MongoDB Aggregation and Data

Processing
Release 3.2.3

MongoDB, Inc.

February 17, 2016

© MongoDB, Inc. 2008 - 2016 This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 United States License

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Contents

Aggregation Pipeline
Map-Reduce
Single Purpose Aggregation Operations

Additional Features and Behaviors

4.1 Aggregation Pipeline
42 Map-Reduce
4.3 AggregationReference oL oL

Additional Resources

MongoDB Aggregation and Data Processing, Release 3.2.3

On this page

» Aggregation Pipeline (page 3)

* Map-Reduce (page 5)

* Single Purpose Aggregation Operations (page 7)
» Additional Features and Behaviors (page 9)

» Additional Resources (page 51)

Aggregations operations process data records and return computed results. Aggregation operations group values from
multiple documents together, and can perform a variety of operations on the grouped data to return a single result.
MongoDB provides three ways to perform aggregation: the aggregation pipeline (page 3), the map-reduce function
(page 5), and single purpose aggregation methods (page 7).

Contents 1

MongoDB Aggregation and Data Processing, Release 3.2.3

2 Contents

CHAPTER 1

Aggregation Pipeline

MongoDB 2.2 introduced a new aggregation framework (page 9), modeled on the concept of data processing pipelines.
Documents enter a multi-stage pipeline that transforms the documents into an aggregated result.

The most basic pipeline stages provide filters that operate like queries and document transformations that modify the
form of the output document.

Other pipeline operations provide tools for grouping and sorting documents by specific field or fields as well as tools
for aggregating the contents of arrays, including arrays of documents. In addition, pipeline stages can use operators
for tasks such as calculating the average or concatenating a string.

The pipeline provides efficient data aggregation using native operations within MongoDB, and is the preferred method
for data aggregation in MongoDB.

The aggregation pipeline can operate on a sharded collection.

The aggregation pipeline can use indexes to improve its performance during some of its stages. In addition, the ag-
gregation pipeline has an internal optimization phase. See Pipeline Operators and Indexes (page 11) and Aggregation
Pipeline Optimization (page 11) for details.

MongoDB Aggregation and Data Processing, Release 3.2.3

Collection

db.orders.aggregate([
$match stage—» { $match: { status: "A" } 3},

$group stage— { $group: { _id: "$cust_id"”,total: { $sum: "$amount” } } }

]
{
cust_id: "A123",
amount: 500,
status: "A"
¥ ¢ e
amount: 500, Results
{ status: "A"
cust_id: "A123", } {
amount: 250, _id: "A123",
status: "A" total: 750
} { }
cust_id: "A123",
¢ Tiatch > | St Serou >
cust_id: "B212", } c
amount: 200,
status: "A" total: 200
: " cust_ia: e,)
amount: 200,
{ status: "A"
cust_id: "A123", 3}
amount: 300,
status: "D"
}
orders

4 Chapter 1. Aggregation Pipeline

CHAPTER 2

Map-Reduce

MongoDB also provides map-reduce (page 25) operations to perform aggregation. In general, map-reduce operations
have two phases: a map stage that processes each document and emits one or more objects for each input document,
and reduce phase that combines the output of the map operation. Optionally, map-reduce can have a finalize stage to
make final modifications to the result. Like other aggregation operations, map-reduce can specify a query condition to
select the input documents as well as sort and limit the results.

Map-reduce uses custom JavaScript functions to perform the map and reduce operations, as well as the optional finalize
operation. While the custom JavaScript provide great flexibility compared to the aggregation pipeline, in general, map-
reduce is less efficient and more complex than the aggregation pipeline.

Map-reduce can operate on a sharded collection. Map reduce operations can also output to a sharded collec-
tion. See Aggregation Pipeline and Sharded Collections (page 16) and Map-Reduce and Sharded Collections (page 26)
for details.

Note: Starting in MongoDB 2.4, certain mongo shell functions and properties are inaccessible in map-reduce op-
erations. MongoDB 2.4 also provides support for multiple JavaScript operations to run at the same time. Before

MongoDB 2.4, JavaScript code executed in a single thread, raising concurrency issues for map-reduce.

MongoDB Aggregation and Data Processing, Release 3.2.3

Collection

db.orders.mapReduce(
map — function() { emit(this.cust_id, this.amount); 3},

reduce — function(key, values) { return Array.sum(values) },

query —» query: { status: "A" },
output —» out: "order_totals”
{
cust_id: "A123",
amount: 500,
status: "A"
} {
cust_id: "A123",
amount: 500,
{ status: "A"
cust_id: "A123", }
amount: 250, . N _id: "A123",
status. "A" { { "A123": [500, 250 1} _>reduce : value: 750
’ cust_id: "A123",
P> | amount: 250, S
{ query status: "A” map
cust_id: "B212", 3} {
amount: 200, { EBZi2E - 200 } —_—
status: "A" value: 200
) Cust g ez,)
amount: 200,
{ status: "A" order_totals
cust_id: "A123", 3
amount: 300,
status: "D"
b

orders

6 Chapter 2. Map-Reduce

CHAPTER 3

Single Purpose Aggregation Operations

MongoDB also provides db.collection.count (), db.collection.group (),
db.collection.distinct (). special purpose database commands.

All of these operations aggregate documents from a single collection. While these operations provide simple access to
common aggregation processes, they lack the flexibility and capabilities of the aggregation pipeline and map-reduce.

MongoDB Aggregation and Data Processing, Release 3.2.3

Collection

db.orders.distinct("cust_id"”)

{
cust_id: "A123",
amount: 500,
status: "A"

3

{
cust_id: "A123",
amount: 250,
status: "A"

3

. . ["A123", "B212"]

c distinct >
cust_id: "B212",
amount: 200,
status: "A"

3

{
cust_id: "A123",
amount: 300,
status: "D"

}

orders

8 Chapter 3. Single Purpose Aggregation Operations

CHAPTER 4

Additional Features and Behaviors

For a feature comparison of the aggregation pipeline, map-reduce, and the special group functionality, see Aggregation
Commands Comparison (page 44).

4.1 Aggregation Pipeline

On this page

* Pipeline (page 9)

* Pipeline Expressions (page 9)

» Aggregation Pipeline Behavior (page 11)
* Additional Resources (page 24)

The aggregation pipeline is a framework for data aggregation modeled on the concept of data processing pipelines.
Documents enter a multi-stage pipeline that transforms the documents into aggregated results.

The aggregation pipeline provides an alternative to map-reduce and may be the preferred solution for aggregation tasks
where the complexity of map-reduce may be unwarranted.

Aggregation pipeline have some limitations on value types and result size. See Aggregation Pipeline Limits (page 15)
for details on limits and restrictions on the aggregation pipeline.

4.1.1 Pipeline

The MongoDB aggregation pipeline consists of stages. Each stage transforms the documents as they pass through the
pipeline. Pipeline stages do not need to produce one output document for every input document; e.g., some stages may
generate new documents or filter out documents. Pipeline stages can appear multiple times in the pipeline.

MongoDB provides the db.collection.aggregate () method in the mongo shell and the aggregate com-
mand for aggregation pipeline. See aggregation-pipeline-operator-reference for the available stages.

For example usage of the aggregation pipeline, consider Aggregation with User Preference Data (page 20) and Aggre-
gation with the Zip Code Data Set (page 17).

4.1.2 Pipeline Expressions

Some pipeline stages takes a pipeline expression as its operand. Pipeline expressions specify the transformation to
apply to the input documents. Expressions have a document structure and can contain other expression (page 38).

MongoDB Aggregation and Data Processing, Release 3.2.3

Collection

db.orders.aggregate([
$match stage—» { $match: { status: "A" } 3},

$group stage— { $group: { _id: "$cust_id"”,total: { $sum: "$amount” } } }

]
{
cust_id: "A123",
amount: 500,
status: "A"
¥ "
amount: 500, Results
{ status: "A"
cust_id: "A123", } {
amount: 250, _id: "A123",
status: "A" total: 750
} { }
cust_id: "A123",
¢ Tiatch > | St Serou >
cust_id: "B212", } c
amount: 200,
status: "A" total: 200
: " cust_ia: e,)
amount: 200,
{ status: "A"
cust_id: "A123", 3}
amount: 300,
status: "D"
}
orders

10 Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

Pipeline expressions can only operate on the current document in the pipeline and cannot refer to data from other
documents: expression operations provide in-memory transformation of documents.

Generally, expressions are stateless and are only evaluated when seen by the aggregation process with one exception:
accumulator expressions.

The accumulators, used in the $group stage, maintain their state (e.g. totals, maximums, minimums, and related
data) as documents progress through the pipeline.

Changed in version 3.2: Some accumulators are available in the $project stage; however, when used in the
Sproject stage, the accumulators do not maintain their state across documents.

For more information on expressions, see Expressions (page 38).

4.1.3 Aggregation Pipeline Behavior

In MongoDB, the aggregate command operates on a single collection, logically passing the entire collection into
the aggregation pipeline. To optimize the operation, wherever possible, use the following strategies to avoid scanning
the entire collection.

Pipeline Operators and Indexes
The $match and $sort pipeline operators can take advantage of an index when they occur at the beginning of the
pipeline.

New in version 2.4: The $geoNear pipeline operator takes advantage of a geospatial index. When using $geoNear,
the SgeoNear pipeline operation must appear as the first stage in an aggregation pipeline.

Changed in version 3.2: Starting in MongoDB 3.2, indexes can cover an aggregation pipeline. In MongoDB 2.6 and
3.0, indexes could not cover an aggregation pipeline since even when the pipeline uses an index, aggregation still
requires access to the actual documents.

Early Filtering

If your aggregation operation requires only a subset of the data in a collection, use the $Smatch, $1imit, and $skip
stages to restrict the documents that enter at the beginning of the pipeline. When placed at the beginning of a pipeline,
$match operations use suitable indexes to scan only the matching documents in a collection.

Placing a $match pipeline stage followed by a $sort stage at the start of the pipeline is logically equivalent to a
single query with a sort and can use an index. When possible, place $mat ch operators at the beginning of the pipeline.

Additional Features

The aggregation pipeline has an internal optimization phase that provides improved performance for certain sequences
of operators. For details, see Aggregation Pipeline Optimization (page 11).

The aggregation pipeline supports operations on sharded collections. See Aggregation Pipeline and Sharded Collec-
tions (page 16).

Aggregation Pipeline Optimization

4.1. Aggregation Pipeline 11

MongoDB Aggregation and Data Processing, Release 3.2.3

On this page

* Projection Optimization (page 12)

* Pipeline Sequence Optimization (page 12)

* Pipeline Coalescence Optimization (page 13)
* Examples (page 15)

Aggregation pipeline operations have an optimization phase which attempts to reshape the pipeline for improved
performance.

To see how the optimizer transforms a particular aggregation pipeline, include the explain option in the
db.collection.aggregate () method.

Optimizations are subject to change between releases.

Projection Optimization The aggregation pipeline can determine if it requires only a subset of the fields in the
documents to obtain the results. If so, the pipeline will only use those required fields, reducing the amount of data
passing through the pipeline.

Pipeline Sequence Optimization

$sort + $match Sequence Optimization When you have a sequence with $sort followed by a $Smatch, the
$match moves before the $sort to minimize the number of objects to sort. For example, if the pipeline consists of
the following stages:

{ $sort: { age : -1 } },
{ Smatch: { status: 'A' } }

During the optimization phase, the optimizer transforms the sequence to the following:

{ Smatch: { status: 'A'" } 1},
{ $sort: { age : -1 } }

$skip + $1imit Sequence Optimization When you have a sequence with $skip followed by a $1imit, the
$1imit moves before the $skip. With the reordering, the $1imit value increases by the $skip amount.

For example, if the pipeline consists of the following stages:

{ $skip: 10 },

{ $1limit: 5 }

During the optimization phase, the optimizer transforms the sequence to the following:
{ $limit: 15 1},

{ $skip: 10 }

This optimization allows for more opportunities for $sort + $limit Coalescence (page 13), such as with $sort +
$skip + $1limit sequences. See $sort + $limit Coalescence (page 13) for details on the coalescence and $sorr +
$skip + 3limit Sequence (page 15) for an example.

For aggregation operations on sharded collections (page 16), this optimization reduces the results returned from each
shard.

12 Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

$redact + $match Sequence Optimization When possible, when the pipeline has the $redact stage immedi-
ately followed by the Smatch stage, the aggregation can sometimes add a portion of the $match stage before the
$Sredact stage. If the added $Smatch stage is at the start of a pipeline, the aggregation can use an index as well
as query the collection to limit the number of documents that enter the pipeline. See Pipeline Operators and Indexes
(page 11) for more information.

For example, if the pipeline consists of the following stages:

{ $redact: { S$cond: { if: { S$Seqg: ["Slevel", 5
{ $match: { year: 2014, category: { S$ne: "2" }

] }, then: "SSPRUNE", else: "S$SDESCEND" } } 1},
b
The optimizer can add the same $match stage before the $redact stage:

{ Smatch: { year: 2014 } },
{ $redact: { S$cond: { if: { S$eq: ["Slevel", 5] }, then: "SSPRUNE", else: "SSDESCEND" } } },
{ $match: { year: 2014, category: { S$Sne: "Z" } } }

$project + $skip or $1imit Sequence Optimization New in version 3.2.

When you have a sequence with Sproject followed by either Sskip or $1imit, the $skip or $1imit moves
before $project. For example, if the pipeline consists of the following stages:

{ Ssort: { age : -1 } 1},
{ Sproject: { status: 1, name: 1 } },
{ $limit: 5 }

During the optimization phase, the optimizer transforms the sequence to the following:

{ $sort: { age : -1 } 1},
{ $limit: 5 }
{ $project: { status: 1, name: 1 } 1},

This optimization allows for more opportunities for $sort + $limit Coalescence (page 13), such as with $sort +
$1limit sequences. See $sort + $limit Coalescence (page 13) for details on the coalescence.

Pipeline Coalescence Optimization When possible, the optimization phase coalesces a pipeline stage into its pre-
decessor. Generally, coalescence occurs after any sequence reordering optimization.

$sort + $1imit Coalescence When a $sort immediately precedes a $1imit, the optimizer can coalesce the
$limit into the $sort. This allows the sort operation to only maintain the top n results as it progresses, where
n is the specified limit, and MongoDB only needs to store n items in memory '. See sort-and-memory for more
information.

$limit + $1limit Coalescence When a $1imit immediately follows another $1imit, the two stages can
coalesce into a single $1imit where the limit amount is the smaller of the two initial limit amounts. For example, a
pipeline contains the following sequence:

{ $limit: 100 1},
{ $limit: 10 }

Then the second $1imit stage can coalesce into the first $1imit stage and result in a single $1imit stage where
the limit amount 10 is the minimum of the two initial limits 100 and 10.

! The optimization will still apply when allowDiskUse is t rue and the n items exceed the aggregation memory limit (page 16).

4.1. Aggregation Pipeline 13

MongoDB Aggregation and Data Processing, Release 3.2.3

{ $limit: 10 }

$skip + $skip Coalescence When a $skip immediately follows another $skip, the two stages can coalesce
into a single $ sk ip where the skip amount is the sum of the two initial skip amounts. For example, a pipeline contains
the following sequence:

{ $skip: 5 1},
{ $skip: 2 }

Then the second $skip stage can coalesce into the first $skip stage and result in a single $skip stage where the

skip amount 7 is the sum of the two initial limits 5 and 2.

{ $skip: 7 }

$match + $match Coalescence When a $match immediately follows another $Smatch, the two stages can
coalesce into a single $mat ch combining the conditions with an $and. For example, a pipeline contains the following
sequence:

{ $match: { year: 2014 } 1},
{ Smatch: { status: "A" } }

Then the second $match stage can coalesce into the first Smat ch stage and result in a single $Smatch stage

{ $match: { $and: [{ "year" : 2014 }, { "status" : "A" }] } }

$lookup + $unwind Coalescence New in version 3.2.

When a $unwind immediately follows another $1lookup, and the $unwind operates on the as field of the
$lookup, the optimizer can coalesce the $Sunwind into the $1ookup stage. This avoids creating large intermediate
documents.

For example, a pipeline contains the following sequence:

{

$lookup: {
from: "otherCollection",
as: "resultingArray",

localField: "x",
foreignField: "y"
}
}I
{ $Sunwind: "SresultingArray"}

The optimizer can coalesce the Sunwind stage into the $1ookup stage. If you run the aggregation with explain
option, the explain output shows the coalesced stage:

{

$lookup: {
from: "otherCollection",
as: "resultingArray",

localField: "x",
foreignField: "y",
unwinding: { preserveNullAndEmptyArrays: false }

14 Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

Examples The following examples are some sequences that can take advantage of both sequence reordering and
coalescence. Generally, coalescence occurs after any sequence reordering optimization.

$sort + $skip + $1imit Sequence A pipeline contains a sequence of $sort followed by a $skip followed
bya$limit:

{ $sort: { age : -1 } },
{ $skip: 10 },
{ $1limit: 5 }

First, the optimizer performs the $skip + $limit Sequence Optimization (page 12) to transforms the sequence to the
following:

{ Ssort: { age : -1 } 1},
{ $limit: 15 }
{ $skip: 10 }

The $skip + $limit Sequence Optimization (page 12) increases the $1imit amount with the reordering. See $skip +
$limit Sequence Optimization (page 12) for details.

The reordered sequence now has $sort immediately preceding the $1imit, and the pipeline can coalesce the two
stages to decrease memory usage during the sort operation. See $sort + $limit Coalescence (page 13) for more
information.

$limit + $skip + $1limit + $skip Sequence A pipeline contains a sequence of alternating $1imit and
Sskip stages:

{ $limit: 100 },
{ $skip: 5 1},

{ $limit: 10 },
{ $skip: 2 }

The $skip + $limit Sequence Optimization (page 12) reverses the position of the { $skip: 5 }and { $limit:
10 } stages and increases the limit amount:

{ $limit: 100 1},
{ $limit: 15},

{ S$skip: 5 },

{ $skip: 2 }

The optimizer then coalesces the two $1imit stages into a single $1imit stage and the two $skip stages into a
single $skip stage. The resulting sequence is the following:

{ $limit: 15 },
{ $skip: 7 }

See $limit + $limit Coalescence (page 13) and $skip + $skip Coalescence (page 14) for details.
See also:

explain optioninthe db.collection.aggregate ()

Aggregation Pipeline Limits

4.1. Aggregation Pipeline 15

MongoDB Aggregation and Data Processing, Release 3.2.3

On this page

* Result Size Restrictions (page 16)
* Memory Restrictions (page 16)

Aggregation operations with the aggregate command have the following limitations.

Result Size Restrictions Changed in version 2.6.

Starting in MongoDB 2.6, the aggregate command can return a cursor or store the results in a collection. When re-
turning a cursor or storing the results in a collection, each document in the result set is subject to the BSON Document
Size limit, currently 16 megabytes; if any single document that exceeds the BSON Document Size limit, the
command will produce an error. The limit only applies to the returned documents; during the pipeline processing, the
documents may exceed this size. The db.collection.aggregate () method returns a cursor by default starting
in MongoDB 2.6

If you do not specify the cursor option or store the results in a collection, the aggregate command returns a single
BSON document that contains a field with the result set. As such, the command will produce an error if the total size
of the result set exceeds the BSON Document Size limit.

Earlier versions of the aggregate command can only return a single BSON document that contains the result set
and will produce an error if the if the total size of the result set exceeds the BSON Document Size limit.

Memory Restrictions Changed in version 2.6.

Pipeline stages have a limit of 100 megabytes of RAM. If a stage exceeds this limit, MongoDB will produce an error.
To allow for the handling of large datasets, use the allowDiskUse option to enable aggregation pipeline stages to
write data to temporary files.

See also:

sort-memory-limit and group-memory-limit.

Aggregation Pipeline and Sharded Collections

On this page

* Behavior (page 16)
* Optimization (page 17)

The aggregation pipeline supports operations on sharded collections. This section describes behaviors specific to the
aggregation pipeline (page 9) and sharded collections.

Behavior Changed in version 3.2.

If the pipeline starts with an exact $Smatch on a shard key, the entire pipeline runs on the matching shard only.
Previously, the pipeline would have been split, and the work of merging it would have to be done on the primary shard.

For aggregation operations that must run on multiple shards, if the operations do not require running on the database’s
primary shard, these operations will route the results to a random shard to merge the results to avoid overloading the
primary shard for that database. The Sout stage and the $1ookup stage require running on the database’s primary
shard.

16 Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

Optimization When splitting the aggregation pipeline into two parts, the pipeline is split to ensure that the shards
perform as many stages as possible with consideration for optimization.

To see how the pipeline was split, include the explain optionin the db.collection.aggregate () method.

Optimizations are subject to change between releases.

Aggregation with the Zip Code Data Set

On this page

» Data Model (page 17)

* aggregate () Method (page 17)

» Return States with Populations above 10 Million (page 18)
» Return Average City Population by State (page 18)

» Return Largest and Smallest Cities by State (page 19)

The examples in this document use the zipcodes collection. This collection is available at: me-
dia.mongodb.org/zips.json’. Use mongoimport to load this data set into your mongod instance.

Data Model Each document in the zipcodes collection has the following form:

{

"_id": "10280",

"city": "NEW YORK",

"state": "NY",

"pop": 5574,

"loc": [
-74.016323,
40.710537

e The _id field holds the zip code as a string.

* The city field holds the city name. A city can have more than one zip code associated with it as different
sections of the city can each have a different zip code.

¢ The state field holds the two letter state abbreviation.
* The pop field holds the population.

* The loc field holds the location as a latitude longitude pair.

aggregate () Method All of the following examples use the aggregate () helper in the mongo shell.

The aggregate () method uses the aggregation pipeline (page 9) to processes documents into aggregated results.
An aggregation pipeline (page 9) consists of stages with each stage processing the documents as they pass along the
pipeline. Documents pass through the stages in sequence.

The aggregate () method in the mongo shell provides a wrapper around the aggregate database command. See
the documentation for your driver for a more idiomatic interface for data aggregation operations.

Zhttp://media.mongodb.org/zips.json

4.1. Aggregation Pipeline 17

http://media.mongodb.org/zips.json
http://media.mongodb.org/zips.json

MongoDB Aggregation and Data Processing, Release 3.2.3

Return States with Populations above 10 Million The following aggregation operation returns all states with total
population greater than 10 million:

db.zipcodes.aggregate ([
{ $group: { _id: "Sstate", totalPop: { $sum: "Spop" } } },
{ Smatch: { totalPop: { S$gte: 10+x1000%x1000 } } }

1)

In this example, the aggregation pipeline (page 9) consists of the $group stage followed by the $Smatch stage:

e The $group stage groups the documents of the zipcode collection by the state field, calculates the
totalPop field for each state, and outputs a document for each unique state.

The new per-state documents have two fields: the _id field and the totalPop field. The _id field contains
the value of the state;i.e. the group by field. The totalPop field is a calculated field that contains the total
population of each state. To calculate the value, $group uses the $sum operator to add the population field
(pop) for each state.

After the $group stage, the documents in the pipeline resemble the following:

{
"_id" . "AKH,
"totalPop" : 550043
}

e The $match stage filters these grouped documents to output only those documents whose t ot alPop value is
greater than or equal to 10 million. The $match stage does not alter the matching documents but outputs the
matching documents unmodified.

The equivalent SQL for this aggregation operation is:

SELECT state, SUM(pop) AS totalPop
FROM zipcodes

GROUP BY state

HAVING totalPop >= (10x1000%1000)

See also:

$group, Smatch, $sum

Return Average City Population by State The following aggregation operation returns the average populations for
cities in each state:

db.zipcodes.aggregate ([
{ Sgroup: { _id: { state: "S$state", city: "Scity" }, pop: { S$sum: "Spop" } } },
{ $group: { _id: "S$_id.state", avgCityPop: { $avg: "Spop" } } }

1)

In this example, the aggregation pipeline (page 9) consists of the $group stage followed by another $group stage:

* The first $Sgroup stage groups the documents by the combination of city and state, uses the $sum ex-
pression to calculate the population for each combination, and outputs a document for each city and state
combination. *

After this stage in the pipeline, the documents resemble the following:
{

LIS Re LA {
"state" : "CO"
. ’

3 A city can have more than one zip code associated with it as different sections of the city can each have a different zip code.

18 Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

"city" : "EDGEWATER"

}y
"pop" : 13154

}

* A second $group stage groups the documents in the pipeline by the _id.state field (i.e. the state field
inside the __id document), uses the $avg expression to calculate the average city population (avgCityPop)
for each state, and outputs a document for each state.

The documents that result from this aggregation operation resembles the following:

{

Yliid" H "MN",
"avgCityPop" : 5335
}
See also:

Sgroup, $sum, Savg

Return Largest and Smallest Cities by State The following aggregation operation returns the smallest and largest
cities by population for each state:

db.zipcodes.aggregate ([
{ $group:
{
_id: { state: "S$state", city: "Scity" 1},
pop: { S$sum: "Spop" }
}
}I
{ $sort: { pop: 1 } 1},

{ $Sgroup:
{
_id : "S$_id.state",
biggestCity: { $last: "$_id.city" 1},
biggestPop: { $last: "Spop" 1},

smallestCity: { $first: "S_id.city" 1},
smallestPop: { $first: "Spop" }

by

// the following Sproject is optional, and
// modifies the output format.

{ $project:
{ _id: 0,
state: "S$_id",
biggestCity: { name: "S$biggestCity", pop: "S$biggestPop" },
smallestCity: { name: "SsmallestCity", pop: "SsmallestPop" }

}
1)

In this example, the aggregation pipeline (page 9) consists of a $group stage, a Ssort stage, another Sgroup stage,
and a Sproject stage:

* The first Sgroup stage groups the documents by the combination of the city and state, calculates the sum
of the pop values for each combination, and outputs a document for each city and state combination.

4.1. Aggregation Pipeline 19

MongoDB Aggregation and Data Processing, Release 3.2.3

At this stage in the pipeline, the documents resemble the following:

{

"oid" o |
"state" : "CO",
"city" : "EDGEWATER"
}I
"pop" : 13154

}

e The $sort stage orders the documents in the pipeline by the pop field value, from smallest to largest; i.e. by
increasing order. This operation does not alter the documents.

* The next Sgroup stage groups the now-sorted documents by the _id. state field (i.e. the state field inside
the _id document) and outputs a document for each state.

The stage also calculates the following four fields for each state. Using the $1ast expression, the Sgroup
operator creates the biggestCity and biggestPop fields that store the city with the largest population
and that population. Using the $first expression, the $Sgroup operator creates the smallestCity and
smallestPop fields that store the city with the smallest population and that population.

The documents, at this stage in the pipeline, resemble the following:

{

"oid" : "wA",
"biggestCity" : "SEATTLE",
"biggestPop" : 520096,
"smallestCity" : "BENGE",
"smallestPop" : 2

}

e The final Sproject stage renames the _id field to state and moves the biggestCity, biggestPop,
smallestCity, and smallestPop into biggestCity and smallestCity embedded documents.

The output documents of this aggregation operation resemble the following:

{

"state" : "RI",

"biggestCity" : {
"name" : "CRANSTON",
"pop" : 176404

}I

"smallestCity" : {
"name" : "CLAYVILLE",
"pop" : 45

Aggregation with User Preference Data

On this page

» Data Model (page 21)

* Normalize and Sort Documents (page 21)

» Return Usernames Ordered by Join Month (page 21)
* Return Total Number of Joins per Month (page 22)

* Return the Five Most Common “Likes” (page 23)

20 Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

Data Model Consider a hypothetical sports club with a database that contains a users collection that tracks the
user’s join dates, sport preferences, and stores these data in documents that resemble the following:

{

_id : "jane",
joined : ISODate("2011-03-02"),
likes : ["golf", "racquetball"]
}
{
_id : "joe",
joined : ISODate("2012-07-02"),
likes : ["tennis", "golf", "swimming"]

Normalize and Sort Documents The following operation returns user names in upper case and in alphabetical order.
The aggregation includes user names for all documents in the users collection. You might do this to normalize user
names for processing.

db.users.aggregate (

[
{ Sproject : { name:{S$toUpper:"S$_id"} , _id:0 } 1},
{ $sort : { name : 1 } }

)

All documents from the users collection pass through the pipeline, which consists of the following operations:
e The $project operator:
— creates a new field called name.

— converts the value of the _id to upper case, with the $t oUpper operator. Then the Sproject creates
a new field, named name to hold this value.

— suppresses the id field. Sproject will pass the _id field by default, unless explicitly suppressed.
* The $sort operator orders the results by the name field.
The results of the aggregation would resemble the following:

{

"name" : "JANE"
I
{

"name" : "JILL"
I
{

"name" : "JOE"

Return Usernames Ordered by Join Month The following aggregation operation returns user names sorted by the
month they joined. This kind of aggregation could help generate membership renewal notices.

db.users.aggregate (

[

{ $project
{
month_joined : { $month : "$joined" },
name : "$_id",

4.1. Aggregation Pipeline 21

MongoDB Aggregation and Data Processing, Release 3.2.3

~id : 0
}

b
{ $sort : { month_joined : 1 } }

)

The pipeline passes all documents in the users collection through the following operations:
* The $project operator:
— Creates two new fields: month_joined and name.

— Suppresses the id from the results. The aggregate () method includes the _id, unless explicitly
suppressed.

* The $month operator converts the values of the joined field to integer representations of the month. Then
the Sproject operator assigns those values to the month_joined field.

* The $sort operator sorts the results by the month_ joined field.
The operation returns results that resemble the following:

{

"month_Jjoined" : 1,
"name" : "ruth"

}l

{
"month_joined" : 1,
"name" : "harold"

}I

{
"month_joined" : 1,
"name" : "kate"

}

{
"month_joined" : 2,
"name" : "3jill"

Return Total Number of Joins per Month The following operation shows how many people joined each month of
the year. You might use this aggregated data for recruiting and marketing strategies.

db.users.aggregate (

[

{ $project : { month_joined : { $month : "$joined" } } } ,
{ $group : { _id : {month_joined:"$month_joined"} , number : { $sum : 1 } } },
{ $sort : { "_id.month_joined" : 1 } }

)

The pipeline passes all documents in the users collection through the following operations:
* The $project operator creates a new field called month_joined.

* The $month operator converts the values of the joined field to integer representations of the month. Then
the Sproject operator assigns the values to the month_ joined field.

* The $group operator collects all documents with a given month_ joined value and counts how many docu-
ments there are for that value. Specifically, for each unique value, $group creates a new “per-month” document
with two fields:

22 Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

The result of this aggregation operation would resemble the following:

{

}

}

}

— _1id, which contains a nested document with the month_ joined field and its value.

— number, which is a generated field. The $sum operator increments this field by 1 for every document

containing the given month_ joined value.

field.

"_id" : {
"month_joined" : 1
’

"number" : 3

"_id" : {
"month_joined" : 2
’

"number" : 9

_id"m oo |
"month_joined" : 3
’

"number" : 5

Return the Five Most Common “Likes”

e The $sort operator sorts the documents created by $group according to the contents of the month_ joined

The following aggregation collects top five most “liked” activities in the

data set. This type of analysis could help inform planning and future development.

db.users.aggregate (

[

)

{ Sunwind : "Slikes" },

{ $group : { _id : "S$likes" , number : { $sum
{ $sort : { number : -1 } },

{

Slimit : 5 }

Ly}

The pipeline begins with all documents in the users collection, and passes these documents through the following
operations:

* The Sunwind operator separates each value in the 1ikes array, and creates a new version of the source

document for every element in the array.

Example

Given the following document from the users collection:

{
_id : "jane",
joined : ISODate ("2011-03-02"),
likes : ["golf", "racquetball"]

}

The $unwind operator would create the following documents:

4.1.

Aggregation Pipeline

23

MongoDB Aggregation and Data Processing, Release 3.2.3

_id : "jane",
joined : ISODate ("2011-03-02"),
likes : "golf"

}

{
_id : "jane",
joined : ISODate ("2011-03-02"),
likes : "racquetball"

* The $group operator collects all documents the same value for the 1ikes field and counts each grouping.
With this information, $group creates a new document with two fields:

— _id, which contains the 1ikes value.

— number, which is a generated field. The $sum operator increments this field by 1 for every document
containing the given 1ikes value.

* The $sort operator sorts these documents by the number field in reverse order.
* The $1imit operator only includes the first 5 result documents.
The results of aggregation would resemble the following:

{

"_id" : "golf",
"number" : 33

}I

{
"_id" : "racquetball",
"number" : 31

}I

{
"_id" : "swimming",
"number" : 24

}I

{
"_id" : "handball",
"number" : 19

}I

{
" id"™ : "tennis",
"number" : 18

4.1.4 Additional Resources

* MongoDB Analytics: Learn Aggregation by Example: Exploratory Analytics and Visualization Using Flight
Data*
» MongoDB for Time Series Data: Analyzing Time Series Data Using the Aggregation Framework and Hadoop?

 The Aggregation Framework®

“http://www.mongodb.com/presentations/mongodb-analytics-learn-aggregation-example-exploratory-analytics-and-visualization?jmp=docs
Shttp://www.mongodb.com/presentations/mongodb-time-series-data-part-2-analyzing-time-series-data-using-aggregation-

framework ?jmp=docs
Shttps://www.mongodb.com/presentations/aggregation-framework-02jmp=docs

24 Chapter 4. Additional Features and Behaviors

http://www.mongodb.com/presentations/mongodb-analytics-learn-aggregation-example-exploratory-analytics-and-visualization?jmp=docs
http://www.mongodb.com/presentations/mongodb-analytics-learn-aggregation-example-exploratory-analytics-and-visualization?jmp=docs
http://www.mongodb.com/presentations/mongodb-time-series-data-part-2-analyzing-time-series-data-using-aggregation-framework?jmp=docs
https://www.mongodb.com/presentations/aggregation-framework-0?jmp=docs

MongoDB Aggregation and Data Processing, Release 3.2.3

» Webinar: Exploring the Aggregation Framework’

* Quick Reference Cards®

4.2 Map-Reduce

On this page

* Map-Reduce JavaScript Functions (page 26)
* Map-Reduce Behavior (page 26)

Map-reduce is a data processing paradigm for condensing large volumes of data into useful aggregated results. For
map-reduce operations, MongoDB provides the mapReduce database command.

Consider the following map-reduce operation:
Collection

db.orders.mapReduce(
map — function() { emit(this.cust_id, this.amount); 3},

reduce — function(key, values) { return Array.sum(values) },
{

query —» query: { status: "A" 3},

output —» out: "order_totals”

3
)
{
cust_id: "A123",
amount: 500,
status: "A"
) { T
cust_id: "A123",
amount: 500,
{ status: "A"
cust_id: "A123", } { ’
amount: 250 _id: "A123",
status: "A" . { "A123": [see, 250 1} | value: 750
) cust_id: "A123", ’
amount: 250, —>
{ query status: "A" map
cust_id: "B212", } ¢
amount: 200, { B3 : 200} —p- | _id: "B212",
status: "A" value: 200
) { —)
cust_id: "B212",
amount: 200,
{ status: "A" order_totals
cust_id: "A123", }
amount: 300,
status: "D"
}

orders

https://www.mongodb.com/webinar/exploring-the-aggregation-framework?jmp=docs
8https://www.mongodb.com/Ip/misc/quick-reference-cards?jmp=docs

4.2. Map-Reduce 25

https://www.mongodb.com/webinar/exploring-the-aggregation-framework?jmp=docs
https://www.mongodb.com/lp/misc/quick-reference-cards?jmp=docs

MongoDB Aggregation and Data Processing, Release 3.2.3

In this map-reduce operation, MongoDB applies the map phase to each input document (i.e. the documents in the
collection that match the query condition). The map function emits key-value pairs. For those keys that have multiple
values, MongoDB applies the reduce phase, which collects and condenses the aggregated data. MongoDB then stores
the results in a collection. Optionally, the output of the reduce function may pass through a finalize function to further
condense or process the results of the aggregation.

All map-reduce functions in MongoDB are JavaScript and run within the mongod process. Map-reduce operations
take the documents of a single collection as the input and can perform any arbitrary sorting and limiting before
beginning the map stage. mapReduce can return the results of a map-reduce operation as a document, or may write
the results to collections. The input and the output collections may be sharded.

Note: For most aggregation operations, the Aggregation Pipeline (page 9) provides better performance and more
coherent interface. However, map-reduce operations provide some flexibility that is not presently available in the

aggregation pipeline.

4.2.1 Map-Reduce JavaScript Functions

In MongoDB, map-reduce operations use custom JavaScript functions to map, or associate, values to a key. If a key
has multiple values mapped to it, the operation reduces the values for the key to a single object.

The use of custom JavaScript functions provide flexibility to map-reduce operations. For instance, when processing a
document, the map function can create more than one key and value mapping or no mapping. Map-reduce operations
can also use a custom JavaScript function to make final modifications to the results at the end of the map and reduce
operation, such as perform additional calculations.

4.2.2 Map-Reduce Behavior

In MongoDB, the map-reduce operation can write results to a collection or return the results inline. If you write
map-reduce output to a collection, you can perform subsequent map-reduce operations on the same input collection
that merge replace, merge, or reduce new results with previous results. See mapReduce and Perform Incremental
Map-Reduce (page 30) for details and examples.

When returning the results of a map reduce operation inline, the result documents must
be within the BSON Document Size limit, which is currently 16 megabytes. For
additional information on limits and restrictions on map-reduce operations, see the
https://docs.mongodb.org/manual/reference/command/mapReduce reference page.

MongoDB supports map-reduce operations on sharded collections. Map-reduce operations can also output
the results to a sharded collection. See Map-Reduce and Sharded Collections (page 26).

Map-Reduce and Sharded Collections

On this page

» Sharded Collection as Input (page 27)
» Sharded Collection as Output (page 27)

Map-reduce supports operations on sharded collections, both as an input and as an output. This section describes the
behaviors of mapReduce specific to sharded collections.

26 Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

Sharded Collection as Input

When using sharded collection as the input for a map-reduce operation, mongos will automatically dispatch the map-
reduce job to each shard in parallel. There is no special option required. mongos will wait for jobs on all shards to
finish.

Sharded Collection as Output

Changed in version 2.2.

If the out field for mapReduce has the sharded value, MongoDB shards the output collection using the _id field
as the shard key.

To output to a sharded collection:
* If the output collection does not exist, MongoDB creates and shards the collection on the _id field.

* For a new or an empty sharded collection, MongoDB uses the results of the first stage of the map-reduce
operation to create the initial chunks distributed among the shards.

* mongos dispatches, in parallel, a map-reduce post-processing job to every shard that owns a chunk. During
the post-processing, each shard will pull the results for its own chunks from the other shards, run the final
reduce/finalize, and write locally to the output collection.

Note:

* During later map-reduce jobs, MongoDB splits chunks as needed.

 Balancing of chunks for the output collection is automatically prevented during post-processing to avoid con-
currency issues.

In MongoDB 2.0:

* mongos retrieves the results from each shard, performs a merge sort to order the results, and proceeds to the
reduce/finalize phase as needed. mongos then writes the result to the output collection in sharded mode.

* This model requires only a small amount of memory, even for large data sets.

¢ Shard chunks are not automatically split during insertion. This requires manual intervention until the chunks
are granular and balanced.

Important: For best results, only use the sharded output options for mapReduce in version 2.2 or later.

Map Reduce Concurrency

The map-reduce operation is composed of many tasks, including reads from the input collection, executions of the
map function, executions of the reduce function, writes to a temporary collection during processing, and writes to
the output collection.

During the operation, map-reduce takes the following locks:
* The read phase takes a read lock. It yields every 100 documents.
* The insert into the temporary collection takes a write lock for a single write.
* If the output collection does not exist, the creation of the output collection takes a write lock.

« If the output collection exists, then the output actions (i.e. merge, replace, reduce) take a write lock. This
write lock is global, and blocks all operations on the mongod instance.

4.2. Map-Reduce 27

MongoDB Aggregation and Data Processing, Release 3.2.3

Changed in version 2.4: The V8 JavaScript engine, which became the default in 2.4, allows multiple JavaScript
operations to execute at the same time. Prior to 2.4, JavaScript code (i.e. map, reduce, finalize functions)
executed in a single thread.

Note: The final write lock during post-processing makes the results appear atomically. However, output actions
merge and reduce may take minutes to process. For the merge and reduce, the nonAtomic flag is avail-

able, which releases the lock between writing each output document. See the db.collection.mapReduce ()
reference for more information.

Map-Reduce Examples

On this page

» Return the Total Price Per Customer (page 28)
* Calculate Order and Total Quantity with Average Quantity Per Item (page 29)

In the mongo shell, the db.collection.mapReduce () method is a wrapper around the mapReduce command.
The following examples use the db.collection.mapReduce () method:

Consider the following map-reduce operations on a collection orders that contains documents of the following
prototype:

{
_id: ObjectId("50a8240b927d5d8b5891743c"),
cust_id: "abcl23",
ord_date: new Date("Oct 04, 2012"),
status: 'A'",
price: 25,
items: [{ sku: "mmm", gty: 5, price: 2.5 },
{ sku: "nnn", gty: 5, price: 2.5 }]

Return the Total Price Per Customer

Perform the map-reduce operation on the orders collection to group by the cust__id, and calculate the sum of the
price foreach cust_id:

1. Define the map function to process each input document:
¢ In the function, this refers to the document that the map-reduce operation is processing.

* The function maps the price to the cust_id for each document and emits the cust_id and price
pair.

var mapFunctionl = function() {
emit (this.cust_id, this.price);
}i
2. Define the corresponding reduce function with two arguments keyCustId and valuesPrices:

e The valuesPrices is an array whose elements are the price values emitted by the map function and
grouped by keyCustId.

* The function reduces the valuesPrice array to the sum of its elements.

28 Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

var reduceFunctionl = function (keyCustId, wvaluesPrices) {
return Array.sum(valuesPrices);

}i

3. Perform the map-reduce on all documents in the orders collection using the mapFunctionl map function
and the reduceFunctionl reduce function.

db.orders.mapReduce (

mapFunctionl,
reduceFunctionl,
{ out: "map_reduce_example" }
)
This operation outputs the results to a collection named map_reduce_example. If the

map_reduce_example collection already exists, the operation will replace the contents with the re-
sults of this map-reduce operation:

Calculate Order and Total Quantity with Average Quantity Per ltem

In this example, you will perform a map-reduce operation on the orders collection for all documents that have
an ord_date value greater than 01/01/2012. The operation groups by the item. sku field, and calculates the
number of orders and the total quantity ordered for each sku. The operation concludes by calculating the average
quantity per order for each sku value:

1. Define the map function to process each input document:
¢ In the function, this refers to the document that the map-reduce operation is processing.

 For each item, the function associates the sku with a new object value that contains the count of 1
and the item gty for the order and emits the sku and value pair.

var mapFunction2 = function() {
for (var idx = 0; idx < this.items.length; idx++) {
var key = this.items[idx].sku;
var value = {
count: 1,
gty: this.items[idx].qgty
bi

emit (key, value);
bi

2. Define the corresponding reduce function with two arguments keySKU and countObjvals:

* countObjVals is an array whose elements are the objects mapped to the grouped keySKU values
passed by map function to the reducer function.

¢ The function reduces the countObjVals array to a single object reducedValue that contains the
count and the gty fields.

* In reducedval, the count field contains the sum of the count fields from the individual array ele-
ments, and the gt v field contains the sum of the gty fields from the individual array elements.

var reduceFunction2 = function (keySKU, countObjVals

) A
reducedval = { count: 0, gty: 0 };

’

for (var idx = 0; idx < countObjVals.length; idx++) {
reducedVal.count += countObjVals[idx].count;
reducedVal.gty += countObjVals[idx].qgty;

4.2. Map-Reduce 29

MongoDB Aggregation and Data Processing, Release 3.2.3

return reducedval;
bi

3. Define a finalize function with two arguments key and reducedval. The function modifies the
reducedVal object to add a computed field named avg and returns the modified object:

var finalizeFunction2 = function (key, reducedval) {
reducedVal.avg = reducedVal.qty/reducedvVal.count;
return reducedval;
bi

4. Perform the map-reduce operation on the orders collection using the mapFunction?2,
reduceFunction2,and finalizeFunction?2 functions.

db.orders.mapReduce (mapFunction2,

reduceFunction2,

{
out: { merge: "map_reduce_example" 1},
query: { ord_date:

{ $gt: new Date('01/01/2012"') }

b
finalize: finalizeFunction2

)

This operation uses the query field to select only those documents with ord_date greater than new
Date (01/01/2012). Then it output the results to a collection map_reduce_example. If the
map_reduce_example collection already exists, the operation will merge the existing contents with the
results of this map-reduce operation.

Perform Incremental Map-Reduce

On this page

* Data Setup (page 31)
¢ Initial Map-Reduce of Current Collection (page 31)
* Subsequent Incremental Map-Reduce (page 32)

Map-reduce operations can handle complex aggregation tasks. To perform map-reduce operations, MongoDB provides
the mapReduce command and, in the mongo shell, the db.collection.mapReduce () wrapper method.

If the map-reduce data set is constantly growing, you may want to perform an incremental map-reduce rather than
performing the map-reduce operation over the entire data set each time.

To perform incremental map-reduce:
1. Run a map-reduce job over the current collection and output the result to a separate collection.
2. When you have more data to process, run subsequent map-reduce job with:

 the query parameter that specifies conditions that match only the new documents.

30 Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

* the out parameter that specifies the reduce action to merge the new results into the existing output
collection.

Consider the following example where you schedule a map-reduce operation on a sessions collection to run at the
end of each day.

Data Setup

The sessions collection contains documents that log users’ sessions each day, for example:

db.sessions.save (
db.sessions.save (
db.sessions.save (
db.sessions.save (

userid: "a", ts: ISODate
userid: "b", ts: ISODate
userid: "c¢", ts: ISODate
userid: "d", ts: ISODate

'2011-11-03 14:17:00"), length: 95 });
'2011-11-03 14:23:00"), length: 110 });
'2011-11-03 15:02:00"), length: 120 })
'2011-11-03 16:45:00"), length: 45 });

’

(
(
(
(

P Ny

db.sessions.save
db.sessions.save
db.sessions.save
db.sessions.save

userid: "a", ts: ISODate (
userid: "b", ts: ISODate (
userid: "c", ts: ISODate (
userid: "d", ts: ISODate (

'2011-11-04 11:05:00"), length: 105 });
2011-11-04 13:14:00"), length: 120 });
2011-11-04 17:00:00"), length: 130 });
'2011-11-04 15:37:00"), length: 65 });

P

Initial Map-Reduce of Current Collection

Run the first map-reduce operation as follows:

1. Define the map function that maps the userid to an object that contains the fields userid, total_time,
count, and avg_time:

var mapFunction = function() {
var key = this.userid;
var value = {

userid: this.userid,
total_time: this.length,
count: 1,

avg_time: 0

}i

emit (key, value);
}i

2. Define the corresponding reduce function with two arguments key and values to calculate the total time and
the count. The key corresponds to the userid, and the values is an array whose elements corresponds to
the individual objects mapped to the userid in the mapFunction.

var reduceFunction = function (key, wvalues) {

var reducedObject = {
userid: key,
total_time: O,
count:0,
avg_time:0
}i

values.forEach(function (value) {
reducedObject.total_time += value.total_time;
reducedObject.count += value.count;

4.2. Map-Reduce 31

MongoDB Aggregation and Data Processing, Release 3.2.3

return reducedObiject;
}i

3. Define the finalize function with two arguments key and reducedvValue. The function modifies the
reducedValue document to add another field average and returns the modified document.

var finalizeFunction = function (key, reducedvValue) {

if (reducedvValue.count > 0)
reducedValue.avg_time = reducedValue.total_time / reducedValue.cou

return reducedValue;
}i

4. Perform map-reduce on the session collection using the mapFunction, the reduceFunction, and the
finalizeFunction functions. Output the results to a collection session_stat. Ifthe session_stat
collection already exists, the operation will replace the contents:

db.sessions.mapReduce (mapFunction,
reduceFunction,
{
out: "session_stat",
finalize: finalizeFunction

Subsequent Incremental Map-Reduce

Later, as the sessions collection grows, you can run additional map-reduce operations. For example, add new
documents to the sessions collection:

db.sessions.save userid: "a", ts: ISODate

({ '2011-11-05 14:17:00"), length: 100 });
db.sessions.save({ userid: "b", ts: ISODate

({

({

)

'2011-11-05 14:23:00"), length: 115 });
db.sessions.save userid: "c¢", ts: ISODate)
db.sessions.save userid: "d", ts: ISODate)

'2011-11-05 15:02:00"), length: 125 });
'2011-11-05 16:45:00"), length: 55 });

At the end of the day, perform incremental map-reduce on the sessions collection, but use the query field to select
only the new documents. Output the results to the collection session_stat, but reduce the contents with the
results of the incremental map-reduce:

db.sessions.mapReduce (mapFunction,
reduceFunction,
{
query: { ts: { $gt: ISODate('2011-11-05 00:00:00") 1} 1},
out: { reduce: "session_stat" },
finalize: finalizeFunction

Troubleshoot the Map Function

The map function is a JavaScript function that associates or “maps” a value with a key and emits the key and value
pair during a map-reduce (page 25) operation.

To verify the key and value pairs emitted by the map function, write your own emit function.

Consider a collection orders that contains documents of the following prototype:

32 Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

_id: ObjectId("50a8240b927d5d8b5891743c"),

cust_id: "abcl23",

ord_date: new Date("Oct 04, 2012"),

status: 'A'",

price: 250,

items: [{ sku: "mmm", gty: 5, price: 2.5 },
{ sku: "nnn", gty: 5, price: 2.5 }]

1. Define the map function that maps the price to the cust_id for each document and emits the cust_id and
price pair:

var map = function() {
emit (this.cust_id, this.price);
}i

2. Define the emit function to print the key and value:

var emit = function (key, value) {
print ("emit");
print ("key: " + key + " wvalue: " + tojson(value));

}

3. Invoke the map function with a single document from the orders collection:
var myDoc = db.orders.findOne({ _id: ObjectId("50a8240b927d5d8b5891743c") });
map.apply (myDoc) ;
4. Verify the key and value pair is as you expected.
emit
key: abcl23 value:250
5. Invoke the map function with multiple documents from the orders collection:

var myCursor = db.orders.find({ cust_id: "abcl23" });

while (myCursor.hasNext ()) {
var doc = myCursor.next();
print ("document _id= " + tojson(doc._id));
map.apply (doc) ;
print ();
}

6. Verify the key and value pairs are as you expected.
See also:

The map function must meet various requirements. For a list of all the requirements for the map function, see
mapReduce, or the mongo shell helper method db.collection.mapReduce ().

Troubleshoot the Reduce Function

4.2. Map-Reduce 33

MongoDB Aggregation and Data Processing, Release 3.2.3

On this page

* Confirm Output Type (page 34)
* Ensure Insensitivity to the Order of Mapped Values (page 35)
* Ensure Reduce Function Idempotence (page 36)

The reduce function is a JavaScript function that “reduces” to a single object all the values associated with a par-
ticular key during a map-reduce (page 25) operation. The reduce function must meet various requirements. This
tutorial helps verify that the reduce function meets the following criteria:

* The reduce function must return an object whose fype must be identical to the type of the value emitted by
the map function.

* The order of the elements in the valuesArray should not affect the output of the reduce function.
¢ The reduce function must be idempotent.

For a list of all the requirements for the reduce function, see mapReduce, or the mongo shell helper method
db.collection.mapReduce ().

Confirm Output Type

You can test that the reduce function returns a value that is the same type as the value emitted from the map function.

1. Define a reduceFunctionl function that takes the arguments keyCustId and valuesPrices.
valuesPrices is an array of integers:

var reduceFunctionl = function (keyCustId, valuesPrices) {
return Array.sum(valuesPrices);

}i
2. Define a sample array of integers:

var myTestValues = [5, 5, 10 1;

3. Invoke the reduceFunctionl withmyTestValues:

reduceFunctionl ('myKey', myTestValues);

4. Verify the reduceFunctionl returned an integer:

20

5. Define a reduceFunction2 function that takes the arguments keySKU and valuesCountObjects.
valuesCountObjects is an array of documents that contain two fields count and gty:

var reduceFunction2 = function (keySKU, valuesCountObjects) {
reducedValue = { count: 0, gty: 0 };

for (var idx = 0; idx < valuesCountObjects.length; idx++) {

reducedValue.count += valuesCountObjects[idx].count;
reducedValue.qgty += valuesCountObjects[idx].qgty;

return reducedValue;
}i

6. Define a sample array of documents:

34 Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

var myTestObjects = [
{ count: 1, gty: 5 },
{ count: 2, gty: 10 1},
{ count: 3, gty: 15 }

1;

7. Invoke the reduceFunction2 withmyTestObjects:

reduceFunction2 ('myKey', myTestObjects);

8. Verify the reduceFunction? returned a document with exactly the count and the gty field:

{ "count"™ : 6, "gty" : 30 }

Ensure Insensitivity to the Order of Mapped Values

The reduce function takes a key and a values array as its argument. You can test that the result of the reduce
function does not depend on the order of the elements in the values array.

1. Define a sample valuesl array and a sample values?2 array that only differ in the order of the array elements:

var valuesl = [
{ count: 1, qgty: 5 },
{ count: 2, qgty: 10 },
{ count: 3, qgty: 15 }

var values2 = |
{ count: 3, qgqty: 15 },
{ count: gty: 5 1},
{ count: , gty: 10 }

[N
~

2. Define a reduceFunction?2 function that takes the arguments keySKU and valuesCountObjects.
valuesCountObjects is an array of documents that contain two fields count and gty:

var reduceFunction2 = function (keySKU, valuesCountObjects) {
reducedValue = { count: 0, gty: 0 };

for (var idx = 0; idx < valuesCountObjects.length; idx++) {
reducedValue.count += valuesCountObjects[idx].count;
reducedValue.qgty += valuesCountObjects[idx].qgty;

return reducedValue;

}i

3. Invoke the reduceFunction? first with values1 and then with values?2:

reduceFunction2 ('myKey', valuesl);
reduceFunction2 ('myKey', values2);

4. Verify the reduceFunction? returned the same result:

{ "count" : 6, "gty" : 30 }

4.2. Map-Reduce 35

MongoDB Aggregation and Data Processing, Release 3.2.3

Ensure Reduce Function Idempotence

Because the map-reduce operation may call a reduce multiple times for the same key, and won’t call a reduce for
single instances of a key in the working set, the reduce function must return a value of the same type as the value
emitted from the map function. You can test that the reduce function process “reduced” values without affecting the
final value.

1. Define a reduceFunction?2 function that takes the arguments keySKU and valuesCountObjects.
valuesCountObjects is an array of documents that contain two fields count and gty:

var reduceFunction2 = function (keySKU, valuesCountObjects) {
reducedValue = { count: 0, gty: 0 };

for (var idx = 0; idx < valuesCountObjects.length; idx++)
reducedValue.count += valuesCountObjects[idx].count;
reducedValue.qgty += valuesCountObjects[idx].qgty;

return reducedValue;
i
2. Define a sample key:
var myKey = 'myKey';
3. Define a sample valuesIdempotent array that contains an element that is a call to the reduceFunction2
function:

var valuesIdempotent = [
{ count: 1, qgty: 5 1},
{ count: 2, gty: 10 },
reduceFunction2 (myKey, [{ count:3, gty: 15 } 1)
1i

4. Define a sample values1 array that combines the values passed to reduceFunction?2:

var valuesl = [
{ count: 1, qgty: 5 1},
{ count: 2, gty: 10 1},
{ count: 3, gty: 15 }

17

5. Invoke the reduceFunction?2 first with myKey and valuesIdempotent and then with myKey and
valuesl:

reduceFunction2 (myKey, valuesIdempotent);
reduceFunction2 (myKey, valuesl);

6. Verify the reduceFunction? returned the same result:

{ "count"™ : 6, "gty" : 30 }

4.3 Aggregation Reference

Aggregation Pipeline Quick Reference (page 37) Quick reference card for aggregation pipeline.

Aggregation Commands (page 43) The reference for the data aggregation commands, which provide the interfaces
to MongoDB’s aggregation capability.

36 Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

Aggregation Commands Comparison (page 44) A comparison of group, mapReduce and aggregate that ex-
plores the strengths and limitations of each aggregation modality.

https://docs.mongodb.org/manual/reference/operator/aggregation Aggregation pipeline
operations have a collection of operators available to define and manipulate documents in pipeline stages.

Variables in Aggregation Expressions (page 46) Use of variables in aggregation pipeline expressions.

SOL to Aggregation Mapping Chart (page 46) An overview common aggregation operations in SQL and MongoDB
using the aggregation pipeline and operators in MongoDB and common SQL statements.

4.3.1 Aggregation Pipeline Quick Reference

On this page

 Stages (page 37)
» Expressions (page 38)
* Accumulators (page 42)

Stages

In the db.collection.aggregate method, pipeline stages appear in an array. Documents pass through the
stages in sequence. All except the Sout and $SgeoNear stages can appear multiple times in a pipeline.

db.collection.aggregate([{ <stage> }, ... 1)

4.3. Aggregation Reference 37

MongoDB Aggregation and Data Processing, Release 3.2.3

Name Description

Sproject Reshapes each document in the stream, such as by adding new fields or removing existing fields. For
each input document, outputs one document.

Smatch | Filters the document stream to allow only matching documents to pass unmodified into the next
pipeline stage. $Smatch uses standard MongoDB queries. For each input document, outputs either
one document (a match) or zero documents (no match).

Sredact | Reshapes each document in the stream by restricting the content for each document based on
information stored in the documents themselves. Incorporates the functionality of $project and
Smatch. Can be used to implement field level redaction. For each input document, outputs either
one or zero document.

$1imit | Passes the first n documents unmodified to the pipeline where 7 is the specified limit. For each input
document, outputs either one document (for the first n documents) or zero documents (after the first n
documents).

$skip Skips the first n documents where # is the specified skip number and passes the remaining documents
unmodified to the pipeline. For each input document, outputs either zero documents (for the first n
documents) or one document (if after the first » documents).

Sunwind | Deconstructs an array field from the input documents to output a document for each element. Each
output document replaces the array with an element value. For each input document, outputs n
documents where r is the number of array elements and can be zero for an empty array.

Sgroup | Groups input documents by a specified identifier expression and applies the accumulator
expression(s), if specified, to each group. Consumes all input documents and outputs one document
per each distinct group. The output documents only contain the identifier field and, if specified,
accumulated fields.

$sample | Randomly selects the specified number of documents from its input.

Ssort Reorders the document stream by a specified sort key. Only the order changes; the documents remain
unmodified. For each input document, outputs one document.

SgeoNear Returns an ordered stream of documents based on the proximity to a geospatial point. Incorporates
the functionality of $match, $sort, and $1imit for geospatial data. The output documents
include an additional distance field and can include a location identifier field.

$lookup | Performs a left outer join to another collection in the same database to filter in documents from the
“joined” collection for processing.

Sout Writes the resulting documents of the aggregation pipeline to a collection. To use the Sout stage, it
must be the last stage in the pipeline.

$indexStaReturns statistics regarding the use of each index for the collection.

Expressions

Expressions can include field paths and system variables (page 38), literals (page 39), expression objects (page 39),
and expression operators (page 39). Expressions can be nested.

Field Path and System Variables

Aggregation expressions use field path to access fields in the input documents. To specify a field path, use a string that
prefixes with a dollar sign $ the field name or the dotted field name, if the field is in embedded document. For example,
"Suser" to specify the field path for the user field or "$user.name™" to specify the field path to "user.name"
field.

"S<field>" is equivalent to "$SCURRENT.<field>" where the CURRENT (page 46) is a system variable that
defaults to the root of the current object in the most stages, unless stated otherwise in specific stages. CURRENT
(page 46) can be rebound.

Along with the CURRENT (page 46) system variable, other system variables (page 46) are also available for use in
expressions. To use user-defined variables, use $1et and $map expressions. To access variables in expressions, use

38 Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

a string that prefixes the variable name with $$.

Literals

Literals can be of any type. However, MongoDB parses string literals that start with a dollar sign $ as a path to a
field and numeric/boolean literals in expression objects (page 39) as projection flags. To avoid parsing literals, use the
$literal expression.

Expression Objects

Expression objects have the following form:

{ <fieldl>: <expressionl>, ... }

If the expressions are numeric or boolean literals, MongoDB treats the literals as projection flags (e.g. 1 or true to
include the field), valid only in the Spro ject stage. To avoid treating numeric or boolean literals as projection flags,
use the $1iteral expression to wrap the numeric or boolean literals.

Operator Expressions

Operator expressions are similar to functions that take arguments. In general, these expressions take an array of
arguments and have the following form:

{ <operator>: [<argumentl>, <argument2> ...] }

If operator accepts a single argument, you can omit the outer array designating the argument list:
{ <operator>: <argument> }

To avoid parsing ambiguity if the argument is a literal array, you must wrap the literal array ina $1iteral expression
or keep the outer array that designates the argument list.

Boolean Expressions Boolean expressions evaluate their argument expressions as booleans and return a boolean as
the result.

In addition to the false boolean value, Boolean expression evaluates as false the following: null, O, and
undefined values. The Boolean expression evaluates all other values as t rue, including non-zero numeric values
and arrays.

Name | Description

$and | Returns true only when all its expressions evaluate to t rue. Accepts any number of argument
expressions.

Sor Returns t rue when any of its expressions evaluates to t rue. Accepts any number of argument
expressions.

S$not | Returns the boolean value that is the opposite of its argument expression. Accepts a single argument
expression.

Set Expressions Set expressions performs set operation on arrays, treating arrays as sets. Set expressions ignores
the duplicate entries in each input array and the order of the elements.

If the set operation returns a set, the operation filters out duplicates in the result to output an array that contains only
unique entries. The order of the elements in the output array is unspecified.

4.3. Aggregation Reference 39

MongoDB Aggregation and Data Processing, Release 3.2.3

If a set contains a nested array element, the set expression does not descend into the nested array but evaluates the
array at top-level.

Name Description

$setEquals| Returns true if the input sets have the same distinct elements. Accepts two or more argument
expressions.

$setInterse®efurns a set with elements that appear in all of the input sets. Accepts any number of argument
expressions.

$setUnion | Returns a set with elements that appear in any of the input sets. Accepts any number of argument
expressions.

$setDifferelReturns a set with elements that appear in the first set but not in the second set; i.e. performs a
relative complement” of the second set relative to the first. Accepts exactly two argument
expressions.

$setIsSubsefReturns true if all elements of the first set appear in the second set, including when the first set
equals the second set; i.e. not a strict subset'’. Accepts exactly two argument expressions.
SanyElement Retiens t rue if any elements of a set evaluate to t rue; otherwise, returns false. Accepts a
single argument expression.

SallElement Returns t rue if no element of a set evaluates to false, otherwise, returns false. Accepts a
single argument expression.

Comparison Expressions Comparison expressions return a boolean except for $cmp which returns a number.

The comparison expressions take two argument expressions and compare both value and type, using the specified
BSON comparison order for values of different types.

Name | Description

Scmp | Returns: O if the two values are equivalent, 1 if the first value is greater than the second, and -1 if the
first value is less than the second.

$eq | Returns true if the values are equivalent.

Sgt Returns t rue if the first value is greater than the second.

Sgte | Returns true if the first value is greater than or equal to the second.

S$1t Returns t rue if the first value is less than the second.

$1te | Returns true if the first value is less than or equal to the second.

Sne Returns t rue if the values are not equivalent.

Arithmetic Expressions Arithmetic expressions perform mathematic operations on numbers. Some arithmetic ex-
pressions can also support date arithmetic.

9http://en.wikipedia.org/wiki/Complement_(set_theory)
10nhttp://en.wikipedia.org/wiki/Subset

40 Chapter 4. Additional Features and Behaviors

http://en.wikipedia.org/wiki/Complement_(set_theory)
http://en.wikipedia.org/wiki/Subset

MongoDB Aggregation and Data Processing, Release 3.2.3

Name Description

Sabs Returns the absolute value of a number.

Sadd Adds numbers to return the sum, or adds numbers and a date to return a new date. If adding numbers
and a date, treats the numbers as milliseconds. Accepts any number of argument expressions, but at
most, one expression can resolve to a date.

Sceil | Returns the smallest integer greater than or equal to the specified number.

$divide Returns the result of dividing the first number by the second. Accepts two argument expressions.

Sexp Raises e to the specified exponent.

$floor | Returns the largest integer less than or equal to the specified number.

$ln Calculates the natural log of a number.

$log Calculates the log of a number in the specified base.

$10g10 | Calculates the log base 10 of a number.

Smod Returns the remainder of the first number divided by the second. Accepts two argument expressions.
Smult ipIMultiplies numbers to return the product. Accepts any number of argument expressions.

Spow Raises a number to the specified exponent.

$sqgrt | Calculates the square root.

$subt radReturns the result of subtracting the second value from the first. If the two values are numbers, return
the difference. If the two values are dates, return the difference in milliseconds. If the two values are a
date and a number in milliseconds, return the resulting date. Accepts two argument expressions. If the
two values are a date and a number, specify the date argument first as it is not meaningful to subtract a
date from a number.

Strunc | Truncates a number to its integer.

String Expressions String expressions, with the exception of $concat, only have a well-defined behavior for
strings of ASCII characters.

$concat behavior is well-defined regardless of the characters used.

Name Description

Sconcat | Concatenates any number of strings.

$substr | Returns a substring of a string, starting at a specified index position up to a specified length. Accepts
three expressions as arguments: the first argument must resolve to a string, and the second and third
arguments must resolve to integers.

StoLower Converts a string to lowercase. Accepts a single argument expression.

StoUpper Converts a string to uppercase. Accepts a single argument expression.

$strcasedgpforms case-insensitive string comparison and returns: 0 if two strings are equivalent, 1 if the first
string is greater than the second, and -1 if the first string is less than the second.

Name | Description
Smeta | Access text search metadata.

Text Search Expressions

Name Description

SarrayElemAt | Returns the element at the specified array index.
SconcatArrays| Concatenates arrays to return the concatenated array.

. Sfilter Selects a subset of the array to return an array with only the elements that match the filter
Array Expressions ..
condition.
SisArray Determines if the operand is an array. Returns a boolean.
$Ssize Returns the number of elements in the array. Accepts a single expression as argument.
$slice Returns a subset of an array.

4.3. Aggregation Reference 4

MongoDB Aggregation and Data Processing, Release 3.2.3

Name | Description
Smap | Applies a subexpression to each element of an array and returns the array of resulting values in orde
Variable Expressions Accepts named parameters.
$let | Defines variables for use within the scope of a subexpression and returns the result of the subexpres:
Accepts named parameters.
Name | Description
Literal Expressions $1literjaReturn a value without parsing. Usg for values that Fhe aggreggtion pipeline may interpret asan
expression. For example, use a $1iteral expression to a string that starts with a $ to avoid parsin;
a field path.
Name Description
$dayOfYear| Returns the day of the year for a date as a number between 1 and 366 (leap year).
$dayOfMonth Returns the day of the month for a date as a number between 1 and 31.
$SdayOfWeek| Returns the day of the week for a date as a number between 1 (Sunday) and 7 (Saturday).
Syear Returns the year for a date as a number (e.g. 2014).
Smonth Returns the month for a date as a number between 1 (January) and 12 (December).
Date Expressions | Sweek Returns the week number for a date as a number between 0O (the partial week that precedes the
first Sunday of the year) and 53 (leap year).
S$hour Returns the hour for a date as a number between 0 and 23.
Sminute Returns the minute for a date as a number between 0 and 59.
Ssecond Returns the seconds for a date as a number between 0 and 60 (leap seconds).
$millisecondeturns the milliseconds of a date as a number between 0 and 999.
$dateToStriRgturns the date as a formatted string.

Conditional Expressions

Accumulators

Name | Description

Scond| A ternary operator that evaluates one expression, and depending on the result, returns the value «
the other two expressions. Accepts either three expressions in an ordered list or three named par

$1fNu] Returns either the non-null result of the first expression or the result of the second expression if
expression results in a null result. Null result encompasses instances of undefined values or mis:
fields. Accepts two expressions as arguments. The result of the second expression can be null.

Changed in version 3.2: Some accumulators are now available in the $Sproject stage. In previous versions of
MongoDB , accumulators are available only for the Sgroup stage.

Accumulators, when used in the $group stage, maintain their state (e.g. totals, maximums, minimums, and related
data) as documents progress through the pipeline.

When used in the $group stage, accumulators take as input a single expression, evaluating the expression once for
each input document, and maintain their stage for the group of documents that share the same group key.

When used in the $project stage, the accumulators do not maintain their state. When used in the $pro ject stage,
accumulators take as input either a single argument or multiple arguments.

42

Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

Name Description
Ssum Returns a sum of numerical values. Ignores non-numeric values.
Changed in version 3.2: Available in both Sgroup and $Sproject stages.
Savg Returns an average of numerical values. Ignores non-numeric values.
Changed in version 3.2: Available in both Sgroup and $project stages.
Sfirst Returns a value from the first document for each group. Order is only defined if the documents are

in a defined order.

Available in $group stage only.

$last Returns a value from the last document for each group. Order is only defined if the documents are in
a defined order.

Available in $group stage only.

Smax Returns the highest expression value for each group.

Changed in version 3.2: Available in both $group and $project stages.
Smin Returns the lowest expression value for each group.

Changed in version 3.2: Available in both Sgroup and $Sproject stages.
Spush Returns an array of expression values for each group.

Available in $group stage only.

$addToSet Returns an array of unique expression values for each group. Order of the array elements is
undefined.

Auvailable in $group stage only.

$stdDevPomReturns the population standard deviation of the input values.

Changed in version 3.2: Available in both $group and $project stages.
$stdDevSameturns the sample standard deviation of the input values.

Changed in version 3.2: Available in both $group and $project stages.

4.3.2 Aggregation Commands

On this page

* Aggregation Commands (page 43)
» Aggregation Methods (page 43)

Aggregation Commands

Name Description

aggregate | Performs aggregation tasks (page 9) such as group using the aggregation framework.
count Counts the number of documents in a collection.

distinct Displays the distinct values found for a specified key in a collection.

group Groups documents in a collection by the specified key and performs simple aggregation.
mapReduce | Performs map-reduce (page 25) aggregation for large data sets.

Aggregation Methods

Name Description

db.collection.aggregate|(Provides access to the aggregation pipeline (page 9).
db.collection.group () Groups documents in a collection by the specified key and performs simple
aggregation.

db.collection.mapReduce|(Performs map-reduce (page 25) aggregation for large data sets.

4.3. Aggregation Reference 43

MongoDB Aggregation and Data Processing, Release 3.2.3

4.3.3 Aggregation Commands Comparison

The following table provides a brief overview of the features of the MongoDB aggregation commands.

44 Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

tion

aggregate mapReduce group
De- | New in version 2.2. Implements the Map-Reduce Provides grouping functionality.
scripr Designed with specific goals of aggregation for processing large Is slower than the aggregate
tion | improving performance and data sets. command and has less
usability for aggregation tasks. functionality than the
Uses a “pipeline” approach mapReduce command.
where objects are transformed as
they pass through a series of
pipeline operators such as
Sgroup, $Smatch, and $sort.
See
https://docs.mongodb.org/manual/reference/operatior/aggregation
for more information on the
pipeline operators.
Key | Pipeline operators can be In addition to grouping Can either group by existing
Fea- | repeated as needed. operations, can perform complex | fields or with a custom keyf
tures Pipeline operators need not aggregation tasks as well as JavaScript function, can group by
produce one output document for | perform incremental aggregation | calculated fields.
every input document. on continuously growing See group for information and
Can also generate new datasets. example using the key £
documents or filter out See Map-Reduce Examples function.
documents. (page 28) and Perform
Incremental Map-Reduce
(page 30).
Flex- Limited to the operators and Custom map, reduce and Custom reduce and
i- expressions supported by the finalize JavaScript functions | finalize JavaScript functions
bil- | aggregation pipeline. offer flexibility to aggregation offer flexibility to grouping logic.
ity | However, can add computed logic. See group for details and
fields, create new virtual See mapReduce for details and restrictions on these functions.
sub-objects, and extract restrictions on the functions.
sub-fields into the top-level of
results by using the Sproject
pipeline operator.
See Sproject for more
information as well as
https://docs.mongodb.org/manual/reference/operatjor/aggregation
for more information on all the
available pipeline operators.
Out-| Returns results in various options | Returns results in various options | Returns results inline as an array
put | (inline as a document that (inline, new collection, merge, of grouped items.
Re- | contains the result set, a cursor to | replace, reduce). See The result set must fit within the
sults| the result set) or stores the results | mapReduce for details on the maximum BSON document size
in a collection. output options. limit.
The result is subject to the BSON | Changed in version 2.2: Provides | Changed in version 2.2: The
Document size limit if returned much better support for sharded returned array can contain at
inline as a document that map-reduce output than previous | most 20,000 elements; i.e. at
contains the result set. versions. most 20,000 unique groupings.
Changed in version 2.6: Can Previous versions had a limit of
return results as a cursor or store 10,000 elements.
the results to a collection.
Shard-Supports non-sharded and Supports non-sharded and Does not support sharded
ing | sharded input collections. sharded input collections. collection.
Notes Prior to 2.4, JavaScript code Prior to 2.4, JavaScript code
executed in a single thread. executed in a single thread.
More See Aggregation Pipeline See Map-Reduce (page 25) and See group.
In- (pﬂgP 9) and aggregate mapReduce
4£3r- Aggregation Reference 45
ma-

MongoDB Aggregation and Data Processing, Release 3.2.3

4.3.4 Variables in Aggregation Expressions

On this page

» User Variables (page 46)
» System Variables (page 46)

Aggregation expressions (page 38) can use both user-defined and system variables.

Variables can hold any BSON type data. To access the value of the variable, use a string with the variable name
prefixed with double dollar signs ($$).

If the variable references an object, to access a specific field in the object, use the dot notation; i.e.
"SS<variable>.<field>".

User Variables

User variable names can contain the ascii characters [_a-zA-20-9] and any non-ascii character.
User variable names must begin with a lowercase ascii letter [a—z] or a non-ascii character.
System Variables

MongoDB offers the following system variables:

Variable Description

ROOT References the root document, i.e. the top-level doc-
ument, currently being processed in the aggregation
pipeline stage.

cu NT References the.start.of .the field path being processed
in the aggregation pipeline stage. Unless documented
otherwise, all stages start with CURRENT (page 46) the
same as ROOT (page 46).
CURRENT (page 46) is modifiable. However, since
$<field> is equivalent to $SSCURRENT.<field>,
rebinding CURRENT (page 46) changes the meaning of
$ accesses.

DESCEND One of the allowed results of a $redact expression.

PRUNE One of the allowed results of a $redact expression.

KEEP One of the allowed results of a $redact expression.

See also:

Slet, $Sredact, Smap

4.3.5 SQL to Aggregation Mapping Chart

46 Chapter 4. Additional Features and Behaviors

MongoDB Aggregation and Data Processing, Release 3.2.3

On this page

* Examples (page 47)
* Additional Resources (page 49)

The aggregation pipeline (page 9) allows MongoDB to provide native aggregation capabilities that corresponds to
many common data aggregation operations in SQL.

The following table provides an overview of common SQL aggregation terms, functions, and concepts and the corre-
sponding MongoDB aggregation operators:

SQL Terms, MongoDB Aggregation Operators

Functions, and

Concepts

WHERE Smatch

GROUP BY Sgroup

HAVING Smatch

SELECT Sproject

ORDER BY Ssort

LIMIT $limit

SUM() Ssum

COUNT() Ssum

join No direct corresponding operator; however, the Sunwind operator allows for

somewhat similar functionality, but with fields embedded within the document.

Examples

The following table presents a quick reference of SQL aggregation statements and the corresponding MongoDB state-
ments. The examples in the table assume the following conditions:

e The SQL examples assume two tables, orders and order_lineitem that join by the
order_ lineitem.order_id and the orders. id columns.

* The MongoDB examples assume one collection orders that contain documents of the following prototype:

{
cust_id: "abcl23",
ord_date: ISODate("2012-11-02T17:04:11.1022"),

status: 'A',
price: 50,
items: [{ sku: "xxx", qgty: 25, price: 1 },

{ sku: "yyy", gty: 25, price: 1 }]

4.3. Aggregation Reference 47

MongoDB Aggregation and Data Processing, Release 3.2.3

SQL Example MongoDB Example Description
Count all records from orders
SELECT COUNT () AS count db.orders.aggregate ([
FROM orders {
Sgroup: |
_id: null,
count: { S$sum: 1 }
}
}
1)
. Sum the price field from orders
SELECT SUM(price) AS total db.orders.aggregate([
FROM orders {
Sgroup: |
_id: null,
total: { $sum: "Sgrice" }
}
}
1)
) For each unique cust_id, sum the
SELECT cust_id, db.orders.aggregate ([.
i price field.
SUM (price) AS total {
FROM orders Sgroup: {
GROUP BY cust_id _id: "Scust_id",
total: { S$sum: "Sgrice" }
}
}
1)
SELECT cust_id db.orders.aggregate ([For each unique cust_id, sum the
- ’) price field, results sorted by sum.
SUM (price) AS total {
FROM orders Sgroup: |
GROUP BY cust_id _id: "Scust_id",
ORDER BY total total: { S$sum: "Sgrice" }
}
} 14
{ S$sort: { total: 1 } }
1)
i For each unique cust_id,
SELECT cust_id, db.orders.aggregate ([ord_date grouping, sum the
ord_date, { . .
. price field. Excludes the time
SUM (price) AS total $grogp: { portion of the date.
FROM orders _id: {
GROUP BY cust_id, cust_id: "Scust]_id",
ord_date ord_date: {
month: { S$month: "Sord_date" 1},
day: { $dayOfMonth: "Sord_date" },
year: { Sydar: "Sord_date"}
}
} 14
total: { $sum: "Sgrice" }
}
}
1)
48 Chapter 4. Additional Features and Behaviors
SELECT cust id db.orders.aggregate ([For cust_id with multiple records,
- : : return the cust_id and the corre-
count (*) { .
sponding record count.
FROM orders Sgroup: |

MongoDB Aggregation and Data Processing, Release 3.2.3

Additional Resources

» MongoDB and MySQL Compared'
* Quick Reference Cards'?

» MongoDB Database Modernization Consulting Package'?

http://www.mongodb.com/mongodb-and-mysql-compared?jmp=docs
Zhttps://www.mongodb.com/Ip/misc/quick-reference-cards ?jmp=docs
Bhttps://www.mongodb.com/products/consulting ?jmp=docs#database_modernization

4.3. Aggregation Reference 49

http://www.mongodb.com/mongodb-and-mysql-compared?jmp=docs
https://www.mongodb.com/lp/misc/quick-reference-cards?jmp=docs
https://www.mongodb.com/products/consulting?jmp=docs#database_modernization

MongoDB Aggregation and Data Processing, Release 3.2.3

50 Chapter 4. Additional Features and Behaviors

CHAPTER 5

Additional Resources

* MongoDB Analytics: Learn Aggregation by Example: Exploratory Analytics and Visualization Using Flight
Data!

» MongoDB for Time Series Data: Analyzing Time Series Data Using the Aggregation Framework and Hadoop?
* The Aggregation Framework?
» Webinar: Exploring the Aggregation Framework*

* Quick Reference Cards’

Thttp://www.mongodb.com/presentations/mongodb-analytics-learn-aggregation-example-exploratory-analytics-and-visualization ?jmp=docs
2http://www.mongodb.com/presentations/mongodb-time-series-data-part-2-analyzing-time-series-data-using-aggregation-

framework ?jmp=docs
3https://www.mongodb.com/presentations/aggregation-framework-0?jmp=docs
“https://www.mongodb.com/webinar/exploring-the-aggregation-framework ?jmp=docs
Shttps://www.mongodb.com/lp/misc/quick-reference-cards?jmp=docs

51

http://www.mongodb.com/presentations/mongodb-analytics-learn-aggregation-example-exploratory-analytics-and-visualization?jmp=docs
http://www.mongodb.com/presentations/mongodb-analytics-learn-aggregation-example-exploratory-analytics-and-visualization?jmp=docs
http://www.mongodb.com/presentations/mongodb-time-series-data-part-2-analyzing-time-series-data-using-aggregation-framework?jmp=docs
https://www.mongodb.com/presentations/aggregation-framework-0?jmp=docs
https://www.mongodb.com/webinar/exploring-the-aggregation-framework?jmp=docs
https://www.mongodb.com/lp/misc/quick-reference-cards?jmp=docs

	Aggregation Pipeline
	Map-Reduce
	Single Purpose Aggregation Operations
	Additional Features and Behaviors
	Aggregation Pipeline
	Map-Reduce
	Aggregation Reference

	Additional Resources

