfully, the upgrade is complete. If the mongos process fails to start,
check the log for more information.

If the mongos terminates or loses its connection to the config servers during the upgrade, you may always
safely retry the upgrade.

However, if the upgrade failed during the short critical section, the mongos will exit and report that the up-
grade will require manual intervention. To continue the upgrade process, you must follow the Resync after an
Interruption of the Critical Section (page 878) procedure.

Optional
If the mongos logs show the upgrade waiting for the upgrade lock, a previous upgrade process may still be
active or may have ended abnormally. After 15 minutes of no remote activity mongos will force the upgrade
lock. If you can verify that there are no running upgrade processes, you may connect to a 2.2 mongos process
and force the lock manually:

mongo <mongos.example.net>

db.getMongo().getCollection("config.locks").findOne({ _id : "configUpgrade" })

If the process specified in the process field of this document is verifiably offline, run the following operation
to force the lock.

db.getMongo().getCollection("config.locks").update({ _id : "configUpgrade" }, { $set : { state : 0 } })

It is always more safe to wait for the mongos to verify that the lock is inactive, if you have any doubts about
the activity of another upgrade operation. In addition to the configUpgrade, the mongos may need to wait
for specific collection locks. Do not force the specific collection locks.

12.2. Previous Stable Releases 877

MongoDB Documentation, Release 2.6.11

6. Upgrade and restart other mongos processes in the sharded cluster, without the --upgrade option.

See Upgrade Sharded Cluster Components (page 879) for more information.

7. Re-enable the balancer (page 732). You can now perform operations that modify cluster meta-data.

Once you have upgraded, do not introduce version 2.0 MongoDB processes into the sharded cluster. This can rein-
troduce old meta-data formats into the config servers. The meta-data change made by this upgrade process will help
prevent errors caused by cross-version incompatibilities in future versions of MongoDB.

Resync after an Interruption of the Critical Section During the short critical section of the upgrade that applies
changes to the meta-data, it is unlikely but possible that a network interruption can prevent all three config servers
from verifying or modifying data. If this occurs, the config servers (page 684) must be re-synced, and there may be
problems starting new mongos processes. The sharded cluster will remain accessible, but avoid all cluster meta-
data changes until you resync the config servers. Operations that change meta-data include: adding shards, dropping
databases, and dropping collections.

Note: Only perform the following procedure if something (e.g. network, power, etc.) interrupts the upgrade process
during the short critical section of the upgrade. Remember, you may always safely attempt the meta data upgrade
procedure (page 876).

To resync the config servers:

1. Turn off the balancer (page 698) in the sharded cluster and stop all meta-data operations. If you are in the
middle of an upgrade process (Upgrade a Sharded Cluster from MongoDB 2.2 to MongoDB 2.4 (page 875)),
you have already disabled the balancer.

2. Shut down two of the three config servers, preferably the last two listed in the configDB string. For ex-
ample, if your configDB string is configA:27019,configB:27019,configC:27019, shut down
configB and configC. Shutting down the last two config servers ensures that most mongos instances will
have uninterrupted access to cluster meta-data.

3. mongodump the data files of the active config server (configA).

4. Move the data files of the deactivated config servers (configB and configC) to a backup location.

5. Create new, empty data directories.

6. Restart the disabled config servers with --dbpath pointing to the now-empty data directory and --port
pointing to an alternate port (e.g. 27020).

7. Use mongorestore to repopulate the data files on the disabled documents from the active config server
(configA) to the restarted config servers on the new port (configB:27020,configC:27020). These
config servers are now re-synced.

8. Restart the restored config servers on the old port, resetting the port back to the old settings (configB:27019
and configC:27019).

9. In some cases connection pooling may cause spurious failures, as the mongos disables old connections only
after attempted use. 2.4 fixes this problem, but to avoid this issue in version 2.2, you can restart all mongos
instances (one-by-one, to avoid downtime) and use the rs.stepDown() method before restarting each of the
shard replica set primaries.

10. The sharded cluster is now fully resynced; however before you attempt the upgrade process again, you must
manually reset the upgrade state using a version 2.2 mongos. Begin by connecting to the 2.2 mongos with the
mongo shell:

878 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

mongo <mongos.example.net>

Then, use the following operation to reset the upgrade process:

db.getMongo().getCollection("config.version").update({ _id : 1 }, { $unset : { upgradeState : 1 } })

11. Finally retry the upgrade process, as in Upgrade a Sharded Cluster from MongoDB 2.2 to MongoDB 2.4
(page 875).

Upgrade Sharded Cluster Components After you have successfully completed the meta-data upgrade process
described in Meta-data Upgrade Procedure (page 876), and the 2.4 mongos instance starts, you can upgrade the
other processes in your MongoDB deployment.

While the balancer is still disabled, upgrade the components of your sharded cluster in the following order:

• Upgrade all mongos instances in the cluster, in any order.

• Upgrade all 3 mongod config server instances, upgrading the first system in the mongos --configdb ar-
gument last.

• Upgrade each shard, one at a time, upgrading the mongod secondaries before running replSetStepDown
and upgrading the primary of each shard.

When this process is complete, you can now re-enable the balancer (page 732).

Rolling Upgrade Limitation for 2.2.0 Deployments Running with auth Enabled MongoDB cannot support
deployments that mix 2.2.0 and 2.4.0, or greater, components. MongoDB version 2.2.1 and later processes can exist in
mixed deployments with 2.4-series processes. Therefore you cannot perform a rolling upgrade from MongoDB 2.2.0
to MongoDB 2.4.0. To upgrade a cluster with 2.2.0 components, use one of the following procedures.

1. Perform a rolling upgrade of all 2.2.0 processes to the latest 2.2-series release (e.g. 2.2.3) so that there are no
processes in the deployment that predate 2.2.1. When there are no 2.2.0 processes in the deployment, perform a
rolling upgrade to 2.4.0.

2. Stop all processes in the cluster. Upgrade all processes to a 2.4-series release of MongoDB, and start all pro-
cesses at the same time.

Upgrade from 2.3 to 2.4 If you used a mongod from the 2.3 or 2.4-rc (release candidate) series, you can safely
transition these databases to 2.4.0 or later; however, if you created 2dsphere or text indexes using a mongod
before v2.4-rc2, you will need to rebuild these indexes. For example:

db.records.dropIndex({ loc: "2dsphere" })
db.records.dropIndex("records_text")

db.records.ensureIndex({ loc: "2dsphere" })
db.records.ensureIndex({ records: "text" })

Downgrade MongoDB from 2.4 to Previous Versions For some cases the on-disk format of data files used by 2.4
and 2.2 mongod is compatible, and you can upgrade and downgrade if needed. However, several new features in 2.4
are incompatible with previous versions:

• 2dsphere indexes are incompatible with 2.2 and earlier mongod instances.

• text indexes are incompatible with 2.2 and earlier mongod instances.

• using a hashed index as a shard key are incompatible with 2.2 and earlier mongos instances.

• hashed indexes are incompatible with 2.0 and earlier mongod instances.

12.2. Previous Stable Releases 879

MongoDB Documentation, Release 2.6.11

Important: Collections sharded using hashed shard keys, should not use 2.2 mongod instances, which cannot
correctly support cluster operations for these collections.

If you completed the meta-data upgrade for a sharded cluster (page 875), you can safely downgrade to 2.2 MongoDB
processes. Do not use 2.0 processes after completing the upgrade procedure.

Note: In sharded clusters, once you have completed the meta-data upgrade procedure (page 875), you cannot use 2.0
mongod or mongos instances in the same cluster.

If you complete the meta-data upgrade, you can safely downgrade components in any order. When upgrade again,
always upgrade mongos instances before mongod instances.

Do not create 2dsphere or text indexes in a cluster that has 2.2 components.

Considerations and Compatibility If you upgrade to MongoDB 2.4, and then need to run MongoDB 2.2 with the
same data files, consider the following limitations.

• If you use a hashed index as the shard key index, which is only possible under 2.4 you will not be able to
query data in this sharded collection. Furthermore, a 2.2 mongos cannot properly route an insert operation
for a collections sharded using a hashed index for the shard key index: any data that you insert using a 2.2
mongos, will not arrive on the correct shard and will not be reachable by future queries.

• If you never create an 2dsphere or text index, you can move between a 2.4 and 2.2 mongod for a given
data set; however, after you create the first 2dsphere or text index with a 2.4 mongod you will need to run
a 2.2 mongod with the --upgrade option and drop any 2dsphere or text index.

Upgrade and Downgrade Procedures

Basic Downgrade and Upgrade Except as described below, moving between 2.2 and 2.4 is a drop-in replacement:

• stop the existing mongod, using the --shutdown option as follows:

mongod --dbpath /var/mongod/data --shutdown

Replace /var/mongod/data with your MongoDB dbPath.

• start the new mongod processes with the same dbPath setting, for example:

mongod --dbpath /var/mongod/data

Replace /var/mongod/data with your MongoDB dbPath.

Downgrade to 2.2 After Creating a 2dsphere or text Index If you have created 2dsphere or text in-
dexes while running a 2.4 mongod instance, you can downgrade at any time, by starting the 2.2 mongod with the
--upgrade option as follows:

mongod --dbpath /var/mongod/data/ --upgrade

Then, you will need to drop any existing 2dsphere or text indexes using db.collection.dropIndex(),
for example:

db.records.dropIndex({ loc: "2dsphere" })
db.records.dropIndex("records_text")

880 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

Warning: --upgrade will run repairDatabase on any database where you have created a 2dsphere or
text index, which will rebuild all indexes.

Troubleshooting Upgrade/Downgrade Operations If you do not use --upgrade, when you attempt to start a
2.2 mongod and you have created a 2dsphere or text index, mongod will return the following message:

'need to upgrade database index_plugin_upgrade with pdfile version 4.6, new version: 4.5 Not upgrading, exiting'

While running 2.4, to check the data file version of a MongoDB database, use the following operation in the shell:

db.getSiblingDB('<databasename>').stats().dataFileVersion

The major data file 553 version for both 2.2 and 2.4 is 4, the minor data file version for 2.2 is 5 and the minor data file
version for 2.4 is 6 after you create a 2dsphere or text index.

Additional Resources

• MongoDB Major Version Upgrade Consulting Package554

Compatibility and Index Type Changes in MongoDB 2.4
On this page

• New Index Types (page 881)
• Index Type Validation (page 881)

In 2.4 MongoDB includes two new features related to indexes that users upgrading to version 2.4 must consider,
particularly with regard to possible downgrade paths. For more information on downgrades, see Downgrade MongoDB
from 2.4 to Previous Versions (page 879).

New Index Types In 2.4 MongoDB adds two new index types: 2dsphere and text. These index types do not
exist in 2.2, and for each database, creating a 2dsphere or text index, will upgrade the data-file version and make
that database incompatible with 2.2.

If you intend to downgrade, you should always drop all 2dsphere and text indexes before moving to 2.2.

You can use the downgrade procedure (page 879) to downgrade these databases and run 2.2 if needed, however this
will run a full database repair (as with repairDatabase) for all affected databases.

Index Type Validation In MongoDB 2.2 and earlier you could specify invalid index types that did not exist. In
these situations, MongoDB would create an ascending (e.g. 1) index. Invalid indexes include index types specified by
strings that do not refer to an existing index type, and all numbers other than 1 and -1. 555

In 2.4, creating any invalid index will result in an error. Furthermore, you cannot create a 2dsphere or text index
on a collection if its containing database has any invalid index types. 1

Example
If you attempt to add an invalid index in MongoDB 2.4, as in the following:

553 The data file version (i.e. pdfile version) is independent and unrelated to the release version of MongoDB.
554https://www.mongodb.com/products/consulting?jmp=docs#major_version_upgrade
555 In 2.4, indexes that specify a type of "1" or "-1" (the strings "1" and "-1") will continue to exist, despite a warning on start-up. However,

a secondary in a replica set cannot complete an initial sync from a primary that has a "1" or "-1" index. Avoid all indexes with invalid types.

12.2. Previous Stable Releases 881

https://www.mongodb.com/products/consulting?jmp=docs#major_version_upgrade

MongoDB Documentation, Release 2.6.11

db.coll.ensureIndex({ field: "1" })

MongoDB will return the following error document:

{
"err" : "Unknown index plugin '1' in index { field: \"1\" }"
"code": 16734,
"n": <number>,
"connectionId": <number>,
"ok": 1

}

See Upgrade MongoDB to 2.4 (page 874) for full upgrade instructions.

Other Resources

• MongoDB Downloads556.

• All JIRA issues resolved in 2.4557.

• All Backwards incompatible changes558.

• All Third Party License Notices559.

12.2.2 Release Notes for MongoDB 2.2

On this page

• Upgrading (page 882)
• Changes (page 884)
• Licensing Changes (page 891)
• Resources (page 891)

Upgrading

MongoDB 2.2 is a production release series and succeeds the 2.0 production release series.

MongoDB 2.0 data files are compatible with 2.2-series binaries without any special migration process. However,
always perform the upgrade process for replica sets and sharded clusters using the procedures that follow.

Synopsis

• mongod, 2.2 is a drop-in replacement for 2.0 and 1.8.

556http://mongodb.org/downloads
557https://jira.mongodb.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+SERVER+AND+fixVersion+in+%28%222.3.2%22,+%222.3.1%22,+%222.3.0%22,+%222.4.0-

rc0%22,+%222.4.0-rc1%22,+%222.4.0-rc2%22,+%222.4.0-rc3%22%29
558https://jira.mongodb.org/issues/?jql=project%20%3D%20SERVER%20AND%20fixVersion%20in%20(%222.3.2%22%2C%20%222.3.1%22%2C%20%222.3.0%22%2C%20%222.4.0-

rc0%22%2C%20%222.4.0-rc1%22%2C%20%222.4.0-rc2%22%2C%20%222.4.0-rc3%22)%20AND%20%22Backwards%20Compatibility%22%20in%20(%22Major%20Change%22%2C%22Minor%20Change%22%20)%20ORDER%20BY%20votes%20DESC%2C%20issuetype%20DESC%2C%20key%20DESC
559https://github.com/mongodb/mongo/blob/v2.4/distsrc/THIRD-PARTY-NOTICES

882 Chapter 12. Release Notes

http://mongodb.org/downloads
https://jira.mongodb.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+SERVER+AND+fixVersion+in+%28%222.3.2%22,+%222.3.1%22,+%222.3.0%22,+%222.4.0-rc0%22,+%222.4.0-rc1%22,+%222.4.0-rc2%22,+%222.4.0-rc3%22%29
https://jira.mongodb.org/issues/?jql=project%20%3D%20SERVER%20AND%20fixVersion%20in%20(%222.3.2%22%2C%20%222.3.1%22%2C%20%222.3.0%22%2C%20%222.4.0-rc0%22%2C%20%222.4.0-rc1%22%2C%20%222.4.0-rc2%22%2C%20%222.4.0-rc3%22)%20AND%20%22Backwards%20Compatibility%22%20in%20(%22Major%20Change%22%2C%22Minor%20Change%22%20)%20ORDER%20BY%20votes%20DESC%2C%20issuetype%20DESC%2C%20key%20DESC
https://github.com/mongodb/mongo/blob/v2.4/distsrc/THIRD-PARTY-NOTICES

MongoDB Documentation, Release 2.6.11

• Check your driver documentation for information regarding required compatibility upgrades, and always run
the recent release of your driver.

Typically, only users running with authentication, will need to upgrade drivers before continuing with the up-
grade to 2.2.

• For all deployments using authentication, upgrade the drivers (i.e. client libraries), before upgrading the
mongod instance or instances.

• For all upgrades of sharded clusters:

– turn off the balancer during the upgrade process. See the Disable the Balancer (page 732) section for more
information.

– upgrade all mongos instances before upgrading any mongod instances.

Other than the above restrictions, 2.2 processes can interoperate with 2.0 and 1.8 tools and processes. You can safely
upgrade the mongod and mongos components of a deployment one by one while the deployment is otherwise oper-
ational. Be sure to read the detailed upgrade procedures below before upgrading production systems.

Upgrading a Standalone mongod

1. Download binaries of the latest release in the 2.2 series from the MongoDB Download Page560.

2. Shutdown your mongod instance. Replace the existing binary with the 2.2 mongod binary and restart Mon-
goDB.

Upgrading a Replica Set

You can upgrade to 2.2 by performing a “rolling” upgrade of the set by upgrading the members individually while the
other members are available to minimize downtime. Use the following procedure:

1. Upgrade the secondary members of the set one at a time by shutting down the mongod and replacing the 2.0
binary with the 2.2 binary. After upgrading a mongod instance, wait for the member to recover to SECONDARY
state before upgrading the next instance. To check the member’s state, issue rs.status() in the mongo
shell.

2. Use the mongo shell method rs.stepDown() to step down the primary to allow the normal failover
(page 583) procedure. rs.stepDown() expedites the failover procedure and is preferable to shutting down
the primary directly.

Once the primary has stepped down and another member has assumed PRIMARY state, as observed in the output
of rs.status(), shut down the previous primary and replace mongod binary with the 2.2 binary and start
the new process.

Note: Replica set failover is not instant but will render the set unavailable to read or accept writes until the
failover process completes. Typically this takes 10 seconds or more. You may wish to plan the upgrade during
a predefined maintenance window.

Upgrading a Sharded Cluster

Use the following procedure to upgrade a sharded cluster:

• Disable the balancer (page 732).

560http://downloads.mongodb.org/

12.2. Previous Stable Releases 883

http://downloads.mongodb.org/

MongoDB Documentation, Release 2.6.11

• Upgrade all mongos instances first, in any order.

• Upgrade all of the mongod config server instances using the stand alone (page 883) procedure. To keep the
cluster online, be sure that at all times at least one config server is up.

• Upgrade each shard’s replica set, using the upgrade procedure for replica sets (page 883) detailed above.

• re-enable the balancer.

Note: Balancing is not currently supported in mixed 2.0.x and 2.2.0 deployments. Thus you will want to reach a
consistent version for all shards within a reasonable period of time, e.g. same-day. See SERVER-6902561 for more
information.

Changes

Major Features

Aggregation Framework The aggregation framework makes it possible to do aggregation operations without need-
ing to use map-reduce. The aggregate command exposes the aggregation framework, and the aggregate()
helper in the mongo shell provides an interface to these operations. Consider the following resources for background
on the aggregation framework and its use:

• Documentation: Aggregation Concepts (page 439)

• Reference: Aggregation Reference (page 470)

• Examples: Aggregation Examples (page 453)

TTL Collections TTL collections remove expired data from a collection, using a special index and a background
thread that deletes expired documents every minute. These collections are useful as an alternative to capped collections
in some cases, such as for data warehousing and caching cases, including: machine generated event data, logs, and
session information that needs to persist in a database for only a limited period of time.

For more information, see the Expire Data from Collections by Setting TTL (page 222) tutorial.

Concurrency Improvements MongoDB 2.2 increases the server’s capacity for concurrent operations with the fol-
lowing improvements:

1. DB Level Locking562

2. Improved Yielding on Page Faults563

3. Improved Page Fault Detection on Windows564

To reflect these changes, MongoDB now provides changed and improved reporting for concurrency and use. See locks,
recordStats565, db.currentOp(), mongotop, and mongostat.

Improved Data Center Awareness with Tag Aware Sharding MongoDB 2.2 adds additional support for geo-
graphic distribution or other custom partitioning for sharded collections in clusters. By using this “tag aware” shard-
ing, you can automatically ensure that data in a sharded database system is always on specific shards. For example,
with tag aware sharding, you can ensure that data is closest to the application servers that use that data most frequently.

561https://jira.mongodb.org/browse/SERVER-6902
562https://jira.mongodb.org/browse/SERVER-4328
563https://jira.mongodb.org/browse/SERVER-3357
564https://jira.mongodb.org/browse/SERVER-4538
565http://docs.mongodb.org/v2.2/reference/server-status

884 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-6902
https://jira.mongodb.org/browse/SERVER-4328
https://jira.mongodb.org/browse/SERVER-3357
https://jira.mongodb.org/browse/SERVER-4538
http://docs.mongodb.org/v2.2/reference/server-status

MongoDB Documentation, Release 2.6.11

Shard tagging controls data location, and is complementary but separate from replica set tagging, which controls
read preference (page 591) and write concern (page 82). For example, shard tagging can pin all “USA” data to one
or more logical shards, while replica set tagging can control which mongod instances (e.g. “production” or
“reporting”) the application uses to service requests.

See the documentation for the following helpers in the mongo shell that support tagged sharding configuration:

• sh.addShardTag()

• sh.addTagRange()

• sh.removeShardTag()

Also, see Tag Aware Sharding (page 746) and Manage Shard Tags (page 747).

Fully Supported Read Preference Semantics All MongoDB clients and drivers now support full read preferences
(page 591), including consistent support for a full range of read preference modes (page 670) and tag sets (page 594).
This support extends to the mongos and applies identically to single replica sets and to the replica sets for each shard
in a sharded cluster.

Additional read preference support now exists in the mongo shell using the readPref() cursor method.

Compatibility Changes

Authentication Changes MongoDB 2.2 provides more reliable and robust support for authentication clients, in-
cluding drivers and mongos instances.

If your cluster runs with authentication:

• For all drivers, use the latest release of your driver and check its release notes.

• In sharded environments, to ensure that your cluster remains available during the upgrade process you must use
the upgrade procedure for sharded clusters (page 883).

findAndModify Returns Null Value for Upserts that Perform Inserts In version 2.2, for upsert that perform
inserts with the new option set to false, findAndModify commands will now return the following output:

{ 'ok': 1.0, 'value': null }

In the mongo shell, upsert findAndModify operations that perform inserts (with new set to false.)only output a
null value.

In version 2.0 these operations would return an empty document, e.g. { }.

See: SERVER-6226566 for more information.

mongodump 2.2 Output Incompatible with Pre-2.2 mongorestore If you use the mongodump tool from the
2.2 distribution to create a dump of a database, you must use a 2.2 (or later) version of mongorestore to restore
that dump.

See: SERVER-6961567 for more information.
566https://jira.mongodb.org/browse/SERVER-6226
567https://jira.mongodb.org/browse/SERVER-6961

12.2. Previous Stable Releases 885

https://jira.mongodb.org/browse/SERVER-6226
https://jira.mongodb.org/browse/SERVER-6961

MongoDB Documentation, Release 2.6.11

ObjectId().toString() Returns String Literal ObjectId("...") In version 2.2, the toString()
method returns the string representation of the ObjectId() (page 185) object and has the format ObjectId("...").

Consider the following example that calls the toString() method on the
ObjectId("507c7f79bcf86cd7994f6c0e") object:

ObjectId("507c7f79bcf86cd7994f6c0e").toString()

The method now returns the string ObjectId("507c7f79bcf86cd7994f6c0e").

Previously, in version 2.0, the method would return the hexadecimal string 507c7f79bcf86cd7994f6c0e.

If compatibility between versions 2.0 and 2.2 is required, use ObjectId().str (page 185), which holds the hexadecimal
string value in both versions.

ObjectId().valueOf() Returns hexadecimal string In version 2.2, the valueOf() method returns the
value of the ObjectId() (page 185) object as a lowercase hexadecimal string.

Consider the following example that calls the valueOf() method on the
ObjectId("507c7f79bcf86cd7994f6c0e") object:

ObjectId("507c7f79bcf86cd7994f6c0e").valueOf()

The method now returns the hexadecimal string 507c7f79bcf86cd7994f6c0e.

Previously, in version 2.0, the method would return the object ObjectId("507c7f79bcf86cd7994f6c0e").

If compatibility between versions 2.0 and 2.2 is required, use ObjectId().str (page 185) attribute, which holds the
hexadecimal string value in both versions.

Behavioral Changes

Restrictions on Collection Names In version 2.2, collection names cannot:

• contain the $.

• be an empty string (i.e. "").

This change does not affect collections created with now illegal names in earlier versions of MongoDB.

These new restrictions are in addition to the existing restrictions on collection names which are:

• A collection name should begin with a letter or an underscore.

• A collection name cannot contain the null character.

• Begin with the system. prefix. MongoDB reserves system. for system collections, such as the
system.indexes collection.

• The maximum size of a collection name is 128 characters, including the name of the database. However, for
maximum flexibility, collections should have names less than 80 characters.

Collections names may have any other valid UTF-8 string.

See the SERVER-4442568 and the Are there any restrictions on the names of Collections? (page 772) FAQ item.

568https://jira.mongodb.org/browse/SERVER-4442

886 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-4442

MongoDB Documentation, Release 2.6.11

Restrictions on Database Names for Windows Database names running on Windows can no longer contain the
following characters:

/\. "*<>:|?

The names of the data files include the database name. If you attempt to upgrade a database instance with one or more
of these characters, mongod will refuse to start.

Change the name of these databases before upgrading. See SERVER-4584569 and SERVER-6729570 for more infor-
mation.

_id Fields and Indexes on Capped Collections All capped collections now have an _id field by default, if they
exist outside of the local database, and now have indexes on the _id field. This change only affects capped
collections created with 2.2 instances and does not affect existing capped collections.

See: SERVER-5516571 for more information.

New $elemMatch Projection Operator The $elemMatch operator allows applications to narrow the data re-
turned from queries so that the query operation will only return the first matching element in an array. See the
$elemMatch reference and the SERVER-2238572 and SERVER-828573 issues for more information.

Windows Specific Changes

Windows XP is Not Supported As of 2.2, MongoDB does not support Windows XP. Please upgrade to a more
recent version of Windows to use the latest releases of MongoDB. See SERVER-5648574 for more information.

Service Support for mongos.exe You may now run mongos.exe instances as a Windows Service. See the
mongos.exe reference and Configure a Windows Service for MongoDB (page 25) and SERVER-1589575 for more
information.

Log Rotate Command Support MongoDB for Windows now supports log rotation by way of the logRotate
database command. See SERVER-2612576 for more information.

New Build Using SlimReadWrite Locks for Windows Concurrency Labeled “2008+” on the Downloads Page577,
this build for 64-bit versions of Windows Server 2008 R2 and for Windows 7 or newer, offers increased performance
over the standard 64-bit Windows build of MongoDB. See SERVER-3844578 for more information.

Tool Improvements

Index Definitions Handled by mongodump and mongorestore When you specify the --collection option
to mongodump, mongodump will now backup the definitions for all indexes that exist on the source database. When

569https://jira.mongodb.org/browse/SERVER-4584
570https://jira.mongodb.org/browse/SERVER-6729
571https://jira.mongodb.org/browse/SERVER-5516
572https://jira.mongodb.org/browse/SERVER-2238
573https://jira.mongodb.org/browse/SERVER-828
574https://jira.mongodb.org/browse/SERVER-5648
575https://jira.mongodb.org/browse/SERVER-1589
576https://jira.mongodb.org/browse/SERVER-2612
577http://www.mongodb.org/downloads
578https://jira.mongodb.org/browse/SERVER-3844

12.2. Previous Stable Releases 887

https://jira.mongodb.org/browse/SERVER-4584
https://jira.mongodb.org/browse/SERVER-6729
https://jira.mongodb.org/browse/SERVER-5516
https://jira.mongodb.org/browse/SERVER-2238
https://jira.mongodb.org/browse/SERVER-828
https://jira.mongodb.org/browse/SERVER-5648
https://jira.mongodb.org/browse/SERVER-1589
https://jira.mongodb.org/browse/SERVER-2612
http://www.mongodb.org/downloads
https://jira.mongodb.org/browse/SERVER-3844

MongoDB Documentation, Release 2.6.11

you attempt to restore this backup with mongorestore, the target mongod will rebuild all indexes. See SERVER-
808579 for more information.

mongorestore now includes the --noIndexRestore option to provide the preceding behavior. Use
--noIndexRestore to prevent mongorestore from building previous indexes.

mongooplog for Replaying Oplogs The mongooplog tool makes it possible to pull oplog entries from mongod
instance and apply them to another mongod instance. You can use mongooplog to achieve point-in-time backup of
a MongoDB data set. See the SERVER-3873580 case and the mongooplog reference.

Authentication Support for mongotop and mongostat mongotop and mongostat now contain support for
username/password authentication. See SERVER-3875581 and SERVER-3871582 for more information regarding this
change. Also consider the documentation of the following options for additional information:

• mongotop --username

• mongotop --password

• mongostat --username

• mongostat --password

Write Concern Support for mongoimport and mongorestore mongoimport now provides an option to
halt the import if the operation encounters an error, such as a network interruption, a duplicate key exception, or a
write error. The --stopOnError option will produce an error rather than silently continue importing data. See
SERVER-3937583 for more information.

In mongorestore, the --w option provides support for configurable write concern.

mongodump Support for Reading from Secondaries You can now run mongodump when connected to a sec-
ondary member of a replica set. See SERVER-3854584 for more information.

mongoimport Support for full 16MB Documents Previously, mongoimport would only import documents
that were less than 4 megabytes in size. This issue is now corrected, and you may use mongoimport to import
documents that are at least 16 megabytes ins size. See SERVER-4593585 for more information.

Timestamp() Extended JSON format MongoDB extended JSON now includes a new Timestamp() type to
represent the Timestamp type that MongoDB uses for timestamps in the oplog among other contexts.

This permits tools like mongooplog and mongodump to query for specific timestamps. Consider the following
mongodump operation:

mongodump --db local --collection oplog.rs --query '{"ts":{"$gt":{"$timestamp" : {"t": 1344969612000, "i": 1 }}}}' --out oplog-dump

See SERVER-3483586 for more information.
579https://jira.mongodb.org/browse/SERVER-808
580https://jira.mongodb.org/browse/SERVER-3873
581https://jira.mongodb.org/browse/SERVER-3875
582https://jira.mongodb.org/browse/SERVER-3871
583https://jira.mongodb.org/browse/SERVER-3937
584https://jira.mongodb.org/browse/SERVER-3854
585https://jira.mongodb.org/browse/SERVER-4593
586https://jira.mongodb.org/browse/SERVER-3483

888 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-808
https://jira.mongodb.org/browse/SERVER-808
https://jira.mongodb.org/browse/SERVER-3873
https://jira.mongodb.org/browse/SERVER-3875
https://jira.mongodb.org/browse/SERVER-3871
https://jira.mongodb.org/browse/SERVER-3937
https://jira.mongodb.org/browse/SERVER-3854
https://jira.mongodb.org/browse/SERVER-4593
https://jira.mongodb.org/browse/SERVER-3483

MongoDB Documentation, Release 2.6.11

Shell Improvements

Improved Shell User Interface 2.2 includes a number of changes that improve the overall quality and consistency
of the user interface for the mongo shell:

• Full Unicode support.

• Bash-like line editing features. See SERVER-4312587 for more information.

• Multi-line command support in shell history. See SERVER-3470588 for more information.

• Windows support for the edit command. See SERVER-3998589 for more information.

Helper to load Server-Side Functions The db.loadServerScripts() loads the contents of the current
database’s system.js collection into the current mongo shell session. See SERVER-1651590 for more informa-
tion.

Support for Bulk Inserts If you pass an array of documents to the insert() method, the mongo shell will now
perform a bulk insert operation. See SERVER-3819591 and SERVER-2395592 for more information.

Note: For bulk inserts on sharded clusters, the getLastError command alone is insufficient to verify success.
Applications should must verify the success of bulk inserts in application logic.

Operations

Support for Logging to Syslog See the SERVER-2957593 case and the documentation of the syslogFacility
run-time option or the mongod --syslog and mongos --syslog command line-options.

touch Command Added the touch command to read the data and/or indexes from a collection into memory. See:
SERVER-2023594 and touch for more information.

indexCounters No Longer Report Sampled Data indexCounters now report actual counters that reflect
index use and state. In previous versions, these data were sampled. See SERVER-5784595 and indexCounters for
more information.

Padding Specifiable on compact Command See the documentation of the compact and the SERVER-4018596

issue for more information.
587https://jira.mongodb.org/browse/SERVER-4312
588https://jira.mongodb.org/browse/SERVER-3470
589https://jira.mongodb.org/browse/SERVER-3998
590https://jira.mongodb.org/browse/SERVER-1651
591https://jira.mongodb.org/browse/SERVER-3819
592https://jira.mongodb.org/browse/SERVER-2395
593https://jira.mongodb.org/browse/SERVER-2957
594https://jira.mongodb.org/browse/SERVER-2023
595https://jira.mongodb.org/browse/SERVER-5784
596https://jira.mongodb.org/browse/SERVER-4018

12.2. Previous Stable Releases 889

https://jira.mongodb.org/browse/SERVER-4312
https://jira.mongodb.org/browse/SERVER-3470
https://jira.mongodb.org/browse/SERVER-3998
https://jira.mongodb.org/browse/SERVER-1651
https://jira.mongodb.org/browse/SERVER-3819
https://jira.mongodb.org/browse/SERVER-2395
https://jira.mongodb.org/browse/SERVER-2957
https://jira.mongodb.org/browse/SERVER-2023
https://jira.mongodb.org/browse/SERVER-5784
https://jira.mongodb.org/browse/SERVER-4018

MongoDB Documentation, Release 2.6.11

Added Build Flag to Use System Libraries The Boost library, version 1.49, is now embedded in the MongoDB
code base.

If you want to build MongoDB binaries using system Boost libraries, you can pass scons using the
--use-system-boost flag, as follows:

scons --use-system-boost

When building MongoDB, you can also pass scons a flag to compile MongoDB using only system libraries rather
than the included versions of the libraries. For example:

scons --use-system-all

See the SERVER-3829597 and SERVER-5172598 issues for more information.

Memory Allocator Changed to TCMalloc To improve performance, MongoDB 2.2 uses the TCMalloc memory
allocator from Google Perftools. For more information about this change see the SERVER-188599 and SERVER-
4683600. For more information about TCMalloc, see the documentation of TCMalloc601 itself.

Replication

Improved Logging for Replica Set Lag When secondary members of a replica set fall behind in replication,
mongod now provides better reporting in the log. This makes it possible to track replication in general and iden-
tify what process may produce errors or halt replication. See SERVER-3575602 for more information.

Replica Set Members can Sync from Specific Members The new replSetSyncFrom command and new
rs.syncFrom() helper in the mongo shell make it possible for you to manually configure from which mem-
ber of the set a replica will poll oplog entries. Use these commands to override the default selection logic if needed.
Always exercise caution with replSetSyncFrom when overriding the default behavior.

Replica Set Members will not Sync from Members Without Indexes Unless buildIndexes: false To
prevent inconsistency between members of replica sets, if the member of a replica set has buildIndexes (page 661)
set to true, other members of the replica set will not sync from this member, unless they also have buildIndexes
(page 661) set to true. See SERVER-4160603 for more information.

New Option To Configure Index Pre-Fetching during Replication By default, when replicating options, secon-
daries will pre-fetch Indexes (page 481) associated with a query to improve replication throughput in most cases. The
replication.secondaryIndexPrefetch setting and --replIndexPrefetch option allow administra-
tors to disable this feature or allow the mongod to pre-fetch only the index on the _id field. See SERVER-6718604

for more information.

Map Reduce Improvements

In 2.2 Map Reduce received the following improvements:

597https://jira.mongodb.org/browse/SERVER-3829
598https://jira.mongodb.org/browse/SERVER-5172
599https://jira.mongodb.org/browse/SERVER-188
600https://jira.mongodb.org/browse/SERVER-4683
601http://goog-perftools.sourceforge.net/doc/tcmalloc.html
602https://jira.mongodb.org/browse/SERVER-3575
603https://jira.mongodb.org/browse/SERVER-4160
604https://jira.mongodb.org/browse/SERVER-6718

890 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-3829
https://jira.mongodb.org/browse/SERVER-5172
https://jira.mongodb.org/browse/SERVER-188
https://jira.mongodb.org/browse/SERVER-4683
https://jira.mongodb.org/browse/SERVER-4683
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://jira.mongodb.org/browse/SERVER-3575
https://jira.mongodb.org/browse/SERVER-4160
https://jira.mongodb.org/browse/SERVER-6718

MongoDB Documentation, Release 2.6.11

• Improved support for sharded MapReduce605, and

• MapReduce will retry jobs following a config error606.

Sharding Improvements

Index on Shard Keys Can Now Be a Compound Index If your shard key uses the prefix of an existing index,
then you do not need to maintain a separate index for your shard key in addition to your existing index. This index,
however, cannot be a multi-key index. See the Shard Key Indexes (page 703) documentation and SERVER-1506607

for more information.

Migration Thresholds Modified The migration thresholds (page 699) have changed in 2.2 to permit more even
distribution of chunks in collections that have smaller quantities of data. See the Migration Thresholds (page 699)
documentation for more information.

Licensing Changes

Added License notice for Google Perftools (TCMalloc Utility). See the License Notice608 and the SERVER-4683609

for more information.

Resources

• MongoDB Downloads610.

• All JIRA issues resolved in 2.2611.

• All backwards incompatible changes612.

• All third party license notices613.

• What’s New in MongoDB 2.2 Online Conference614.

12.2.3 Release Notes for MongoDB 2.0

On this page

• Upgrading (page 892)
• Changes (page 893)
• Resources (page 897)

605https://jira.mongodb.org/browse/SERVER-4521
606https://jira.mongodb.org/browse/SERVER-4158
607https://jira.mongodb.org/browse/SERVER-1506
608https://github.com/mongodb/mongo/blob/v2.2/distsrc/THIRD-PARTY-NOTICES#L231
609https://jira.mongodb.org/browse/SERVER-4683
610http://mongodb.org/downloads
611https://jira.mongodb.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+SERVER+AND+fixVersion+in+%28%222.1.0%22%2C+%222.1.1%22%2C+%222.1.2%22%2C+%222.2.0-

rc0%22%2C+%222.2.0-rc1%22%2C+%222.2.0-rc2%22%29+ORDER+BY+component+ASC%2C+key+DESC
612https://jira.mongodb.org/issues/?filter=11225&jql=project%20%3D%20SERVER%20AND%20fixVersion%20in%20(10483%2C%2010893%2C%2010894%2C%2010213)%20AND%20%22Backwards%20Compatibility%22%20in%20%20(%22Major%20Change%22%2C%20%22Minor%20Change%22)%20%20ORDER%20BY%20votes%20DESC%2C%20issuetype%20DESC%2C%20key%20DESC
613https://github.com/mongodb/mongo/blob/v2.2/distsrc/THIRD-PARTY-NOTICES
614http://www.mongodb.com/events/webinar/mongodb-online-conference-sept

12.2. Previous Stable Releases 891

https://jira.mongodb.org/browse/SERVER-4521
https://jira.mongodb.org/browse/SERVER-4158
https://jira.mongodb.org/browse/SERVER-1506
https://github.com/mongodb/mongo/blob/v2.2/distsrc/THIRD-PARTY-NOTICES#L231
https://jira.mongodb.org/browse/SERVER-4683
http://mongodb.org/downloads
https://jira.mongodb.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+SERVER+AND+fixVersion+in+%28%222.1.0%22%2C+%222.1.1%22%2C+%222.1.2%22%2C+%222.2.0-rc0%22%2C+%222.2.0-rc1%22%2C+%222.2.0-rc2%22%29+ORDER+BY+component+ASC%2C+key+DESC
https://jira.mongodb.org/issues/?filter=11225&jql=project%20%3D%20SERVER%20AND%20fixVersion%20in%20(10483%2C%2010893%2C%2010894%2C%2010213)%20AND%20%22Backwards%20Compatibility%22%20in%20%20(%22Major%20Change%22%2C%20%22Minor%20Change%22)%20%20ORDER%20BY%20votes%20DESC%2C%20issuetype%20DESC%2C%20key%20DESC
https://github.com/mongodb/mongo/blob/v2.2/distsrc/THIRD-PARTY-NOTICES
http://www.mongodb.com/events/webinar/mongodb-online-conference-sept

MongoDB Documentation, Release 2.6.11

Upgrading

Although the major version number has changed, MongoDB 2.0 is a standard, incremental production release and
works as a drop-in replacement for MongoDB 1.8.

Preparation

Read through all release notes before upgrading, and ensure that no changes will affect your deployment.

If you create new indexes in 2.0, then downgrading to 1.8 is possible but you must reindex the new collections.

mongoimport and mongoexport now correctly adhere to the CSV spec for handling CSV input/output. This
may break existing import/export workflows that relied on the previous behavior. For more information see SERVER-
1097615.

Journaling (page 309) is enabled by default in 2.0 for 64-bit builds. If you still prefer to run without journaling, start
mongod with the --nojournal run-time option. Otherwise, MongoDB creates journal files during startup. The
first time you start mongod with journaling, you will see a delay as mongod creates new files. In addition, you may
see reduced write throughput.

2.0 mongod instances are interoperable with 1.8 mongod instances; however, for best results, upgrade your deploy-
ments using the following procedures:

Upgrading a Standalone mongod

1. Download the v2.0.x binaries from the MongoDB Download Page616.

2. Shutdown your mongod instance. Replace the existing binary with the 2.0.x mongod binary and restart Mon-
goDB.

Upgrading a Replica Set

1. Upgrade the secondary members of the set one at a time by shutting down the mongod and replacing the 1.8
binary with the 2.0.x binary from the MongoDB Download Page617.

2. To avoid losing the last few updates on failover you can temporarily halt your application (failover should take
less than 10 seconds), or you can set write concern (page 82) in your application code to confirm that each
update reaches multiple servers.

3. Use the rs.stepDown() to step down the primary to allow the normal failover (page 583) procedure.

rs.stepDown() and replSetStepDown provide for shorter and more consistent failover procedures than
simply shutting down the primary directly.

When the primary has stepped down, shut down its instance and upgrade by replacing the mongod binary with
the 2.0.x binary.

Upgrading a Sharded Cluster

1. Upgrade all config server instances first, in any order. Since config servers use two-phase commit, shard con-
figuration metadata updates will halt until all are up and running.

615https://jira.mongodb.org/browse/SERVER-1097
616http://downloads.mongodb.org/
617http://downloads.mongodb.org/

892 Chapter 12. Release Notes

https://jira.mongodb.org/browse/SERVER-1097
https://jira.mongodb.org/browse/SERVER-1097
http://downloads.mongodb.org/
http://downloads.mongodb.org/

MongoDB Documentation, Release 2.6.11

2. Upgrade mongos routers in any order.

Changes

Compact Command

A compact command is now available for compacting a single collection and its indexes. Previously, the only way
to compact was to repair the entire database.

Concurrency Improvements

When going to disk, the server will yield the write lock when writing data that is not likely to be in memory. The
initial implementation of this feature now exists:

See SERVER-2563618 for more information.

The specific operations yield in 2.0 are:

• Updates by _id

• Removes

• Long cursor iterations

Default Stack Size

MongoDB 2.0 reduces the default stack size. This change can reduce total memory usage when there are many (e.g.,
1000+) client connections, as there is a thread per connection. While portions of a thread’s stack can be swapped out
if unused, some operating systems do this slowly enough that it might be an issue. The default stack size is lesser of
the system setting or 1MB.

Index Performance Enhancements

v2.0 includes significant improvements to the index (page 527). Indexes are often 25% smaller and 25% faster (depends
on the use case). When upgrading from previous versions, the benefits of the new index type are realized only if you
create a new index or re-index an old one.

Dates are now signed, and the max index key size has increased slightly from 819 to 1024 bytes.

All operations that create a new index will result in a 2.0 index by default. For example:

• Reindexing results on an older-version index results in a 2.0 index. However, reindexing on a secondary does
not work in versions prior to 2.0. Do not reindex on a secondary. For a workaround, see SERVER-3866619.

• The repairDatabase command converts indexes to a 2.0 indexes.

To convert all indexes for a given collection to the 2.0 type (page 893), invoke the compact command.

Once you create new indexes, downgrading to 1.8.x will require a re-index of any indexes created using 2.0. See Build
Old Style Indexes (page 527).

618https://jira.mongodb.org/browse/SERVER-2563
619https://jira.mongodb.org/browse/SERVER-3866

12.2. Previous Stable Releases 893

https://jira.mongodb.org/browse/SERVER-2563
https://jira.mongodb.org/browse/SERVER-3866

MongoDB Documentation, Release 2.6.11

Sharding Authentication

Applications can now use authentication with sharded clusters.

Replica Sets

Hidden Nodes in Sharded Clusters In 2.0, mongos instances can now determine when a member of a replica set
becomes “hidden” without requiring a restart. In 1.8, mongos if you reconfigured a member as hidden, you had to
restart mongos to prevent queries from reaching the hidden member.

Priorities Each replica set member can now have a priority value consisting of a floating-point from 0 to 1000,
inclusive. Priorities let you control which member of the set you prefer to have as primary the member with the
highest priority that can see a majority of the set will be elected primary.

For example, suppose you have a replica set with three members, A, B, and C, and suppose that their priorities are set
as follows:

• A‘s priority is 2.

• B‘s priority is 3.

• C‘s priority is 1.

During normal operation, the set will always chose B as primary. If B becomes unavailable, the set will elect A as
primary.

For more information, see the priority (page 662) documentation.

Data-Center Awareness You can now “tag” replica set members to indicate their location. You can use these tags
to design custom write rules (page 82) across data centers, racks, specific servers, or any other architecture choice.

For example, an administrator can define rules such as “very important write” or customerData or “audit-trail” to
replicate to certain servers, racks, data centers, etc. Then in the application code, the developer would say:

db.foo.insert(doc, {w : "very important write"})

which would succeed if it fulfilled the conditions the DBA defined for “very important write”.

For more information, see Data Center Awareness (page 218).

Drivers may also support tag-aware reads. Instead of specifying slaveOk, you specify slaveOkwith tags indicating
which data-centers to read from. For details, see the Drivers620 documentation.

w : majority You can also set w to majority to ensure that the write propagates to a majority of nodes, ef-
fectively committing it. The value for “majority” will automatically adjust as you add or remove nodes from the
set.

For more information, see Write Concern (page 82).

Reconfiguration with a Minority Up If the majority of servers in a set has been permanently lost, you can now
force a reconfiguration of the set to bring it back online.

For more information see Reconfigure a Replica Set with Unavailable Members (page 645).

620https://docs.mongodb.org/ecosystem/drivers

894 Chapter 12. Release Notes

https://docs.mongodb.org/ecosystem/drivers

MongoDB Documentation, Release 2.6.11

Primary Checks for a Caught up Secondary before Stepping Down To minimize time without a primary, the
rs.stepDown() method will now fail if the primary does not see a secondary within 10 seconds of its latest
optime. You can force the primary to step down anyway, but by default it will return an error message.

See also Force a Member to Become Primary (page 638).

Extended Shutdown on the Primary to Minimize Interruption When you call the shutdown command, the
primary will refuse to shut down unless there is a secondary whose optime is within 10 seconds of the primary. If such
a secondary isn’t available, the primary will step down and wait up to a minute for the secondary to be fully caught up
before shutting down.

Note that to get this behavior, you must issue the shutdown command explicitly; sending a signal to the process will
not trigger this behavior.

You can also force the primary to shut down, even without an up-to-date secondary available.

Maintenance Mode When repair or compact runs on a secondary, the secondary will automatically drop into
“recovering” mode until the operation finishes. This prevents clients from trying to read from it while it’s busy.

Geospatial Features

Multi-Location Documents Indexing is now supported on documents which have multiple location objects, em-
bedded either inline or in embedded documents. Additional command options are also supported, allowing results to
return with not only distance but the location used to generate the distance.

For more information, see Multi-location Documents for 2d Indexes (page 500).

Polygon searches Polygonal $within queries are also now supported for simple polygon shapes. For details, see
the $within operator documentation.

Journaling Enhancements

• Journaling is now enabled by default for 64-bit platforms. Use the --nojournal command line option to
disable it.

• The journal is now compressed for faster commits to disk.

• A new --journalCommitInterval run-time option exists for specifying your own group commit interval.
The default settings do not change.

• A new { getLastError: { j: true } } option is available to wait for the group commit. The
group commit will happen sooner when a client is waiting on {j: true}. If journaling is disabled, {j:
true} is a no-op.

New ContinueOnError Option for Bulk Insert

Set the continueOnError option for bulk inserts, in the driver, so that bulk insert will continue to insert any
remaining documents even if an insert fails, as is the case with duplicate key exceptions or network interruptions. The
getLastError command will report whether any inserts have failed, not just the last one. If multiple errors occur,
the client will only receive the most recent getLastError results.

Note: For bulk inserts on sharded clusters, the getLastError command alone is insufficient to verify success.
Applications should must verify the success of bulk inserts in application logic.

12.2. Previous Stable Releases 895

MongoDB Documentation, Release 2.6.11

Map Reduce

Output to a Sharded Collection Using the new sharded flag, it is possible to send the result of a map/reduce to
a sharded collection. Combined with the reduce or merge flags, it is possible to keep adding data to very large
collections from map/reduce jobs.

For more information, see Map-Reduce (page 442) and the mapReduce reference.

Performance Improvements Map/reduce performance will benefit from the following:

• Larger in-memory buffer sizes, reducing the amount of disk I/O needed during a job

• Larger javascript heap size, allowing for larger objects and less GC

• Supports pure JavaScript execution with the jsMode flag. See the mapReduce reference.

New Querying Features

Additional regex options: s Allows the dot (.) to match all characters including new lines. This is in addition to
the currently supported i, m and x. See $regex.

$and A special boolean $and query operator is now available.

Command Output Changes

The output of the validate command and the documents in the system.profile collection have both been
enhanced to return information as BSON objects with keys for each value rather than as free-form strings.

Shell Features

Custom Prompt You can define a custom prompt for the mongo shell. You can change the prompt at any time by
setting the prompt variable to a string or a custom JavaScript function returning a string. For examples, see Use a
Custom Prompt (page 286).

Default Shell Init Script On startup, the shell will check for a .mongorc.js file in the user’s home directory.
The shell will execute this file after connecting to the database and before displaying the prompt.

If you would like the shell not to run the .mongorc.js file automatically, start the shell with --norc.

For more information, see the mongo reference.

Most Commands Require Authentication

In 2.0, when running with authentication (e.g. authorization) all database commands require authentication,
except the following commands.

• isMaster

• authenticate

896 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

• getnonce

• buildInfo

• ping

• isdbgrid

Resources

• MongoDB Downloads621

• All JIRA Issues resolved in 2.0622

• All Backward Incompatible Changes623

12.2.4 Release Notes for MongoDB 1.8

On this page

• Upgrading (page 897)
• Changes (page 900)
• Resources (page 903)

Upgrading

MongoDB 1.8 is a standard, incremental production release and works as a drop-in replacement for MongoDB 1.6,
except:

• Replica set members should be upgraded in a particular order, as described in Upgrading a Replica Set
(page 898).

• The mapReduce command has changed in 1.8, causing incompatibility with previous releases. mapReduce
no longer generates temporary collections (thus, keepTemp has been removed). Now, you must always supply
a value for out. See the out field options in the mapReduce document. If you use MapReduce, this also
likely means you need a recent version of your client driver.

Preparation

Read through all release notes before upgrading and ensure that no changes will affect your deployment.

Upgrading a Standalone mongod

1. Download the v1.8.x binaries from the MongoDB Download Page624.

2. Shutdown your mongod instance.

3. Replace the existing binary with the 1.8.x mongod binary.

4. Restart MongoDB.
621http://mongodb.org/downloads
622https://jira.mongodb.org/secure/IssueNavigator.jspa?mode=hide&requestId=11002
623https://jira.mongodb.org/issues/?filter=11023&jql=project%20%3D%20SERVER%20AND%20fixVersion%20in%20(10889%2C%2010886%2C%2010784%2C%2010596%2C%2010380%2C%2010261%2C%2010232)%20AND%20%22Backwards%20Compatibility%22%20in%20%20(%22Major%20Change%22%2C%20%22Minor%20Change%22)%20ORDER%20BY%20votes%20DESC%2C%20issuetype%20DESC%2C%20key%20DESC
624http://downloads.mongodb.org/

12.2. Previous Stable Releases 897

http://mongodb.org/downloads
https://jira.mongodb.org/secure/IssueNavigator.jspa?mode=hide&requestId=11002
https://jira.mongodb.org/issues/?filter=11023&jql=project%20%3D%20SERVER%20AND%20fixVersion%20in%20(10889%2C%2010886%2C%2010784%2C%2010596%2C%2010380%2C%2010261%2C%2010232)%20AND%20%22Backwards%20Compatibility%22%20in%20%20(%22Major%20Change%22%2C%20%22Minor%20Change%22)%20ORDER%20BY%20votes%20DESC%2C%20issuetype%20DESC%2C%20key%20DESC
http://downloads.mongodb.org/

MongoDB Documentation, Release 2.6.11

Upgrading a Replica Set

1.8.x secondaries can replicate from 1.6.x primaries.

1.6.x secondaries cannot replicate from 1.8.x primaries.

Thus, to upgrade a replica set you must replace all of your secondaries first, then the primary.

For example, suppose you have a replica set with a primary, an arbiter and several secondaries. To upgrade the set, do
the following:

1. For the arbiter:

(a) Shut down the arbiter.

(b) Restart it with the 1.8.x binary from the MongoDB Download Page625.

2. Change your config (optional) to prevent election of a new primary.

It is possible that, when you start shutting down members of the set, a new primary will be elected. To prevent
this, you can give all of the secondaries a priority of 0 before upgrading, and then change them back afterwards.
To do so:

(a) Record your current config. Run rs.config() and paste the results into a text file.

(b) Update your config so that all secondaries have priority 0. For example:

config = rs.conf()
{

"_id" : "foo",
"version" : 3,
"members" : [

{
"_id" : 0,
"host" : "ubuntu:27017"

},
{

"_id" : 1,
"host" : "ubuntu:27018"

},
{

"_id" : 2,
"host" : "ubuntu:27019",
"arbiterOnly" : true

}
{

"_id" : 3,
"host" : "ubuntu:27020"

},
{

"_id" : 4,
"host" : "ubuntu:27021"

},
]

}
config.version++
3
rs.isMaster()
{

"setName" : "foo",

625http://downloads.mongodb.org/

898 Chapter 12. Release Notes

http://downloads.mongodb.org/

MongoDB Documentation, Release 2.6.11

"ismaster" : false,
"secondary" : true,
"hosts" : [

"ubuntu:27017",
"ubuntu:27018"

],
"arbiters" : [

"ubuntu:27019"
],
"primary" : "ubuntu:27018",
"ok" : 1

}
// for each secondary
config.members[0].priority = 0
config.members[3].priority = 0
config.members[4].priority = 0
rs.reconfig(config)

3. For each secondary:

(a) Shut down the secondary.

(b) Restart it with the 1.8.x binary from the MongoDB Download Page626.

4. If you changed the config, change it back to its original state:

config = rs.conf()
config.version++
config.members[0].priority = 1
config.members[3].priority = 1
config.members[4].priority = 1
rs.reconfig(config)

5. Shut down the primary (the final 1.6 server), and then restart it with the 1.8.x binary from the MongoDB
Download Page627.

Upgrading a Sharded Cluster

1. Turn off the balancer:

mongo <a_mongos_hostname>
use config
db.settings.update({_id:"balancer"},{$set : {stopped:true}}, true)

2. For each shard:

• If the shard is a replica set, follow the directions above for Upgrading a Replica Set (page 898).

• If the shard is a single mongod process, shut it down and then restart it with the 1.8.x binary from the
MongoDB Download Page628.

3. For each mongos:

(a) Shut down the mongos process.

(b) Restart it with the 1.8.x binary from the MongoDB Download Page629.

626http://downloads.mongodb.org/
627http://downloads.mongodb.org/
628http://downloads.mongodb.org/
629http://downloads.mongodb.org/

12.2. Previous Stable Releases 899

http://downloads.mongodb.org/
http://downloads.mongodb.org/
http://downloads.mongodb.org/
http://downloads.mongodb.org/
http://downloads.mongodb.org/

MongoDB Documentation, Release 2.6.11

4. For each config server:

(a) Shut down the config server process.

(b) Restart it with the 1.8.x binary from the MongoDB Download Page630.

5. Turn on the balancer:

use config
db.settings.update({_id:"balancer"},{$set : {stopped:false}})

Returning to 1.6

If for any reason you must move back to 1.6, follow the steps above in reverse. Please be careful that you have not
inserted any documents larger than 4MB while running on 1.8 (where the max size has increased to 16MB). If you
have you will get errors when the server tries to read those documents.

Journaling Returning to 1.6 after using 1.8 Journaling (page 309) works fine, as journaling does not change anything
about the data file format. Suppose you are running 1.8.x with journaling enabled and you decide to switch back to
1.6. There are two scenarios:

• If you shut down cleanly with 1.8.x, just restart with the 1.6 mongod binary.

• If 1.8.x shut down uncleanly, start 1.8.x up again and let the journal files run to fix any damage (incomplete
writes) that may have existed at the crash. Then shut down 1.8.x cleanly and restart with the 1.6 mongod binary.

Changes

Journaling

MongoDB now supports write-ahead Journaling Mechanics (page 309) to facilitate fast crash recovery and durability
in the storage engine. With journaling enabled, a mongod can be quickly restarted following a crash without needing
to repair the collections. The aggregation framework makes it possible to do aggregation

Sparse and Covered Indexes

Sparse Indexes (page 507) are indexes that only include documents that contain the fields specified in the index.
Documents missing the field will not appear in the index at all. This can significantly reduce index size for indexes of
fields that contain only a subset of documents within a collection.

Covered Indexes (page 71) enable MongoDB to answer queries entirely from the index when the query only selects
fields that the index contains.

Incremental MapReduce Support

The mapReduce command supports new options that enable incrementally updating existing collections. Previously,
a MapReduce job could output either to a temporary collection or to a named permanent collection, which it would
overwrite with new data.

You now have several options for the output of your MapReduce jobs:

630http://downloads.mongodb.org/

900 Chapter 12. Release Notes

http://downloads.mongodb.org/

MongoDB Documentation, Release 2.6.11

• You can merge MapReduce output into an existing collection. Output from the Reduce phase will replace
existing keys in the output collection if it already exists. Other keys will remain in the collection.

• You can now re-reduce your output with the contents of an existing collection. Each key output by the reduce
phase will be reduced with the existing document in the output collection.

• You can replace the existing output collection with the new results of the MapReduce job (equivalent to setting
a permanent output collection in previous releases)

• You can compute MapReduce inline and return results to the caller without persisting the results of the job. This
is similar to the temporary collections generated in previous releases, except results are limited to 8MB.

For more information, see the out field options in the mapReduce document.

Additional Changes and Enhancements

1.8.1

• Sharding migrate fix when moving larger chunks.

• Durability fix with background indexing.

• Fixed mongos concurrency issue with many incoming connections.

1.8.0

• All changes from 1.7.x series.

1.7.6

• Bug fixes.

1.7.5

• Journaling (page 309).

• Extent allocation improvements.

• Improved replica set connectivity for mongos.

• getLastError improvements for sharding.

1.7.4

• mongos routes slaveOk queries to secondaries in replica sets.

• New mapReduce output options.

• Sparse Indexes (page 507).

1.7.3

• Initial covered index (page 71) support.

• Distinct can use data from indexes when possible.

• mapReduce can merge or reduce results into an existing collection.

• mongod tracks and mongostat displays network usage. See mongostat.

12.2. Previous Stable Releases 901

MongoDB Documentation, Release 2.6.11

• Sharding stability improvements.

1.7.2

• $rename operator allows renaming of fields in a document.

• db.eval() not to block.

• Geo queries with sharding.

• mongostat --discover option

• Chunk splitting enhancements.

• Replica sets network enhancements for servers behind a nat.

1.7.1

• Many sharding performance enhancements.

• Better support for $elemMatch on primitives in embedded arrays.

• Query optimizer enhancements on range queries.

• Window service enhancements.

• Replica set setup improvements.

• $pull works on primitives in arrays.

1.7.0

• Sharding performance improvements for heavy insert loads.

• Slave delay support for replica sets.

• getLastErrorDefaults (page 664) for replica sets.

• Auto completion in the shell.

• Spherical distance for geo search.

• All fixes from 1.6.1 and 1.6.2.

Release Announcement Forum Pages

• 1.8.1631, 1.8.0632

• 1.7.6633, 1.7.5634, 1.7.4635, 1.7.3636, 1.7.2637, 1.7.1638, 1.7.0639

631https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/v09MbhEm62Y
632https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/JeHQOnam6Qk
633https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/3t6GNZ1qGYc
634https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/S5R0Tx9wkEg
635https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/9Om3Vuw-y9c
636https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/DfNUrdbmflI
637https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/df7mwK6Xixo
638https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/HUR9zYtTpA8
639https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/TUnJCg9161A

902 Chapter 12. Release Notes

https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/v09MbhEm62Y
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/JeHQOnam6Qk
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/3t6GNZ1qGYc
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/S5R0Tx9wkEg
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/9Om3Vuw-y9c
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/DfNUrdbmflI
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/df7mwK6Xixo
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/HUR9zYtTpA8
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/TUnJCg9161A

MongoDB Documentation, Release 2.6.11

Resources

• MongoDB Downloads640

• All JIRA Issues resolved in 1.8641

12.2.5 Release Notes for MongoDB 1.6

On this page

• Upgrading (page 903)
• Sharding (page 903)
• Replica Sets (page 903)
• Other Improvements (page 904)
• Installation (page 904)
• 1.6.x Release Notes (page 904)
• 1.5.x Release Notes (page 904)

Upgrading

MongoDB 1.6 is a drop-in replacement for 1.4. To upgrade, simply shutdown mongod then restart with the new
binaries.

Please note that you should upgrade to the latest version of whichever driver you’re using. Certain drivers, including
the Ruby driver, will require the upgrade, and all the drivers will provide extra features for connecting to replica sets.

Sharding

Sharding (page 675) is now production-ready, making MongoDB horizontally scalable, with no single point of failure.
A single instance of mongod can now be upgraded to a distributed cluster with zero downtime when the need arises.

• Sharding (page 675)

• Deploy a Sharded Cluster (page 705)

• Convert a Replica Set to a Replicated Sharded Cluster (page 714)

Replica Sets

Replica sets (page 563), which provide automated failover among a cluster of n nodes, are also now available.

Please note that replica pairs are now deprecated; we strongly recommend that replica pair users upgrade to replica
sets.

• Replication (page 563)

• Deploy a Replica Set (page 607)

• Convert a Standalone to a Replica Set (page 619)

640http://mongodb.org/downloads
641https://jira.mongodb.org/secure/IssueNavigator.jspa?mode=hide&requestId=10172

12.2. Previous Stable Releases 903

http://mongodb.org/downloads
https://jira.mongodb.org/secure/IssueNavigator.jspa?mode=hide&requestId=10172

MongoDB Documentation, Release 2.6.11

Other Improvements

• The w option (and wtimeout) forces writes to be propagated to n servers before returning success (this works
especially well with replica sets)

• $or queries

• Improved concurrency

• $slice operator for returning subsets of arrays

• 64 indexes per collection (formerly 40 indexes per collection)

• 64-bit integers can now be represented in the shell using NumberLong

• The findAndModify command now supports upserts. It also allows you to specify fields to return

• $showDiskLoc option to see disk location of a document

• Support for IPv6 and UNIX domain sockets

Installation

• Windows service improvements

• The C++ client is a separate tarball from the binaries

1.6.x Release Notes

• 1.6.5642

1.5.x Release Notes

• 1.5.8643

• 1.5.7644

• 1.5.6645

• 1.5.5646

• 1.5.4647

• 1.5.3648

• 1.5.2649

• 1.5.1650

• 1.5.0651

642https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/06_QCC05Fpk
643https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/uJfF1QN6Thk
644https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/OYvz40RWs90
645https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/4l0N2U_H0cQ
646https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/oO749nvTARY
647https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/380V_Ec_q1c
648https://groups.google.com/forum/?hl=en&fromgroups=#!topic/mongodb-user/hsUQL9CxTQw
649https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/94EE3HVidAA
650https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/7SBPQ2RSfdM
651https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/VAhJcjDGTy0

904 Chapter 12. Release Notes

https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/06_QCC05Fpk
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/uJfF1QN6Thk
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/OYvz40RWs90
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/4l0N2U_H0cQ
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/oO749nvTARY
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/380V_Ec_q1c
https://groups.google.com/forum/?hl=en&fromgroups=#!topic/mongodb-user/hsUQL9CxTQw
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/94EE3HVidAA
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/7SBPQ2RSfdM
https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/VAhJcjDGTy0

MongoDB Documentation, Release 2.6.11

You can see a full list of all changes on JIRA652.

Thank you everyone for your support and suggestions!

12.2.6 Release Notes for MongoDB 1.4

On this page

• Upgrading (page 905)
• Core Server Enhancements (page 905)
• Replication and Sharding (page 905)
• Deployment and Production (page 905)
• Query Language Improvements (page 906)
• Geo (page 906)

Upgrading

We’re pleased to announce the 1.4 release of MongoDB. 1.4 is a drop-in replacement for 1.2. To upgrade you just
need to shutdown mongod, then restart with the new binaries. (Users upgrading from release 1.0 should review the
1.2 release notes (page 906), in particular the instructions for upgrading the DB format.)

Release 1.4 includes the following improvements over release 1.2:

Core Server Enhancements

• concurrency (page 777) improvements

• indexing memory improvements

• background index creation (page 510)

• better detection of regular expressions so the index can be used in more cases

Replication and Sharding

• better handling for restarting slaves offline for a while

• fast new slaves from snapshots (--fastsync)

• configurable slave delay (--slavedelay)

• replication handles clock skew on master

• $inc replication fixes

• sharding alpha 3 - notably 2-phase commit on config servers

Deployment and Production

• configure “slow threshold” for profiling (page 240)

• ability to do fsync + lock for backing up raw files

652https://jira.mongodb.org/secure/IssueNavigator.jspa?mode=hide&requestId=10107

12.2. Previous Stable Releases 905

https://jira.mongodb.org/secure/IssueNavigator.jspa?mode=hide&requestId=10107

MongoDB Documentation, Release 2.6.11

• option for separate directory per db (--directoryperdb)

• http://localhost:28017/_status to get serverStatus via http

• REST interface is off by default for security (--rest to enable)

• can rotate logs with a db command, logRotate

• enhancements to serverStatus command (db.serverStatus()) - counters and replication lag (page 654) stats

• new mongostat tool

Query Language Improvements

• $all with regex

• $not

• partial matching of array elements $elemMatch

• $ operator for updating arrays

• $addToSet

• $unset

• $pull supports object matching

• $set with array indexes

Geo

• 2d geospatial search (page 500)

• geo $center and $box searches

12.2.7 Release Notes for MongoDB 1.2.x

On this page

• New Features (page 906)
• DB Upgrade Required (page 907)
• Replication Changes (page 907)
• mongoimport (page 907)
• field filter changing (page 907)

New Features

• More indexes per collection

• Faster index creation

• Map/Reduce

• Stored JavaScript functions

• Configurable fsync time

• Several small features and fixes

906 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

DB Upgrade Required

There are some changes that will require doing an upgrade if your previous version is <= 1.0.x. If you’re already using
a version >= 1.1.x then these changes aren’t required. There are 2 ways to do it:

• --upgrade

– stop your mongod process

– run ./mongod --upgrade

– start mongod again

• use a slave

– start a slave on a different port and data directory

– when its synced, shut down the master, and start the new slave on the regular port.

Ask in the forums or IRC for more help.

Replication Changes

• There have been minor changes in replication. If you are upgrading a master/slave setup from <= 1.1.2 you have
to update the slave first.

mongoimport

• mongoimportjson has been removed and is replaced with mongoimport that can do json/csv/tsv

field filter changing

• We’ve changed the semantics of the field filter a little bit. Previously only objects with those fields would be
returned. Now the field filter only changes the output, not which objects are returned. If you need that behavior,
you can use $exists

12.3 Other MongoDB Release Notes

12.3.1 Default Write Concern Change

On this page

• Changes (page 908)
• Releases (page 908)

These release notes outline a change to all driver interfaces released in November 2012. See release notes for specific
drivers for additional information.

12.3. Other MongoDB Release Notes 907

MongoDB Documentation, Release 2.6.11

Changes

As of the releases listed below, there are two major changes to all drivers:

1. All drivers will add a new top-level connection class that will increase consistency for all MongoDB client
interfaces.

This change is non-backward breaking: existing connection classes will remain in all drivers for a time, and will
continue to operate as expected. However, those previous connection classes are now deprecated as of these
releases, and will eventually be removed from the driver interfaces.

The new top-level connection class is named MongoClient, or similar depending on how host languages
handle namespacing.

2. The default write concern on the new MongoClient class will be to acknowledge all write operations 653.
This will allow your application to receive acknowledgment of all write operations.

See the documentation of Write Concern (page 82) for more information about write concern in MongoDB.

Please migrate to the new MongoClient class expeditiously.

Releases

The following driver releases will include the changes outlined in Changes (page 908). See each driver’s release notes
for a full account of each release as well as other related driver-specific changes.

• C#, version 1.7

• Java, version 2.10.0

• Node.js, version 1.2

• Perl, version 0.501.1

• PHP, version 1.4

• Python, version 2.4

• Ruby, version 1.8

12.4 MongoDB Version Numbers

For MongoDB 2.4.1, 2.4 refers to the release series and .1 refers to the revision. The second component of the
release series (e.g. 4 in 2.4.1) describes the type of release series. Release series ending with even numbers (e.g. 4
above) are stable and ready for production, while odd numbers are for development and testing only.

Generally, changes in the release series (e.g. 2.2 to 2.4) mark the introduction of new features that may break back-
wards compatibility. Changes to the revision number mark the release bug fixes and backwards-compatible changes.

Important: Always upgrade to the latest stable revision of your release series.

The version numbering system for MongoDB differs from the system used for the MongoDB drivers. Drivers use only
the first number to indicate a major version. For details, see drivers-version-numbers.

Example
653 The drivers will call getLastError without arguments, which is logically equivalent to the w: 1 option; however, this operation allows

replica set users to override the default write concern with the getLastErrorDefaults (page 664) setting in the Replica Set Configuration
(page 659).

908 Chapter 12. Release Notes

MongoDB Documentation, Release 2.6.11

Version numbers

• 2.0.0 : Stable release.

• 2.0.1 : Revision.

• 2.1.0 : Development release for testing only. Includes new features and changes for testing. Interfaces and
stability may not be compatible in development releases.

• 2.2.0 : Stable release. This is a culmination of the 2.1.x development series.

12.4. MongoDB Version Numbers 909

MongoDB Documentation, Release 2.6.11

910 Chapter 12. Release Notes

CHAPTER 13

About MongoDB Documentation

On this page

• License (page 911)
• Editions (page 911)
• Version and Revisions (page 912)
• Report an Issue or Make a Change Request (page 912)
• Contribute to the Documentation (page 912)

The MongoDB Manual1 contains comprehensive documentation on MongoDB. This page describes the manual’s
licensing, editions, and versions, and describes how to make a change request and how to contribute to the manual.

13.1 License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License2

© MongoDB, Inc. 2008-2016

13.2 Editions

In addition to the MongoDB Manual3, you can also access this content in the following editions:

• PDF Format4 (without reference).

• HTML tar.gz5

• ePub Format6

You also can access PDF files that contain subsets of the MongoDB Manual:

• MongoDB Reference Manual7

1http://docs.mongodb.org/manual/#
2http://creativecommons.org/licenses/by-nc-sa/3.0/us/
3http://docs.mongodb.org/manual/#
4http://docs.mongodb.org/v2.6/MongoDB-manual.pdf
5http://docs.mongodb.org/v2.6/manual.tar.gz
6http://docs.mongodb.org/v2.6/MongoDB-manual.epub
7http://docs.mongodb.org/v2.6/MongoDB-reference-manual.pdf

911

http://docs.mongodb.org/manual/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://docs.mongodb.org/manual/
http://docs.mongodb.org/v2.6/MongoDB-manual.pdf
http://docs.mongodb.org/v2.6/manual.tar.gz
http://docs.mongodb.org/v2.6/MongoDB-manual.epub
http://docs.mongodb.org/v2.6/MongoDB-reference-manual.pdf

MongoDB Documentation, Release 2.6.11

• MongoDB CRUD Operations8

• Data Models for MongoDB9

• MongoDB Data Aggregation10

• Replication and MongoDB11

• Sharding and MongoDB12

• MongoDB Administration13

• MongoDB Security14

MongoDB Reference documentation is also available as part of dash15. You can also access the MongoDB Man
Pages16 which are also distributed with the official MongoDB Packages.

13.3 Version and Revisions

This version of the manual reflects version 2.6 of MongoDB.

See the MongoDB Documentation Project Page17 for an overview of all editions and output formats of the MongoDB
Manual. You can see the full revision history and track ongoing improvements and additions for all versions of the
manual from its GitHub repository18.

This edition reflects “v2.6” branch of the documentation as of the “a82057ac226cac8dee6b53a2ff6212b03abf817a”
revision. This branch is explicitly accessible via “http://docs.mongodb.org/v2.6” and you can always reference the
commit of the current manual in the release.txt19 file.

The most up-to-date, current, and stable version of the manual is always available at
“http://docs.mongodb.org/manual/”.

13.4 Report an Issue or Make a Change Request

To report an issue with this manual or to make a change request, file a ticket at the MongoDB DOCS Project on Jira20.

13.5 Contribute to the Documentation

13.5.1 MongoDB Manual Translation

The original language of all MongoDB documentation is American English. However it is of critical importance to
the documentation project to ensure that speakers of other languages can read and understand the documentation.

8http://docs.mongodb.org/v2.6/MongoDB-crud-guide.pdf
9http://docs.mongodb.org/v2.6/MongoDB-data-models-guide.pdf

10http://docs.mongodb.org/v2.6/MongoDB-aggregation-guide.pdf
11http://docs.mongodb.org/v2.6/MongoDB-replication-guide.pdf
12http://docs.mongodb.org/v2.6/MongoDB-sharding-guide.pdf
13http://docs.mongodb.org/v2.6/MongoDB-administration-guide.pdf
14http://docs.mongodb.org/v2.6/MongoDB-security-guide.pdf
15http://kapeli.com/dash
16http://docs.mongodb.org/v2.6/manpages.tar.gz
17http://docs.mongodb.org
18https://github.com/mongodb/docs
19http://docs.mongodb.org/v2.6/release.txt
20https://jira.mongodb.org/browse/DOCS

912 Chapter 13. About MongoDB Documentation

http://docs.mongodb.org/v2.6/MongoDB-crud-guide.pdf
http://docs.mongodb.org/v2.6/MongoDB-data-models-guide.pdf
http://docs.mongodb.org/v2.6/MongoDB-aggregation-guide.pdf
http://docs.mongodb.org/v2.6/MongoDB-replication-guide.pdf
http://docs.mongodb.org/v2.6/MongoDB-sharding-guide.pdf
http://docs.mongodb.org/v2.6/MongoDB-administration-guide.pdf
http://docs.mongodb.org/v2.6/MongoDB-security-guide.pdf
http://kapeli.com/dash
http://docs.mongodb.org/v2.6/manpages.tar.gz
http://docs.mongodb.org/v2.6/manpages.tar.gz
http://docs.mongodb.org
https://github.com/mongodb/docs
http://docs.mongodb.org/v2.6
http://docs.mongodb.org/v2.6/release.txt
http://docs.mongodb.org/manual/
https://jira.mongodb.org/browse/DOCS

MongoDB Documentation, Release 2.6.11

To this end, the MongoDB Documentation Project is preparing to launch a translation effort to allow the community
to help bring the documentation to speakers of other languages.

If you would like to express interest in helping to translate the MongoDB documentation once this project is opened
to the public, please:

• complete the MongoDB Contributor Agreement21, and

• join the mongodb-translators22 user group.

The mongodb-translators23 user group exists to facilitate collaboration between translators and the documentation
team at large. You can join the group without signing the Contributor Agreement, but you will not be allowed to
contribute translations.

See also:

• Contribute to the Documentation (page 912)

• Style Guide and Documentation Conventions (page 914)

• MongoDB Manual Organization (page 923)

• MongoDB Documentation Practices and Processes (page 920)

• MongoDB Documentation Build System (page 924)

The entire documentation source for this manual is available in the mongodb/docs repository24, which is one of the
MongoDB project repositories on GitHub25.

To contribute to the documentation, you can open a GitHub account26, fork the mongodb/docs repository27, make a
change, and issue a pull request.

In order for the documentation team to accept your change, you must complete the MongoDB Contributor Agree-
ment28.

You can clone the repository by issuing the following command at your system shell:

git clone git://github.com/mongodb/docs.git

13.5.2 About the Documentation Process

The MongoDB Manual uses Sphinx29, a sophisticated documentation engine built upon Python Docutils30. The orig-
inal reStructured Text31 files, as well as all necessary Sphinx extensions and build tools, are available in the same
repository as the documentation.

For more information on the MongoDB documentation process, see:

21http://www.mongodb.com/legal/contributor-agreement
22http://groups.google.com/group/mongodb-translators
23http://groups.google.com/group/mongodb-translators
24https://github.com/mongodb/docs
25http://github.com/mongodb
26https://github.com/
27https://github.com/mongodb/docs
28http://www.mongodb.com/contributor
29http://sphinx-doc.org//
30http://docutils.sourceforge.net/
31http://docutils.sourceforge.net/rst.html

13.5. Contribute to the Documentation 913

http://www.mongodb.com/legal/contributor-agreement
http://groups.google.com/group/mongodb-translators
http://groups.google.com/group/mongodb-translators
https://github.com/mongodb/docs
http://github.com/mongodb
https://github.com/
https://github.com/mongodb/docs
http://www.mongodb.com/contributor
http://www.mongodb.com/contributor
http://sphinx-doc.org//
http://docutils.sourceforge.net/
http://docutils.sourceforge.net/rst.html

MongoDB Documentation, Release 2.6.11

Style Guide and Documentation Conventions

This document provides an overview of the style for the MongoDB documentation stored in this repository. The
overarching goal of this style guide is to provide an accessible base style to ensure that our documentation is easy to
read, simple to use, and straightforward to maintain.

For information regarding the MongoDB Manual organization, see MongoDB Manual Organization (page 923).

Document History

2011-09-27: Document created with a (very) rough list of style guidelines, conventions, and questions.

2012-01-12: Document revised based on slight shifts in practice, and as part of an effort of making it easier for people
outside of the documentation team to contribute to documentation.

2012-03-21: Merged in content from the Jargon, and cleaned up style in light of recent experiences.

2012-08-10: Addition to the “Referencing” section.

2013-02-07: Migrated this document to the manual. Added “map-reduce” terminology convention. Other edits.

2013-11-15: Added new table of preferred terms.

Naming Conventions

This section contains guidelines on naming files, sections, documents and other document elements.

• File naming Convention:

– For Sphinx, all files should have a .txt extension.

– Separate words in file names with hyphens (i.e. -.)

– For most documents, file names should have a terse one or two word name that de-
scribes the material covered in the document. Allow the path of the file within the doc-
ument tree to add some of the required context/categorization. For example it’s ac-
ceptable to have http://docs.mongodb.org/manual/core/sharding.rst and
http://docs.mongodb.org/manual/administration/sharding.rst.

– For tutorials, the full title of the document should be in the file name. For example,
http://docs.mongodb.org/manual/tutorial/replace-one-configuration-server-in-a-shard-cluster.rst

• Phrase headlines and titles so users can determine what questions the text will answer, and material that will
be addressed, without needing them to read the content. This shortens the amount of time that people spend
looking for answers, and improvise search/scanning, and possibly “SEO.”

• Prefer titles and headers in the form of “Using foo” over “How to Foo.”

• When using target references (i.e. :ref: references in documents), use names that include enough context to
be intelligible through all documentation. For example, use “replica-set-secondary-only-node” as
opposed to “secondary-only-node”. This makes the source more usable and easier to maintain.

Style Guide

This includes the local typesetting, English, grammatical, conventions and preferences that all documents in the manual
should use. The goal here is to choose good standards, that are clear, and have a stylistic minimalism that does not
interfere with or distract from the content. A uniform style will improve user experience and minimize the effect of a
multi-authored document.

914 Chapter 13. About MongoDB Documentation

MongoDB Documentation, Release 2.6.11

Punctuation

• Use the Oxford comma.

Oxford commas are the commas in a list of things (e.g. “something, something else, and another thing”) before
the conjunction (e.g. “and” or “or.”).

• Do not add two spaces after terminal punctuation, such as periods.

• Place commas and periods inside quotation marks.

Headings Use title case for headings and document titles. Title case capitalizes the first letter of the first, last, and
all significant words.

Verbs Verb tense and mood preferences, with examples:

• Avoid the first person. For example do not say, “We will begin the backup process by locking the database,” or
“I begin the backup process by locking my database instance.”

• Use the second person. “If you need to back up your database, start by locking the database first.” In practice,
however, it’s more concise to imply second person using the imperative, as in “Before initiating a backup, lock
the database.”

• When indicated, use the imperative mood. For example: “Backup your databases often” and “To prevent data
loss, back up your databases.”

• The future perfect is also useful in some cases. For example, “Creating disk snapshots without locking the
database will lead to an invalid state.”

• Avoid helper verbs, as possible, to increase clarity and concision. For example, attempt to avoid “this does
foo” and “this will do foo” when possible. Use “does foo” over “will do foo” in situations where “this foos” is
unacceptable.

Referencing

• To refer to future or planned functionality in MongoDB or a driver, always link to the Jira case. The Manual’s
conf.py provides an :issue: role that links directly to a Jira case (e.g. :issue:\‘SERVER-9001\‘).

• For non-object references (i.e. functions, operators, methods, database commands, settings) always reference
only the first occurrence of the reference in a section. You should always reference objects, except in section
headings.

• Structure references with the why first; the link second.

For example, instead of this:

Use the Convert a Replica Set to a Replicated Sharded Cluster (page 714) procedure if you have an existing
replica set.

Type this:

To deploy a sharded cluster for an existing replica set, see Convert a Replica Set to a Replicated Sharded Cluster
(page 714).

General Formulations

• Contractions are acceptable insofar as they are necessary to increase readability and flow. Avoid otherwise.

• Make lists grammatically correct.

– Do not use a period after every item unless the list item completes the unfinished sentence before the list.

13.5. Contribute to the Documentation 915

MongoDB Documentation, Release 2.6.11

– Use appropriate commas and conjunctions in the list items.

– Typically begin a bulleted list with an introductory sentence or clause, with a colon or comma.

• The following terms are one word:

– standalone

– workflow

• Use “unavailable,” “offline,” or “unreachable” to refer to a mongod instance that cannot be accessed. Do not
use the colloquialism “down.”

• Always write out units (e.g. “megabytes”) rather than using abbreviations (e.g. “MB”.)

Structural Formulations

• There should be at least two headings at every nesting level. Within an “h2” block, there should be either: no
“h3” blocks, 2 “h3” blocks, or more than 2 “h3” blocks.

• Section headers are in title case (capitalize first, last, and all important words) and should effectively describe
the contents of the section. In a single document you should strive to have section titles that are not redundant
and grammatically consistent with each other.

• Use paragraphs and paragraph breaks to increase clarity and flow. Avoid burying critical information in the
middle of long paragraphs. Err on the side of shorter paragraphs.

• Prefer shorter sentences to longer sentences. Use complex formations only as a last resort, if at all (e.g. com-
pound complex structures that require semi-colons).

• Avoid paragraphs that consist of single sentences as they often represent a sentence that has unintentionally
become too complex or incomplete. However, sometimes such paragraphs are useful for emphasis, summary,
or introductions.

As a corollary, most sections should have multiple paragraphs.

• For longer lists and more complex lists, use bulleted items rather than integrating them inline into a sentence.

• Do not expect that the content of any example (inline or blocked) will be self explanatory. Even when it feels
redundant, make sure that the function and use of every example is clearly described.

ReStructured Text and Typesetting

• Place spaces between nested parentheticals and elements in JavaScript examples. For example, prefer { [a,
a, a] } over {[a,a,a]}.

• For underlines associated with headers in RST, use:

– = for heading level 1 or h1s. Use underlines and overlines for document titles.

– - for heading level 2 or h2s.

– ~ for heading level 3 or h3s.

– ‘ for heading level 4 or h4s.

• Use hyphens (-) to indicate items of an ordered list.

• Place footnotes and other references, if you use them, at the end of a section rather than the end of a file.

Use the footnote format that includes automatic numbering and a target name for ease of use. For instance a
footnote tag may look like: [#note]_ with the corresponding directive holding the body of the footnote that
resembles the following: .. [#note].

Do not include .. code-block:: [language] in footnotes.

916 Chapter 13. About MongoDB Documentation

MongoDB Documentation, Release 2.6.11

• As it makes sense, use the .. code-block:: [language] form to insert literal blocks into the text.
While the double colon, ::, is functional, the .. code-block:: [language] form makes the source
easier to read and understand.

• For all mentions of referenced types (i.e. commands, operators, expressions, functions, statuses, etc.) use the
reference types to ensure uniform formatting and cross-referencing.

13.5. Contribute to the Documentation 917

MongoDB Documentation, Release 2.6.11

918 Chapter 13. About MongoDB Documentation

MongoDB Documentation, Release 2.6.11

Jargon and Common Terms

Pre-
ferred
Term

Concept Dispreferred
Alternatives

Notes

docu-
ment

A single, top-level object/record
in a MongoDB collection.

record, object,
row

Prefer document over object because of
concerns about cross-driver language handling
of objects. Reserve record for “allocation” of
storage. Avoid “row,” as possible.

databaseA group of collections. Refers to
a group of data files. This is the
“logical” sense of the term
“database.”

Avoid genericizing “database.” Avoid using
database to refer to a server process or a data
set. This applies both to the datastoring
contexts as well as other (related) operational
contexts (command context,
authentication/authorization context.)

in-
stance

A daemon process. (e.g. mongos
or mongod)

process
(acceptable
sometimes), node
(never
acceptable),
server.

Avoid using instance, unless it modifies
something specifically. Having a descriptor for
a process/instance makes it possible to avoid
needing to make mongod or mongos plural.
Server and node are both vague and
contextually difficult to disambiguate with
regards to application servers, and underlying
hardware.

field
name

The identifier of a value in a
document.

key, column Avoid introducing unrelated terms for a single
field. In the documentation we’ve rarely had to
discuss the identifier of a field, so the extra
word here isn’t burdensome.

field/valueThe name/value pair that
describes a unit of data in
MongoDB.

key, slot, attribute Use to emphasize the difference between the
name of a field and its value For example,
“_id” is the field and the default value is an
ObjectId.

value The data content of a field. data
Mon-
goDB

A group of processes, or
deployment that implement the
MongoDB interface.

mongo,
mongodb, cluster

Stylistic preference, mostly. In some cases it’s
useful to be able to refer generically to
instances (that may be either mongod or
mongos.)

em-
bed-
ded
docu-
ment

An embedded or nested
document within a document or
an array.

embedded
document, nested
document

map-
reduce

An operation performed by the
mapReduce command.

mapReduce, map
reduce,
map/reduce

Avoid confusion with the command, shell
helper, and driver interfaces. Makes it possible
to discuss the operation generally.

clus-
ter

A sharded cluster. grid, shard
cluster, set,
deployment

Cluster is a great word for a group of
processes; however, it’s important to avoid
letting the term become generic. Do not use for
any group of MongoDB processes or
deployments.

sharded
clus-
ter

A sharded cluster. shard cluster,
cluster, sharded
system

replica
set

A deployment of replicating
mongod programs that provide
redundancy and automatic
failover.

set, replication
deployment

de-
ploy-
ment

A group of MongoDB processes,
or a standalone mongod
instance.

cluster, system Typically in the form MongoDB deployment.
Includes standalones, replica sets and sharded
clusters.

data
set

The collection of physical
databases provided by a
MongoDB deployment.

database, data Important to keep the distinction between the
data provided by a mongod or a sharded cluster
as distinct from each “database” (i.e. a logical
database that refers to a group of collections
stored in a single series of data files.)

pri-
mary

The only member of a replica set
that can accept writes.

master Avoid “primary member” construction.

sec-
ondary

Read-only members of a replica
set that apply operations from the
primary’s oplog.

slave Accept “secondary member” as needed.

pri-
mary
shard

The shard in a cluster that’s
“primary” for a database.

primary Avoid ambiguity with primary in the context of
replica sets.

range
based
shard-
ing

Refers to sharding based on
regular shard keys where the
range is the value of the field(s)
selected as the shard key.

hash
based
shard-
ing

Refers to sharding based on
hashed shard keys where the
range is the hashed value of the
field selected as the shard key.

Even though hashed sharding is based on
ranges of hashes, the sequence of hashes aren’t
meaningful to users, and the range-based
aspect of hashed shard keys is an
implementation detail.

shard-
ing

Describes the practice of
horizontal scaling or partitioning
as implemented in sharded
clusters.

partitioning,
horizontal scaling

Only use the terms “partitioning” and
“horizontal scaling” to describe what sharding
does, and its operation. Don’t refer to sharding
as “the partitioning system.”

meta-
data

data about data meta-data, meta
data

13.5. Contribute to the Documentation 919

MongoDB Documentation, Release 2.6.11

Database Systems and Processes

• To indicate the entire database system, use “MongoDB,” not mongo or Mongo.

• To indicate the database process or a server instance, use mongod or mongos. Refer to these as “processes”
or “instances.” Reserve “database” for referring to a database structure, i.e., the structure that holds collections
and refers to a group of files on disk.

Distributed System Terms

• Refer to partitioned systems as “sharded clusters.” Do not use shard clusters or sharded systems.

• Refer to configurations that run with replication as “replica sets” (or “master/slave deployments”) rather than
“clusters” or other variants.

Data Structure Terms

• “document” refers to “rows” or “records” in a MongoDB database. Potential confusion with “JSON Docu-
ments.”

Do not refer to documents as “objects,” because drivers (and MongoDB) do not preserve the order of fields when
fetching data. If the order of objects matter, use an array.

• “field” refers to a “key” or “identifier” of data within a MongoDB document.

• “value” refers to the contents of a “field”.

• “embedded document” describes a nested document.

Other Terms

• Use example.net (and .org or .com if needed) for all examples and samples.

• Hyphenate “map-reduce” in order to avoid ambiguous reference to the command name. Do not camel-case.

Notes on Specific Features

• Geo-Location

1. While MongoDB is capable of storing coordinates in embedded documents, in practice, users should only
store coordinates in arrays. (See: DOCS-4132.)

MongoDB Documentation Practices and Processes

This document provides an overview of the practices and processes.

Commits

When relevant, include a Jira case identifier in a commit message. Reference documentation cases when applicable,
but feel free to reference other cases from jira.mongodb.org33.

Err on the side of creating a larger number of discrete commits rather than bundling large set of changes into one
commit.

32https://jira.mongodb.org/browse/DOCS-41
33http://jira.mongodb.org/

920 Chapter 13. About MongoDB Documentation

https://jira.mongodb.org/browse/DOCS-41
http://jira.mongodb.org/

MongoDB Documentation, Release 2.6.11

For the sake of consistency, remove trailing whitespaces in the source file.

“Hard wrap” files to between 72 and 80 characters per-line.

Standards and Practices

• At least two people should vet all non-trivial changes to the documentation before publication. One of the
reviewers should have significant technical experience with the material covered in the documentation.

• All development and editorial work should transpire on GitHub branches or forks that editors can then merge
into the publication branches.

Collaboration

To propose a change to the documentation, do either of the following:

• Open a ticket in the documentation project34 proposing the change. Someone on the documentation team will
make the change and be in contact with you so that you can review the change.

• Using GitHub35, fork the mongodb/docs repository36, commit your changes, and issue a pull request. Someone
on the documentation team will review and incorporate your change into the documentation.

Builds

Building the documentation is useful because Sphinx37 and docutils can catch numerous errors in the format and
syntax of the documentation. Additionally, having access to an example documentation as it will appear to the users
is useful for providing more effective basis for the review process. Besides Sphinx, Pygments, and Python-Docutils,
the documentation repository contains all requirements for building the documentation resource.

Talk to someone on the documentation team if you are having problems running builds yourself.

Publication

The makefile for this repository contains targets that automate the publication process. Use make html to publish
a test build of the documentation in the build/ directory of your repository. Use make publish to build the full
contents of the manual from the current branch in the ../public-docs/ directory relative the docs repository.

Other targets include:

• man - builds UNIX Manual pages for all Mongodb utilities.

• push - builds and deploys the contents of the ../public-docs/.

• pdfs - builds a PDF version of the manual (requires LaTeX dependencies.)

Branches

This section provides an overview of the git branches in the MongoDB documentation repository and their use.

34https://jira.mongodb.org/browse/DOCS
35https://github.com/
36https://github.com/mongodb/docs
37http://sphinx.pocoo.org/

13.5. Contribute to the Documentation 921

https://jira.mongodb.org/browse/DOCS
https://github.com/
https://github.com/mongodb/docs
http://sphinx.pocoo.org/

MongoDB Documentation, Release 2.6.11

At the present time, future work transpires in the master, with the main publication being current. As the
documentation stabilizes, the documentation team will begin to maintain branches of the documentation for specific
MongoDB releases.

Migration from Legacy Documentation

The MongoDB.org Wiki contains a wealth of information. As the transition to the Manual (i.e. this project and
resource) continues, it’s critical that no information disappears or goes missing. The following process outlines how
to migrate a wiki page to the manual:

1. Read the relevant sections of the Manual, and see what the new documentation has to offer on a specific topic.

In this process you should follow cross references and gain an understanding of both the underlying information
and how the parts of the new content relates its constituent parts.

2. Read the wiki page you wish to redirect, and take note of all of the factual assertions, examples presented by the
wiki page.

3. Test the factual assertions of the wiki page to the greatest extent possible. Ensure that example output is accurate.
In the case of commands and reference material, make sure that documented options are accurate.

4. Make corrections to the manual page or pages to reflect any missing pieces of information.

The target of the redirect need not contain every piece of information on the wiki page, if the manual as a
whole does, and relevant section(s) with the information from the wiki page are accessible from the target of the
redirection.

5. As necessary, get these changes reviewed by another writer and/or someone familiar with the area of the infor-
mation in question.

At this point, update the relevant Jira case with the target that you’ve chosen for the redirect, and make the ticket
unassigned.

6. When someone has reviewed the changes and published those changes to Manual, you, or preferably someone
else on the team, should make a final pass at both pages with fresh eyes and then make the redirect.

Steps 1-5 should ensure that no information is lost in the migration, and that the final review in step 6 should be
trivial to complete.

Review Process

Types of Review The content in the Manual undergoes many types of review, including the following:

Initial Technical Review Review by an engineer familiar with MongoDB and the topic area of the documentation.
This review focuses on technical content, and correctness of the procedures and facts presented, but can improve any
aspect of the documentation that may still be lacking. When both the initial technical review and the content review
are complete, the piece may be “published.”

Content Review Textual review by another writer to ensure stylistic consistency with the rest of the manual. De-
pending on the content, this may precede or follow the initial technical review. When both the initial technical review
and the content review are complete, the piece may be “published.”

922 Chapter 13. About MongoDB Documentation

MongoDB Documentation, Release 2.6.11

Consistency Review This occurs post-publication and is content focused. The goals of consistency reviews are to
increase the internal consistency of the documentation as a whole. Insert relevant cross-references, update the style as
needed, and provide background fact-checking.

When possible, consistency reviews should be as systematic as possible and we should avoid encouraging stylistic and
information drift by editing only small sections at a time.

Subsequent Technical Review If the documentation needs to be updated following a change in functionality of the
server or following the resolution of a user issue, changes may be significant enough to warrant additional technical
review. These reviews follow the same form as the “initial technical review,” but is often less involved and covers a
smaller area.

Review Methods If you’re not a usual contributor to the documentation and would like to review something, you
can submit reviews in any of the following methods:

• If you’re reviewing an open pull request in GitHub, the best way to comment is on the “overview diff,” which
you can find by clicking on the “diff” button in the upper left portion of the screen. You can also use the
following URL to reach this interface:

https://github.com/mongodb/docs/pull/[pull-request-id]/files

Replace [pull-request-id] with the identifier of the pull request. Make all comments inline, using
GitHub’s comment system.

You may also provide comments directly on commits, or on the pull request itself but these commit-comments
are archived in less coherent ways and generate less useful emails, while comments on the pull request lead to
less specific changes to the document.

• Leave feedback on Jira cases in the DOCS38 project. These are better for more general changes that aren’t
necessarily tied to a specific line, or affect multiple files.

• Create a fork of the repository in your GitHub account, make any required changes and then create a pull request
with your changes.

If you insert lines that begin with any of the following annotations:

.. TODO:
TODO:
.. TODO
TODO

followed by your comments, it will be easier for the original writer to locate your comments. The two dots ..
format is a comment in reStructured Text, which will hide your comments from Sphinx and publication if you’re
worried about that.

This format is often easier for reviewers with larger portions of content to review.

MongoDB Manual Organization

This document provides an overview of the global organization of the documentation resource. Refer to the notes
below if you are having trouble understanding the reasoning behind a file’s current location, or if you want to add new
documentation but aren’t sure how to integrate it into the existing resource.

If you have questions, don’t hesitate to open a ticket in the Documentation Jira Project39 or contact the documentation
team40.

38http://jira.mongodb.org/browse/DOCS
39https://jira.mongodb.org/browse/DOCS
40docs@mongodb.com

13.5. Contribute to the Documentation 923

http://jira.mongodb.org/browse/DOCS
https://jira.mongodb.org/browse/DOCS
mailto:docs@mongodb.com
mailto:docs@mongodb.com

MongoDB Documentation, Release 2.6.11

Global Organization

Indexes and Experience The documentation project has two “index files”:
http://docs.mongodb.org/manual/contents.txt and http://docs.mongodb.org/manual/index.txt.
The “contents” file provides the documentation’s tree structure, which Sphinx uses to create the left-pane navigational
structure, to power the “Next” and “Previous” page functionality, and to provide all overarching outlines of the
resource. The “index” file is not included in the “contents” file (and thus builds will produce a warning here) and is
the page that users first land on when visiting the resource.

Having separate “contents” and “index” files provides a bit more flexibility with the organization of the resource while
also making it possible to customize the primary user experience.

Topical Organization The placement of files in the repository depends on the type of documentation rather than the
topic of the content. Like the difference between contents.txt and index.txt, by decoupling the organization
of the files from the organization of the information the documentation can be more flexible and can more adequately
address changes in the product and in users’ needs.

Files in the source/ directory represent the tip of a logical tree of documents, while directories are containers of
types of content. The administration and applications directories, however, are legacy artifacts and with a
few exceptions contain sub-navigation pages.

With several exceptions in the reference/ directory, there is only one level of sub-directories in the source/
directory.

Tools

The organization of the site, like all Sphinx sites derives from the toctree structure. However, in order to annotate
the table of contents and provide additional flexibility, the MongoDB documentation generates toctree structures
using data from YAML files stored in the source/includes/ directory. These files start with ref-toc or toc
and generate output in the source/includes/toc/ directory. Briefly this system has the following behavior:

• files that start with ref-toc refer to the documentation of API objects (i.e. commands, operators and methods),
and the build system generates files that hold toctree directives as well as files that hold tables that list objects
and a brief description.

• files that start with toc refer to all other documentation and the build system generates files that hold toctree
directives as well as files that hold definition lists that contain links to the documents and short descriptions the
content.

• file names that have spec following toc or ref-toc will generate aggregated tables or definition lists and
allow ad-hoc combinations of documents for landing pages and quick reference guides.

MongoDB Documentation Build System

This document contains more direct instructions for building the MongoDB documentation.

Getting Started

Install Dependencies The MongoDB Documentation project depends on the following tools:

• Python

• Git

• Inkscape (Image generation.)

924 Chapter 13. About MongoDB Documentation

MongoDB Documentation, Release 2.6.11

• LaTeX/PDF LaTeX (typically texlive; for building PDFs)

• Giza41

OS X Install Sphinx, Docutils, and their dependencies with easy_install the following command:

easy_install giza

Feel free to use pip rather than easy_install to install python packages.

To generate the images used in the documentation, download and install Inkscape42.

Optional
To generate PDFs for the full production build, install a TeX distribution (for building the PDF.) If you do not have a
LaTeX installation, use MacTeX43. This is only required to build PDFs.

Arch Linux Install packages from the system repositories with the following command:

pacman -S inkscape python2-pip

Then install the following Python packages:

pip2 install giza

Optional
To generate PDFs for the full production build, install the following packages from the system repository:

pacman -S texlive-bin texlive-core texlive-latexextra

Debian/Ubuntu Install the required system packages with the following command:

apt-get install inkscape python-pip

Then install the following Python packages:

pip install giza

Optional
To generate PDFs for the full production build, install the following packages from the system repository:

apt-get install texlive-latex-recommended texlive-latex-recommended

Setup and Configuration Clone the repository:

git clone git://github.com/mongodb/docs.git

41https://pypi.python.org/pypi/giza
42http://inkscape.org/download/
43http://www.tug.org/mactex/2011/

13.5. Contribute to the Documentation 925

https://pypi.python.org/pypi/giza
http://inkscape.org/download/
http://www.tug.org/mactex/2011/

MongoDB Documentation, Release 2.6.11

Building the Documentation

The MongoDB documentation build system is entirely accessible via make targets. For example, to build an HTML
version of the documentation issue the following command:

make html

You can find the build output in build/<branch>/html, where <branch> is the name of the current branch.

In addition to the html target, the build system provides the following targets:

publish Builds and integrates all output for the production build. Build output is in
build/public/<branch>/. When you run publish in the master, the build will generate
some output in build/public/.

push; stage Uploads the production build to the production or staging web servers. Depends on publish. Re-
quires access production or staging environment.

push-all; stage-all Uploads the entire content of build/public/ to the web servers. Depends on
publish. Not used in common practice.

push-with-delete; stage-with-delete Modifies the action of push and stage to remove remote file
that don’t exist in the local build. Use with caution.

html; latex; dirhtml; epub; texinfo; man; json These are standard targets derived from the default
Sphinx Makefile, with adjusted dependencies. Additionally, for all of these targets you can append -nitpick
to increase Sphinx’s verbosity, or -clean to remove all Sphinx build artifacts.

latex performs several additional post-processing steps on .tex output generated by Sphinx. This target will
also compile PDFs using pdflatex.

html and man also generates a .tar.gz file of the build outputs for inclusion in the final releases.

If you have any questions, please feel free to open a Jira Case44.

44https://jira.mongodb.org/browse/DOCS

926 Chapter 13. About MongoDB Documentation

https://jira.mongodb.org/browse/DOCS

	Introduction to MongoDB
	What is MongoDB

	Install MongoDB
	Installation Guides
	First Steps with MongoDB
	Additional Resources

	MongoDB CRUD Operations
	MongoDB CRUD Introduction
	MongoDB CRUD Concepts
	MongoDB CRUD Tutorials
	MongoDB CRUD Reference

	Data Models
	Data Modeling Introduction
	Data Modeling Concepts
	Data Model Examples and Patterns
	Data Model Reference

	Administration
	Administration Concepts
	Administration Tutorials
	Administration Reference

	Security
	Security Introduction
	Security Concepts
	Security Tutorials
	Security Reference
	Security Checklist

	Aggregation
	Aggregation Introduction
	Aggregation Concepts
	Aggregation Examples
	Aggregation Reference

	Indexes
	Index Introduction
	Index Concepts
	Indexing Tutorials
	Indexing Reference

	Replication
	Replication Introduction
	Replication Concepts
	Replica Set Tutorials
	Replication Reference

	Sharding
	Sharding Introduction
	Sharding Concepts
	Sharded Cluster Tutorials
	Sharding Reference

	Frequently Asked Questions
	FAQ: MongoDB Fundamentals
	FAQ: MongoDB for Application Developers
	FAQ: The mongo Shell
	FAQ: Concurrency
	FAQ: Sharding with MongoDB
	FAQ: Replication and Replica Sets
	FAQ: MongoDB Storage
	FAQ: Indexes
	FAQ: MongoDB Diagnostics

	Release Notes
	Current Stable Release
	Previous Stable Releases
	Other MongoDB Release Notes
	MongoDB Version Numbers

	About MongoDB Documentation
	License
	Editions
	Version and Revisions
	Report an Issue or Make a Change Request
	Contribute to the Documentation

