
MongoDB Administration
Release 3.2.3

MongoDB, Inc.

February 17, 2016

2

© MongoDB, Inc. 2008 - 2016 This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 United States License

3

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Contents

1 Administration Concepts 3
1.1 Operational Strategies . 3
1.2 Data Management . 30
1.3 Optimization Strategies for MongoDB . 38

2 Administration Tutorials 47
2.1 Configuration, Maintenance, and Analysis . 47
2.2 Backup and Recovery . 75
2.3 MongoDB Tutorials . 102

3 Administration Reference 107
3.1 UNIX ulimit Settings . 107
3.2 System Collections . 111
3.3 Database Profiler Output . 112
3.4 Server-side JavaScript . 118
3.5 Exit Codes and Statuses . 119

4 Production Checklist 121
4.1 Operations Checklist . 121
4.2 Development . 124
4.3 Additional Resources . 126

5 Appendix 127
5.1 Replica Set Tutorials . 127
5.2 Sharded Cluster Tutorials . 180

i

ii

MongoDB Administration, Release 3.2.3

The administration documentation addresses the ongoing operation and maintenance of MongoDB instances and de-
ployments. This documentation includes both high level overviews of these concerns as well as tutorials that cover
specific procedures and processes for operating MongoDB.

class hidden

Contents 1

MongoDB Administration, Release 3.2.3

2 Contents

CHAPTER 1

Administration Concepts

The core administration documents address strategies and practices used in the operation of MongoDB systems
and deployments.

Operational Strategies (page 3) Higher level documentation of key concepts for the operation and maintenance
of MongoDB deployments.

MongoDB Backup Methods (page 4) Describes approaches and considerations for backing up a Mon-
goDB database.

Monitoring for MongoDB (page 7) An overview of monitoring tools, diagnostic strategies, and ap-
proaches to monitoring replica sets and sharded clusters.

Run-time Database Configuration (page 13) Outlines common MongoDB configurations and examples
of best-practice configurations for common use cases.

Continue reading from Operational Strategies (page 3) for additional documentation.

Data Management (page 30) Core documentation that addresses issues in data management, organization,
maintenance, and lifecycle management.

Data Center Awareness (page 30) Presents the MongoDB features that allow application developers and
database administrators to configure their deployments to be more data center aware or allow opera-
tional and location-based separation.

Capped Collections (page 32) Capped collections provide a special type of size-constrained collections
that preserve insertion order and can support high volume inserts.

Expire Data from Collections by Setting TTL (page 36) TTL collections make it possible to automati-
cally remove data from a collection based on the value of a timestamp and are useful for managing
data like machine generated event data that are only useful for a limited period of time.

Optimization Strategies for MongoDB (page 38) Techniques for optimizing application performance with
MongoDB.

Continue reading from Optimization Strategies for MongoDB (page 38) for additional documentation.

1.1 Operational Strategies

These documents address higher level strategies for common administrative tasks and requirements with respect
to MongoDB deployments.

MongoDB Backup Methods (page 4) Describes approaches and considerations for backing up a MongoDB
database.

3

MongoDB Administration, Release 3.2.3

Monitoring for MongoDB (page 7) An overview of monitoring tools, diagnostic strategies, and approaches to
monitoring replica sets and sharded clusters.

Run-time Database Configuration (page 13) Outlines common MongoDB configurations and examples of
best-practice configurations for common use cases.

Production Notes (page 18) A collection of notes that describe best practices and considerations for the oper-
ations of MongoDB instances and deployments.

1.1.1 MongoDB Backup Methods

On this page

•Backup by Copying Underlying Data Files (page 4)
•Backup with mongodump (page 5)
•MongoDB Cloud Manager Backup (page 6)
•Ops Manager Backup Software (page 6)
•Further Reading (page 6)
•Additional Resources (page 6)

When deploying MongoDB in production, you should have a strategy for capturing and restoring backups in the
case of data loss events. There are several ways to back up MongoDB clusters:

•Backup by Copying Underlying Data Files (page 4)

•Backup a Database with mongodump (page 82)

•MongoDB Cloud Manager Backup (page 6)

•Ops Manager Backup Software (page 6)

Backup by Copying Underlying Data Files

You can create a backup by copying MongoDB’s underlying data files.

If the volume where MongoDB stores data files supports point in time snapshots, you can use these snapshots
to create backups of a MongoDB system at an exact moment in time.

File systems snapshots are an operating system volume manager feature, and are not specific to MongoDB.
The mechanics of snapshots depend on the underlying storage system. For example, if you use Amazon’s EBS
storage system for EC2 supports snapshots. On Linux the LVM manager can create a snapshot.

To get a correct snapshot of a running mongod process, you must have journaling enabled and the journal must
reside on the same logical volume as the other MongoDB data files. Without journaling enabled, there is no
guarantee that the snapshot will be consistent or valid.

To get a consistent snapshot of a sharded system, you must disable the balancer and capture a snapshot from
every shard and a config server at approximately the same moment in time.

If your storage system does not support snapshots, you can copy the files directly using cp, rsync, or a similar
tool. Since copying multiple files is not an atomic operation, you must stop all writes to the mongod before
copying the files. Otherwise, you will copy the files in an invalid state.

Backups produced by copying the underlying data do not support point in time recovery for replica sets and are
difficult to manage for larger sharded clusters. Additionally, these backups are larger because they include the
indexes and duplicate underlying storage padding and fragmentation. mongodump, by contrast, creates smaller
backups.

4 Chapter 1. Administration Concepts

MongoDB Administration, Release 3.2.3

For more information, see the Backup and Restore with Filesystem Snapshots (page 75) and Backup a Sharded
Cluster with Filesystem Snapshots (page 89) for complete instructions on using LVM to create snapshots. Also
see Back up and Restore Processes for MongoDB on Amazon EC21.

Backup with mongodump

The mongodump tool reads data from a MongoDB database and creates high fidelity BSON files. The
mongorestore tool can populate a MongoDB database with the data from these BSON files.

Use Cases

mongodump and mongorestore are simple and efficient for backing up small MongoDB deployments, for
partial backup and restores based on a query, syncing from production to staging or development environments,
or changing the storage engine of a standalone.

However, these tools can be problematic for capturing backups of larger systems, sharded clusters, or replica
sets. For alternatives, see MongoDB Cloud Manager Backup (page 6) or Ops Manager Backup Software
(page 6).

Data Exclusion

mongodump excludes the content of the local database in its output.

mongodump only captures the documents in the database in its backup data and does not include index data.
mongorestore or mongod must then rebuild the indexes after restoring data.

Data Compression Handling

When run against a mongod instance that uses the WiredTiger storage engine, mongodump outputs un-
compressed data.

Performance

mongodump can adversely affect the performance of the mongod. If your data is larger than system memory,
the mongodump will push the working set out of memory.

If applications modify data while mongodump is creating a backup, mongodump will compete for resources
with those applications.

To mitigate the impact of mongodump on the performance of the replica set, use mongodump to capture
backups from a secondary member of a replica set.

Applications can continue to modify data while mongodump captures the output. For replica sets, mongodump
provides the --oplog option to include in its output oplog entries that occur during the mongodump operation.
This allows the corresponding mongorestore operation to replay the captured oplog. To restore a backup
created with --oplog, use mongorestore with the --oplogReplay option.

However, for replica sets, consider MongoDB Cloud Manager Backup (page 6) or Ops Manager Backup Soft-
ware (page 6).

See Back Up and Restore with MongoDB Tools (page 81), Backup a Small Sharded Cluster with mongodump
(page 87), and Backup a Sharded Cluster with Database Dumps (page 91) for more information.

1https://docs.mongodb.org/ecosystem/tutorial/backup-and-restore-mongodb-on-amazon-ec2

1.1. Operational Strategies 5

https://docs.mongodb.org/ecosystem/tutorial/backup-and-restore-mongodb-on-amazon-ec2

MongoDB Administration, Release 3.2.3

MongoDB Cloud Manager Backup

The MongoDB Cloud Manager2 supports the backing up and restoring of MongoDB deployments.

MongoDB Cloud Manager continually backs up MongoDB replica sets and sharded clusters by reading the
oplog data from your MongoDB deployment.

MongoDB Cloud Manager Backup offers point in time recovery of MongoDB replica sets and a consistent
snapshot of sharded clusters.

MongoDB Cloud Manager achieves point in time recovery by storing oplog data so that it can create a restore for
any moment in time in the last 24 hours for a particular replica set or sharded cluster. Sharded cluster snapshots
are difficult to achieve with other MongoDB backup methods.

To restore a MongoDB deployment from an MongoDB Cloud Manager Backup snapshot, you download a com-
pressed archive of your MongoDB data files and distribute those files before restarting the mongod processes.

To get started with MongoDB Cloud Manager Backup, sign up for MongoDB Cloud Manager3. For documen-
tation on MongoDB Cloud Manager, see the MongoDB Cloud Manager documentation4.

Ops Manager Backup Software

MongoDB Subscribers can install and run the same core software that powers MongoDB Cloud Manager Backup
(page 6) on their own infrastructure. Ops Manager, an on-premise solution, has similar functionality to the cloud
version and is available with Enterprise Advanced subscriptions.

For more information about Ops Manager, see the MongoDB Enterprise Advanced5 page and the Ops Manager
Manual6.

Further Reading

Backup and Restore with Filesystem Snapshots (page 75) An outline of procedures for creating MongoDB
data set backups using system-level file snapshot tool, such as LVM or native storage appliance tools.

Restore a Replica Set from MongoDB Backups (page 79) Describes procedure for restoring a replica set from
an archived backup such as a mongodump or MongoDB Cloud Manager7 Backup file.

Back Up and Restore with MongoDB Tools (page 81) Describes a procedure for exporting the contents of a
database to either a binary dump or a textual exchange format, and for importing these files into a database.

Backup and Restore Sharded Clusters (page 87) Detailed procedures and considerations for backing up
sharded clusters and single shards.

Recover Data after an Unexpected Shutdown (page 99) Recover data from MongoDB data files that were not
properly closed or have an invalid state.

Additional Resources

•Backup and it’s Role in Disaster Recovery White Paper8

2https://cloud.mongodb.com/?jmp=docs
3https://cloud.mongodb.com/?jmp=docs
4https://docs.cloud.mongodb.com/
5https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
6https://docs.opsmanager.mongodb.com/current/
7https://cloud.mongodb.com/?jmp=docs
8https://www.mongodb.com/lp/white-paper/backup-disaster-recovery?jmp=docs

6 Chapter 1. Administration Concepts

https://cloud.mongodb.com/?jmp=docs
https://cloud.mongodb.com/?jmp=docs
https://docs.cloud.mongodb.com/
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
https://docs.opsmanager.mongodb.com/current/
https://docs.opsmanager.mongodb.com/current/
https://cloud.mongodb.com/?jmp=docs
https://www.mongodb.com/lp/white-paper/backup-disaster-recovery?jmp=docs

MongoDB Administration, Release 3.2.3

•Backup vs. Replication: Why Do You Need Both?9

•MongoDB Production Readiness Consulting Package10

1.1.2 Monitoring for MongoDB

On this page

•Monitoring Strategies (page 7)
•MongoDB Reporting Tools (page 8)
•Process Logging (page 10)
•Diagnosing Performance Issues (page 11)
•Replication and Monitoring (page 11)
•Sharding and Monitoring (page 12)
•Additional Resources (page 13)

Monitoring is a critical component of all database administration. A firm grasp of MongoDB’s reporting will
allow you to assess the state of your database and maintain your deployment without crisis. Additionally, a
sense of MongoDB’s normal operational parameters will allow you to diagnose problems before they escalate
to failures.

This document presents an overview of the available monitoring utilities and the reporting statistics available
in MongoDB. It also introduces diagnostic strategies and suggestions for monitoring replica sets and sharded
clusters.

Note: MongoDB Cloud Manager11, a hosted service, and Ops Manager12, an on-premise solution, provide
monitoring, backup, and automation of MongoDB instances. See the MongoDB Cloud Manager documenta-
tion13 and Ops Manager documentation14 for more information.

Monitoring Strategies

There are three methods for collecting data about the state of a running MongoDB instance:

•First, there is a set of utilities distributed with MongoDB that provides real-time reporting of database
activities.

•Second, database commands return statistics regarding the current database state with greater fidelity.

•Third, MongoDB Cloud Manager15, a hosted service, and Ops Manager, an on-premise solution available
in MongoDB Enterprise Advanced16, provide monitoring to collect data from running MongoDB deploy-
ments as well as providing visualization and alerts based on that data.

Each strategy can help answer different questions and is useful in different contexts. These methods are com-
plementary.

9http://www.mongodb.com/blog/post/backup-vs-replication-why-do-you-need-both?jmp=docs
10https://www.mongodb.com/products/consulting?jmp=docs#s_product_readiness
11https://cloud.mongodb.com/?jmp=docs
12https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
13https://docs.cloud.mongodb.com/
14https://docs.opsmanager.mongodb.com?jmp=docs
15https://cloud.mongodb.com/?jmp=docs
16https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

1.1. Operational Strategies 7

http://www.mongodb.com/blog/post/backup-vs-replication-why-do-you-need-both?jmp=docs
https://www.mongodb.com/products/consulting?jmp=docs#s_product_readiness
https://cloud.mongodb.com/?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
https://docs.cloud.mongodb.com/
https://docs.cloud.mongodb.com/
https://docs.opsmanager.mongodb.com?jmp=docs
https://cloud.mongodb.com/?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

MongoDB Administration, Release 3.2.3

MongoDB Reporting Tools

This section provides an overview of the reporting methods distributed with MongoDB. It also offers examples
of the kinds of questions that each method is best suited to help you address.

Utilities

The MongoDB distribution includes a number of utilities that quickly return statistics about instances’ perfor-
mance and activity. Typically, these are most useful for diagnosing issues and assessing normal operation.

mongostat mongostat captures and returns the counts of database operations by type (e.g. insert, query,
update, delete, etc.). These counts report on the load distribution on the server.

Use mongostat to understand the distribution of operation types and to inform capacity planning. See the
mongostat manual for details.

mongotop mongotop tracks and reports the current read and write activity of a MongoDB instance, and
reports these statistics on a per collection basis.

Use mongotop to check if your database activity and use match your expectations. See the mongotop
manual for details.

HTTP Console Deprecated since version 3.2: HTTP interface for MongoDB

MongoDB provides a web interface that exposes diagnostic and monitoring information in a simple web page.
The web interface is accessible at localhost:<port>, where the <port> number is 1000 more than the
mongod port .

For example, if a locally running mongod is using the default port 27017, access the HTTP console at
http://localhost:28017.

Commands

MongoDB includes a number of commands that report on the state of the database.

These data may provide a finer level of granularity than the utilities discussed above. Consider using their output
in scripts and programs to develop custom alerts, or to modify the behavior of your application in response to
the activity of your instance. The db.currentOp method is another useful tool for identifying the database
instance’s in-progress operations.

serverStatus The serverStatus command, or db.serverStatus() from the shell, returns a gen-
eral overview of the status of the database, detailing disk usage, memory use, connection, journaling, and index
access. The command returns quickly and does not impact MongoDB performance.

serverStatus outputs an account of the state of a MongoDB instance. This command is rarely run directly.
In most cases, the data is more meaningful when aggregated, as one would see with monitoring tools including
MongoDB Cloud Manager17 and Ops Manager18. Nevertheless, all administrators should be familiar with the
data provided by serverStatus.

17https://cloud.mongodb.com/?jmp=docs
18https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

8 Chapter 1. Administration Concepts

https://cloud.mongodb.com/?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

MongoDB Administration, Release 3.2.3

dbStats The dbStats command, or db.stats() from the shell, returns a document that addresses
storage use and data volumes. The dbStats reflect the amount of storage used, the quantity of data contained
in the database, and object, collection, and index counters.

Use this data to monitor the state and storage capacity of a specific database. This output also allows you to
compare use between databases and to determine the average document size in a database.

collStats The collStats or db.collection.stats() from the shell that provides statistics that
resemble dbStats on the collection level, including a count of the objects in the collection, the size of the
collection, the amount of disk space used by the collection, and information about its indexes.

replSetGetStatus The replSetGetStatus command (rs.status() from the shell) returns an
overview of your replica set’s status. The replSetGetStatus document details the state and configuration
of the replica set and statistics about its members.

Use this data to ensure that replication is properly configured, and to check the connections between the current
host and the other members of the replica set.

Third Party Tools

A number of third party monitoring tools have support for MongoDB, either directly, or through their own
plugins.

Self Hosted Monitoring Tools These are monitoring tools that you must install, configure and maintain on
your own servers. Most are open source.

Tool Plugin Description
Ganglia19 mongodb-ganglia20 Python script to report operations per second,

memory usage, btree statistics, master/slave
status and current connections.

Ganglia gmond_python_modules21 Parses output from the serverStatus and
replSetGetStatus commands.

Motop22 None Realtime monitoring tool for MongoDB
servers. Shows current operations ordered by
durations every second.

mtop23 None A top like tool.
Munin24 mongo-munin25 Retrieves server statistics.
Munin mongomon26 Retrieves collection statistics (sizes, index

sizes, and each (configured) collection count for
one DB).

Munin munin-plugins Ubuntu PPA27 Some additional munin plugins not in the main
distribution.

Nagios28 nagios-plugin-mongodb29 A simple Nagios check script, written in
Python.

19http://sourceforge.net/apps/trac/ganglia/wiki
20https://github.com/quiiver/mongodb-ganglia
21https://github.com/ganglia/gmond_python_modules
22https://github.com/tart/motop
23https://github.com/beaufour/mtop
24http://munin-monitoring.org/
25https://github.com/erh/mongo-munin
26https://github.com/pcdummy/mongomon
27https://launchpad.net/ chris-lea/+archive/munin-plugins

1.1. Operational Strategies 9

http://sourceforge.net/apps/trac/ganglia/wiki
https://github.com/quiiver/mongodb-ganglia
https://github.com/ganglia/gmond_python_modules
https://github.com/tart/motop
https://github.com/beaufour/mtop
http://munin-monitoring.org/
https://github.com/erh/mongo-munin
https://github.com/pcdummy/mongomon
https://launchpad.net/~chris-lea/+archive/munin-plugins
http://www.nagios.org/
https://github.com/mzupan/nagios-plugin-mongodb

MongoDB Administration, Release 3.2.3

Also consider dex30, an index and query analyzing tool for MongoDB that compares MongoDB log files and
indexes to make indexing recommendations.

See also:

Ops Manager, an on-premise solution available in MongoDB Enterprise Advanced31.

Hosted (SaaS) Monitoring Tools These are monitoring tools provided as a hosted service, usually through a
paid subscription.

Name Notes
MongoDB Cloud Manager32 MongoDB Cloud Manager is a cloud-based suite of services for managing

MongoDB deployments. MongoDB Cloud Manager provides monitoring,
backup, and automation functionality. For an on-premise solution, see also
Ops Manager, available in MongoDB Enterprise Advanced33.

Scout34 Several plugins, including MongoDB Monitoring35, MongoDB Slow
Queries36, and MongoDB Replica Set Monitoring37.

Server Density38 Dashboard for MongoDB39, MongoDB specific alerts, replication failover
timeline and iPhone, iPad and Android mobile apps.

Application Performance
Management40

IBM has an Application Performance Management SaaS offering that
includes monitor for MongoDB and other applications and middleware.

New Relic41 New Relic offers full support for application performance management. In
addition, New Relic Plugins and Insights enable you to view monitoring
metrics from Cloud Manager in New Relic.

Datadog42 Infrastructure monitoring43 to visualize the performance of your
MongoDB deployments.

Process Logging

During normal operation, mongod and mongos instances report a live account of all server activity and oper-
ations to either standard output or a log file. The following runtime settings control these options.

•quiet. Limits the amount of information written to the log or output.

•verbosity. Increases the amount of information written to the log or output. You can also modify the
logging verbosity during runtime with the logLevel parameter or the db.setLogLevel() method
in the shell.

•path. Enables logging to a file, rather than the standard output. You must specify the full path to the log
file when adjusting this setting.

•logAppend. Adds information to a log file instead of overwriting the file.

28http://www.nagios.org/
29https://github.com/mzupan/nagios-plugin-mongodb
30https://github.com/mongolab/dex
31https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
32https://cloud.mongodb.com/?jmp=docs
33https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
34http://scoutapp.com
35https://scoutapp.com/plugin_urls/391-mongodb-monitoring
36http://scoutapp.com/plugin_urls/291-mongodb-slow-queries
37http://scoutapp.com/plugin_urls/2251-mongodb-replica-set-monitoring
38http://www.serverdensity.com
39http://www.serverdensity.com/mongodb-monitoring/
40http://ibmserviceengage.com
41http://newrelic.com/
42https://www.datadoghq.com/
43http://docs.datadoghq.com/integrations/mongodb/

10 Chapter 1. Administration Concepts

https://github.com/mongolab/dex
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
https://cloud.mongodb.com/?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
http://scoutapp.com
https://scoutapp.com/plugin_urls/391-mongodb-monitoring
http://scoutapp.com/plugin_urls/291-mongodb-slow-queries
http://scoutapp.com/plugin_urls/291-mongodb-slow-queries
http://scoutapp.com/plugin_urls/2251-mongodb-replica-set-monitoring
http://www.serverdensity.com
http://www.serverdensity.com/mongodb-monitoring/
http://ibmserviceengage.com
http://ibmserviceengage.com
http://newrelic.com/
https://www.datadoghq.com/
http://docs.datadoghq.com/integrations/mongodb/

MongoDB Administration, Release 3.2.3

Note: You can specify these configuration operations as the command line arguments to mongod or mongos

For example:

mongod -v --logpath /var/log/mongodb/server1.log --logappend

Starts a mongod instance in verbose mode, appending data to the log file at
/var/log/mongodb/server1.log/.

The following database commands also affect logging:

•getLog. Displays recent messages from the mongod process log.

•logRotate. Rotates the log files for mongod processes only. See Rotate Log Files (page 60).

Diagnosing Performance Issues

As you develop and operate applications with MongoDB, you may want to analyze the performance of the
database as the application. Analyzing MongoDB Performance (page 38) discusses some of the operational
factors that can influence performance.

Replication and Monitoring

Beyond the basic monitoring requirements for any MongoDB instance, for replica sets, administrators must
monitor replication lag. “Replication lag” refers to the amount of time that it takes to copy (i.e. replicate) a
write operation on the primary to a secondary. Some small delay period may be acceptable, but two significant
problems emerge as replication lag grows:

•First, operations that occurred during the period of lag are not replicated to one or more secondaries. If
you’re using replication to ensure data persistence, exceptionally long delays may impact the integrity of
your data set.

•Second, if the replication lag exceeds the length of the operation log (oplog) then MongoDB will have to
perform an initial sync on the secondary, copying all data from the primary and rebuilding all indexes. This
is uncommon under normal circumstances, but if you configure the oplog to be smaller than the default,
the issue can arise.

Note: The size of the oplog is only configurable during the first run using the --oplogSize argument
to the mongod command, or preferably, the oplogSizeMB setting in the MongoDB configuration file.
If you do not specify this on the command line before running with the --replSet option, mongod will
create a default sized oplog.

By default, the oplog is 5 percent of total available disk space on 64-bit systems. For more information
about changing the oplog size, see the Change the Size of the Oplog (page 156)

For causes of replication lag, see Replication Lag (page 176).

Replication issues are most often the result of network connectivity issues between members, or the result of a
primary that does not have the resources to support application and replication traffic. To check the status of a
replica, use the replSetGetStatus or the following helper in the shell:

rs.status()

The replSetGetStatus reference provides a more in-depth overview view of this output. In general, watch
the value of optimeDate, and pay particular attention to the time difference between the primary and the
secondary members.

1.1. Operational Strategies 11

MongoDB Administration, Release 3.2.3

Sharding and Monitoring

In most cases, the components of sharded clusters benefit from the same monitoring and analysis as all other
MongoDB instances. In addition, clusters require further monitoring to ensure that data is effectively distributed
among nodes and that sharding operations are functioning appropriately.

See also:

See the https://docs.mongodb.org/manual/core/sharding documentation for more informa-
tion.

Config Servers

The config database maintains a map identifying which documents are on which shards. The cluster updates
this map as chunks move between shards. When a configuration server becomes inaccessible, certain sharding
operations become unavailable, such as moving chunks and starting mongos instances. However, clusters
remain accessible from already-running mongos instances.

Because inaccessible configuration servers can seriously impact the availability of a sharded cluster, you should
monitor your configuration servers to ensure that the cluster remains well balanced and that mongos instances
can restart.

MongoDB Cloud Manager44 and Ops Manager45 monitor config servers and can create notifications if a config
server becomes inaccessible. See the MongoDB Cloud Manager documentation46 and Ops Manager documen-
tation47 for more information.

Balancing and Chunk Distribution

The most effective sharded cluster deployments evenly balance chunks among the shards. To facilitate this,
MongoDB has a background balancer process that distributes data to ensure that chunks are always optimally
distributed among the shards.

Issue the db.printShardingStatus() or sh.status() command to the mongos by way of the
mongo shell. This returns an overview of the entire cluster including the database name, and a list of the
chunks.

Stale Locks

In nearly every case, all locks used by the balancer are automatically released when they become stale. However,
because any long lasting lock can block future balancing, it’s important to ensure that all locks are legitimate. To
check the lock status of the database, connect to a mongos instance using the mongo shell. Issue the following
command sequence to switch to the config database and display all outstanding locks on the shard database:

use config
db.locks.find()

For active deployments, the above query can provide insights. The balancing process, which originates on a ran-
domly selected mongos, takes a special “balancer” lock that prevents other balancing activity from transpiring.
Use the following command, also to the config database, to check the status of the “balancer” lock.

44https://cloud.mongodb.com/?jmp=docs
45https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
46https://docs.cloud.mongodb.com/
47https://docs.opsmanager.mongodb.com/current/application

12 Chapter 1. Administration Concepts

https://cloud.mongodb.com/?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
https://docs.cloud.mongodb.com/
https://docs.opsmanager.mongodb.com/current/application
https://docs.opsmanager.mongodb.com/current/application

MongoDB Administration, Release 3.2.3

db.locks.find({ _id : "balancer" })

If this lock exists, make sure that the balancer process is actively using this lock.

Additional Resources

•MongoDB Production Readiness Consulting Package48

1.1.3 Run-time Database Configuration

On this page

•Configure the Database (page 13)
•Security Considerations (page 14)
•Replication and Sharding Configuration (page 15)
•Run Multiple Database Instances on the Same System (page 17)
•Diagnostic Configurations (page 18)

The command line and configuration file interfaces provide MongoDB administrators with a large
number of options and settings for controlling the operation of the database system. This document provides an
overview of common configurations and examples of best-practice configurations for common use cases.

While both interfaces provide access to the same collection of options and settings, this document primarily uses
the configuration file interface. If you run MongoDB using a init script or if you installed from a package for
your operating system, you likely already have a configuration file located at /etc/mongod.conf. Confirm
this by checking the contents of the /etc/init.d/mongod or /etc/rc.d/mongod script to ensure that
the init scripts start the mongod with the appropriate configuration file.

To start a MongoDB instance using this configuration file, issue a command in the following form:

mongod --config /etc/mongod.conf
mongod -f /etc/mongod.conf

Modify the values in the /etc/mongod.conf file on your system to control the configuration of your
database instance.

Configure the Database

Consider the following basic configuration which uses the YAML format:

processManagement:
fork: true

net:
bindIp: 127.0.0.1
port: 27017

storage:
dbPath: /srv/mongodb

systemLog:
destination: file
path: "/var/log/mongodb/mongod.log"
logAppend: true

48https://www.mongodb.com/products/consulting?jmp=docs#s_product_readiness

1.1. Operational Strategies 13

https://www.mongodb.com/products/consulting?jmp=docs#s_product_readiness

MongoDB Administration, Release 3.2.3

storage:
journal:

enabled: true

Or, if using the older .ini configuration file format:

fork = true
bind_ip = 127.0.0.1
port = 27017
quiet = true
dbpath = /srv/mongodb
logpath = /var/log/mongodb/mongod.log
logappend = true
journal = true

For most standalone servers, this is a sufficient base configuration. It makes several assumptions, but consider
the following explanation:

•fork is true, which enables a daemon mode for mongod, which detaches (i.e. “forks”) the MongoDB
from the current session and allows you to run the database as a conventional server.

•bindIp is 127.0.0.1, which forces the server to only listen for requests on the localhost IP. Only bind
to secure interfaces that the application-level systems can access with access control provided by system
network filtering (i.e. “firewall”).

New in version 2.6: mongod installed from official .deb and .rpm packages have the bind_ip con-
figuration set to 127.0.0.1 by default.

•port is 27017, which is the default MongoDB port for database instances. MongoDB can bind to any
port. You can also filter access based on port using network filtering tools.

Note: UNIX-like systems require superuser privileges to attach processes to ports lower than 1024.

•quiet is true. This disables all but the most critical entries in output/log file, and is not recommended
for production systems. If you do set this option, you can use setParameter to modify this setting
during run time.

•dbPath is /srv/mongodb, which specifies where MongoDB will store its data files. /srv/mongodb
and /var/lib/mongodb are popular locations. The user account that mongod runs under will need
read and write access to this directory.

•systemLog.path is /var/log/mongodb/mongod.log which is where mongod will write its
output. If you do not set this value, mongod writes all output to standard output (e.g. stdout.)

•logAppend is true, which ensures that mongod does not overwrite an existing log file following the
server start operation.

•storage.journal.enabled is true, which enables journaling. Journaling ensures single instance
write-durability. 64-bit builds of mongod enable journaling by default. Thus, this setting may be redun-
dant.

Given the default configuration, some of these values may be redundant. However, in many situations explicitly
stating the configuration increases overall system intelligibility.

Security Considerations

The following collection of configuration options are useful for limiting access to a mongod instance. Consider
the following settings, shown in both YAML and older configuration file format:

14 Chapter 1. Administration Concepts

MongoDB Administration, Release 3.2.3

In YAML format

security:
authorization: enabled

net:
bindIp: 127.0.0.1,10.8.0.10,192.168.4.24

Or, if using the older older configuration file format49:

bind_ip = 127.0.0.1,10.8.0.10,192.168.4.24
auth = true

Consider the following explanation for these configuration decisions:

•“bindIp” has three values: 127.0.0.1, the localhost interface; 10.8.0.10, a private IP address
typically used for local networks and VPN interfaces; and 192.168.4.24, a private network interface
typically used for local networks.

Because production MongoDB instances need to be accessible from multiple database servers, it is impor-
tant to bind MongoDB to multiple interfaces that are accessible from your application servers. At the same
time it’s important to limit these interfaces to interfaces controlled and protected at the network layer.

•“authorization” is true enables the authorization system within MongoDB. If enabled you will
need to log in by connecting over the localhost interface for the first time to create user credentials.

See also:

https://docs.mongodb.org/manual/security

Replication and Sharding Configuration

Replication Configuration

Replica set configuration is straightforward, and only requires that the replSetName have a value that is
consistent among all members of the set. Consider the following:

In YAML format

replication:
replSetName: set0

Or, if using the older configuration file format50:

replSet = set0

Use descriptive names for sets. Once configured, use the mongo shell to add hosts to the replica set.

See also:

Replica set reconfiguration.

To enable authentication for the replica set, add the following keyFile option:

In YAML format

security:
keyFile: /srv/mongodb/keyfile

49https://docs.mongodb.org/v2.4/reference/configuration-options
50https://docs.mongodb.org/v2.4/reference/configuration-options

1.1. Operational Strategies 15

https://docs.mongodb.org/v2.4/reference/configuration-options
https://docs.mongodb.org/v2.4/reference/configuration-options

MongoDB Administration, Release 3.2.3

Or, if using the older configuration file format51:

keyFile = /srv/mongodb/keyfile

Setting keyFile enables authentication and specifies a key file for the replica set member use to when au-
thenticating to each other. The content of the key file is arbitrary, but must be the same on all members of the
replica set and mongos instances that connect to the set. The keyfile must be less than one kilobyte in size and
may only contain characters in the base64 set and the file must not have group or “world” permissions on UNIX
systems.

See also:

The Replica Set Security section for information on configuring authentication with replica sets.

The https://docs.mongodb.org/manual/replication document for more information on repli-
cation in MongoDB and replica set configuration in general.

Sharding Configuration

Sharding requires a number of mongod instances with different configurations. The config servers store the
cluster’s metadata, while the cluster distributes data among one or more shard servers.

Note: Config servers are not replica sets.

To set up one or three “config server” instances as normal (page 13) mongod instances, and then add the
following configuration option:

In YAML format

sharding:
clusterRole: configsvr

net:
bindIp: 10.8.0.12
port: 27001

Or, if using the older configuration file format52:

configsvr = true

bind_ip = 10.8.0.12
port = 27001

This creates a config server running on the private IP address 10.8.0.12 on port 27001. Make sure that there
are no port conflicts, and that your config server is accessible from all of your mongos and mongod instances.

To set up shards, configure two or more mongod instance using your base configuration (page 13), with the
shardsvr value for the sharding.clusterRole setting:

sharding:
clusterRole: shardsvr

Or, if using the older configuration file format53:

shardsvr = true

51https://docs.mongodb.org/v2.4/reference/configuration-options
52https://docs.mongodb.org/v2.4/reference/configuration-options
53https://docs.mongodb.org/v2.4/reference/configuration-options

16 Chapter 1. Administration Concepts

https://docs.mongodb.org/v2.4/reference/configuration-options
https://docs.mongodb.org/v2.4/reference/configuration-options
https://docs.mongodb.org/v2.4/reference/configuration-options

MongoDB Administration, Release 3.2.3

Finally, to establish the cluster, configure at least one mongos process with the following settings:

In YAML format:

sharding:
configDB: 10.8.0.12:27001
chunkSize: 64

Or, if using the older configuration file format54:

configdb = 10.8.0.12:27001
chunkSize = 64

Important: Always use 3 config servers in production environments.

You can specify multiple configDB instances by specifying hostnames and ports in the form of a comma
separated list.

In general, avoid modifying the chunkSize from the default value of 64, 55 and ensure this setting is consistent
among all mongos instances.

See also:

The https://docs.mongodb.org/manual/sharding section of the manual for more information on
sharding and cluster configuration.

Run Multiple Database Instances on the Same System

In many cases running multiple instances of mongod on a single system is not recommended. On some types
of deployments 56 and for testing purposes you may need to run more than one mongod on a single system.

In these cases, use a base configuration (page 13) for each instance, but consider the following configuration
values:

In YAML format:

storage:
dbPath: /srv/mongodb/db0/

processManagement:
pidFilePath: /srv/mongodb/db0.pid

Or, if using the older configuration file format57:

dbpath = /srv/mongodb/db0/
pidfilepath = /srv/mongodb/db0.pid

The dbPath value controls the location of the mongod instance’s data directory. Ensure that each database
has a distinct and well labeled data directory. The pidFilePath controls where mongod process places it’s
process id file. As this tracks the specific mongod file, it is crucial that file be unique and well labeled to make
it easy to start and stop these processes.

Create additional init scripts and/or adjust your existing MongoDB configuration and init script as needed to
control these processes.

54https://docs.mongodb.org/v2.4/reference/configuration-options
55 Chunk size is 64 megabytes by default, which provides the ideal balance between the most even distribution of data, for which smaller chunk

sizes are best, and minimizing chunk migration, for which larger chunk sizes are optimal.
56 Single-tenant systems with SSD or other high performance disks may provide acceptable performance levels for multiple mongod instances.

Additionally, you may find that multiple databases with small working sets may function acceptably on a single system.
57https://docs.mongodb.org/v2.4/reference/configuration-options

1.1. Operational Strategies 17

https://docs.mongodb.org/v2.4/reference/configuration-options
https://docs.mongodb.org/v2.4/reference/configuration-options

MongoDB Administration, Release 3.2.3

Diagnostic Configurations

The following configuration options control various mongod behaviors for diagnostic purposes:

•operationProfiling.mode sets the database profiler (page 40) level. The profiler is not active by
default because of the possible impact on the profiler itself on performance. Unless this setting is on,
queries are not profiled.

•operationProfiling.slowOpThresholdMs configures the threshold which determines whether
a query is “slow” for the purpose of the logging system and the profiler (page 40). The default value is
100 milliseconds. Set a lower value if the database profiler does not return useful results or a higher value
to only log the longest running queries.

•systemLog.verbosity controls the amount of logging output that mongod write to the log. Only
use this option if you are experiencing an issue that is not reflected in the normal logging level.

Changed in version 3.0: You can also specify verbosity level for specific components using
the systemLog.component.<name>.verbosity setting. For the available components, see
component verbosity settings.

For more information, see also Database Profiling (page 40) and Analyzing MongoDB Performance (page 38).

1.1.4 Production Notes

On this page

•MongoDB Binaries (page 19)
•MongoDB dbPath (page 20)
•Concurrency (page 20)
•Data Consistency (page 20)
•Networking (page 21)
•Hardware Considerations (page 22)
•Architecture (page 25)
•Compression (page 25)
•Platform Specific Considerations (page 25)
•Performance Monitoring (page 29)
•Backups (page 30)
•Additional Resources (page 30)

This page details system configurations that affect MongoDB, especially in production.

Note: MongoDB Cloud Manager58, a hosted service, and Ops Manager59, an on-premise solution, provide
monitoring, backup, and automation of MongoDB instances. See the MongoDB Cloud Manager documenta-
tion60 and Ops Manager documentation61 for more information.

58https://cloud.mongodb.com/?jmp=docs
59https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
60https://docs.cloud.mongodb.com/
61https://docs.opsmanager.mongodb.com?jmp=docs

18 Chapter 1. Administration Concepts

https://cloud.mongodb.com/?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
https://docs.cloud.mongodb.com/
https://docs.cloud.mongodb.com/
https://docs.opsmanager.mongodb.com?jmp=docs

MongoDB Administration, Release 3.2.3

MongoDB Binaries

Supported Platforms

Platform 3.2 3.0 2.6 2.4 2.2
Amazon Linux Y Y Y Y Y
Debian 7 Y Y Y Y Y
Fedora 8+ Y Y Y
RHEL/CentOS 6.2+ Y Y Y Y Y
RHEL/CentOS 7.0+ Y Y Y
SLES 11 Y Y Y Y Y
SLES 12 Y
Solaris 64-bit Y Y Y Y Y
Ubuntu 12.04 Y Y Y Y Y
Ubuntu 14.04 Y Y Y
Microsoft Azure Y Y Y Y Y
Windows Vista/Server 2008R2/2012+ Y Y Y Y Y
OSX 10.7+ Y Y Y Y

Changed in version 3.2: MongoDB can now use the WiredTiger storage engine on all supported platforms.

Recommended Platforms

We recommend the following operating systems for production use:

•Amazon Linux

•Debian 7.1

•Red Hat / CentOS 6.2+

•SLES 11+

•Ubuntu LTS 12.04

•Ubuntu LTS 14.04

•Windows Server 2012 & 2012 R2

See also:

Platform Specific Considerations (page 25)

Use the Latest Stable Packages

Be sure you have the latest stable release.

All releases are available on the Downloads62 page. The Downloads63 page is a good place to verify the current
stable release, even if you are installing via a package manager.

Use 64-bit Builds

Always use 64-bit builds for production.

62http://www.mongodb.org/downloads
63http://www.mongodb.org/downloads

1.1. Operational Strategies 19

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

MongoDB Administration, Release 3.2.3

Although the 32-bit builds exist, they are unsuitable for production deployments. 32-bit builds also do not
support the WiredTiger storage engine. For more information, see the 32-bit limitations page

Note: Starting in MongoDB 3.2, 32-bit binaries are deprecated and will be unavailable in future releases.

MongoDB dbPath

Changed in version 3.2: As of MongoDB 3.2, MongoDB uses the WiredTiger storage engine by default.

Changed in version 3.0: MongoDB includes support for two storage engines: MMAPv1, the storage engine
available in previous versions of MongoDB, and WiredTiger.

The files in the dbPath directory must correspond to the configured storage engine. mongod will not start if
dbPath contains data files created by a storage engine other than the one specified by --storageEngine.

Concurrency

MMAPv1

Changed in version 3.0: Beginning with MongoDB 3.0, MMAPv1 provides collection-level locking: All collec-
tions have a unique readers-writer lock that allows multiple clients to modify documents in different collections
at the same time.

For MongoDB versions 2.2 through 2.6 series, each database has a readers-writer lock that allows concur-
rent read access to a database, but gives exclusive access to a single write operation per database. See the
Concurrency page for more information. In earlier versions of MongoDB, all write operations contended for
a single readers-writer lock for the entire mongod instance.

WiredTiger

WiredTiger supports concurrent access by readers and writers to the documents in a collection. Clients can read
documents while write operations are in progress, and multiple threads can modify different documents in a
collection at the same time.

See also:

Allocate Sufficient RAM and CPU (page 22)

Data Consistency

Journaling

MongoDB uses write ahead logging to an on-disk journal. Journaling guarantees that MongoDB can quickly
recover write operations that were written to the journal but not written to data files in cases where
mongod terminated as a result of a crash or other serious failure.

Leave journaling enabled in order to ensure that mongod will be able to recover its data files and keep the data
files in a valid state following a crash. See Journaling for more information.

20 Chapter 1. Administration Concepts

MongoDB Administration, Release 3.2.3

Read Concern

New in version 3.2.

To ensure that a single thread can read its own writes, use "majority" read concern and "majority" write
concern against the primary of the replica set.

For more information on read concern, see https://docs.mongodb.org/manual/reference/read-concern.

Write Concern

Write concern describes the level of acknowledgement requested from MongoDB for write operations.
The level of the write concerns affects how quickly the write operation returns. When write operations have a
weak write concern, they return quickly. With stronger write concerns, clients must wait after sending a write
operation until MongoDB confirms the write operation at the requested write concern level. With insufficient
write concerns, write operations may appear to a client to have succeeded, but may not persist in some cases of
server failure.

See the Write Concern document for more information about choosing an appropriate write concern level
for your deployment.

Networking

Use Trusted Networking Environments

Always run MongoDB in a trusted environment, with network rules that prevent access from all unknown
machines, systems, and networks. As with any sensitive system that is dependent on network access, your
MongoDB deployment should only be accessible to specific systems that require access, such as application
servers, monitoring services, and other MongoDB components.

Note: By default, authorization is not enabled, and mongod assumes a trusted
environment. Enable authorization mode as needed. For more information on
authentication mechanisms supported in MongoDB as well as authorization in Mon-
goDB, see https://docs.mongodb.org/manual/core/authentication and
https://docs.mongodb.org/manual/core/authorization.

For additional information and considerations on security, refer to the documents in the Security Section,
specifically:

•https://docs.mongodb.org/manual/administration/security-checklist

•https://docs.mongodb.org/manual/core/security-mongodb-configuration

•https://docs.mongodb.org/manual/core/security-network

•Network Security Tutorials

For Windows users, consider the Windows Server Technet Article on TCP Configuration64 when deploying
MongoDB on Windows.

64http://technet.microsoft.com/en-us/library/dd349797.aspx

1.1. Operational Strategies 21

http://technet.microsoft.com/en-us/library/dd349797.aspx

MongoDB Administration, Release 3.2.3

Disable HTTP Interface

MongoDB provides an HTTP interface to check the status of the server and, optionally, run queries. The HTTP
interface is disabled by default. Do not enable the HTTP interface in production environments.

Deprecated since version 3.2: HTTP interface for MongoDB

See http-interface-security.

Manage Connection Pool Sizes

To avoid overloading the connection resources of a single mongod or mongos instance, ensure that clients
maintain reasonable connection pool sizes. Adjust the connection pool size to suit your use case, beginning at
110-115% of the typical number of concurrent database requests.

The connPoolStats command returns information regarding the number of open connections to the current
database for mongos and mongod instances in sharded clusters.

See also Allocate Sufficient RAM and CPU (page 22).

Hardware Considerations

MongoDB is designed specifically with commodity hardware in mind and has few hardware requirements or
limitations. MongoDB’s core components run on little-endian hardware, primarily x86/x86_64 processors.
Client libraries (i.e. drivers) can run on big or little endian systems.

Allocate Sufficient RAM and CPU

MMAPv1 Due to its concurrency model, the MMAPv1 storage engine does not require many CPU cores . As
such, increasing the number of cores can help but does not provide significant return.

Increasing the amount of RAM accessible to MongoDB may help reduce the frequency of page faults.

WiredTiger The WiredTiger storage engine is multithreaded and can take advantage of many CPU cores.
Specifically, the total number of active threads (i.e. concurrent operations) relative to the number of CPUs can
impact performance:

•Throughput increases as the number of concurrent active operations increases up to the number of CPUs.

•Throughput decreases as the number of concurrent active operations exceeds the number of CPUs by some
threshold amount.

The threshold amount depends on your application. You can determine the optimum number of concurrent active
operations for your application by experimenting and measuring throughput. The output from mongostat
provides statistics on the number of active reads/writes in the (ar|aw) column.

With WiredTiger, MongoDB utilizes both the WiredTiger cache and the filesystem cache.

Changed in version 3.2: Starting in MongoDB 3.2, the WiredTiger cache, by default, will use the larger of
either:

•60% of RAM minus 1 GB, or

•1 GB.

22 Chapter 1. Administration Concepts

MongoDB Administration, Release 3.2.3

For systems with up to 10 GB of RAM, the new default setting is less than or equal to the 3.0 default setting
(For MongoDB 3.0, the WiredTiger cache uses either 1 GB or half of the installed physical RAM, whichever is
larger).

For systems with more than 10 GB of RAM, the new default setting is greater than the 3.0 setting.

Via the filesystem cache, MongoDB automatically uses all free memory that is not used by the WiredTiger cache
or by other processes. Data in the filesystem cache is compressed.

To adjust the size of the WiredTiger cache, see storage.wiredTiger.engineConfig.cacheSizeGB
and --wiredTigerCacheSizeGB. Avoid increasing the WiredTiger cache size above its default value.

Note: The storage.wiredTiger.engineConfig.cacheSizeGB only limits the size of the
WiredTiger cache, not the total amount of memory used by mongod. The WiredTiger cache is only one com-
ponent of the RAM used by MongoDB. MongoDB also automatically uses all free memory on the machine via
the filesystem cache (data in the filesystem cache is compressed).

In addition, the operating system will use any free RAM to buffer filesystem blocks.

To accommodate the additional consumers of RAM, you may have to decrease WiredTiger cache size.

The default WiredTiger cache size value assumes that there is a single mongod instance per node. If a single
node contains multiple instances, then you should decrease the setting to accommodate the other mongod
instances.

If you run mongod in a container (e.g. lxc, cgroups, Docker, etc.) that does not have access to all of the
RAM available in a system, you must set storage.wiredTiger.engineConfig.cacheSizeGB to a
value less than the amount of RAM available in the container. The exact amount depends on the other processes
running in the container.

To view statistics on the cache and eviction rate, see the wiredTiger.cache field returned from the
serverStatus command.

See also:

Concurrency (page 20)

Use Solid State Disks (SSDs)

MongoDB has good results and a good price-performance ratio with SATA SSD (Solid State Disk).

Use SSD if available and economical. Spinning disks can be performant, but SSDs’ capacity for random I/O
operations works well with the update model of MMAPv1.

Commodity (SATA) spinning drives are often a good option, as the random I/O performance increase with more
expensive spinning drives is not that dramatic (only on the order of 2x). Using SSDs or increasing RAM may
be more effective in increasing I/O throughput.

MongoDB and NUMA Hardware

Running MongoDB on a system with Non-Uniform Access Memory (NUMA) can cause a number of opera-
tional problems, including slow performance for periods of time and high system process usage.

When running MongoDB servers and clients on NUMA hardware, you should configure a memory interleave
policy so that the host behaves in a non-NUMA fashion. MongoDB checks NUMA settings on start up when
deployed on Linux (since version 2.0) and Windows (since version 2.6) machines. If the NUMA configuration
may degrade performance, MongoDB prints a warning.

See also:

1.1. Operational Strategies 23

MongoDB Administration, Release 3.2.3

•The MySQL “swap insanity” problem and the effects of NUMA65 post, which describes the effects of
NUMA on databases. The post introduces NUMA and its goals, and illustrates how these goals are not
compatible with production databases. Although the blog post addresses the impact of NUMA for MySQL,
the issues for MongoDB are similar.

•NUMA: An Overview66.

Configuring NUMA on Windows On Windows, memory interleaving must be enabled through the machine’s
BIOS. Please consult your system documentation for details.

Configuring NUMA on Linux When running MongoDB on Linux, you may instead use the numactl com-
mand and start the MongoDB programs (mongod, including the config servers; mongos; or clients) in
the following manner:

numactl --interleave=all <path>

where <path> is the path to the program you are starting. Then, disable zone reclaim in the proc settings
using the following command:

echo 0 > /proc/sys/vm/zone_reclaim_mode

To fully disable NUMA behavior, you must perform both operations. For more information, see the Documen-
tation for /proc/sys/vm/*67.

Disk and Storage Systems

Swap Assign swap space for your systems. Allocating swap space can avoid issues with memory contention
and can prevent the OOM Killer on Linux systems from killing mongod.

For the MMAPv1 storage engine, the method mongod uses to map files to memory ensures that the operating
system will never store MongoDB data in swap space. On Windows systems, using MMAPv1 requires extra
swap space due to commitment limits. For details, see MongoDB on Windows (page 27).

For the WiredTiger storage engine, given sufficient memory pressure, WiredTiger may store data in swap space
.

RAID Most MongoDB deployments should use disks backed by RAID-10.

RAID-5 and RAID-6 do not typically provide sufficient performance to support a MongoDB deployment.

Avoid RAID-0 with MongoDB deployments. While RAID-0 provides good write performance, it also provides
limited availability and can lead to reduced performance on read operations, particularly when using Amazon’s
EBS volumes.

Remote Filesystems With the MMAPv1 storage engine, the Network File System protocol (NFS) is not rec-
ommended as you may see performance problems when both the data files and the journal files are hosted on
NFS. You may experience better performance if you place the journal on local or iscsi volumes.

With the WiredTiger storage engine, WiredTiger objects may be stored on remote file systems if the remote file
system conforms to ISO/IEC 9945-1:1996 (POSIX.1). Because remote file systems are often slower than local
file systems, using a remote file system for storage may degrade performance.

65http://jcole.us/blog/archives/2010/09/28/mysql-swap-insanity-and-the-numa-architecture/
66https://queue.acm.org/detail.cfm?id=2513149
67http://www.kernel.org/doc/Documentation/sysctl/vm.txt

24 Chapter 1. Administration Concepts

http://jcole.us/blog/archives/2010/09/28/mysql-swap-insanity-and-the-numa-architecture/
https://queue.acm.org/detail.cfm?id=2513149
http://www.kernel.org/doc/Documentation/sysctl/vm.txt
http://www.kernel.org/doc/Documentation/sysctl/vm.txt

MongoDB Administration, Release 3.2.3

If you decide to use NFS, add the following NFS options to your /etc/fstab file: bg, nolock, and
noatime.

Separate Components onto Different Storage Devices For improved performance, consider separating your
database’s data, journal, and logs onto different storage devices, based on your application’s access and write
pattern.

For the WiredTiger storage engine, you can also store the indexes on a different storage device. See
storage.wiredTiger.engineConfig.directoryForIndexes.

Note: Using different storage devices will affect your ability to create snapshot-style backups of your data,
since the files will be on different devices and volumes.

Scheduling for Virtual Devices Local block devices attached to virtual machine instances via the hypervisor
should use a noop scheduler for best performance. The noop scheduler allows the operating system to defer I/O
scheduling to the underlying hypervisor.

Architecture

Replica Sets

See the Replica Set Architectures document for an overview of architectural considerations for
replica set deployments.

Sharded Clusters

See the Sharded Cluster Production Architecture document for an overview of recommended
sharded cluster architectures for production deployments.

See also:

Design Notes (page 44)

Compression

WiredTiger can compress collection data using either snappy or zlib compression library. snappy provides a
lower compression rate but has little performance cost, whereas zlib provides better compression rate but has
a higher performance cost.

By default, WiredTiger uses snappy compression library. To change the compression setting, see
storage.wiredTiger.collectionConfig.blockCompressor.

WiredTiger uses prefix compression on all indexes by default.

Platform Specific Considerations

Note: MongoDB uses the GNU C Library68 (glibc) if available on a system. MongoDB requires version at
least glibc-2.12-1.2.el6 to avoid a known bug with earlier versions. For best results use at least version
2.13.

68http://www.gnu.org/software/libc/

1.1. Operational Strategies 25

http://www.gnu.org/software/libc/

MongoDB Administration, Release 3.2.3

MongoDB on Linux

Kernel and File Systems When running MongoDB in production on Linux, it is recommended that you use
Linux kernel version 2.6.36 or later.

With the MMAPv1 storage engine, MongoDB preallocates its database files before using them and often creates
large files. As such, you should use the XFS and EXT4 file systems. If possible, use XFS as it generally
performs better with MongoDB.

With the WiredTiger storage engine, use of XFS is strongly recommended to avoid performance issues that
have been observed when using EXT4 with WiredTiger.

•In general, if you use the XFS file system, use at least version 2.6.25 of the Linux Kernel.

•In general, if you use the EXT4 file system, use at least version 2.6.23 of the Linux Kernel.

•Some Linux distributions require different versions of the kernel to support using XFS and/or EXT4:

Linux Distribution Filesystem Kernel Version
CentOS 5.5 ext4, xfs 2.6.18-194.el5
CentOS 5.6 ext4, xfs 2.6.18-3.0.el5
CentOS 5.8 ext4, xfs 2.6.18-308.8.2.el5
CentOS 6.1 ext4, xfs 2.6.32-131.0.15.el6.x86_64
RHEL 5.6 ext4 2.6.18-3.0
RHEL 6.0 xfs 2.6.32-71
Ubuntu 10.04.4 LTS ext4, xfs 2.6.32-38-server
Amazon Linux AMI release 2012.03 ext4 3.2.12-3.2.4.amzn1.x86_64

fsync() on Directories
Important: MongoDB requires a filesystem that supports fsync() on directories. For example, HGFS and
Virtual Box’s shared folders do not support this operation.

Recommended Configuration For the MMAPv1 storage engine and the WiredTiger storage engines, con-
sider the following recommendations:

•Turn off atime for the storage volume containing the database files.

•Set the file descriptor limit, -n, and the user process limit (ulimit), -u, above 20,000, according to the
suggestions in the ulimit (page 107) document. A low ulimit will affect MongoDB when under heavy use
and can produce errors and lead to failed connections to MongoDB processes and loss of service.

•Disable Transparent Huge Pages, as MongoDB performs better with normal (4096 bytes) virtual memory
pages. See Transparent Huge Pages Settings (page 48).

•Disable NUMA in your BIOS. If that is not possible, see MongoDB on NUMA Hardware (page 23).

•Configure SELinux on Red Hat. For more information, see Configure SELinux for MongoDB and Config-
ure SELinux for MongoDB Enterprise.

For the MMAPv1 storage engine:

•Ensure that readahead settings for the block devices that store the database files are appropriate. For
random access use patterns, set low readahead values. A readahead of 32 (16 kB) often works well.

For a standard block device, you can run sudo blockdev --report to get the readahead settings
and sudo blockdev --setra <value> <device> to change the readahead settings. Refer to
your specific operating system manual for more information.

For all MongoDB deployments:

26 Chapter 1. Administration Concepts

MongoDB Administration, Release 3.2.3

•Use the Network Time Protocol (NTP) to synchronize time among your hosts. This is especially important
in sharded clusters.

MongoDB and TLS/SSL Libraries On Linux platforms, you may observe one of the following statements
in the MongoDB log:

<path to SSL libs>/libssl.so.<version>: no version information available (required by /usr/bin/mongod)
<path to SSL libs>/libcrypto.so.<version>: no version information available (required by /usr/bin/mongod)

These warnings indicate that the system’s TLS/SSL libraries are different from the TLS/SSL libraries that the
mongod was compiled against. Typically these messages do not require intervention; however, you can use the
following operations to determine the symbol versions that mongod expects:

objdump -T <path to mongod>/mongod | grep " SSL_"
objdump -T <path to mongod>/mongod | grep " CRYPTO_"

These operations will return output that resembles one the of the following lines:

0000000000000000 DF *UND* 0000000000000000 libssl.so.10 SSL_write
0000000000000000 DF *UND* 0000000000000000 OPENSSL_1.0.0 SSL_write

The last two strings in this output are the symbol version and symbol name. Compare these values with the
values returned by the following operations to detect symbol version mismatches:

objdump -T <path to TLS/SSL libs>/libssl.so.1*
objdump -T <path to TLS/SSL libs>/libcrypto.so.1*

This procedure is neither exact nor exhaustive: many symbols used by mongod from the libcrypto library
do not begin with CRYPTO_.

MongoDB on Windows

MongoDB Using MMAPv1

Install Hotfix for MongoDB 2.6.6 and Later Microsoft has released a hotfix for Windows 7 and Windows
Server 2008 R2, KB273128469, that repairs a bug in these operating systems’ use of memory-mapped files that
adversely affects the performance of MongoDB using the MMAPv1 storage engine.

Install this hotfix to obtain significant performance improvements on MongoDB 2.6.6 and later releases in the
2.6 series, which use MMAPv1 exclusively, and on 3.0 and later when using MMAPv1 as the storage engine.

Configure Windows Page File For MMAPv1 Configure the page file such that the minimum and maximum
page file size are equal and at least 32 GB. Use a multiple of this size if, during peak usage, you expect concurrent
writes to many databases or collections. However, the page file size does not need to exceed the maximum size
of the database.

A large page file is needed as Windows requires enough space to accommodate all regions of memory mapped
files made writable during peak usage, regardless of whether writes actually occur.

The page file is not used for database storage and will not receive writes during normal MongoDB operation. As
such, the page file will not affect performance, but it must exist and be large enough to accommodate Windows’
commitment rules during peak database use.

Note: Dynamic page file sizing is too slow to accommodate the rapidly fluctuating commit charge of an active

69http://support.microsoft.com/kb/2731284

1.1. Operational Strategies 27

http://support.microsoft.com/kb/2731284

MongoDB Administration, Release 3.2.3

MongoDB deployment. This can result in transient overcommitment situations that may lead to abrupt server
shutdown with a VirtualProtect error 1455.

MongoDB 3.0 Using WiredTiger For MongoDB instances using the WiredTiger storage engine, performance
on Windows is comparable to performance on Linux.

MongoDB on Virtual Environments

This section describes considerations when running MongoDB in some of the more common virtual environ-
ments.

For all platforms, consider Scheduling for Virtual Devices (page 25).

EC2 MongoDB is compatible with EC2. MongoDB Cloud Manager70 provides integration with Amazon Web
Services (AWS) and lets you deploy new EC2 instances directly from MongoDB Cloud Manager. See Configure
AWS Integration71 for more details.

Azure For all MongoDB deployments using Azure, you must mount the volume that hosts the mongod
instance’s dbPath with the Host Cache Preference READ/WRITE.

This applies to all Azure deployments, using any guest operating system.

If your volumes have inappropriate cache settings, MongoDB may eventually shut down with the following
error:

[DataFileSync] FlushViewOfFile for <data file> failed with error 1 ...
[DataFileSync] Fatal Assertion 16387

These shut downs do not produce data loss when storage.journal.enabled is set to true. You can
safely restart mongod at any time following this event.

The performance characteristics of MongoDB may change with READ/WRITE caching enabled.

The TCP keepalive on the Azure load balancer is 240 seconds by default, which can cause it to silently
drop connections if the TCP keepalive on your Azure systems is greater than this value. You should set
tcp_keepalive_time to 120 to ameliorate this problem.

On Linux systems:

•To view the keep alive setting, you can use one of the following commands:

sysctl net.ipv4.tcp_keepalive_time

Or:

cat /proc/sys/net/ipv4/tcp_keepalive_time

The value is measured in seconds.

•To change the tcp_keepalive_time value, you can use one of the following command:

sudo sysctl -w net.ipv4.tcp_keepalive_time=<value>

Or:

70https://cloud.mongodb.com/?jmp=docs
71https://docs.cloud.mongodb.com/tutorial/configure-aws-settings/

28 Chapter 1. Administration Concepts

https://cloud.mongodb.com/?jmp=docs
https://docs.cloud.mongodb.com/tutorial/configure-aws-settings/
https://docs.cloud.mongodb.com/tutorial/configure-aws-settings/

MongoDB Administration, Release 3.2.3

echo <value> | sudo tee /proc/sys/net/ipv4/tcp_keepalive_time

These operations do not persist across system reboots. To persist the setting, add the following line to
/etc/sysctl.conf:

net.ipv4.tcp_keepalive_time = <value>

On Linux, mongod and mongos processes limit the keepalive to a maximum of 300 seconds (5 minutes)
on their own sockets by overriding keepalive values greater than 5 minutes.

For Windows systems:

•To view the keep alive setting, issue the following command:

reg query HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters /v KeepAliveTime

The registry value is not present by default. The system default, used if the value is absent, is 7200000
milliseconds or 0x6ddd00 in hexadecimal.

•To change the KeepAliveTime value, use the following command in an Administrator Command
Prompt, where <value> is expressed in hexadecimal (e.g. 0x0124c0 is 120000):

reg add HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\ /v KeepAliveTime /d <value>

Windows users should consider the Windows Server Technet Article on KeepAliveTime72 for more infor-
mation on setting keep alive for MongoDB deployments on Windows systems.

VMWare MongoDB is compatible with VMWare.

As some users have run into issues with VMWare’s memory overcommit feature, you should disable the feature.

Further, MongoDB is known to run poorly with VMWare’s balloon driver (vmmemctl), so you should disable
this as well. VMWare uses the balloon driver to reduce physical memory usage on the host hardware by allowing
the hypervisor to swap to disk while hiding this fact from the guest, which continues to see the same amount
of (virtual) physical memory. This interferes with MongoDB’s memory management, and you are likely to
experience significant performance degradation.

It is possible to clone a virtual machine running MongoDB. You might use this function to spin up a new virtual
host to add as a member of a replica set. If you clone a VM with journaling enabled, the clone snapshot will be
valid. If not using journaling, first stop mongod, then clone the VM, and finally, restart mongod.

Performance Monitoring

iostat

On Linux, use the iostat command to check if disk I/O is a bottleneck for your database. Specify a number
of seconds when running iostat to avoid displaying stats covering the time since server boot.

For example, the following command will display extended statistics and the time for each displayed report,
with traffic in MB/s, at one second intervals:

iostat -xmt 1

Key fields from iostat:

•%util: this is the most useful field for a quick check, it indicates what percent of the time the device/drive
is in use.

72https://technet.microsoft.com/en-us/library/cc957549.aspx

1.1. Operational Strategies 29

https://technet.microsoft.com/en-us/library/cc957549.aspx

MongoDB Administration, Release 3.2.3

•avgrq-sz: average request size. Smaller number for this value reflect more random IO operations.

bwm-ng

bwm-ng73 is a command-line tool for monitoring network use. If you suspect a network-based bottleneck, you
may use bwm-ng to begin your diagnostic process.

Backups

To make backups of your MongoDB database, please refer to MongoDB Backup Methods Overview (page 4).

Additional Resources

•Blog Post: Capacity Planning and Hardware Provisioning for MongoDB In Ten Minutes74

•Whitepaper: MongoDB Multi-Data Center Deployments75

•Whitepaper: Security Architecture76

•Whitepaper: MongoDB Architecture Guide77

•Presentation: MongoDB Administration 10178

•MongoDB Production Readiness Consulting Package79

1.2 Data Management

These document introduce data management practices and strategies for MongoDB deployments, including
strategies for managing multi-data center deployments, managing larger file stores, and data lifecycle tools.

Data Center Awareness (page 30) Presents the MongoDB features that allow application developers and
database administrators to configure their deployments to be more data center aware or allow operational
and location-based separation.

Capped Collections (page 32) Capped collections provide a special type of size-constrained collections that
preserve insertion order and can support high volume inserts.

Expire Data from Collections by Setting TTL (page 36) TTL collections make it possible to automatically re-
move data from a collection based on the value of a timestamp and are useful for managing data like
machine generated event data that are only useful for a limited period of time.

1.2.1 Data Center Awareness

73http://www.gropp.org/?id=projects&sub=bwm-ng
74https://www.mongodb.com/blog/post/capacity-planning-and-hardware-provisioning-mongodb-ten-minutes?jmp=docs
75http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs
76https://www.mongodb.com/lp/white-paper/mongodb-security-architecture?jmp=docs
77https://www.mongodb.com/lp/whitepaper/architecture-guide?jmp=docs
78http://www.mongodb.com/presentations/webinar-mongodb-administration-101?jmp=docs
79https://www.mongodb.com/products/consulting?jmp=docs#s_product_readiness

30 Chapter 1. Administration Concepts

http://www.gropp.org/?id=projects&sub=bwm-ng
https://www.mongodb.com/blog/post/capacity-planning-and-hardware-provisioning-mongodb-ten-minutes?jmp=docs
http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs
https://www.mongodb.com/lp/white-paper/mongodb-security-architecture?jmp=docs
https://www.mongodb.com/lp/whitepaper/architecture-guide?jmp=docs
http://www.mongodb.com/presentations/webinar-mongodb-administration-101?jmp=docs
https://www.mongodb.com/products/consulting?jmp=docs#s_product_readiness

MongoDB Administration, Release 3.2.3

On this page

•Further Reading (page 32)
•Additional Resource (page 32)

MongoDB provides a number of features that allow application developers and database administrators to cus-
tomize the behavior of a sharded cluster or replica set deployment so that MongoDB may be more “data center
aware,” or allow operational and location-based separation.

MongoDB also supports segregation based on functional parameters, to ensure that certain mongod instances
are only used for reporting workloads or that certain high-frequency portions of a sharded collection only exist
on specific shards.

The following documents, found either in this section or other sections of this manual, provide information on
customizing a deployment for operation- and location-based separation:

Operational Segregation in MongoDB Deployments (page 31) MongoDB lets you specify that certain appli-
cation operations use certain mongod instances.

https://docs.mongodb.org/manual/core/tag-aware-sharding Tags associate specific
ranges of shard key values with specific shards for use in managing deployment patterns.

Manage Shard Tags (page 227) Use tags to associate specific ranges of shard key values with specific shards.

Operational Segregation in MongoDB Deployments

On this page

•Operational Overview (page 31)
•Additional Resource (page 32)

Operational Overview

MongoDB includes a number of features that allow database administrators and developers to segregate appli-
cation operations to MongoDB deployments by functional or geographical groupings.

This capability provides “data center awareness,” which allows applications to target MongoDB deployments
with consideration of the physical location of the mongod instances. MongoDB supports segmentation of
operations across different dimensions, which may include multiple data centers and geographical regions in
multi-data center deployments, racks, networks, or power circuits in single data center deployments.

MongoDB also supports segregation of database operations based on functional or operational parameters, to
ensure that certain mongod instances are only used for reporting workloads or that certain high-frequency
portions of a sharded collection only exist on specific shards.

Specifically, with MongoDB, you can:

•ensure write operations propagate to specific members of a replica set, or to specific members of replica
sets.

•ensure that specific members of a replica set respond to queries.

•ensure that specific ranges of your shard key balance onto and reside on specific shards.

1.2. Data Management 31

MongoDB Administration, Release 3.2.3

•combine the above features in a single distributed deployment, on a per-operation (for read and write
operations) and collection (for chunk distribution in sharded clusters distribution) basis.

For full documentation of these features, see the following documentation in the MongoDB Manual:

•Read Preferences, which controls how drivers help applications target read operations to members
of a replica set.

•Write Concerns, which controls how MongoDB ensures that write operations propagate to members
of a replica set.

•Replica Set Tags (page 163), which control how applications create and interact with custom groupings of
replica set members to create custom application-specific read preferences and write concerns.

•Tag Aware Sharding, which allows MongoDB administrators to define an application-specific balancing
policy, to control how documents belonging to specific ranges of a shard key distribute to shards in the
sharded cluster.

See also:

Before adding operational segregation features to your application and MongoDB deployment, become familiar
with all documentation of replication, and sharding.

Additional Resource

•Whitepaper: MongoDB Multi-Data Center Deployments80

•Webinar: Multi-Data Center Deployment81

Further Reading

•The https://docs.mongodb.org/manual/reference/write-concern and
https://docs.mongodb.org/manual/core/read-preference documents, which ad-
dress capabilities related to data center awareness.

•Deploy a Geographically Redundant Replica Set (page 134).

Additional Resource

•Whitepaper: MongoDB Multi-Data Center Deployments82

•Webinar: Multi-Data Center Deployment83

1.2.2 Capped Collections

80http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs
81https://www.mongodb.com/presentations/webinar-multi-data-center-deployment?jmp=docs
82http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs
83https://www.mongodb.com/presentations/webinar-multi-data-center-deployment?jmp=docs

32 Chapter 1. Administration Concepts

http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs
https://www.mongodb.com/presentations/webinar-multi-data-center-deployment?jmp=docs
http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs
https://www.mongodb.com/presentations/webinar-multi-data-center-deployment?jmp=docs

MongoDB Administration, Release 3.2.3

On this page

•Overview (page 33)
•Behavior (page 33)
•Restrictions and Recommendations (page 34)
•Procedures (page 35)

Overview

Capped collections are fixed-size collections that support high-throughput operations that insert and retrieve
documents based on insertion order. Capped collections work in a way similar to circular buffers: once a
collection fills its allocated space, it makes room for new documents by overwriting the oldest documents in the
collection.

See createCollection() or create for more information on creating capped collections.

Behavior

Insertion Order

Capped collections guarantee preservation of the insertion order. As a result, queries do not need an index to
return documents in insertion order. Without this indexing overhead, capped collections can support higher
insertion throughput.

Automatic Removal of Oldest Documents

To make room for new documents, capped collections automatically remove the oldest documents in the collec-
tion without requiring scripts or explicit remove operations.

For example, the oplog.rs collection that stores a log of the operations in a replica set uses a capped collection.
Consider the following potential use cases for capped collections:

•Store log information generated by high-volume systems. Inserting documents in a capped collection
without an index is close to the speed of writing log information directly to a file system. Furthermore, the
built-in first-in-first-out property maintains the order of events, while managing storage use.

•Cache small amounts of data in a capped collections. Since caches are read rather than write heavy, you
would either need to ensure that this collection always remains in the working set (i.e. in RAM) or accept
some write penalty for the required index or indexes.

_id Index

Changed in version 2.4.

Capped collections have an _id field and an index on the _id field by default.

1.2. Data Management 33

MongoDB Administration, Release 3.2.3

Restrictions and Recommendations

Updates

If you plan to update documents in a capped collection, create an index so that these update operations do not
require a table scan.

With MMAPv1, you can only make in-place updates of documents. If the update operation causes a document
to grow beyond the document’s original size, the update operation will fail.

Replica Sets with MMAPv1 Secondaries

If you update a document in a capped collection to a size smaller than its original size and a secondary resyncs
from the primary, the secondary will replicate and allocate space based on the current smaller document size.

If the primary then receives an update which increases the document back to its original size, the primary will
accept the update. However, for MMAPv1, the secondary will fail with a failing update: objects
in a capped ns cannot grow error message.

To prevent this error, create your secondary from a snapshot of one of the other up-to-date members of the
replica set. Follow the :doc:‘ tutorial on filesystem snapshots </tutorial/backup-with-filesystem-snapshots>‘ to
seed your new secondary.

Seeding the secondary with a filesystem snapshot is the only way to guarantee the primary and secondary binary
files are compatible. MongoDB Cloud Manager Backup snapshots are insufficient in this situation since you
need more than the content of the secondary to match the primary.

Document Deletion

You cannot delete documents from a capped collection. To remove all documents from a collection, use the
drop() method to drop the collection and recreate the capped collection.

Sharding

You cannot shard a capped collection.

Query Efficiency

Use natural ordering to retrieve the most recently inserted elements from the collection efficiently. This is
(somewhat) analogous to tail on a log file.

Aggregation $out

The aggregation pipeline operator $out cannot write results to a capped collection.

34 Chapter 1. Administration Concepts

MongoDB Administration, Release 3.2.3

Procedures

Create a Capped Collection

You must create capped collections explicitly using the createCollection() method, which is a helper in
the mongo shell for the create command. When creating a capped collection you must specify the maximum
size of the collection in bytes, which MongoDB will pre-allocate for the collection. The size of the capped
collection includes a small amount of space for internal overhead.

db.createCollection("log", { capped: true, size: 100000 })

If the size field is less than or equal to 4096, then the collection will have a cap of 4096 bytes. Otherwise,
MongoDB will raise the provided size to make it an integer multiple of 256.

Additionally, you may also specify a maximum number of documents for the collection using the max field as
in the following document:

db.createCollection("log", { capped : true, size : 5242880, max : 5000 })

Important: The size argument is always required, even when you specify max number of documents.
MongoDB will remove older documents if a collection reaches the maximum size limit before it reaches the
maximum document count.

See
createCollection() and create.

Query a Capped Collection

If you perform a find() on a capped collection with no ordering specified, MongoDB guarantees that the
ordering of results is the same as the insertion order.

To retrieve documents in reverse insertion order, issue find() along with the sort() method with the
$natural parameter set to -1, as shown in the following example:

db.cappedCollection.find().sort({ $natural: -1 })

Check if a Collection is Capped

Use the isCapped() method to determine if a collection is capped, as follows:

db.collection.isCapped()

Convert a Collection to Capped

You can convert a non-capped collection to a capped collection with the convertToCapped command:

db.runCommand({"convertToCapped": "mycoll", size: 100000});

The size parameter specifies the size of the capped collection in bytes.

Warning: This command obtains a global write lock and will block other operations until it has completed.

1.2. Data Management 35

MongoDB Administration, Release 3.2.3

Changed in version 2.2: Before 2.2, capped collections did not have an index on _id unless you specified
autoIndexId to the create, after 2.2 this became the default.

Automatically Remove Data After a Specified Period of Time

For additional flexibility when expiring data, consider MongoDB’s TTL indexes, as described in Expire Data
from Collections by Setting TTL (page 36). These indexes allow you to expire and remove data from normal
collections using a special type, based on the value of a date-typed field and a TTL value for the index.

TTL Collections (page 36) are not compatible with capped collections.

Tailable Cursor

You can use a tailable cursor with capped collections. Similar to the Unix tail -f command, the tailable
cursor “tails” the end of a capped collection. As new documents are inserted into the capped collection, you can
use the tailable cursor to continue retrieving documents.

See https://docs.mongodb.org/manual/tutorial/create-tailable-cursor for infor-
mation on creating a tailable cursor.

1.2.3 Expire Data from Collections by Setting TTL

On this page

•Procedures (page 36)

New in version 2.2.

This document provides an introduction to MongoDB’s “time to live” or TTL collection feature. TTL collections
make it possible to store data in MongoDB and have the mongod automatically remove data after a specified
number of seconds or at a specific clock time.

Data expiration is useful for some classes of information, including machine generated event data, logs, and
session information that only need to persist for a limited period of time.

A special TTL index property supports the implementation of TTL collections. The TTL feature relies
on a background thread in mongod that reads the date-typed values in the index and removes expired documents
from the collection.

Procedures

To create a TTL index, use the db.collection.createIndex() method with the
expireAfterSeconds option on a field whose value is either a date or an array that contains date
values.

Note: The TTL index is a single field index. Compound indexes do not support the TTL property. For more
information on TTL indexes, see https://docs.mongodb.org/manual/core/index-ttl.

36 Chapter 1. Administration Concepts

MongoDB Administration, Release 3.2.3

Expire Documents after a Specified Number of Seconds

To expire data after a specified number of seconds has passed since the indexed field, create a TTL index on
a field that holds values of BSON date type or an array of BSON date-typed objects and specify a positive
non-zero value in the expireAfterSeconds field. A document will expire when the number of seconds in
the expireAfterSeconds field has passed since the time specified in its indexed field. 84

For example, the following operation creates an index on the log_events collection’s createdAt field and
specifies the expireAfterSeconds value of 3600 to set the expiration time to be one hour after the time
specified by createdAt.

db.log_events.createIndex({ "createdAt": 1 }, { expireAfterSeconds: 3600 })

When adding documents to the log_events collection, set the createdAt field to the current time:

db.log_events.insert({
"createdAt": new Date(),
"logEvent": 2,
"logMessage": "Success!"

})

MongoDB will automatically delete documents from the log_events collection when the document’s
createdAt value 1 is older than the number of seconds specified in expireAfterSeconds.

See also:

$currentDate operator

Expire Documents at a Specific Clock Time

To expire documents at a specific clock time, begin by creating a TTL index on a field that holds values of
BSON date type or an array of BSON date-typed objects and specify an expireAfterSeconds value of 0.
For each document in the collection, set the indexed date field to a value corresponding to the time the document
should expire. If the indexed date field contains a date in the past, MongoDB considers the document expired.

For example, the following operation creates an index on the log_events collection’s expireAt field and
specifies the expireAfterSeconds value of 0:

db.log_events.createIndex({ "expireAt": 1 }, { expireAfterSeconds: 0 })

For each document, set the value of expireAt to correspond to the time the document should expire.
For instance, the following insert() operation adds a document that should expire at July 22, 2013
14:00:00.

db.log_events.insert({
"expireAt": new Date('July 22, 2013 14:00:00'),
"logEvent": 2,
"logMessage": "Success!"

})

MongoDB will automatically delete documents from the log_events collection when the documents’
expireAt value is older than the number of seconds specified in expireAfterSeconds, i.e. 0 seconds
older in this case. As such, the data expires at the specified expireAt value.

84 If the field contains an array of BSON date-typed objects, data expires if at least one of BSON date-typed object is older than the number of
seconds specified in expireAfterSeconds.

1.2. Data Management 37

MongoDB Administration, Release 3.2.3

1.3 Optimization Strategies for MongoDB

There are many factors that can affect database performance and responsiveness including index use, query
structure, data models and application design, as well as operational factors such as architecture and system
configuration.

This section describes techniques for optimizing application performance with MongoDB.

Analyzing MongoDB Performance (page 38) Discusses some of the factors that can influence MongoDB’s
performance.

Evaluate Performance of Current Operations (page 41) MongoDB provides introspection tools that describe
the query execution process, to allow users to test queries and build more efficient queries.

Optimize Query Performance (page 42) Introduces the use of projections to reduce the amount of data Mon-
goDB sends to clients.

Design Notes (page 44) A collection of notes related to the architecture, design, and administration of
MongoDB-based applications.

1.3.1 Analyzing MongoDB Performance

On this page

•Locking Performance (page 38)
•Memory and the MMAPv1 Storage Engine (page 39)
•Number of Connections (page 40)
•Database Profiling (page 40)
•Additional Resources (page 41)

As you develop and operate applications with MongoDB, you may need to analyze the performance of the
application and its database. When you encounter degraded performance, it is often a function of database
access strategies, hardware availability, and the number of open database connections.

Some users may experience performance limitations as a result of inadequate or inappropriate indexing strate-
gies, or as a consequence of poor schema design patterns. Locking Performance (page 38) discusses how these
can impact MongoDB’s internal locking.

Performance issues may indicate that the database is operating at capacity and that it is time to add additional
capacity to the database. In particular, the application’s working set should fit in the available physical memory.
See Memory and the MMAPv1 Storage Engine (page 39) for more information on the working set.

In some cases performance issues may be temporary and related to abnormal traffic load. As discussed in
Number of Connections (page 40), scaling can help relax excessive traffic.

Database Profiling (page 40) can help you to understand what operations are causing degradation.

Locking Performance

MongoDB uses a locking system to ensure data set consistency. If certain operations are long-running or a
queue forms, performance will degrade as requests and operations wait for the lock.

Lock-related slowdowns can be intermittent. To see if the lock has been affecting your performance, refer to the
server-status-locks section and the globalLock section of the serverStatus output.

38 Chapter 1. Administration Concepts

MongoDB Administration, Release 3.2.3

Dividing locks.timeAcquiringMicros by locks.acquireWaitCount can give an approximate
average wait time for a particular lock mode.

locks.deadlockCount provide the number of times the lock acquisitions encountered deadlocks.

If globalLock.currentQueue.total is consistently high, then there is a chance that a large number of
requests are waiting for a lock. This indicates a possible concurrency issue that may be affecting performance.

If globalLock.totalTime is high relative to uptime, the database has existed in a lock state for a signif-
icant amount of time.

Long queries can result from ineffective use of indexes; non-optimal schema design; poor query structure;
system architecture issues; or insufficient RAM resulting in page faults (page 39) and disk reads.

Memory and the MMAPv1 Storage Engine

Memory Use

With the MMAPv1 storage engine, MongoDB uses memory-mapped files to store data. Given a data set of
sufficient size, the mongod process will allocate all available memory on the system for its use.

While this is intentional and aids performance, the memory mapped files make it difficult to determine if the
amount of RAM is sufficient for the data set.

The memory usage statuses metrics of the serverStatus output can provide insight into MongoDB’s mem-
ory use.

The mem.resident field provides the amount of resident memory in use. If this exceeds the amount of
system memory and there is a significant amount of data on disk that isn’t in RAM, you may have exceeded the
capacity of your system.

You can inspect mem.mapped to check the amount of mapped memory that mongod is using. If this value is
greater than the amount of system memory, some operations will require a page faults to read data from disk.

Page Faults

With the MMAPv1 storage engine, page faults can occur as MongoDB reads from or writes data to parts of its
data files that are not currently located in physical memory. In contrast, operating system page faults happen
when physical memory is exhausted and pages of physical memory are swapped to disk.

MongoDB reports its triggered page faults as the total number of page faults in one second. To check for page
faults, see the extra_info.page_faults value in the serverStatus output.

Rapid increases in the MongoDB page fault counter may indicate that the server has too little physical memory.
Page faults also can occur while accessing large data sets or scanning an entire collection.

A single page fault completes quickly and is not problematic. However, in aggregate, large volumes of page
faults typically indicate that MongoDB is reading too much data from disk.

MongoDB can often “yield” read locks after a page fault, allowing other database processes to read while
mongod loads the next page into memory. Yielding the read lock following a page fault improves concurrency,
and also improves overall throughput in high volume systems.

Increasing the amount of RAM accessible to MongoDB may help reduce the frequency of page faults. If this
is not possible, you may want to consider deploying a sharded cluster or adding shards to your deployment to
distribute load among mongod instances.

See faq-storage-page-faults for more information.

1.3. Optimization Strategies for MongoDB 39

MongoDB Administration, Release 3.2.3

Number of Connections

In some cases, the number of connections between the applications and the database can overwhelm the ability
of the server to handle requests. The following fields in the serverStatus document can provide insight:

•globalLock.activeClients contains a counter of the total number of clients with active operations
in progress or queued.

•connections is a container for the following two fields:

–connections.current the total number of current clients that connect to the database instance.

–connections.available the total number of unused connections available for new clients.

If there are numerous concurrent application requests, the database may have trouble keeping up with demand.
If this is the case, then you will need to increase the capacity of your deployment.

For read-heavy applications, increase the size of your replica set and distribute read operations to secondary
members.

For write-heavy applications, deploy sharding and add one or more shards to a sharded cluster to distribute load
among mongod instances.

Spikes in the number of connections can also be the result of application or driver errors. All of the officially
supported MongoDB drivers implement connection pooling, which allows clients to use and reuse connections
more efficiently. Extremely high numbers of connections, particularly without corresponding workload is often
indicative of a driver or other configuration error.

Unless constrained by system-wide limits, MongoDB has no limit on incoming connections. On Unix-based sys-
tems, you can modify system limits using the ulimit command, or by editing your system’s /etc/sysctl
file. See UNIX ulimit Settings (page 107) for more information.

Database Profiling

MongoDB’s “Profiler” is a database profiling system that can help identify inefficient queries and operations.

The following profiling levels are available:

Level Setting
0 Off. No profiling
1 On. Only includes “slow” operations
2 On. Includes all operations

Enable the profiler by setting the profile value using the following command in the mongo shell:

db.setProfilingLevel(1)

The slowOpThresholdMs setting defines what constitutes a “slow” operation. To set the threshold above
which the profiler considers operations “slow” (and thus, included in the level 1 profiling data), you can config-
ure slowOpThresholdMs at runtime as an argument to the db.setProfilingLevel() operation.

See
The documentation of db.setProfilingLevel() for more information.

By default, mongod records all “slow” queries to its log, as defined by slowOpThresholdMs.

Note: Because the database profiler can negatively impact performance, only enable profiling for strategic
intervals and as minimally as possible on production systems.

40 Chapter 1. Administration Concepts

MongoDB Administration, Release 3.2.3

You may enable profiling on a per-mongod basis. This setting will not propagate across a replica set or sharded
cluster.

You can view the output of the profiler in the system.profile collection of your database by issuing the
show profile command in the mongo shell, or with the following operation:

db.system.profile.find({ millis : { $gt : 100 } })

This returns all operations that lasted longer than 100 milliseconds. Ensure that the value specified here (100,
in this example) is above the slowOpThresholdMs threshold.

You must use the $query operator to access the query field of documents within system.profile.

Additional Resources

•MongoDB Ops Optimization Consulting Package85

1.3.2 Evaluate Performance of Current Operations

On this page

•Use the Database Profiler to Evaluate Operations Against the Database (page 41)
•Use db.currentOp() to Evaluate mongod Operations (page 41)
•Use explain to Evaluate Query Performance (page 41)
•Additional Resources (page 42)

The following sections describe techniques for evaluating operational performance.

Use the Database Profiler to Evaluate Operations Against the Database

MongoDB provides a database profiler that shows performance characteristics of each operation against the
database. Use the profiler to locate any queries or write operations that are running slow. You can use this
information, for example, to determine what indexes to create.

For more information, see Database Profiling (page 40).

Use db.currentOp() to Evaluate mongod Operations

The db.currentOp() method reports on current operations running on a mongod instance.

Use explain to Evaluate Query Performance

The cursor.explain() and db.collection.explain() methods return information on a query exe-
cution, such as the index MongoDB selected to fulfill the query and execution statistics. You can run the methods
in queryPlanner mode, executionStats mode, or allPlansExecution mode to control the amount of information
returned.

Example
85https://www.mongodb.com/products/consulting?jmp=docs#ops_optimization

1.3. Optimization Strategies for MongoDB 41

https://www.mongodb.com/products/consulting?jmp=docs#ops_optimization

MongoDB Administration, Release 3.2.3

To use cursor.explain() on a query for documents matching the expression { a: 1 }, in the collec-
tion named records, use an operation that resembles the following in the mongo shell:

db.records.find({ a: 1 }).explain("executionStats")

For more information, see https://docs.mongodb.org/manual/reference/explain-results,
cursor.explain(), db.collection.explain(), and https://docs.mongodb.org/manual/tutorial/analyze-query-plan.

Additional Resources

•MongoDB Performance Evaluation and Tuning Consulting Package86

1.3.3 Optimize Query Performance

On this page

•Create Indexes to Support Queries (page 42)
•Limit the Number of Query Results to Reduce Network Demand (page 43)
•Use Projections to Return Only Necessary Data (page 43)
•Use $hint to Select a Particular Index (page 43)
•Use the Increment Operator to Perform Operations Server-Side (page 43)
•Additional Resources (page 44)

Create Indexes to Support Queries

For commonly issued queries, create indexes. If a query searches multiple fields, create a compound in-
dex. Scanning an index is much faster than scanning a collection. The indexes structures are smaller than the
documents reference, and store references in order.

Example
If you have a posts collection containing blog posts, and if you regularly issue a query that sorts on the
author_name field, then you can optimize the query by creating an index on the author_name field:

db.posts.createIndex({ author_name : 1 })

Indexes also improve efficiency on queries that routinely sort on a given field.

Example
If you regularly issue a query that sorts on the timestamp field, then you can optimize the query by creating
an index on the timestamp field:

Creating this index:

db.posts.createIndex({ timestamp : 1 })

Optimizes this query:

86https://www.mongodb.com/products/consulting?jmp=docs#performance_evaluation

42 Chapter 1. Administration Concepts

https://www.mongodb.com/products/consulting?jmp=docs#performance_evaluation

MongoDB Administration, Release 3.2.3

db.posts.find().sort({ timestamp : -1 })

Because MongoDB can read indexes in both ascending and descending order, the direction of a single-key index
does not matter.

Indexes support queries, update operations, and some phases of the aggregation pipeline.

Index keys that are of the BinData type are more efficiently stored in the index if:

•the binary subtype value is in the range of 0-7 or 128-135, and

•the length of the byte array is: 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, or 32.

Limit the Number of Query Results to Reduce Network Demand

MongoDB cursors return results in groups of multiple documents. If you know the number of results you want,
you can reduce the demand on network resources by issuing the limit() method.

This is typically used in conjunction with sort operations. For example, if you need only 10 results from your
query to the posts collection, you would issue the following command:

db.posts.find().sort({ timestamp : -1 }).limit(10)

For more information on limiting results, see limit()

Use Projections to Return Only Necessary Data

When you need only a subset of fields from documents, you can achieve better performance by returning only
the fields you need:

For example, if in your query to the posts collection, you need only the timestamp, title, author, and
abstract fields, you would issue the following command:

db.posts.find({}, { timestamp : 1 , title : 1 , author : 1 , abstract : 1}).sort({ timestamp : -1 })

For more information on using projections, see read-operations-projection.

Use $hint to Select a Particular Index

In most cases the query optimizer selects the optimal index for a specific operation; however, you can force
MongoDB to use a specific index using the hint() method. Use hint() to support performance testing, or
on some queries where you must select a field or field included in several indexes.

Use the Increment Operator to Perform Operations Server-Side

Use MongoDB’s $inc operator to increment or decrement values in documents. The operator increments the
value of the field on the server side, as an alternative to selecting a document, making simple modifications
in the client and then writing the entire document to the server. The $inc operator can also help avoid race
conditions, which would result when two application instances queried for a document, manually incremented
a field, and saved the entire document back at the same time.

1.3. Optimization Strategies for MongoDB 43

MongoDB Administration, Release 3.2.3

Additional Resources

•MongoDB Performance Evaluation and Tuning Consulting Package87

1.3.4 Design Notes

On this page

•Schema Considerations (page 44)
•General Considerations (page 45)
•Replica Set Considerations (page 45)
•Sharding Considerations (page 46)
•Analyze Performance (page 46)
•Additional Resources (page 46)

This page details features of MongoDB that may be important to keep in mind when developing applications.

Schema Considerations

Dynamic Schema

Data in MongoDB has a dynamic schema. Collections do not enforce document structure. This facilitates itera-
tive development and polymorphism. Nevertheless, collections often hold documents with highly homogeneous
structures. See https://docs.mongodb.org/manual/core/data-models for more information.

Some operational considerations include:

•the exact set of collections to be used;

•the indexes to be used: with the exception of the _id index, all indexes must be created explicitly;

•shard key declarations: choosing a good shard key is very important as the shard key cannot be changed
once set.

Avoid importing unmodified data directly from a relational database. In general, you will want to “roll up”
certain data into richer documents that take advantage of MongoDB’s support for embedded documents and
nested arrays.

Case Sensitive Strings

MongoDB strings are case sensitive. So a search for "joe" will not find "Joe".

Consider:

•storing data in a normalized case format, or

•using regular expressions ending with the i option, and/or

•using $toLower or $toUpper in the aggregation framework.

87https://www.mongodb.com/products/consulting?jmp=docs#performance_evaluation

44 Chapter 1. Administration Concepts

https://www.mongodb.com/products/consulting?jmp=docs#performance_evaluation

MongoDB Administration, Release 3.2.3

Type Sensitive Fields

MongoDB data is stored in the BSON format, a binary encoded serialization of JSON-like documents. BSON
encodes additional type information. See bsonspec.org88 for more information.

Consider the following document which has a field x with the string value "123":

{ x : "123" }

Then the following query which looks for a number value 123 will not return that document:

db.mycollection.find({ x : 123 })

General Considerations

By Default, Updates Affect one Document

To update multiple documents that meet your query criteria, set the update multi option to true or 1. See:
Update Multiple Documents.

Prior to MongoDB 2.2, you would specify the upsert and multi options in the updatemethod as positional
boolean options. See: the update method reference documentation.

BSON Document Size Limit

The BSON Document Size limit is currently set at 16 MB per document. If you require larger documents,
use GridFS.

No Fully Generalized Transactions

MongoDB does not have fully generalized transactions. If you model your data using rich docu-
ments that closely resemble your application’s objects, each logical object will be in one MongoDB document.
MongoDB allows you to modify a document in a single atomic operation. These kinds of data modification
pattern covers most common uses of transactions in other systems.

Replica Set Considerations

Use an Odd Number of Replica Set Members

Replica sets perform consensus elections. To ensure that elections will proceed successfully, either use an
odd number of members, typically three, or else use an arbiter to ensure an odd number of votes.

Keep Replica Set Members Up-to-Date

MongoDB replica sets support automatic failover. It is important for your secondaries to be up-to-date.
There are various strategies for assessing consistency:

1.Use monitoring tools to alert you to lag events. See Monitoring for MongoDB (page 7) for a detailed
discussion of MongoDB’s monitoring options.

88http://bsonspec.org/#/specification

1.3. Optimization Strategies for MongoDB 45

http://bsonspec.org/#/specification

MongoDB Administration, Release 3.2.3

2.Specify appropriate write concern.

3.If your application requires manual fail over, you can configure your secondaries as priority 0. Priority 0
secondaries require manual action for a failover. This may be practical for a small replica set, but large
deployments should fail over automatically.

See also:

replica set rollbacks.

Sharding Considerations

•Pick your shard keys carefully. You cannot choose a new shard key for a collection that is already sharded.

•Shard key values are immutable.

•When enabling sharding on an existing collection, MongoDB imposes a maximum size on those col-
lections to ensure that it is possible to create chunks. For a detailed explanation of this limit, see:
<sharding-existing-collection-data-size>.

To shard large amounts of data, create a new empty sharded collection, and ingest the data from the source
collection using an application level import operation.

•Unique indexes are not enforced across shards except for the shard key itself. See Enforce Unique Keys
for Sharded Collections (page 229).

•Consider pre-splitting (page 219) an empty sharded collection before a massive bulk import.

Analyze Performance

As you develop and operate applications with MongoDB, you may want to analyze the performance of the
database as the application. Analyzing MongoDB Performance (page 38) discusses some of the operational
factors that can influence performance.

Additional Resources

•MongoDB Ops Optimization Consulting Package89

89https://www.mongodb.com/products/consulting?jmp=docs#ops_optimization

46 Chapter 1. Administration Concepts

https://www.mongodb.com/products/consulting?jmp=docs#ops_optimization

CHAPTER 2

Administration Tutorials

The administration tutorials provide specific step-by-step instructions for performing common MongoDB setup,
maintenance, and configuration operations.

Configuration, Maintenance, and Analysis (page 47) Describes routine management operations, including
configuration and performance analysis.

Manage mongod Processes (page 52) Start, configure, and manage running mongod process.

Rotate Log Files (page 60) Archive the current log files and start new ones.

Continue reading from Configuration, Maintenance, and Analysis (page 47) for additional tutorials of
fundamental MongoDB maintenance procedures.

Backup and Recovery (page 75) Outlines procedures for data backup and restoration with mongod instances
and deployments.

Backup and Restore with Filesystem Snapshots (page 75) An outline of procedures for creating Mon-
goDB data set backups using system-level file snapshot tool, such as LVM or native storage appliance
tools.

Backup and Restore Sharded Clusters (page 87) Detailed procedures and considerations for backing up
sharded clusters and single shards.

Recover Data after an Unexpected Shutdown (page 99) Recover data from MongoDB data files that
were not properly closed or have an invalid state.

Continue reading from Backup and Recovery (page 75) for additional tutorials of MongoDB backup and
recovery procedures.

MongoDB Tutorials (page 102) A complete list of tutorials in the MongoDB Manual that address MongoDB
operation and use.

2.1 Configuration, Maintenance, and Analysis

The following tutorials describe routine management operations, including configuration and performance anal-
ysis:

Disable Transparent Huge Pages (THP) (page 48) Describes Transparent Huge Pages (THP) and provides de-
tailed instructions on disabling them.

Use Database Commands (page 51) The process for running database commands that provide basic database
operations.

Manage mongod Processes (page 52) Start, configure, and manage running mongod process.

47

MongoDB Administration, Release 3.2.3

Terminate Running Operations (page 55) Stop in progress MongoDB client operations using db.killOp()
and maxTimeMS().

Analyze Performance of Database Operations (page 56) Collect data that introspects the performance of
query and update operations on a mongod instance.

Rotate Log Files (page 60) Archive the current log files and start new ones.

Manage Journaling (page 63) Describes the procedures for configuring and managing MongoDB’s journaling
system, which allows MongoDB to provide crash resiliency and durability.

Store a JavaScript Function on the Server (page 65) Describes how to store JavaScript functions on a Mon-
goDB server.

Upgrade to the Latest Revision of MongoDB (page 66) Introduces the basic process for upgrading a Mon-
goDB deployment between different minor release versions.

Monitor MongoDB With SNMP on Linux (page 69) The SNMP extension, available in MongoDB Enterprise,
allows MongoDB to provide database metrics via SNMP.

Monitor MongoDB Windows with SNMP (page 71) The SNMP extension, available in the Windows build of
MongoDB Enterprise, allows MongoDB to provide database metrics via SNMP.

Troubleshoot SNMP (page 73) Outlines common errors and diagnostic processes useful for deploying Mon-
goDB Enterprise with SNMP support.

2.1.1 Disable Transparent Huge Pages (THP)

On this page

•Init Script (page 48)
•Using tuned and ktune (page 50)
•Test Your Changes (page 51)

Transparent Huge Pages (THP) is a Linux memory management system that reduces the overhead of Translation
Lookaside Buffer (TLB) lookups on machines with large amounts of memory by using larger memory pages.

However, database workloads often perform poorly with THP, because they tend to have sparse rather than
contiguous memory access patterns. You should disable THP on Linux machines to ensure best performance
with MongoDB.

Init Script

Important: If you are using tuned or ktune (for example, if you are running Red Hat or CentOS 6+), you
must additionally configure them so that THP is not re-enabled. See Using tuned and ktune (page 50).

Step 1: Create the init.d script.

Create the following file at /etc/init.d/disable-transparent-hugepages:

#!/bin/sh
BEGIN INIT INFO
Provides: disable-transparent-hugepages
Required-Start: $local_fs

48 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

Required-Stop:
X-Start-Before: mongod mongodb-mms-automation-agent
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Disable Linux transparent huge pages
Description: Disable Linux transparent huge pages, to improve
database performance.
END INIT INFO

case $1 in
start)

if [-d /sys/kernel/mm/transparent_hugepage]; then
thp_path=/sys/kernel/mm/transparent_hugepage

elif [-d /sys/kernel/mm/redhat_transparent_hugepage]; then
thp_path=/sys/kernel/mm/redhat_transparent_hugepage

else
return 0

fi

echo 'never' > ${thp_path}/enabled
echo 'never' > ${thp_path}/defrag

unset thp_path
;;

esac

Step 2: Make it executable.

Run the following command to ensure that the init script can be used:

sudo chmod 755 /etc/init.d/disable-transparent-hugepages

Step 3: Configure your operating system to run it on boot.

Use the appropriate command to configure the new init script on your Linux distribution.

Distribution Command
Ubuntu and Debian

sudo update-rc.d disable-transparent-hugepages defaults

SUSE
sudo insserv /etc/init.d/disable-transparent-hugepages

Red Hat, CentOS, Amazon Linux, and derivatives
sudo chkconfig --add disable-transparent-hugepages

Step 4: Override tuned and ktune, if applicable

If you are using tuned or ktune (for example, if you are running Red Hat or CentOS 6+) you must now
configure them to preserve the above settings.

2.1. Configuration, Maintenance, and Analysis 49

MongoDB Administration, Release 3.2.3

Using tuned and ktune

Important: If using tuned or ktune, you must perform this step in addition to installing the init script.

tuned and ktune are dynamic kernel tuning tools available on Red Hat and CentOS that can disable transpar-
ent huge pages.

To disable transparent huge pages in tuned or ktune, you need to edit or create a new profile that sets THP
to never.

Red Hat/CentOS 6

Step 1: Create a new profile. Create a new profile from an existing default profile by copying the relevant
directory. In the example we use the default profile as the base and call our new profile no-thp.

sudo cp -r /etc/tune-profiles/default /etc/tune-profiles/no-thp

Step 2: Edit ktune.sh. Edit /etc/tune-profiles/no-thp/ktune.sh and add the following:

set_transparent_hugepages never

to the start() block of the file, before the return 0 statement.

Step 3: Enable the new profile. Finally, enable the new profile by issuing:

sudo tuned-adm profile no-thp

Red Hat/CentOS 7

Step 1: Create a new profile. Create a new tuned profile directory:

sudo mkdir /etc/tuned/no-thp

Step 2: Edit tuned.conf. Create and edit /etc/tuned/no-thp/tuned.conf so that it contains the
following:

[main]
include=virtual-guest

[vm]
transparent_hugepages=never

Step 3: Enable the new profile. Finally, enable the new profile by issuing:

sudo tuned-adm profile no-thp

50 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

Test Your Changes

You can check the status of THP support by issuing the following commands:

cat /sys/kernel/mm/transparent_hugepage/enabled
cat /sys/kernel/mm/transparent_hugepage/defrag

On Red Hat Enterprise Linux, CentOS, and potentially other Red Hat-based derivatives, you may instead need
to use the following:

cat /sys/kernel/mm/redhat_transparent_hugepage/enabled
cat /sys/kernel/mm/redhat_transparent_hugepage/defrag

For both files, the correct output resembles:

always madvise [never]

2.1.2 Use Database Commands

On this page

•Database Command Form (page 51)
•Issue Commands (page 51)
•admin Database Commands (page 52)
•Command Responses (page 52)

The MongoDB command interface provides access to all non CRUD database operations. Fetching server stats,
initializing a replica set, and running a map-reduce job are all accomplished with commands.

See https://docs.mongodb.org/manual/reference/command for list of all commands sorted by
function.

Database Command Form

You specify a command first by constructing a standard BSON document whose first key is the name of the
command. For example, specify the isMaster command using the following BSON document:

{ isMaster: 1 }

Issue Commands

The mongo shell provides a helper method for running commands called db.runCommand(). The following
operation in mongo runs the above command:

db.runCommand({ isMaster: 1 })

Many drivers provide an equivalent for the db.runCommand() method. Internally, running commands
with db.runCommand() is equivalent to a special query against the $cmd collection.

Many common commands have their own shell helpers or wrappers in the mongo shell and drivers, such as the
db.isMaster() method in the mongo JavaScript shell.

You can use the maxTimeMS option to specify a time limit for the execution of a command, see Terminate a
Command (page 55) for more information on operation termination.

2.1. Configuration, Maintenance, and Analysis 51

MongoDB Administration, Release 3.2.3

admin Database Commands

You must run some commands on the admin database. Normally, these operations resemble the followings:

use admin
db.runCommand({buildInfo: 1})

However, there’s also a command helper that automatically runs the command in the context of the admin
database:

db._adminCommand({buildInfo: 1})

Command Responses

All commands return, at minimum, a document with an ok field indicating whether the command has succeeded:

{ 'ok': 1 }

Failed commands return the ok field with a value of 0.

2.1.3 Manage mongod Processes

On this page

•Start mongod Processes (page 52)
•Stop mongod Processes (page 53)
•Stop a Replica Set (page 54)

MongoDB runs as a standard program. You can start MongoDB from a command line by issuing the mongod
command and specifying options. For a list of options, see the mongod reference. MongoDB can also
run as a Windows service. For details, see manually-create-windows-service. To install MongoDB, see
https://docs.mongodb.org/manual/installation.

The following examples assume the directory containing the mongod process is in your system paths. The
mongod process is the primary database process that runs on an individual server. mongos provides a coherent
MongoDB interface equivalent to a mongod from the perspective of a client. The mongo binary provides the
administrative shell.

This document discusses the mongod process; however, some portions of this document may be applicable to
mongos instances.

Start mongod Processes

By default, MongoDB stores data in the /data/db directory. On Windows, MongoDB stores data in
C:\data\db. On all platforms, MongoDB listens for connections from clients on port 27017.

To start MongoDB using all defaults, issue the following command at the system shell:

mongod

52 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

Specify a Data Directory

If you want mongod to store data files at a path other than /data/db you can specify a dbPath. The
dbPath must exist before you start mongod. If it does not exist, create the directory and the permissions so
that mongod can read and write data to this path. For more information on permissions, see the security
operations documentation.

To specify a dbPath for mongod to use as a data directory, use the --dbpath option. The following invoca-
tion will start a mongod instance and store data in the /srv/mongodb path

mongod --dbpath /srv/mongodb/

Specify a TCP Port

Only a single process can listen for connections on a network interface at a time. If you run multiple mongod
processes on a single machine, or have other processes that must use this port, you must assign each a different
port to listen on for client connections.

To specify a port to mongod, use the --port option on the command line. The following command starts
mongod listening on port 12345:

mongod --port 12345

Use the default port number when possible, to avoid confusion.

Start mongod as a Daemon

To run a mongod process as a daemon (i.e. fork), and write its output to a log file, use the --fork and
--logpath options. You must create the log directory; however, mongod will create the log file if it does not
exist.

The following command starts mongod as a daemon and records log output to /var/log/mongodb.log.

mongod --fork --logpath /var/log/mongodb.log

Additional Configuration Options

For an overview of common configurations and deployments for common use cases, see Run-time Database
Configuration (page 13).

Stop mongod Processes

In a clean shutdown a mongod completes all pending operations, flushes all data to data files, and closes all
data files. Other shutdowns are unclean and can compromise the validity of the data files.

To ensure a clean shutdown, always shutdown mongod instances using one of the following methods:

Use shutdownServer()

Shut down the mongod from the mongo shell using the db.shutdownServer() method as follows:

2.1. Configuration, Maintenance, and Analysis 53

MongoDB Administration, Release 3.2.3

use admin
db.shutdownServer()

Calling the same method from a init script accomplishes the same result.

For systems with authorization enabled, users may only issue db.shutdownServer() when authen-
ticated to the admin database or via the localhost interface on systems without authentication enabled.

Use --shutdown

From the Linux command line, shut down the mongod using the --shutdown option in the following com-
mand:

mongod --shutdown

Use CTRL-C

When running the mongod instance in interactive mode (i.e. without --fork), issue Control-C to perform
a clean shutdown.

Use kill

From the Linux command line, shut down a specific mongod instance using the following command:

kill <mongod process ID>

Warning: Never use kill -9 (i.e. SIGKILL) to terminate a mongod instance.

Stop a Replica Set

Procedure

If the mongod is the primary in a replica set, the shutdown process for this mongod instance has the following
steps:

1.Check how up-to-date the secondaries are.

2.If no secondary is within 10 seconds of the primary, mongod will return a message that it will not shut
down. You can pass the shutdown command a timeoutSecs argument to wait for a secondary to
catch up.

3.If there is a secondary within 10 seconds of the primary, the primary will step down and wait for the
secondary to catch up.

4.After 60 seconds or once the secondary has caught up, the primary will shut down.

Force Replica Set Shutdown

If there is no up-to-date secondary and you want the primary to shut down, issue the shutdown command with
the force argument, as in the following mongo shell operation:

54 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

db.adminCommand({shutdown : 1, force : true})

To keep checking the secondaries for a specified number of seconds if none are immediately up-to-date, issue
shutdown with the timeoutSecs argument. MongoDB will keep checking the secondaries for the specified
number of seconds if none are immediately up-to-date. If any of the secondaries catch up within the allotted
time, the primary will shut down. If no secondaries catch up, it will not shut down.

The following command issues shutdown with timeoutSecs set to 5:

db.adminCommand({shutdown : 1, timeoutSecs : 5})

Alternately you can use the timeoutSecs argument with the db.shutdownServer() method:

db.shutdownServer({timeoutSecs : 5})

2.1.4 Terminate Running Operations

On this page

•Overview (page 55)
•Available Procedures (page 55)

Overview

MongoDB provides two facilitates to terminate running operations: maxTimeMS() and db.killOp(). Use
these operations as needed to control the behavior of operations in a MongoDB deployment.

Available Procedures

maxTimeMS

New in version 2.6.

The maxTimeMS() method sets a time limit for an operation. When the operation reaches the specified time
limit, MongoDB interrupts the operation at the next interrupt point.

Terminate a Query From the mongo shell, use the following method to set a time limit of 30 milliseconds
for this query:

db.location.find({ "town": { "$regex": "(Pine Lumber)",
"$options": 'i' } }).maxTimeMS(30)

Terminate a Command Consider a potentially long running operation using distinct to return each dis-
tinct‘‘collection‘‘ field that has a city key:

db.runCommand({ distinct: "collection",
key: "city" })

You can add the maxTimeMS field to the command document to set a time limit of 45 milliseconds for the
operation:

2.1. Configuration, Maintenance, and Analysis 55

MongoDB Administration, Release 3.2.3

db.runCommand({ distinct: "collection",
key: "city",
maxTimeMS: 45 })

db.getLastError() and db.getLastErrorObj() will return errors for interrupted options:

{ "n" : 0,
"connectionId" : 1,
"err" : "operation exceeded time limit",
"ok" : 1 }

killOp

The db.killOp() method interrupts a running operation at the next interrupt point. db.killOp() identi-
fies the target operation by operation ID.

db.killOp(<opId>)

Warning: Terminate running operations with extreme caution. Only use db.killOp() to terminate
operations initiated by clients and do not terminate internal database operations.

Related
To return a list of running operations see db.currentOp().

2.1.5 Analyze Performance of Database Operations

On this page

•Profiling Levels (page 57)
•Enable Database Profiling and Set the Profiling Level (page 57)
•View Profiler Data (page 59)
•Profiler Overhead (page 60)
•Additional Resources (page 60)

The database profiler collects fine grained data about MongoDB write operations, cursors, database commands
on a running mongod instance. You can enable profiling on a per-database or per-instance basis. The profiling
level (page 57) is also configurable when enabling profiling.

The database profiler writes all the data it collects to the system.profile (page 112) collection, which
is a capped collection (page 32). See Database Profiler Output (page 112) for overview of the data in the
system.profile (page 112) documents created by the profiler.

This document outlines a number of key administration options for the database profiler. For additional related
information, consider the following resources:

•Database Profiler Output (page 112)

•Profile Command

•db.currentOp()

56 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

Profiling Levels

The following profiling levels are available:

•0 - the profiler is off, does not collect any data. mongod always writes operations longer than the
slowOpThresholdMs threshold to its log.

•1 - collects profiling data for slow operations only. By default slow operations are those slower than 100
milliseconds.

You can modify the threshold for “slow” operations with the slowOpThresholdMs runtime option or
the setParameter command. See the Specify the Threshold for Slow Operations (page 57) section for
more information.

•2 - collects profiling data for all database operations.

Enable Database Profiling and Set the Profiling Level

You can enable database profiling from the mongo shell or through a driver using the profile command.
This section will describe how to do so from the mongo shell. See your driver documentation if you
want to control the profiler from within your application.

When you enable profiling, you also set the profiling level (page 57). The profiler records data in the
system.profile (page 112) collection. MongoDB creates the system.profile (page 112) collection
in a database after you enable profiling for that database.

To enable profiling and set the profiling level, use the db.setProfilingLevel() helper in the mongo
shell, passing the profiling level as a parameter. For example, to enable profiling for all database operations,
consider the following operation in the mongo shell:

db.setProfilingLevel(2)

The shell returns a document showing the previous level of profiling. The "ok" : 1 key-value pair indicates
the operation succeeded:

{ "was" : 0, "slowms" : 100, "ok" : 1 }

To verify the new setting, see the Check Profiling Level (page 58) section.

Specify the Threshold for Slow Operations

The threshold for slow operations applies to the entire mongod instance. When you change the threshold, you
change it for all databases on the instance.

Important: Changing the slow operation threshold for the database profiler also affects the profiling subsys-
tem’s slow operation threshold for the entire mongod instance. Always set the threshold to the highest useful
value.

By default the slow operation threshold is 100 milliseconds. Databases with a profiling level of 1 will log
operations slower than 100 milliseconds.

To change the threshold, pass two parameters to the db.setProfilingLevel() helper in the mongo shell.
The first parameter sets the profiling level for the current database, and the second sets the default slow operation
threshold for the entire mongod instance.

For example, the following command sets the profiling level for the current database to 0, which disables
profiling, and sets the slow-operation threshold for the mongod instance to 20 milliseconds. Any database on
the instance with a profiling level of 1 will use this threshold:

2.1. Configuration, Maintenance, and Analysis 57

MongoDB Administration, Release 3.2.3

db.setProfilingLevel(0,20)

Check Profiling Level

To view the profiling level (page 57), issue the following from the mongo shell:

db.getProfilingStatus()

The shell returns a document similar to the following:

{ "was" : 0, "slowms" : 100 }

The was field indicates the current level of profiling.

The slowms field indicates how long an operation must exist in milliseconds for an operation to pass the
“slow” threshold. MongoDB will log operations that take longer than the threshold if the profiling level is 1.
This document returns the profiling level in the was field. For an explanation of profiling levels, see Profiling
Levels (page 57).

To return only the profiling level, use the db.getProfilingLevel() helper in the mongo as in the fol-
lowing:

db.getProfilingLevel()

Disable Profiling

To disable profiling, use the following helper in the mongo shell:

db.setProfilingLevel(0)

Enable Profiling for an Entire mongod Instance

For development purposes in testing environments, you can enable database profiling for an entire mongod
instance. The profiling level applies to all databases provided by the mongod instance.

To enable profiling for a mongod instance, pass the following parameters to mongod at startup or within the
configuration file:

mongod --profile=1 --slowms=15

This sets the profiling level to 1, which collects profiling data for slow operations only, and defines slow opera-
tions as those that last longer than 15 milliseconds.

See also:

mode and slowOpThresholdMs.

Database Profiling and Sharding

You cannot enable profiling on a mongos instance. To enable profiling in a shard cluster, you must enable
profiling for each mongod instance in the cluster.

58 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

View Profiler Data

The database profiler logs information about database operations in the system.profile (page 112) collec-
tion.

To view profiling information, query the system.profile (page 112) collection. You can use $comment
to add data to the query document to make it easier to analyze data from the profiler. To view example queries,
see Profiler Overhead (page 60).

For an explanation of the output data, see Database Profiler Output (page 112).

Example Profiler Data Queries

This section displays example queries to the system.profile (page 112) collection. For an explanation of
the query output, see Database Profiler Output (page 112).

To return the most recent 10 log entries in the system.profile (page 112) collection, run a query similar to
the following:

db.system.profile.find().limit(10).sort({ ts : -1 }).pretty()

To return all operations except command operations ($cmd), run a query similar to the following:

db.system.profile.find({ op: { $ne : 'command' } }).pretty()

To return operations for a particular collection, run a query similar to the following. This example returns
operations in the mydb database’s test collection:

db.system.profile.find({ ns : 'mydb.test' }).pretty()

To return operations slower than 5 milliseconds, run a query similar to the following:

db.system.profile.find({ millis : { $gt : 5 } }).pretty()

To return information from a certain time range, run a query similar to the following:

db.system.profile.find(
{
ts : {

$gt : new ISODate("2012-12-09T03:00:00Z") ,
$lt : new ISODate("2012-12-09T03:40:00Z")

}
}
).pretty()

The following example looks at the time range, suppresses the user field from the output to make it easier to
read, and sorts the results by how long each operation took to run:

db.system.profile.find(
{
ts : {

$gt : new ISODate("2011-07-12T03:00:00Z") ,
$lt : new ISODate("2011-07-12T03:40:00Z")

}
},
{ user : 0 }
).sort({ millis : -1 })

2.1. Configuration, Maintenance, and Analysis 59

MongoDB Administration, Release 3.2.3

Show the Five Most Recent Events

On a database that has profiling enabled, the show profile helper in the mongo shell displays the 5 most
recent operations that took at least 1 millisecond to execute. Issue show profile from the mongo shell, as
follows:

show profile

Profiler Overhead

When enabled, profiling has a minor effect on performance. The system.profile (page 112) collection
is a capped collection with a default size of 1 megabyte. A collection of this size can typically store several
thousand profile documents, but some application may use more or less profiling data per operation.

Change Size of system.profile Collection on the Primary

To change the size of the system.profile (page 112) collection, you must:

1.Disable profiling.

2.Drop the system.profile (page 112) collection.

3.Create a new system.profile (page 112) collection.

4.Re-enable profiling.

For example, to create a new system.profile (page 112) collections that’s 4000000 bytes, use the fol-
lowing sequence of operations in the mongo shell:

db.setProfilingLevel(0)

db.system.profile.drop()

db.createCollection("system.profile", { capped: true, size:4000000 })

db.setProfilingLevel(1)

Change Size of system.profile Collection on a Secondary

To change the size of the system.profile (page 112) collection on a secondary, you must stop the sec-
ondary, run it as a standalone, and then perform the steps above. When done, restart the standalone as a member
of the replica set. For more information, see Perform Maintenance on Replica Set Members (page 158).

Additional Resources

•MongoDB Performance Evaluation and Tuning Consulting Package1

2.1.6 Rotate Log Files

1https://www.mongodb.com/products/consulting?jmp=docs#performance_evaluation

60 Chapter 2. Administration Tutorials

https://www.mongodb.com/products/consulting?jmp=docs#performance_evaluation

MongoDB Administration, Release 3.2.3

On this page

•Overview (page 61)
•Default Log Rotation Behavior (page 61)
•Log Rotation with --logRotate reopen (page 62)
•Syslog Log Rotation (page 63)
•Forcing a Log Rotation with SIGUSR1 (page 63)

Overview

When used with the --logpath option or systemLog.path setting, mongod and mongos instances
report a live account of all activity and operations to a log file. When reporting activity data to a log file,
by default, MongoDB only rotates logs in response to the logRotate command, or when the mongod or
mongos process receives a SIGUSR1 signal from the operating system.

MongoDB’s standard log rotation approach archives the current log file and starts a new one. To do this, the
mongod or mongos instance renames the current log file by appending a UTC timestamp to the filename, in
ISODate format. It then opens a new log file, closes the old log file, and sends all new log entries to the new log
file.

You can also configure MongoDB to support the Linux/Unix logrotate utility by setting
systemLog.logRotate or --logRotate to reopen. With reopen, mongod or mongos closes the
log file, and then reopens a log file with the same name, expecting that another process renamed the file prior to
rotation.

Finally, you can configure mongod to send log data to the syslog. using the --syslog option. In this case,
you can take advantage of alternate logrotation tools.

See also:

For information on logging, see the Process Logging (page 10) section.

Default Log Rotation Behavior

By default, MongoDB uses the --logRotate rename behavior. With rename, mongod or mongos
renames the current log file by appending a UTC timestamp to the filename, opens a new log file, closes the old
log file, and sends all new log entries to the new log file.

Step 1: Start a mongod instance.

mongod -v --logpath /var/log/mongodb/server1.log

You can also explicitly specify logRotate --rename.

Step 2: List the log files

In a separate terminal, list the matching files:

ls /var/log/mongodb/server1.log*

The results should include one log file, server1.log.

2.1. Configuration, Maintenance, and Analysis 61

MongoDB Administration, Release 3.2.3

Step 3: Rotate the log file.

Rotate the log file by issuing the logRotate command from the admin database in a mongo shell:

use admin
db.runCommand({ logRotate : 1 })

Step 4: View the new log files

List the new log files to view the newly-created log:

ls /var/log/mongodb/server1.log*

There should be two log files listed: server1.log, which is the log file that mongod or mongos made when
it reopened the log file, and server1.log.<timestamp>, the renamed original log file.

Rotating log files does not modify the “old” rotated log files. When you rotate a log, you rename the
server1.log file to include the timestamp, and a new, empty server1.log file receives all new log
input.

Log Rotation with --logRotate reopen

New in version 3.0.0.

Log rotation with --logRotate reopen closes and opens the log file following the typical Linux/Unix log
rotate behavior.

Step 1: Start a mongod instance, specifying the reopen --logRotate behavior.

mongod -v --logpath /var/log/mongodb/server1.log --logRotate reopen --logappend

You must use the --logappend option with --logRotate reopen.

Step 2: List the log files

In a separate terminal, list the matching files:

ls /var/log/mongodb/server1.log*

The results should include one log file, server1.log.

Step 3: Rotate the log file.

Rotate the log file by issuing the logRotate command from the admin database in a mongo shell:

use admin
db.runCommand({ logRotate : 1 })

You should rename the log file using an external process, following the typical Linux/Unix log rotate behavior.

62 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

Syslog Log Rotation

New in version 2.2.

With syslog log rotation, mongod sends log data to the syslog rather than writing it to a file.

Step 1: Start a mongod instance with the --syslog option

mongod --syslog

Do not include --logpath. Since --syslog tells mongod to send log data to the syslog, specifying a
--logpath will causes an error.

To specify the facility level used when logging messages to the syslog, use the --syslogFacility option
or systemLog.syslogFacility configuration setting.

Step 2: Rotate the log.

Store and rotate the log output using your systems default log rotation mechanism.

Forcing a Log Rotation with SIGUSR1

For Linux and Unix-based systems, you can use the SIGUSR1 signal to rotate the logs for a single process, as
in the following:

kill -SIGUSR1 <mongod process id>

2.1.7 Manage Journaling

On this page

•Procedures (page 64)

MongoDB uses write ahead logging to an on-disk journal to guarantee write operation durability. The
MMAPv1 storage engine also requires the journal in order to provide crash resiliency.

The WiredTiger storage engine does not require journaling to guarantee a consistent state after a crash. The
database will be restored to the last consistent checkpoint during recovery. However, if MongoDB exits unex-
pectedly in between checkpoints, journaling is required to recover writes that occurred after the last checkpoint.

With journaling enabled, if mongod stops unexpectedly, the program can recover everything written to the
journal. MongoDB will re-apply the write operations on restart and maintain a consistent state. By default, the
greatest extent of lost writes, i.e., those not made to the journal, are those made in the last 100 milliseconds, plus
the time it takes to perform the actual journal writes. See commitIntervalMs for more information on the
default.

2.1. Configuration, Maintenance, and Analysis 63

MongoDB Administration, Release 3.2.3

Procedures

Enable Journaling

Changed in version 2.0: For 64-bit builds of mongod, journaling is enabled by default.

To enable journaling, start mongod with the --journal command line option.

Disable Journaling

Warning: Do not disable journaling on production systems. When using the MMAPv1 storage engine
without a journal, if your mongod instance stops without shutting down cleanly unexpectedly for any reason,
(e.g. power failure) and you are not running with journaling, then you must recover from an unaffected
replica set member or backup, as described in repair (page 99).

To disable journaling, start mongod with the --nojournal command line option.

Get Commit Acknowledgment

You can get commit acknowledgment with the write-concern and the j option. For details, see write-concern-
operation.

Avoid Preallocation Lag for MMAPv1

With the MMAPv1 storage engine, MongoDB may preallocate journal files if the mongod process deter-
mines that it is more efficient to preallocate journal files than create new journal files as needed.

Depending on your filesystem, you might experience a preallocation lag the first time you start a mongod
instance with journaling enabled. The amount of time required to pre-allocate files might last several minutes;
during this time, you will not be able to connect to the database. This is a one-time preallocation and does not
occur with future invocations.

To avoid preallocation lag, you can preallocate files in the journal directory by copying them from another
instance of mongod.

Preallocated files do not contain data. It is safe to later remove them. But if you restart mongod with journaling,
mongod will create them again.

Example
The following sequence preallocates journal files for an instance of mongod running on port 27017 with a
database path of /data/db.

For demonstration purposes, the sequence starts by creating a set of journal files in the usual way.

1.Create a temporary directory into which to create a set of journal files:

mkdir ~/tmpDbpath

2.Create a set of journal files by staring a mongod instance that uses the temporary directory:

mongod --port 10000 --dbpath ~/tmpDbpath --journal

3.When you see the following log output, indicating mongod has the files, press CONTROL+C to stop the
mongod instance:

64 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

[initandlisten] waiting for connections on port 10000

4.Preallocate journal files for the new instance of mongod by moving the journal files from the data directory
of the existing instance to the data directory of the new instance:

mv ~/tmpDbpath/journal /data/db/

5.Start the new mongod instance:

mongod --port 27017 --dbpath /data/db --journal

Monitor Journal Status

Use the following commands and methods to monitor journal status:

•serverStatus

The serverStatus command returns database status information that is useful for assessing perfor-
mance.

•journalLatencyTest

Use journalLatencyTest to measure how long it takes on your volume to write to the disk in an
append-only fashion. You can run this command on an idle system to get a baseline sync time for journal-
ing. You can also run this command on a busy system to see the sync time on a busy system, which may
be higher if the journal directory is on the same volume as the data files.

The journalLatencyTest command also provides a way to check if your disk drive is buffering
writes in its local cache. If the number is very low (i.e., less than 2 milliseconds) and the drive is non-
SSD, the drive is probably buffering writes. In that case, enable cache write-through for the device in your
operating system, unless you have a disk controller card with battery backed RAM.

Change the Group Commit Interval for MMAPv1

For the MMAPv1 storage engine, you can set the group commit interval using the
--journalCommitInterval command line option. The allowed range is 2 to 300 milliseconds.

Lower values increase the durability of the journal at the expense of disk performance.

Recover Data After Unexpected Shutdown

On a restart after a crash, MongoDB replays all journal files in the journal directory before the server becomes
available. If MongoDB must replay journal files, mongod notes these events in the log output.

There is no reason to run repairDatabase in these situations.

2.1.8 Store a JavaScript Function on the Server

Note: Do not store application logic in the database. There are performance limitations to running JavaScript
inside of MongoDB. Application code also is typically most effective when it shares version control with the
application itself.

There is a special system collection named system.js that can store JavaScript functions for reuse.

2.1. Configuration, Maintenance, and Analysis 65

MongoDB Administration, Release 3.2.3

To store a function, you can use the db.collection.save(), as in the following examples:

db.system.js.save(
{

_id: "echoFunction",
value : function(x) { return x; }

}
)

db.system.js.save(
{

_id : "myAddFunction" ,
value : function (x, y){ return x + y; }

}
);

•The _id field holds the name of the function and is unique per database.

•The value field holds the function definition.

Once you save a function in the system.js collection, you can use the function from any JavaScript context;
e.g. $where operator, mapReduce command or db.collection.mapReduce().

In the mongo shell, you can use db.loadServerScripts() to load all the scripts saved in the
system.js collection for the current database. Once loaded, you can invoke the functions directly in the
shell, as in the following example:

db.loadServerScripts();

echoFunction(3);

myAddFunction(3, 5);

2.1.9 Upgrade to the Latest Revision of MongoDB

On this page

•Before Upgrading (page 66)
•Upgrade Procedure (page 67)
•Upgrade a MongoDB Instance (page 67)
•Replace the Existing Binaries (page 67)
•Upgrade Sharded Clusters (page 68)
•Upgrade Replica Sets (page 68)
•Additional Resources (page 69)

Revisions provide security patches, bug fixes, and new or changed features that do not contain any backward
breaking changes. Always upgrade to the latest revision in your release series. The third number in the Mon-
goDB version number indicates the revision.

Before Upgrading

•Ensure you have an up-to-date backup of your data set. See MongoDB Backup Methods (page 4).

66 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

•Consult the following documents for any special considerations or compatibility issues specific to your
MongoDB release:

–The release notes, located at https://docs.mongodb.org/manual/release-notes.

–The documentation for your driver. See Drivers2 and Driver Compatibility3 pages for more informa-
tion.

•If your installation includes replica sets, plan the upgrade during a predefined maintenance window.

•Before you upgrade a production environment, use the procedures in this document to upgrade a staging
environment that reproduces your production environment, to ensure that your production configuration is
compatible with all changes.

Upgrade Procedure

Important: Always backup all of your data before upgrading MongoDB.

Upgrade each mongod and mongos binary separately, using the procedure described here. When upgrading a
binary, use the procedure Upgrade a MongoDB Instance (page 67).

Follow this upgrade procedure:

1.For deployments that use authentication, first upgrade all of your MongoDB drivers. To upgrade, see
the documentation for your driver as well as the Driver Compatibility4 page.

2.Upgrade sharded clusters, as described in Upgrade Sharded Clusters (page 68).

3.Upgrade any standalone instances. See Upgrade a MongoDB Instance (page 67).

4.Upgrade any replica sets that are not part of a sharded cluster, as described in Upgrade Replica Sets
(page 68).

Upgrade a MongoDB Instance

To upgrade a mongod or mongos instance, use one of the following approaches:

•Upgrade the instance using the operating system’s package management tool
and the official MongoDB packages. This is the preferred approach. See
https://docs.mongodb.org/manual/installation.

•Upgrade the instance by replacing the existing binaries with new binaries. See Replace the Existing Bina-
ries (page 67).

Replace the Existing Binaries

Important: Always backup all of your data before upgrading MongoDB.

This section describes how to upgrade MongoDB by replacing the existing binaries. The preferred approach to
an upgrade is to use the operating system’s package management tool and the official MongoDB packages, as
described in https://docs.mongodb.org/manual/installation.

To upgrade a mongod or mongos instance by replacing the existing binaries:

2https://docs.mongodb.org/ecosystem/drivers
3https://docs.mongodb.org/ecosystem/drivers/driver-compatibility-reference
4https://docs.mongodb.org/ecosystem/drivers/driver-compatibility-reference

2.1. Configuration, Maintenance, and Analysis 67

https://docs.mongodb.org/ecosystem/drivers
https://docs.mongodb.org/ecosystem/drivers/driver-compatibility-reference
https://docs.mongodb.org/ecosystem/drivers/driver-compatibility-reference

MongoDB Administration, Release 3.2.3

1.Download the binaries for the latest MongoDB revision from the MongoDB Download Page5 and store
the binaries in a temporary location. The binaries download as compressed files that uncompress to the
directory structure used by the MongoDB installation.

2.Shutdown the instance.

3.Replace the existing MongoDB binaries with the downloaded binaries.

4.Restart the instance.

Upgrade Sharded Clusters

To upgrade a sharded cluster:

1.Disable the cluster’s balancer, as described in Disable the Balancer (page 214).

2.Upgrade each mongos instance by following the instructions below in Upgrade a MongoDB Instance
(page 67). You can upgrade the mongos instances in any order.

3.Upgrade each mongod config server individually starting with the last config server listed in your mongos
--configdb string and working backward. To keep the cluster online, make sure at least one config
server is always running. For each config server upgrade, follow the instructions below in Upgrade a
MongoDB Instance (page 67)

Example
Given the following config string:

mongos --configdb cfg0.example.net:27019,cfg1.example.net:27019,cfg2.example.net:27019

You would upgrade the config servers in the following order:

(a)cfg2.example.net

(b)cfg1.example.net

(c)cfg0.example.net

4.Upgrade each shard.

•If a shard is a replica set, upgrade the shard using the procedure below titled Upgrade Replica Sets
(page 68).

•If a shard is a standalone instance, upgrade the shard using the procedure below titled Upgrade a
MongoDB Instance (page 67).

5.Re-enable the balancer, as described in Enable the Balancer (page 214).

Upgrade Replica Sets

To upgrade a replica set, upgrade each member individually, starting with the secondaries and finishing with the
primary. Plan the upgrade during a predefined maintenance window.

Upgrade Secondaries

Upgrade each secondary separately as follows:

5http://downloads.mongodb.org/

68 Chapter 2. Administration Tutorials

http://downloads.mongodb.org/

MongoDB Administration, Release 3.2.3

1.Upgrade the secondary’s mongod binary by following the instructions below in Upgrade a MongoDB
Instance (page 67).

2.After upgrading a secondary, wait for the secondary to recover to the SECONDARY state before upgrading
the next instance. To check the member’s state, issue rs.status() in the mongo shell.

The secondary may briefly go into STARTUP2 or RECOVERING. This is normal. Make sure to wait for
the secondary to fully recover to SECONDARY before you continue the upgrade.

Upgrade the Primary

1.Step down the primary to initiate the normal failover procedure. Using one of the following:

•The rs.stepDown() helper in the mongo shell.

•The replSetStepDown database command.

During failover, the set cannot accept writes. Typically this takes 10-20 seconds. Plan the upgrade during
a predefined maintenance window.

Note: Stepping down the primary is preferable to directly shutting down the primary. Stepping down
expedites the failover procedure.

2.Once the primary has stepped down, call the rs.status() method from the mongo shell until you see
that another member has assumed the PRIMARY state.

3.Shut down the original primary and upgrade its instance by following the instructions below in Upgrade a
MongoDB Instance (page 67).

Additional Resources

•Getting ready for MongoDB 3.2? Get our help.6

2.1.10 Monitor MongoDB With SNMP on Linux

On this page

•Overview (page 70)
•Considerations (page 70)
•Configuration Files (page 70)
•Procedure (page 70)
•Optional: Run MongoDB as SNMP Master (page 71)

New in version 2.2.

Enterprise Feature
SNMP is only available in MongoDB Enterprise7.

6https://www.mongodb.com/contact/mongodb-3-2-upgrade-services?jmp=docs
7http://www.mongodb.com/products/mongodb-enterprise?jmp=docs

2.1. Configuration, Maintenance, and Analysis 69

https://www.mongodb.com/contact/mongodb-3-2-upgrade-services?jmp=docs
http://www.mongodb.com/products/mongodb-enterprise?jmp=docs

MongoDB Administration, Release 3.2.3

Overview

MongoDB Enterprise can provide database metrics via SNMP, in support of centralized data collection and
aggregation. This procedure explains the setup and configuration of a mongod instance as an SNMP subagent,
as well as initializing and testing of SNMP support with MongoDB Enterprise.

See also:

Troubleshoot SNMP (page 73) and Monitor MongoDB Windows with SNMP (page 71) for complete instructions
on using MongoDB with SNMP on Windows systems.

Considerations

Only mongod instances provide SNMP support. mongos and the other MongoDB binaries do not support
SNMP.

Configuration Files

Changed in version 2.6.

MongoDB Enterprise contains the following configuration files to support SNMP:

•MONGOD-MIB.txt:

The management information base (MIB) file that defines MongoDB’s SNMP output.

•mongod.conf.subagent:

The configuration file to run mongod as the SNMP subagent. This file sets SNMP run-time configuration
options, including the AgentX socket to connect to the SNMP master.

•mongod.conf.master:

The configuration file to run mongod as the SNMP master. This file sets SNMP run-time configuration
options.

Procedure

Step 1: Copy configuration files.

Use the following sequence of commands to move the SNMP configuration files to the SNMP service configu-
ration directory.

First, create the SNMP configuration directory if needed and then, from the installation directory, copy the
configuration files to the SNMP service configuration directory:

mkdir -p /etc/snmp/
cp MONGOD-MIB.txt /usr/share/snmp/mibs/MONGOD-MIB.txt
cp mongod.conf.subagent /etc/snmp/mongod.conf

The configuration filename is tool-dependent. For example, when using net-snmp the configuration file is
snmpd.conf.

By default SNMP uses UNIX domain for communication between the agent (i.e. snmpd or the master) and
sub-agent (i.e. MongoDB).

Ensure that the agentXAddress specified in the SNMP configuration file for MongoDB matches the
agentXAddress in the SNMP master configuration file.

70 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

Step 2: Start MongoDB.

Start mongod with the snmp-subagent to send data to the SNMP master.

mongod --snmp-subagent

Step 3: Confirm SNMP data retrieval.

Use snmpwalk to collect data from mongod:

Connect an SNMP client to verify the ability to collect SNMP data from MongoDB.

Install the net-snmp8 package to access the snmpwalk client. net-snmp provides the snmpwalk SNMP
client.

snmpwalk -m /usr/share/snmp/mibs/MONGOD-MIB.txt -v 2c -c mongodb 127.0.0.1:<port> 1.3.6.1.4.1.34601

<port> refers to the port defined by the SNMP master, not the primary port used by mongod for client
communication.

Optional: Run MongoDB as SNMP Master

You can run mongod with the snmp-master option for testing purposes. To do this, use the SNMP mas-
ter configuration file instead of the subagent configuration file. From the directory containing the unpacked
MongoDB installation files:

cp mongod.conf.master /etc/snmp/mongod.conf

Additionally, start mongod with the snmp-master option, as in the following:

mongod --snmp-master

2.1.11 Monitor MongoDB Windows with SNMP

On this page

•Overview (page 72)
•Considerations (page 72)
•Configuration Files (page 72)
•Procedure (page 72)
•Optional: Run MongoDB as SNMP Master (page 73)

New in version 2.6.

Enterprise Feature
SNMP is only available in MongoDB Enterprise9.

8http://www.net-snmp.org/
9http://www.mongodb.com/products/mongodb-enterprise?jmp=docs

2.1. Configuration, Maintenance, and Analysis 71

http://www.net-snmp.org/
http://www.mongodb.com/products/mongodb-enterprise?jmp=docs

MongoDB Administration, Release 3.2.3

Overview

MongoDB Enterprise can provide database metrics via SNMP, in support of centralized data collection and
aggregation. This procedure explains the setup and configuration of a mongod.exe instance as an SNMP
subagent, as well as initializing and testing of SNMP support with MongoDB Enterprise.

See also:

Monitor MongoDB With SNMP on Linux (page 69) and Troubleshoot SNMP (page 73) for more information.

Considerations

Only mongod.exe instances provide SNMP support. mongos.exe and the other MongoDB binaries do not
support SNMP.

Configuration Files

Changed in version 2.6.

MongoDB Enterprise contains the following configuration files to support SNMP:

•MONGOD-MIB.txt:

The management information base (MIB) file that defines MongoDB’s SNMP output.

•mongod.conf.subagent:

The configuration file to run mongod.exe as the SNMP subagent. This file sets SNMP run-time config-
uration options, including the AgentX socket to connect to the SNMP master.

•mongod.conf.master:

The configuration file to run mongod.exe as the SNMP master. This file sets SNMP run-time configu-
ration options.

Procedure

Step 1: Copy configuration files.

Use the following sequence of commands to move the SNMP configuration files to the SNMP service configu-
ration directory.

First, create the SNMP configuration directory if needed and then, from the installation directory, copy the
configuration files to the SNMP service configuration directory:

md C:\snmp\etc\config
copy MONGOD-MIB.txt C:\snmp\etc\config\MONGOD-MIB.txt
copy mongod.conf.subagent C:\snmp\etc\config\mongod.conf

The configuration filename is tool-dependent. For example, when using net-snmp the configuration file is
snmpd.conf.

Edit the configuration file to ensure that the communication between the agent (i.e. snmpd or the master) and
sub-agent (i.e. MongoDB) uses TCP.

Ensure that the agentXAddress specified in the SNMP configuration file for MongoDB matches the
agentXAddress in the SNMP master configuration file.

72 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

Step 2: Start MongoDB.

Start mongod.exe with the snmp-subagent to send data to the SNMP master.

mongod.exe --snmp-subagent

Step 3: Confirm SNMP data retrieval.

Use snmpwalk to collect data from mongod.exe:

Connect an SNMP client to verify the ability to collect SNMP data from MongoDB.

Install the net-snmp10 package to access the snmpwalk client. net-snmp provides the snmpwalk SNMP
client.

snmpwalk -m C:\snmp\etc\config\MONGOD-MIB.txt -v 2c -c mongodb 127.0.0.1:<port> 1.3.6.1.4.1.34601

<port> refers to the port defined by the SNMP master, not the primary port used by mongod.exe for client
communication.

Optional: Run MongoDB as SNMP Master

You can run mongod.exe with the snmp-master option for testing purposes. To do this, use the SNMP
master configuration file instead of the subagent configuration file. From the directory containing the unpacked
MongoDB installation files:

copy mongod.conf.master C:\snmp\etc\config\mongod.conf

Additionally, start mongod.exe with the snmp-master option, as in the following:

mongod.exe --snmp-master

2.1.12 Troubleshoot SNMP

On this page

•Overview (page 73)
•Issues (page 74)

New in version 2.6.

Enterprise Feature
SNMP is only available in MongoDB Enterprise.

Overview

MongoDB Enterprise can provide database metrics via SNMP, in support of centralized data collection and
aggregation. This document identifies common problems you may encounter when deploying MongoDB Enter-
prise with SNMP as well as possible solutions for these issues.

10http://www.net-snmp.org/

2.1. Configuration, Maintenance, and Analysis 73

http://www.net-snmp.org/

MongoDB Administration, Release 3.2.3

See Monitor MongoDB With SNMP on Linux (page 69) and Monitor MongoDB Windows with SNMP (page 71)
for complete installation instructions.

Issues

Failed to Connect

The following in the mongod logfile:

Warning: Failed to connect to the agentx master agent

AgentX is the SNMP agent extensibility protocol defined in Internet RFC 274111. It explains how to define
additional data to monitor over SNMP. When MongoDB fails to connect to the agentx master agent, use the
following procedure to ensure that the SNMP subagent can connect properly to the SNMP master.

1.Make sure the master agent is running.

2.Compare the SNMP master’s configuration file with the subagent configuration file. Ensure that the agentx
socket definition is the same between the two.

3.Check the SNMP configuration files to see if they specify using UNIX Domain Sockets. If so, confirm that
the mongod has appropriate permissions to open a UNIX domain socket.

Error Parsing Command Line

One of the following errors at the command line:

Error parsing command line: unknown option snmp-master
try 'mongod --help' for more information

Error parsing command line: unknown option snmp-subagent
try 'mongod --help' for more information

mongod binaries that are not part of the Enterprise Edition produce this error. Install the Enterprise
Edition and attempt to start mongod again.

Other MongoDB binaries, including mongos will produce this error if you attempt to star them with
snmp-master or snmp-subagent. Only mongod supports SNMP.

Error Starting SNMPAgent

The following line in the log file indicates that mongod cannot read the mongod.conf file:

[SNMPAgent] warning: error starting SNMPAgent as master err:1

If running on Linux, ensure mongod.conf exists in the /etc/snmp directory, and ensure that the mongod
UNIX user has permission to read the mongod.conf file.

If running on Windows, ensure mongod.conf exists in C:\snmp\etc\config.

11http://www.ietf.org/rfc/rfc2741.txt

74 Chapter 2. Administration Tutorials

http://www.ietf.org/rfc/rfc2741.txt

MongoDB Administration, Release 3.2.3

2.2 Backup and Recovery

The following tutorials describe backup and restoration for a mongod instance:

Backup and Restore with Filesystem Snapshots (page 75) An outline of procedures for creating MongoDB
data set backups using system-level file snapshot tool, such as LVM or native storage appliance tools.

Restore a Replica Set from MongoDB Backups (page 79) Describes procedure for restoring a replica set from
an archived backup such as a mongodump or MongoDB Cloud Manager12 Backup file.

Back Up and Restore with MongoDB Tools (page 81) Describes a procedure for exporting the contents of a
database to either a binary dump or a textual exchange format, and for importing these files into a database.

Backup and Restore Sharded Clusters (page 87) Detailed procedures and considerations for backing up
sharded clusters and single shards.

Recover Data after an Unexpected Shutdown (page 99) Recover data from MongoDB data files that were not
properly closed or have an invalid state.

2.2.1 Backup and Restore with Filesystem Snapshots

On this page

•Snapshots Overview (page 75)
•Back up and Restore Using LVM on Linux (page 77)
•Back up Instances with Journal Files on Separate Volume or without Journaling (page 79)
•Additional Resources (page 79)

This document describes a procedure for creating backups of MongoDB systems using system-level tools, such
as LVM or storage appliance, as well as the corresponding restoration strategies.

These filesystem snapshots, or “block-level” backup methods, use system level tools to create copies of the de-
vice that holds MongoDB’s data files. These methods complete quickly and work reliably, but require additional
system configuration outside of MongoDB.

Changed in version 3.2: Starting in MongoDB 3.2, the data files as well as the journal files can reside on separate
volumes to create volume-level backup of MongoDB instances using the WiredTiger storage engine. With
previous versions, for the purpose of volume-level backup of MongoDB instances using WiredTiger, the data
files and the journal must reside on a single volume.

See also:

MongoDB Backup Methods (page 4) and Back Up and Restore with MongoDB Tools (page 81).

Snapshots Overview

Snapshots work by creating pointers between the live data and a special snapshot volume. These pointers are
theoretically equivalent to “hard links.” As the working data diverges from the snapshot, the snapshot process
uses a copy-on-write strategy. As a result the snapshot only stores modified data.

After making the snapshot, you mount the snapshot image on your file system and copy data from the snapshot.
The resulting backup contains a full copy of all data.

12https://cloud.mongodb.com/?jmp=docs

2.2. Backup and Recovery 75

https://cloud.mongodb.com/?jmp=docs

MongoDB Administration, Release 3.2.3

Considerations

Valid Database at the Time of Snapshot The database must be valid when the snapshot takes place. This
means that all writes accepted by the database need to be fully written to disk: either to the journal or to data
files.

If all writes are not on disk when the backup occurs, the backup will not reflect these changes.

For the MMAPv1 storage engine, if writes are in progress when the backup occurs, the data files will re-
flect an inconsistent state. With journaling, all data-file states resulting from in-progress writes are recoverable;
without journaling, you must flush all pending writes to disk before running the backup operation and must en-
sure that no writes occur during the entire backup procedure. If you do use journaling, the journal must reside
on the same volume as the data.

For the WiredTiger storage engine, the data files reflect a consistent state as of the last checkpoint,
which occurs with every 2 GB of data or every minute.

Entire Disk Image Snapshots create an image of an entire disk image. Unless you need to back up your entire
system, consider isolating your MongoDB data files, journal (if applicable), and configuration on one logical
disk that doesn’t contain any other data.

Alternately, store all MongoDB data files on a dedicated device so that you can make backups without duplicat-
ing extraneous data.

Site Failure Precaution Ensure that you copy data from snapshots onto other systems. This ensures that data
is safe from site failures.

No Incremental Backups This tutorial does not include procedures for incremental backups. Although dif-
ferent snapshots methods provide different capability, the LVM method outlined below does not provide any
capacity for capturing incremental backups.

Snapshots With Journaling

If your mongod instance has journaling enabled, then you can use any kind of file system or volume/block level
snapshot tool to create backups.

If you manage your own infrastructure on a Linux-based system, configure your system with LVM to pro-
vide your disk packages and provide snapshot capability. You can also use LVM-based setups within a
cloud/virtualized environment.

Note: Running LVM provides additional flexibility and enables the possibility of using snapshots to back up
MongoDB.

Snapshots with Amazon EBS in a RAID 10 Configuration

If your deployment depends on Amazon’s Elastic Block Storage (EBS) with RAID configured within your
instance, it is impossible to get a consistent state across all disks using the platform’s snapshot tool. As an
alternative, you can do one of the following:

•Flush all writes to disk and create a write lock to ensure consistent state during the backup process.

If you choose this option see Back up Instances with Journal Files on Separate Volume or without Jour-
naling (page 79).

76 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

•Configure LVM to run and hold your MongoDB data files on top of the RAID within your system.

If you choose this option, perform the LVM backup operation described in Create a Snapshot (page 77).

Back up and Restore Using LVM on Linux

This section provides an overview of a simple backup process using LVM on a Linux system. While the
tools, commands, and paths may be (slightly) different on your system the following steps provide a high level
overview of the backup operation.

Note: Only use the following procedure as a guideline for a backup system and infrastructure. Production
backup systems must consider a number of application specific requirements and factors unique to specific
environments.

Create a Snapshot

Changed in version 3.2: Starting in MongoDB 3.2, for the purpose of volume-level backup of MongoDB in-
stances using WiredTiger, the data files and the journal are no longer required to reside on a single volume.

To create a snapshot with LVM, issue a command as root in the following format:

lvcreate --size 100M --snapshot --name mdb-snap01 /dev/vg0/mongodb

This command creates an LVM snapshot (with the --snapshot option) named mdb-snap01 of the
mongodb volume in the vg0 volume group.

This example creates a snapshot named mdb-snap01 located at /dev/vg0/mdb-snap01. The location
and paths to your systems volume groups and devices may vary slightly depending on your operating system’s
LVM configuration.

The snapshot has a cap of at 100 megabytes, because of the parameter --size 100M. This size does not
reflect the total amount of the data on the disk, but rather the quantity of differences between the current state of
/dev/vg0/mongodb and the creation of the snapshot (i.e. /dev/vg0/mdb-snap01.)

Warning: Ensure that you create snapshots with enough space to account for data growth, particularly for
the period of time that it takes to copy data out of the system or to a temporary image.
If your snapshot runs out of space, the snapshot image becomes unusable. Discard this logical volume and
create another.

The snapshot will exist when the command returns. You can restore directly from the snapshot at any time or
by creating a new logical volume and restoring from this snapshot to the alternate image.

While snapshots are great for creating high quality backups very quickly, they are not ideal as a format for
storing backup data. Snapshots typically depend and reside on the same storage infrastructure as the original
disk images. Therefore, it’s crucial that you archive these snapshots and store them elsewhere.

Archive a Snapshot

After creating a snapshot, mount the snapshot and copy the data to separate storage. Your system might try to
compress the backup images as you move them offline. Alternatively, take a block level copy of the snapshot
image, such as with the following procedure:

umount /dev/vg0/mdb-snap01
dd if=/dev/vg0/mdb-snap01 | gzip > mdb-snap01.gz

2.2. Backup and Recovery 77

MongoDB Administration, Release 3.2.3

The above command sequence does the following:

•Ensures that the /dev/vg0/mdb-snap01 device is not mounted. Never take a block level copy of a
filesystem or filesystem snapshot that is mounted.

•Performs a block level copy of the entire snapshot image using the dd command and compresses the result
in a gzipped file in the current working directory.

Warning: This command will create a large gz file in your current working directory. Make sure that
you run this command in a file system that has enough free space.

Restore a Snapshot

To restore a snapshot created with the above method, issue the following sequence of commands:

lvcreate --size 1G --name mdb-new vg0
gzip -d -c mdb-snap01.gz | dd of=/dev/vg0/mdb-new
mount /dev/vg0/mdb-new /srv/mongodb

The above sequence does the following:

•Creates a new logical volume named mdb-new, in the /dev/vg0 volume group. The path to the new
device will be /dev/vg0/mdb-new.

Warning: This volume will have a maximum size of 1 gigabyte. The original file system must have
had a total size of 1 gigabyte or smaller, or else the restoration will fail.
Change 1G to your desired volume size.

•Uncompresses and unarchives the mdb-snap01.gz into the mdb-new disk image.

•Mounts the mdb-new disk image to the /srv/mongodb directory. Modify the mount point to corre-
spond to your MongoDB data file location, or other location as needed.

Note: The restored snapshot will have a stale mongod.lock file. If you do not remove this file from the
snapshot, and MongoDB may assume that the stale lock file indicates an unclean shutdown. If you’re running
with storage.journal.enabled enabled, and you do not use db.fsyncLock(), you do not need to
remove the mongod.lock file. If you use db.fsyncLock() you will need to remove the lock.

Restore Directly from a Snapshot

To restore a backup without writing to a compressed gz file, use the following sequence of commands:

umount /dev/vg0/mdb-snap01
lvcreate --size 1G --name mdb-new vg0
dd if=/dev/vg0/mdb-snap01 of=/dev/vg0/mdb-new
mount /dev/vg0/mdb-new /srv/mongodb

Remote Backup Storage

You can implement off-system backups using the combined process (page 78) and SSH.

This sequence is identical to procedures explained above, except that it archives and compresses the backup on
a remote system using SSH.

78 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

Consider the following procedure:

umount /dev/vg0/mdb-snap01
dd if=/dev/vg0/mdb-snap01 | ssh username@example.com gzip > /opt/backup/mdb-snap01.gz
lvcreate --size 1G --name mdb-new vg0
ssh username@example.com gzip -d -c /opt/backup/mdb-snap01.gz | dd of=/dev/vg0/mdb-new
mount /dev/vg0/mdb-new /srv/mongodb

Back up Instances with Journal Files on Separate Volume or without Journaling

Changed in version 3.2: Starting in MongoDB 3.2, for the purpose of volume-level backup of MongoDB in-
stances using WiredTiger, the data files and the journal are no longer required to reside on a single volume.

If your mongod instance is either running without journaling or has the journal files on a separate volume,
you must flush all writes to disk and lock the database to prevent writes during the backup process. If you
have a replica set configuration, then for your backup use a secondary which is not receiving reads (i.e. hidden
member).

Important: In the following procedure to create backups, you must issue the db.fsyncLock() and
db.fsyncUnlock() operations on the same connection. The client that issues db.fsyncLock() is solely
responsible for issuing a db.fsyncUnlock() operation and must be able to handle potential error conditions
so that it can perform the db.fsyncUnlock() before terminating the connection.

Step 1: Flush writes to disk and lock the database to prevent further writes.

To flush writes to disk and to “lock” the database, issue the db.fsyncLock() method in the mongo shell:

db.fsyncLock();

Step 2: Perform the backup operation described in Create a Snapshot.

Step 3: After the snapshot completes, unlock the database.

To unlock the database after the snapshot has completed, use the following command in the mongo shell:

db.fsyncUnlock();

Additional Resources

See also MongoDB Cloud Manager13 for seamless automation, backup, and monitoring.

2.2.2 Restore a Replica Set from MongoDB Backups

On this page

•Restore Database into a Single Node Replica Set (page 80)
•Add Members to the Replica Set (page 80)

13https://cloud.mongodb.com/?jmp=docs

2.2. Backup and Recovery 79

https://cloud.mongodb.com/?jmp=docs

MongoDB Administration, Release 3.2.3

This procedure outlines the process for taking MongoDB data and restoring that data into a new replica set. Use
this approach for seeding test deployments from production backups as well as part of disaster recovery.

You cannot restore a single data set to three new mongod instances and then create a replica set. In this situation
MongoDB will force the secondaries to perform an initial sync. The procedures in this document describe the
correct and efficient ways to deploy a replica set.

You can also use mongorestore to restore database files using data created with mongodump. See Back Up
and Restore with MongoDB Tools (page 81) for more information.

Restore Database into a Single Node Replica Set

Step 1: Obtain backup MongoDB Database files.

The backup files may come from a file system snapshot (page 75). The MongoDB Cloud Manager14 produces
MongoDB database files for stored snapshots15 and point in time snapshots16. For Ops Manager, an on-premise
solution available in MongoDB Enterprise Advanced17, see also the Ops Manager Backup overview18.

Step 2: Start a mongod using data files from the backup as the data path.

Start a mongod instance for a new single-node replica set. Specify the path to the backup data files with
--dbpath option and the replica set name with the --replSet option. For config server replica set (CSRS),
include the --configsvr option.

mongod --dbpath /data/db --replSet <replName>

Step 3: Connect a mongo shell to the mongod instance.

For example, to connect to a mongod running on localhost on the default port of 27017, simply issue:

mongo

Step 4: Initiate the new replica set.

Use rs.initiate() on one and only one member of the replica set:

rs.initiate()

MongoDB initiates a set that consists of the current member and that uses the default replica set configuration.

Add Members to the Replica Set

MongoDB provides two options for restoring secondary members of a replica set:

•Manually copy the database files to each data directory.

•Allow initial sync to distribute data automatically.

14https://cloud.mongodb.com/?jmp=docs
15https://docs.cloud.mongodb.com/tutorial/restore-from-snapshot/
16https://docs.cloud.mongodb.com/tutorial/restore-from-point-in-time-snapshot/
17https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
18https://docs.opsmanager.mongodb.com/current/core/backup-overview

80 Chapter 2. Administration Tutorials

https://cloud.mongodb.com/?jmp=docs
https://docs.cloud.mongodb.com/tutorial/restore-from-snapshot/
https://docs.cloud.mongodb.com/tutorial/restore-from-point-in-time-snapshot/
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
https://docs.opsmanager.mongodb.com/current/core/backup-overview

MongoDB Administration, Release 3.2.3

The following sections outlines both approaches.

Note: If your database is large, initial sync can take a long time to complete. For large databases, it might be
preferable to copy the database files onto each host.

Copy Database Files and Restart mongod Instance

Use the following sequence of operations to “seed” additional members of the replica set with the restored data
by copying MongoDB data files directly.

Step 1: Shut down the mongod instance that you restored.

Use --shutdown or db.shutdownServer() to ensure a clean shut down.

Step 2: Copy the primary’s data directory to each secondary.

Copy the primary’s data directory into the dbPath of the other members of the replica set. The dbPath is
/data/db by default.

Step 3: Start the mongod instance that you restored.

Step 4: Add the secondaries to the replica set.

In a mongo shell connected to the primary, add the secondaries to the replica set using rs.add(). See Deploy
a Replica Set (page 128) for more information about deploying a replica set.

Update Secondaries using Initial Sync

Use the following sequence of operations to “seed” additional members of the replica set with the restored data
using the default initial sync operation.

Step 1: Ensure that the data directories on the prospective replica set members are empty.

Step 2: Add each prospective member to the replica set.

When you add a member to the replica set, Initial Sync copies the data from the primary to the new member.

2.2.3 Back Up and Restore with MongoDB Tools

On this page

•Binary BSON Dumps (page 82)
•Human Intelligible Import/Export Formats (page 85)

2.2. Backup and Recovery 81

MongoDB Administration, Release 3.2.3

This document describes the process for creating backups and restoring data using the utilities provided with
MongoDB.

Because all of these tools primarily operate by interacting with a running mongod instance, they can impact the
performance of your running database.

Not only do they create traffic for a running database instance, they also force the database to read all data
through memory. When MongoDB reads infrequently used data, it can supplant more frequently accessed data,
causing a deterioration in performance for the database’s regular workload.

No matter how you decide to import or export your data, consider the following guidelines:

•Label files so that you can identify the contents of the export or backup as well as the point in time the
export/backup reflect.

•Do not create or apply exports if the backup process itself will have an adverse effect on a production
system.

•Make sure that the backups reflect a consistent data state. Export or backup processes can impact data
integrity (i.e. type fidelity) and consistency if updates continue during the backup process.

•Test backups and exports by restoring and importing to ensure that the backups are useful.

See also:

MongoDB Backup Methods (page 4) or MongoDB Cloud Manager Backup documentation19 for more infor-
mation on backing up MongoDB instances. Additionally, consider the following references for the MongoDB
import/export tools:

•mongoimport

•mongoexport

•mongorestore

•mongodump

Binary BSON Dumps

The mongorestore and mongodump utilities work with BSON data dumps, and are useful for creating
backups of small deployments. For resilient and non-disruptive backups, use a file system or block-level disk
snapshot function, such as the methods described in the MongoDB Backup Methods (page 4) document.

Use these tools for backups if other backup methods, such as the MongoDB Cloud Manager20 or file system
snapshots (page 75) are unavailable.

Backup a Database with mongodump

Exclude local Database mongodump excludes the content of the local database in its output.

Required Access To run mongodump against a MongoDB deployment that has access control en-
abled, you must have privileges that grant find action for each database to back up. The built-in backup role
provides the required privileges to perform backup of any and all databases.

Changed in version 3.2.1: The backup role provides additional privileges to back up the system.profile
(page 112) collections that exist when running with database profiling (page 40). Previously, users required an
additional read access on this collection.

19https://docs.cloud.mongodb.com/tutorial/nav/backup-use/
20https://cloud.mongodb.com/?jmp=docs

82 Chapter 2. Administration Tutorials

https://docs.cloud.mongodb.com/tutorial/nav/backup-use/
https://cloud.mongodb.com/?jmp=docs

MongoDB Administration, Release 3.2.3

Basic mongodump Operations The mongodump utility backs up data by connecting to a running mongod
or mongos instance.

The utility can create a backup for an entire server, database or collection, or can use a query to backup just part
of a collection.

When you run mongodump without any arguments, the command connects to the MongoDB instance on the
local system (e.g. 127.0.0.1 or localhost) on port 27017 and creates a database backup named dump/
in the current directory.

To backup data from a mongod or mongos instance running on the same machine and on the default port of
27017, use the following command:

mongodump

The data format used by mongodump from version 2.2 or later is incompatible with earlier versions of mongod.
Do not use recent versions of mongodump to back up older data stores.

You can also specify the --host and --port of the MongoDB instance that the mongodump should connect
to. For example:

mongodump --host mongodb.example.net --port 27017

mongodump will write BSON files that hold a copy of data accessible via the mongod listening on port 27017
of the mongodb.example.net host. See Create Backups from Non-Local mongod Instances (page 83) for
more information.

To specify a different output directory, you can use the --out or -o option:

mongodump --out /data/backup/

To limit the amount of data included in the database dump, you can specify --db and --collection as
options to mongodump. For example:

mongodump --collection myCollection --db test

This operation creates a dump of the collection named myCollection from the database test in a dump/
subdirectory of the current working directory.

mongodump overwrites output files if they exist in the backup data folder. Before running the mongodump
command multiple times, either ensure that you no longer need the files in the output folder (the default is the
dump/ folder) or rename the folders or files.

Point in Time Operation Using Oplogs Use the --oplog option with mongodump to collect the oplog
entries to build a point-in-time snapshot of a database within a replica set. With --oplog, mongodump copies
all the data from the source database as well as all of the oplog entries from the beginning to the end of the
backup procedure. This operation, in conjunction with mongorestore --oplogReplay, allows you to
restore a backup that reflects the specific moment in time that corresponds to when mongodump completed
creating the dump file.

Create Backups from Non-Local mongod Instances The --host and --port options for mongodump
allow you to connect to and backup from a remote host. Consider the following example:

mongodump --host mongodb1.example.net --port 3017 --username user --password pass --out /opt/backup/mongodump-2013-10-24

On any mongodump command you may, as above, specify username and password credentials to specify
database authentication.

2.2. Backup and Recovery 83

MongoDB Administration, Release 3.2.3

Restore a Database with mongorestore

Access Control To restore data to a MongoDB deployment that has access control enabled, the
restore role provides access to restore any database if the backup data does not include system.profile
(page 112) collection data.

If the backup data includes system.profile (page 112) collection data and the target database does
not contain the system.profile (page 112) collection, mongorestore attempts to create the collec-
tion even though the program does not actually restore system.profile documents. As such, the user
requires additional privileges to perform createCollection and convertToCapped actions on the
system.profile (page 112) collection for a database.

If running mongorestore with --oplogReplay, additional privilege user-defined role that has
anyAction on resource-anyresource and grant only to users who must run mongorestore with
--oplogReplay.

Basic mongorestore Operations The mongorestore utility restores a binary backup created by
mongodump. By default, mongorestore looks for a database backup in the dump/ directory.

The mongorestore utility restores data by connecting to a running mongod or mongos directly.

mongorestore can restore either an entire database backup or a subset of the backup.

To use mongorestore to connect to an active mongod or mongos, use a command with the following
prototype form:

mongorestore --port <port number> <path to the backup>

Consider the following example:

mongorestore dump-2013-10-25/

Here, mongorestore imports the database backup in the dump-2013-10-25 directory to the mongod
instance running on the localhost interface.

Restore Point in Time Oplog Backup If you created your database dump using the --oplog option to
ensure a point-in-time snapshot, call mongorestore with the --oplogReplay option, as in the following
example:

mongorestore --oplogReplay

You may also consider using the mongorestore --objcheck option to check the integrity of objects
while inserting them into the database, or you may consider the mongorestore --drop option to drop
each collection from the database before restoring from backups.

Restore Backups to Non-Local mongod Instances By default, mongorestore connects to a MongoDB
instance running on the localhost interface (e.g. 127.0.0.1) and on the default port (27017). If you want to
restore to a different host or port, use the --host and --port options.

Consider the following example:

mongorestore --host mongodb1.example.net --port 3017 --username user --password pass /opt/backup/mongodump-2013-10-24

As above, you may specify username and password connections if your mongod requires authentication.

84 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

Human Intelligible Import/Export Formats

MongoDB’s mongoimport and mongoexport tools allow you to work with your data in a human-readable
Extended JSON or CSV format. This is useful for simple ingestion to or from a third-party system, and when
you want to backup or export a small subset of your data. For more complex data migration tasks, you may want
to write your own import and export scripts using a client driver to interact with the database.

The examples in this section use the MongoDB tools mongoimport and mongoexport. These tools may
also be useful for importing data into a MongoDB database from third party applications.

If you want to simply copy a database or collection from one instance to another, consider using the copydb,
clone, or cloneCollection commands, which may be more suited to this task. The mongo shell provides
the db.copyDatabase() method.

Warning: Avoid using mongoimport and mongoexport for full instance production backups. They
do not reliably preserve all rich BSON data types, because JSON can only represent a subset of the types
supported by BSON. Use mongodump and mongorestore as described in MongoDB Backup Methods
(page 4) for this kind of functionality.

Collection Export with mongoexport

Export in CSV Format

Changed in version 3.0.0: mongoexport removed the --csv option. Use the --type=csv option to
specify CSV format for the output.

In the following example, mongoexport exports data from the collection contacts collection in the users
database in CSV format to the file /opt/backups/contacts.csv.

The mongod instance that mongoexport connects to is running on the localhost port number 27017.

When you export in CSV format, you must specify the fields in the documents to export. The operation specifies
the name and address fields to export.

mongoexport --db users --collection contacts --type=csv --fields name,address --out /opt/backups/contacts.csv

For CSV exports only, you can also specify the fields in a file containing the line-separated list of fields to export.
The file must have only one field per line.

For example, you can specify the name and address fields in a file fields.txt:

name
address

Then, using the --fieldFile option, specify the fields to export with the file:

mongoexport --db users --collection contacts --type=csv --fieldFile fields.txt --out /opt/backups/contacts.csv

Changed in version 3.0.0: mongoexport removed the --csv option and replaced with the --type option.

Export in JSON Format

This example creates an export of the contacts collection from the MongoDB instance running on the local-
host port number 27017. This writes the export to the contacts.json file in JSON format.

2.2. Backup and Recovery 85

MongoDB Administration, Release 3.2.3

mongoexport --db sales --collection contacts --out contacts.json

Export from Remote Host Running with Authentication

The following example exports the contacts collection from the marketing database, which requires au-
thentication.

This data resides on the MongoDB instance located on the host mongodb1.example.net running on port
37017, which requires the username user and the password pass.

mongoexport --host mongodb1.example.net --port 37017 --username user --password pass --collection contacts --db marketing --out mdb1-examplenet.json

Export Query Results

You can export only the results of a query by supplying a query filter with the --query option, and limit the
results to a single database using the “--db” option.

For instance, this command returns all documents in the sales database’s contacts collection that contain
a field named field with a value of 1.

mongoexport --db sales --collection contacts --query '{"field": 1}'

You must enclose the query in single quotes (e.g. ’) to ensure that it does not interact with your shell environ-
ment.

Collection Import with mongoimport

Simple Usage mongoimport restores a database from a backup taken with mongoexport. Most of the
arguments to mongoexport also exist for mongoimport.

In the following example, mongoimport imports the data in the JSON data from the contacts.json file
into the collection contacts in the users database.

mongoimport --db users --collection contacts --file contacts.json

Import JSON to Remote Host Running with Authentication In the following example, mongoimport im-
ports data from the file /opt/backups/mdb1-examplenet.json into the contacts collection within
the database marketing on a remote MongoDB database with authentication enabled.

mongoimport connects to the mongod instance running on the host mongodb1.example.net over port
37017. It authenticates with the username user and the password pass.

mongoimport --host mongodb1.example.net --port 37017 --username user --password pass --collection contacts --db marketing --file /opt/backups/mdb1-examplenet.json

CSV Import In the following example, mongoimport imports the csv formatted data in the
/opt/backups/contacts.csv file into the collection contacts in the users database on the Mon-
goDB instance running on the localhost port numbered 27017.

Specifying --headerline instructs mongoimport to determine the name of the fields using the first line
in the CSV file.

mongoimport --db users --collection contacts --type csv --headerline --file /opt/backups/contacts.csv

86 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

mongoimport uses the input file name, without the extension, as the collection name if -c or
--collection is unspecified. The following example is therefore equivalent:

mongoimport --db users --type csv --headerline --file /opt/backups/contacts.csv

Use the “--ignoreBlanks” option to ignore blank fields. For CSV and TSV imports, this option provides
the desired functionality in most cases because it avoids inserting fields with null values into your collection.

Additional Resources

•Backup and its Role in Disaster Recovery White Paper21

•Cloud Backup through MongoDB Cloud Manager22

•Blog Post: Backup vs. Replication, Why you Need Both23

•Backup Service with Ops Manager, an on-premise solution available in MongoDB Enterprise Advanced24

2.2.4 Backup and Restore Sharded Clusters

The following tutorials describe backup and restoration for sharded clusters:

Backup a Small Sharded Cluster with mongodump (page 87) If your sharded cluster holds a small data set,
you can use mongodump to capture the entire backup in a reasonable amount of time.

Backup a Sharded Cluster with Filesystem Snapshots (page 89) Use file system snapshots back up each com-
ponent in the sharded cluster individually. The procedure involves stopping the cluster balancer. If your
system configuration allows file system backups, this might be more efficient than using MongoDB tools.

Backup a Sharded Cluster with Database Dumps (page 91) Create backups using mongodump to back up
each component in the cluster individually.

Schedule Backup Window for Sharded Clusters (page 94) Limit the operation of the cluster balancer to pro-
vide a window for regular backup operations.

Restore a Single Shard (page 95) An outline of the procedure and consideration for restoring a single shard
from a backup.

Restore a Sharded Cluster (page 96) An outline of the procedure and consideration for restoring an entire
sharded cluster from backup.

Backup a Small Sharded Cluster with mongodump

On this page

•Overview (page 88)
•Considerations (page 88)
•Procedure (page 88)
•Additional Resources (page 88)

21https://www.mongodb.com/lp/white-paper/backup-disaster-recovery?jmp=docs
22https://cloud.mongodb.com/?jmp=docs
23http://www.mongodb.com/blog/post/backup-vs-replication-why-do-you-need-both?jmp=docs
24https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

2.2. Backup and Recovery 87

https://www.mongodb.com/lp/white-paper/backup-disaster-recovery?jmp=docs
https://cloud.mongodb.com/?jmp=docs
http://www.mongodb.com/blog/post/backup-vs-replication-why-do-you-need-both?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

MongoDB Administration, Release 3.2.3

Overview

If your sharded cluster holds a small data set, you can connect to a mongos using mongodump. You can create
backups of your MongoDB cluster, if your backup infrastructure can capture the entire backup in a reasonable
amount of time and if you have a storage system that can hold the complete MongoDB data set.

See MongoDB Backup Methods (page 4) and Backup and Restore Sharded Clusters (page 87) for complete
information on backups in MongoDB and backups of sharded clusters in particular.

Important: By default mongodump issue its queries to the non-primary nodes.

Considerations

If you use mongodump without specifying a database or collection, mongodump will capture collection data
and the cluster meta-data from the config servers.

You cannot use the --oplog option for mongodump when capturing data from mongos. As a result, if you
need to capture a backup that reflects a single moment in time, you must stop all writes to the cluster for the
duration of the backup operation.

To run mongodump against a MongoDB deployment that has access control enabled, you must have
privileges that grant find action for each database to back up. The built-in backup role provides the required
privileges to perform backup of any and all databases.

Changed in version 3.2.1: The backup role provides additional privileges to back up the system.profile
(page 112) collections that exist when running with database profiling (page 40). Previously, users required an
additional read access on this collection.

Procedure

Capture Data You can perform a backup of a sharded cluster by connecting mongodump to a mongos. Use
the following operation at your system’s prompt:

mongodump --host mongos3.example.net --port 27017

mongodump will write BSON files that hold a copy of data stored in the sharded cluster accessible via the
mongos listening on port 27017 of the mongos3.example.net host.

Restore Data Backups created with mongodump do not reflect the chunks or the distribution of data in the
sharded collection or collections. Like all mongodump output, these backups contain separate directories for
each database and BSON files for each collection in that database.

You can restore mongodump output to any MongoDB instance, including a standalone, a replica set, or a
new sharded cluster. When restoring data to sharded cluster, you must deploy and configure sharding before
restoring data from the backup. See Deploy a Sharded Cluster (page 181) for more information.

Additional Resources

See also MongoDB Cloud Manager25 for seamless automation, backup, and monitoring.

25https://cloud.mongodb.com/?jmp=docs

88 Chapter 2. Administration Tutorials

https://cloud.mongodb.com/?jmp=docs

MongoDB Administration, Release 3.2.3

Backup a Sharded Cluster with Filesystem Snapshots

On this page

•Overview (page 89)
•Considerations (page 89)
•Procedure (page 90)
•Additional Resources (page 91)

Changed in version 3.2: Starting in MongoDB 3.2, the procedure can be used with the MMAPv1 and the
WiredTiger storage engines. With previous versions of MongoDB, the procedure applied to MMAPv1 only.

Overview

This document describes a procedure for taking a backup of all components of a sharded cluster. This procedure
uses file system snapshots to capture a copy of the mongod instance. An alternate procedure uses mongodump
to create binary database dumps when file-system snapshots are not available. See Backup a Sharded Cluster
with Database Dumps (page 91) for the alternate procedure.

Important: To capture a point-in-time backup from a sharded cluster you must stop all writes to the cluster.
On a running production system, you can only capture an approximation of point-in-time snapshot.

For more information on backups in MongoDB and backups of sharded clusters in particular, see MongoDB
Backup Methods (page 4) and Backup and Restore Sharded Clusters (page 87).

Considerations

Balancer It is essential that you stop the balancer before capturing a backup.

If the balancer is active while you capture backups, the backup artifacts may be incomplete and/or have duplicate
data, as chunks may migrate while recording backups.

Precision In this procedure, you will stop the cluster balancer and take a backup up of the config database, and
then take backups of each shard in the cluster using a file-system snapshot tool. If you need an exact moment-in-
time snapshot of the system, you will need to stop all application writes before taking the filesystem snapshots;
otherwise the snapshot will only approximate a moment in time.

For approximate point-in-time snapshots, you can minimize the impact on the cluster by taking the backup from
a secondary member of each replica set shard.

Consistency If the journal and data files are on the same logical volume, you can use a single point-in-time
snapshot to capture a consistent copy of the data files.

If the journal and data files are on different file systems, you must use db.fsyncLock() and
db.fsyncUnlock() to ensure that the data files do not change, providing consistency for the purposes of
creating backups.

2.2. Backup and Recovery 89

MongoDB Administration, Release 3.2.3

Procedure

Step 1: Disable the balancer. To disable the balancer, connect the mongo shell to a mongos instance and
run sh.stopBalancer() in the config database.

use config
sh.stopBalancer()

For more information, see the Disable the Balancer (page 214) procedure.

Step 2: If necessary, lock one secondary member of each replica set. If your secondary does not have
journaling enabled or its journal and data files are on different volumes, you must lock the secondary’s mongod
instance before capturing a backup.

If your secondary has journaling enabled and its journal and data files are on the same volume, you may skip
this step.

Important: If your deployment requires this step, you must perform it on one secondary of each shard and,
if your sharded cluster uses a replica set for the config servers, one secondary of the config server replica set
(CSRS).

Ensure that the oplog has sufficient capacity to allow these secondaries to catch up to the state of the primaries
after finishing the backup procedure. See replica-set-oplog-sizing for more information.

Lock shard replica set secondary. For each shard replica set in the sharded cluster, connect a mongo shell
to the secondary member’s mongod instance and run db.fsyncLock().

db.fsyncLock()

When calling db.fsyncLock(), ensure that the connection is kept open to allow a subsequent call to
db.fsyncUnlock().

Lock config server replica set secondary. Connect a mongo shell to the secondary member’s mongod in-
stance.

db.fsyncLock()

When calling db.fsyncLock(), ensure that the connection is kept open to allow a subsequent call to
db.fsyncUnlock().

Step 3: Back up one of the config servers. Backing up a config server backs up the sharded cluster’s meta-
data. You only need to back up one config server, as they all hold the same data. If you are using CSRS config
servers, perform this step against the locked config server.

If the sharded cluster uses CSRS Confirm that the locked secondary member of the CSRS recognizes that
the balancer is disabled. In a mongo shell connected to the secondary member’s mongod instance, perform the
following.

use config
rs.slaveOk()
db.settings.find({ "_id" : "balancer", "stopped" : true })

90 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

If the member recognizes that the balancer is disabled, the query should return a document. Otherwise, wait
until the query returns a document.

To confirm that the CSRS secondary member has replicated past the last completed migration, check the
changelog collection in the config database. The last logged moveChunk operation should be a com-
mit.

use config;
db.changelog.find({what:/^moveChunk/}).sort({time:-1}).next().what"

The query should return "moveChunk.commit". If not, wait until the chunk migration completes.

Take a file-system snapshot of the config server. To create a file-system snapshot of the config server, follow
the procedure in Create a Snapshot (page 77).

Step 4: Back up a replica set member for each shard. If you locked a member of the replica set shards,
perform this step against the locked secondary.

You may back up the shards in parallel. For each shard, create a snapshot, using the procedure in Backup and
Restore with Filesystem Snapshots (page 75).

Step 5: Unlock all locked replica set members. If you locked any mongod instances to capture the backup,
unlock them.

To unlock the replica set members, use db.fsyncUnlock() method in the mongo shell. For each locked
member, use the same mongo shell used to lock the instance.

db.fsyncUnlock()

Step 6: Enable the balancer. To re-enable to balancer, connect the mongo shell to a mongos instance and
run sh.setBalancerState().

sh.setBalancerState(true)

Additional Resources

See also MongoDB Cloud Manager26 for seamless automation, backup, and monitoring.

Backup a Sharded Cluster with Database Dumps

On this page

•Overview (page 92)
•Prerequisites (page 92)
•Consideration (page 92)
•Procedure (page 92)
•Additional Resources (page 94)

26https://cloud.mongodb.com/?jmp=docs

2.2. Backup and Recovery 91

https://cloud.mongodb.com/?jmp=docs

MongoDB Administration, Release 3.2.3

Changed in version 3.2: Starting in MongoDB 3.2, the following procedure can be used with the MMAPv1 and
the WiredTiger storage engines. With previous versions of MongoDB, the procedure applied to MMAPv1
only.

Overview

This document describes a procedure for taking a backup of all components of a sharded cluster. This procedure
uses mongodump to create dumps of the mongod instance. An alternate procedure uses file system snapshots
to capture the backup data, and may be more efficient in some situations if your system configuration allows file
system backups.

For more information on backups in MongoDB and backups of sharded clusters in particular, see MongoDB
Backup Methods (page 4) and Backup and Restore Sharded Clusters (page 87).

Prerequisites

Important: To capture a point-in-time backup from a sharded cluster you must stop all writes to the cluster.
On a running production system, you can only capture an approximation of point-in-time snapshot.

Access Control The backup role provides the required privileges to perform backup on a sharded cluster
that has access control enabled.

Changed in version 3.2.1: The backup role provides additional privileges to back up the system.profile
(page 112) collections that exist when running with database profiling (page 40). Previously, users required an
additional read access on this collection.

Consideration

To create these backups of a sharded cluster, you will stop the cluster balancer and take a backup of the config
database, and then take backups of each shard in the cluster using mongodump to capture the backup data. To
capture a more exact moment-in-time snapshot of the system, you will need to stop all application writes before
taking the filesystem snapshots; otherwise the snapshot will only approximate a moment in time.

For approximate point-in-time snapshots, you can minimize the impact on the cluster by taking the backup from
a secondary member of each replica set shard.

Procedure

Step 1: Disable the balancer process. To disable the balancer, connect the mongo shell to a mongos
instance and run sh.stopBalancer() in the config database.

use config
sh.stopBalancer()

For more information, see the Disable the Balancer (page 214) procedure.

Warning: If you do not stop the balancer, the backup could have duplicate data or omit data as chunks
migrate while recording backups.

92 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

Step 2: Lock one secondary member of each replica set. Lock a secondary member of each replica set in
the sharded cluster, and, if your sharded cluster uses a replica set for the config servers, one secondary of the
config server replica set (CSRS).

Ensure that the oplog has sufficient capacity to allow these secondaries to catch up to the state of the primaries
after finishing the backup procedure. See replica-set-oplog-sizing for more information.

Lock shard replica set secondary. For each shard replica set in the sharded cluster, connect a mongo shell
to the secondary member’s mongod instance and run db.fsyncLock().

db.fsyncLock()

When calling db.fsyncLock(), ensure that the connection is kept open to allow a subsequent call to
db.fsyncUnlock().

Lock config server replica set secondary. If locking a secondary of the CSRS, confirm that the member
recognizes that the balancer is disabled and the last migration has finished. Connect a mongo shell to the
secondary member’s mongod instance. To confirm that the member recognizes that the balancer is disabled:

use config
rs.slaveOk()
db.settings.find({ "_id" : "balancer", "stopped" : true })

If the member recognizes that the balancer is disabled, the query should return a document. Otherwise, wait
until the query returns a document.

To confirm that the CSRS secondary member has replicated past the last completed migration, check the
changelog collection in the config database. The last logged moveChunk operation should be a com-
mit.

use config;
db.changelog.find({what:/^moveChunk/}).sort({time:-1}).next().what"

The query should return "moveChunk.commit". If not, wait until the chunk migration completes.

If the secondary member recognizes that the balancer is disabled and the last migration is complete, lock the
member.

db.fsyncLock()

When calling db.fsyncLock(), ensure that the connection is kept open to allow a subsequent call to
db.fsyncUnlock().

Step 3: Backup one config server. Run mongodump against a config server mongod instance to back up
the cluster’s metadata. You only need to back up one config server. If you are using CSRS config servers and
locked a config server secondary in the previous step, perform this step against the locked config server.

Use mongodump with the --oplog option to backup one of the config servers.

mongodump --oplog

If your deployment uses CSRS config servers, unlock the config server node before proceeding to the next step.
To unlock the CSRS member, use db.fsyncUnlock() method in the mongo shell used to lock the instance.

db.fsyncUnlock()

2.2. Backup and Recovery 93

MongoDB Administration, Release 3.2.3

Step 4: Back up a replica set member for each shard. Back up the locked replica set members of the shards
using mongodump with the --oplog option. You may back up the shards in parallel.

mongodump --oplog

Step 5: Unlock replica set members for each shard. To unlock the replica set members, use
db.fsyncUnlock() method in the mongo shell. For each locked member, use the same mongo shell
used to lock the instance.

db.fsyncUnlock()

Allow these members to catch up with the state of the primary.

Step 6: Re-enable the balancer process. To re-enable to balancer, connect the mongo shell to a mongos
instance and run sh.setBalancerState().

use config
sh.setBalancerState(true)

Additional Resources

See also MongoDB Cloud Manager27 for seamless automation, backup, and monitoring.

Schedule Backup Window for Sharded Clusters

On this page

•Overview (page 94)
•Procedure (page 94)

Overview

In a sharded cluster, the balancer process is responsible for distributing sharded data around the cluster, so that
each shard has roughly the same amount of data.

However, when creating backups from a sharded cluster it is important that you disable the balancer while taking
backups to ensure that no chunk migrations affect the content of the backup captured by the backup procedure.
Using the procedure outlined in the section Disable the Balancer (page 214) you can manually stop the balancer
process temporarily. As an alternative you can use this procedure to define a balancing window so that the
balancer is always disabled during your automated backup operation.

Procedure

If you have an automated backup schedule, you can disable all balancing operations for a period of time. For
instance, consider the following command:

27https://cloud.mongodb.com/?jmp=docs

94 Chapter 2. Administration Tutorials

https://cloud.mongodb.com/?jmp=docs

MongoDB Administration, Release 3.2.3

use config
db.settings.update({ _id : "balancer" }, { $set : { activeWindow : { start : "6:00", stop : "23:00" } } }, true)

This operation configures the balancer to run between 6:00am and 11:00pm, server time. Schedule your backup
operation to run and complete outside of this time. Ensure that the backup can complete outside the window
when the balancer is running and that the balancer can effectively balance the collection among the shards in
the window allotted to each.

Restore a Single Shard

On this page

•Overview (page 95)
•Procedure (page 95)

Overview

Restoring a single shard from backup with other unaffected shards requires a number of special considerations
and practices. This document outlines the additional tasks you must perform when restoring a single shard.

Consider the following resources on backups in general as well as backup and restoration of sharded clusters
specifically:

•Backup and Restore Sharded Clusters (page 87)

•Restore a Sharded Cluster (page 96)

•MongoDB Backup Methods (page 4)

Procedure

Always restore sharded clusters as a whole. When you restore a single shard, keep in mind that the balancer
process might have moved chunks to or from this shard since the last backup. If that’s the case, you must
manually move those chunks, as described in this procedure.

Step 1: Restore the shard as you would any other mongod instance. See MongoDB Backup Methods
(page 4) for overviews of these procedures.

Step 2: Manage the chunks. For all chunks that migrate away from this shard, you do not need to do anything
at this time. You do not need to delete these documents from the shard because the chunks are automatically
filtered out from queries by mongos. You can remove these documents from the shard, if you like, at your
leisure.

For chunks that migrate to this shard after the most recent backup, you must manually recover the chunks using
backups of other shards, or some other source. To determine what chunks have moved, view the changelog
collection in the config-database.

2.2. Backup and Recovery 95

MongoDB Administration, Release 3.2.3

Restore a Sharded Cluster

On this page

•Overview (page 96)
•Procedures (page 96)

Overview

You can restore a sharded cluster either from snapshots (page 75) or from BSON database dumps (page 91)
created by the mongodump tool. This document describes procedures to

•Restore a Sharded Cluster with Filesystem Snapshots (page 96)

•Restore a Sharded Cluster with Database Dumps (page 98)

Procedures

Restore a Sharded Cluster with Filesystem Snapshots The following procedure outlines the steps to restore
a sharded cluster from filesystem snapshots. To create filesystem snapshots of sharded clusters, see Backup a
Sharded Cluster with Filesystem Snapshots (page 89).

Step 1: Shut down the entire cluster. Stop all mongos and mongod processes, including all shards and all
config servers. To stop all members, connect to each member and issue following operations:

use admin
db.shutdownServer()

Step 2: Restore the data files. On each server, extract the data files to the location where the mongod instance
will access them and restore the following:

•Data files for each server in each shard.

For each shard replica set, restore all the members of the replica set. See Restore a Replica Set from
MongoDB Backups (page 79).

•Data files for each config server.

Changed in version 3.2: If restoring to a config server replica set (CSRS), restore the members of the
replica set. See Restore a Replica Set from MongoDB Backups (page 79).

Else, if restoring to 3 mirrored config servers, restore the files on each config server mongod instance as
you would a standalone node.

See also:

Restore a Snapshot (page 78).

Step 3: Restart the config servers.

•If restoring to a config server replica set, restart each member of the CSRS.

96 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

mongod --configsvr --replSet <CSRS name> --dbpath <config dbpath> --port 27019

•Or, if restoring to a three mirrored mongod instances, start exactly three mongod config server instances.

mongod --configsvr --dbpath <config dbpath> --port 27019

Step 4: Start one mongos instance.

•If using a CSRS deployment, start mongos with the --configdb option set to the replica set name and
seed list of the CSRS started in the step Restart the config servers. (page ??)

•Or, if using three mirrored config servers, start mongos with the --configdb option set to the host-
names (and port numbers) of the config servers started in the step Restart the config servers. (page ??)

Step 5: If shard hostnames have changed, update the config database. If shard hostnames have changed,
connect a mongo shell to the mongos instance and update the shards collection in the config-database to
reflect the new hostnames.

Step 6: Clear per-shard sharding recovery information. If the backup data was from a deployment using
CSRS, clear out the no longer applicable recovery information on each shard. For each shard:

1.Restart the replica set members for the shard with the recoverShardingState parameter set to
false. Include additional options as required for your specific configuration.

mongod --setParameter=recoverShardingState=false --replSet <replSetName>

2.Connect mongo shell to the primary of the replica set and delete from the admin.system.version
collection the document where _id equals minOpTimeRecovery id. Use write concern
"majority".

use admin
db.system.version.remove(

{ _id: "minOpTimeRecovery" },
{ writeConcern: { w: "majority" } }

)

3.Shut down the replica set members for the shard.

Step 7: Restart all the shard mongod instances. Do not include the recoverShardingState parame-
ter.

Step 8: Restart the other mongos instances.

•If using a CSRS deployment, specify for --configdb the config server replica set name and a seed list
of the CSRS started in the step Restart the config servers. (page ??)

•Or, if using three mirrored config servers, specify for --configdb the hostnames (and port numbers) of
the config servers started in the step Restart the config servers. (page ??) All mongos must specify the
same --configdb string.

Step 9: Verify that the cluster is operational. Connect to a mongos instance from a mongo shell and use
the db.printShardingStatus() method to ensure that the cluster is operational.

2.2. Backup and Recovery 97

MongoDB Administration, Release 3.2.3

db.printShardingStatus()
show collections

Restore a Sharded Cluster with Database Dumps The following procedure outlines the steps to re-
store a sharded cluster from the BSON database dumps created by mongodump. For information on using
mongodump to backup sharded clusters, see Backup a Sharded Cluster with Database Dumps (page 91).

Changed in version 3.0: mongorestore requires a running MongoDB instances. Earlier versions of
mongorestore did not require a running MongoDB instances and instead used the --dbpath option. For
instructions specific to your version of mongorestore, refer to the appropriate version of the manual.

Step 1: Deploy a new replica set for each shard. For each shard, deploy a new replica set:

1.Start a new mongod for each member of the replica set. Include any other configuration as appropriate.

2.Connect a mongo to one of the mongod instances. In the mongo shell:

(a)Run rs.initiate().

(b)Use rs.add() to add the other members of the replica set.

For detailed instructions on deploying a replica set, see Deploy a Replica Set (page 128).

Step 2: Deploy new config servers. To deploy config servers as replica set (CSRS), see Deploy the Config
Server Replica Set (page 181).

To deploy config servers as 3 mirrored mongod instances, see Start 3 Mirrored Config Servers (Deprecated)
(page 185).

Step 3: Start the mongos instances. Start the mongos instances, specifying the new config servers with
--configdb. Include any other configuration as appropriate.

For sharded clusters with CSRS, see Start the mongos Instances (page 182).

For sharded clusters with 3 mirrored config servers, see Start the mongos Instances (Deprecated) (page 185).

Step 4: Add shards to the cluster. Connect a mongo shell to a mongos instance. Use sh.addShard()
to add each replica sets as a shard.

For detailed instructions in adding shards to the cluster, see Add Shards to the Cluster (page 183).

Step 5: Shut down the mongos instances. Once the new sharded cluster is up, shut down all mongos
instances.

Step 6: Restore the shard data. For each shard, use mongorestore to restore the data dump to the
primary’s data directory. Include the --drop option to drop the collections before restoring and, because
the backup procedure (page 91) included the --oplog option, include the --oplogReplay option for
mongorestore.

For example, on the primary for ShardA, run the mongorestore. Specify any other configuration as appro-
priate.

mongorestore --drop --oplogReplay /data/dump/shardA

After you have finished restoring all the shards, shut down all shard instances.

98 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

Step 7: Restore the config server data.
mongorestore --drop --oplogReplay /data/dump/configData

Step 8: Start one mongos instance.

•If using a CSRS deployment, start mongos with the --configdb option set to the replica set name and
seed list of the CSRS started in the step Deploy new config servers. (page ??)

•Or, if using three mirrored config servers, start mongos with the --configdb option set to the host-
names (and port numbers) of the config servers started in the step Deploy new config servers. (page ??)

Step 9: If shard hostnames have changed, update the config database. If shard hostnames have changed,
connect a mongo shell to the mongos instance and update the shards collection in the config-database to
reflect the new hostnames.

Step 10: Restart all the shard mongod instances. Do not include the recoverShardingState param-
eter.

Step 11: Restart the other mongos instances.

•If using a CSRS deployment, specify for --configdb the config server replica set name and a seed list
of the CSRS started in the step Deploy new config servers. (page ??)

•Or, if using three mirrored config servers, specify for --configdb the hostnames (and port numbers) of
the config servers started in the step Deploy new config servers. (page ??) All mongos must specify the
same --configdb string.

Step 12: Verify that the cluster is operational. Connect to a mongos instance from a mongo shell and use
the db.printShardingStatus() method to ensure that the cluster is operational.

db.printShardingStatus()
show collections

See also:

MongoDB Backup Methods (page 4), Backup and Restore Sharded Clusters (page 87)

2.2.5 Recover Data after an Unexpected Shutdown

On this page

•Process (page 100)
•Procedures (page 101)
•mongod.lock (page 102)

If MongoDB does not shutdown cleanly, the on-disk representation of the data files will likely reflect an incon-
sistent state which could lead to data corruption. 28

28 You can also use the db.collection.validate() method to test the integrity of a single collection. However, this process is time
consuming, and without journaling you can safely assume that the data is in an invalid state and you should either run the repair operation or resync
from an intact member of the replica set.

2.2. Backup and Recovery 99

MongoDB Administration, Release 3.2.3

To prevent data inconsistency and corruption, always shut down the database cleanly and use the durability
journaling. MongoDB writes data to the journal, by default, every 100 milliseconds, such that MongoDB can
always recover to a consistent state even in the case of an unclean shutdown due to power loss or other system
failure.

If you are not running as part of a replica set and do not have journaling enabled, use the following procedure
to recover data that may be in an inconsistent state. If you are running as part of a replica set, you should always
restore from a backup or restart the mongod instance with an empty dbPath and allow MongoDB to perform
an initial sync to restore the data.

To ensure a clean shut down, use one of the following methods:

•db.shutdownServer() from the mongo shell,

•Your system’s init script,

•“Control-C” when running mongod in interactive mode,

•kill $(pidof mongod); or kill -2 $(pidof mongod),

•On Linux, the mongod --shutdown option.

See also:

The https://docs.mongodb.org/manual/administration documents, including Replica Set
Syncing, and the documentation on the --repair repairPath and storage.journal.enabled set-
tings.

Process

Indications

When you are aware of a mongod instance running without journaling that stops unexpectedly and you’re not
running with replication, you should always run the repair operation before starting MongoDB again. If you’re
using replication, then restore from a backup and allow replication to perform an initial sync to restore data.

If the mongod.lock file in the data directory specified by dbPath, /data/db by default, is not a zero-byte
file, then mongod will refuse to start, and you will find a message that contains the following line in your
MongoDB log our output:

Unclean shutdown detected.

This indicates that you need to run mongod with the --repair option. If you run repair when the
mongodb.lock file exists in your dbPath, or the optional --repairpath, you will see a message that
contains the following line:

old lock file: /data/db/mongod.lock. probably means unclean shutdown

If you see this message, as a last resort you may remove the lockfile and run the repair operation before starting
the database normally, as in the following procedure:

Overview

Warning: Recovering a member of a replica set.
Do not use this procedure to recover a member of a replica set. Instead you should either restore from a
backup (page 4) or perform an initial sync using data from an intact member of the set, as described in
Resync a Member of a Replica Set (page 161).

100 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

There are two processes to repair data files that result from an unexpected shutdown:

•Use the --repair option in conjunction with the --repairpath option. mongod will read the
existing data files, and write the existing data to new data files.

You do not need to remove the mongod.lock file before using this procedure.

•Use the --repair option. mongod will read the existing data files, write the existing data to new files
and replace the existing, possibly corrupt, files with new files.

You must remove the mongod.lock file before using this procedure.

Note: --repair functionality is also available in the shell with the db.repairDatabase() helper for
the repairDatabase command.

Procedures

Important: Always Run mongod as the same user to avoid changing the permissions of the MongoDB data
files.

Repair Data Files and Preserve Original Files

To repair your data files using the --repairpath option to preserve the original data files unmodified.

Step 1: Start mongod using the option to replace the original files with the repaired files. Start the
mongod instance using the --repair option and the --repairpath option. Issue a command similar to
the following:

mongod --dbpath /data/db --repair --repairpath /data/db0

When this completes, the new repaired data files will be in the /data/db0 directory.

Step 2: Start mongod with the new data directory. Start mongod using the following invocation to point
the dbPath at /data/db0:

mongod --dbpath /data/db0

Once you confirm that the data files are operational you may delete or archive the old data files in the /data/db
directory. You may also wish to move the repaired files to the old database location or update the dbPath to
indicate the new location.

Repair Data Files without Preserving Original Files

To repair your data files without preserving the original files, do not use the --repairpath option, as in the
following procedure:

Warning: After you remove the mongod.lock file you must run the --repair process before using
your database.

2.2. Backup and Recovery 101

MongoDB Administration, Release 3.2.3

Step 1: Remove the stale lock file. For example:

rm /data/db/mongod.lock

Replace /data/db with your dbPath where your MongoDB instance’s data files reside.

Step 2: Start mongod using the option to replace the original files with the repaired files. Start the
mongod instance using the --repair option, which replaces the original data files with the repaired data
files. Issue a command similar to the following:

mongod --dbpath /data/db --repair

When this completes, the repaired data files will replace the original data files in the /data/db directory.

Step 3: Start mongod as usual. Start mongod using the following invocation to point the dbPath at
/data/db:

mongod --dbpath /data/db

mongod.lock

In normal operation, you should never remove the mongod.lock file and start mongod. Instead consider the
one of the above methods to recover the database and remove the lock files. In dire situations you can remove
the lockfile, and start the database using the possibly corrupt files, and attempt to recover data from the database;
however, it’s impossible to predict the state of the database in these situations.

If you are not running with journaling, and your database shuts down unexpectedly for any reason, you should
always proceed as if your database is in an inconsistent and likely corrupt state. If at all possible restore from
backup (page 4) or, if running as a replica set, restore by performing an initial sync using data from an intact
member of the set, as described in Resync a Member of a Replica Set (page 161).

2.3 MongoDB Tutorials

This page lists the tutorials available as part of the MongoDB Manual. In addition to these tutorial in the
manual, MongoDB provides Getting Started Guides in various driver editions. If there is a process or pattern
that you would like to see included here, please open a Jira Case29.

2.3.1 Installation

•https://docs.mongodb.org/manual/tutorial/install-mongodb-on-linux

•https://docs.mongodb.org/manual/tutorial/install-mongodb-on-red-hat

•https://docs.mongodb.org/manual/tutorial/install-mongodb-on-debian

•https://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu

•https://docs.mongodb.org/manual/tutorial/install-mongodb-on-amazon

•https://docs.mongodb.org/manual/tutorial/install-mongodb-on-suse

•https://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x
29https://jira.mongodb.org/browse/DOCS

102 Chapter 2. Administration Tutorials

https://jira.mongodb.org/browse/DOCS

MongoDB Administration, Release 3.2.3

•https://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows

2.3.2 Administration

Replica Sets

•Deploy a Replica Set (page 128)

•Convert a Standalone to a Replica Set (page 140)

•Add Members to a Replica Set (page 142)

•Remove Members from Replica Set (page 144)

•Replace a Replica Set Member (page 146)

•Adjust Priority for Replica Set Member (page 147)

•Resync a Member of a Replica Set (page 161)

•Deploy a Geographically Redundant Replica Set (page 134)

•Change the Size of the Oplog (page 156)

•Force a Member to Become Primary (page 159)

•Change Hostnames in a Replica Set (page 170)

•Add an Arbiter to Replica Set (page 140)

•Convert a Secondary to an Arbiter (page 153)

•Configure a Secondary’s Sync Target (page 174)

•Configure a Delayed Replica Set Member (page 151)

•Configure a Hidden Replica Set Member (page 150)

•Configure Non-Voting Replica Set Member (page 152)

•Prevent Secondary from Becoming Primary (page 148)

•Configure Replica Set Tag Sets (page 163)

•Manage Chained Replication (page 169)

•Reconfigure a Replica Set with Unavailable Members (page 166)

•Recover Data after an Unexpected Shutdown (page 99)

•Troubleshoot Replica Sets (page 175)

Sharding

•Deploy a Sharded Cluster (page 181)

•Convert a Replica Set to a Sharded Cluster (page 190)

•Add Shards to a Cluster (page 189)

•Remove Shards from an Existing Sharded Cluster (page 216)

•Migrate Config Servers with the Same Hostname (page 204)

•Migrate Config Servers with Different Hostnames (page 204)

2.3. MongoDB Tutorials 103

MongoDB Administration, Release 3.2.3

•Replace a Config Server (page 202)

•Migrate a Sharded Cluster to Different Hardware (page 206)

•Backup Cluster Metadata (page 209)

•Backup a Small Sharded Cluster with mongodump (page 87)

•Backup a Sharded Cluster with Filesystem Snapshots (page 89)

•Backup a Sharded Cluster with Database Dumps (page 91)

•Restore a Single Shard (page 95)

•Restore a Sharded Cluster (page 96)

•Schedule Backup Window for Sharded Clusters (page 94)

•Manage Shard Tags (page 227)

Basic Operations

•Use Database Commands (page 51)

•Recover Data after an Unexpected Shutdown (page 99)

•Expire Data from Collections by Setting TTL (page 36)

•Analyze Performance of Database Operations (page 56)

•Rotate Log Files (page 60)

•https://docs.mongodb.org/manual/tutorial/roll-back-to-v1.8-index

•Manage mongod Processes (page 52)

•Back Up and Restore with MongoDB Tools (page 81)

•Backup and Restore with Filesystem Snapshots (page 75)

Security

•https://docs.mongodb.org/manual/tutorial/configure-linux-iptables-firewall

•https://docs.mongodb.org/manual/tutorial/configure-windows-netsh-firewall

•https://docs.mongodb.org/manual/tutorial/enable-authentication

•https://docs.mongodb.org/manual/tutorial/enable-internal-authentication

•https://docs.mongodb.org/manual/tutorial/manage-users-and-roles

•https://docs.mongodb.org/manual/tutorial/control-access-to-mongodb-with-kerberos-authentication

•https://docs.mongodb.org/manual/tutorial/create-a-vulnerability-report

2.3.3 Development Patterns

•https://docs.mongodb.org/manual/tutorial/perform-two-phase-commits

•https://docs.mongodb.org/manual/tutorial/create-an-auto-incrementing-field

•Enforce Unique Keys for Sharded Collections (page 229)

104 Chapter 2. Administration Tutorials

MongoDB Administration, Release 3.2.3

•https://docs.mongodb.org/manual/tutorial/aggregation-zip-code-data-set

•https://docs.mongodb.org/manual/tutorial/aggregation-with-user-preference-data

•https://docs.mongodb.org/manual/tutorial/model-data-for-keyword-search

•https://docs.mongodb.org/manual/tutorial/limit-number-of-elements-in-updated-array

•https://docs.mongodb.org/manual/tutorial/perform-incremental-map-reduce

•https://docs.mongodb.org/manual/tutorial/troubleshoot-map-function

•https://docs.mongodb.org/manual/tutorial/troubleshoot-reduce-function

•Store a JavaScript Function on the Server (page 65)

2.3.4 Text Search Patterns

•https://docs.mongodb.org/manual/tutorial/create-text-index-on-multiple-fields

•https://docs.mongodb.org/manual/tutorial/specify-language-for-text-index

•https://docs.mongodb.org/manual/tutorial/avoid-text-index-name-limit

•https://docs.mongodb.org/manual/tutorial/control-results-of-text-search

•https://docs.mongodb.org/manual/tutorial/limit-number-of-items-scanned-for-text-search

2.3.5 Data Modeling Patterns

•https://docs.mongodb.org/manual/tutorial/model-embedded-one-to-one-relationships-between-documents

•https://docs.mongodb.org/manual/tutorial/model-embedded-one-to-many-relationships-between-documents

•https://docs.mongodb.org/manual/tutorial/model-referenced-one-to-many-relationships-between-documents

•https://docs.mongodb.org/manual/tutorial/model-data-for-atomic-operations

•https://docs.mongodb.org/manual/tutorial/model-tree-structures-with-parent-references

•https://docs.mongodb.org/manual/tutorial/model-tree-structures-with-child-references

•https://docs.mongodb.org/manual/tutorial/model-tree-structures-with-materialized-paths

•https://docs.mongodb.org/manual/tutorial/model-tree-structures-with-nested-sets

See also:

The MongoDB Manual contains administrative documentation and tutorials though out several sections. See
Replica Set Tutorials (page 127) and Sharded Cluster Tutorials (page 180) for additional tutorials and informa-
tion.

2.3. MongoDB Tutorials 105

MongoDB Administration, Release 3.2.3

106 Chapter 2. Administration Tutorials

CHAPTER 3

Administration Reference

UNIX ulimit Settings (page 107) Describes user resources limits (i.e. ulimit) and introduces the considera-
tions and optimal configurations for systems that run MongoDB deployments.

System Collections (page 111) Introduces the internal collections that MongoDB uses to track per-database
metadata, including indexes, collections, and authentication credentials.

Database Profiler Output (page 112) Describes the data collected by MongoDB’s operation profiler, which
introspects operations and reports data for analysis on performance and behavior.

Server-side JavaScript (page 118) Describes MongoDB’s support for executing JavaScript code for server-side
operations.

Exit Codes and Statuses (page 119) Lists the unique codes returned by mongos and mongod processes upon
exit.

3.1 UNIX ulimit Settings

On this page

•Resource Utilization (page 107)
•Review and Set Resource Limits (page 108)

Most UNIX-like operating systems, including Linux and OS X, provide ways to limit and control the usage of
system resources such as threads, files, and network connections on a per-process and per-user basis. These
“ulimits” prevent single users from using too many system resources. Sometimes, these limits have low default
values that can cause a number of issues in the course of normal MongoDB operation.

Note: Red Hat Enterprise Linux and CentOS 6 place a max process limitation of 1024 which overrides
ulimit settings. Create a file named /etc/security/limits.d/99-mongodb-nproc.conf
with new soft nproc and hard nproc values to increase the process limit. See
/etc/security/limits.d/90-nproc.conf file as an example.

3.1.1 Resource Utilization

mongod and mongos each use threads and file descriptors to track connections and manage internal operations.
This section outlines the general resource utilization patterns for MongoDB. Use these figures in combination
with the actual information about your deployment and its use to determine ideal ulimit settings.

107

MongoDB Administration, Release 3.2.3

Generally, all mongod and mongos instances:

•track each incoming connection with a file descriptor and a thread.

•track each internal thread or pthread as a system process.

mongod

•1 file descriptor for each data file in use by the mongod instance.

•1 file descriptor for each journal file used by the mongod instance when storage.journal.enabled
is true.

•In replica sets, each mongod maintains a connection to all other members of the set.

mongod uses background threads for a number of internal processes, including TTL collections (page 36),
replication, and replica set health checks, which may require a small number of additional resources.

mongos

In addition to the threads and file descriptors for client connections, mongos must maintain connects to all
config servers and all shards, which includes all members of all replica sets.

For mongos, consider the following behaviors:

•mongos instances maintain a connection pool to each shard so that the mongos can reuse connections
and quickly fulfill requests without needing to create new connections.

•You can limit the number of incoming connections using the maxIncomingConnections run-time
option. By restricting the number of incoming connections you can prevent a cascade effect where the
mongos creates too many connections on the mongod instances.

Note: Changed in version 2.6: MongoDB removed the upward limit on the
maxIncomingConnections setting.

3.1.2 Review and Set Resource Limits

ulimit

You can use the ulimit command at the system prompt to check system limits, as in the following example:

$ ulimit -a
-t: cpu time (seconds) unlimited
-f: file size (blocks) unlimited
-d: data seg size (kbytes) unlimited
-s: stack size (kbytes) 8192
-c: core file size (blocks) 0
-m: resident set size (kbytes) unlimited
-u: processes 192276
-n: file descriptors 21000
-l: locked-in-memory size (kb) 40000
-v: address space (kb) unlimited
-x: file locks unlimited
-i: pending signals 192276
-q: bytes in POSIX msg queues 819200
-e: max nice 30

108 Chapter 3. Administration Reference

MongoDB Administration, Release 3.2.3

-r: max rt priority 65
-N 15: unlimited

ulimit refers to the per-user limitations for various resources. Therefore, if your mongod instance executes
as a user that is also running multiple processes, or multiple mongod processes, you might see contention for
these resources. Also, be aware that the processes value (i.e. -u) refers to the combined number of distinct
processes and sub-process threads.

You can change ulimit settings by issuing a command in the following form:

ulimit -n <value>

There are both “hard” and the “soft” ulimits that affect MongoDB’s performance. The “hard” ulimit refers
to the maximum number of processes that a user can have active at any time. This is the ceiling: no non-root
process can increase the “hard” ulimit. In contrast, the “soft” ulimit is the limit that is actually enforced
for a session or process, but any process can increase it up to “hard” ulimit maximum.

A low “soft” ulimit can cause can’t create new thread, closing connection errors if the
number of connections grows too high. For this reason, it is extremely important to set both ulimit values to
the recommended values.

ulimit will modify both “hard” and “soft” values unless the -H or -S modifiers are specified when modifying
limit values.

For many distributions of Linux you can change values by substituting the -n option for any possible value in
the output of ulimit -a. On OS X, use the launchctl limit command. See your operating system
documentation for the precise procedure for changing system limits on running systems.

After changing the ulimit settings, you must restart the process to take advantage of the modified settings.
You can use the /proc file system to see the current limitations on a running process.

Depending on your system’s configuration, and default settings, any change to system limits made using
ulimit may revert following system a system restart. Check your distribution and operating system docu-
mentation for more information.

Note: SUSE Linux Enterprise Server and potentially other SUSE distributions ship with virtual memory
address space limited to 8 GB by default. You must adjust this in order to prevent virtual memory allocation
failures as the database grows.

The SLES packages for MongoDB adjust these limits in the default scripts, but you will need to make this
change manually if you are using custom scripts and/or the tarball release rather than the SLES packages.

Recommended ulimit Settings

Every deployment may have unique requirements and settings; however, the following thresholds and settings
are particularly important for mongod and mongos deployments:

•-f (file size): unlimited

•-t (cpu time): unlimited

•-v (virtual memory): unlimited 1

•-n (open files): 64000

•-m (memory size): unlimited 1 2

1 If you limit virtual or resident memory size on a system running MongoDB the operating system will refuse to honor additional allocation
requests.

2 The -m parameter to ulimit has no effect on Linux systems with kernel versions more recent than 2.4.30. You may omit -m if you wish.

3.1. UNIX ulimit Settings 109

MongoDB Administration, Release 3.2.3

•-u (processes/threads): 64000

Always remember to restart your mongod and mongos instances after changing the ulimit settings to ensure
that the changes take effect.

Linux distributions using Upstart

For Linux distributions that use Upstart, you can specify limits within service scripts if you start mongod and/or
mongos instances as Upstart services. You can do this by using limit stanzas3.

Specify the Recommended ulimit Settings (page 109), as in the following example:

limit fsize unlimited unlimited # (file size)
limit cpu unlimited unlimited # (cpu time)
limit as unlimited unlimited # (virtual memory size)
limit nofile 64000 64000 # (open files)
limit nproc 64000 64000 # (processes/threads)

Each limit stanza sets the “soft” limit to the first value specified and the “hard” limit to the second.

After changing limit stanzas, ensure that the changes take effect by restarting the application services, using
the following form:

restart <service name>

Linux distributions using systemd

For Linux distributions that use systemd, you can specify limits within the [Service] sections of service
scripts if you start mongod and/or mongos instances as systemd services. You can do this by using resource
limit directives4.

Specify the Recommended ulimit Settings (page 109), as in the following example:

[Service]
Other directives omitted
(file size)
LimitFSIZE=infinity
(cpu time)
LimitCPU=infinity
(virtual memory size)
LimitAS=infinity
(open files)
LimitNOFILE=64000
(processes/threads)
LimitNPROC=64000

Each systemd limit directive sets both the “hard” and “soft” limits to the value specified.

After changing limit stanzas, ensure that the changes take effect by restarting the application services, using
the following form:

systemctl restart <service name>

3http://upstart.ubuntu.com/wiki/Stanzas#limit
4http://www.freedesktop.org/software/systemd/man/systemd.exec.html#LimitCPU=

110 Chapter 3. Administration Reference

http://upstart.ubuntu.com/wiki/Stanzas#limit
http://www.freedesktop.org/software/systemd/man/systemd.exec.html#LimitCPU=
http://www.freedesktop.org/software/systemd/man/systemd.exec.html#LimitCPU=

MongoDB Administration, Release 3.2.3

/proc File System

Note: This section applies only to Linux operating systems.

The /proc file-system stores the per-process limits in the file system object located at
/proc/<pid>/limits, where <pid> is the process’s PID or process identifier. You can use the
following bash function to return the content of the limits object for a process or processes with a given
name:

return-limits(){

for process in $@; do
process_pids=`ps -C $process -o pid --no-headers | cut -d " " -f 2`

if [-z $@]; then
echo "[no $process running]"

else
for pid in $process_pids; do

echo "[$process #$pid -- limits]"
cat /proc/$pid/limits

done
fi

done

}

You can copy and paste this function into a current shell session or load it as part of a script. Call the function
with one the following invocations:

return-limits mongod
return-limits mongos
return-limits mongod mongos

3.2 System Collections

On this page

•Synopsis (page 111)
•Collections (page 112)

3.2.1 Synopsis

MongoDB stores system information in collections that use the <database>.system.* namespace, which
MongoDB reserves for internal use. Do not create collections that begin with system.

MongoDB also stores some additional instance-local metadata in the local database, specifically for repli-
cation purposes.

3.2. System Collections 111

MongoDB Administration, Release 3.2.3

3.2.2 Collections

System collections include these collections stored in the admin database:

admin.system.roles
New in version 2.6.

The admin.system.roles (page 112) collection stores custom roles that administrators create and
assign to users to provide access to specific resources.

admin.system.users
Changed in version 2.6.

The admin.system.users (page 112) collection stores the user’s authentication credentials as well
as any roles assigned to the user. Users may define authorization roles in the admin.system.roles
(page 112) collection.

admin.system.version
New in version 2.6.

Stores the schema version of the user credential documents.

System collections also include these collections stored directly in each database:

<database>.system.namespaces
Deprecated since version 3.0: Access this data using listCollections.

The <database>.system.namespaces (page 112) collection contains information about all of the
database’s collections.

<database>.system.indexes
Deprecated since version 3.0: Access this data using listIndexes.

The <database>.system.indexes (page 112) collection lists all the indexes in the database.

<database>.system.profile
The <database>.system.profile (page 112) collection stores database profiling information. For
information on profiling, see Database Profiling (page 40).

<database>.system.js
The <database>.system.js (page 112) collection holds special JavaScript code for use in server
side JavaScript (page 118). See Store a JavaScript Function on the Server (page 65) for more information.

3.3 Database Profiler Output

On this page

•Example system.profile Document (page 113)
•Output Reference (page 114)

The database profiler captures data information about read and write operations, cursor operations, and database
commands. To configure the database profile and set the thresholds for capturing profile data, see the Analyze
Performance of Database Operations (page 56) section.

The database profiler writes data in the system.profile (page 112) collection, which is a capped collection.
To view the profiler’s output, use normal MongoDB queries on the system.profile (page 112) collection.

Note: Because the database profiler writes data to the system.profile (page 112) collection in a database,

112 Chapter 3. Administration Reference

MongoDB Administration, Release 3.2.3

the profiler will profile some write activity, even for databases that are otherwise read-only.

3.3.1 Example system.profile Document

The documents in the system.profile (page 112) collection have the following form. This example docu-
ment reflects a find operation:

{
"op" : "query",
"ns" : "test.c",
"query" : {

"find" : "c",
"filter" : {

"a" : 1
}

},
"keysExamined" : 2,
"docsExamined" : 2,
"cursorExhausted" : true,
"keyUpdates" : 0,
"writeConflicts" : 0,
"numYield" : 0,
"locks" : {

"Global" : {
"acquireCount" : {

"r" : NumberLong(2)
}

},
"Database" : {

"acquireCount" : {
"r" : NumberLong(1)

}
},
"Collection" : {

"acquireCount" : {
"r" : NumberLong(1)

}
}

},
"nreturned" : 2,
"responseLength" : 108,
"millis" : 0,
"execStats" : {

"stage" : "FETCH",
"nReturned" : 2,
"executionTimeMillisEstimate" : 0,
"works" : 3,
"advanced" : 2,
"needTime" : 0,
"needYield" : 0,
"saveState" : 0,
"restoreState" : 0,
"isEOF" : 1,
"invalidates" : 0,
"docsExamined" : 2,
"alreadyHasObj" : 0,
"inputStage" : {

3.3. Database Profiler Output 113

MongoDB Administration, Release 3.2.3

"stage" : "IXSCAN",
"nReturned" : 2,
"executionTimeMillisEstimate" : 0,
"works" : 3,
"advanced" : 2,
"needTime" : 0,
"needYield" : 0,
"saveState" : 0,
"restoreState" : 0,
"isEOF" : 1,
"invalidates" : 0,
"keyPattern" : {

"a" : 1
},
"indexName" : "a_1",
"isMultiKey" : false,
"isUnique" : false,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 1,
"direction" : "forward",
"indexBounds" : {

"a" : [
"[1.0, 1.0]"

]
},
"keysExamined" : 2,
"dupsTested" : 0,
"dupsDropped" : 0,
"seenInvalidated" : 0

}
},
"ts" : ISODate("2015-09-03T15:26:14.948Z"),
"client" : "127.0.0.1",
"allUsers" : [],
"user" : ""

}

3.3.2 Output Reference

For any single operation, the documents created by the database profiler will include a subset of the following
fields. The precise selection of fields in these documents depends on the type of operation.

Changed in version 3.2.0: system.profile.query.skip replaces the system.profile.ntoskip
field.

Changed in version 3.2.0: The information in the system.profile.ntoreturn field has been replaced by
two separate fields, system.profile.query.limit and system.profile.query.batchSize.
Older drivers or older versions of the mongo shell may still use ntoreturn; this will appear as
system.profile.query.ntoreturn.

Note: For the output specific to the version of your MongoDB, refer to the appropriate version of the MongoDB
Manual.

system.profile.op
The type of operation. The possible values are:

114 Chapter 3. Administration Reference

MongoDB Administration, Release 3.2.3

•insert

•query

•update

•remove

•getmore

•command

system.profile.ns
The namespace the operation targets. Namespaces in MongoDB take the form of the database, followed
by a dot (.), followed by the name of the collection.

system.profile.query
The query document used, or for an insert operation, the inserted document. If the document exceeds 50
kilobytes, the value is a string summary of the object. If the string summary exceeds 50 kilobytes, the
string summary is truncated, denoted with an ellipsis (...) at the end of the string.

Changed in version 3.0.4: For "getmore" (page 114) operations on cursors returned from a
db.collection.find() or a db.collection.aggregate(), the query (page 115) field con-
tains respectively the query predicate or the issued aggregate command document. For details on the
aggregate command document, see the aggregate reference page.

system.profile.command
The command operation. If the command document exceeds 50 kilobytes, the value is a string summary
of the object. If the string summary exceeds 50 kilobytes, the string summary is truncated, denoted with
an ellipsis (...) at the end of the string.

system.profile.updateobj
The <update> document passed in during an update operation. If the document exceeds 50 kilobytes,
the value is a string summary of the object. If the string summary exceeds 50 kilobytes, the string summary
is truncated, denoted with an ellipsis (...) at the end of the string.

system.profile.cursorid
The ID of the cursor accessed by a query and getmore operations.

system.profile.keysExamined
Changed in version 3.2.0: Renamed from system.profile.nscanned.

The number of index keys that MongoDB scanned in order to carry out the operation.

In general, if keysExamined (page 115) is much higher than nreturned (page 117), the database is
scanning many index keys to find the result documents. Consider creating or adjusting indexes to improve
query performance..

system.profile.docsExamined
Changed in version 3.2.0: Renamed from system.profile.nscannedObjects.

The number of documents in the collection that MongoDB scanned in order to carry out the operation.

system.profile.moved
Changed in version 3.0.0: Only appears when using the MMAPv1 storage engine.

This field appears with a value of true when an update operation moved one or more documents to a new
location on disk. If the operation did not result in a move, this field does not appear. Operations that result
in a move take more time than in-place updates and typically occur as a result of document growth.

system.profile.nmoved
Changed in version 3.0.0: Only appears when using the MMAPv1 storage engine.

3.3. Database Profiler Output 115

MongoDB Administration, Release 3.2.3

The number of documents the operation moved on disk. This field appears only if the operation resulted
in a move. The field’s implicit value is zero, and the field is present only when non-zero.

system.profile.hasSortStage
Changed in version 3.2.0: Renamed from system.profile.scanAndOrder.

hasSortStage (page 116) is a boolean that is true when a query cannot use the ordering in the
index to return the requested sorted results; i.e. MongoDB must sort the documents after it receives the
documents from a cursor. The field only appears when the value is true.

system.profile.ndeleted
The number of documents deleted by the operation.

system.profile.ninserted
The number of documents inserted by the operation.

system.profile.nMatched
New in version 2.6.

The number of documents that match the system.profile.query (page 115) condition for the up-
date operation.

system.profile.nModified
New in version 2.6.

The number of documents modified by the update operation.

system.profile.upsert
A boolean that indicates the update operation’s upsert option value. Only appears if upsert is true.

system.profile.keyUpdates
The number of index keys the update changed in the operation. Changing an index key carries a small
performance cost because the database must remove the old key and inserts a new key into the B-tree
index.

system.profile.writeConflicts
New in version 3.0.0.

The number of conflicts encountered during the write operation; e.g. an update operation attempts to
modify the same document as another update operation. See also write conflict.

system.profile.numYield
The number of times the operation yielded to allow other operations to complete. Typically, operations
yield when they need access to data that MongoDB has not yet fully read into memory. This allows other
operations that have data in memory to complete while MongoDB reads in data for the yielding operation.
For more information, see the FAQ on when operations yield.

system.profile.locks
New in version 3.0.0: locks (page 116) replaces the lockStats field.

The system.profile.locks (page 116) provides information for various lock types and lock modes
held during the operation.

The possible lock types are:

116 Chapter 3. Administration Reference

MongoDB Administration, Release 3.2.3

Lock
Type

Description

Global Represents global lock.
MMAPV1JournalRepresents MMAPv1 storage engine specific lock to synchronize journal writes; for

non-MMAPv1 storage engines, the mode for MMAPV1Journal is empty.
Database Represents database lock.
CollectionRepresents collection lock.
Metadata Represents metadata lock.
oplog Represents lock on the oplog.

The possible locking modes for the lock types are as follows:

Lock Mode Description
R Represents Shared (S) lock.
W Represents Exclusive (X) lock.
r Represents Intent Shared (IS) lock.
w Represents Intent Exclusive (IX) lock.

The returned lock information for the various lock types include:

system.profile.locks.acquireCount
Number of times the operation acquired the lock in the specified mode.

system.profile.locks.acquireWaitCount
Number of times the operation had to wait for the acquireCount (page 117) lock acquisitions
because the locks were held in a conflicting mode. acquireWaitCount (page 117) is less than or
equal to acquireCount (page 117).

system.profile.locks.timeAcquiringMicros
Cumulative time in microseconds that the operation had to wait to acquire the locks.

timeAcquiringMicros (page 117) divided by acquireWaitCount (page 117) gives an ap-
proximate average wait time for the particular lock mode.

system.profile.locks.deadlockCount
Number of times the operation encountered deadlocks while waiting for lock acquisitions.

For more information on lock modes, see faq-concurrency-locking.

system.profile.nreturned
The number of documents returned by the operation.

system.profile.responseLength
The length in bytes of the operation’s result document. A large responseLength (page 117) can affect
performance. To limit the size of the result document for a query operation, you can use any of the
following:

•Projections

•The limit() method

•The batchSize() method

Note: When MongoDB writes query profile information to the log, the responseLength (page 117)
value is in a field named reslen.

system.profile.millis
The time in milliseconds from the perspective of the mongod from the beginning of the operation to the
end of the operation.

3.3. Database Profiler Output 117

MongoDB Administration, Release 3.2.3

system.profile.execStats
Changed in version 3.0.

A document that contains the execution statistics of the query operation. For other operations, the value is
an empty document.

The system.profile.execStats (page 117) presents the statistics as a tree; each node provides the
statistics for the operation executed during that stage of the query operation.

Note: The following fields list for execStats (page 117) is not meant to be exhaustive as the returned
fields vary per stage.

system.profile.execStats.stage
New in version 3.0: stage (page 118) replaces the type field.

The descriptive name for the operation performed as part of the query execution; e.g.
•COLLSCAN for a collection scan
•IXSCAN for scanning index keys
•FETCH for retrieving documents

system.profile.execStats.inputStages
New in version 3.0: inputStages (page 118) replaces the children field.

An array that contains statistics for the operations that are the input stages of the current stage.

system.profile.ts
The timestamp of the operation.

system.profile.client
The IP address or hostname of the client connection where the operation originates.

For some operations, such as db.eval(), the client is 0.0.0.0:0 instead of an actual client.

system.profile.allUsers
An array of authenticated user information (user name and database) for the session. See also
https://docs.mongodb.org/manual/core/security-users.

system.profile.user
The authenticated user who ran the operation. If the operation was not run by an authenticated user, this
field’s value is an empty string.

3.4 Server-side JavaScript

On this page

•Overview (page 118)
•Running .js files via a mongo shell Instance on the Server (page 119)
•Concurrency (page 119)
•Disable Server-Side Execution of JavaScript (page 119)

3.4.1 Overview

MongoDB provides the following commands, methods, and operator that perform server-side execution of
JavaScript code:

118 Chapter 3. Administration Reference

MongoDB Administration, Release 3.2.3

•mapReduce and the corresponding mongo shell method db.collection.mapReduce().
mapReduce operations map, or associate, values to keys, and for keys with multiple val-
ues, reduce the values for each key to a single object. For more information, see
https://docs.mongodb.org/manual/core/map-reduce.

•$where operator that evaluates a JavaScript expression or a function in order to query for documents.

You can also specify a JavaScript file to the mongo shell to run on the server. For more information, see Running
.js files via a mongo shell Instance on the Server (page 119)

JavaScript in MongoDB
Although these methods use JavaScript, most interactions with MongoDB do not use JavaScript but use an
idiomatic driver in the language of the interacting application.

You can also disable server-side execution of JavaScript. For details, see Disable Server-Side Execution of
JavaScript (page 119).

3.4.2 Running .js files via a mongo shell Instance on the Server

You can specify a JavaScript (.js) file to a mongo shell instance to execute the file on the server. This is a
good technique for performing batch administrative work. When you run mongo shell on the server, connecting
via the localhost interface, the connection is fast with low latency.

For more information, see https://docs.mongodb.org/manual/tutorial/write-scripts-for-the-mongo-shell.

3.4.3 Concurrency

Changed in version 3.2: MongoDB 3.2 uses SpiderMonkey as the JavaScript
engine for the mongo shell. For information on this change, see
https://docs.mongodb.org/manual/release-notes/3.2-javascript.

Changed in version 2.4: The V8 JavaScript engine, which became the default in 2.4, allows multiple JavaScript
operations to execute at the same time. Prior to 2.4, MongoDB operations that required the JavaScript interpreter
had to acquire a lock, and a single mongod could only run a single JavaScript operation at a time.

Refer to the individual method or operator documentation for any concurrency information. See also the con-
currency table.

3.4.4 Disable Server-Side Execution of JavaScript

You can disable all server-side execution of JavaScript, by passing the --noscripting option on the com-
mand line or setting security.javascriptEnabled in a configuration file.

See also:

Store a JavaScript Function on the Server (page 65)

3.5 Exit Codes and Statuses

MongoDB will return one of the following codes and statuses when exiting. Use this guide to interpret logs and
when troubleshooting issues with mongod and mongos instances.

3.5. Exit Codes and Statuses 119

MongoDB Administration, Release 3.2.3

0
Returned by MongoDB applications upon successful exit.

2
The specified options are in error or are incompatible with other options.

3
Returned by mongod if there is a mismatch between hostnames specified on the command line and in
the local.sources collection. mongod may also return this status if oplog collection in the local
database is not readable.

4
The version of the database is different from the version supported by the mongod (or mongod.exe)
instance. The instance exits cleanly. Restart mongodwith the --upgrade option to upgrade the database
to the version supported by this mongod instance.

5
Returned by mongod if a moveChunk operation fails to confirm a commit.

12
Returned by the mongod.exe process on Windows when it receives a Control-C, Close, Break or Shut-
down event.

14
Returned by MongoDB applications which encounter an unrecoverable error, an uncaught exception or
uncaught signal. The system exits without performing a clean shut down.

20
Message: ERROR: wsastartup failed <reason>

Returned by MongoDB applications on Windows following an error in the WSAStartup function.

Message: NT Service Error

Returned by MongoDB applications for Windows due to failures installing, starting or removing the NT
Service for the application.

45
Returned when a MongoDB application cannot open a file or cannot obtain a lock on a file.

47
MongoDB applications exit cleanly following a large clock skew (32768 milliseconds) event.

48
mongod exits cleanly if the server socket closes. The server socket is on port 27017 by default, or as
specified to the --port run-time option.

49
Returned by mongod.exe or mongos.exe on Windows when either receives a shutdown message from
the Windows Service Control Manager.

100
Returned by mongod when the process throws an uncaught exception.

120 Chapter 3. Administration Reference

CHAPTER 4

Production Checklist

On this page

•Additional Resources (page 126)

The following checklists provide recommendations that will help you avoid issues in your production MongoDB
deployment.

4.1 Operations Checklist

On this page

•Filesystem (page 121)
•Replication (page 122)
•Sharding (page 122)
•Journaling: MMAPv1 Storage Engine (page 122)
•Hardware (page 123)
•Deployments to Cloud Hardware (page 123)
•Operating System Configuration (page 123)
•Backups (page 124)
•Monitoring (page 124)
•Load Balancing (page 124)

The following checklist, along with the Development (page 124) list, provides recommendations to help you
avoid issues in your production MongoDB deployment.

4.1.1 Filesystem

•Align your disk partitions with your RAID configuration.

•Avoid using NFS drives for your dbPath. Using NFS drives can result in degraded and unstable perfor-
mance. See: Remote Filesystems (page 24) for more information.

–VMWare users should use VMWare virtual drives over NFS.

121

MongoDB Administration, Release 3.2.3

•Linux/Unix: format your drives into XFS or EXT4. If possible, use XFS as it generally performs better
with MongoDB.

–With the WiredTiger storage engine, use of XFS is strongly recommended to avoid performance
issues found when using EXT4 with WiredTiger.

–If using RAID, you may need to configure XFS with your RAID geometry.

•Windows: use the NTFS file system. Do not use any FAT file system (i.e. FAT 16/32/exFAT).

4.1.2 Replication

•Verify that all non-hidden replica set members are identically provisioned in terms of their RAM, CPU,
disk, network setup, etc.

•Configure the oplog size (page 156) to suit your use case:

–The replication oplog window should cover normal maintenance and downtime windows to avoid the
need for a full resync.

–The replication oplog window should cover the time needed to restore a replica set member, either by
an initial sync or by restoring from the last backup.

•Ensure that your replica set includes at least three data-bearing nodes with w:majority write
concern. Three data-bearing nodes are required for replica set-wide data durability.

•Use hostnames when configuring replica set members, rather than IP addresses.

•Ensure full bidirectional network connectivity between all mongod instances.

•Ensure that each host can resolve itself.

•Ensure that your replica set contains an odd number of voting members.

•Ensure that mongod instances have 0 or 1 votes.

•For high availability, deploy your replica set into a minimum of three data centers.

4.1.3 Sharding

•Place your config servers on dedicated hardware for optimal performance in large clusters. Ensure
that the hardware has enough RAM to hold the data files entirely in memory and that it has dedicated
storage.

•Use NTP to synchronize the clocks on all components of your sharded cluster.

•Ensure full bidirectional network connectivity between mongod, mongos and config servers.

•Use CNAMEs to identify your config servers to the cluster so that you can rename and renumber your
config servers without downtime.

4.1.4 Journaling: MMAPv1 Storage Engine

•Ensure that all instances use journaling.

•Place the journal on its own low-latency disk for write-intensive workloads. Note that this will affect
snapshot-style backups as the files constituting the state of the database will reside on separate volumes.

122 Chapter 4. Production Checklist

MongoDB Administration, Release 3.2.3

4.1.5 Hardware

•Use RAID10 and SSD drives for optimal performance.

•SAN and Virtualization:

–Ensure that each mongod has provisioned IOPS for its dbPath, or has its own physical drive or
LUN.

–Avoid dynamic memory features, such as memory ballooning, when running in virtual environments.

–Avoid placing all replica set members on the same SAN, as the SAN can be a single point of failure.

4.1.6 Deployments to Cloud Hardware

•Windows Azure: Adjust the TCP keepalive (tcp_keepalive_time) to 100-120. The default TTL
for TCP connections on Windows Azure load balancers is too slow for MongoDB’s connection pooling
behavior.

•Use MongoDB version 2.6.4 or later on systems with high-latency storage, such as Windows Azure, as
these versions include performance improvements for those systems. See: Azure Deployment Recommen-
dations1 for more information.

4.1.7 Operating System Configuration

Linux

•Turn off transparent hugepages and defrag. See Transparent Huge Pages Settings (page 48) for more
information.

•Adjust the readahead settings (page 26) on the devices storing your database files to suit your use case. If
your working set is bigger that the available RAM, and the document access pattern is random, consider
lowering the readahead to 32 or 16. Evaluate different settings to find an optimal value that maximizes the
resident memory and lowers the number of page faults.

•Use the noop or deadline disk schedulers for SSD drives.

•Use the noop disk scheduler for virtualized drives in guest VMs.

•Disable NUMA or set vm.zone_reclaim_mode to 0 and run mongod instances with node interleaving.
See: MongoDB and NUMA Hardware (page 23) for more information.

•Adjust the ulimit values on your hardware to suit your use case. If multiple mongod or mongos
instances are running under the same user, scale the ulimit values accordingly. See: UNIX ulimit
Settings (page 107) for more information.

•Use noatime for the dbPath mount point.

•Configure sufficient file handles (fs.file-max), kernel pid limit (kernel.pid_max), and maximum
threads per process (kernel.threads-max) for your deployment. For large systems, values of 98000,
32768, and 64000 are a good starting point.

•Ensure that your system has swap space configured. Refer to your operating system’s documentation for
details on appropriate sizing.

•Ensure that the system default TCP keepalive is set correctly. A value of 300 often provides better per-
formance for replica sets and sharded clusters. See: faq-keepalive in the Frequently Asked Questions for
more information.

1https://docs.mongodb.org/ecosystem/platforms/windows-azure

4.1. Operations Checklist 123

https://docs.mongodb.org/ecosystem/platforms/windows-azure
https://docs.mongodb.org/ecosystem/platforms/windows-azure

MongoDB Administration, Release 3.2.3

Windows

•Consider disabling NTFS “last access time” updates. This is analogous to disabling atime on Unix-like
systems.

4.1.8 Backups

•Schedule periodic tests of your back up and restore process to have time estimates on hand, and to verify
its functionality.

4.1.9 Monitoring

•Use MongoDB Cloud Manager2 or Ops Manager, an on-premise solution available in MongoDB Enter-
prise Advanced3 or another monitoring system to monitor key database metrics and set up alerts for them.
Include alerts for the following metrics:

–lock percent (for the MMAPv1 storage engine)

–replication lag

–replication oplog window

–assertions

–queues

–page faults

•Monitor hardware statistics for your servers. In particular, pay attention to the disk use, CPU, and available
disk space.

In the absence of disk space monitoring, or as a precaution:

–Create a dummy 4 GB file on the storage.dbPath drive to ensure available space if the disk
becomes full.

–A combination of cron+df can alert when disk space hits a high-water mark, if no other monitoring
tool is available.

4.1.10 Load Balancing

•Configure load balancers to enable “sticky sessions” or “client affinity”, with a sufficient timeout for ex-
isting connections.

•Avoid placing load balancers between MongoDB cluster or replica set components.

4.2 Development

2https://cloud.mongodb.com/?jmp=docs
3https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

124 Chapter 4. Production Checklist

https://cloud.mongodb.com/?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs

MongoDB Administration, Release 3.2.3

On this page

•Data Durability (page 125)
•Schema Design (page 125)
•Replication (page 125)
•Sharding (page 125)
•Drivers (page 125)

The following checklist, along with the Operations Checklist (page 121), provides recommendations to help
you avoid issues in your production MongoDB deployment.

4.2.1 Data Durability

•Ensure that your replica set includes at least three data-bearing nodes with w:majority write
concern. Three data-bearing nodes are required for replica-set wide data durability.

•Ensure that all instances use journaling.

4.2.2 Schema Design

•Ensure that your schema design does not rely on indexed arrays that grow in length without bound. Typi-
cally, best performance can be achieved when such indexed arrays have fewer than 1000 elements.

4.2.3 Replication

•Do not use secondary reads to scale overall read throughput. See: Can I use more replica
nodes to scale4 for an overview of read scaling. For information about secondary reads, see:
https://docs.mongodb.org/manual/core/read-preference.

4.2.4 Sharding

•Ensure that your shard key distributes the load evenly on your shards. See: Considerations for Selecting
Shard Keys (page 186) for more information.

•Use targeted queries for workloads that need to scale with the number of shards.

•Always read from primary nodes for non-targeted queries that may be sensitive to stale or orphaned data5.

•Pre-split and manually balance chunks (page 219) when inserting large data sets into a new non-hashed
sharded collection. Pre-splitting and manually balancing enables the insert load to be distributed among
the shards, increasing performance for the initial load.

4.2.5 Drivers

•Make use of connection pooling. Most MongoDB drivers support connection pooling. Adjust the connec-
tion pool size to suit your use case, beginning at 110-115% of the typical number of concurrent database
requests.

4http://askasya.com/post/canreplicashelpscaling
5http://blog.mongodb.org/post/74730554385/background-indexing-on-secondaries-and-orphaned

4.2. Development 125

http://askasya.com/post/canreplicashelpscaling
http://askasya.com/post/canreplicashelpscaling
http://blog.mongodb.org/post/74730554385/background-indexing-on-secondaries-and-orphaned

MongoDB Administration, Release 3.2.3

•Ensure that your applications handle transient write and read errors during replica set elections.

•Ensure that your applications handle failed requests and retry them if applicable. Drivers do not automat-
ically retry failed requests.

•Use exponential backoff logic for database request retries.

•Use cursor.maxTimeMS() for reads and wc-wtimeout for writes if you need to cap execution time for
database operations.

4.3 Additional Resources

•MongoDB Production Readiness Consulting Package6

•MongoDB Ops Optimization Consulting Package7

6https://www.mongodb.com/products/consulting?jmp=docs#s_product_readiness
7https://www.mongodb.com/products/consulting?jmp=docs#ops_optimization

126 Chapter 4. Production Checklist

https://www.mongodb.com/products/consulting?jmp=docs#s_product_readiness
https://www.mongodb.com/products/consulting?jmp=docs#ops_optimization

CHAPTER 5

Appendix

5.1 Replica Set Tutorials

The administration of replica sets includes the initial deployment of the set, adding and removing members to a set,
and configuring the operational parameters and properties of the set. Administrators generally need not intervene in
failover or replication processes as MongoDB automates these functions. In the exceptional situations that require
manual interventions, the tutorials in these sections describe processes such as resyncing a member. The tutorials in
this section form the basis for all replica set administration.

Replica Set Deployment Tutorials (page 128) Instructions for deploying replica sets, as well as adding and removing
members from an existing replica set.

Deploy a Replica Set (page 128) Configure a three-member replica set for production systems.

Convert a Standalone to a Replica Set (page 140) Convert an existing standalone mongod instance into a
three-member replica set.

Add Members to a Replica Set (page 142) Add a new member to an existing replica set.

Remove Members from Replica Set (page 144) Remove a member from a replica set.

Continue reading from Replica Set Deployment Tutorials (page 128) for additional tutorials of related to setting
up replica set deployments.

Member Configuration Tutorials (page 147) Tutorials that describe the process for configuring replica set members.

Adjust Priority for Replica Set Member (page 147) Change the precedence given to a replica set members in
an election for primary.

Prevent Secondary from Becoming Primary (page 148) Make a secondary member ineligible for election as
primary.

Configure a Hidden Replica Set Member (page 150) Configure a secondary member to be invisible to appli-
cations in order to support significantly different usage, such as a dedicated backups.

Continue reading from Member Configuration Tutorials (page 147) for more tutorials that describe replica set
configuration.

Replica Set Maintenance Tutorials (page 155) Procedures and tasks for common operations on active replica set
deployments.

Change the Size of the Oplog (page 156) Increase the size of the oplog which logs operations. In most cases,
the default oplog size is sufficient.

127

MongoDB Administration, Release 3.2.3

Resync a Member of a Replica Set (page 161) Sync the data on a member. Either perform initial sync on a
new member or resync the data on an existing member that has fallen too far behind to catch up by way of
normal replication.

Force a Member to Become Primary (page 159) Force a replica set member to become primary.

Change Hostnames in a Replica Set (page 170) Update the replica set configuration to reflect changes in
members’ hostnames.

Continue reading from Replica Set Maintenance Tutorials (page 155) for descriptions of additional replica set
maintenance procedures.

Troubleshoot Replica Sets (page 175) Describes common issues and operational challenges for replica sets. For ad-
ditional diagnostic information, see https://docs.mongodb.org/manual/faq/diagnostics.

5.1.1 Replica Set Deployment Tutorials

The following tutorials provide information in deploying replica sets.

Deploy a Replica Set (page 128) Configure a three-member replica set for production systems.

Deploy a Replica Set for Testing and Development (page 131) Configure a three-member replica set for either de-
velopment or testing systems.

Deploy a Geographically Redundant Replica Set (page 134) Create a geographically redundant replica set to protect
against location-centered availability limitations (e.g. network and power interruptions).

Add an Arbiter to Replica Set (page 140) Add an arbiter give a replica set an odd number of voting members to
prevent election ties.

Convert a Standalone to a Replica Set (page 140) Convert an existing standalone mongod instance into a three-
member replica set.

Add Members to a Replica Set (page 142) Add a new member to an existing replica set.

Remove Members from Replica Set (page 144) Remove a member from a replica set.

Replace a Replica Set Member (page 146) Update the replica set configuration when the hostname of a member’s
corresponding mongod instance has changed.

Deploy a Replica Set

On this page

• Overview (page 129)
• Requirements (page 129)
• Considerations When Deploying a Replica Set (page 129)
• Procedure (page 130)

This tutorial describes how to create a three-member replica set from three existing mongod instances running with
access control disabled.

To deploy a replica set with enabled access control, see deploy-repl-set-with-auth. If you wish to deploy a
replica set from a single MongoDB instance, see Convert a Standalone to a Replica Set (page 140). For more in-
formation on replica set deployments, see the https://docs.mongodb.org/manual/replication and
https://docs.mongodb.org/manual/core/replica-set-architectures documentation.

128 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Overview

Three member replica sets provide enough redundancy to survive most network partitions and other system failures.
These sets also have sufficient capacity for many distributed read operations. Replica sets should always have an odd
number of members. This ensures that elections will proceed smoothly. For more about designing replica sets,
see the Replication overview.

The basic procedure is to start the mongod instances that will become members of the replica set, configure the replica
set itself, and then add the mongod instances to it.

Requirements

For production deployments, you should maintain as much separation between members as possible by hosting the
mongod instances on separate machines. When using virtual machines for production deployments, you should place
each mongod instance on a separate host server serviced by redundant power circuits and redundant network paths.

Before you can deploy a replica set, you must install MongoDB on each system that will be part of your replica set. If
you have not already installed MongoDB, see the installation tutorials.

Before creating your replica set, you should verify that your network configuration allows all possible connections
between each member. For a successful replica set deployment, every member must be able to connect to every other
member. For instructions on how to check your connection, see Test Connections Between all Members (page 177).

Considerations When Deploying a Replica Set

Architecture In a production, deploy each member of the replica set to its own machine and if possible bind to the
standard MongoDB port of 27017. Use the bind_ip option to ensure that MongoDB listens for connections from
applications on configured addresses.

For a geographically distributed replica sets, ensure that the majority of the set’s mongod instances reside in the
primary site.

See https://docs.mongodb.org/manual/core/replica-set-architectures for more informa-
tion.

Connectivity Ensure that network traffic can pass between all members of the set and all clients in the network
securely and efficiently. Consider the following:

• Establish a virtual private network. Ensure that your network topology routes all traffic between members within
a single site over the local area network.

• Configure access control to prevent connections from unknown clients to the replica set.

• Configure networking and firewall rules so that incoming and outgoing packets are permitted only on the default
MongoDB port and only from within your deployment.

Finally ensure that each member of a replica set is accessible by way of resolvable DNS or hostnames. You should
either configure your DNS names appropriately or set up your systems’ /etc/hosts file to reflect this configuration.

Configuration Specify the run time configuration on each system in a configuration file stored in
/etc/mongod.conf or a related location. Create the directory where MongoDB stores data files before deploying
MongoDB.

For more information about the run time options used above and other configuration options, see
https://docs.mongodb.org/manual/reference/configuration-options.

5.1. Replica Set Tutorials 129

MongoDB Administration, Release 3.2.3

Procedure

The following procedure outlines the steps to deploy a replica set when access control is disabled.

Step 1: Start each member of the replica set with the appropriate options. For each member, start a mongod and
specify the replica set name through the replSet option. Specify any other parameters specific to your deployment.
For replication-specific parameters, see cli-mongod-replica-set.

If your application connects to more than one replica set, each set should have a distinct name. Some drivers group
replica set connections by replica set name.

The following example specifies the replica set name through the --replSet command-line option:

mongod --replSet "rs0"

You can also specify the replica set name in the configuration file. To start mongod with a configu-
ration file, specify the file with the --config option:

mongod --config $HOME/.mongodb/config

In production deployments, you can configure a init script to manage this process. Init scripts are beyond the scope of
this document.

Step 2: Connect a mongo shell to a replica set member. For example, to connect to a mongod running on
localhost on the default port of 27017, simply issue:

mongo

Step 3: Initiate the replica set. Use rs.initiate() on one and only one member of the replica set:

rs.initiate()

MongoDB initiates a set that consists of the current member and that uses the default replica set configuration.

Step 4: Verify the initial replica set configuration. Use rs.conf() to display the replica set
configuration object:

rs.conf()

The replica set configuration object resembles the following:

{
"_id" : "rs0",
"version" : 1,
"members" : [

{
"_id" : 1,
"host" : "mongodb0.example.net:27017"

}
]

}

130 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Step 5: Add the remaining members to the replica set. Add the remaining members with the rs.add() method.
You must be connected to the primary to add members to a replica set.

rs.add() can, in some cases, trigger an election. If the mongod you are connected to becomes a secondary, you
need to connect the mongo shell to the new primary to continue adding new replica set members. Use rs.status()
to identify the primary in the replica set.

The following example adds two members:

rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")

When complete, you have a fully functional replica set. The new replica set will elect a primary.

Step 6: Check the status of the replica set. Use the rs.status() operation:

rs.status()

See also:

deploy-repl-set-with-auth

Deploy a Replica Set for Testing and Development

On this page

• Overview (page 131)
• Requirements (page 132)
• Considerations (page 132)
• Procedure (page 132)

This procedure describes deploying a replica set in a development or test environment. For a production deployment,
refer to the Deploy a Replica Set (page 128) tutorial.

This tutorial describes how to create a three-member replica set from three existing mongod instances running with
access control disabled.

To deploy a replica set with enabled access control, see deploy-repl-set-with-auth. If you wish to deploy a
replica set from a single MongoDB instance, see Convert a Standalone to a Replica Set (page 140). For more in-
formation on replica set deployments, see the https://docs.mongodb.org/manual/replication and
https://docs.mongodb.org/manual/core/replica-set-architectures documentation.

Overview

Three member replica sets provide enough redundancy to survive most network partitions and other system failures.
These sets also have sufficient capacity for many distributed read operations. Replica sets should always have an odd
number of members. This ensures that elections will proceed smoothly. For more about designing replica sets,
see the Replication overview.

The basic procedure is to start the mongod instances that will become members of the replica set, configure the replica
set itself, and then add the mongod instances to it.

5.1. Replica Set Tutorials 131

MongoDB Administration, Release 3.2.3

Requirements

For test and development systems, you can run your mongod instances on a local system, or within a virtual instance.

Before you can deploy a replica set, you must install MongoDB on each system that will be part of your replica set. If
you have not already installed MongoDB, see the installation tutorials.

Before creating your replica set, you should verify that your network configuration allows all possible connections
between each member. For a successful replica set deployment, every member must be able to connect to every other
member. For instructions on how to check your connection, see Test Connections Between all Members (page 177).

Considerations

Replica Set Naming
Important: These instructions should only be used for test or development deployments.

The examples in this procedure create a new replica set named rs0.

If your application connects to more than one replica set, each set should have a distinct name. Some drivers group
replica set connections by replica set name.

You will begin by starting three mongod instances as members of a replica set named rs0.

Procedure

1. Create the necessary data directories for each member by issuing a command similar to the following:

mkdir -p /srv/mongodb/rs0-0 /srv/mongodb/rs0-1 /srv/mongodb/rs0-2

This will create directories called “rs0-0”, “rs0-1”, and “rs0-2”, which will contain the instances’ database files.

2. Start your mongod instances in their own shell windows by issuing the following commands:

First member:

mongod --port 27017 --dbpath /srv/mongodb/rs0-0 --replSet rs0 --smallfiles --oplogSize 128

Second member:

mongod --port 27018 --dbpath /srv/mongodb/rs0-1 --replSet rs0 --smallfiles --oplogSize 128

Third member:

mongod --port 27019 --dbpath /srv/mongodb/rs0-2 --replSet rs0 --smallfiles --oplogSize 128

This starts each instance as a member of a replica set named rs0, each running on a distinct port, and specifies
the path to your data directory with the --dbpath setting. If you are already using the suggested ports, select
different ports.

The --smallfiles and --oplogSize settings reduce the disk space that each mongod
instance uses. This is ideal for testing and development deployments as it prevents over-
loading your machine. For more information on these and other configuration options, see
https://docs.mongodb.org/manual/reference/configuration-options.

3. Connect to one of your mongod instances through the mongo shell. You will need to indicate which instance
by specifying its port number. For the sake of simplicity and clarity, you may want to choose the first one, as in
the following command;

132 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

mongo --port 27017

4. In the mongo shell, use rs.initiate() to initiate the replica set. You can create a replica set configuration
object in the mongo shell environment, as in the following example:

rsconf = {
_id: "rs0",
members: [

{
_id: 0,
host: "<hostname>:27017"

}
]

}

replacing <hostname> with your system’s hostname, and then pass the rsconf file to rs.initiate() as
follows:

rs.initiate(rsconf)

5. Display the current replica configuration by issuing the following command:

rs.conf()

The replica set configuration object resembles the following

{
"_id" : "rs0",
"version" : 4,
"members" : [

{
"_id" : 1,
"host" : "localhost:27017"

}
]

}

6. In the mongo shell connected to the primary, add the second and third mongod instances to the replica set
using the rs.add() method. Replace <hostname> with your system’s hostname in the following examples:

rs.add("<hostname>:27018")
rs.add("<hostname>:27019")

When complete, you should have a fully functional replica set. The new replica set will elect a primary.

Check the status of your replica set at any time with the rs.status() operation.

See also:

The documentation of the following shell functions for more information:

• rs.initiate()

• rs.conf()

• rs.reconfig()

• rs.add()

You may also consider the simple setup script1 as an example of a basic automatically-configured replica set.

1https://github.com/mongodb/mongo-snippets/blob/master/replication/simple-setup.py

5.1. Replica Set Tutorials 133

https://github.com/mongodb/mongo-snippets/blob/master/replication/simple-setup.py

MongoDB Administration, Release 3.2.3

Refer to Replica Set Read and Write Semantics for a detailed explanation of read and write semantics
in MongoDB.

Deploy a Geographically Redundant Replica Set

On this page

• Overview (page 134)
• Considerations (page 134)
• Prerequisites (page 134)
• Procedures (page 135)

Overview

This tutorial outlines the process for deploying a replica set with members in multiple locations. The tutorial addresses
three-member sets, four-member sets, and sets with more than four members.

For appropriate background, see https://docs.mongodb.org/manual/replication and
https://docs.mongodb.org/manual/core/replica-set-architectures. For related tutori-
als, see Deploy a Replica Set (page 128) and Add Members to a Replica Set (page 142).

Considerations

While replica sets provide basic protection against single-instance failure, replica sets whose members are all located
in a single facility are susceptible to errors in that facility. Power outages, network interruptions, and natural disasters
are all issues that can affect replica sets whose members are colocated. To protect against these classes of failures,
deploy a replica set with one or more members in a geographically distinct facility or data center to provide redundancy.

Prerequisites

In general, the requirements for any geographically redundant replica set are as follows:

• Ensure that a majority of the voting members are within a primary facility, “Site A”. This includes priority
0 members and arbiters. Deploy other members in secondary facilities, “Site B”, “Site C”, etc., to pro-
vide additional copies of the data. See determine-geographic-distribution for more information on the voting
requirements for geographically redundant replica sets.

• If you deploy a replica set with an even number of members, deploy an arbiter on Site A. The arbiter must
be on site A to keep the majority there.

For instance, for a three-member replica set you need two instances in a Site A, and one member in a secondary facility,
Site B. Site A should be the same facility or very close to your primary application infrastructure (i.e. application
servers, caching layer, users, etc.)

A four-member replica set should have at least two members in Site A, with the remaining members in one or more
secondary sites, as well as a single arbiter in Site A.

For all configurations in this tutorial, deploy each replica set member on a separate system. Although you may deploy
more than one replica set member on a single system, doing so reduces the redundancy and capacity of the replica set.
Such deployments are typically for testing purposes and beyond the scope of this tutorial.

This tutorial assumes you have installed MongoDB on each system that will be part of your replica set. If you have
not already installed MongoDB, see the installation tutorials.

134 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Procedures

General Considerations

Architecture In a production, deploy each member of the replica set to its own machine and if possible bind to the
standard MongoDB port of 27017. Use the bind_ip option to ensure that MongoDB listens for connections from
applications on configured addresses.

For a geographically distributed replica sets, ensure that the majority of the set’s mongod instances reside in the
primary site.

See https://docs.mongodb.org/manual/core/replica-set-architectures for more informa-
tion.

Connectivity Ensure that network traffic can pass between all members of the set and all clients in the network
securely and efficiently. Consider the following:

• Establish a virtual private network. Ensure that your network topology routes all traffic between members within
a single site over the local area network.

• Configure access control to prevent connections from unknown clients to the replica set.

• Configure networking and firewall rules so that incoming and outgoing packets are permitted only on the default
MongoDB port and only from within your deployment.

Finally ensure that each member of a replica set is accessible by way of resolvable DNS or hostnames. You should
either configure your DNS names appropriately or set up your systems’ /etc/hosts file to reflect this configuration.

Configuration Specify the run time configuration on each system in a configuration file stored in
/etc/mongod.conf or a related location. Create the directory where MongoDB stores data files before deploying
MongoDB.

For more information about the run time options used above and other configuration options, see
https://docs.mongodb.org/manual/reference/configuration-options.

Deploy a Geographically Redundant Three-Member Replica Set

5.1. Replica Set Tutorials 135

MongoDB Administration, Release 3.2.3

Step 1: Start each member of the replica set with the appropriate options. For each member, start a mongod and
specify the replica set name through the replSet option. Specify any other parameters specific to your deployment.
For replication-specific parameters, see cli-mongod-replica-set.

If your application connects to more than one replica set, each set should have a distinct name. Some drivers group
replica set connections by replica set name.

The following example specifies the replica set name through the --replSet command-line option:

mongod --replSet "rs0"

You can also specify the replica set name in the configuration file. To start mongod with a configu-
ration file, specify the file with the --config option:

mongod --config $HOME/.mongodb/config

In production deployments, you can configure a init script to manage this process. Init scripts are beyond the scope of
this document.

Step 2: Connect a mongo shell to a replica set member. For example, to connect to a mongod running on
localhost on the default port of 27017, simply issue:

mongo

Step 3: Initiate the replica set. Use rs.initiate() on one and only one member of the replica set:

rs.initiate()

MongoDB initiates a set that consists of the current member and that uses the default replica set configuration.

Step 4: Verify the initial replica set configuration. Use rs.conf() to display the replica set
configuration object:

rs.conf()

The replica set configuration object resembles the following:

{
"_id" : "rs0",
"version" : 1,
"members" : [

{
"_id" : 1,
"host" : "mongodb0.example.net:27017"

}
]

}

Step 5: Add the remaining members to the replica set. Add the remaining members with the rs.add() method.
You must be connected to the primary to add members to a replica set.

rs.add() can, in some cases, trigger an election. If the mongod you are connected to becomes a secondary, you
need to connect the mongo shell to the new primary to continue adding new replica set members. Use rs.status()
to identify the primary in the replica set.

The following example adds two members:

136 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")

When complete, you have a fully functional replica set. The new replica set will elect a primary.

Step 6: Configure the outside member as priority 0 members. Configure the member located in Site B (in this
example, mongodb2.example.net) as a priority 0 member.

1. View the replica set configuration to determine the members array position for the member. Keep in mind the
array position is not the same as the _id:

rs.conf()

2. Copy the replica set configuration object to a variable (to cfg in the example below). Then, in the variable,
set the correct priority for the member. Then pass the variable to rs.reconfig() to update the replica set
configuration.

For example, to set priority for the third member in the array (i.e., the member at position 2), issue the following
sequence of commands:

cfg = rs.conf()
cfg.members[2].priority = 0
rs.reconfig(cfg)

Note: The rs.reconfig() shell method can force the current primary to step down, causing an election.
When the primary steps down, all clients will disconnect. This is the intended behavior. While most elec-
tions complete within a minute, always make sure any replica configuration changes occur during scheduled
maintenance periods.

After these commands return, you have a geographically redundant three-member replica set.

Step 7: Check the status of the replica set. Use the rs.status() operation:

rs.status()

Deploy a Geographically Redundant Four-Member Replica Set A geographically redundant four-member de-
ployment has two additional considerations:

• One host (e.g. mongodb4.example.net) must be an arbiter. This host can run on a system that is also used
for an application server or on the same machine as another MongoDB process.

• You must decide how to distribute your systems. There are three possible architectures for the four-member
replica set:

– Three members in Site A, one priority 0 member in Site B, and an arbiter in Site A.

– Two members in Site A, two priority 0 members in Site B, and an arbiter in Site A.

– Two members in Site A, one priority 0 member in Site B, one priority 0 member in Site C, and an arbiter
in site A.

In most cases, the first architecture is preferable because it is the least complex.

To deploy a geographically redundant four-member set:

5.1. Replica Set Tutorials 137

MongoDB Administration, Release 3.2.3

Step 1: Start each member of the replica set with the appropriate options. For each member, start a mongod and
specify the replica set name through the replSet option. Specify any other parameters specific to your deployment.
For replication-specific parameters, see cli-mongod-replica-set.

If your application connects to more than one replica set, each set should have a distinct name. Some drivers group
replica set connections by replica set name.

The following example specifies the replica set name through the --replSet command-line option:

mongod --replSet "rs0"

You can also specify the replica set name in the configuration file. To start mongod with a configu-
ration file, specify the file with the --config option:

mongod --config $HOME/.mongodb/config

In production deployments, you can configure a init script to manage this process. Init scripts are beyond the scope of
this document.

Step 2: Connect a mongo shell to a replica set member. For example, to connect to a mongod running on
localhost on the default port of 27017, simply issue:

mongo

Step 3: Initiate the replica set. Use rs.initiate() on one and only one member of the replica set:

rs.initiate()

MongoDB initiates a set that consists of the current member and that uses the default replica set configuration.

Step 4: Verify the initial replica set configuration. Use rs.conf() to display the replica set
configuration object:

rs.conf()

The replica set configuration object resembles the following:

{
"_id" : "rs0",
"version" : 1,
"members" : [

{
"_id" : 1,
"host" : "mongodb0.example.net:27017"

}
]

}

Step 5: Add the remaining members to the replica set. Use rs.add() in a mongo shell connected to the current
primary. The commands should resemble the following:

rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")
rs.add("mongodb3.example.net")

When complete, you should have a fully functional replica set. The new replica set will elect a primary.

138 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Step 6: Add the arbiter. In the same shell session, issue the following command to add the arbiter (e.g.
mongodb4.example.net):

rs.addArb("mongodb4.example.net")

Step 7: Configure outside members as priority 0 members. Configure each member located outside of Site A (e.g.
mongodb3.example.net) as a priority 0 member.

1. View the replica set configuration to determine the members array position for the member. Keep in mind the
array position is not the same as the _id:

rs.conf()

2. Copy the replica set configuration object to a variable (to cfg in the example below). Then, in the variable,
set the correct priority for the member. Then pass the variable to rs.reconfig() to update the replica set
configuration.

For example, to set priority for the third member in the array (i.e., the member at position 2), issue the following
sequence of commands:

cfg = rs.conf()
cfg.members[2].priority = 0
rs.reconfig(cfg)

Note: The rs.reconfig() shell method can force the current primary to step down, causing an election.
When the primary steps down, all clients will disconnect. This is the intended behavior. While most elec-
tions complete within a minute, always make sure any replica configuration changes occur during scheduled
maintenance periods.

After these commands return, you have a geographically redundant four-member replica set.

Step 8: Check the status of the replica set. Use the rs.status() operation:

rs.status()

Deploy a Geographically Redundant Set with More than Four Members The above procedures detail the steps
necessary for deploying a geographically redundant replica set. Larger replica set deployments follow the same steps,
but have additional considerations:

• Never deploy more than seven voting members.

• If you have an even number of members, use the procedure for a four-member set (page 137)). Ensure that
a single facility, “Site A”, always has a majority of the members by deploying the arbiter in that site. For
example, if a set has six members, deploy at least three voting members in addition to the arbiter in Site A, and
the remaining members in alternate sites.

• If you have an odd number of members, use the procedure for a three-member set (page 135). Ensure that a
single facility, “Site A” always has a majority of the members of the set. For example, if a set has five members,
deploy three members within Site A and two members in other facilities.

• If you have a majority of the members of the set outside of Site A and the network partitions to prevent com-
munication between sites, the current primary in Site A will step down, even if none of the members outside of
Site A are eligible to become primary.

5.1. Replica Set Tutorials 139

MongoDB Administration, Release 3.2.3

Add an Arbiter to Replica Set

On this page

• Considerations (page 140)
• Add an Arbiter (page 140)

Arbiters are mongod instances that are part of a replica set but do not hold data. Arbiters participate in elections in
order to break ties. If a replica set has an even number of members, add an arbiter.

Arbiters have minimal resource requirements and do not require dedicated hardware. You can deploy an arbiter on an
application server or a monitoring host.

Important: Do not run an arbiter on the same system as a member of the replica set.

Considerations

An arbiter does not store data, but until the arbiter’s mongod process is added to the replica set, the arbiter will act
like any other mongod process and start up with a set of data files and with a full-sized journal.

To minimize the default creation of data, set the following in the arbiter’s configuration file:

• journal.enabled to false

Warning: Never set journal.enabled to false on a data-bearing node.

• smallFiles to true

These settings are specific to arbiters. Do not set journal.enabled to false on a data-bearing node. Similarly,
do not set smallFiles unless specifically indicated.

Add an Arbiter

1. Create a data directory (e.g. dbPath) for the arbiter. The mongod instance uses the directory for configuration
data. The directory will not hold the data set. For example, create the /data/arb directory:

mkdir /data/arb

2. Start the arbiter. Specify the data directory and the replica set name. The following, starts an arbiter using the
/data/arb dbPath for the rs replica set:

mongod --port 30000 --dbpath /data/arb --replSet rs

3. Connect to the primary and add the arbiter to the replica set. Use the rs.addArb()method, as in the following
example:

rs.addArb("m1.example.net:30000")

This operation adds the arbiter running on port 30000 on the m1.example.net host.

Convert a Standalone to a Replica Set

140 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

On this page

• Procedure (page 141)

This tutorial describes the process for converting a standalone mongod instance into a three-member replica set. Use
standalone instances for testing and development, but always use replica sets in production. To install a standalone
instance, see the installation tutorials.

To deploy a replica set without using a pre-existing mongod instance, see Deploy a Replica Set (page 128).

Procedure

1. Shut down the standalone mongod instance.

2. Restart the instance. Use the --replSet option to specify the name of the new replica set.

For example, the following command starts a standalone instance as a member of a new replica set named rs0.
The command uses the standalone’s existing database path of /srv/mongodb/db0:

mongod --port 27017 --dbpath /srv/mongodb/db0 --replSet rs0

If your application connects to more than one replica set, each set should have a distinct name. Some drivers
group replica set connections by replica set name.

For more information on configuration options, see https://docs.mongodb.org/manual/reference/configuration-options
and the mongod manual page.

3. Connect to the mongod instance.

4. Use rs.initiate() to initiate the new replica set:

rs.initiate()

The replica set is now operational.

To view the replica set configuration, use rs.conf(). To check the status of the replica set, use
rs.status().

Expand the Replica Set Add additional replica set members by doing the following:

1. On two distinct systems, start two new standalone mongod instances. For information on starting a standalone
instance, see the installation tutorial specific to your environment.

2. On your connection to the original mongod instance (the former standalone instance), issue a command in the
following form for each new instance to add to the replica set:

rs.add("<hostname><:port>")

Replace <hostname> and <port> with the resolvable hostname and port of the mongod instance to add to
the set. For more information on adding a host to a replica set, see Add Members to a Replica Set (page 142).

Sharding Considerations If the new replica set is part of a sharded cluster, change the shard host information in
the config database by doing the following:

1. Connect to one of the sharded cluster’s mongos instances and issue a command in the following form:

db.getSiblingDB("config").shards.save({_id: "<name>", host: "<replica-set>/<member,><member,><...>" })

5.1. Replica Set Tutorials 141

MongoDB Administration, Release 3.2.3

Replace <name> with the name of the shard. Replace <replica-set> with the name of the replica set.
Replace <member,><member,><> with the list of the members of the replica set.

2. Restart all mongos instances. If possible, restart all components of the replica sets (i.e., all mongos and all
shard mongod instances).

Add Members to a Replica Set

On this page

• Overview (page 142)
• Requirements (page 142)
• Procedures (page 143)

Overview

This tutorial explains how to add an additional member to an exist-
ing replica set. For background on replication deployment patterns, see the
https://docs.mongodb.org/manual/core/replica-set-architectures document.

Maximum Voting Members A replica set can have a maximum of seven voting members. To add a member to a
replica set that already has seven voting members, you must either add the member as a non-voting member or remove
a vote from an existing member.

Init Scripts In production deployments you can configure a init script to manage member processes.

Existing Members You can use these procedures to add new members to an existing set. You can also use the same
procedure to “re-add” a removed member. If the removed member’s data is still relatively recent, it can recover and
catch up easily.

Data Files If you have a backup or snapshot of an existing member, you can move the data files (e.g. the dbPath
directory) to a new system and use them to quickly initiate a new member. The files must be:

• A valid copy of the data files from a member of the same replica set. See Backup and Restore with Filesystem
Snapshots (page 75) document for more information.

Important: Always use filesystem snapshots to create a copy of a member of the existing replica set. Do not
use mongodump and mongorestore to seed a new replica set member.

• More recent than the oldest operation in the primary’s oplog. The new member must be able to become current
by applying operations from the primary’s oplog.

Requirements

1. An active replica set.

2. A new MongoDB system capable of supporting your data set, accessible by the active replica set through the
network.

142 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Otherwise, use the MongoDB installation tutorial and the Deploy a Replica Set (page 128) tutorials.

Procedures

Prepare the Data Directory Before adding a new member to an existing replica set, prepare the new member’s data
directory using one of the following strategies:

• Make sure the new member’s data directory does not contain data. The new member will copy the data from an
existing member.

If the new member is in a recovering state, it must exit and become a secondary before MongoDB can copy all
data as part of the replication process. This process takes time but does not require administrator intervention.

• Manually copy the data directory from an existing member. The new member becomes a secondary member
and will catch up to the current state of the replica set. Copying the data over may shorten the amount of time
for the new member to become current.

Ensure that you can copy the data directory to the new member and begin replication within the window allowed
by the oplog. Otherwise, the new instance will have to perform an initial sync, which completely resynchronizes
the data, as described in Resync a Member of a Replica Set (page 161).

Use rs.printReplicationInfo() to check the current state of replica set members with regards to the
oplog.

For background on replication deployment patterns, see the https://docs.mongodb.org/manual/core/replica-set-architectures
document.

Add a Member to an Existing Replica Set

1. Start the new mongod instance. Specify the data directory and the replica set name. The following example
specifies the /srv/mongodb/db0 data directory and the rs0 replica set:

mongod --dbpath /srv/mongodb/db0 --replSet rs0

Take note of the host name and port information for the new mongod instance.

For more information on configuration options, see the mongod manual page.

Optional
You can specify the data directory and replica set in the mongod.conf configuration file, and start
the mongod with the following command:

mongod --config /etc/mongod.conf

2. Connect to the replica set’s primary.

You can only add members while connected to the primary. If you do not know which member is the primary,
log into any member of the replica set and issue the db.isMaster() command.

3. Use rs.add() to add the new member to the replica set. For example, to add a member at host
mongodb3.example.net, issue the following command:

rs.add("mongodb3.example.net")

You can include the port number, depending on your setup:

rs.add("mongodb3.example.net:27017")

5.1. Replica Set Tutorials 143

MongoDB Administration, Release 3.2.3

4. Verify that the member is now part of the replica set. Call the rs.conf() method, which displays the
replica set configuration:

rs.conf()

To view replica set status, issue the rs.status() method. For a description of the status fields, see
https://docs.mongodb.org/manual/reference/command/replSetGetStatus.

Configure and Add a Member You can add a member to a replica set by passing to the rs.add() method a
members document. The document must be in the form of a members document. These documents define a replica
set member in the same form as the replica set configuration document.

Important: Specify a value for the _id field of the members document. MongoDB does not automatically populate
the _id field in this case. Finally, the members document must declare the host value. All other fields are optional.

Example
To add a member with the following configuration:

• an _id of 1.

• a hostname and port number of mongodb3.example.net:27017.

• a priority value within the replica set of 0.

• a configuration as hidden,

Issue the following:

rs.add({_id: 1, host: "mongodb3.example.net:27017", priority: 0, hidden: true})

Remove Members from Replica Set

On this page

• Remove a Member Using rs.remove() (page 144)
• Remove a Member Using rs.reconfig() (page 145)

To remove a member of a replica set use either of the following procedures.

Remove a Member Using rs.remove()

1. Shut down the mongod instance for the member you wish to remove. To shut down the instance, connect using
the mongo shell and the db.shutdownServer() method.

2. Connect to the replica set’s current primary. To determine the current primary, use db.isMaster() while
connected to any member of the replica set.

3. Use rs.remove() in either of the following forms to remove the member:

rs.remove("mongod3.example.net:27017")
rs.remove("mongod3.example.net")

144 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

MongoDB disconnects the shell briefly as the replica set elects a new primary. The shell then automatically
reconnects. The shell displays a DBClientCursor::init call() failed error even though the com-
mand succeeds.

Remove a Member Using rs.reconfig()

To remove a member you can manually edit the replica set configuration document, as described here.

1. Shut down the mongod instance for the member you wish to remove. To shut down the instance, connect using
the mongo shell and the db.shutdownServer() method.

2. Connect to the replica set’s current primary. To determine the current primary, use db.isMaster() while
connected to any member of the replica set.

3. Issue the rs.conf() method to view the current configuration document and determine the position in the
members array of the member to remove:

Example
mongod_C.example.net is in position 2 of the following configuration file:

{
"_id" : "rs",
"version" : 7,
"members" : [

{
"_id" : 0,
"host" : "mongod_A.example.net:27017"

},
{

"_id" : 1,
"host" : "mongod_B.example.net:27017"

},
{

"_id" : 2,
"host" : "mongod_C.example.net:27017"

}
]

}

4. Assign the current configuration document to the variable cfg:

cfg = rs.conf()

5. Modify the cfg object to remove the member.

Example
To remove mongod_C.example.net:27017 use the following JavaScript operation:

cfg.members.splice(2,1)

6. Overwrite the replica set configuration document with the new configuration by issuing the following:

rs.reconfig(cfg)

5.1. Replica Set Tutorials 145

MongoDB Administration, Release 3.2.3

As a result of rs.reconfig() the shell will disconnect while the replica set renegotiates which member is
primary. The shell displays a DBClientCursor::init call() failed error even though the com-
mand succeeds, and will automatically reconnected.

7. To confirm the new configuration, issue rs.conf().

For the example above the output would be:

{
"_id" : "rs",
"version" : 8,
"members" : [

{
"_id" : 0,
"host" : "mongod_A.example.net:27017"

},
{

"_id" : 1,
"host" : "mongod_B.example.net:27017"

}
]

}

Replace a Replica Set Member

On this page

• Operation (page 146)
• Example (page 146)

If you need to change the hostname of a replica set member without changing the configuration of that member or the
set, you can use the operation outlined in this tutorial. For example if you must re-provision systems or rename hosts,
you can use this pattern to minimize the scope of that change.

Operation

To change the hostname for a replica set member modify the members[n].host field. The value of
members[n]._id field will not change when you reconfigure the set.

See https://docs.mongodb.org/manual/reference/replica-configuration and
rs.reconfig() for more information.

Note: Any replica set configuration change can trigger the current primary to step down, which forces an election.
During the election, the current shell session and clients connected to this replica set disconnect, which produces an
error even when the operation succeeds.

Example

To change the hostname to mongo2.example.net for the replica set member configured at members[0], issue
the following sequence of commands:

146 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

cfg = rs.conf()
cfg.members[0].host = "mongo2.example.net"
rs.reconfig(cfg)

5.1.2 Member Configuration Tutorials

The following tutorials provide information in configuring replica set members to support specific operations, such as
to provide dedicated backups, to support reporting, or to act as a cold standby.

Adjust Priority for Replica Set Member (page 147) Change the precedence given to a replica set members in an elec-
tion for primary.

Prevent Secondary from Becoming Primary (page 148) Make a secondary member ineligible for election as pri-
mary.

Configure a Hidden Replica Set Member (page 150) Configure a secondary member to be invisible to applications
in order to support significantly different usage, such as a dedicated backups.

Configure a Delayed Replica Set Member (page 151) Configure a secondary member to keep a delayed copy of the
data set in order to provide a rolling backup.

Configure Non-Voting Replica Set Member (page 152) Create a secondary member that keeps a copy of the data set
but does not vote in an election.

Convert a Secondary to an Arbiter (page 153) Convert a secondary to an arbiter.

Adjust Priority for Replica Set Member

On this page

• Overview (page 147)
• Considerations (page 147)
• Procedure (page 148)

Overview

The priority settings of replica set members affect the outcomes of elections for primary. Use this setting to ensure
that some members are more likely to become primary and that others can never become primary.

The value of the member’s members[n].priority setting determines the member’s priority in elections. The
higher the number, the higher the priority.

Considerations

To modify priorities, you update the members array in the replica configuration object. The array index begins with
0. Do not confuse this index value with the value of the replica set member’s members[n]._id field in the array.

The value of members[n].priority can be any floating point (i.e. decimal) number between 0 and 1000. The
default value for the members[n].priority field is 1.

To block a member from seeking election as primary, assign it a priority of 0. Hidden members, delayed members,
and arbiters all have members[n].priority set to 0.

5.1. Replica Set Tutorials 147

MongoDB Administration, Release 3.2.3

Adjust priority during a scheduled maintenance window. Reconfiguring priority can force the current primary to step
down, leading to an election. Before an election the primary closes all open client connections.

Procedure

Step 1: Copy the replica set configuration to a variable. In the mongo shell, use rs.conf() to retrieve the
replica set configuration and assign it to a variable. For example:

cfg = rs.conf()

Step 2: Change each member’s priority value. Change each member’s members[n].priority value, as
configured in the members array.

cfg.members[0].priority = 0.5
cfg.members[1].priority = 2
cfg.members[2].priority = 2

This sequence of operations modifies the value of cfg to set the priority for the first three members defined in the
members array.

Step 3: Assign the replica set the new configuration. Use rs.reconfig() to apply the new configuration.

rs.reconfig(cfg)

This operation updates the configuration of the replica set using the configuration defined by the value of cfg.

Prevent Secondary from Becoming Primary

On this page

• Overview (page 148)
• Considerations (page 149)
• Procedure (page 149)
• Related Documents (page 150)

Overview

In a replica set, by default all secondary members are eligible to become primary through the election process. You
can use the priority to affect the outcome of these elections by making some members more likely to become
primary and other members less likely or unable to become primary.

Secondaries that cannot become primary are also unable to trigger elections. In all other respects these secondaries
are identical to other secondaries.

To prevent a secondary member from ever becoming a primary in a failover, assign the secondary a prior-
ity of 0, as described here. For a detailed description of secondary-only members and their purposes, see
https://docs.mongodb.org/manual/core/replica-set-priority-0-member.

148 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Considerations

When updating the replica configuration object, access the replica set members in the members array with the array
index. The array index begins with 0. Do not confuse this index value with the value of the members[n]._id field
in each document in the members array.

Note: MongoDB does not permit the current primary to have a priority of 0. To prevent the current primary from
again becoming a primary, you must first step down the current primary using rs.stepDown().

Procedure

This tutorial uses a sample replica set with 5 members.

Warning:
• The rs.reconfig() shell method can force the current primary to step down, which causes an election.

When the primary steps down, the mongod closes all client connections. While this typically takes 10-20
seconds, try to make these changes during scheduled maintenance periods.

• To successfully reconfigure a replica set, a majority of the members must be accessible. If your replica set
has an even number of members, add an arbiter (page 140) to ensure that members can quickly obtain a
majority of votes in an election for primary.

Step 1: Retrieve the current replica set configuration. The rs.conf() method returns a replica set
configuration document that contains the current configuration for a replica set.

In a mongo shell connected to a primary, run the rs.conf() method and assign the result to a variable:

cfg = rs.conf()

The returned document contains a members field which contains an array of member configuration documents, one
document for each member of the replica set.

Step 2: Assign priority value of 0. To prevent a secondary member from becoming a primary, update the secondary
member’s members[n].priority to 0.

To assign a priority value to a member of the replica set, access the member configuration document using the array
index. In this tutorial, the secondary member to change corresponds to the configuration document found at position
2 of the members array.

cfg.members[2].priority = 0

The configuration change does not take effect until you reconfigure the replica set.

Step 3: Reconfigure the replica set. Use rs.reconfig() method to reconfigure the replica set with the updated
replica set configuration document.

Pass the cfg variable to the rs.reconfig() method:

rs.reconfig(cfg)

5.1. Replica Set Tutorials 149

MongoDB Administration, Release 3.2.3

Related Documents

• members[n].priority

• Adjust Priority for Replica Set Member (page 147)

• Replica Set Reconfiguration

• https://docs.mongodb.org/manual/core/replica-set-elections

Configure a Hidden Replica Set Member

On this page

• Considerations (page 150)
• Examples (page 150)
• Related Documents (page 151)

Hidden members are part of a replica set but cannot become primary and are invisible to client applications.
Hidden members may vote in elections. For a more information on hidden members and their uses, see
https://docs.mongodb.org/manual/core/replica-set-hidden-member.

Considerations

The most common use of hidden nodes is to support delayed members. If you only need to prevent a member
from becoming primary, configure a priority 0 member.

If the settings.chainingAllowed setting allows secondary members to sync from other secondaries, Mon-
goDB by default prefers non-hidden members over hidden members when selecting a sync target. MongoDB
will only choose hidden members as a last resort. If you want a secondary to sync from a hidden member,
use the replSetSyncFrom database command to override the default sync target. See the documentation for
replSetSyncFrom before using the command.

See also:

Manage Chained Replication (page 169)

Changed in version 2.0: For sharded clusters running with replica sets before 2.0, if you reconfigured a member as
hidden, you had to restart mongos to prevent queries from reaching the hidden member.

Examples

Member Configuration Document To configure a secondary member as hidden, set its
members[n].priority value to 0 and set its members[n].hidden value to true in its member con-
figuration:

{
"_id" : <num>
"host" : <hostname:port>,
"priority" : 0,
"hidden" : true

}

150 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Configuration Procedure The following example hides the secondary member currently at the index 0 in the
members array. To configure a hidden member, use the following sequence of operations in a mongo shell con-
nected to the primary, specifying the member to configure by its array index in the members array:

cfg = rs.conf()
cfg.members[0].priority = 0
cfg.members[0].hidden = true
rs.reconfig(cfg)

After re-configuring the set, this secondary member has a priority of 0 so that it cannot become primary and is hidden.
The other members in the set will not advertise the hidden member in the isMaster or db.isMaster() output.

When updating the replica configuration object, access the replica set members in the members array with the array
index. The array index begins with 0. Do not confuse this index value with the value of the members[n]._id field
in each document in the members array.

Warning:
• The rs.reconfig() shell method can force the current primary to step down, which causes an election.

When the primary steps down, the mongod closes all client connections. While this typically takes 10-20
seconds, try to make these changes during scheduled maintenance periods.

• To successfully reconfigure a replica set, a majority of the members must be accessible. If your replica set
has an even number of members, add an arbiter (page 140) to ensure that members can quickly obtain a
majority of votes in an election for primary.

Related Documents

• Replica Set Reconfiguration

• https://docs.mongodb.org/manual/core/replica-set-elections

• Read Preference

Configure a Delayed Replica Set Member

On this page

• Example (page 152)
• Related Documents (page 152)

To configure a delayed secondary member, set its members[n].priority value to 0, its members[n].hidden
value to true, and its members[n].slaveDelay value to the number of seconds to delay.

Important: The length of the secondary members[n].slaveDelay must fit within the window of the oplog. If
the oplog is shorter than the members[n].slaveDelaywindow, the delayed member cannot successfully replicate
operations.

When you configure a delayed member, the delay applies both to replication and
to the member’s oplog. For details on delayed members and their uses, see
https://docs.mongodb.org/manual/core/replica-set-delayed-member.

5.1. Replica Set Tutorials 151

MongoDB Administration, Release 3.2.3

Example

The following example sets a 1-hour delay on a secondary member currently at the index 0 in the members array. To
set the delay, issue the following sequence of operations in a mongo shell connected to the primary:

cfg = rs.conf()
cfg.members[0].priority = 0
cfg.members[0].hidden = true
cfg.members[0].slaveDelay = 3600
rs.reconfig(cfg)

After the replica set reconfigures, the delayed secondary member cannot become primary and is hidden from applica-
tions. The members[n].slaveDelay value delays both replication and the member’s oplog by 3600 seconds (1
hour).

When updating the replica configuration object, access the replica set members in the members array with the array
index. The array index begins with 0. Do not confuse this index value with the value of the members[n]._id field
in each document in the members array.

Warning:
• The rs.reconfig() shell method can force the current primary to step down, which causes an election.

When the primary steps down, the mongod closes all client connections. While this typically takes 10-20
seconds, try to make these changes during scheduled maintenance periods.

• To successfully reconfigure a replica set, a majority of the members must be accessible. If your replica set
has an even number of members, add an arbiter (page 140) to ensure that members can quickly obtain a
majority of votes in an election for primary.

Related Documents

• members[n].slaveDelay

• Replica Set Reconfiguration

• replica-set-oplog-sizing

• Change the Size of the Oplog (page 156) tutorial

• https://docs.mongodb.org/manual/core/replica-set-elections

Configure Non-Voting Replica Set Member

On this page

• Example (page 152)
• Related Documents (page 153)

Non-voting members allow you to add additional members for read distribution beyond the maximum seven voting
members. To configure a member as non-voting, set its members[n].votes value to 0.

Example

To disable the ability to vote in elections for the fourth, fifth, and sixth replica set members, use the following command
sequence in the mongo shell connected to the primary. You identify each replica set member by its array index in the

152 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

members array:

cfg = rs.conf()
cfg.members[3].votes = 0
cfg.members[4].votes = 0
cfg.members[5].votes = 0
rs.reconfig(cfg)

This sequence gives 0 votes to the fourth, fifth, and sixth members of the set according to the order of the members
array in the output of rs.conf(). This setting allows the set to elect these members as primary but does not allow
them to vote in elections. Place voting members so that your designated primary or primaries can reach a majority of
votes in the event of a network partition.

When updating the replica configuration object, access the replica set members in the members array with the array
index. The array index begins with 0. Do not confuse this index value with the value of the members[n]._id field
in each document in the members array.

Warning:
• The rs.reconfig() shell method can force the current primary to step down, which causes an election.

When the primary steps down, the mongod closes all client connections. While this typically takes 10-20
seconds, try to make these changes during scheduled maintenance periods.

• To successfully reconfigure a replica set, a majority of the members must be accessible. If your replica set
has an even number of members, add an arbiter (page 140) to ensure that members can quickly obtain a
majority of votes in an election for primary.

In general and when possible, all members should have only 1 vote. This prevents intermittent ties, deadlocks, or the
wrong members from becoming primary. Use members[n].priority to control which members are more likely
to become primary.

Related Documents

• members[n].votes

• Replica Set Reconfiguration

• https://docs.mongodb.org/manual/core/replica-set-elections

Convert a Secondary to an Arbiter

On this page

• Convert Secondary to Arbiter and Reuse the Port Number (page 154)
• Convert Secondary to Arbiter Running on a New Port Number (page 154)

If you have a secondary in a replica set that no longer needs to hold data but that needs to remain in the set to ensure
that the set can elect a primary, you may convert the secondary to an arbiter using either procedure in this tutorial.
Both procedures are operationally equivalent:

• You may operate the arbiter on the same port as the former secondary. In this procedure, you must shut down
the secondary and remove its data before restarting and reconfiguring it as an arbiter.

For this procedure, see Convert Secondary to Arbiter and Reuse the Port Number (page 154).

• Run the arbiter on a new port. In this procedure, you can reconfigure the server as an arbiter before shutting
down the instance running as a secondary.

5.1. Replica Set Tutorials 153

MongoDB Administration, Release 3.2.3

For this procedure, see Convert Secondary to Arbiter Running on a New Port Number (page 154).

Convert Secondary to Arbiter and Reuse the Port Number

1. If your application is connecting directly to the secondary, modify the application so that MongoDB queries
don’t reach the secondary.

2. Shut down the secondary.

3. Remove the secondary from the replica set by calling the rs.remove()method. Perform this operation while
connected to the current primary in the mongo shell:

rs.remove("<hostname><:port>")

4. Verify that the replica set no longer includes the secondary by calling the rs.conf() method in the mongo
shell:

rs.conf()

5. Move the secondary’s data directory to an archive folder. For example:

mv /data/db /data/db-old

Optional
You may remove the data instead.

6. Create a new, empty data directory to point to when restarting the mongod instance. You can reuse the previous
name. For example:

mkdir /data/db

7. Restart the mongod instance for the secondary, specifying the port number, the empty data directory, and the
replica set. You can use the same port number you used before. Issue a command similar to the following:

mongod --port 27021 --dbpath /data/db --replSet rs

8. In the mongo shell convert the secondary to an arbiter using the rs.addArb() method:

rs.addArb("<hostname><:port>")

9. Verify the arbiter belongs to the replica set by calling the rs.conf() method in the mongo shell.

rs.conf()

The arbiter member should include the following:

"arbiterOnly" : true

Convert Secondary to Arbiter Running on a New Port Number

1. If your application is connecting directly to the secondary or has a connection string referencing the secondary,
modify the application so that MongoDB queries don’t reach the secondary.

2. Create a new, empty data directory to be used with the new port number. For example:

mkdir /data/db-temp

154 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

3. Start a new mongod instance on the new port number, specifying the new data directory and the existing replica
set. Issue a command similar to the following:

mongod --port 27021 --dbpath /data/db-temp --replSet rs

4. In the mongo shell connected to the current primary, convert the new mongod instance to an arbiter using the
rs.addArb() method:

rs.addArb("<hostname><:port>")

5. Verify the arbiter has been added to the replica set by calling the rs.conf() method in the mongo shell.

rs.conf()

The arbiter member should include the following:

"arbiterOnly" : true

6. Shut down the secondary.

7. Remove the secondary from the replica set by calling the rs.remove() method in the mongo shell:

rs.remove("<hostname><:port>")

8. Verify that the replica set no longer includes the old secondary by calling the rs.conf()method in the mongo
shell:

rs.conf()

9. Move the secondary’s data directory to an archive folder. For example:

mv /data/db /data/db-old

Optional
You may remove the data instead.

5.1.3 Replica Set Maintenance Tutorials

The following tutorials provide information in maintaining existing replica sets.

Change the Size of the Oplog (page 156) Increase the size of the oplog which logs operations. In most cases, the
default oplog size is sufficient.

Perform Maintenance on Replica Set Members (page 158) Perform maintenance on a member of a replica set while
minimizing downtime.

Force a Member to Become Primary (page 159) Force a replica set member to become primary.

Resync a Member of a Replica Set (page 161) Sync the data on a member. Either perform initial sync on a new
member or resync the data on an existing member that has fallen too far behind to catch up by way of normal
replication.

Configure Replica Set Tag Sets (page 163) Assign tags to replica set members for use in targeting read and write
operations to specific members.

Reconfigure a Replica Set with Unavailable Members (page 166) Reconfigure a replica set when a majority of
replica set members are down or unreachable.

Manage Chained Replication (page 169) Disable or enable chained replication. Chained replication occurs when a
secondary replicates from another secondary instead of the primary.

5.1. Replica Set Tutorials 155

MongoDB Administration, Release 3.2.3

Change Hostnames in a Replica Set (page 170) Update the replica set configuration to reflect changes in members’
hostnames.

Configure a Secondary’s Sync Target (page 174) Specify the member that a secondary member synchronizes from.

Change the Size of the Oplog

On this page

• Overview (page 156)
• Procedure (page 156)

The oplog exists internally as a capped collection, so you cannot modify its size in the course of normal operations.
In most cases the default oplog size is an acceptable size; however, in some situations you may need a larger or
smaller oplog. For example, you might need to change the oplog size if your applications perform large numbers of
multi-updates or deletes in short periods of time.

This tutorial describes how to resize the oplog. For a detailed explanation of oplog sizing, see replica-set-oplog-sizing.
For details how oplog size affects delayed members and affects replication lag, see replica-set-delayed-members.

Overview

To change the size of the oplog, you must perform maintenance on each member of the replica set in turn. The
procedure requires: stopping the mongod instance and starting as a standalone instance, modifying the oplog size,
and restarting the member.

Important: Always start rolling replica set maintenance with the secondaries, and finish with the maintenance on
primary member.

Procedure

• Restart the member in standalone mode.

Tip
Always use rs.stepDown() to force the primary to become a secondary, before stopping the server. This
facilitates a more efficient election process.

• Recreate the oplog with the new size and with an old oplog entry as a seed.

• Restart the mongod instance as a member of the replica set.

Restart a Secondary in Standalone Mode on a Different Port Shut down the mongod instance for one of the
non-primary members of your replica set. For example, to shut down, use the db.shutdownServer() method:

db.shutdownServer()

Restart this mongod as a standalone instance running on a different port and without the --replSet parameter. Use
a command similar to the following:

mongod --port 37017 --dbpath /srv/mongodb

156 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Create a Backup of the Oplog (Optional) Optionally, backup the existing oplog on the standalone instance, as in
the following example:

mongodump --db local --collection 'oplog.rs' --port 37017

Recreate the Oplog with a New Size and a Seed Entry Save the last entry from the oplog. For example, connect
to the instance using the mongo shell, and enter the following command to switch to the local database:

use local

In mongo shell scripts you can use the following operation to set the db object:

db = db.getSiblingDB('local')

Ensure that the temp temporary collection is empty by dropping the collection:

db.temp.drop()

Use the db.collection.save() method and a sort on reverse natural order to find the last entry and save it to a
temporary collection:

db.temp.save(db.oplog.rs.find({ }, { ts: 1, h: 1 }).sort({$natural : -1}).limit(1).next())

To see this oplog entry, use the following operation:

db.temp.find()

Remove the Existing Oplog Collection Drop the old oplog.rs collection in the local database. Use the fol-
lowing command:

db = db.getSiblingDB('local')
db.oplog.rs.drop()

This returns true in the shell.

Create a New Oplog Use the create command to create a new oplog of a different size. Specify the size
argument in bytes. A value of 2 * 1024 * 1024 * 1024 will create a new oplog that’s 2 gigabytes:

db.runCommand({ create: "oplog.rs", capped: true, size: (2 * 1024 * 1024 * 1024) })

Upon success, this command returns the following status:

{ "ok" : 1 }

Insert the Last Entry of the Old Oplog into the New Oplog Insert the previously saved last entry from the old
oplog into the new oplog. For example:

db.oplog.rs.save(db.temp.findOne())

To confirm the entry is in the new oplog, use the following operation:

db.oplog.rs.find()

Restart the Member Restart the mongod as a member of the replica set on its usual port. For example:

5.1. Replica Set Tutorials 157

MongoDB Administration, Release 3.2.3

db.shutdownServer()
mongod --replSet rs0 --dbpath /srv/mongodb

The replica set member will recover and “catch up” before it is eligible for election to primary.

Repeat Process for all Members that may become Primary Repeat this procedure for all members you want to
change the size of the oplog. Repeat the procedure for the primary as part of the following step.

Change the Size of the Oplog on the Primary To finish the rolling maintenance operation, step down the primary
with the rs.stepDown() method and repeat the oplog resizing procedure above.

Perform Maintenance on Replica Set Members

On this page

• Overview (page 158)
• Procedure (page 158)

Overview

Replica sets allow a MongoDB deployment to remain available during the majority of a maintenance window.

This document outlines the basic procedure for performing maintenance on each of the members of a replica set.
Furthermore, this particular sequence strives to minimize the amount of time that the primary is unavailable and
controlling the impact on the entire deployment.

Use these steps as the basis for common replica set operations, particularly for procedures such as upgrading to the
latest version of MongoDB (page 66) and changing the size of the oplog (page 156).

Procedure

For each member of a replica set, starting with a secondary member, perform the following sequence of events, ending
with the primary:

• Restart the mongod instance as a standalone.

• Perform the task on the standalone instance.

• Restart the mongod instance as a member of the replica set.

Step 1: Stop a secondary. In the mongo shell, shut down the mongod instance:

db.shutdownServer()

Step 2: Restart the secondary as a standalone on a different port. At the operating system shell prompt, restart
mongod as a standalone instance running on a different port and without the --replSet parameter:

mongod --port 37017 --dbpath /srv/mongodb

Always start mongod with the same user, even when restarting a replica set member as a standalone instance.

158 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Step 3: Perform maintenance operations on the secondary. While the member is a standalone, use the mongo
shell to perform maintenance:

mongo --port 37017

Step 4: Restart mongod as a member of the replica set. After performing all maintenance tasks, use the following
procedure to restart the mongod as a member of the replica set on its usual port.

From the mongo shell, shut down the standalone server after completing the maintenance:

db.shutdownServer()

Restart the mongod instance as a member of the replica set using its normal command-line arguments or configuration
file.

The secondary takes time to catch up to the primary. From the mongo shell, use the following command
to verify that the member has caught up from the RECOVERING state to the SECONDARY state.

rs.status()

Step 5: Perform maintenance on the primary last. To perform maintenance on the primary after completing
maintenance tasks on all secondaries, use rs.stepDown() in the mongo shell to step down the primary and allow
one of the secondaries to be elected the new primary. Specify a 300 second waiting period to prevent the member from
being elected primary again for five minutes:

rs.stepDown(300)

After the primary steps down, the replica set will elect a new primary. See
https://docs.mongodb.org/manual/core/replica-set-elections for more information about
replica set elections.

Force a Member to Become Primary

On this page

• Overview (page 159)
• Consideration (page 160)
• Procedures (page 160)

Overview

You can force a replica set member to become primary by giving it a higher members[n].priority value than
any other member in the set.

Optionally, you also can force a member never to become primary by setting its members[n].priority value
to 0, which means the member can never seek election as primary. For more information, see replica-set-secondary-
only-members.

For more information on priorities, see members[n].priority.

5.1. Replica Set Tutorials 159

MongoDB Administration, Release 3.2.3

Consideration

A majority of the configured members of a replica set must be available for a set to reconfigure a set or elect a primary.
See https://docs.mongodb.org/manual/core/replica-set-elections for more information.

Procedures

Force a Member to be Primary by Setting its Priority High This procedure assumes your current primary is
m1.example.net and that you’d like to instead make m3.example.net primary. The procedure also assumes
you have a three-member replica set with the configuration below. For more information on configurations, see Replica
Set Configuration Use.

This procedure assumes this configuration:

{
"_id" : "rs",
"version" : 7,
"members" : [

{
"_id" : 0,
"host" : "m1.example.net:27017"

},
{

"_id" : 1,
"host" : "m2.example.net:27017"

},
{

"_id" : 2,
"host" : "m3.example.net:27017"

}
]

}

1. In a mongo shell connected to the primary, use the following sequence of operations to make
m3.example.net the primary:

cfg = rs.conf()
cfg.members[0].priority = 0.5
cfg.members[1].priority = 0.5
cfg.members[2].priority = 1
rs.reconfig(cfg)

The last statement calls rs.reconfig() with the modified configuration document to configure
m3.example.net to have a higher members[n].priority value than the other mongod instances.

The following sequence of events occur:

• m3.example.net and m2.example.net sync with m1.example.net (typically within 10 sec-
onds).

• m1.example.net sees that it no longer has highest priority and, in most cases, steps down.
m1.example.net does not step down if m3.example.net‘s sync is far behind. In that case,
m1.example.net waits until m3.example.net is within 10 seconds of its optime and then steps
down. This minimizes the amount of time with no primary following failover.

• The step down forces on election in which m3.example.net becomes primary based on its priority
setting.

160 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

2. Optionally, if m3.example.net is more than 10 seconds behind m1.example.net‘s optime, and if you
don’t need to have a primary designated within 10 seconds, you can force m1.example.net to step down by
running:

db.adminCommand({replSetStepDown: 86400, force: 1})

This prevents m1.example.net from being primary for 86,400 seconds (24 hours), even if there is no other
member that can become primary. When m3.example.net catches up with m1.example.net it will
become primary.

If you later want to make m1.example.net primary again while it waits for m3.example.net to catch
up, issue the following command to make m1.example.net seek election again:

rs.freeze()

The rs.freeze() provides a wrapper around the replSetFreeze database command.

Force a Member to be Primary Using Database Commands Changed in version 1.8.

Consider a replica set with the following members:

• mdb0.example.net - the current primary.

• mdb1.example.net - a secondary.

• mdb2.example.net - a secondary .

To force a member to become primary use the following procedure:

1. In a mongo shell, run rs.status() to ensure your replica set is running as expected.

2. In a mongo shell connected to the mongod instance running on mdb2.example.net, freeze
mdb2.example.net so that it does not attempt to become primary for 120 seconds.

rs.freeze(120)

3. In a mongo shell connected the mongod running on mdb0.example.net, step down this instance that the
mongod is not eligible to become primary for 120 seconds:

rs.stepDown(120)

mdb1.example.net becomes primary.

Note: During the transition, there is a short window where the set does not have a primary.

For more information, consider the rs.freeze() and rs.stepDown() methods that wrap the
replSetFreeze and replSetStepDown commands.

Resync a Member of a Replica Set

On this page

• Procedures (page 162)

A replica set member becomes “stale” when its replication process falls so far behind that the primary overwrites
oplog entries the member has not yet replicated. The member cannot catch up and becomes “stale.” When this occurs,
you must completely resynchronize the member by removing its data and performing an initial sync.

5.1. Replica Set Tutorials 161

MongoDB Administration, Release 3.2.3

This tutorial addresses both resyncing a stale member and to creating a new member using seed data from another
member. When syncing a member, choose a time when the system has the bandwidth to move a large amount of data.
Schedule the synchronization during a time of low usage or during a maintenance window.

MongoDB provides two options for performing an initial sync:

• Restart the mongod with an empty data directory and let MongoDB’s normal initial syncing feature restore the
data. This is the more simple option but may take longer to replace the data.

See Procedures (page 162).

• Restart the machine with a copy of a recent data directory from another member in the replica set. This procedure
can replace the data more quickly but requires more manual steps.

See Sync by Copying Data Files from Another Member (page 162).

Procedures

Automatically Sync a Member Warning: During initial sync, mongod will remove the content of the dbPath.

This procedure relies on MongoDB’s regular process for initial sync. This will store the current data on the member.
For an overview of MongoDB initial sync process, see the replica-set-syncing section.

If the instance has no data, you can simply follow the Add Members to a Replica Set (page 142) or Replace a Replica
Set Member (page 146) procedure to add a new member to a replica set.

You can also force a mongod that is already a member of the set to to perform an initial sync by restarting the instance
without the content of the dbPath as follows:

1. Stop the member’s mongod instance. To ensure a clean shutdown, use the db.shutdownServer() method
from the mongo shell or on Linux systems, the mongod --shutdown option.

2. Delete all data and sub-directories from the member’s data directory. By removing the data dbPath, MongoDB
will perform a complete resync. Consider making a backup first.

At this point, the mongod will perform an initial sync. The length of the initial sync process depends on the size of
the database and network connection between members of the replica set.

Initial sync operations can impact the other members of the set and create additional traffic to the primary and can only
occur if another member of the set is accessible and up to date.

Sync by Copying Data Files from Another Member This approach “seeds” a new or stale member using the data
files from an existing member of the replica set. The data files must be sufficiently recent to allow the new member to
catch up with the oplog. Otherwise the member would need to perform an initial sync.

Copy the Data Files You can capture the data files as either a snapshot or a direct copy. However, in most cases you
cannot copy data files from a running mongod instance to another because the data files will change during the file
copy operation.

Important: If copying data files, you must copy the content of the local database.

You cannot use a mongodump backup for the data files, only a snapshot backup. For approaches to capturing a
consistent snapshot of a running mongod instance, see the MongoDB Backup Methods (page 4) documentation.

Sync the Member After you have copied the data files from the “seed” source, start the mongod instance and allow
it to apply all operations from the oplog until it reflects the current state of the replica set.

162 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Configure Replica Set Tag Sets

On this page

• Differences Between Read Preferences and Write Concerns (page 163)
• Add Tag Sets to a Replica Set (page 163)
• Custom Multi-Datacenter Write Concerns (page 164)
• Configure Tag Sets for Functional Segregation of Read and Write Operations (page 165)

Tag sets let you customize write concern and read preferences for a replica set. MongoDB stores tag sets in the replica
set configuration object, which is the document returned by rs.conf(), in the members[n].tags embedded
document.

This section introduces the configuration of tag sets. For an overview on tag sets and their use, see w: <tag set>
and replica-set-read-preference-tag-sets.

Differences Between Read Preferences and Write Concerns

Custom read preferences and write concerns evaluate tags sets in different ways:

• Read preferences consider the value of a tag when selecting a member to read from.

• Write concerns do not use the value of a tag to select a member except to consider whether or not the value is
unique.

For example, a tag set for a read operation may resemble the following document:

{ "disk": "ssd", "use": "reporting" }

To fulfill such a read operation, a member would need to have both of these tags. Any of the following tag sets would
satisfy this requirement:

{ "disk": "ssd", "use": "reporting" }
{ "disk": "ssd", "use": "reporting", "rack": "a" }
{ "disk": "ssd", "use": "reporting", "rack": "d" }
{ "disk": "ssd", "use": "reporting", "mem": "r"}

The following tag sets would not be able to fulfill this query:

{ "disk": "ssd" }
{ "use": "reporting" }
{ "disk": "ssd", "use": "production" }
{ "disk": "ssd", "use": "production", "rack": "k" }
{ "disk": "spinning", "use": "reporting", "mem": "32" }

Add Tag Sets to a Replica Set

Given the following replica set configuration:

{
"_id" : "rs0",
"version" : 1,
"members" : [

{
"_id" : 0,
"host" : "mongodb0.example.net:27017"

5.1. Replica Set Tutorials 163

MongoDB Administration, Release 3.2.3

},
{

"_id" : 1,
"host" : "mongodb1.example.net:27017"

},
{

"_id" : 2,
"host" : "mongodb2.example.net:27017"

}
]

}

You could add tag sets to the members of this replica set with the following command sequence in the mongo shell:

conf = rs.conf()
conf.members[0].tags = { "dc": "east", "use": "production" }
conf.members[1].tags = { "dc": "east", "use": "reporting" }
conf.members[2].tags = { "use": "production" }
rs.reconfig(conf)

After this operation the output of rs.conf() would resemble the following:

{
"_id" : "rs0",
"version" : 2,
"members" : [

{
"_id" : 0,
"host" : "mongodb0.example.net:27017",
"tags" : {

"dc": "east",
"use": "production"

}
},
{

"_id" : 1,
"host" : "mongodb1.example.net:27017",
"tags" : {

"dc": "east",
"use": "reporting"

}
},
{

"_id" : 2,
"host" : "mongodb2.example.net:27017",
"tags" : {

"use": "production"
}

}
]

}

Important: In tag sets, all tag values must be strings.

Custom Multi-Datacenter Write Concerns

Given a five member replica set with members in two data centers:

164 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

1. a facility VA tagged dc_va

2. a facility GTO tagged dc_gto

Create a custom write concern to require confirmation from two data centers using replica set tags, using the following
sequence of operations in the mongo shell:

1. Create a replica set configuration JavaScript object conf:

conf = rs.conf()

2. Add tags to the replica set members reflecting their locations:

conf.members[0].tags = { "dc_va": "rack1"}
conf.members[1].tags = { "dc_va": "rack2"}
conf.members[2].tags = { "dc_gto": "rack1"}
conf.members[3].tags = { "dc_gto": "rack2"}
conf.members[4].tags = { "dc_va": "rack1"}
rs.reconfig(conf)

3. Create a custom settings.getLastErrorModes setting to ensure that the write operation will propagate
to at least one member of each facility:

conf.settings = { getLastErrorModes: { MultipleDC : { "dc_va": 1, "dc_gto": 1 } } }

4. Reconfigure the replica set using the modified conf configuration object:

rs.reconfig(conf)

To ensure that a write operation propagates to at least one member of the set in both data centers, use the MultipleDC
write concern mode as follows:

db.users.insert({ id: "xyz", status: "A" }, { writeConcern: { w: "MultipleDC" } })

Alternatively, if you want to ensure that each write operation propagates to at least 2 racks in each facility, reconfigure
the replica set as follows in the mongo shell:

1. Create a replica set configuration object conf:

conf = rs.conf()

2. Redefine the settings.getLastErrorModes value to require two different values of both dc_va and
dc_gto:

conf.settings = { getLastErrorModes: { MultipleDC : { "dc_va": 2, "dc_gto": 2}}

3. Reconfigure the replica set using the modified conf configuration object:

rs.reconfig(conf)

Now, the following write operation will only return after the write operation propagates to at least two different racks
in the each facility:

Changed in version 2.6: A new protocol for write operations integrates write concerns with the write operations.
Previous versions used the getLastError command to specify the write concerns.

db.users.insert({ id: "xyz", status: "A" }, { writeConcern: { w: "MultipleDC" } })

Configure Tag Sets for Functional Segregation of Read and Write Operations

Given a replica set with tag sets that reflect:

5.1. Replica Set Tutorials 165

MongoDB Administration, Release 3.2.3

• data center facility,

• physical rack location of instance, and

• storage system (i.e. disk) type.

Where each member of the set has a tag set that resembles one of the following: 2

{"dc_va": "rack1", disk:"ssd", ssd: "installed" }
{"dc_va": "rack2", disk:"raid"}
{"dc_gto": "rack1", disk:"ssd", ssd: "installed" }
{"dc_gto": "rack2", disk:"raid"}
{"dc_va": "rack1", disk:"ssd", ssd: "installed" }

To target a read operation to a member of the replica set with a disk type of ssd, you could use the following tag set:

{ disk: "ssd" }

However, to create comparable write concern modes, you would specify a different set of
settings.getLastErrorModes configuration. Consider the following sequence of operations in the
mongo shell:

1. Create a replica set configuration object conf:

conf = rs.conf()

2. Redefine the settings.getLastErrorModes value to configure two write concern modes:

conf.settings = {
"getLastErrorModes" : {

"ssd" : {
"ssd" : 1

},
"MultipleDC" : {

"dc_va" : 1,
"dc_gto" : 1

}
}

}

3. Reconfigure the replica set using the modified conf configuration object:

rs.reconfig(conf)

Now you can specify the MultipleDC write concern mode, as in the following, to ensure that a write operation
propagates to each data center.

Changed in version 2.6: A new protocol for write operations integrates write concerns with the write operations.
Previous versions used the getLastError command to specify the write concerns.

db.users.insert({ id: "xyz", status: "A" }, { writeConcern: { w: "MultipleDC" } })

Additionally, you can specify the ssd write concern mode to ensure that a write operation propagates to at least one
instance with an SSD.

Reconfigure a Replica Set with Unavailable Members

2 Since read preferences and write concerns use the value of fields in tag sets differently, larger deployments may have some redundancy.

166 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

On this page

• Reconfigure by Forcing the Reconfiguration (page 167)
• Reconfigure by Replacing the Replica Set (page 168)

To reconfigure a replica set when a majority of members are available, use the rs.reconfig() operation on the
current primary, following the example in the Replica Set Reconfiguration Procedure.

This document provides the following options for re-configuring a replica set when only a minority of members are
accessible:

• Reconfigure by Forcing the Reconfiguration (page 167)

• Reconfigure by Replacing the Replica Set (page 168)

You may need to use one of these procedures, for example, in a geographically distributed replica set, where no local
group of members can reach a majority. See replica-set-elections for more information on this situation.

Reconfigure by Forcing the Reconfiguration

Changed in version 2.0.

This procedure lets you recover while a majority of replica set members are down or unreachable. You connect to any
surviving member and use the force option to the rs.reconfig() method.

The force option forces a new configuration onto the member. Use this procedure only to recover from catastrophic
interruptions. Do not use force every time you reconfigure. Also, do not use the force option in any automatic
scripts and do not use force when there is still a primary.

To force reconfiguration:

1. Back up a surviving member.

2. Connect to a surviving member and save the current configuration. Consider the following example commands
for saving the configuration:

cfg = rs.conf()

printjson(cfg)

3. On the same member, remove the down and unreachable members of the replica set from the members array
by setting the array equal to the surviving members alone. Consider the following example, which uses the cfg
variable created in the previous step:

cfg.members = [cfg.members[0] , cfg.members[4] , cfg.members[7]]

4. On the same member, reconfigure the set by using the rs.reconfig() command with the force option set
to true:

rs.reconfig(cfg, {force : true})

This operation forces the secondary to use the new configuration. The configuration is then propagated to all the
surviving members listed in the members array. The replica set then elects a new primary.

Note: When you use force : true, the version number in the replica set configuration increases signif-
icantly, by tens or hundreds of thousands. This is normal and designed to prevent set version collisions if you
accidentally force re-configurations on both sides of a network partition and then the network partitioning ends.

5.1. Replica Set Tutorials 167

MongoDB Administration, Release 3.2.3

5. If the failure or partition was only temporary, shut down or decommission the removed members as soon as
possible.

Reconfigure by Replacing the Replica Set

Use the following procedure only for versions of MongoDB prior to version 2.0. If you’re running MongoDB 2.0 or
later, use the above procedure, Reconfigure by Forcing the Reconfiguration (page 167).

These procedures are for situations where a majority of the replica set members are down or unreachable. If a majority
is running, then skip these procedures and instead use the rs.reconfig() command according to the examples in
replica-set-reconfiguration-usage.

If you run a pre-2.0 version and a majority of your replica set is down, you have the two options described here. Both
involve replacing the replica set.

Reconfigure by Turning Off Replication This option replaces the replica set with a standalone server.

1. Stop the surviving mongod instances. To ensure a clean shutdown, use an existing init script or use the
db.shutdownServer() method.

For example, to use the db.shutdownServer() method, connect to the server using the mongo shell and
issue the following sequence of commands:

use admin
db.shutdownServer()

2. Create a backup of the data directory (i.e. dbPath) of the surviving members of the set.

Optional
If you have a backup of the database you may instead remove this data.

3. Restart one of the mongod instances without the --replSet parameter.

The data is now accessible and provided by a single server that is not a replica set member. Clients can use this
server for both reads and writes.

When possible, re-deploy a replica set to provide redundancy and to protect your deployment from operational inter-
ruption.

Reconfigure by “Breaking the Mirror” This option selects a surviving replica set member to be the new primary
and to “seed” a new replica set. In the following procedure, the new primary is db0.example.net. MongoDB
copies the data from db0.example.net to all the other members.

1. Stop the surviving mongod instances. To ensure a clean shutdown, use an existing init script or use the
db.shutdownServer() method.

For example, to use the db.shutdownServer() method, connect to the server using the mongo shell and
issue the following sequence of commands:

use admin
db.shutdownServer()

2. Move the data directories (i.e. dbPath) for all the members except db0.example.net, so that all the
members except db0.example.net have empty data directories. For example:

mv /data/db /data/db-old

168 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

3. Move the data files for local database (i.e. local.*) so that db0.example.net has no local database.
For example

mkdir /data/local-old
mv /data/db/local* /data/local-old/

4. Start each member of the replica set normally.

5. Connect to db0.example.net in a mongo shell and run rs.initiate() to initiate the replica set.

6. Add the other set members using rs.add(). For example, to add a member running on db1.example.net
at port 27017, issue the following command:

rs.add("db1.example.net:27017")

MongoDB performs an initial sync on the added members by copying all data from db0.example.net to
the added members.

See also:

Resync a Member of a Replica Set (page 161)

Manage Chained Replication

On this page

• Disable Chained Replication (page 169)
• Re-enable Chained Replication (page 170)

Starting in version 2.0, MongoDB supports chained replication. A chained replication occurs when a secondary
member replicates from another secondary member instead of from the primary. This might be the case, for example,
if a secondary selects its replication target based on ping time and if the closest member is another secondary.

Chained replication can reduce load on the primary. But chained replication can also result in increased replication
lag, depending on the topology of the network.

New in version 2.2.2.

You can use the settings.chainingAllowed setting in https://docs.mongodb.org/manual/reference/replica-configuration
to disable chained replication for situations where chained replication is causing lag.

MongoDB enables chained replication by default. This procedure describes how to disable it and how to re-enable it.

Note: If chained replication is disabled, you still can use replSetSyncFrom to specify that a secondary replicates
from another secondary. But that configuration will last only until the secondary recalculates which member to sync
from.

Disable Chained Replication

To disable chained replication, set the settings.chainingAllowed field in
https://docs.mongodb.org/manual/reference/replica-configuration to false.

You can use the following sequence of commands to set settings.chainingAllowed to false:

1. Copy the configuration settings into the cfg object:

5.1. Replica Set Tutorials 169

MongoDB Administration, Release 3.2.3

cfg = rs.config()

2. Take note of whether the current configuration settings contain the settings embedded document. If they do,
skip this step.

Warning: To avoid data loss, skip this step if the configuration settings contain the settings embedded
document.

If the current configuration settings do not contain the settings embedded document, create the embedded
document by issuing the following command:

cfg.settings = { }

3. Issue the following sequence of commands to set settings.chainingAllowed to false:

cfg.settings.chainingAllowed = false
rs.reconfig(cfg)

Re-enable Chained Replication

To re-enable chained replication, set settings.chainingAllowed to true. You can use the following se-
quence of commands:

cfg = rs.config()
cfg.settings.chainingAllowed = true
rs.reconfig(cfg)

Change Hostnames in a Replica Set

On this page

• Overview (page 170)
• Assumptions (page 171)
• Change Hostnames while Maintaining Replica Set Availability (page 171)
• Change All Hostnames at the Same Time (page 173)

For most replica sets, the hostnames in the members[n].host field never change. However, if organizational needs
change, you might need to migrate some or all host names.

Note: Always use resolvable hostnames for the value of the members[n].host field in the replica set configuration
to avoid confusion and complexity.

Overview

This document provides two separate procedures for changing the hostnames in the members[n].host field. Use
either of the following approaches:

• Change hostnames without disrupting availability (page 171). This approach ensures your applications will
always be able to read and write data to the replica set, but the approach can take a long time and may incur
downtime at the application layer.

170 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

If you use the first procedure, you must configure your applications to connect to the replica set at both the old
and new locations, which often requires a restart and reconfiguration at the application layer and which may
affect the availability of your applications. Re-configuring applications is beyond the scope of this document.

• Stop all members running on the old hostnames at once (page 173). This approach has a shorter maintenance
window, but the replica set will be unavailable during the operation.

See also:

Replica Set Reconfiguration Process, Deploy a Replica Set (page 128), and Add Members to a Replica Set (page 142).

Assumptions

Given a replica set with three members:

• database0.example.com:27017 (the primary)

• database1.example.com:27017

• database2.example.com:27017

And with the following rs.conf() output:

{
"_id" : "rs",
"version" : 3,
"members" : [

{
"_id" : 0,
"host" : "database0.example.com:27017"

},
{

"_id" : 1,
"host" : "database1.example.com:27017"

},
{

"_id" : 2,
"host" : "database2.example.com:27017"

}
]

}

The following procedures change the members’ hostnames as follows:

• mongodb0.example.net:27017 (the primary)

• mongodb1.example.net:27017

• mongodb2.example.net:27017

Use the most appropriate procedure for your deployment.

Change Hostnames while Maintaining Replica Set Availability

This procedure uses the above assumptions (page 171).

1. For each secondary in the replica set, perform the following sequence of operations:

(a) Stop the secondary.

(b) Restart the secondary at the new location.

5.1. Replica Set Tutorials 171

MongoDB Administration, Release 3.2.3

(c) Open a mongo shell connected to the replica set’s primary. In our example, the primary runs on port
27017 so you would issue the following command:

mongo --port 27017

(d) Use rs.reconfig() to update the replica set configuration document with the new
hostname.

For example, the following sequence of commands updates the hostname for the secondary at the array
index 1 of the members array (i.e. members[1]) in the replica set configuration document:

cfg = rs.conf()
cfg.members[1].host = "mongodb1.example.net:27017"
rs.reconfig(cfg)

For more information on updating the configuration document, see replica-set-reconfiguration-usage.

(e) Make sure your client applications are able to access the set at the new location and that the secondary has
a chance to catch up with the other members of the set.

Repeat the above steps for each non-primary member of the set.

2. Open a mongo shell connected to the primary and step down the primary using the rs.stepDown() method:

rs.stepDown()

The replica set elects another member to the become primary.

3. When the step down succeeds, shut down the old primary.

4. Start the mongod instance that will become the new primary in the new location.

5. Connect to the current primary, which was just elected, and update the replica set configuration
document with the hostname of the node that is to become the new primary.

For example, if the old primary was at position 0 and the new primary’s hostname is
mongodb0.example.net:27017, you would run:

cfg = rs.conf()
cfg.members[0].host = "mongodb0.example.net:27017"
rs.reconfig(cfg)

6. Open a mongo shell connected to the new primary.

7. To confirm the new configuration, call rs.conf() in the mongo shell.

Your output should resemble:

{
"_id" : "rs",
"version" : 4,
"members" : [

{
"_id" : 0,
"host" : "mongodb0.example.net:27017"

},
{

"_id" : 1,
"host" : "mongodb1.example.net:27017"

},
{

"_id" : 2,
"host" : "mongodb2.example.net:27017"

172 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

}
]

}

Change All Hostnames at the Same Time

This procedure uses the above assumptions (page 171).

1. Stop all members in the replica set.

2. Restart each member on a different port and without using the --replSet run-time option. Changing the port
number during maintenance prevents clients from connecting to this host while you perform maintenance. Use
the member’s usual --dbpath, which in this example is /data/db1. Use a command that resembles the
following:

mongod --dbpath /data/db1/ --port 37017

3. For each member of the replica set, perform the following sequence of operations:

(a) Open a mongo shell connected to the mongod running on the new, temporary port. For example, for a
member running on a temporary port of 37017, you would issue this command:

mongo --port 37017

(b) Edit the replica set configuration manually. The replica set configuration is the only document in the
system.replset collection in the local database. Edit the replica set configuration with the new
hostnames and correct ports for all the members of the replica set. Consider the following sequence of
commands to change the hostnames in a three-member set:

use local

cfg = db.system.replset.findOne({ "_id": "rs" })

cfg.members[0].host = "mongodb0.example.net:27017"

cfg.members[1].host = "mongodb1.example.net:27017"

cfg.members[2].host = "mongodb2.example.net:27017"

db.system.replset.update({ "_id": "rs" } , cfg)

(c) Stop the mongod process on the member.

4. After re-configuring all members of the set, start each mongod instance in the normal way: use the usual port
number and use the --replSet option. For example:

mongod --dbpath /data/db1/ --port 27017 --replSet rs

5. Connect to one of the mongod instances using the mongo shell. For example:

mongo --port 27017

6. To confirm the new configuration, call rs.conf() in the mongo shell.

Your output should resemble:

{
"_id" : "rs",
"version" : 4,

5.1. Replica Set Tutorials 173

MongoDB Administration, Release 3.2.3

"members" : [
{

"_id" : 0,
"host" : "mongodb0.example.net:27017"

},
{

"_id" : 1,
"host" : "mongodb1.example.net:27017"

},
{

"_id" : 2,
"host" : "mongodb2.example.net:27017"

}
]

}

Configure a Secondary’s Sync Target

On this page

• Overview (page 174)
• Considerations (page 174)
• Procedure (page 175)

Overview

Secondaries capture data from the primary member to maintain an up to date copy of the sets’ data.
However, by default secondaries may automatically change their sync targets to secondary members based
on changes in the ping time between members and the state of other members’ replication. See
https://docs.mongodb.org/manual/core/replica-set-sync and Manage Chained Replication
(page 169) for more information.

For some deployments, implementing a custom replication sync topology may be more effective than the default sync
target selection logic. MongoDB provides the ability to specify a host to use as a sync target.

To override the default sync target selection logic, you may manually configure a secondary member’s sync target to
temporarily pull oplog entries. The following provide access to this functionality:

• replSetSyncFrom command, or

• rs.syncFrom() helper in the mongo shell

Considerations

Sync Logic Only modify the default sync logic as needed, and always exercise caution. rs.syncFrom() will
not affect an in-progress initial sync operation. To affect the sync target for the initial sync, run rs.syncFrom()
operation before initial sync.

If you run rs.syncFrom() during initial sync, MongoDB produces no error messages, but the sync target will not
change until after the initial sync operation.

174 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Persistence replSetSyncFrom and rs.syncFrom() provide a temporary override of default behavior.
mongod will revert to the default sync behavior in the following situations:

• The mongod instance restarts.

• The connection between the mongod and the sync target closes.

Changed in version 2.4: The sync target falls more than 30 seconds behind another member of the replica set; the
mongod will revert to the default sync target.

Target The member to sync from must be a valid source for data in the set. To sync from a member, the member
must:

• Have data. It cannot be an arbiter, in startup or recovering mode, and must be able to answer data queries.

• Be accessible.

• Be a member of the same set in the replica set configuration.

• Build indexes with the members[n].buildIndexes setting.

• A different member of the set, to prevent syncing from itself.

If you attempt to replicate from a member that is more than 10 seconds behind the current member, mongod will log
a warning but will still replicate from the lagging member.

If you run replSetSyncFrom during initial sync, MongoDB produces no error messages, but the sync target will
not change until after the initial sync operation.

Procedure

To use the replSetSyncFrom command in the mongo shell:

db.adminCommand({ replSetSyncFrom: "hostname<:port>" });

To use the rs.syncFrom() helper in the mongo shell:

rs.syncFrom("hostname<:port>");

5.1.4 Troubleshoot Replica Sets

On this page

• Check Replica Set Status (page 176)
• Check the Replication Lag (page 176)
• Test Connections Between all Members (page 177)
• Socket Exceptions when Rebooting More than One Secondary (page 178)
• Check the Size of the Oplog (page 178)
• Oplog Entry Timestamp Error (page 179)
• Duplicate Key Error on local.slaves (page 180)

This section describes common strategies for troubleshooting replica set deployments.

5.1. Replica Set Tutorials 175

MongoDB Administration, Release 3.2.3

Check Replica Set Status

To display the current state of the replica set and current state of each member, run the rs.status() method in a
mongo shell connected to the replica set’s primary. For descriptions of the information displayed by rs.status(),
see https://docs.mongodb.org/manual/reference/command/replSetGetStatus.

Note: The rs.status() method is a wrapper that runs the replSetGetStatus database command.

Check the Replication Lag

Replication lag is a delay between an operation on the primary and the application of that operation from the oplog to
the secondary. Replication lag can be a significant issue and can seriously affect MongoDB replica set deployments.
Excessive replication lag makes “lagged” members ineligible to quickly become primary and increases the possibility
that distributed read operations will be inconsistent.

To check the current length of replication lag:

• In a mongo shell connected to the primary, call the rs.printSlaveReplicationInfo() method.

Returns the syncedTo value for each member, which shows the time when the last oplog entry was written to
the secondary, as shown in the following example:

source: m1.example.net:27017
syncedTo: Thu Apr 10 2014 10:27:47 GMT-0400 (EDT)
0 secs (0 hrs) behind the primary

source: m2.example.net:27017
syncedTo: Thu Apr 10 2014 10:27:47 GMT-0400 (EDT)
0 secs (0 hrs) behind the primary

A delayed member may show as 0 seconds behind the primary when the inactivity period on the primary is
greater than the members[n].slaveDelay value.

Note: The rs.status() method is a wrapper around the replSetGetStatus database command.

• Monitor the rate of replication by watching the oplog time in the “replica” graph in the MongoDB Cloud Man-
ager3 and in Ops Manager, an on-premise solution available in MongoDB Enterprise Advanced4. For more
information see the MongoDB Cloud Manager documentation5 and Ops Manager documentation6.

Possible causes of replication lag include:

• Network Latency

Check the network routes between the members of your set to ensure that there is no packet loss or network
routing issue.

Use tools including ping to test latency between set members and traceroute to expose the routing of
packets network endpoints.

• Disk Throughput

If the file system and disk device on the secondary is unable to flush data to disk as quickly as the primary, then
the secondary will have difficulty keeping state. Disk-related issues are incredibly prevalent on multi-tenant
systems, including virtualized instances, and can be transient if the system accesses disk devices over an IP
network (as is the case with Amazon’s EBS system.)

3https://cloud.mongodb.com/?jmp=docs
4https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
5https://docs.cloud.mongodb.com/
6https://docs.opsmanager.mongodb.com/current/

176 Chapter 5. Appendix

https://cloud.mongodb.com/?jmp=docs
https://cloud.mongodb.com/?jmp=docs
https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs
https://docs.cloud.mongodb.com/
https://docs.opsmanager.mongodb.com/current/

MongoDB Administration, Release 3.2.3

Use system-level tools to assess disk status, including iostat or vmstat.

• Concurrency

In some cases, long-running operations on the primary can block replication on secondaries. For best results,
configure write concern to require confirmation of replication to secondaries. This prevents write operations
from returning if replication cannot keep up with the write load.

Use the database profiler to see if there are slow queries or long-running operations that correspond to the
incidences of lag.

• Appropriate Write Concern

If you are performing a large data ingestion or bulk load operation that requires a large number of writes to the
primary, particularly with unacknowledged write concern, the secondaries will not be able to read the
oplog fast enough to keep up with changes.

To prevent this, request write acknowledgment write concern after every 100, 1,000, or an another
interval to provide an opportunity for secondaries to catch up with the primary.

For more information see:

– Write Concern

– Replica Set Write Concern

– replica-set-oplog-sizing

Test Connections Between all Members

All members of a replica set must be able to connect to every other member of the set to support replication. Always
verify connections in both “directions.” Networking topologies and firewall configurations can prevent normal and
required connectivity, which can block replication.

Consider the following example of a bidirectional test of networking:

Example
Given a replica set with three members running on three separate hosts:

• m1.example.net

• m2.example.net

• m3.example.net

1. Test the connection from m1.example.net to the other hosts with the following operation set
m1.example.net:

mongo --host m2.example.net --port 27017

mongo --host m3.example.net --port 27017

2. Test the connection from m2.example.net to the other two hosts with the following operation set from
m2.example.net, as in:

mongo --host m1.example.net --port 27017

mongo --host m3.example.net --port 27017

You have now tested the connection between m2.example.net and m1.example.net in both directions.

5.1. Replica Set Tutorials 177

MongoDB Administration, Release 3.2.3

3. Test the connection from m3.example.net to the other two hosts with the following operation set from the
m3.example.net host, as in:

mongo --host m1.example.net --port 27017

mongo --host m2.example.net --port 27017

If any connection, in any direction fails, check your networking and firewall configuration and reconfigure your envi-
ronment to allow these connections.

Socket Exceptions when Rebooting More than One Secondary

When you reboot members of a replica set, ensure that the set is able to elect a primary during the maintenance. This
means ensuring that a majority of the set’s members[n].votes are available.

When a set’s active members can no longer form a majority, the set’s primary steps down and becomes a secondary.
The former primary closes all open connections to client applications. Clients attempting to write to the former primary
receive socket exceptions and Connection reset errors until the set can elect a primary.

Example
Given a three-member replica set where every member has one vote, the set can elect a primary if at least two members
can connect to each other. If you reboot the two secondaries at once, the primary steps down and becomes a secondary.
Until at least another secondary becomes available, i.e. at least one of the rebooted secondaries also becomes available,
the set has no primary and cannot elect a new primary.

For more information on votes, see https://docs.mongodb.org/manual/core/replica-set-elections.
For related information on connection errors, see faq-keepalive.

Check the Size of the Oplog

A larger oplog can give a replica set a greater tolerance for lag, and make the set more resilient.

To check the size of the oplog for a given replica set member, connect to the member in a mongo shell and run the
rs.printReplicationInfo() method.

The output displays the size of the oplog and the date ranges of the operations contained in the oplog. In the following
example, the oplog is about 10 MB and is able to fit about 26 hours (94400 seconds) of operations:

configured oplog size: 10.10546875MB
log length start to end: 94400 (26.22hrs)
oplog first event time: Mon Mar 19 2012 13:50:38 GMT-0400 (EDT)
oplog last event time: Wed Oct 03 2012 14:59:10 GMT-0400 (EDT)
now: Wed Oct 03 2012 15:00:21 GMT-0400 (EDT)

The oplog should be long enough to hold all transactions for the longest downtime you expect on a secondary. At a
minimum, an oplog should be able to hold minimum 24 hours of operations; however, many users prefer to have 72
hours or even a week’s work of operations.

For more information on how oplog size affects operations, see:

• replica-set-oplog-sizing,

• replica-set-delayed-members, and

• Check the Replication Lag (page 176).

178 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Note: You normally want the oplog to be the same size on all members. If you resize the oplog, resize it on all
members.

To change oplog size, see the Change the Size of the Oplog (page 156) tutorial.

Oplog Entry Timestamp Error

Consider the following error in mongod output and logs:

replSet error fatal couldn't query the local local.oplog.rs collection. Terminating mongod after 30 seconds.
<timestamp> [rsStart] bad replSet oplog entry?

Often, an incorrectly typed value in the ts field in the last oplog entry causes this error. The correct data type is
Timestamp.

Check the type of the ts value using the following two queries against the oplog collection:

db = db.getSiblingDB("local")
db.oplog.rs.find().sort({$natural:-1}).limit(1)
db.oplog.rs.find({ts:{$type:17}}).sort({$natural:-1}).limit(1)

The first query returns the last document in the oplog, while the second returns the last document in the oplog where
the ts value is a Timestamp. The $type operator allows you to select BSON type 17, is the Timestamp data type.

If the queries don’t return the same document, then the last document in the oplog has the wrong data type in the ts
field.

Example
If the first query returns this as the last oplog entry:

{ "ts" : {t: 1347982456000, i: 1},
"h" : NumberLong("8191276672478122996"),
"op" : "n",
"ns" : "",
"o" : { "msg" : "Reconfig set", "version" : 4 } }

And the second query returns this as the last entry where ts has the Timestamp type:

{ "ts" : Timestamp(1347982454000, 1),
"h" : NumberLong("6188469075153256465"),
"op" : "n",
"ns" : "",
"o" : { "msg" : "Reconfig set", "version" : 3 } }

Then the value for the ts field in the last oplog entry is of the wrong data type.

To set the proper type for this value and resolve this issue, use an update operation that resembles the following:

db.oplog.rs.update({ ts: { t:1347982456000, i:1 } },
{ $set: { ts: new Timestamp(1347982456000, 1)}})

Modify the timestamp values as needed based on your oplog entry. This operation may take some period to complete
because the update must scan and pull the entire oplog into memory.

5.1. Replica Set Tutorials 179

MongoDB Administration, Release 3.2.3

Duplicate Key Error on local.slaves

Changed in version 3.0.0.

MongoDB 3.0.0 removes the local.slaves collection. For local.slaves error in earlier versions of Mon-
goDB, refer to the appropriate version of the MongoDB Manual.

5.2 Sharded Cluster Tutorials

The following tutorials provide instructions for administering sharded clusters. For a higher-level overview, see
https://docs.mongodb.org/manual/sharding.

Sharded Cluster Deployment Tutorials (page 180) Instructions for deploying sharded clusters, adding shards, select-
ing shard keys, and the initial configuration of sharded clusters.

Deploy a Sharded Cluster (page 181) Set up a sharded cluster by creating the needed data directories, starting
the required MongoDB instances, and configuring the cluster settings.

Considerations for Selecting Shard Keys (page 186) Choose the field that MongoDB uses to parse a collec-
tion’s documents for distribution over the cluster’s shards. Each shard holds documents with values within
a certain range.

Shard a Collection Using a Hashed Shard Key (page 188) Shard a collection based on hashes of a field’s val-
ues in order to ensure even distribution over the collection’s shards.

Add Shards to a Cluster (page 189) Add a shard to add capacity to a sharded cluster.

Continue reading from Sharded Cluster Deployment Tutorials (page 180) for additional tutorials.

Sharded Cluster Maintenance Tutorials (page 200) Procedures and tasks for common operations on active sharded
clusters.

View Cluster Configuration (page 201) View status information about the cluster’s databases, shards, and
chunks.

Remove Shards from an Existing Sharded Cluster (page 216) Migrate a single shard’s data and remove the
shard.

Manage Shard Tags (page 227) Use tags to associate specific ranges of shard key values with specific shards.

Continue reading from Sharded Cluster Maintenance Tutorials (page 200) for additional tutorials.

Sharded Cluster Data Management (page 218) Practices that address common issues in managing large sharded
data sets.

Troubleshoot Sharded Clusters (page 232) Presents solutions to common issues and con-
cerns relevant to the administration and use of sharded clusters. Refer to
https://docs.mongodb.org/manual/faq/diagnostics for general diagnostic information.

5.2.1 Sharded Cluster Deployment Tutorials

The following tutorials provide information on deploying sharded clusters.

Deploy a Sharded Cluster (page 181) Set up a sharded cluster by creating the needed data directories, starting the
required MongoDB instances, and configuring the cluster settings.

Considerations for Selecting Shard Keys (page 186) Choose the field that MongoDB uses to parse a collection’s doc-
uments for distribution over the cluster’s shards. Each shard holds documents with values within a certain range.

180 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Shard a Collection Using a Hashed Shard Key (page 188) Shard a collection based on hashes of a field’s values in
order to ensure even distribution over the collection’s shards.

Add Shards to a Cluster (page 189) Add a shard to add capacity to a sharded cluster.

Convert a Replica Set to a Sharded Cluster (page 190) Convert a replica set to a sharded cluster in which each shard
is its own replica set.

Upgrade Config Servers to Replica Set (page 196) Replace your sharded cluster with a single replica set.

Convert Sharded Cluster to Replica Set (page 199) Replace your sharded cluster with a single replica set.

Deploy a Sharded Cluster

On this page

• Considerations (page 181)
• Deploy the Config Server Replica Set (page 181)
• Start the mongos Instances (page 182)
• Add Shards to the Cluster (page 183)
• Enable Sharding for a Database (page 183)
• Shard a Collection (page 184)
• Using 3 Mirrored Config Servers (Deprecated) (page 185)

Changed in version 3.2.

Starting in MongoDB 3.2, config servers for sharded clusters can be deployed as a replica set. The replica set
config servers must run the WiredTiger storage engine. MongoDB 3.2 deprecates the use of three mirrored
mongod instances for config servers.

The following tutorial deploys a new sharded cluster for MongoDB 3.2. To deploy a sharded cluster for earlier versions
of MongoDB, refer to the corresponding version of the MongoDB Manual.

Considerations

Host Identifier

Warning: Sharding and “localhost” Addresses
If you use either “localhost” or 127.0.0.1 as the hostname portion of any host identifier, for example as the
host argument to addShard or the value to the --configdb run time option, then you must use “localhost”
or 127.0.0.1 for all host settings for any MongoDB instances in the cluster. If you mix localhost addresses and
remote host address, MongoDB will error.

Connectivity All members of a sharded cluster must be able to connect to all other members of a sharded cluster,
including all shards and all config servers. Ensure that the network and security systems, including all interfaces and
firewalls, allow these connections.

Deploy the Config Server Replica Set

Changed in version 3.2: Starting in MongoDB 3.2, config servers for sharded clusters can be deployed as a replica
set. The replica set config servers must run the WiredTiger storage engine. MongoDB 3.2 deprecates the
use of three mirrored mongod instances for config servers.

The following restrictions apply to a replica set configuration when used for config servers:

5.2. Sharded Cluster Tutorials 181

MongoDB Administration, Release 3.2.3

• Must have zero arbiters.

• Must have no delayed members.

• Must build indexes (i.e. no member should have buildIndexes setting set to false).

The config servers store the sharded cluster’s metadata. The following steps deploy a three member replica set for the
config servers.

1. Start all the config servers with both the --configsvr and --replSet <name> options:

mongod --configsvr --replSet configReplSet --port <port> --dbpath <path>

Or if using a configuration file, include the sharding.clusterRole and
replication.replSetName setting:

sharding:
clusterRole: configsvr

replication:
replSetName: configReplSet

net:
port: <port>

storage:
dbpath: <path>

For additional options, see https://docs.mongodb.org/manual/reference/program/mongod
or https://docs.mongodb.org/manual/reference/configuration-options.

2. Connect a mongo shell to one of the config servers and run rs.initiate() to initiate the replica set.

rs.initiate({
_id: "configReplSet",
configsvr: true,
members: [

{ _id: 0, host: "<host1>:<port1>" },
{ _id: 1, host: "<host2>:<port2>" },
{ _id: 2, host: "<host3>:<port3>" }

]
})

To use the deprecated mirrored config server deployment topology, see Start 3 Mirrored Config Servers (Deprecated)
(page 185).

Start the mongos Instances

The mongos instances are lightweight and do not require data directories. You can run a mongos instance on a
system that runs other cluster components, such as on an application server or a server running a mongod process. By
default, a mongos instance runs on port 27017.

When you start the mongos instance, specify the config servers, using either the sharding.configDB setting in
the configuration file or the --configdb command line option.

Note: All config servers must be running and available when you first initiate a sharded cluster.

1. Start one or more mongos instances. For --configdb, or sharding.configDB, specify the config server
replica set name followed by a slash https://docs.mongodb.org/manual/ and at least one of the
config server hostnames and ports:

182 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

mongos --configdb configReplSet/<cfgsvr1:port1>,<cfgsvr2:port2>,<cfgsvr3:port3>

If using the deprecated mirrored config server deployment topology, see Start the mongos Instances (Deprecated)
(page 185).

Add Shards to the Cluster

A shard can be a standalone mongod or a replica set. In a production environment, each shard should be a replica set.
Use the procedure in Deploy a Replica Set (page 128) to deploy replica sets for each shard.

1. From a mongo shell, connect to the mongos instance. Issue a command using the following syntax:

mongo --host <hostname of machine running mongos> --port <port mongos listens on>

For example, if a mongos is accessible at mongos0.example.net on port 27017, issue the following
command:

mongo --host mongos0.example.net --port 27017

2. Add each shard to the cluster using the sh.addShard() method, as shown in the examples below. Issue
sh.addShard() separately for each shard. If the shard is a replica set, specify the name of the replica set and
specify a member of the set. In production deployments, all shards should be replica sets.

Optional
You can instead use the addShard database command, which lets you specify a name and maximum size for
the shard. If you do not specify these, MongoDB automatically assigns a name and maximum size. To use the
database command, see addShard.

The following are examples of adding a shard with sh.addShard():

• To add a shard for a replica set named rs1 with a member running on port 27017 on
mongodb0.example.net, issue the following command:

sh.addShard("rs1/mongodb0.example.net:27017")

• To add a shard for a standalone mongod on port 27017 of mongodb0.example.net, issue the fol-
lowing command:

sh.addShard("mongodb0.example.net:27017")

Note: It might take some time for chunks to migrate to the new shard.

Enable Sharding for a Database

Before you can shard a collection, you must enable sharding for the collection’s database. Enabling sharding for a
database does not redistribute data but make it possible to shard the collections in that database.

Once you enable sharding for a database, MongoDB assigns a primary shard for that database where MongoDB stores
all data before sharding begins.

1. From a mongo shell, connect to the mongos instance. Issue a command using the following syntax:

mongo --host <hostname of machine running mongos> --port <port mongos listens on>

5.2. Sharded Cluster Tutorials 183

MongoDB Administration, Release 3.2.3

2. Issue the sh.enableSharding()method, specifying the name of the database for which to enable sharding.
Use the following syntax:

sh.enableSharding("<database>")

Optionally, you can enable sharding for a database using the enableSharding command, which uses the following
syntax:

db.runCommand({ enableSharding: <database> })

Shard a Collection

You shard on a per-collection basis.

1. Determine what you will use for the shard key. Your selection of the shard key affects the efficiency of sharding.
See the selection considerations listed in the Considerations for Selecting Shard Key (page 186).

2. If the collection already contains data you must create an index on the shard key using createIndex(). If
the collection is empty then MongoDB will create the index as part of the sh.shardCollection() step.

3. Shard a collection by issuing the sh.shardCollection() method in the mongo shell. The method uses
the following syntax:

sh.shardCollection("<database>.<collection>", shard-key-pattern)

Replace the <database>.<collection> string with the full namespace of your database, which consists
of the name of your database, a dot (e.g. .), and the full name of the collection. The shard-key-pattern
represents your shard key, which you specify in the same form as you would an index key pattern.

Example
The following sequence of commands shards four collections:

sh.shardCollection("records.people", { "zipcode": 1, "name": 1 })
sh.shardCollection("people.addresses", { "state": 1, "_id": 1 })
sh.shardCollection("assets.chairs", { "type": 1, "_id": 1 })
sh.shardCollection("events.alerts", { "_id": "hashed" })

In order, these operations shard:

(a) The people collection in the records database using the shard key { "zipcode": 1, "name":
1 }.

This shard key distributes documents by the value of the zipcode field. If a number of documents have
the same value for this field, then that chunk will be splittable (page 187) by the values of the name field.

(b) The addresses collection in the people database using the shard key { "state": 1, "_id":
1 }.

This shard key distributes documents by the value of the state field. If a number of documents have the
same value for this field, then that chunk will be splittable (page 187) by the values of the _id field.

(c) The chairs collection in the assets database using the shard key { "type": 1, "_id": 1
}.

This shard key distributes documents by the value of the type field. If a number of documents have the
same value for this field, then that chunk will be splittable (page 187) by the values of the _id field.

(d) The alerts collection in the events database using the shard key { "_id": "hashed" }.

184 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

This shard key distributes documents by a hash of the value of the _id field. MongoDB computes the
hash of the _id field for the hashed index, which should provide an even distribution of documents across
a cluster.

Using 3 Mirrored Config Servers (Deprecated)

Start 3 Mirrored Config Servers (Deprecated) Changed in version 3.2: Starting in MongoDB 3.2, config servers
for sharded clusters can be deployed as a replica set. The replica set config servers must run the WiredTiger
storage engine. MongoDB 3.2 deprecates the use of three mirrored mongod instances for config servers.

In production deployments, if using mirrored config servers, you must deploy exactly three config server instances,
each running on different servers to assure good uptime and data safety. In test environments, you can run all three
instances on a single server.

Important: All members of a sharded cluster must be able to connect to all other members of a sharded cluster,
including all shards and all config servers. Ensure that the network and security systems including all interfaces and
firewalls, allow these connections.

1. Create data directories for each of the three config server instances. By default, a config server stores its data
files in the /data/configdb directory. You can choose a different location. To create a data directory, issue a
command similar to the following:

mkdir /data/configdb

2. Start the three config server instances. Start each by issuing a command using the following syntax:

mongod --configsvr --dbpath <path> --port <port>

The default port for config servers is 27019. You can specify a different port. The following example starts a
config server using the default port and default data directory:

mongod --configsvr --dbpath /data/configdb --port 27019

For additional command options, see https://docs.mongodb.org/manual/reference/program/mongod
or https://docs.mongodb.org/manual/reference/configuration-options.

Note: All config servers must be running and available when you first initiate a sharded cluster.

Start the mongos Instances (Deprecated) Changed in version 3.2: Starting in MongoDB 3.2, config servers for
sharded clusters can be deployed as a replica set. The replica set config servers must run the WiredTiger
storage engine. MongoDB 3.2 deprecates the use of three mirrored mongod instances for config servers.

If using 3 mirrored config servers, when you start the mongos instance, specify the hostnames of the three config
servers, either in the configuration file or as command line parameters.

Tip
To avoid downtime, give each config server a logical DNS name (unrelated to the server’s physical or virtual host-
name). Without logical DNS names, moving or renaming a config server requires shutting down every mongod and
mongos instance in the sharded cluster.

To start a mongos instance, issue a command using the following syntax:

mongos --configdb <config server hostnames>

5.2. Sharded Cluster Tutorials 185

MongoDB Administration, Release 3.2.3

For example, to start a mongos that connects to config server instance running on the following hosts and on the
default ports:

• cfg0.example.net

• cfg1.example.net

• cfg2.example.net

You would issue the following command:

mongos --configdb cfg0.example.net:27019,cfg1.example.net:27019,cfg2.example.net:27019

Each mongos in a sharded cluster must use the same configDB string, with identical host names listed in identical
order.

If you start a mongos instance with a string that does not exactly match the string used by the other mongos instances
in the cluster, the mongos instance returns a Config Database String Error (page 232) error and refuses to start.

To add shards, enable sharding and shard a collection, see Add Shards to the Cluster (page 183), Enable Sharding for
a Database (page 183), and Shard a Collection (page 184).

Considerations for Selecting Shard Keys

Choosing a Shard Key

For many collections there may be no single, naturally occurring key that possesses all the qualities of a good shard
key. The following strategies may help construct a useful shard key from existing data:

1. Compute a more ideal shard key in your application layer, and store this in all of your documents, potentially in
the _id field.

2. Use a compound shard key that uses two or three values from all documents that provide the right mix of
cardinality with scalable write operations and query isolation.

3. Determine that the impact of using a less than ideal shard key is insignificant in your use case, given:

• limited write volume,

• expected data size, or

• application query patterns.

4. Use a hashed shard key. Choose a field that has high cardinality and create a hashed index on that field.
MongoDB uses these hashed index values as shard key values, which ensures an even distribution of documents
across the shards.

Tip
MongoDB automatically computes the hashes when resolving queries using hashed indexes. Applications do
not need to compute hashes.

Considerations for Selecting Shard Key

Choosing the correct shard key can have a great impact on the performance, capability, and functioning of your
database and cluster. Appropriate shard key choice depends on the schema of your data and the way that your appli-
cations query and write data.

186 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Create a Shard Key that is Easily Divisible An easily divisible shard key makes it easy for MongoDB to distribute
content among the shards. Shard keys that have a limited number of possible values can result in chunks that are
“unsplittable”.

For instance, if a chunk represents a single shard key value, then MongoDB cannot split the chunk even when the
chunk exceeds the size at which splits occur.

See also:

Cardinality (page 187)

Create a Shard Key that has High Degree of Randomness A shard key with high degree of randomness prevents
any single shard from becoming a bottleneck and will distribute write operations among the cluster.

See also:

sharding-shard-key-write-scaling

Create a Shard Key that Targets a Single Shard A shard key that targets a single shard makes it possible for the
mongos program to return most query operations directly from a single specific mongod instance. Your shard key
should be the primary field used by your queries. Fields with a high degree of “randomness” make it difficult to target
operations to specific shards.

See also:

sharding-shard-key-query-isolation

Shard Using a Compound Shard Key The challenge when selecting a shard key is that there is not always an
obvious choice. Often, an existing field in your collection may not be the optimal key. In those situations, computing
a special purpose shard key into an additional field or using a compound shard key may help produce one that is more
ideal.

Cardinality Cardinality in the context of MongoDB, refers to the ability of the system to partition data into chunks.
For example, consider a collection of data such as an “address book” that stores address records:

• Consider the use of a state field as a shard key:

The state key’s value holds the US state for a given address document. This field has a low cardinality as all
documents that have the same value in the state field must reside on the same shard, even if a particular state’s
chunk exceeds the maximum chunk size.

Since there are a limited number of possible values for the state field, MongoDB may distribute data unevenly
among a small number of fixed chunks. This may have a number of effects:

– If MongoDB cannot split a chunk because all of its documents have the same shard key, migrations involv-
ing these un-splittable chunks will take longer than other migrations, and it will be more difficult for your
data to stay balanced.

– If you have a fixed maximum number of chunks, you will never be able to use more than that number of
shards for this collection.

• Consider the use of a zipcode field as a shard key:

While this field has a large number of possible values, and thus has potentially higher cardinality, it’s possible
that a large number of users could have the same value for the shard key, which would make this chunk of users
un-splittable.

In these cases, cardinality depends on the data. If your address book stores records for a geographically dis-
tributed contact list (e.g. “Dry cleaning businesses in America,”) then a value like zipcode would be sufficient.

5.2. Sharded Cluster Tutorials 187

MongoDB Administration, Release 3.2.3

However, if your address book is more geographically concentrated (e.g “ice cream stores in Boston Mas-
sachusetts,”) then you may have a much lower cardinality.

• Consider the use of a phone-number field as a shard key:

Phone number has a high cardinality, because users will generally have a unique value for this field, MongoDB
will be able to split as many chunks as needed.

While “high cardinality,” is necessary for ensuring an even distribution of data, having a high cardinality does not
guarantee sufficient query isolation or appropriate write scaling.

If you choose a shard key with low cardinality, some chunks may grow too large for MongoDB to migrate. See
jumbo-chunks for more information.

Shard Key Selection Strategy

When selecting a shard key, it is difficult to balance the qualities of an ideal shard key, which sometimes dictate
opposing strategies. For instance, it’s difficult to produce a key that has both a high degree randomness for even data
distribution and a shard key that allows your application to target specific shards. For some workloads, it’s more
important to have an even data distribution, and for others targeted queries are essential.

Therefore, the selection of a shard key is about balancing both your data and the performance characteristics caused
by different possible data distributions and system workloads.

Shard a Collection Using a Hashed Shard Key

On this page

• Shard the Collection (page 188)
• Specify the Initial Number of Chunks (page 188)

New in version 2.4.

Hashed shard keys use a hashed index of a field as the shard key to partition data across your sharded cluster.

For suggestions on choosing the right field as your hashed shard key, see sharding-hashed-sharding. For limitations
on hashed indexes, see index-hashed-index.

Note: If chunk migrations are in progress while creating a hashed shard key collection, the initial chunk distribution
may be uneven until the balancer automatically balances the collection.

Shard the Collection

To shard a collection using a hashed shard key, use an operation in the mongo that resembles the following:

sh.shardCollection("records.active", { a: "hashed" })

This operation shards the active collection in the records database, using a hash of the a field as the shard key.

Specify the Initial Number of Chunks

If you shard an empty collection using a hashed shard key, MongoDB automatically creates and migrates empty chunks
so that each shard has two chunks. To control how many chunks MongoDB creates when sharding the collection, use

188 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

shardCollection with the numInitialChunks parameter.

Important: MongoDB 2.4 adds support for hashed shard keys. After sharding a collection with a hashed shard key,
you must use the MongoDB 2.4 or higher mongos and mongod instances in your sharded cluster.

Warning: MongoDB hashed indexes truncate floating point numbers to 64-bit integers before hashing. For
example, a hashed index would store the same value for a field that held a value of 2.3, 2.2, and 2.9. To
prevent collisions, do not use a hashed index for floating point numbers that cannot be reliably converted to
64-bit integers (and then back to floating point). MongoDB hashed indexes do not support floating point values
larger than 253.

Add Shards to a Cluster

On this page

• Considerations (page 189)
• Add a Shard to a Cluster (page 189)

You add shards to a sharded cluster after you create the cluster or any time that you need to add capacity to the cluster.
If you have not created a sharded cluster, see Deploy a Sharded Cluster (page 181).

In production environments, all shards should be replica sets.

Considerations

Balancing When you add a shard to a sharded cluster, you affect the balance of chunks among the shards of a cluster
for all existing sharded collections. The balancer will begin migrating chunks so that the cluster will achieve balance.
See https://docs.mongodb.org/manual/core/sharding-balancing for more information.

Changed in version 2.6: Chunk migrations can have an impact on disk space. Starting in MongoDB 2.6, the source
shard automatically archives the migrated documents by default. For details, see moveChunk-directory.

Capacity Planning When adding a shard to a cluster, always ensure that the cluster has enough capacity to support
the migration required for balancing the cluster without affecting legitimate production traffic.

Add a Shard to a Cluster

You interact with a sharded cluster by connecting to a mongos instance.

1. From a mongo shell, connect to the mongos instance. For example, if a mongos is accessible at
mongos0.example.net on port 27017, issue the following command:

mongo --host mongos0.example.net --port 27017

2. Add a shard to the cluster using the sh.addShard() method, as shown in the examples below. Issue
sh.addShard() separately for each shard. If the shard is a replica set, specify the name of the replica
set and specify a member of the set. In production deployments, all shards should be replica sets.

Optional

5.2. Sharded Cluster Tutorials 189

MongoDB Administration, Release 3.2.3

You can instead use the addShard database command, which lets you specify a name and maximum size for
the shard. If you do not specify these, MongoDB automatically assigns a name and maximum size. To use the
database command, see addShard.

The following are examples of adding a shard with sh.addShard():

• To add a shard for a replica set named rs1 with a member running on port 27017 on
mongodb0.example.net, issue the following command:

sh.addShard("rs1/mongodb0.example.net:27017")

Changed in version 2.0.3.

For MongoDB versions prior to 2.0.3, you must specify all members of the replica set. For example:

sh.addShard("rs1/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017")

• To add a shard for a standalone mongod on port 27017 of mongodb0.example.net, issue the fol-
lowing command:

sh.addShard("mongodb0.example.net:27017")

Note: It might take some time for chunks to migrate to the new shard.

Convert a Replica Set to a Sharded Cluster

On this page

• Overview (page 190)
• Prerequisites (page 191)
• Procedures (page 191)

Overview

This tutorial converts a single three-member replica set to a sharded cluster with two shards. Each shard is an inde-
pendent three-member replica set. This tutorial is specific to MongoDB 3.2. For other versions of MongoDB, refer to
the corresponding version of the MongoDB Manual.

The procedure is as follows:

1. Create the initial three-member replica set and insert data into a collection. See Set Up Initial Replica Set
(page 191).

2. Start the config servers and a mongos. See Deploy Config Server Replica Set and mongos (page 192).

3. Add the initial replica set as a shard. See Add Initial Replica Set as a Shard (page 192).

4. Create a second shard and add to the cluster. See Add Second Shard (page 193).

5. Shard the desired collection. See Shard a Collection (page 193).

190 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Prerequisites

This tutorial uses a total of ten servers: one server for the mongos and three servers each for the first replica set, the
second replica set, and the config server replica set.

Each server must have a resolvable domain, hostname, or IP address within your system.

The tutorial uses the default data directories (e.g. /data/db and /data/configdb). Cre-
ate the appropriate directories with appropriate permissions. To use different paths, see
https://docs.mongodb.org/manual/reference/configuration-options .

The tutorial uses the default ports (e.g. 27017 and 27019). To use different ports, see
https://docs.mongodb.org/manual/reference/configuration-options.

Procedures

Set Up Initial Replica Set This procedure creates the initial three-member replica set rs0. The replica
set members are on the following hosts: mongodb0.example.net, mongodb1.example.net, and
mongodb2.example.net.

Step 1: Start each member of the replica set with the appropriate options. For each member, start a mongod,
specifying the replica set name through the replSet option. Include any other parameters specific to your deploy-
ment. For replication-specific parameters, see cli-mongod-replica-set.

mongod --replSet "rs0"

Repeat this step for the other two members of the rs0 replica set.

Step 2: Connect a mongo shell to a replica set member. Connect a mongo shell to one member of the replica set
(e.g. mongodb0.example.net)

mongo mongodb0.example.net

Step 3: Initiate the replica set. From the mongo shell, run rs.initiate() to initiate a replica set that consists
of the current member.

rs.initiate()

Step 4: Add the remaining members to the replica set.
rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")

Step 5: Create and populate a new collection. The following step adds one million documents to the collection
test_collection and can take several minutes depending on your system.

Issue the following operations on the primary of the replica set:

use test
var bulk = db.test_collection.initializeUnorderedBulkOp();
people = ["Marc", "Bill", "George", "Eliot", "Matt", "Trey", "Tracy", "Greg", "Steve", "Kristina", "Katie", "Jeff"];
for(var i=0; i<1000000; i++){

user_id = i;
name = people[Math.floor(Math.random()*people.length)];

5.2. Sharded Cluster Tutorials 191

MongoDB Administration, Release 3.2.3

number = Math.floor(Math.random()*10001);
bulk.insert({ "user_id":user_id, "name":name, "number":number });

}
bulk.execute();

For more information on deploying a replica set, see Deploy a Replica Set (page 128).

Deploy Config Server Replica Set and mongos Starting in MongoDB 3.2, config servers for sharded clusters can
be deployed as a replica set. The replica set config servers must run the WiredTiger storage engine.
MongoDB 3.2 deprecates the use of three mirrored mongod instances for config servers.

This procedure deploys the three-member replica set for the config servers and the mongos.

• The config servers use the following hosts: mongodb7.example.net, mongodb8.example.net, and
mongodb9.example.net.

• The mongos uses mongodb6.example.net.

Step 1: Deploy the config servers as a three-member replica set. Start a config server on
mongodb7.example.net, mongodb8.example.net, and mongodb9.example.net. Specify the same
replica set name. The config servers use the default data directory /data/configdb and the default port 27019.

mongod --configsvr --replSet configReplSet

To modify the default settings or to include additional options specific to your deploy-
ment, see https://docs.mongodb.org/manual/reference/program/mongod or
https://docs.mongodb.org/manual/reference/configuration-options.

Connect a mongo shell to one of the config servers and run rs.initiate() to initiate the replica set.

rs.initiate({
_id: "configReplSet",
configsvr: true,
members: [

{ _id: 0, host: "mongodb07.example.net:27019" },
{ _id: 1, host: "mongodb08.example.net:27019" },
{ _id: 2, host: "mongodb09.example.net:27019" }

]
})

Step 2: Start a mongos instance. On mongodb6.example.net, start the mongos specifying the config server
replica set name followed by a slash https://docs.mongodb.org/manual/ and at least one of the config
server hostnames and ports.

This tutorial specifies a small --chunkSize of 1 MB to test sharding with the test_collection created earlier.

Note: In production environments, do not use a small chunkSize size.

mongos --configdb configReplSet/mongodb07.example.net:27019,mongodb08.example.net:27019,mongodb09.example.net:27019 --chunkSize 1

Add Initial Replica Set as a Shard The following procedure adds the initial replica set rs0 as a shard.

192 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Step 1: Connect a mongo shell to the mongos.
mongo mongodb6.example.net:27017/admin

Step 2: Add the shard. Add a shard to the cluster with the sh.addShard method:

sh.addShard("rs0/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017")

Add Second Shard The following procedure deploys a new replica set rs1 for the second shard and
adds it to the cluster. The replica set members are on the following hosts: mongodb3.example.net,
mongodb4.example.net, and mongodb5.example.net.

Step 1: Start each member of the replica set with the appropriate options. For each member, start a mongod,
specifying the replica set name through the replSet option. Include any other parameters specific to your deploy-
ment. For replication-specific parameters, see cli-mongod-replica-set.

mongod --replSet "rs1"

Repeat this step for the other two members of the rs1 replica set.

Step 2: Connect a mongo shell to a replica set member. Connect a mongo shell to one member of the replica set
(e.g. mongodb3.example.net)

mongo mongodb3.example.net

Step 3: Initiate the replica set. From the mongo shell, run rs.initiate() to initiate a replica set that consists
of the current member.

rs.initiate()

Step 4: Add the remaining members to the replica set. Add the remaining members with the rs.add() method.

rs.add("mongodb4.example.net")
rs.add("mongodb5.example.net")

Step 5: Connect a mongo shell to the mongos.
mongo mongodb6.example.net:27017/admin

Step 6: Add the shard. In a mongo shell connected to the mongos, add the shard to the cluster with the
sh.addShard() method:

sh.addShard("rs1/mongodb3.example.net:27017,mongodb4.example.net:27017,mongodb5.example.net:27017")

Shard a Collection

Step 1: Connect a mongo shell to the mongos.
mongo mongodb6.example.net:27017/admin

5.2. Sharded Cluster Tutorials 193

MongoDB Administration, Release 3.2.3

Step 2: Enable sharding for a database. Before you can shard a collection, you must first enable sharding for the
collection’s database. Enabling sharding for a database does not redistribute data but makes it possible to shard the
collections in that database.

The following operation enables sharding on the test database:

sh.enableSharding("test")

The operation returns the status of the operation:

{ "ok" : 1 }

Step 3: Determine the shard key. For the collection to shard, determine the shard key. The shard key determines
how MongoDB distributes the documents between shards. Good shard keys:

• have values that are evenly distributed among all documents,

• group documents that are often accessed at the same time into contiguous chunks, and

• allow for effective distribution of activity among shards.

Once you shard a collection with the specified shard key, you cannot change the shard key. For more information
on shard keys, see https://docs.mongodb.org/manual/core/sharding-shard-key and Considera-
tions for Selecting Shard Keys (page 186).

This procedure will use the number field as the shard key for test_collection.

Step 4: Create an index on the shard key. Before sharding a non-empty collection, create an index on the
shard key.

use test
db.test_collection.createIndex({ number : 1 })

Step 5: Shard the collection. In the test database, shard the test_collection, specifying number as the
shard key.

use test
sh.shardCollection("test.test_collection", { "number" : 1 })

The method returns the status of the operation:

{ "collectionsharded" : "test.test_collection", "ok" : 1 }

The balancer will redistribute chunks of documents when it next runs. As clients insert additional documents into
this collection, the mongos will route the documents between the shards.

Step 6: Confirm the shard is balancing. To confirm balancing activity, run db.stats() or
db.printShardingStatus() in the test database.

use test
db.stats()
db.printShardingStatus()

Example output of the db.stats():

194 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

{
"raw" : {

"rs0/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017" : {
"db" : "test",
"collections" : 3,
"objects" : 989316,
"avgObjSize" : 111.99974123535857,
"dataSize" : 110803136,
"storageSize" : 174751744,
"numExtents" : 14,
"indexes" : 2,
"indexSize" : 57370992,
"fileSize" : 469762048,
"ok" : 1

},
"rs1/mongodb3.example.net:27017,mongodb4.example.net:27017,mongodb5.example.net:27017" : {

"db" : "test",
"collections" : 3,
"objects" : 14697,
"avgObjSize" : 111.98258147921345,
"dataSize" : 1645808,
"storageSize" : 2809856,
"numExtents" : 7,
"indexes" : 2,
"indexSize" : 1169168,
"fileSize" : 67108864,
"ok" : 1

}
},
"objects" : 1004013,
"avgObjSize" : 111,
"dataSize" : 112448944,
"storageSize" : 177561600,
"numExtents" : 21,
"indexes" : 4,
"indexSize" : 58540160,
"fileSize" : 536870912,
"extentFreeList" : {

"num" : 0,
"totalSize" : 0

},
"ok" : 1

}

Example output of the db.printShardingStatus():

--- Sharding Status ---
sharding version: {

"_id" : 1,
"minCompatibleVersion" : 5,
"currentVersion" : 6,
"clusterId" : ObjectId("5446970c04ad5132c271597c")

}
shards:

{ "_id" : "rs0", "host" : "rs0/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017" }
{ "_id" : "rs1", "host" : "rs1/mongodb3.example.net:27017,mongodb4.example.net:27017,mongodb5.example.net:27017" }

active mongoses:
"3.2.0" : 2

balancer:

5.2. Sharded Cluster Tutorials 195

MongoDB Administration, Release 3.2.3

Currently enabled: yes
Currently running: no

Failed balancer rounds in last 5 attempts: 0
Migration Results for the last 24 hours:

1 : Success
databases:

{ "_id" : "test", "primary" : "rs0", "partitioned" : true }
test.test_collection

shard key: { "number" : 1 }
unique: false
balancing: true
chunks:

rs1 5
rs0 186

too many chunks to print, use verbose if you want to force print

Run these commands for a second time to demonstrate that chunks are migrating from rs0 to rs1.

Upgrade Config Servers to Replica Set

On this page

• Prerequisites (page 196)
• Procedure (page 196)

New in version 3.2: Starting in 3.2, config servers for a sharded cluster can be deployed as a replica set. The following
procedure upgrades three mirrored config servers to a config server replica set. Using a replica set for the config servers
improves consistency across the config servers, since MongoDB can take advantage of the standard replica set read
and write protocols for the config data. In addition, this allows a sharded cluster to have more than 3 config servers
since a replica set can have up to 50 members.

Prerequisites

• All binaries in the sharded clusters must be at least version 3.2. See 3.2-upgrade-cluster for instructions to
upgrade the sharded cluster.

• The existing config servers must be in sync.

Procedure

Important: The procedure outlined in this tutorial requires downtime.

1. Disable the balancer as described in Disable the Balancer (page 214).

2. Connect a mongo shell to the first config server listed in the configDB setting of the mongos and run
rs.initiate() to initiate the single member replica set.

rs.initiate({
_id: "csReplSet",
version: 1,
configsvr: true,

196 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

members: [{ _id: 0, host: "<host>:<port>" }]
})

• _id corresponds to the replica set name for the config servers.

• version set to 1, corresponding to the initial version of the replica set configuration.

• configsvr must be set be true.

• members array contains a document that specifies:

– members._id which is a numeric identifier for the member.

– members.host which is a string corresponding to the config server’s hostname and port.

3. Restart this config server as a single member replica set with:

• the --replSet option set to the replica set name specified during the rs.initiate(),

• the --configsvrMode option set to the legacy config server mode Sync Cluster Connection Config
(sccc),

• the --configsvr option, and

• the --storageEngine option set to the storage engine used by this config server. For this upgrade
procedure, the existing config server can be using either MMAPv1 or WiredTiger.

Include additional options as specific to your deployment.

mongod --configsvr --replSet csReplSet --configsvrMode=sccc --storageEngine <storageEngine> --port <port> --dbpath <path>

Or if using a configuration file, specify the replication.replSetName:,
sharding.clusterRole, sharding.configsvrMode and net.port.

sharding:
clusterRole: configsvr
configsvrMode: sccc

replication:
replSetName: csReplSet

net:
port: <port>

storage:
dbpath: <path>
engine: <storageEngine>

4. Start the new mongod instances to add to the replica set. These instances must use the WiredTiger storage
engine. Starting in 3.2, the default storage engine is WiredTiger for new mongod instances with new data paths.

Important:
• Do not add existing config servers to the replica set.

• Use new dbpaths for the new instances.

The number of new mongod instances to add depends on the config server currently in the single-member
replica set:

• If the config server is using MMAPv1, start 3 new mongod instances.

• If the config server is using WiredTiger, start 2 new mongod instances.

Note: The example in this procedure assumes that the existing config servers use MMAPv1.

5.2. Sharded Cluster Tutorials 197

MongoDB Administration, Release 3.2.3

For each new mongod instance to add, include the --configsvr and the --replSet options:

mongod --configsvr --replSet csReplSet --port <port> --dbpath <path>

Or if using a configuration file:

sharding:
clusterRole: configsvr

replication:
replSetName: csReplSet

net:
port: <port>

storage:
dbpath: <path>

5. Using the mongo shell connected the replica set config server, add the new mongod instances as non-voting,
priority 0 members:

rs.add({ host: <host:port>, priority: 0, votes: 0 })

6. Once all the new members have been added as non-voting, priority 0 members, ensure that the new nodes
have completed the initial sync and have reached SECONDARY state. To check the state of the replica set
members, run rs.status() in the mongo shell:

rs.status()

7. Shut down one of the other non-replica set config servers; i.e. either the second and third config server listed in
the configDB setting of the mongos.

8. Reconfigure the replica set to allow all members to vote and have default priority of 1.

var cfg = rs.conf();

cfg.members[0].priority = 1;
cfg.members[1].priority = 1;
cfg.members[2].priority = 1;
cfg.members[3].priority = 1;
cfg.members[0].votes = 1;
cfg.members[1].votes = 1;
cfg.members[2].votes = 1;
cfg.members[3].votes = 1;

rs.reconfig(cfg);

9. Step down the first config server, i.e. the server started with --configsvrMode=sccc.

rs.stepDown()

10. Shut down the following members of the sharded cluster:

• The mongos instances.

• The shards.

• The remaining non-replica set config servers.

11. Shut down the first config server.

If the first config server uses the MMAPv1 storage engine, remove the member from the replica set. Connect a
mongo shell to the current primary and use rs.remove():

Important: If the first config server uses the WiredTiger storage engine, do not remove.

198 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

rs.remove("<hostname>:<port>")

12. If the first config server uses WiredTiger, restart the first config server in config server replica set (CSRS)
mode; i.e. restart without the --configsvrMode=sccc option:

Important: If the first config server uses the MMAPv1 storage engine, do not restart.

mongod --configsvr --replSet csReplSet --storageEngine wiredTiger --port <port> --dbpath <path>

Or if using a configuration file, omit the sharding.configsvrMode setting:

sharding:
clusterRole: configsvr

replication:
replSetName: csReplSet

net:
port: <port>

storage:
dbpath: <path>
engine: <storageEngine>

13. Restart the shards.

14. Restart mongos instances with updated --configdb or configDB setting.

For the updated --configdb or configDB setting, specify the replica set name for the config servers and
the members in the replica set.

mongos --configdb csReplSet/<rsconfigsver1:port1>,<rsconfigsver2:port2>,<rsconfigsver3:port3>

15. Re-enable the balancer as described in Enable the Balancer (page 214).

Convert Sharded Cluster to Replica Set

On this page

• Convert a Cluster with a Single Shard into a Replica Set (page 199)
• Convert a Sharded Cluster into a Replica Set (page 200)

This tutorial describes the process for converting a sharded cluster to a non-sharded replica set. To con-
vert a replica set into a sharded cluster Convert a Replica Set to a Sharded Cluster (page 190). See the
https://docs.mongodb.org/manual/sharding documentation for more information on sharded clusters.

Convert a Cluster with a Single Shard into a Replica Set

In the case of a sharded cluster with only one shard, that shard contains the full data set. Use the following procedure
to convert that cluster into a non-sharded replica set:

1. Reconfigure the application to connect to the primary member of the replica set hosting the single shard that
system will be the new replica set.

2. Optionally remove the --shardsrv option, if your mongod started with this option.

Tip
Changing the --shardsrv option will change the port that mongod listens for incoming connections on.

5.2. Sharded Cluster Tutorials 199

MongoDB Administration, Release 3.2.3

The single-shard cluster is now a non-sharded replica set that will accept read and write operations on the data set.

You may now decommission the remaining sharding infrastructure.

Convert a Sharded Cluster into a Replica Set

Use the following procedure to transition from a sharded cluster with more than one shard to an entirely new replica
set.

1. With the sharded cluster running, deploy a new replica set (page 128) in addition to your sharded cluster. The
replica set must have sufficient capacity to hold all of the data files from all of the current shards combined. Do
not configure the application to connect to the new replica set until the data transfer is complete.

2. Stop all writes to the sharded cluster. You may reconfigure your application or stop all mongos instances.
If you stop all mongos instances, the applications will not be able to read from the database. If you stop all
mongos instances, start a temporary mongos instance on that applications cannot access for the data migration
procedure.

3. Use mongodump and mongorestore (page 81) to migrate the data from the mongos instance to the new replica
set.

Note: Not all collections on all databases are necessarily sharded. Do not solely migrate the sharded collections.
Ensure that all databases and all collections migrate correctly.

4. Reconfigure the application to use the non-sharded replica set instead of the mongos instance.

The application will now use the un-sharded replica set for reads and writes. You may now decommission the remain-
ing unused sharded cluster infrastructure.

5.2.2 Sharded Cluster Maintenance Tutorials

The following tutorials provide information in maintaining sharded clusters.

View Cluster Configuration (page 201) View status information about the cluster’s databases, shards, and chunks.

Replace a Config Server (page 202) Replace a config server in a config server replica set.

Migrate Config Servers with the Same Hostname (page 204) For a sharded cluster with three mirrored config
servers, migrate a config server to a new system while keeping the same hostname. This procedure requires
changing the DNS entry to point to the new system.

Migrate Config Servers with Different Hostnames (page 204) For a sharded cluster with three mirrored config
servers, migrate a config server to a new system that uses a new hostname. If possible, avoid changing the
hostname and instead use the Migrate Config Servers with the Same Hostname (page 204) procedure.

Migrate a Sharded Cluster to Different Hardware (page 206) Migrate a sharded cluster to a different hardware sys-
tem, for example, when moving a pre-production environment to production.

Backup Cluster Metadata (page 209) Create a backup of a sharded cluster’s metadata while keeping the cluster op-
erational.

Configure Behavior of Balancer Process in Sharded Clusters (page 209) Manage the balancer’s behavior by
scheduling a balancing window, changing size settings, or requiring replication before migration.

Manage Sharded Cluster Balancer (page 211) View balancer status and manage balancer behavior.

Remove Shards from an Existing Sharded Cluster (page 216) Migrate a single shard’s data and remove the shard.

200 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

View Cluster Configuration

On this page

• List Databases with Sharding Enabled (page 201)
• List Shards (page 201)
• View Cluster Details (page 201)

List Databases with Sharding Enabled

To list the databases that have sharding enabled, query the databases collection in the config-database. A database
has sharding enabled if the value of the partitioned field is true. Connect to a mongos instance with a mongo
shell, and run the following operation to get a full list of databases with sharding enabled:

use config
db.databases.find({ "partitioned": true })

Example
You can use the following sequence of commands when to return a list of all databases in the cluster:

use config
db.databases.find()

If this returns the following result set:

{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "animals", "partitioned" : true, "primary" : "m0.example.net:30001" }
{ "_id" : "farms", "partitioned" : false, "primary" : "m1.example2.net:27017" }

Then sharding is only enabled for the animals database.

List Shards

To list the current set of configured shards, use the listShards command, as follows:

use admin
db.runCommand({ listShards : 1 })

View Cluster Details

To view cluster details, issue db.printShardingStatus() or sh.status(). Both methods return the same
output.

Example
In the following example output from sh.status()

• sharding version displays the version number of the shard metadata.

• shards displays a list of the mongod instances used as shards in the cluster.

• databases displays all databases in the cluster, including database that do not have sharding enabled.

5.2. Sharded Cluster Tutorials 201

MongoDB Administration, Release 3.2.3

• The chunks information for the foo database displays how many chunks are on each shard and displays the
range of each chunk.

--- Sharding Status ---
sharding version: { "_id" : 1, "version" : 3 }
shards:
{ "_id" : "shard0000", "host" : "m0.example.net:30001" }
{ "_id" : "shard0001", "host" : "m3.example2.net:50000" }

databases:
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "contacts", "partitioned" : true, "primary" : "shard0000" }

foo.contacts
shard key: { "zip" : 1 }
chunks:

shard0001 2
shard0002 3
shard0000 2

{ "zip" : { "$minKey" : 1 } } -->> { "zip" : "56000" } on : shard0001 { "t" : 2, "i" : 0 }
{ "zip" : 56000 } -->> { "zip" : "56800" } on : shard0002 { "t" : 3, "i" : 4 }
{ "zip" : 56800 } -->> { "zip" : "57088" } on : shard0002 { "t" : 4, "i" : 2 }
{ "zip" : 57088 } -->> { "zip" : "57500" } on : shard0002 { "t" : 4, "i" : 3 }
{ "zip" : 57500 } -->> { "zip" : "58140" } on : shard0001 { "t" : 4, "i" : 0 }
{ "zip" : 58140 } -->> { "zip" : "59000" } on : shard0000 { "t" : 4, "i" : 1 }
{ "zip" : 59000 } -->> { "zip" : { "$maxKey" : 1 } } on : shard0000 { "t" : 3, "i" : 3 }

{ "_id" : "test", "partitioned" : false, "primary" : "shard0000" }

Replace a Config Server

On this page

• Overview (page 202)
• Considerations (page 203)
• Procedure (page 203)

Changed in version 3.2: Starting in MongoDB 3.2, config servers for sharded clusters can be deployed as a replica
set. The replica set config servers must run the WiredTiger storage engine. MongoDB 3.2 deprecates the
use of three mirrored mongod instances for config servers.

For replacing config servers deployed as three mirrored mongod instances, see Migrate Config Servers with the Same
Hostname (page 204) and Migrate Config Servers with Different Hostnames (page 204).

Overview

If the config server replica set becomes read only, i.e. does not have a primary, the sharded cluster cannot support
operations that change the cluster metadata, such as chunk splits and migrations. Although no chunks can be split or
migrated, applications will be able to write data to the sharded cluster.

If one of the config servers is unavailable or inoperable, repair or replace it as soon as possible. The following
procedure replaces a member of a config server replica set with a new member.

The tutorial is specific to MongoDB 3.2. For earlier versions of MongoDB, refer to the corresponding version of the
MongoDB Manual.

202 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Considerations

The following restrictions apply to a replica set configuration when used for config servers:

• Must have zero arbiters.

• Must have no delayed members.

• Must build indexes (i.e. no member should have buildIndexes setting set to false).

Procedure

Step 1: Start the replacement config server. Start a mongod instance, specifying both the --configsvr and
--replSet options.

mongod --configsvr --replSet <replicaSetName>

Step 2: Add the new config server to the replica set. Connect a mongo shell to the primary of the config server
replica set and use rs.add() to add the new member.

rs.add("<hostnameNew>:<portNew>")

The initial sync process copies all the data from one member of the config server replica set to the new member without
restarting.

mongos instances automatically recognize the change in the config server replica set members without restarting.

Step 3: Shut down the member to replace. If replacing the primary member, step down the primary first before
shutting down.

Step 4: Remove the member to replace from the config server replica set. Upon completion of initial sync of
the replacement config server, from a mongo shell connected to the primary, use rs.remove() to remove the old
member.

rs.remove("<hostnameOld>:<portOld>")

mongos instances automatically recognize the change in the config server replica set members without restarting.

Step 5: If necessary, update mongos configuration or DNS entry. With replica set config servers, the mongos
instances specify in the --configdb or sharding.configDB setting the config server replica set name and at
least one of the replica set members.

As such, if the mongos instance does not specify the removed replica set member in the --configdb or
sharding.configDB setting, no further action is necessary.

If, however, a mongos instance specified the removed member in the --configdb or configDB setting, either:

• Update the setting for the next time you restart the mongos, or

• Modify the DNS entry that points to the system that provided the old config server, so that the same hostname
points to the new config server.

5.2. Sharded Cluster Tutorials 203

MongoDB Administration, Release 3.2.3

Migrate Config Servers with the Same Hostname

Important: This procedure applies to migrating config servers when using three mirrored mongod instances as
config servers.

Starting in MongoDB 3.2, config servers can be deployed as replica set. MongoDB 3.2 deprecates the use of
three mirrored mongod instances for config servers.

For replacing config servers deployed as members of a replica set, see Replace a Config Server (page 202).

For a sharded cluster that uses 3 mirrored config servers, use the following procedure migrates a config server
to a new system that uses the same hostname.

To migrate all three mirrored config servers, perform this procedure for each config server separately and migrate the
config servers in reverse order from how they are listed in the mongos instances’ configDB string. Start with the
last config server listed in the configDB string.

1. Shut down the config server.

This renders all config data for the sharded cluster “read only.”

2. Change the DNS entry that points to the system that provided the old config server, so that the same hostname
points to the new system. How you do this depends on how you organize your DNS and hostname resolution
services.

3. Copy the contents of dbPath from the old config server to the new config server.

For example, to copy the contents of dbPath to a machine named mongodb.config2.example.net,
you might issue a command similar to the following:

rsync -az /data/configdb/ mongodb.config2.example.net:/data/configdb

4. Start the config server instance on the new system. The default invocation is:

mongod --configsvr

When you start the third config server, your cluster will become writable and it will be able to create new splits and
migrate chunks as needed.

Migrate Config Servers with Different Hostnames

On this page

• Overview (page 205)
• Considerations (page 205)
• Procedure (page 205)

Important: This procedure applies to migrating config servers when using three mirrored mongod instances as
config servers.

Changed in version 3.2: Starting in MongoDB 3.2, config servers can be deployed as replica set. MongoDB 3.2
deprecates the use of three mirrored mongod instances for config servers.

For replacing config servers deployed as members of a replica set, see Replace a Config Server (page 202).

204 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Overview

For a sharded cluster that uses three mirrored config servers, all three config servers must be available in order
to support operations that result in cluster metadata changes, e.g. chunk splits and migrations. If one of the config
servers is unavailable or inoperable, you must replace it as soon as possible.

For a sharded cluster that uses three mirrored config servers, this procedure migrates a config server to a new
server that uses a different hostname. Use this procedure only if the config server will not be accessible via the same
hostname. If possible, avoid changing the hostname so that you can instead use the procedure to migrate a config
server and use the same hostname (page 204).

Considerations

With three mirrored config servers, changing a config server’s hostname requires downtime and requires restarting
every process in the sharded cluster.

While migrating config servers, always make sure that all mongos instances have three config servers specified in the
configDB setting at all times. Also ensure that you specify the config servers in the same order for each mongos
instance’s configDB setting.

Procedure

Important: This procedure applies to migrating config servers when using three mirrored mongod instances as
config servers. For replacing config servers deployed as members of a replica set, see Replace a Config Server
(page 202).

1. Disable the cluster balancer process temporarily. See Disable the Balancer (page 214) for more information.

2. Shut down the config server to migrate.

This renders all config data for the sharded cluster “read only.”

3. Copy the contents of dbPath from the old config server to the new config server. For example, to copy
the contents of dbPath to a machine named mongodb.config2.example.net, use a command that
resembles the following:

rsync -az /data/configdb mongodb.config2.example.net:/data/configdb

4. Start the config server instance on the new system. The default invocation is:

mongod --configsvr

5. Shut down all existing MongoDB processes. This includes:

• the mongod instances for the shards.

• the mongod instances for the existing config databases.

• the mongos instances.

6. Restart all shard mongod instances.

7. Restart the mongod instances for the two existing non-migrated config servers.

8. Update the configDB setting for each mongos instances.

9. Restart the mongos instances.

5.2. Sharded Cluster Tutorials 205

MongoDB Administration, Release 3.2.3

10. Re-enable the balancer to allow the cluster to resume normal balancing operations. See the Disable the Balancer
(page 214) section for more information on managing the balancer process.

Migrate a Sharded Cluster to Different Hardware

On this page

• Disable the Balancer (page 206)
• Migrate Each Config Server Separately (page 206)
• Restart the mongos Instances (page 207)
• Migrate the Shards (page 207)
• Re-Enable the Balancer (page 208)

The tutorial is specific to MongoDB 3.2. For earlier versions of MongoDB, refer to the corresponding version of the
MongoDB Manual.

Changed in version 3.2.

Starting in MongoDB 3.2, config servers for sharded clusters can be deployed as a replica set. The replica set
config servers must run the WiredTiger storage engine. MongoDB 3.2 deprecates the use of three mirrored
mongod instances for config servers.

This procedure moves the components of the sharded cluster to a new hardware system without downtime for reads
and writes.

Important: While the migration is in progress, do not attempt to change to the cluster metadata. Do not use
any operation that modifies the cluster metadata in any way. For example, do not create or drop databases, create or
drop collections, or use any sharding commands.

If your cluster includes a shard backed by a standalone mongod instance, consider converting the standalone to a
replica set (page 140) to simplify migration and to let you keep the cluster online during future maintenance. Migrating
a shard as standalone is a multi-step process that may require downtime.

Disable the Balancer

Disable the balancer to stop chunk migration and do not perform any metadata write operations until the process
finishes. If a migration is in progress, the balancer will complete the in-progress migration before stopping.

To disable the balancer, connect to one of the cluster’s mongos instances and issue the following method:

sh.stopBalancer()

To check the balancer state, issue the sh.getBalancerState() method.

For more information, see Disable the Balancer (page 214).

Migrate Each Config Server Separately

Changed in version 3.2.

Starting in MongoDB 3.2, config servers for sharded clusters can be deployed as a replica set. The replica set
config servers must run the WiredTiger storage engine. MongoDB 3.2 deprecates the use of three mirrored
mongod instances for config servers.

206 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

The following restrictions apply to a replica set configuration when used for config servers:

• Must have zero arbiters.

• Must have no delayed members.

• Must build indexes (i.e. no member should have buildIndexes setting set to false).

For each member of the config server replica set:

Important: Replace the secondary members before replacing the primary.

Step 1: Start the replacement config server. Start a mongod instance, specifying both the --configsvr and
--replSet options.

mongod --configsvr --replSet <replicaSetName>

Step 2: Add the new config server to the replica set. Connect a mongo shell to the primary of the config server
replica set and use rs.add() to add the new member.

rs.add("<hostnameNew>:<portNew>")

The initial sync process copies all the data from one member of the config server replica set to the new member without
restarting.

mongos instances automatically recognize the change in the config server replica set members without restarting.

Step 3: Shut down the member to replace. If replacing the primary member, step down the primary first before
shutting down.

Restart the mongos Instances

Changed in version 3.2: With replica set config servers, the mongos instances specify in the --configdb or
sharding.configDB setting the config server replica set name and at least one of the replica set members. The
mongos instances for the sharded cluster must specify the same config server replica set name but can specify different
members of the replica set.

If a mongos instance specifies a migrated replica set member in the --configdb or sharding.configDB
setting, update the config server setting for the next time you restart the mongos instance.

For more information, see Start the mongos Instances (page 182).

Migrate the Shards

Migrate the shards one at a time. For each shard, follow the appropriate procedure in this section.

Migrate a Replica Set Shard To migrate a sharded cluster, migrate each member separately. First migrate the
non-primary members, and then migrate the primary last.

If the replica set has two voting members, add an arbiter to the replica set to ensure the set keeps a majority of its
votes available during the migration. You can remove the arbiter after completing the migration.

5.2. Sharded Cluster Tutorials 207

MongoDB Administration, Release 3.2.3

Migrate a Member of a Replica Set Shard

1. Shut down the mongod process. To ensure a clean shutdown, use the shutdown command.

2. Move the data directory (i.e., the dbPath) to the new machine.

3. Restart the mongod process at the new location.

4. Connect to the replica set’s current primary.

5. If the hostname of the member has changed, use rs.reconfig() to update the replica set
configuration document with the new hostname.

For example, the following sequence of commands updates the hostname for the instance at position 2 in the
members array:

cfg = rs.conf()
cfg.members[2].host = "pocatello.example.net:27017"
rs.reconfig(cfg)

For more information on updating the configuration document, see replica-set-reconfiguration-usage.

6. To confirm the new configuration, issue rs.conf().

7. Wait for the member to recover. To check the member’s state, issue rs.status().

Migrate the Primary in a Replica Set Shard While migrating the replica set’s primary, the set must elect a new
primary. This failover process which renders the replica set unavailable to perform reads or accept writes for the
duration of the election, which typically completes quickly. If possible, plan the migration during a maintenance
window.

1. Step down the primary to allow the normal failover process. To step down the primary, connect to the primary
and issue the either the replSetStepDown command or the rs.stepDown() method. The following
example shows the rs.stepDown() method:

rs.stepDown()

2. Once the primary has stepped down and another member has become PRIMARY state. To migrate the stepped-
down primary, follow the Migrate a Member of a Replica Set Shard (page 208) procedure

You can check the output of rs.status() to confirm the change in status.

Migrate a Standalone Shard The ideal procedure for migrating a standalone shard is to convert the standalone to a
replica set (page 140) and then use the procedure for migrating a replica set shard (page 207). In production clusters,
all shards should be replica sets, which provides continued availability during maintenance windows.

Migrating a shard as standalone is a multi-step process during which part of the shard may be unavailable. If the shard
is the primary shard for a database,the process includes the movePrimary command. While the movePrimary
runs, you should stop modifying data in that database. To migrate the standalone shard, use the Remove Shards from
an Existing Sharded Cluster (page 216) procedure.

Re-Enable the Balancer

To complete the migration, re-enable the balancer to resume chunk migrations.

Connect to one of the cluster’s mongos instances and pass true to the sh.setBalancerState() method:

sh.setBalancerState(true)

208 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

To check the balancer state, issue the sh.getBalancerState() method.

For more information, see Enable the Balancer (page 214).

Backup Cluster Metadata

This procedure shuts down the mongod instance of a config server in order to create a backup of a sharded
cluster’s metadata. The cluster’s config servers store all of the cluster’s metadata, most importantly the map-
ping from chunks to shards.

When you perform this procedure, the cluster remains operational 7.

1. Disable the cluster balancer process temporarily. See Disable the Balancer (page 214) for more information.

2. Shut down one of the config databases.

3. Create a full copy of the data files (i.e. the path specified by the dbPath option for the config instance.)

4. Restart the original configuration server.

5. Re-enable the balancer to allow the cluster to resume normal balancing operations. See the Disable the Balancer
(page 214) section for more information on managing the balancer process.

See also:

MongoDB Backup Methods (page 4).

Configure Behavior of Balancer Process in Sharded Clusters

On this page

• Schedule a Window of Time for Balancing to Occur (page 209)
• Configure Default Chunk Size (page 210)
• Change the Maximum Storage Size for a Given Shard (page 210)
• Change Replication Behavior for Chunk Migration (page 210)

The balancer is a process that runs on one of the mongos instances in a cluster and ensures that chunks are evenly
distributed throughout a sharded cluster. In most deployments, the default balancer configuration is sufficient for
normal operation. However, administrators might need to modify balancer behavior depending on application or
operational requirements. If you encounter a situation where you need to modify the behavior of the balancer, use the
procedures described in this document.

For conceptual information about the balancer, see sharding-balancing and sharding-balancing-internals.

Schedule a Window of Time for Balancing to Occur

You can schedule a window of time during which the balancer can migrate chunks, as described in the following
procedures:

• Schedule the Balancing Window (page 213)

• Remove a Balancing Window Schedule (page 214).

The mongos instances use their own local timezones when respecting balancer window.

7 While one of the three config servers is unavailable, the cluster cannot split any chunks nor can it migrate chunks between shards. Your
application will be able to write data to the cluster. See sharding-config-server for more information.

5.2. Sharded Cluster Tutorials 209

MongoDB Administration, Release 3.2.3

Configure Default Chunk Size

The default chunk size for a sharded cluster is 64 megabytes. In most situations, the default size is appropriate for
splitting and migrating chunks. For information on how chunk size affects deployments, see details, see sharding-
chunk-size.

Changing the default chunk size affects chunks that are processes during migrations and auto-splits but does not
retroactively affect all chunks.

To configure default chunk size, see Modify Chunk Size in a Sharded Cluster (page 224).

Change the Maximum Storage Size for a Given Shard

The maxSize field in the shards collection in the config database sets the maximum size for a shard, allowing you
to control whether the balancer will migrate chunks to a shard. If mem.mapped size 8 is above a shard’s maxSize,
the balancer will not move chunks to the shard. Also, the balancer will not move chunks off an overloaded shard. This
must happen manually. The maxSize value only affects the balancer’s selection of destination shards.

By default, maxSize is not specified, allowing shards to consume the total amount of available space on their ma-
chines if necessary.

You can set maxSize both when adding a shard and once a shard is running.

To set maxSize when adding a shard, set the addShard command’s maxSize parameter to the maximum size in
megabytes. For example, the following command run in the mongo shell adds a shard with a maximum size of 125
megabytes:

db.runCommand({ addshard : "example.net:34008", maxSize : 125 })

To set maxSize on an existing shard, insert or update the maxSize field in the shards collection in the config
database. Set the maxSize in megabytes.

Example
Assume you have the following shard without a maxSize field:

{ "_id" : "shard0000", "host" : "example.net:34001" }

Run the following sequence of commands in the mongo shell to insert a maxSize of 125 megabytes:

use config
db.shards.update({ _id : "shard0000" }, { $set : { maxSize : 125 } })

To later increase the maxSize setting to 250 megabytes, run the following:

use config
db.shards.update({ _id : "shard0000" }, { $set : { maxSize : 250 } })

Change Replication Behavior for Chunk Migration

Secondary Throttle Changed in version 3.0.0: The balancer configuration document added configurable
writeConcern to control the semantics of the _secondaryThrottle option.

The _secondaryThrottle parameter of the balancer and the moveChunk command affects the replication be-
havior during chunk migration. By default, _secondaryThrottle is true, which means each document move

8 This value includes the mapped size of all data files including the‘‘local‘‘ and admin databases. Account for this when setting maxSize.

210 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

during chunk migration propagates to at least one secondary before the balancer proceeds with the next document:
this is equivalent to a write concern of { w: 2 }.

You can also configure the writeConcern for the _secondaryThrottle operation, to configure how migra-
tions will wait for replication to complete. For more information on the replication behavior during various steps of
chunk migration, see chunk-migration-replication.

To change the balancer’s _secondaryThrottle and writeConcern values, connect to a mongos instance and
directly update the _secondaryThrottle value in the settings collection of the config database. For example,
from a mongo shell connected to a mongos, issue the following command:

use config
db.settings.update(

{ "_id" : "balancer" },
{ $set : { "_secondaryThrottle" : false ,

"writeConcern": { "w": "majority" } } },
{ upsert : true }

)

The effects of changing the _secondaryThrottle and writeConcern value may not be immediate. To ensure
an immediate effect, stop and restart the balancer to enable the selected value of _secondaryThrottle. See
Manage Sharded Cluster Balancer (page 211) for details.

Wait for Delete The _waitForDelete setting of the balancer and the moveChunk command affects how the
balancer migrates multiple chunks from a shard. By default, the balancer does not wait for the on-going migration’s
delete phase to complete before starting the next chunk migration. To have the delete phase block the start of the next
chunk migration, you can set the _waitForDelete to true.

For details on chunk migration, see sharding-chunk-migration. For details on the chunk migration queuing behavior,
see chunk-migration-queuing.

The _waitForDelete is generally for internal testing purposes. To change the balancer’s _waitForDelete
value:

1. Connect to a mongos instance.

2. Update the _waitForDelete value in the settings collection of the config database. For example:

use config
db.settings.update(

{ "_id" : "balancer" },
{ $set : { "_waitForDelete" : true } },
{ upsert : true }

)

Once set to true, to revert to the default behavior:

1. Connect to a mongos instance.

2. Update or unset the _waitForDelete field in the settings collection of the config database:

use config
db.settings.update(

{ "_id" : "balancer", "_waitForDelete": true },
{ $unset : { "_waitForDelete" : "" } }

)

Manage Sharded Cluster Balancer

5.2. Sharded Cluster Tutorials 211

MongoDB Administration, Release 3.2.3

On this page

• Check the Balancer State (page 212)
• Check the Balancer Lock (page 212)
• Schedule the Balancing Window (page 213)
• Remove a Balancing Window Schedule (page 214)
• Disable the Balancer (page 214)
• Enable the Balancer (page 214)
• Disable Balancing During Backups (page 215)
• Disable Balancing on a Collection (page 215)
• Enable Balancing on a Collection (page 215)
• Confirm Balancing is Enabled or Disabled (page 215)

This page describes common administrative procedures related to balancing. For an introduction to balancing, see
sharding-balancing. For lower level information on balancing, see sharding-balancing-internals.

See also:

Configure Behavior of Balancer Process in Sharded Clusters (page 209)

Check the Balancer State

sh.getBalancerState() checks if the balancer is enabled (i.e. that the balancer is permitted to run).
sh.getBalancerState() does not check if the balancer is actively balancing chunks.

To see if the balancer is enabled in your sharded cluster, issue the following command, which returns a boolean:

sh.getBalancerState()

New in version 3.0.0: You can also see if the balancer is enabled using sh.status(). The currently-enabled
field indicates whether the balancer is enabled, while the currently-running field indicates if the balancer is
currently running.

Check the Balancer Lock

To see if the balancer process is active in your cluster, do the following:

1. Connect to any mongos in the cluster using the mongo shell.

2. Issue the following command to switch to the config-database:

use config

3. Use the following query to return the balancer lock:

db.locks.find({ _id : "balancer" }).pretty()

When this command returns, you will see output like the following:

{ "_id" : "balancer",
"process" : "mongos0.example.net:1292810611:1804289383",
"state" : 2,

"ts" : ObjectId("4d0f872630c42d1978be8a2e"),
"when" : "Mon Dec 20 2010 11:41:10 GMT-0500 (EST)",
"who" : "mongos0.example.net:1292810611:1804289383:Balancer:846930886",
"why" : "doing balance round" }

212 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

This output confirms that:

• The balancer originates from the mongos running on the system with the hostname
mongos0.example.net.

• The value in the state field indicates that a mongos has the lock. For version 2.0 and later, the value of
an active lock is 2; for earlier versions the value is 1.

Schedule the Balancing Window

In some situations, particularly when your data set grows slowly and a migration can impact performance, it is useful
to ensure that the balancer is active only at certain times. The following procedure specifies the activeWindow,
which is the timeframe during which the balancer will be able to migrate chunks:

Step 1: Connect to mongos using the mongo shell. You can connect to any mongos in the cluster.

Step 2: Switch to the config-database. Issue the following command to switch to the config database.

use config

Step 3: Ensure that the balancer is not stopped. The balancer will not activate in the stopped state. To ensure
that the balancer is not stopped, use sh.setBalancerState(), as in the following:

sh.setBalancerState(true)

The balancer will not start if you are outside of the activeWindow timeframe.

Step 4: Modify the balancer’s window. Set the activeWindow using update(), as in the following:

db.settings.update(
{ _id: "balancer" },
{ $set: { activeWindow : { start : "<start-time>", stop : "<stop-time>" } } },
{ upsert: true }

)

Replace <start-time> and <end-time> with time values using two digit hour and minute values (i.e. HH:MM)
that specify the beginning and end boundaries of the balancing window.

• For HH values, use hour values ranging from 00 - 23.

• For MM value, use minute values ranging from 00 - 59.

MongoDB evaluates the start and stop times relative to the time zone of each individual mongos instance in the
sharded cluster. If your mongos instances are physically located in different time zones, set the time zone on each
server to UTC+-00:00 so that the balancer window is uniformly interpreted.

Note: The balancer window must be sufficient to complete the migration of all data inserted during the day.

As data insert rates can change based on activity and usage patterns, it is important to ensure that the balancing window
you select will be sufficient to support the needs of your deployment.

Do not use the sh.startBalancer() method when you have set an activeWindow.

5.2. Sharded Cluster Tutorials 213

MongoDB Administration, Release 3.2.3

Remove a Balancing Window Schedule

If you have set the balancing window (page 213) and wish to remove the schedule so that the balancer is always
running, use $unset to clear the activeWindow, as in the following:

use config
db.settings.update({ _id : "balancer" }, { $unset : { activeWindow : true } })

Disable the Balancer

By default, the balancer may run at any time and only moves chunks as needed. To disable the balancer for a short
period of time and prevent all migration, use the following procedure:

1. Connect to any mongos in the cluster using the mongo shell.

2. Issue the following operation to disable the balancer:

sh.stopBalancer()

If a migration is in progress, the system will complete the in-progress migration before stopping.

3. To verify that the balancer will not start, issue the following command, which returns false if the balancer is
disabled:

sh.getBalancerState()

Optionally, to verify no migrations are in progress after disabling, issue the following operation in the mongo
shell:

use config
while(sh.isBalancerRunning()) {

print("waiting...");
sleep(1000);

}

Note: To disable the balancer from a driver that does not have the sh.stopBalancer() or
sh.setBalancerState() helpers, issue the following command from the config database:

db.settings.update({ _id: "balancer" }, { $set : { stopped: true } } , { upsert: true })

Enable the Balancer

Use this procedure if you have disabled the balancer and are ready to re-enable it:

1. Connect to any mongos in the cluster using the mongo shell.

2. Issue one of the following operations to enable the balancer:

From the mongo shell, issue:

sh.setBalancerState(true)

From a driver that does not have the sh.startBalancer() helper, issue the following from the config
database:

db.settings.update({ _id: "balancer" }, { $set : { stopped: false } } , { upsert: true })

214 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Disable Balancing During Backups

If MongoDB migrates a chunk during a backup (page 4), you can end with an inconsistent snapshot of your sharded
cluster. Never run a backup while the balancer is active. To ensure that the balancer is inactive during your backup
operation:

• Set the balancing window (page 213) so that the balancer is inactive during the backup. Ensure that the backup
can complete while you have the balancer disabled.

• manually disable the balancer (page 214) for the duration of the backup procedure.

If you turn the balancer off while it is in the middle of a balancing round, the shut down is not instantaneous. The
balancer completes the chunk move in-progress and then ceases all further balancing rounds.

Before starting a backup operation, confirm that the balancer is not active. You can use the following command to
determine if the balancer is active:

!sh.getBalancerState() && !sh.isBalancerRunning()

When the backup procedure is complete you can reactivate the balancer process.

Disable Balancing on a Collection

You can disable balancing for a specific collection with the sh.disableBalancing() method. You may want
to disable the balancer for a specific collection to support maintenance operations or atypical workloads, for example,
during data ingestions or data exports.

When you disable balancing on a collection, MongoDB will not interrupt in progress migrations.

To disable balancing on a collection, connect to a mongos with the mongo shell and call the
sh.disableBalancing() method.

For example:

sh.disableBalancing("students.grades")

The sh.disableBalancing() method accepts as its parameter the full namespace of the collection.

Enable Balancing on a Collection

You can enable balancing for a specific collection with the sh.enableBalancing() method.

When you enable balancing for a collection, MongoDB will not immediately begin balancing data. However, if the
data in your sharded collection is not balanced, MongoDB will be able to begin distributing the data more evenly.

To enable balancing on a collection, connect to a mongos with the mongo shell and call the
sh.enableBalancing() method.

For example:

sh.enableBalancing("students.grades")

The sh.enableBalancing() method accepts as its parameter the full namespace of the collection.

Confirm Balancing is Enabled or Disabled

To confirm whether balancing for a collection is enabled or disabled, query the collections collection in the
config database for the collection namespace and check the noBalance field. For example:

5.2. Sharded Cluster Tutorials 215

MongoDB Administration, Release 3.2.3

db.getSiblingDB("config").collections.findOne({_id : "students.grades"}).noBalance;

This operation will return a null error, true, false, or no output:

• A null error indicates the collection namespace is incorrect.

• If the result is true, balancing is disabled.

• If the result is false, balancing is enabled currently but has been disabled in the past for the collection.
Balancing of this collection will begin the next time the balancer runs.

• If the operation returns no output, balancing is enabled currently and has never been disabled in the past for this
collection. Balancing of this collection will begin the next time the balancer runs.

New in version 3.0.0: You can also see if the balancer is enabled using sh.status(). The currently-enabled
field indicates if the balancer is enabled.

Remove Shards from an Existing Sharded Cluster

On this page

• Ensure the Balancer Process is Enabled (page 216)
• Determine the Name of the Shard to Remove (page 216)
• Remove Chunks from the Shard (page 217)
• Check the Status of the Migration (page 217)
• Move Unsharded Data (page 217)
• Finalize the Migration (page 218)

To remove a shard you must ensure the shard’s data is migrated to the remaining shards in the cluster. This procedure
describes how to safely migrate data and how to remove a shard.

This procedure describes how to safely remove a single shard. Do not use this procedure to migrate an entire cluster
to new hardware. To migrate an entire shard to new hardware, migrate individual shards as if they were independent
replica sets.

To remove a shard, first connect to one of the cluster’s mongos instances using mongo shell. Then use the sequence
of tasks in this document to remove a shard from the cluster.

Ensure the Balancer Process is Enabled

To successfully migrate data from a shard, the balancer process must be enabled. Check the balancer state using
the sh.getBalancerState() helper in the mongo shell. For more information, see the section on balancer
operations (page 214).

Determine the Name of the Shard to Remove

To determine the name of the shard, connect to a mongos instance with the mongo shell and either:

• Use the listShards command, as in the following:

db.adminCommand({ listShards: 1 })

• Run either the sh.status() or the db.printShardingStatus() method.

The shards._id field lists the name of each shard.

216 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Remove Chunks from the Shard

From the admin database, run the removeShard command. This begins “draining” chunks from the shard you are
removing to other shards in the cluster. For example, for a shard named mongodb0, run:

use admin
db.runCommand({ removeShard: "mongodb0" })

This operation returns immediately, with the following response:

{
"msg" : "draining started successfully",
"state" : "started",
"shard" : "mongodb0",
"ok" : 1

}

Depending on your network capacity and the amount of data, this operation can take from a few minutes to several
days to complete.

Check the Status of the Migration

To check the progress of the migration at any stage in the process, run removeShard from the admin database
again. For example, for a shard named mongodb0, run:

use admin
db.runCommand({ removeShard: "mongodb0" })

The command returns output similar to the following:

{
"msg" : "draining ongoing",

"state" : "ongoing",
"remaining" : {

"chunks" : 42,
"dbs" : 1

},
"ok" : 1

}

In the output, the remaining document displays the remaining number of chunks that MongoDB must migrate to
other shards and the number of MongoDB databases that have “primary” status on this shard.

Continue checking the status of the removeShard command until the number of chunks remaining is 0. Always run the
command on the admin database. If you are on a database other than admin, you can use sh._adminCommand
to run the command on admin.

Move Unsharded Data

If the shard is the primary shard for one or more databases in the cluster, then the shard will have unsharded data. If
the shard is not the primary shard for any databases, skip to the next task, Finalize the Migration (page 218).

In a cluster, a database with unsharded collections stores those collections only on a single shard. That shard becomes
the primary shard for that database. (Different databases in a cluster can have different primary shards.)

Warning: Do not perform this procedure until you have finished draining the shard.

5.2. Sharded Cluster Tutorials 217

MongoDB Administration, Release 3.2.3

1. To determine if the shard you are removing is the primary shard for any of the cluster’s databases, issue one of
the following methods:

• sh.status()

• db.printShardingStatus()

In the resulting document, the databases field lists each database and its primary shard. For example, the
following database field shows that the products database uses mongodb0 as the primary shard:

{ "_id" : "products", "partitioned" : true, "primary" : "mongodb0" }

2. To move a database to another shard, use the movePrimary command. For example, to migrate all remaining
unsharded data from mongodb0 to mongodb1, issue the following command:

db.runCommand({ movePrimary: "products", to: "mongodb1" })

This command does not return until MongoDB completes moving all data, which may take a long time. The
response from this command will resemble the following:

{ "primary" : "mongodb1", "ok" : 1 }

Finalize the Migration

To clean up all metadata information and finalize the removal, run removeShard again. For example, for a shard
named mongodb0, run:

use admin
db.runCommand({ removeShard: "mongodb0" })

A success message appears at completion:

{
"msg" : "removeshard completed successfully",
"state" : "completed",
"shard" : "mongodb0",
"ok" : 1

}

Once the value of the state field is “completed”, you may safely stop the processes comprising the mongodb0
shard.

See also:

Backup and Restore Sharded Clusters (page 87)

5.2.3 Sharded Cluster Data Management

The following documents provide information in managing data in sharded clusters.

Create Chunks in a Sharded Cluster (page 219) Create chunks, or pre-split empty collection to ensure an even dis-
tribution of chunks during data ingestion.

Split Chunks in a Sharded Cluster (page 220) Manually create chunks in a sharded collection.

Migrate Chunks in a Sharded Cluster (page 221) Manually migrate chunks without using the automatic balance
process.

Merge Chunks in a Sharded Cluster (page 222) Use the mergeChunks to manually combine chunk ranges.

218 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Modify Chunk Size in a Sharded Cluster (page 224) Modify the default chunk size in a sharded collection

Clear jumbo Flag (page 225) Clear jumbo flag from a shard.

Manage Shard Tags (page 227) Use tags to associate specific ranges of shard key values with specific shards.

Enforce Unique Keys for Sharded Collections (page 229) Ensure that a field is always unique in all collections in a
sharded cluster.

Shard GridFS Data Store (page 231) Choose whether to shard GridFS data in a sharded collection.

Create Chunks in a Sharded Cluster

Pre-splitting the chunk ranges in an empty sharded collection allows clients to insert data into an already partitioned
collection. In most situations a sharded cluster will create and distribute chunks automatically without user interven-
tion. However, in a limited number of cases, MongoDB cannot create enough chunks or distribute data fast enough to
support required throughput. For example:

• If you want to partition an existing data collection that resides on a single shard.

• If you want to ingest a large volume of data into a cluster that isn’t balanced, or where the ingestion of data will
lead to data imbalance. For example, monotonically increasing or decreasing shard keys insert all data into a
single chunk.

These operations are resource intensive for several reasons:

• Chunk migration requires copying all the data in the chunk from one shard to another.

• MongoDB can migrate only a single chunk at a time.

• MongoDB creates splits only after an insert operation.

Warning: Only pre-split an empty collection. If a collection already has data, MongoDB automatically splits the
collection’s data when you enable sharding for the collection. Subsequent attempts to manually create splits can
lead to unpredictable chunk ranges and sizes as well as inefficient or ineffective balancing behavior.

To create chunks manually, use the following procedure:

1. Split empty chunks in your collection by manually performing the split command on chunks.

Example
To create chunks for documents in the myapp.users collection using the email field as the shard key, use
the following operation in the mongo shell:

for (var x=97; x<97+26; x++){
for(var y=97; y<97+26; y+=6) {
var prefix = String.fromCharCode(x) + String.fromCharCode(y);
db.runCommand({ split : "myapp.users" , middle : { email : prefix } });

}
}

This assumes a collection size of 100 million documents.

For information on the balancer and automatic distribution of chunks across shards, see sharding-balancing-
internals and sharding-chunk-migration. For information on manually migrating chunks, see Migrate Chunks
in a Sharded Cluster (page 221).

5.2. Sharded Cluster Tutorials 219

MongoDB Administration, Release 3.2.3

Split Chunks in a Sharded Cluster

Normally, MongoDB splits a chunk after an insert if the chunk exceeds the maximum chunk size. However, you may
want to split chunks manually if:

• you have a large amount of data in your cluster and very few chunks, as is the case after deploying a cluster
using existing data.

• you expect to add a large amount of data that would initially reside in a single chunk or shard. For example, you
plan to insert a large amount of data with shard key values between 300 and 400, but all values of your shard
keys are between 250 and 500 are in a single chunk.

Note: New in version 2.6: MongoDB provides the mergeChunks command to combine contiguous chunk ranges
into a single chunk. See Merge Chunks in a Sharded Cluster (page 222) for more information.

The balancer may migrate recently split chunks to a new shard immediately if mongos predicts future insertions will
benefit from the move. The balancer does not distinguish between chunks split manually and those split automatically
by the system.

Warning: Be careful when splitting data in a sharded collection to create new chunks. When you shard a
collection that has existing data, MongoDB automatically creates chunks to evenly distribute the collection. To
split data effectively in a sharded cluster you must consider the number of documents in a chunk and the average
document size to create a uniform chunk size. When chunks have irregular sizes, shards may have an equal number
of chunks but have very different data sizes. Avoid creating splits that lead to a collection with differently sized
chunks.

Use sh.status() to determine the current chunk ranges across the cluster.

To split chunks manually, use the split command with either fields middle or find. The mongo shell provides
the helper methods sh.splitFind() and sh.splitAt().

splitFind() splits the chunk that contains the first document returned that matches this query into two equally
sized chunks. You must specify the full namespace (i.e. “<database>.<collection>”) of the sharded collection
to splitFind(). The query in splitFind() does not need to use the shard key, though it nearly always makes
sense to do so.

Example
The following command splits the chunk that contains the value of 63109 for the zipcode field in the people
collection of the records database:

sh.splitFind("records.people", { "zipcode": "63109" })

Use splitAt() to split a chunk in two, using the queried document as the lower bound in the new chunk:

Example
The following command splits the chunk that contains the value of 63109 for the zipcode field in the people
collection of the records database.

sh.splitAt("records.people", { "zipcode": "63109" })

Note: splitAt() does not necessarily split the chunk into two equally sized chunks. The split occurs at the location
of the document matching the query, regardless of where that document is in the chunk.

220 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

Migrate Chunks in a Sharded Cluster

In most circumstances, you should let the automatic balancer migrate chunks between shards. However, you may
want to migrate chunks manually in a few cases:

• When pre-splitting an empty collection, migrate chunks manually to distribute them evenly across the shards.
Use pre-splitting in limited situations to support bulk data ingestion.

• If the balancer in an active cluster cannot distribute chunks within the balancing window (page 213), then you
will have to migrate chunks manually.

To manually migrate chunks, use the moveChunk command. For more information on how the automatic balancer
moves chunks between shards, see sharding-balancing-internals and sharding-chunk-migration.

Example
Migrate a single chunk

The following example assumes that the field username is the shard key for a collection named users in the
myapp database, and that the value smith exists within the chunk to migrate. Migrate the chunk using the following
command in the mongo shell.

db.adminCommand({ moveChunk : "myapp.users",
find : {username : "smith"},
to : "mongodb-shard3.example.net" })

This command moves the chunk that includes the shard key value “smith” to the shard named
mongodb-shard3.example.net. The command will block until the migration is complete.

Tip
To return a list of shards, use the listShards command.

Example
Evenly migrate chunks

To evenly migrate chunks for the myapp.users collection, put each prefix chunk on the next shard from the other
and run the following commands in the mongo shell:

var shServer = ["sh0.example.net", "sh1.example.net", "sh2.example.net", "sh3.example.net", "sh4.example.net"];
for (var x=97; x<97+26; x++){
for(var y=97; y<97+26; y+=6) {
var prefix = String.fromCharCode(x) + String.fromCharCode(y);
db.adminCommand({moveChunk : "myapp.users", find : {email : prefix}, to : shServer[(y-97)/6]})

}
}

See Create Chunks in a Sharded Cluster (page 219) for an introduction to pre-splitting.

New in version 2.2: The moveChunk command has the: _secondaryThrottle parameter. When set to true,
MongoDB ensures that changes to shards as part of chunk migrations replicate to secondaries throughout the migration
operation. For more information, see Change Replication Behavior for Chunk Migration (page 210).

Changed in version 2.4: In 2.4, _secondaryThrottle is true by default.

5.2. Sharded Cluster Tutorials 221

MongoDB Administration, Release 3.2.3

Warning: The moveChunk command may produce the following error message:

The collection's metadata lock is already taken.

This occurs when clients have too many open cursors that access the migrating chunk. You may either wait until
the cursors complete their operations or close the cursors manually.

Merge Chunks in a Sharded Cluster

On this page

• Overview (page 222)
• Procedure (page 222)

Overview

The mergeChunks command allows you to collapse empty chunks into neighboring chunks on the same shard. A
chunk is empty if it has no documents associated with its shard key range.

Important: Empty chunks can make the balancer assess the cluster as properly balanced when it is not.

Empty chunks can occur under various circumstances, including:

• If a pre-split (page 219) creates too many chunks, the distribution of data to chunks may be uneven.

• If you delete many documents from a sharded collection, some chunks may no longer contain data.

This tutorial explains how to identify chunks available to merge, and how to merge those chunks with neighboring
chunks.

Procedure

Note: Examples in this procedure use a users collection in the test database, using the username filed as a
shard key.

Identify Chunk Ranges In the mongo shell, identify the chunk ranges with the following operation:

sh.status()

The output of the sh.status() will resemble the following:

--- Sharding Status ---
sharding version: {

"_id" : 1,
"version" : 4,
"minCompatibleVersion" : 4,
"currentVersion" : 5,
"clusterId" : ObjectId("5260032c901f6712dcd8f400")

}
shards:

222 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

{ "_id" : "shard0000", "host" : "localhost:30000" }
{ "_id" : "shard0001", "host" : "localhost:30001" }

databases:
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "test", "partitioned" : true, "primary" : "shard0001" }

test.users
shard key: { "username" : 1 }
chunks:

shard0000 7
shard0001 7

{ "username" : { "$minKey" : 1 } } -->> { "username" : "user16643" } on : shard0000 Timestamp(2, 0)
{ "username" : "user16643" } -->> { "username" : "user2329" } on : shard0000 Timestamp(3, 0)
{ "username" : "user2329" } -->> { "username" : "user29937" } on : shard0000 Timestamp(4, 0)
{ "username" : "user29937" } -->> { "username" : "user36583" } on : shard0000 Timestamp(5, 0)
{ "username" : "user36583" } -->> { "username" : "user43229" } on : shard0000 Timestamp(6, 0)
{ "username" : "user43229" } -->> { "username" : "user49877" } on : shard0000 Timestamp(7, 0)
{ "username" : "user49877" } -->> { "username" : "user56522" } on : shard0000 Timestamp(8, 0)
{ "username" : "user56522" } -->> { "username" : "user63169" } on : shard0001 Timestamp(8, 1)
{ "username" : "user63169" } -->> { "username" : "user69816" } on : shard0001 Timestamp(1, 8)
{ "username" : "user69816" } -->> { "username" : "user76462" } on : shard0001 Timestamp(1, 9)
{ "username" : "user76462" } -->> { "username" : "user83108" } on : shard0001 Timestamp(1, 10)
{ "username" : "user83108" } -->> { "username" : "user89756" } on : shard0001 Timestamp(1, 11)
{ "username" : "user89756" } -->> { "username" : "user96401" } on : shard0001 Timestamp(1, 12)
{ "username" : "user96401" } -->> { "username" : { "$maxKey" : 1 } } on : shard0001 Timestamp(1, 13)

The chunk ranges appear after the chunk counts for each sharded collection, as in the following excerpts:

Chunk counts:

chunks:
shard0000 7
shard0001 7

Chunk range:

{ "username" : "user36583" } -->> { "username" : "user43229" } on : shard0000 Timestamp(6, 0)

Verify a Chunk is Empty The mergeChunks command requires at least one empty input chunk. To check the
size of a chunk, use the dataSize command in the sharded collection’s database. For example, the following checks
the amount of data in the chunk for the users collection in the test database:

Important: You must use the use <db> helper to switch to the database containing the sharded collection before
running the dataSize command.

use test
db.runCommand({

"dataSize": "test.users",
"keyPattern": { username: 1 },
"min": { "username": "user36583" },
"max": { "username": "user43229" }

})

If the input chunk to dataSize is empty, dataSize produces output similar to:

{ "size" : 0, "numObjects" : 0, "millis" : 0, "ok" : 1 }

5.2. Sharded Cluster Tutorials 223

MongoDB Administration, Release 3.2.3

Merge Chunks Merge two contiguous chunks on the same shard, where at least one of the contains no data, with an
operation that resembles the following:

db.runCommand({ mergeChunks: "test.users",
bounds: [{ "username": "user68982" },

{ "username": "user95197" }]
})

On success, mergeChunks produces the following output:

{ "ok" : 1 }

On any failure condition, mergeChunks returns a document where the value of the ok field is 0.

View Merged Chunks Ranges After merging all empty chunks, confirm the new chunk, as follows:

sh.status()

The output of sh.status() should resemble:

--- Sharding Status ---
sharding version: {

"_id" : 1,
"version" : 4,
"minCompatibleVersion" : 4,
"currentVersion" : 5,
"clusterId" : ObjectId("5260032c901f6712dcd8f400")

}
shards:

{ "_id" : "shard0000", "host" : "localhost:30000" }
{ "_id" : "shard0001", "host" : "localhost:30001" }

databases:
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "test", "partitioned" : true, "primary" : "shard0001" }

test.users
shard key: { "username" : 1 }
chunks:

shard0000 2
shard0001 2

{ "username" : { "$minKey" : 1 } } -->> { "username" : "user16643" } on : shard0000 Timestamp(2, 0)
{ "username" : "user16643" } -->> { "username" : "user56522" } on : shard0000 Timestamp(3, 0)
{ "username" : "user56522" } -->> { "username" : "user96401" } on : shard0001 Timestamp(8, 1)
{ "username" : "user96401" } -->> { "username" : { "$maxKey" : 1 } } on : shard0001 Timestamp(1, 13)

Modify Chunk Size in a Sharded Cluster

When the first mongos connects to a set of config servers, it initializes the sharded cluster with a default chunk size
of 64 megabytes. This default chunk size works well for most deployments; however, if you notice that automatic
migrations have more I/O than your hardware can handle, you may want to reduce the chunk size. For automatic splits
and migrations, a small chunk size leads to more rapid and frequent migrations. The allowed range of the chunk size
is between 1 and 1024 megabytes, inclusive.

To modify the chunk size, use the following procedure:

1. Connect to any mongos in the cluster using the mongo shell.

2. Issue the following command to switch to the config-database:

224 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

use config

3. Issue the following save() operation to store the global chunk size configuration value:

db.settings.save({ _id:"chunksize", value: <sizeInMB> })

Note: The chunkSize and --chunkSize options, passed at startup to the mongos, do not affect the chunk size
after you have initialized the cluster.

To avoid confusion, always set the chunk size using the above procedure instead of the startup options.

Modifying the chunk size has several limitations:

• Automatic splitting only occurs on insert or update.

• If you lower the chunk size, it may take time for all chunks to split to the new size.

• Splits cannot be undone.

• If you increase the chunk size, existing chunks grow only through insertion or updates until they reach the new
size.

• The allowed range of the chunk size is between 1 and 1024 megabytes, inclusive.

Clear jumbo Flag

On this page

• Procedures (page 225)

If MongoDB cannot split a chunk that exceeds the specified chunk size or contains a number of documents that exceeds
the max, MongoDB labels the chunk as jumbo.

If the chunk size no longer hits the limits, MongoDB clears the jumbo flag for the chunk when the mongos reloads
or rewrites the chunk metadata.

In cases where you need to clear the flag manually, the following procedures outline the steps to manually clear the
jumbo flag.

Procedures

Divisible Chunks The preferred way to clear the jumbo flag from a chunk is to attempt to split the chunk. If the
chunk is divisible, MongoDB removes the flag upon successful split of the chunk.

Step 1: Connect to mongos. Connect a mongo shell to a mongos.

Step 2: Find the jumbo Chunk. Run sh.status(true) to find the chunk labeled jumbo.

sh.status(true)

For example, the following output from sh.status(true) shows that chunk with shard key range { "x" : 2 }
-->> { "x" : 4 } is jumbo.

5.2. Sharded Cluster Tutorials 225

MongoDB Administration, Release 3.2.3

--- Sharding Status ---
sharding version: {

...
}
shards:

...
databases:

...
test.foo

shard key: { "x" : 1 }
chunks:

shard-b 2
shard-a 2

{ "x" : { "$minKey" : 1 } } -->> { "x" : 1 } on : shard-b Timestamp(2, 0)
{ "x" : 1 } -->> { "x" : 2 } on : shard-a Timestamp(3, 1)
{ "x" : 2 } -->> { "x" : 4 } on : shard-a Timestamp(2, 2) jumbo
{ "x" : 4 } -->> { "x" : { "$maxKey" : 1 } } on : shard-b Timestamp(3, 0)

Step 3: Split the jumbo Chunk. Use either sh.splitAt() or sh.splitFind() to split the jumbo chunk.

sh.splitAt("test.foo", { x: 3 })

MongoDB removes the jumbo flag upon successful split of the chunk.

Indivisible Chunks In some instances, MongoDB cannot split the no-longer jumbo chunk, such as a chunk with
a range of single shard key value, and the preferred method to clear the flag is not applicable. In such cases, you can
clear the flag using the following steps.

Important: Only use this method if the preferred method (page 225) is not applicable.

Before modifying the config database, always back up the config database.

If you clear the jumbo flag for a chunk that still exceeds the chunk size and/or the document number limit, MongoDB
will re-label the chunk as jumbo when MongoDB tries to move the chunk.

Step 1: Stop the balancer. Disable the cluster balancer process temporarily, following the steps outlined in Disable
the Balancer (page 214).

Step 2: Create a backup of config database. Use mongodump against a config server to create a backup of the
config database. For example:

mongodump --db config --port <config server port> --out <output file>

Step 3: Connect to mongos. Connect a mongo shell to a mongos.

Step 4: Find the jumbo Chunk. Run sh.status(true) to find the chunk labeled jumbo.

sh.status(true)

For example, the following output from sh.status(true) shows that chunk with shard key range { "x" : 2 }
-->> { "x" : 3 } is jumbo.

226 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

--- Sharding Status ---
sharding version: {

...
}
shards:

...
databases:

...
test.foo

shard key: { "x" : 1 }
chunks:

shard-b 2
shard-a 2

{ "x" : { "$minKey" : 1 } } -->> { "x" : 1 } on : shard-b Timestamp(2, 0)
{ "x" : 1 } -->> { "x" : 2 } on : shard-a Timestamp(3, 1)
{ "x" : 2 } -->> { "x" : 3 } on : shard-a Timestamp(2, 2) jumbo
{ "x" : 3 } -->> { "x" : { "$maxKey" : 1 } } on : shard-b Timestamp(3, 0)

Step 5: Update chunks collection. In the chunks collection of the config database, unset the jumbo flag for
the chunk. For example,

db.getSiblingDB("config").chunks.update(
{ ns: "test.foo", min: { x: 2 }, jumbo: true },
{ $unset: { jumbo: "" } }

)

Step 6: Restart the balancer. Restart the balancer, following the steps in Enable the Balancer (page 214).

Step 7: Optional. Clear current cluster meta information. To ensure that mongos instances update their cluster
information cache, run flushRouterConfig in the admin database.

db.adminCommand({ flushRouterConfig: 1 })

Manage Shard Tags

On this page

• Tag a Shard (page 227)
• Tag a Shard Key Range (page 228)
• Remove a Tag From a Shard Key Range (page 228)
• View Existing Shard Tags (page 228)
• Additional Resource (page 229)

In a sharded cluster, you can use tags to associate specific ranges of a shard key with a specific shard or subset of
shards.

Tag a Shard

Associate tags with a particular shard using the sh.addShardTag() method when connected to a mongos in-
stance. A single shard may have multiple tags, and multiple shards may also have the same tag.

5.2. Sharded Cluster Tutorials 227

MongoDB Administration, Release 3.2.3

Example
The following example adds the tag NYC to two shards, and the tags SFO and NRT to a third shard:

sh.addShardTag("shard0000", "NYC")
sh.addShardTag("shard0001", "NYC")
sh.addShardTag("shard0002", "SFO")
sh.addShardTag("shard0002", "NRT")

You may remove tags from a particular shard using the sh.removeShardTag() method when connected to a
mongos instance, as in the following example, which removes the NRT tag from a shard:

sh.removeShardTag("shard0002", "NRT")

Tag a Shard Key Range

To assign a tag to a range of shard keys use the sh.addTagRange()method when connected to a mongos instance.
Any given shard key range may only have one assigned tag. You cannot overlap defined ranges, or tag the same range
more than once.

Example
Given a collection named users in the records database, sharded by the zipcode field. The following operations
assign:

• two ranges of zip codes in Manhattan and Brooklyn the NYC tag

• one range of zip codes in San Francisco the SFO tag

sh.addTagRange("records.users", { zipcode: "10001" }, { zipcode: "10281" }, "NYC")
sh.addTagRange("records.users", { zipcode: "11201" }, { zipcode: "11240" }, "NYC")
sh.addTagRange("records.users", { zipcode: "94102" }, { zipcode: "94135" }, "SFO")

Note: Shard ranges are always inclusive of the lower value and exclusive of the upper boundary.

Remove a Tag From a Shard Key Range

The mongod does not provide a helper for removing a tag range. You may delete tag assignment from a shard key
range by removing the corresponding document from the tags collection of the config database.

Each document in the tags holds the namespace of the sharded collection and a minimum shard key value.

Example
The following example removes the NYC tag assignment for the range of zip codes within Manhattan:

use config
db.tags.remove({ _id: { ns: "records.users", min: { zipcode: "10001" }}, tag: "NYC" })

View Existing Shard Tags

The output from sh.status() lists tags associated with a shard, if any, for each shard. A shard’s tags exist in the
shard’s document in the shards collection of the config database. To return all shards with a specific tag, use a

228 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

sequence of operations that resemble the following, which will return only those shards tagged with NYC:

use config
db.shards.find({ tags: "NYC" })

You can find tag ranges for all namespaces in the tags collection of the config database. The output of
sh.status() displays all tag ranges. To return all shard key ranges tagged with NYC, use the following sequence
of operations:

use config
db.tags.find({ tags: "NYC" })

Additional Resource

• Whitepaper: MongoDB Multi-Data Center Deployments9

• Webinar: Multi-Data Center Deployment10

Enforce Unique Keys for Sharded Collections

On this page

• Overview (page 229)
• Procedures (page 230)

Overview

The unique constraint on indexes ensures that only one document can have a value for a field in a collection. For
sharded collections these unique indexes cannot enforce uniqueness because insert and indexing operations are local
to each shard.

MongoDB does not support creating new unique indexes in sharded collections and will not allow you to shard col-
lections with unique indexes on fields other than the _id field.

If you need to ensure that a field is always unique in a sharded collection, there are three options:

1. Enforce uniqueness of the shard key.

MongoDB can enforce uniqueness for the shard key. For compound shard keys, MongoDB will enforce unique-
ness on the entire key combination, and not for a specific component of the shard key.

You cannot specify a unique constraint on a hashed index.

2. Use a secondary collection to enforce uniqueness.

Create a minimal collection that only contains the unique field and a reference to a document in the main
collection. If you always insert into a secondary collection before inserting to the main collection, MongoDB
will produce an error if you attempt to use a duplicate key.

If you have a small data set, you may not need to shard this collection and you can create multiple unique
indexes. Otherwise you can shard on a single unique key.

9http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs
10https://www.mongodb.com/presentations/webinar-multi-data-center-deployment?jmp=docs

5.2. Sharded Cluster Tutorials 229

http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs
https://www.mongodb.com/presentations/webinar-multi-data-center-deployment?jmp=docs

MongoDB Administration, Release 3.2.3

3. Use guaranteed unique identifiers.

Universally unique identifiers (i.e. UUID) like the ObjectId are guaranteed to be unique.

Procedures

Unique Constraints on the Shard Key

Process To shard a collection using the unique constraint, specify the shardCollection command in the
following form:

db.runCommand({ shardCollection : "test.users" , key : { email : 1 } , unique : true });

Remember that the _id field index is always unique. By default, MongoDB inserts an ObjectId into the _id field.
However, you can manually insert your own value into the _id field and use this as the shard key. To use the _id
field as the shard key, use the following operation:

db.runCommand({ shardCollection : "test.users" })

Limitations

• You can only enforce uniqueness on one single field in the collection using this method.

• If you use a compound shard key, you can only enforce uniqueness on the combination of component keys in
the shard key.

In most cases, the best shard keys are compound keys that include elements that permit write scaling and query
isolation, as well as high cardinality (page 187). These ideal shard keys are not often the same keys that require
uniqueness and enforcing unique values in these collections requires a different approach.

Unique Constraints on Arbitrary Fields If you cannot use a unique field as the shard key or if you need to enforce
uniqueness over multiple fields, you must create another collection to act as a “proxy collection”. This collection must
contain both a reference to the original document (i.e. its ObjectId) and the unique key.

If you must shard this “proxy” collection, then shard on the unique key using the above procedure (page 230); other-
wise, you can simply create multiple unique indexes on the collection.

Process Consider the following for the “proxy collection:”

{
"_id" : ObjectId("...")
"email" ": "..."

}

The _id field holds the ObjectId of the document it reflects, and the email field is the field on which you want to
ensure uniqueness.

To shard this collection, use the following operation using the email field as the shard key:

db.runCommand({ shardCollection : "records.proxy" ,
key : { email : 1 } ,
unique : true });

If you do not need to shard the proxy collection, use the following command to create a unique index on the email
field:

230 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

db.proxy.createIndex({ "email" : 1 }, { unique : true })

You may create multiple unique indexes on this collection if you do not plan to shard the proxy collection.

To insert documents, use the following procedure in the JavaScript shell:

db = db.getSiblingDB('records');

var primary_id = ObjectId();

db.proxy.insert({
"_id" : primary_id
"email" : "example@example.net"

})

// if: the above operation returns successfully,
// then continue:

db.information.insert({
"_id" : primary_id
"email": "example@example.net"
// additional information...

})

You must insert a document into the proxy collection first. If this operation succeeds, the email field is unique, and
you may continue by inserting the actual document into the information collection.

See
The full documentation of: createIndex() and shardCollection.

Considerations

• Your application must catch errors when inserting documents into the “proxy” collection and must enforce
consistency between the two collections.

• If the proxy collection requires sharding, you must shard on the single field on which you want to enforce
uniqueness.

• To enforce uniqueness on more than one field using sharded proxy collections, you must have one proxy col-
lection for every field for which to enforce uniqueness. If you create multiple unique indexes on a single proxy
collection, you will not be able to shard proxy collections.

Use Guaranteed Unique Identifier The best way to ensure a field has unique values is to generate universally
unique identifiers (UUID,) such as MongoDB’s ‘ObjectId values.

This approach is particularly useful for the‘‘_id‘‘ field, which must be unique: for collections where you are not
sharding by the _id field the application is responsible for ensuring that the _id field is unique.

Shard GridFS Data Store

On this page

• files Collection (page 232)
• chunks Collection (page 232)

5.2. Sharded Cluster Tutorials 231

MongoDB Administration, Release 3.2.3

When sharding a GridFS store, consider the following:

files Collection

Most deployments will not need to shard the files collection. The files collection is typically small, and only
contains metadata. None of the required keys for GridFS lend themselves to an even distribution in a sharded situation.
If you must shard the files collection, use the _id field possibly in combination with an application field.

Leaving files unsharded means that all the file metadata documents live on one shard. For production GridFS stores
you must store the files collection on a replica set.

chunks Collection

To shard the chunks collection by { files_id : 1 , n : 1 }, issue commands similar to the following:

db.fs.chunks.createIndex({ files_id : 1 , n : 1 })

db.runCommand({ shardCollection : "test.fs.chunks" , key : { files_id : 1 , n : 1 } })

You may also want to shard using just the file_id field, as in the following operation:

db.runCommand({ shardCollection : "test.fs.chunks" , key : { files_id : 1 } })

Important: { files_id : 1 , n : 1 } and { files_id : 1 } are the only supported shard keys
for the chunks collection of a GridFS store.

Note: Changed in version 2.2.

Before 2.2, you had to create an additional index on files_id to shard using only this field.

The default files_id value is an ObjectId, as a result the values of files_id are always ascending, and applica-
tions will insert all new GridFS data to a single chunk and shard. If your write load is too high for a single server to
handle, consider a different shard key or use a different value for _id in the files collection.

5.2.4 Troubleshoot Sharded Clusters

On this page

• Config Database String Error (page 232)
• Cursor Fails Because of Stale Config Data (page 233)
• Avoid Downtime when Moving Config Servers (page 233)

This section describes common strategies for troubleshooting sharded cluster deployments.

Config Database String Error

Changed in version 3.2: Starting in MongoDB 3.2, config servers are deployed as replica sets by default. The mongos
instances for the sharded cluster must specify the same config server replica set name but can specify hostname and
port of different members of the replica set.

232 Chapter 5. Appendix

MongoDB Administration, Release 3.2.3

If using the deprecated topology of three mirrored mongod instances for config servers, mongos instances in a
sharded cluster must specify identical configDB string.

Cursor Fails Because of Stale Config Data

A query returns the following warning when one or more of the mongos instances has not yet updated its cache of
the cluster’s metadata from the config database:

could not initialize cursor across all shards because : stale config detected

This warning should not propagate back to your application. The warning will repeat until all the mongos instances
refresh their caches. To force an instance to refresh its cache, run the flushRouterConfig command.

Avoid Downtime when Moving Config Servers

Use CNAMEs to identify your config servers to the cluster so that you can rename and renumber your config servers
without downtime.

5.2. Sharded Cluster Tutorials 233

	Administration Concepts
	Operational Strategies
	Data Management
	Optimization Strategies for MongoDB

	Administration Tutorials
	Configuration, Maintenance, and Analysis
	Backup and Recovery
	MongoDB Tutorials

	Administration Reference
	UNIX ulimit Settings
	System Collections
	Database Profiler Output
	Server-side JavaScript
	Exit Codes and Statuses

	Production Checklist
	Operations Checklist
	Development
	Additional Resources

	Appendix
	Replica Set Tutorials
	Sharded Cluster Tutorials

