
MongoDB CRUD Operations
Release 3.2.3

MongoDB, Inc.

February 17, 2016

2

© MongoDB, Inc. 2008 - 2016 This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 United States License

3

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Contents

1 MongoDB CRUD Introduction 3
1.1 Database Operations . 3

2 MongoDB CRUD Concepts 7
2.1 Read Operations . 7
2.2 Write Operations . 21
2.3 Read Isolation, Consistency, and Recency . 41

3 MongoDB CRUD Tutorials 45
3.1 Insert Documents . 45
3.2 Query Documents . 49
3.3 Modify Documents . 56
3.4 Remove Documents . 60
3.5 Limit Fields to Return from a Query . 61
3.6 Limit Number of Elements in an Array after an Update . 64
3.7 Iterate a Cursor in the mongo Shell . 65
3.8 Analyze Query Performance . 67
3.9 Perform Two Phase Commits . 71
3.10 Update Document if Current . 79
3.11 Create Tailable Cursor . 80
3.12 Create an Auto-Incrementing Sequence Field . 81
3.13 Perform Quorum Reads on Replica Sets . 84

4 MongoDB CRUD Reference 87
4.1 Query Cursor Methods . 87
4.2 Query and Data Manipulation Collection Methods . 87
4.3 MongoDB CRUD Reference Documentation . 88

i

ii

MongoDB CRUD Operations, Release 3.2.3

MongoDB provides rich semantics for reading and manipulating data. CRUD stands for create, read, update, and
delete. These terms are the foundation for all interactions with the database.

MongoDB CRUD Introduction (page 3) An introduction to the MongoDB data model as well as queries and data
manipulations.

MongoDB CRUD Concepts (page 7) The core documentation of query and data manipulation.

MongoDB CRUD Tutorials (page 45) Examples of basic query and data modification operations.

MongoDB CRUD Reference (page 87) Reference material for the query and data manipulation interfaces.

Contents 1

MongoDB CRUD Operations, Release 3.2.3

2 Contents

CHAPTER 1

MongoDB CRUD Introduction

On this page

• Database Operations (page 3)

MongoDB stores data in the form of documents, which are JSON-like field and value pairs. Documents are
analogous to structures in programming languages that associate keys with values (e.g. dictionaries, hashes,
maps, and associative arrays). Formally, MongoDB documents are BSON documents. BSON is a binary rep-
resentation of JSON with additional type information. In the documents, the value of a field can be any of
the BSON data types, including other documents, arrays, and arrays of documents. For more information, see
https://docs.mongodb.org/manual/core/document.

MongoDB stores all documents in collections. A collection is a group of related documents that have a set of shared
common indexes. Collections are analogous to a table in relational databases.

1.1 Database Operations

1.1.1 Query

In MongoDB a query targets a specific collection of documents. Queries specify criteria, or conditions, that identify
the documents that MongoDB returns to the clients. A query may include a projection that specifies the fields from
the matching documents to return. You can optionally modify queries to impose limits, skips, and sort orders.

In the following diagram, the query process specifies a query criteria and a sort modifier:

See Read Operations Overview (page 7) for more information.

3

MongoDB CRUD Operations, Release 3.2.3

4 Chapter 1. MongoDB CRUD Introduction

MongoDB CRUD Operations, Release 3.2.3

1.1.2 Data Modification

Data modification refers to operations that create, update, or delete data. In MongoDB, these operations modify the
data of a single collection. For the update and delete operations, you can specify the criteria to select the documents
to update or remove.

In the following diagram, the insert operation adds a new document to the users collection.

See Write Operations Overview (page 22) for more information.

1.1. Database Operations 5

MongoDB CRUD Operations, Release 3.2.3

6 Chapter 1. MongoDB CRUD Introduction

CHAPTER 2

MongoDB CRUD Concepts

The Read Operations (page 7) and Write Operations (page 21) documents introduce the behavior and operations of
read and write operations for MongoDB deployments.

Read Operations (page 7) Queries are the core operations that return data in MongoDB. Introduces queries, their
behavior, and performances.

Cursors (page 11) Queries return iterable objects, called cursors, that hold the full result set.

Query Optimization (page 13) Analyze and improve query performance.

Distributed Queries (page 17) Describes how sharded clusters and replica sets affect the performance of read
operations.

Write Operations (page 21) Write operations insert, update, or remove documents in MongoDB. Introduces data
create and modify operations, their behavior, and performances.

Atomicity and Transactions (page 33) Describes write operation atomicity in MongoDB.

Distributed Write Operations (page 34) Describes how MongoDB directs write operations on sharded clusters
and replica sets and the performance characteristics of these operations.

Continue reading from Write Operations (page 21) for additional background on the behavior of data modifica-
tion operations in MongoDB.

2.1 Read Operations

The following documents describe read operations:

Read Operations Overview (page 7) A high level overview of queries and projections in MongoDB, including a dis-
cussion of syntax and behavior.

Cursors (page 11) Queries return iterable objects, called cursors, that hold the full result set.

Query Optimization (page 13) Analyze and improve query performance.

Query Plans (page 15) MongoDB executes queries using optimal plans.

Distributed Queries (page 17) Describes how sharded clusters and replica sets affect the performance of read opera-
tions.

2.1.1 Read Operations Overview

7

MongoDB CRUD Operations, Release 3.2.3

On this page

• Query Interface (page 8)
• Query Behavior (page 9)
• Query Statements (page 9)
• Projections (page 10)

Read operations, or queries, retrieve data stored in the database. In MongoDB, queries select documents from a single
collection.

Queries specify criteria, or conditions, that identify the documents that MongoDB returns to the clients. A query may
include a projection that specifies the fields from the matching documents to return. The projection limits the amount
of data that MongoDB returns to the client over the network.

Query Interface

For query operations, MongoDB provides a db.collection.find() method. The method accepts both the
query criteria and projections and returns a cursor (page 11) to the matching documents. You can optionally modify
the query to impose limits, skips, and sort orders.

The following diagram highlights the components of a MongoDB query operation:

The next diagram shows the same query in SQL:

Example
db.users.find({ age: { $gt: 18 } }, { name: 1, address: 1 }).limit(5)

This query selects the documents in the users collection that match the condition age is greater than 18. To specify
the greater than condition, query criteria uses the greater than (i.e. $gt) query selection operator. The query returns
at most 5 matching documents (or more precisely, a cursor to those documents). The matching documents will return
with only the _id, name and address fields. See Projections (page 10) for details.

See

8 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

SQL to MongoDB Mapping Chart (page 92) for additional examples of MongoDB queries and the corresponding SQL
statements.

Query Behavior

MongoDB queries exhibit the following behavior:

• All queries in MongoDB address a single collection.

• You can modify the query to impose limits, skips, and sort orders.

• The order of documents returned by a query is not defined unless you specify a sort().

• Operations that modify existing documents (page 56) (i.e. updates) use the same query syntax as queries to select
documents to update.

• In aggregation pipeline, the $match pipeline stage provides access to MongoDB queries.

MongoDB provides a db.collection.findOne() method as a special case of find() that returns a single
document.

Query Statements

Consider the following diagram of the query process that specifies a query criteria and a sort modifier:

In the diagram, the query selects documents from the users collection. Using a query selection operator
to define the conditions for matching documents, the query selects documents that have age greater than (i.e. $gt)
18. Then the sort() modifier sorts the results by age in ascending order.

For additional examples of queries, see Query Documents (page 49).

2.1. Read Operations 9

MongoDB CRUD Operations, Release 3.2.3

Projections

Queries in MongoDB return all fields in all matching documents by default. To limit the amount of data that MongoDB
sends to applications, include a projection in the queries. By projecting results with a subset of fields, applications
reduce their network overhead and processing requirements.

Projections, which are the second argument to the find() method, may either specify a list of fields to return or list
fields to exclude in the result documents.

Important: Except for excluding the _id field in inclusive projections, you cannot mix exclusive and inclusive
projections.

Consider the following diagram of the query process that specifies a query criteria and a projection:

In the diagram, the query selects from the users collection. The criteria matches the documents that have age equal
to 18. Then the projection specifies that only the name field should return in the matching documents.

Projection Examples

Exclude One Field From a Result Set
db.records.find({ "user_id": { $lt: 42 } }, { "history": 0 })

This query selects documents in the records collection that match the condition { "user_id": { $lt: 42
} }, and uses the projection { "history": 0 } to exclude the history field from the documents in the result
set.

Return Two fields and the _id Field
db.records.find({ "user_id": { $lt: 42 } }, { "name": 1, "email": 1 })

10 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

This query selects documents in the records collection that match the query { "user_id": { $lt: 42 }
} and uses the projection { "name": 1, "email": 1 } to return just the _id field (implicitly included),
name field, and the email field in the documents in the result set.

Return Two Fields and Exclude _id
db.records.find({ "user_id": { $lt: 42} }, { "_id": 0, "name": 1 , "email": 1 })

This query selects documents in the records collection that match the query { "user_id": { $lt: 42}
}, and only returns the name and email fields in the documents in the result set.

See
Limit Fields to Return from a Query (page 61) for more examples of queries with projection statements.

Projection Behavior

MongoDB projections have the following properties:

• By default, the _id field is included in the results. To suppress the _id field from the result set, specify _id:
0 in the projection document.

• For fields that contain arrays, MongoDB provides the following projection operators: $elemMatch, $slice,
and $.

• For related projection functionality in the aggregation pipeline , use the $project pipeline stage.

2.1.2 Cursors

On this page

• Cursor Behaviors (page 12)
• Cursor Information (page 12)

In the mongo shell, the primary method for the read operation is the db.collection.find() method. This
method queries a collection and returns a cursor to the returning documents.

To access the documents, you need to iterate the cursor. However, in the mongo shell, if the returned cursor is not
assigned to a variable using the var keyword, then the cursor is automatically iterated up to 20 times 1 to print up to
the first 20 documents in the results.

For example, in the mongo shell, the following read operation queries the inventory collection for documents that
have type equal to ’food’ and automatically print up to the first 20 matching documents:

db.inventory.find({ type: 'food' });

To manually iterate the cursor to access the documents, see Iterate a Cursor in the mongo Shell (page 65).

1 You can use the DBQuery.shellBatchSize to change the number of iteration from the default value 20. See mongo-shell-executing-
queries for more information.

2.1. Read Operations 11

MongoDB CRUD Operations, Release 3.2.3

Cursor Behaviors

Closure of Inactive Cursors

By default, the server will automatically close the cursor after 10 minutes of inactivity, or if client has exhausted the
cursor. To override this behavior in the mongo shell, you can use the cursor.noCursorTimeout() method:

var myCursor = db.inventory.find().noCursorTimeout();

After setting the noCursorTimeout option, you must either close the cursor manually with cursor.close()
or by exhausting the cursor’s results.

See your driver documentation for information on setting the noCursorTimeout option.

Cursor Isolation

As a cursor returns documents, other operations may interleave with the query. For the MMAPv1 storage engine,
intervening write operations on a document may result in a cursor that returns a document more than once if that
document has changed. To handle this situation, see the information on snapshot mode.

Cursor Batches

The MongoDB server returns the query results in batches. Batch size will not exceed the maximum BSON docu-
ment size. For most queries, the first batch returns 101 documents or just enough documents to exceed 1 megabyte.
Subsequent batch size is 4 megabytes. To override the default size of the batch, see batchSize() and limit().

For queries that include a sort operation without an index, the server must load all the documents in memory to perform
the sort before returning any results.

As you iterate through the cursor and reach the end of the returned batch, if there are more results, cursor.next()
will perform a getmore operation to retrieve the next batch. To see how many documents remain in the batch
as you iterate the cursor, you can use the objsLeftInBatch() method, as in the following example:

var myCursor = db.inventory.find();

var myFirstDocument = myCursor.hasNext() ? myCursor.next() : null;

myCursor.objsLeftInBatch();

Cursor Information

The db.serverStatus() method returns a document that includes a metrics field. The metrics field con-
tains a metrics.cursor field with the following information:

• number of timed out cursors since the last server restart

• number of open cursors with the option DBQuery.Option.noTimeout set to prevent timeout after a period
of inactivity

• number of “pinned” open cursors

• total number of open cursors

Consider the following example which calls the db.serverStatus() method and accesses the metrics field
from the results and then the cursor field from the metrics field:

12 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

db.serverStatus().metrics.cursor

The result is the following document:

{
"timedOut" : <number>
"open" : {

"noTimeout" : <number>,
"pinned" : <number>,
"total" : <number>

}
}

See also:

db.serverStatus()

2.1.3 Query Optimization

On this page

• Create an Index to Support Read Operations (page 13)
• Query Selectivity (page 14)
• Covered Query (page 14)

Indexes improve the efficiency of read operations by reducing the amount of data that query operations need to process.
This simplifies the work associated with fulfilling queries within MongoDB.

Create an Index to Support Read Operations

If your application queries a collection on a particular field or set of fields, then an index on the queried field or a
compound index on the set of fields can prevent the query from scanning the whole collection to find and return
the query results. For more information about indexes, see the complete documentation of indexes in
MongoDB.

Example
An application queries the inventory collection on the type field. The value of the type field is user-driven.

var typeValue = <someUserInput>;
db.inventory.find({ type: typeValue });

To improve the performance of this query, add an ascending or a descending index to the inventory collection
on the type field. 2 In the mongo shell, you can create indexes using the db.collection.createIndex()
method:

db.inventory.createIndex({ type: 1 })

This index can prevent the above query on type from scanning the whole collection to return the results.

To analyze the performance of the query with an index, see Analyze Query Performance (page 67).

2 For single-field indexes, the selection between ascending and descending order is immaterial. For compound indexes, the selection is important.
See indexing order for more details.

2.1. Read Operations 13

MongoDB CRUD Operations, Release 3.2.3

In addition to optimizing read operations, indexes can support sort operations and al-
low for a more efficient storage utilization. See db.collection.createIndex() and
https://docs.mongodb.org/manual/administration/indexes for more information about in-
dex creation.

Query Selectivity

Query selectivity refers to how well the query predicate excludes or filters out documents in a collection. Query
selectivity can determine whether or not queries can use indexes effectively or even use indexes at all.

More selective queries match a smaller percentage of documents. For instance, an equality match on the unique _id
field is highly selective as it can match at most one document.

Less selective queries match a larger percentage of documents. Less selective queries cannot use indexes effectively
or even at all.

For instance, the inequality operators $nin and $ne are not very selective since they often match a large portion of
the index. As a result, in many cases, a $nin or $ne query with an index may perform no better than a $nin or $ne
query that must scan all documents in a collection.

The selectivity of regular expressions depends on the expressions themselves. For details, see regular expres-
sion and index use.

Covered Query

An index covers (page 14) a query when both of the following apply:

• all the fields in the query (page 49) are part of an index, and

• all the fields returned in the results are in the same index.

For example, a collection inventory has the following index on the type and item fields:

db.inventory.createIndex({ type: 1, item: 1 })

This index will cover the following operation which queries on the type and item fields and returns only the item
field:

db.inventory.find(
{ type: "food", item:/^c/ },
{ item: 1, _id: 0 }

)

For the specified index to cover the query, the projection document must explicitly specify _id: 0 to exclude the
_id field from the result since the index does not include the _id field.

Performance

Because the index contains all fields required by the query, MongoDB can both match the query conditions (page 49)
and return the results using only the index.

Querying only the index can be much faster than querying documents outside of the index. Index keys are typically
smaller than the documents they catalog, and indexes are typically available in RAM or located sequentially on disk.

14 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

Limitations

Restrictions on Indexed Fields An index cannot cover a query if:

• any of the indexed fields in any of the documents in the collection includes an array. If an indexed field is an
array, the index becomes a multi-key index and cannot support a covered query.

• any of the indexed fields in the query predicate or returned in the projection are fields in embedded documents.
3 For example, consider a collection users with documents of the following form:

{ _id: 1, user: { login: "tester" } }

The collection has the following index:

{ "user.login": 1 }

The { "user.login": 1 } index does not cover the following query:

db.users.find({ "user.login": "tester" }, { "user.login": 1, _id: 0 })

However, the query can use the { "user.login": 1 } index to find matching documents.

Restrictions on Sharded Collection An index cannot cover a query on a sharded collection when run against a
mongos if the index does not contain the shard key, with the following exception for the _id index: If a query on a
sharded collection only specifies a condition on the _id field and returns only the _id field, the _id index can cover
the query when run against a mongos even if the _id field is not the shard key.

Changed in version 3.0: In previous versions, an index cannot cover (page 14) a query on a sharded collection when
run against a mongos.

explain

To determine whether a query is a covered query, use the db.collection.explain() or the explain()
method and review the results.

db.collection.explain() provides information on the execution of other operations, such as
db.collection.update(). See db.collection.explain() for details.

For more information see indexes-measuring-use.

2.1.4 Query Plans

On this page

• Query Optimization (page 16)
• Query Plan Revision (page 16)
• Cached Query Plan Interface (page 17)
• Index Filters (page 17)

The MongoDB query optimizer processes queries and chooses the most efficient query plan for a query given the
available indexes. The query system then uses this query plan each time the query runs.

The query optimizer only caches the plans for those query shapes that can have more than one viable plan.

3 To index fields in embedded documents, use dot notation.

2.1. Read Operations 15

MongoDB CRUD Operations, Release 3.2.3

The query optimizer occasionally reevaluates query plans as the content of the collection changes to ensure optimal
query plans. You can also specify which indexes the optimizer evaluates with Index Filters (page 17).

You can use the db.collection.explain() or the cursor.explain() method to view statistics about the
query plan for a given query. This information can help as you develop indexing strategies.

db.collection.explain() provides information on the execution of other operations, such as
db.collection.update(). See db.collection.explain() for details.

Query Optimization

To create a new query plan, the query optimizer:

1. runs the query against several candidate indexes in parallel.

2. records the matches in a common results buffer or buffers.

• If the candidate plans include only ordered query plans, there is a single common results buffer.

• If the candidate plans include only unordered query plans, there is a single common results buffer.

• If the candidate plans include both ordered query plans and unordered query plans, there are two common
results buffers, one for the ordered plans and the other for the unordered plans.

If an index returns a result already returned by another index, the optimizer skips the duplicate match. In the
case of the two buffers, both buffers are de-duped.

3. stops the testing of candidate plans and selects an index when one of the following events occur:

• An unordered query plan has returned all the matching results; or

• An ordered query plan has returned all the matching results; or

• An ordered query plan has returned a threshold number of matching results:

– Version 2.0: Threshold is the query batch size. The default batch size is 101.

– Version 2.2: Threshold is 101.

The selected index becomes the index specified in the query plan; future iterations of this query or queries with the
same query pattern will use this index. Query pattern refers to query select conditions that differ only in the values, as
in the following two queries with the same query pattern:

db.inventory.find({ type: 'food' })
db.inventory.find({ type: 'utensil' })

Query Plan Revision

As collections change over time, the query optimizer deletes the query plan and re-evaluates after any of the following
events:

• The collection receives 1,000 write operations.

• The reIndex rebuilds the index.

• You add or drop an index.

• The mongod process restarts.

Changed in version 2.6: explain() operations no longer read from or write to the query planner cache.

16 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

Cached Query Plan Interface

New in version 2.6.

MongoDB provides https://docs.mongodb.org/manual/reference/method/js-plan-cache to
view and modify the cached query plans.

Index Filters

New in version 2.6.

Index filters determine which indexes the optimizer evaluates for a query shape. A query shape consists of a combi-
nation of query, sort, and projection specifications. If an index filter exists for a given query shape, the optimizer only
considers those indexes specified in the filter.

When an index filter exists for the query shape, MongoDB ignores the hint(). To see whether MongoDB applied
an index filter for a query shape, check the indexFilterSet field of either the db.collection.explain()
or the cursor.explain() method.

Index filters only affects which indexes the optimizer evaluates; the optimizer may still select the collection scan as
the winning plan for a given query shape.

Index filters exist for the duration of the server process and do not persist after shutdown. MongoDB also provides a
command to manually remove filters.

Because index filters overrides the expected behavior of the optimizer as well as the hint() method, use index filters
sparingly.

See planCacheListFilters, planCacheClearFilters, and planCacheSetFilter.

2.1.5 Distributed Queries

On this page

• Read Operations to Sharded Clusters (page 17)
• Read Operations to Replica Sets (page 21)

Read Operations to Sharded Clusters

Sharded clusters allow you to partition a data set among a cluster of mongod instances in a
way that is nearly transparent to the application. For an overview of sharded clusters, see the
https://docs.mongodb.org/manual/sharding section of this manual.

For a sharded cluster, applications issue operations to one of the mongos instances associated with the cluster.

Read operations on sharded clusters are most efficient when directed to a specific shard. Queries to sharded collections
should include the collection’s shard key. When a query includes a shard key, the mongos can use cluster metadata
from the config database to route the queries to shards.

If a query does not include the shard key, the mongos must direct the query to all shards in the cluster. These scatter
gather queries can be inefficient. On larger clusters, scatter gather queries are unfeasible for routine operations.

For replica set shards, read operations from secondary members of replica sets may not reflect the current state of the
primary. Read preferences that direct read operations to different servers may result in non-monotonic reads.

2.1. Read Operations 17

MongoDB CRUD Operations, Release 3.2.3

18 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

2.1. Read Operations 19

MongoDB CRUD Operations, Release 3.2.3

20 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

For more information on read operations in sharded clusters, see the https://docs.mongodb.org/manual/core/sharded-cluster-query-router
and sharding-shard-key sections.

Read Operations to Replica Sets

By default, clients reads from a replica set’s primary; however, clients can specify a read preference to direct
read operations to other members. For example, clients can configure read preferences to read from secondaries or
from nearest member to:

• reduce latency in multi-data-center deployments,

• improve read throughput by distributing high read-volumes (relative to write volume),

• perform backup operations, and/or

• allow reads until a new primary is elected.

Read operations from secondary members of replica sets may not reflect the current state of the primary. Read prefer-
ences that direct read operations to different servers may result in non-monotonic reads.

You can configure the read preferece on a per-connection or per-operation ba-
sis. For more information on read preference or on the read preference modes, see
https://docs.mongodb.org/manual/core/read-preference and replica-set-read-preference-
modes.

2.2 Write Operations

The following documents describe write operations:

2.2. Write Operations 21

MongoDB CRUD Operations, Release 3.2.3

Write Operations Overview (page 22) Provides an overview of MongoDB’s data insertion and modification opera-
tions, including aspects of the syntax, and behavior.

Atomicity and Transactions (page 33) Describes write operation atomicity in MongoDB.

Distributed Write Operations (page 34) Describes how MongoDB directs write operations on sharded clusters and
replica sets and the performance characteristics of these operations.

Write Operation Performance (page 36) Introduces the performance constraints and factors for writing data to Mon-
goDB deployments.

Bulk Write Operations (page 38) Provides an overview of MongoDB’s bulk write operations.

2.2.1 Write Operations Overview

On this page

• Insert (page 22)
• Update (page 26)
• Delete (page 30)
• Additional Methods (page 32)

A write operation is any operation that creates or modifies data in the MongoDB instance. In MongoDB, write
operations target a single collection. All write operations in MongoDB are atomic on the level of a single document.

There are three classes of write operations in MongoDB: insert (page 22), update (page 26), and delete (page 30).
Insert operations add new documents to a collection. Update operations modify existing documents, and delete oper-
ations delete documents from a collection. No insert, update, or delete can affect more than one document atomically.

For the update and remove operations, you can specify criteria, or filters, that identify the documents to update or
remove. These operations use the same query syntax to specify the criteria as read operations (page 7).

MongoDB allows applications to determine the acceptable level of acknowledgement required of write operations.
See Write Concern (page 88) for more information.

Insert

MongoDB provides the following methods for inserting documents into a collection:

• db.collection.insertOne()

• db.collection.insertMany()

• db.collection.insert()

insertOne

New in version 3.2.

db.collection.insertOne() inserts a single document

The following diagram highlights the components of the MongoDB insertOne() operation:

The following diagram shows the same query in SQL:

Example

22 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

The following operation inserts a new document into the users collection. The new document has three fields name,
age, and status. Since the document does not specify an _id field, MongoDB adds the _id field and a generated
value to the new document. See Insert Behavior (page 26).

db.users.insertOne(
{

name: "sue",
age: 26,
status: "pending"

}
)

For more information and examples, see db.collection.insertOne().

insertMany

New in version 3.2.

db.collection.insertMany() inserts multiple documents

The following diagram highlights the components of the MongoDB insertMany() operation:

The following diagram shows the same query in SQL:

Example
The following operation inserts three new documents into the users collection. Each document has three fields
name, age, and status. Since the documents do not specify an _id field, MongoDB adds the _id field and a
generated value to each document. See Insert Behavior (page 26).

db.users.insertMany(
[

{ name: "sue", age: 26, status: "pending" },
{ name: "bob", age: 25, status: "enrolled" },

2.2. Write Operations 23

MongoDB CRUD Operations, Release 3.2.3

24 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

{ name: "ann", age: 28, status: "enrolled" }
]

)

For more information and examples, see db.collection.insertMany().

insert

In MongoDB, the db.collection.insert() method adds new documents to a collection. It can take either a
single document or an array of documents to insert.

The following diagram highlights the components of a MongoDB insert operation:

The following diagram shows the same query in SQL:

Example
The following operation inserts a new document into the users collection. The new document has three fields name,
age, and status. Since the document does not specify an _id field, MongoDB adds the _id field and a generated
value to the new document. See Insert Behavior (page 26).

db.users.insert(
{

name: "sue",
age: 26,
status: "A"

}
)

For more information and examples, see db.collection.insert().

2.2. Write Operations 25

MongoDB CRUD Operations, Release 3.2.3

Insert Behavior

The _id field is required in every MongoDB document. The _id field is like the document’s primary key.

If you add a new document without the _id field, the client library or the mongod instance adds an _id field and
populates the field with a unique ObjectId. If you pass in an _id value that already exists, an exception is thrown.

The _id field is uniquely indexed by default in every collection.

Other Methods to Add Documents

The updateOne(), updateMany(), and replaceOne() operations accept the upsert parameter. When
upsert : true, if no document in the collection matches the filter, a new document is created based on the
information passed to the operation. See Update Behavior with the upsert Option (page 30).

Update

MongoDB provides the following methods for updating documents in a collection:

• db.collection.updateOne()

• db.collection.updateMany()

• db.collection.replaceOne()

• db.collection.update()

updateOne

New in version 3.2.

db.collection.updateOne() updates a single document.

The following diagram highlights the components of the MongoDB updateOne() operation:

The following diagram shows the same query in SQL:

26 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

Example
This update operation on the users collection sets the status field to reject for the first document that matches
the filter of age less than 18. See Update Behavior (page 29).

db.users.updateOne(
{ age: { $lt: 18 } },
{ $set: { status: "reject" } }

)

For more information and examples, see db.collection.updateOne().

updateMany

New in version 3.2.

db.collection.updateMany() updates multiple documents.

The following diagram highlights the components of the MongoDB updateMany() operation:

The following diagram shows the same query in SQL:

Example
This update operation on the users collection sets the status field to reject for all documents that match the
filter of age less than 18. See Update Behavior (page 29).

db.users.updateMany(
{ age: { $lt: 18 } },
{ $set: { status: "reject" } }

)

For more information and examples, see db.collection.updateMany().

replaceOne

New in version 3.2.

2.2. Write Operations 27

MongoDB CRUD Operations, Release 3.2.3

db.collection.replaceOne() replaces a single document.

The following diagram highlights the components of the MongoDB replaceOne() operation:

The following diagram shows the same query in SQL:

Example
This replace operation on the users collection replaces the first document that matches the filter of name is sue
with a new document. See Replace Behavior (page 30).

db.users.replaceOne(
{ name: "sue" },
{ name: "amy", age : 25, score: "enrolled" }

)

For more information and examples, see db.collection.replaceOne().

update

In MongoDB, the db.collection.update() method modifies existing documents in a collection. The
db.collection.update() method can accept query criteria to determine which documents to update as well as
an options document that affects its behavior, such as the multi option to update multiple documents.

28 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

Operations performed by an update are atomic within a single document. For example, you can safely use the $inc
and $mul operators to modify frequently-changed fields in concurrent applications.

The following diagram highlights the components of a MongoDB update operation:

The following diagram shows the same query in SQL:

Example
db.users.update(

{ age: { $gt: 18 } },
{ $set: { status: "A" } },
{ multi: true }

)

This update operation on the users collection sets the status field to A for the documents that match the criteria
of age greater than 18.

For more information, see db.collection.update() and update() Examples.

Update Behavior

updateOne() and updateMany() use https://docs.mongodb.org/manual/reference/operator/update/
such as $set, $unset, or $rename to modify existing documents.

updateOne() will update the first document that is returned by the filter.
db.collection.findOneAndUpdate() offers sorting of the filter results, allowing a degree of con-
trol over which document is updated.

By default, the db.collection.update()method updates a single document. However, with the multi option,
update() can update all documents in a collection that match a query.

The db.collection.update() method either updates specific fields in the existing document or replaces the
document. See db.collection.update() for details as well as examples.

When performing update operations that increase the document size beyond the allocated space for that document, the
update operation relocates the document on disk.

2.2. Write Operations 29

MongoDB CRUD Operations, Release 3.2.3

MongoDB preserves the order of the document fields following write operations except for the following cases:

• The _id field is always the first field in the document.

• Updates that include renaming of field names may result in the reordering of fields in the document.

Changed in version 2.6: Starting in version 2.6, MongoDB actively attempts to preserve the field order in a document.
Before version 2.6, MongoDB did not actively preserve the order of the fields in a document.

Replace Behavior

replaceOne() cannot use https://docs.mongodb.org/manual/reference/operator/update/
in the replacement document. The replacement document must consist of only <field> : <value> assign-
ments.

replaceOne() will replace the first document that matches the filter.
db.collection.findOneAndReplace() offers sorting of the filter results, allowing a degree of
control over which document is replaced.

You cannot replace the _id field.

Update Behavior with the upsert Option

If update(), updateOne(), updateMany(), or replaceOne() include upsert : true and no docu-
ments match the filter portion of the operation, then the operation creates a new document and inserts it. If there are
matching documents, then the operation modifies the matching document or documents.

Delete

MongoDB provides the following methods for deleting documents from a collection:

• db.collection.deleteOne()

• db.collection.deleteMany()

• db.collection.remove()

deleteOne

New in version 3.2.

db.collection.deleteOne() deletes a single document.

The following diagram highlights the components of the MongoDB deleteOne() operation:

The following diagram shows the same query in SQL:

Example

30 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

This delete operation on the users collection deletes the first document where name is sue. See Delete Behavior
(page 32).

db.users.deleteOne(
{ status: "reject" }

)

For more information and examples, see db.collection.deleteOne().

deleteMany

New in version 3.2.

db.collection.deleteMany() deletes multiple documents.

The following diagram highlights the components of the MongoDB deleteMany() operation:

The following diagram shows the same query in SQL:

Example
This delete operation on the users collection deletes all documents where status is reject. See Delete Behavior
(page 32).

db.users.deleteMany(
{ status: "reject" }

)

For more information and examples, see db.collection.deleteMany().

2.2. Write Operations 31

MongoDB CRUD Operations, Release 3.2.3

remove

In MongoDB, the db.collection.remove() method deletes documents from a collection. The
db.collection.remove() method accepts query criteria to determine which documents to remove as well as
an options document that affects its behavior, such as the justOne option to remove only a single document.

The following diagram highlights the components of a MongoDB remove operation:

The following diagram shows the same query in SQL:

Example
db.users.remove(

{ status: "D" }
)

This delete operation on the users collection removes all documents that match the criteria of status equal to D.

For more information, see db.collection.remove() method and Remove Documents (page 60).

Delete Behavior

deleteOne() will delete the first document that matches the filter. db.collection.findOneAndDelete()
offers sorting of the filter results, allowing a degree of control over which document is deleted.

Remove Behavior

By default, db.collection.remove() method removes all documents that match its query. If the optional
justOne parameter is set to true, remove() will limit the delete operation to a single document.

Additional Methods

The db.collection.save() method can either update an existing document or insert a document if the docu-
ment cannot be found by the _id field. See db.collection.save() for more information and examples.

32 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

Bulk Write

MongoDB provides the db.collection.bulkWrite() method for executing multiple write operations in a
group. Each write operation is still atomic on the level of a single document.

Example
The following bulkWrite() inserts several documents, performs an update, and then deletes several documents.

db.collection.bulkWrite(
[

{ insertOne : { "document" : { name : "sue", age : 26 } } },
{ insertOne : { "document" : { name : "joe", age : 24 } } },
{ insertOne : { "document" : { name : "ann", age : 25 } } },
{ insertOne : { "document" : { name : "bob", age : 27 } } },
{ updateMany: {

"filter" : { age : { $gt : 25} },
"update" : { $set : { "status" : "enrolled" } }
}

},
{ deleteMany : { "filter" : { "status" : { $exists : true } } } }

]
)

2.2.2 Atomicity and Transactions

On this page

• $isolated Operator (page 33)
• Transaction-Like Semantics (page 34)
• Concurrency Control (page 34)

In MongoDB, a write operation is atomic on the level of a single document, even if the operation modifies multiple
embedded documents within a single document.

When a single write operation modifies multiple documents, the modification of each document is atomic, but the
operation as a whole is not atomic and other operations may interleave. However, you can isolate a single write
operation that affects multiple documents using the $isolated operator.

$isolated Operator

Using the $isolated operator, a write operation that affects multiple documents can prevent other processes from
interleaving once the write operation modifies the first document. This ensures that no client sees the changes until the
write operation completes or errors out.

$isolated does not work with sharded clusters.

An isolated write operation does not provide “all-or-nothing” atomicity. That is, an error during the write operation
does not roll back all its changes that preceded the error.

Note: $isolated operator causes write operations to acquire an exclusive lock on the collection, even for
document-level locking storage engines such as WiredTiger. That is, $isolated operator will make WiredTiger
single-threaded for the duration of the operation.

2.2. Write Operations 33

MongoDB CRUD Operations, Release 3.2.3

The $isolated operator does not work on sharded clusters.

For an example of an update operation that uses the $isolated operator, see $isolated. For an example of a
remove operation that uses the $isolated operator, see isolate-remove-operations.

Transaction-Like Semantics

Since a single document can contain multiple embedded documents, single-document atomicity is sufficient for many
practical use cases. For cases where a sequence of write operations must operate as if in a single transaction, you can
implement a two-phase commit (page 71) in your application.

However, two-phase commits can only offer transaction-like semantics. Using two-phase commit ensures data consis-
tency, but it is possible for applications to return intermediate data during the two-phase commit or rollback.

For more information on two-phase commit and rollback, see Perform Two Phase Commits (page 71).

Concurrency Control

Concurrency control allows multiple applications to run concurrently without causing data inconsistency or conflicts.

One approach is to create a unique index on a field that can only have unique values. This prevents insertions or
updates from creating duplicate data. Create a unique index on multiple fields to force uniqueness on that combination
of field values. For examples of use cases, see update() and Unique Index and findAndModify() and Unique Index.

Another approach is to specify the expected current value of a field in the query predicate for the write operations. For
an example, see Update if Current (page 79).

The two-phase commit pattern provides a variation where the query predicate includes the application identifier
(page 76) as well as the expected state of the data in the write operation.

See also:

Read Isolation, Consistency, and Recency (page 41)

2.2.3 Distributed Write Operations

On this page

• Write Operations on Sharded Clusters (page 34)
• Write Operations on Replica Sets (page 36)

Write Operations on Sharded Clusters

For sharded collections in a sharded cluster, the mongos directs write operations from applications to the shards that
are responsible for the specific portion of the data set. The mongos uses the cluster metadata from the config database
to route the write operation to the appropriate shards.

MongoDB partitions data in a sharded collection into ranges based on the values of the shard key. Then, MongoDB
distributes these chunks to shards. The shard key determines the distribution of chunks to shards. This can affect the
performance of write operations in the cluster.

Important: Update operations that affect a single document must include the shard key or the _id field. Updates
that affect multiple documents are more efficient in some situations if they have the shard key, but can be broadcast to
all shards.

34 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

2.2. Write Operations 35

MongoDB CRUD Operations, Release 3.2.3

If the value of the shard key increases or decreases with every insert, all insert operations target a single shard. As a
result, the capacity of a single shard becomes the limit for the insert capacity of the sharded cluster.

For more information, see https://docs.mongodb.org/manual/administration/sharded-clusters
and Bulk Write Operations (page 38).

Write Operations on Replica Sets

In replica sets, all write operations go to the set’s primary. The primary applies the write operation and records the
operations on the primary’s operation log or oplog. The oplog is a reproducible sequence of operations to the data
set. Secondary members of the set continuously replicate the oplog and apply the operations to themselves in an
asynchronous process.

For more information on replica sets and write operations, see https://docs.mongodb.org/manual/core/replication-introduction
and Write Concern (page 88).

2.2.4 Write Operation Performance

36 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

On this page

• Indexes (page 37)
• Document Growth and the MMAPv1 Storage Engine (page 37)
• Storage Performance (page 37)
• Additional Resources (page 38)

Indexes

After every insert, update, or delete operation, MongoDB must update every index associated with the collection in
addition to the data itself. Therefore, every index on a collection adds some amount of overhead for the performance
of write operations. 4

In general, the performance gains that indexes provide for read operations are worth the insertion penalty. However,
in order to optimize write performance when possible, be careful when creating new indexes and evaluate the existing
indexes to ensure that your queries actually use these indexes.

For indexes and queries, see Query Optimization (page 13). For more infor-
mation on indexes, see https://docs.mongodb.org/manual/indexes and
https://docs.mongodb.org/manual/applications/indexes.

Document Growth and the MMAPv1 Storage Engine

Some update operations can increase the size of the document; for instance, if an update adds a new field to the
document.

For the MMAPv1 storage engine, if an update operation causes a document to exceed the currently allocated record
size, MongoDB relocates the document on disk with enough contiguous space to hold the document. Updates that
require relocations take longer than updates that do not, particularly if the collection has indexes. If a collection has
indexes, MongoDB must update all index entries. Thus, for a collection with many indexes, the move will impact the
write throughput.

Changed in version 3.0.0: By default, MongoDB uses power-of-2-allocation to add padding automatically for the
MMAPv1 storage engine. The power-of-2-allocation ensures that MongoDB allocates document space in sizes that
are powers of 2, which helps ensure that MongoDB can efficiently reuse free space created by document deletion or
relocation as well as reduce the occurrences of reallocations in many cases.

Although power-of-2-allocation minimizes the occurrence of re-allocation, it does not eliminate document re-
allocation.

See https://docs.mongodb.org/manual/core/mmapv1 for more information.

Storage Performance

Hardware

The capability of the storage system creates some important physical limits for the performance of MongoDB’s write
operations. Many unique factors related to the storage system of the drive affect write performance, including random
access patterns, disk caches, disk readahead and RAID configurations.

Solid state drives (SSDs) can outperform spinning hard disks (HDDs) by 100 times or more for random workloads.

4 For inserts and updates to un-indexed fields, the overhead for sparse indexes is less than for non-sparse indexes. Also for non-sparse indexes,
updates that do not change the record size have less indexing overhead.

2.2. Write Operations 37

MongoDB CRUD Operations, Release 3.2.3

See
https://docs.mongodb.org/manual/administration/production-notes for recommendations
regarding additional hardware and configuration options.

Journaling

To provide durability in the event of a crash, MongoDB uses write ahead logging to an on-disk journal. MongoDB
writes the in-memory changes first to the on-disk journal files. If MongoDB should terminate or encounter an error
before committing the changes to the data files, MongoDB can use the journal files to apply the write operation to the
data files.

While the durability assurance provided by the journal typically outweigh the performance costs of the additional write
operations, consider the following interactions between the journal and performance:

• If the journal and the data file reside on the same block device, the data files and the journal may have to contend
for a finite number of available I/O resources. Moving the journal to a separate device may increase the capacity
for write operations.

• If applications specify write concerns (page 88) that include the j option (page 90), mongod will decrease
the duration between journal writes, which can increase the overall write load.

• The duration between journal writes is configurable using the commitIntervalMs run-time option. De-
creasing the period between journal commits will increase the number of write operations, which can limit
MongoDB’s capacity for write operations. Increasing the amount of time between journal commits may de-
crease the total number of write operation, but also increases the chance that the journal will not record a write
operation in the event of a failure.

For additional information on journaling, see https://docs.mongodb.org/manual/core/journaling.

Additional Resources

• MongoDB Performance Evaluation and Tuning Consulting Package5

2.2.5 Bulk Write Operations

On this page

• Overview (page 38)
• Ordered vs Unordered Operations (page 39)
• bulkWrite() Methods (page 39)
• Strategies for Bulk Inserts to a Sharded Collection (page 40)

Overview

MongoDB provides clients the ability to perform write operations in bulk. Bulk write operations affect a single
collection. MongoDB allows applications to determine the acceptable level of acknowledgement required for bulk
write operations.

New in version 3.2.
5https://www.mongodb.com/products/consulting?jmp=docs#performance_evaluation

38 Chapter 2. MongoDB CRUD Concepts

https://www.mongodb.com/products/consulting?jmp=docs#performance_evaluation

MongoDB CRUD Operations, Release 3.2.3

The db.collection.bulkWrite() method provides the ability to perform bulk insert, update, and remove
operations. MongoDB also supports bulk insert through the db.collection.insertMany().

Ordered vs Unordered Operations

Bulk write operations can be either ordered or unordered.

With an ordered list of operations, MongoDB executes the operations serially. If an error occurs during the processing
of one of the write operations, MongoDB will return without processing any remaining write operations in the list.
See ordered Bulk Write

With an unordered list of operations, MongoDB can execute the operations in parallel, but this behavior is not guar-
anteed. If an error occurs during the processing of one of the write operations, MongoDB will continue to process
remaining write operations in the list. See bulkwrite-example-unordered-bulk-write.

Executing an ordered list of operations on a sharded collection will generally be slower than executing an unordered
list since with an ordered list, each operation must wait for the previous operation to finish.

By default, bulkWrite() performs ordered operations. To specify unordered write operations, set ordered
: false in the options document.

See bulkwrite-write-operations-executionofoperations

bulkWrite() Methods

bulkWrite() supports the following write operations:

• bulkwrite-write-operations-insertOne

• updateOne

• updateMany

• bulkwrite-write-operations-replaceOne

• deleteOne

• deleteMany

Each write operation is passed to bulkWrite() as a document in an array.

For example, the following performs multiple write operations:

The characters collection contains the following documents:

{ "_id" : 1, "char" : "Brisbane", "class" : "monk", "lvl" : 4 },
{ "_id" : 2, "char" : "Eldon", "class" : "alchemist", "lvl" : 3 },
{ "_id" : 3, "char" : "Meldane", "class" : "ranger", "lvl" : 3 }

The following bulkWrite() performs multiple operations on the collection:

try {
db.characters.bulkWrite(

[
{ insertOne :

{
"document" :
{

"_id" : 4, "char" : "Dithras", "class" : "barbarian", "lvl" : 4
}

}

2.2. Write Operations 39

MongoDB CRUD Operations, Release 3.2.3

},
{ insertOne :

{
"document" :
{

"_id" : 5, "char" : "Taeln", "class" : "fighter", "lvl" : 3
}

}
},
{ updateOne :

{
"filter" : { "char" : "Eldon" },
"update" : { $set : { "status" : "Critical Injury" } }

}
},
{ deleteOne :

{ "filter" : { "char" : "Brisbane"} }
},
{ replaceOne :

{
"filter" : { "char" : "Meldane" },
"replacement" : { "char" : "Tanys", "class" : "oracle", "lvl" : 4 }

}
}

]
);

}
catch (e) {

print(e);
}

The operation returns the following:

{
"acknowledged" : true,
"deletedCount" : 1,
"insertedCount" : 2,
"matchedCount" : 2,
"upsertedCount" : 0,
"insertedIds" : {

"0" : 4,
"1" : 5

},
"upsertedIds" : {

}
}

For more examples, see bulkWrite() Examples

Strategies for Bulk Inserts to a Sharded Collection

Large bulk insert operations, including initial data inserts or routine data import, can affect sharded cluster perfor-
mance. For bulk inserts, consider the following strategies:

40 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

Pre-Split the Collection

If the sharded collection is empty, then the collection has only one initial chunk, which resides on a sin-
gle shard. MongoDB must then take time to receive data, create splits, and distribute the split chunks
to the available shards. To avoid this performance cost, you can pre-split the collection, as described in
https://docs.mongodb.org/manual/tutorial/split-chunks-in-sharded-cluster.

Unordered Writes to mongos

To improve write performance to sharded clusters, use bulkWrite() with the optional pa-
rameter ordered set to false. mongos can attempt to send the writes to multiple
shards simultaneously. For empty collections, first pre-split the collection as described in
https://docs.mongodb.org/manual/tutorial/split-chunks-in-sharded-cluster.

Avoid Monotonic Throttling

If your shard key increases monotonically during an insert, then all inserted data goes to the last chunk in the collection,
which will always end up on a single shard. Therefore, the insert capacity of the cluster will never exceed the insert
capacity of that single shard.

If your insert volume is larger than what a single shard can process, and if you cannot avoid a monotonically increasing
shard key, then consider the following modifications to your application:

• Reverse the binary bits of the shard key. This preserves the information and avoids correlating insertion order
with increasing sequence of values.

• Swap the first and last 16-bit words to “shuffle” the inserts.

Example
The following example, in C++, swaps the leading and trailing 16-bit word of BSON ObjectIds generated so they are
no longer monotonically increasing.

using namespace mongo;
OID make_an_id() {

OID x = OID::gen();
const unsigned char *p = x.getData();
swap((unsigned short&) p[0], (unsigned short&) p[10]);
return x;

}

void foo() {
// create an object
BSONObj o = BSON("_id" << make_an_id() << "x" << 3 << "name" << "jane");
// now we may insert o into a sharded collection

}

See also:

sharding-shard-key for information on choosing a sharded key. Also see Shard Key Internals (in particular, sharding-
internals-operations-and-reliability).

2.3 Read Isolation, Consistency, and Recency

2.3. Read Isolation, Consistency, and Recency 41

MongoDB CRUD Operations, Release 3.2.3

On this page

• Isolation Guarantees (page 42)
• Consistency Guarantees (page 43)
• Recency (page 43)

2.3.1 Isolation Guarantees

Read Uncommitted

In MongoDB, clients can see the results of writes before the writes are durable:

• Regardless of write concern (page 88), other clients using "local" (page 91) (i.e. the default) readConcern
can see the result of a write operation before the write operation is acknowledged to the issuing client.

• Clients using "local" (page 91) (i.e. the default) readConcern can read data which may be subsequently
rolled back.

Read uncommitted is the default isolation level and applies to mongod standalone instances as well as to replica sets
and sharded clusters.

Read Uncommitted And Single Document Atomicity

Write operations are atomic with respect to a single document; i.e. if a write is updating multiple fields in the document,
a reader will never see the document with only some of the fields updated.

With a single mongod instance, a set of read and write operations to a single document is serializable. With replica
sets, only in the absence of a rollback, is a set of read and write operations to a single document serializable.

However, although the readers may not see a partially updated document, read uncommitted means that concurrent
readers may still see the updated document before the changes are durable.

Read Uncommitted And Multiple Document Write

When a single write operation modifies multiple documents, the modification of each document is atomic, but the
operation as a whole is not atomic and other operations may interleave. However, you can isolate a single write
operation that affects multiple documents using the $isolated operator.

Without isolating the multi-document write operations, MongoDB exhibits the following behavior:

1. Non-point-in-time read operations. Suppose a read operation begins at time t1 and starts reading documents. A
write operation then commits an update to one of the documents at some later time t2. The reader may see the
updated version of the document, and therefore does not see a point-in-time snapshot of the data.

2. Non-serializable operations. Suppose a read operation reads a document d1 at time t1 and a write operation
updates d1 at some later time t3. This introduces a read-write dependency such that, if the operations were to be
serialized, the read operation must precede the write operation. But also suppose that the write operation updates
document d2 at time t2 and the read operation subsequently reads d2 at some later time t4. This introduces a
write-read dependency which would instead require the read operation to come after the write operation in a
serializable schedule. There is a dependency cycle which makes serializability impossible.

3. Dropped results for MMAPv1. For MMAPv1, reads may miss matching documents that are updated or deleted
during the course of the read operation. However, data that has not been modified during the operation will
always be visible.

42 Chapter 2. MongoDB CRUD Concepts

MongoDB CRUD Operations, Release 3.2.3

Using the $isolated operator, a write operation that affects multiple documents can prevent other processes from
interleaving once the write operation modifies the first document. This ensures that no client sees the changes until the
write operation completes or errors out.

$isolated does not work with sharded clusters.

An isolated write operation does not provide “all-or-nothing” atomicity. That is, an error during the write operation
does not roll back all its changes that preceded the error.

Note: $isolated operator causes write operations to acquire an exclusive lock on the collection, even for
document-level locking storage engines such as WiredTiger. That is, $isolated operator will make WiredTiger
single-threaded for the duration of the operation.

See also:

Atomicity and Transactions (page 33)

Cursor Snapshot

MongoDB cursors can return the same document more than once in some situations. As a cursor returns documents
other operations may interleave with the query. If some of these operations are updates (page 21) that cause the
document to move (in the case of MMAPv1, caused by document growth) or that change the indexed field on the
index used by the query; then the cursor will return the same document more than once.

In very specific cases, you can isolate the cursor from returning the same document more than once by using the
cursor.snapshot() method. For more information, see faq-developers-isolate-cursors.

2.3.2 Consistency Guarantees

Monotonic Reads

MongoDB provides monotonic reads from a standalone mongod instance. Suppose an application performs a se-
quence of operations that consists of a read operation R1 followed later in the sequence by another read operation R2.
If the application performs the sequence on a standalone mongod instance, the later read R2 never returns results that
reflect an earlier state than that returned from R1; i.e. R2 returns data that is monotonically increasing in recency from
R1.

Changed in version 3.2: For replica sets and sharded clusters, MongoDB provides monotonic reads if read operations
specify Read Concern (page 90) "majority" and read preference primary.

In previous versions, MongoDB cannot make monotonic read guarantees from replica sets and sharded clusters.

Monotonic Writes

MongoDB provides monotonic write guarantees for standalone mongod instances, replica sets, and sharded clusters.

Suppose an application performs a sequence of operations that consists of a write operation W1 followed later in the
sequence by a write operation W2. MongoDB guarantees that W1 operation precedes W2.

2.3.3 Recency

In MongoDB, in a replica set with one primary member 6,

6 In some circumstances, two nodes in a replica set may transiently believe that they are the primary, but at most, one of them will be able to
complete writes with { w: "majority" } (page 89) write concern. The node that can complete { w: "majority" } (page 89) writes

2.3. Read Isolation, Consistency, and Recency 43

MongoDB CRUD Operations, Release 3.2.3

• With "local" (page 91) readConcern, reads from the primary reflect the latest writes in absence of a
failover;

• With "majority" (page 91) readConcern, read operations from the primary or the secondaries have even-
tual consistency.

is the current primary, and the other node is a former primary that has not yet recognized its demotion, typically due to a network partition. When
this occurs, clients that connect to the former primary may observe stale data despite having requested read preference primary, and new writes
to the former primary will eventually roll back.

44 Chapter 2. MongoDB CRUD Concepts

CHAPTER 3

MongoDB CRUD Tutorials

The following tutorials provide instructions for querying and modifying data. For a higher-level overview of these
operations, see MongoDB CRUD Operations (page 1).

Insert Documents (page 45) Insert new documents into a collection.

Query Documents (page 49) Find documents in a collection using search criteria.

Modify Documents (page 56) Modify documents in a collection

Remove Documents (page 60) Remove documents from a collection.

Limit Fields to Return from a Query (page 61) Limit which fields are returned by a query.

Limit Number of Elements in an Array after an Update (page 64) Use $push with modifiers to sort and maintain
an array of fixed size.

Iterate a Cursor in the mongo Shell (page 65) Access documents returned by a find query by iterating the cursor,
either manually or using the iterator index.

Analyze Query Performance (page 67) Use query introspection (i.e. explain) to analyze the efficiency of queries
and determine how a query uses available indexes.

Perform Two Phase Commits (page 71) Use two-phase commits when writing data to multiple documents.

Update Document if Current (page 79) Update a document only if it has not changed since it was last read.

Create Tailable Cursor (page 80) Create tailable cursors for use in capped collections with high numbers of write
operations for which an index would be too expensive.

Create an Auto-Incrementing Sequence Field (page 81) Describes how to create an incrementing sequence number
for the _id field using a Counters Collection or an Optimistic Loop.

Perform Quorum Reads on Replica Sets (page 84) Perform quorum reads using findAndModify.

3.1 Insert Documents

On this page

• Insert a Document (page 46)
• Insert an Array of Documents (page 46)
• Insert Multiple Documents with Bulk (page 47)
• Additional Examples and Methods (page 49)

45

MongoDB CRUD Operations, Release 3.2.3

In MongoDB, the db.collection.insert() method adds new documents into a collection.

3.1.1 Insert a Document

Step 1: Insert a document into a collection.

Insert a document into a collection named inventory. The operation will create the collection if the collection does
not currently exist.

db.inventory.insert(
{

item: "ABC1",
details: {

model: "14Q3",
manufacturer: "XYZ Company"

},
stock: [{ size: "S", qty: 25 }, { size: "M", qty: 50 }],
category: "clothing"

}
)

The operation returns a WriteResult object with the status of the operation. A successful insert of the document
returns the following object:

WriteResult({ "nInserted" : 1 })

The nInserted field specifies the number of documents inserted. If the operation encounters an error, the
WriteResult object will contain the error information.

Step 2: Review the inserted document.

If the insert operation is successful, verify the insertion by querying the collection.

db.inventory.find()

The document you inserted should return.

{ "_id" : ObjectId("53d98f133bb604791249ca99"), "item" : "ABC1", "details" : { "model" : "14Q3", "manufacturer" : "XYZ Company" }, "stock" : [{ "size" : "S", "qty" : 25 }, { "size" : "M", "qty" : 50 }], "category" : "clothing" }

The returned document shows that MongoDB added an _id field to the document. If a client inserts a document that
does not contain the _id field, MongoDB adds the field with the value set to a generated ObjectId1. The ObjectId2

values in your documents will differ from the ones shown.

3.1.2 Insert an Array of Documents

You can pass an array of documents to the db.collection.insert() method to insert multiple documents.

Step 1: Create an array of documents.

Define a variable mydocuments that holds an array of documents to insert.

1https://docs.mongodb.org/manual/reference/object-id
2https://docs.mongodb.org/manual/reference/object-id

46 Chapter 3. MongoDB CRUD Tutorials

https://docs.mongodb.org/manual/reference/object-id
https://docs.mongodb.org/manual/reference/object-id

MongoDB CRUD Operations, Release 3.2.3

var mydocuments =
[

{
item: "ABC2",
details: { model: "14Q3", manufacturer: "M1 Corporation" },
stock: [{ size: "M", qty: 50 }],
category: "clothing"

},
{

item: "MNO2",
details: { model: "14Q3", manufacturer: "ABC Company" },
stock: [{ size: "S", qty: 5 }, { size: "M", qty: 5 }, { size: "L", qty: 1 }],
category: "clothing"

},
{

item: "IJK2",
details: { model: "14Q2", manufacturer: "M5 Corporation" },
stock: [{ size: "S", qty: 5 }, { size: "L", qty: 1 }],
category: "houseware"

}
];

Step 2: Insert the documents.

Pass the mydocuments array to the db.collection.insert() to perform a bulk insert.

db.inventory.insert(mydocuments);

The method returns a BulkWriteResult object with the status of the operation. A successful insert of the docu-
ments returns the following object:

BulkWriteResult({
"writeErrors" : [],
"writeConcernErrors" : [],
"nInserted" : 3,
"nUpserted" : 0,
"nMatched" : 0,
"nModified" : 0,
"nRemoved" : 0,
"upserted" : []

})

The nInserted field specifies the number of documents inserted. If the operation encounters an error, the
BulkWriteResult object will contain information regarding the error.

The inserted documents will each have an _id field added by MongoDB.

3.1.3 Insert Multiple Documents with Bulk

New in version 2.6.

MongoDB provides a Bulk() API that you can use to perform multiple write operations in bulk. The following
sequence of operations describes how you would use the Bulk()API to insert a group of documents into a MongoDB
collection.

3.1. Insert Documents 47

MongoDB CRUD Operations, Release 3.2.3

Step 1: Initialize a Bulk operations builder.

Initialize a Bulk operations builder for the collection inventory.

var bulk = db.inventory.initializeUnorderedBulkOp();

The operation returns an unordered operations builder which maintains a list of operations to perform. Unordered
operations means that MongoDB can execute in parallel as well as in nondeterministic order. If an error occurs during
the processing of one of the write operations, MongoDB will continue to process remaining write operations in the
list.

You can also initialize an ordered operations builder; see db.collection.initializeOrderedBulkOp()
for details.

Step 2: Add insert operations to the bulk object.

Add two insert operations to the bulk object using the Bulk.insert() method.

bulk.insert(
{

item: "BE10",
details: { model: "14Q2", manufacturer: "XYZ Company" },
stock: [{ size: "L", qty: 5 }],
category: "clothing"

}
);
bulk.insert(

{
item: "ZYT1",
details: { model: "14Q1", manufacturer: "ABC Company" },
stock: [{ size: "S", qty: 5 }, { size: "M", qty: 5 }],
category: "houseware"

}
);

Step 3: Execute the bulk operation.

Call the execute() method on the bulk object to execute the operations in its list.

bulk.execute();

The method returns a BulkWriteResult object with the status of the operation. A successful insert of the docu-
ments returns the following object:

BulkWriteResult({
"writeErrors" : [],
"writeConcernErrors" : [],
"nInserted" : 2,
"nUpserted" : 0,
"nMatched" : 0,
"nModified" : 0,
"nRemoved" : 0,
"upserted" : []

})

The nInserted field specifies the number of documents inserted. If the operation encounters an error, the
BulkWriteResult object will contain information regarding the error.

48 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

3.1.4 Additional Examples and Methods

For more examples, see db.collection.insert().

The db.collection.update() method, the db.collection.findAndModify(), and the
db.collection.save() method can also add new documents. See the individual reference pages for the
methods for more information and examples.

3.2 Query Documents

On this page

• Select All Documents in a Collection (page 49)
• Specify Equality Condition (page 49)
• Specify Conditions Using Query Operators (page 50)
• Specify AND Conditions (page 50)
• Specify OR Conditions (page 50)
• Specify AND as well as OR Conditions (page 50)
• Embedded Documents (page 51)
• Arrays (page 51)

In MongoDB, the db.collection.find() method retrieves documents from a collection. 3 The
db.collection.find() method returns a cursor (page 11) to the retrieved documents.

This tutorial provides examples of read operations using the db.collection.find() method in the mongo
shell. In these examples, the retrieved documents contain all their fields. To restrict the fields to return in the retrieved
documents, see Limit Fields to Return from a Query (page 61).

3.2.1 Select All Documents in a Collection

An empty query document ({}) selects all documents in the collection:

db.inventory.find({})

Not specifying a query document to the find() is equivalent to specifying an empty query document. Therefore the
following operation is equivalent to the previous operation:

db.inventory.find()

3.2.2 Specify Equality Condition

To specify equality condition, use the query document { <field>: <value> } to select all documents that
contain the <field> with the specified <value>.

The following example retrieves from the inventory collection all documents where the type field has the value
snacks:

db.inventory.find({ type: "snacks" })

3 The db.collection.findOne() method also performs a read operation to return a single document. Internally, the
db.collection.findOne() method is the db.collection.find() method with a limit of 1.

3.2. Query Documents 49

MongoDB CRUD Operations, Release 3.2.3

3.2.3 Specify Conditions Using Query Operators

A query document can use the query operators to specify conditions in a MongoDB query.

The following example selects all documents in the inventory collection where the value of the type field is either
’food’ or ’snacks’:

db.inventory.find({ type: { $in: ['food', 'snacks'] } })

Although you can express this query using the $or operator, use the $in operator rather than the $or operator when
performing equality checks on the same field.

Refer to the https://docs.mongodb.org/manual/reference/operator/query document for the
complete list of query operators.

3.2.4 Specify AND Conditions

A compound query can specify conditions for more than one field in the collection’s documents. Implicitly, a logical
AND conjunction connects the clauses of a compound query so that the query selects the documents in the collection
that match all the conditions.

In the following example, the query document specifies an equality match on the field type and a less than ($lt)
comparison match on the field price:

db.inventory.find({ type: 'food', price: { $lt: 9.95 } })

This query selects all documents where the type field has the value ’food’ and the value of the price field is less
than 9.95. See comparison operators for other comparison operators.

3.2.5 Specify OR Conditions

Using the $or operator, you can specify a compound query that joins each clause with a logical OR conjunction so
that the query selects the documents in the collection that match at least one condition.

In the following example, the query document selects all documents in the collection where the field qty has a value
greater than ($gt) 100 or the value of the price field is less than ($lt) 9.95:

db.inventory.find(
{

$or: [{ qty: { $gt: 100 } }, { price: { $lt: 9.95 } }]
}

)

3.2.6 Specify AND as well as OR Conditions

With additional clauses, you can specify precise conditions for matching documents.

In the following example, the compound query document selects all documents in the collection where the value of
the type field is ’food’ and either the qty has a value greater than ($gt) 100 or the value of the price field is
less than ($lt) 9.95:

db.inventory.find(
{

type: 'food',
$or: [{ qty: { $gt: 100 } }, { price: { $lt: 9.95 } }]

50 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

}
)

3.2.7 Embedded Documents

When the field holds an embedded document, a query can either specify an exact match on the embedded document
or specify a match by individual fields in the embedded document using the dot notation.

Exact Match on the Embedded Document

To specify an equality match on the whole embedded document, use the query document { <field>: <value>
} where <value> is the document to match. Equality matches on an embedded document require an exact match of
the specified <value>, including the field order.

In the following example, the query matches all documents where the value of the field producer is an embedded
document that contains only the field company with the value ’ABC123’ and the field address with the value
’123 Street’, in the exact order:

db.inventory.find(
{

producer:
{
company: 'ABC123',
address: '123 Street'

}
}

)

Equality Match on Fields within an Embedded Document

Use the dot notation to match by specific fields in an embedded document. Equality matches for specific fields in
an embedded document will select documents in the collection where the embedded document contains the specified
fields with the specified values. The embedded document can contain additional fields.

In the following example, the query uses the dot notation to match all documents where the value of the field
producer is an embedded document that contains a field company with the value ’ABC123’ and may contain
other fields:

db.inventory.find({ 'producer.company': 'ABC123' })

3.2.8 Arrays

When the field holds an array, you can query for an exact array match or for specific values in the array. If the array
holds embedded documents, you can query for specific fields in the embedded documents using dot notation.

If you specify multiple conditions using the $elemMatch operator, the array must contain at least one element that
satisfies all the conditions. See Single Element Satisfies the Criteria (page 52).

If you specify multiple conditions without using the $elemMatch operator, then some combination of the array
elements, not necessarily a single element, must satisfy all the conditions; i.e. different elements in the array can
satisfy different parts of the conditions. See Combination of Elements Satisfies the Criteria (page 53).

Consider an inventory collection that contains the following documents:

3.2. Query Documents 51

MongoDB CRUD Operations, Release 3.2.3

{ _id: 5, type: "food", item: "aaa", ratings: [5, 8, 9] }
{ _id: 6, type: "food", item: "bbb", ratings: [5, 9] }
{ _id: 7, type: "food", item: "ccc", ratings: [9, 5, 8] }

Exact Match on an Array

To specify equality match on an array, use the query document { <field>: <value> } where <value> is
the array to match. Equality matches on the array require that the array field match exactly the specified <value>,
including the element order.

The following example queries for all documents where the field ratings is an array that holds exactly three ele-
ments, 5, 8, and 9, in this order:

db.inventory.find({ ratings: [5, 8, 9] })

The operation returns the following document:

{ "_id" : 5, "type" : "food", "item" : "aaa", "ratings" : [5, 8, 9] }

Match an Array Element

Equality matches can specify a single element in the array to match. These specifications match if the array contains
at least one element with the specified value.

The following example queries for all documents where ratings is an array that contains 5 as one of its elements:

db.inventory.find({ ratings: 5 })

The operation returns the following documents:

{ "_id" : 5, "type" : "food", "item" : "aaa", "ratings" : [5, 8, 9] }
{ "_id" : 6, "type" : "food", "item" : "bbb", "ratings" : [5, 9] }
{ "_id" : 7, "type" : "food", "item" : "ccc", "ratings" : [9, 5, 8] }

Match a Specific Element of an Array

Equality matches can specify equality matches for an element at a particular index or position of the array using the
dot notation.

In the following example, the query uses the dot notation to match all documents where the ratings array contains
5 as the first element:

db.inventory.find({ 'ratings.0': 5 })

The operation returns the following documents:

{ "_id" : 5, "type" : "food", "item" : "aaa", "ratings" : [5, 8, 9] }
{ "_id" : 6, "type" : "food", "item" : "bbb", "ratings" : [5, 9] }

Specify Multiple Criteria for Array Elements

Single Element Satisfies the Criteria

Use $elemMatch operator to specify multiple criteria on the elements of an array such that at least one array element
satisfies all the specified criteria.

52 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

The following example queries for documents where the ratings array contains at least one element that is greater
than ($gt) 5 and less than ($lt) 9:

db.inventory.find({ ratings: { $elemMatch: { $gt: 5, $lt: 9 } } })

The operation returns the following documents, whose ratings array contains the element 8 which meets the crite-
ria:

{ "_id" : 5, "type" : "food", "item" : "aaa", "ratings" : [5, 8, 9] }
{ "_id" : 7, "type" : "food", "item" : "ccc", "ratings" : [9, 5, 8] }

Combination of Elements Satisfies the Criteria

The following example queries for documents where the ratings array contains elements that in some combination
satisfy the query conditions; e.g., one element can satisfy the greater than 5 condition and another element can satisfy
the less than 9 condition, or a single element can satisfy both:

db.inventory.find({ ratings: { $gt: 5, $lt: 9 } })

The operation returns the following documents:

{ "_id" : 5, "type" : "food", "item" : "aaa", "ratings" : [5, 8, 9] }
{ "_id" : 6, "type" : "food", "item" : "bbb", "ratings" : [5, 9] }
{ "_id" : 7, "type" : "food", "item" : "ccc", "ratings" : [9, 5, 8] }

The document with the "ratings" : [5, 9] matches the query since the element 9 is greater than 5 (the
first condition) and the element 5 is less than 9 (the second condition).

Array of Embedded Documents

Consider that the inventory collection includes the following documents:

{
_id: 100,
type: "food",
item: "xyz",
qty: 25,
price: 2.5,
ratings: [5, 8, 9],
memos: [{ memo: "on time", by: "shipping" }, { memo: "approved", by: "billing" }]

}

{
_id: 101,
type: "fruit",
item: "jkl",
qty: 10,
price: 4.25,
ratings: [5, 9],
memos: [{ memo: "on time", by: "payment" }, { memo: "delayed", by: "shipping" }]

}

Match a Field in the Embedded Document Using the Array Index

If you know the array index of the embedded document, you can specify the document using the embedded document’s
position using the dot notation.

3.2. Query Documents 53

MongoDB CRUD Operations, Release 3.2.3

The following example selects all documents where the memos contains an array whose first element (i.e. index is 0)
is a document that contains the field by whose value is ’shipping’:

db.inventory.find({ 'memos.0.by': 'shipping' })

The operation returns the following document:

{
_id: 100,
type: "food",
item: "xyz",
qty: 25,
price: 2.5,
ratings: [5, 8, 9],
memos: [{ memo: "on time", by: "shipping" }, { memo: "approved", by: "billing" }]

}

Match a Field Without Specifying Array Index

If you do not know the index position of the document in the array, concatenate the name of the field that contains the
array, with a dot (.) and the name of the field in the embedded document.

The following example selects all documents where the memos field contains an array that contains at least one
embedded document that contains the field by with the value ’shipping’:

db.inventory.find({ 'memos.by': 'shipping' })

The operation returns the following documents:

{
_id: 100,
type: "food",
item: "xyz",
qty: 25,
price: 2.5,
ratings: [5, 8, 9],
memos: [{ memo: "on time", by: "shipping" }, { memo: "approved", by: "billing" }]

}
{

_id: 101,
type: "fruit",
item: "jkl",
qty: 10,
price: 4.25,
ratings: [5, 9],
memos: [{ memo: "on time", by: "payment" }, { memo: "delayed", by: "shipping" }]

}

Specify Multiple Criteria for Array of Documents

Single Element Satisfies the Criteria

Use $elemMatch operator to specify multiple criteria on an array of embedded documents such that at least one
embedded document satisfies all the specified criteria.

The following example queries for documents where the memos array has at least one embedded document that
contains both the field memo equal to ’on time’ and the field by equal to ’shipping’:

54 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

db.inventory.find(
{

memos:
{

$elemMatch:
{

memo: 'on time',
by: 'shipping'

}
}

}
)

The operation returns the following document:

{
_id: 100,
type: "food",
item: "xyz",
qty: 25,
price: 2.5,
ratings: [5, 8, 9],
memos: [{ memo: "on time", by: "shipping" }, { memo: "approved", by: "billing" }]

}

Combination of Elements Satisfies the Criteria

The following example queries for documents where the memos array contains elements that in some combination
satisfy the query conditions; e.g. one element satisfies the field memo equal to ’on time’ condition and another
element satisfies the field by equal to ’shipping’ condition, or a single element can satisfy both criteria:

db.inventory.find(
{
'memos.memo': 'on time',
'memos.by': 'shipping'

}
)

The query returns the following documents:

{
_id: 100,
type: "food",
item: "xyz",
qty: 25,
price: 2.5,
ratings: [5, 8, 9],
memos: [{ memo: "on time", by: "shipping" }, { memo: "approved", by: "billing" }]

}
{

_id: 101,
type: "fruit",
item: "jkl",
qty: 10,
price: 4.25,
ratings: [5, 9],
memos: [{ memo: "on time", by: "payment" }, { memo: "delayed", by: "shipping" }]

3.2. Query Documents 55

MongoDB CRUD Operations, Release 3.2.3

}

See also:

Limit Fields to Return from a Query (page 61)

3.3 Modify Documents

On this page

• Update Specific Fields in a Document (page 56)
• Replace the Document (page 57)
• upsert Option (page 58)
• Additional Examples and Methods (page 60)

MongoDB provides the update() method to update the documents of a collection. The method accepts as its
parameters:

• an update conditions document to match the documents to update,

• an update operations document to specify the modification to perform, and

• an options document.

To specify the update condition, use the same structure and syntax as the query conditions.

By default, update() updates a single document. To update multiple documents, use the multi option.

3.3.1 Update Specific Fields in a Document

To change a field value, MongoDB provides update operators4, such as $set to modify values.

Some update operators, such as $set, will create the field if the field does not exist. See the individual update
operator5 reference.

Step 1: Use update operators to change field values.

For the document with item equal to "MNO2", use the $set operator to update the category field and the
details field to the specified values and the $currentDate operator to update the field lastModified with
the current date.

db.inventory.update(
{ item: "MNO2" },
{

$set: {
category: "apparel",
details: { model: "14Q3", manufacturer: "XYZ Company" }

},
$currentDate: { lastModified: true }

}
)

4https://docs.mongodb.org/manual/reference/operator/update
5https://docs.mongodb.org/manual/reference/operator/update

56 Chapter 3. MongoDB CRUD Tutorials

https://docs.mongodb.org/manual/reference/operator/update
https://docs.mongodb.org/manual/reference/operator/update
https://docs.mongodb.org/manual/reference/operator/update

MongoDB CRUD Operations, Release 3.2.3

The update operation returns a WriteResult object which contains the status of the operation. A successful update
of the document returns the following object:

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

The nMatched field specifies the number of existing documents matched for the update, and nModified specifies
the number of existing documents modified.

Step 2: Update an embedded field.

To update a field within an embedded document, use the dot notation. When using the dot notation, enclose the whole
dotted field name in quotes.

The following updates the model field within the embedded details document.

db.inventory.update(
{ item: "ABC1" },
{ $set: { "details.model": "14Q2" } }

)

The update operation returns a WriteResult object which contains the status of the operation. A successful update
of the document returns the following object:

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

Step 3: Update multiple documents.

By default, the update() method updates a single document. To update multiple documents, use the multi option
in the update() method.

Update the category field to "apparel" and update the lastModified field to the current date for all docu-
ments that have category field equal to "clothing".

db.inventory.update(
{ category: "clothing" },
{

$set: { category: "apparel" },
$currentDate: { lastModified: true }

},
{ multi: true }

)

The update operation returns a WriteResult object which contains the status of the operation. A successful update
of the document returns the following object:

WriteResult({ "nMatched" : 3, "nUpserted" : 0, "nModified" : 3 })

3.3.2 Replace the Document

To replace the entire content of a document except for the _id field, pass an entirely new document as the second
argument to update().

The replacement document can have different fields from the original document. In the replacement document, you
can omit the _id field since the _id field is immutable. If you do include the _id field, it must be the same value as
the existing value.

3.3. Modify Documents 57

MongoDB CRUD Operations, Release 3.2.3

Step 1: Replace a document.

The following operation replaces the document with item equal to "BE10". The newly replaced document will only
contain the _id field and the fields in the replacement document.

db.inventory.update(
{ item: "BE10" },
{

item: "BE05",
stock: [{ size: "S", qty: 20 }, { size: "M", qty: 5 }],
category: "apparel"

}
)

The update operation returns a WriteResult object which contains the status of the operation. A successful update
of the document returns the following object:

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

3.3.3 upsert Option

By default, if no document matches the update query, the update() method does nothing.

However, by specifying upsert: true, the update() method either updates matching document or documents, or
inserts a new document using the update specification if no matching document exists.

Step 1: Specify upsert: true for the update replacement operation.

When you specify upsert: true for an update operation to replace a document and no matching documents
are found, MongoDB creates a new document using the equality conditions in the update conditions document, and
replaces this document, except for the _id field if specified, with the update document.

The following operation either updates a matching document by replacing it with a new document or adds a new
document if no matching document exists.

db.inventory.update(
{ item: "TBD1" },
{

item: "TBD1",
details: { "model" : "14Q4", "manufacturer" : "ABC Company" },
stock: [{ "size" : "S", "qty" : 25 }],
category: "houseware"

},
{ upsert: true }

)

The update operation returns a WriteResult object which contains the status of the operation, including whether
the db.collection.update() method modified an existing document or added a new document.

WriteResult({
"nMatched" : 0,
"nUpserted" : 1,
"nModified" : 0,
"_id" : ObjectId("53dbd684babeaec6342ed6c7")

})

58 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

The nMatched field shows that the operation matched 0 documents.

The nUpserted of 1 shows that the update added a document.

The nModified of 0 specifies that no existing documents were updated.

The _id field shows the generated _id field for the added document.

Step 2: Specify upsert: true for the update specific fields operation.

When you specify upsert: true for an update operation that modifies specific fields and no matching documents
are found, MongoDB creates a new document using the equality conditions in the update conditions document, and
applies the modification as specified in the update document.

The following update operation either updates specific fields of a matching document or adds a new document if no
matching document exists.

db.inventory.update(
{ item: "TBD2" },
{

$set: {
details: { "model" : "14Q3", "manufacturer" : "IJK Co." },
category: "houseware"

}
},
{ upsert: true }

)

The update operation returns a WriteResult object which contains the status of the operation, including whether
the db.collection.update() method modified an existing document or added a new document.

WriteResult({
"nMatched" : 0,
"nUpserted" : 1,
"nModified" : 0,
"_id" : ObjectId("53dbd7c8babeaec6342ed6c8")

})

The nMatched field shows that the operation matched 0 documents.

The nUpserted of 1 shows that the update added a document.

The nModified of 0 specifies that no existing documents were updated.

The information above indicates that the operation has created one new document. The _id field shows the generated
_id field for the added document; you can perform a query to confirm the result:

db.inventory.findOne({ _id: ObjectId("53dbd7c8babeaec6342ed6c8") })

The result matches the document specified in the update():

{
"_id" : ObjectId("56a12ec8242ae5d73c07b15e"),
"item" : "TBD2",
"details" : {

"model" : "14Q3",
"manufacturer" : "IJK Co."

},
"category" : "houseware"

}

3.3. Modify Documents 59

MongoDB CRUD Operations, Release 3.2.3

3.3.4 Additional Examples and Methods

For more examples, see Update examples in the db.collection.update() reference page.

The db.collection.findAndModify() and the db.collection.save() method can also modify exist-
ing documents or insert a new one. See the individual reference pages for the methods for more information and
examples.

3.4 Remove Documents

On this page

• Remove All Documents (page 60)
• Remove Documents that Match a Condition (page 60)
• Remove a Single Document that Matches a Condition (page 60)

In MongoDB, the db.collection.remove() method removes documents from a collection. You can remove
all documents from a collection, remove all documents that match a condition, or limit the operation to remove just a
single document.

This tutorial provides examples of remove operations using the db.collection.remove()method in the mongo
shell.

3.4.1 Remove All Documents

To remove all documents from a collection, pass an empty query document {} to the remove() method. The
remove() method does not remove the indexes.

The following example removes all documents from the inventory collection:

db.inventory.remove({})

To remove all documents from a collection, it may be more efficient to use the drop() method to drop the entire
collection, including the indexes, and then recreate the collection and rebuild the indexes.

3.4.2 Remove Documents that Match a Condition

To remove the documents that match a deletion criteria, call the remove() method with the <query> parameter.

The following example removes all documents from the inventory collection where the type field equals food:

db.inventory.remove({ type : "food" })

For large deletion operations, it may be more efficient to copy the documents that you want to keep to a new collection
and then use drop() on the original collection.

3.4.3 Remove a Single Document that Matches a Condition

To remove a single document, call the remove() method with the justOne parameter set to true or 1.

The following example removes one document from the inventory collection where the type field equals food:

60 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

db.inventory.remove({ type : "food" }, 1)

To delete a single document sorted by some specified order, use the findAndModify() method.

3.5 Limit Fields to Return from a Query

On this page

• Return All Fields in Matching Documents (page 61)
• Return the Specified Fields and the _id Field Only (page 61)
• Return Specified Fields Only (page 62)
• Return All But the Excluded Field (page 62)
• Return Specific Fields in Embedded Documents (page 62)
• Suppress Specific Fields in Embedded Documents (page 62)
• Projection for Array Fields (page 64)

The projection document limits the fields to return for all matching documents. The projection document can specify
the inclusion of fields or the exclusion of fields.

The specifications have the following forms:

Syntax Description
<field>: <1 or true> Specify the inclusion of a field.
<field>: <0 or false> Specify the suppression of the field.

Important: The _id field is, by default, included in the result set. To suppress the _id field from the result set,
specify _id: 0 in the projection document.

You cannot combine inclusion and exclusion semantics in a single projection with the exception of the _id field.

This tutorial offers various query examples that limit the fields to return for all matching documents. The examples in
this tutorial use a collection inventory and use the db.collection.find() method in the mongo shell. The
db.collection.find() method returns a cursor (page 11) to the retrieved documents. For examples on query
selection criteria, see Query Documents (page 49).

3.5.1 Return All Fields in Matching Documents

If you specify no projection, the find() method returns all fields of all documents that match the query.

db.inventory.find({ type: 'food' })

This operation will return all documents in the inventory collection where the value of the type field is ’food’.
The returned documents contain all fields.

3.5.2 Return the Specified Fields and the _id Field Only

A projection can explicitly include several fields. In the following operation, the find() method returns all docu-
ments that match the query. In the result set, only the item and qty fields and, by default, the _id field return in the
matching documents.

db.inventory.find({ type: 'food' }, { item: 1, qty: 1 })

3.5. Limit Fields to Return from a Query 61

MongoDB CRUD Operations, Release 3.2.3

3.5.3 Return Specified Fields Only

You can remove the _id field from the results by specifying its exclusion in the projection, as in the following
example:

db.inventory.find({ type: 'food' }, { item: 1, qty: 1, _id:0 })

This operation returns all documents that match the query. In the result set, only the item and qty fields return in
the matching documents.

3.5.4 Return All But the Excluded Field

To exclude a single field or group of fields you can use a projection in the following form:

db.inventory.find({ type: 'food' }, { type:0 })

This operation returns all documents where the value of the type field is food. In the result set, the type field does
not return in the matching documents.

With the exception of the _id field you cannot combine inclusion and exclusion statements in projection documents.

3.5.5 Return Specific Fields in Embedded Documents

Use the dot notation to return specific fields inside an embedded document. For example, the inventory collection
contains the following document:

{
"_id" : 3,
"type" : "food",
"item" : "aaa",
"classification": { dept: "grocery", category: "chocolate" }

}

The following operation returns all documents that match the query. The specified projection returns only
the category field in the classification document. The returned category field remains inside the
classification document.

db.inventory.find(
{ type: 'food', _id: 3 },
{ "classification.category": 1, _id: 0 }

)

The operation returns the following document:

{ "classification" : { "category" : "chocolate" } }

3.5.6 Suppress Specific Fields in Embedded Documents

Use dot notation to suppress specific fields inside an embedded document using a 0 instead of 1. For example, the
inventory collection contains the following document:

{
"_id" : 3,
"type" : "food",
"item" : "Super Dark Chocolate",
"classification" : { "dept" : "grocery", "category" : "chocolate"},

62 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

"vendor" : {
"primary" : {

"name" : "Marsupial Vending Co",
"address" : "Wallaby Rd",
"delivery" : ["M","W","F"]

},
"secondary":{

"name" : "Intl. Chocolatiers",
"address" : "Cocoa Plaza",
"delivery" : ["Sa"]

}
}

}

The following operation returns all documents where the value of the type field is food and the _id field is 3. The
projection suppresses only the category field in the classification document. The dept field remains inside
the classification document.

db.inventory.find(
{ type: 'food', _id: 3 },
{ "classification.category": 0}

)

The operation returns the following document:

{
"_id" : 3,
"type" : "food",
"item" : "Super Dark Chocolate",
"classification" : { "dept" : "grocery"},
"vendor" : {

"primary" : {
"name" : "Bobs Vending",
"address" : "Wallaby Rd",
"delivery" : ["M","W","F"]

},
"secondary":{

"name" : "Intl. Chocolatiers",
"address" : "Cocoa Plaza",
"delivery" : ["Sa"]

}
}

}

You can suppress nested subdocuments at any depth using dot notation. The following specifies a projection to
suppress the delivery array only for the secondary document.

db.inventory.find(
{ "type" : "food" },
{ "vendor.secondary.delivery" : 0 }

)

This returns all documents except the delivery array in the secondary document

{
"_id" : 3,
"type" : "food",
"item" : "Super Dark Chocolate",
"classification" : { "dept" : "grocery", "category" : "chocolate"},

3.5. Limit Fields to Return from a Query 63

MongoDB CRUD Operations, Release 3.2.3

"vendor" : {
"primary" : {

"name" : "Bobs Vending",
"address" : "Wallaby Rd",
"delivery" : ["M","W","F"]

},
"secondary":{

"name" : "Intl. Chocolatiers",
"address" : "Cocoa Plaza"

}
}

}

3.5.7 Projection for Array Fields

For fields that contain arrays, MongoDB provides the following projection operators: $elemMatch, $slice, and
$.

For example, the inventory collection contains the following document:

{ "_id" : 5, "type" : "food", "item" : "aaa", "ratings" : [5, 8, 9] }

Then the following operation uses the $slice projection operator to return just the first two elements in the ratings
array.

db.inventory.find({ _id: 5 }, { ratings: { $slice: 2 } })

$elemMatch, $slice, and $ are the only way to project portions of an array. For instance, you cannot project a
portion of an array using the array index; e.g. { "ratings.0": 1 } projection will not project the array with
the first element.

See also:

Query Documents (page 49)

3.6 Limit Number of Elements in an Array after an Update

On this page

• Synopsis (page 64)
• Pattern (page 65)

New in version 2.4.

3.6.1 Synopsis

Consider an application where users may submit many scores (e.g. for a test), but the application only needs to track
the top three test scores.

This pattern uses the $push operator with the $each, $sort, and $slice modifiers to sort and maintain an array
of fixed size.

64 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

3.6.2 Pattern

Consider the following document in the collection students:

{
_id: 1,
scores: [
{ attempt: 1, score: 10 },
{ attempt: 2 , score:8 }

]
}

The following update uses the $push operator with:

• the $each modifier to append to the array 2 new elements,

• the $sort modifier to order the elements by ascending (1) score, and

• the $slice modifier to keep the last 3 elements of the ordered array.

db.students.update(
{ _id: 1 },
{

$push: {
scores: {

$each: [{ attempt: 3, score: 7 }, { attempt: 4, score: 4 }],
$sort: { score: 1 },
$slice: -3

}
}

}
)

Note: When using the $sort modifier on the array element, access the field in the embedded document element
directly instead of using the dot notation on the array field.

After the operation, the document contains only the top 3 scores in the scores array:

{
"_id" : 1,
"scores" : [

{ "attempt" : 3, "score" : 7 },
{ "attempt" : 2, "score" : 8 },
{ "attempt" : 1, "score" : 10 }

]
}

See also:

• $push operator,

• $each modifier,

• $sort modifier, and

• $slice modifier.

3.7 Iterate a Cursor in the mongo Shell

3.7. Iterate a Cursor in the mongo Shell 65

MongoDB CRUD Operations, Release 3.2.3

On this page

• Manually Iterate the Cursor (page 66)
• Iterator Index (page 66)

The db.collection.find() method returns a cursor. To access the documents, you need to iterate the cursor.
However, in the mongo shell, if the returned cursor is not assigned to a variable using the var keyword, then the
cursor is automatically iterated up to 20 times to print up to the first 20 documents in the results. The following
describes ways to manually iterate the cursor to access the documents or to use the iterator index.

3.7.1 Manually Iterate the Cursor

In the mongo shell, when you assign the cursor returned from the find() method to a variable using the var
keyword, the cursor does not automatically iterate.

You can call the cursor variable in the shell to iterate up to 20 times 6 and print the matching documents, as in the
following example:

var myCursor = db.inventory.find({ type: 'food' });

myCursor

You can also use the cursor method next() to access the documents, as in the following example:

var myCursor = db.inventory.find({ type: 'food' });

while (myCursor.hasNext()) {
print(tojson(myCursor.next()));

}

As an alternative print operation, consider the printjson() helper method to replace print(tojson()):

var myCursor = db.inventory.find({ type: 'food' });

while (myCursor.hasNext()) {
printjson(myCursor.next());

}

You can use the cursor method forEach() to iterate the cursor and access the documents, as in the following
example:

var myCursor = db.inventory.find({ type: 'food' });

myCursor.forEach(printjson);

See JavaScript cursor methods and your driver documentation for more information on cursor methods.

3.7.2 Iterator Index

In the mongo shell, you can use the toArray() method to iterate the cursor and return the documents in an array,
as in the following:

6 You can use the DBQuery.shellBatchSize to change the number of iteration from the default value 20. See mongo-shell-executing-
queries for more information.

66 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

var myCursor = db.inventory.find({ type: 'food' });
var documentArray = myCursor.toArray();
var myDocument = documentArray[3];

The toArray() method loads into RAM all documents returned by the cursor; the toArray() method exhausts
the cursor.

Additionally, some drivers provide access to the documents by using an index on the cursor (i.e.
cursor[index]). This is a shortcut for first calling the toArray() method and then using an index on the
resulting array.

Consider the following example:

var myCursor = db.inventory.find({ type: 'food' });
var myDocument = myCursor[3];

The myCursor[3] is equivalent to the following example:

myCursor.toArray() [3];

3.8 Analyze Query Performance

On this page

• Evaluate the Performance of a Query (page 67)
• Compare Performance of Indexes (page 69)
• Additional Resources (page 71)

The cursor.explain("executionStats") and the db.collection.explain("executionStats")
methods provide statistics about the performance of a query. This data output can be useful in measuring if and how a
query uses an index.

db.collection.explain() provides information on the execution of other operations, such as
db.collection.update(). See db.collection.explain() for details.

3.8.1 Evaluate the Performance of a Query

Consider a collection inventory with the following documents:

{ "_id" : 1, "item" : "f1", type: "food", quantity: 500 }
{ "_id" : 2, "item" : "f2", type: "food", quantity: 100 }
{ "_id" : 3, "item" : "p1", type: "paper", quantity: 200 }
{ "_id" : 4, "item" : "p2", type: "paper", quantity: 150 }
{ "_id" : 5, "item" : "f3", type: "food", quantity: 300 }
{ "_id" : 6, "item" : "t1", type: "toys", quantity: 500 }
{ "_id" : 7, "item" : "a1", type: "apparel", quantity: 250 }
{ "_id" : 8, "item" : "a2", type: "apparel", quantity: 400 }
{ "_id" : 9, "item" : "t2", type: "toys", quantity: 50 }
{ "_id" : 10, "item" : "f4", type: "food", quantity: 75 }

Query with No Index

The following query retrieves documents where the quantity field has a value between 100 and 200, inclusive:

3.8. Analyze Query Performance 67

MongoDB CRUD Operations, Release 3.2.3

db.inventory.find({ quantity: { $gte: 100, $lte: 200 } })

The query returns the following documents:

{ "_id" : 2, "item" : "f2", "type" : "food", "quantity" : 100 }
{ "_id" : 3, "item" : "p1", "type" : "paper", "quantity" : 200 }
{ "_id" : 4, "item" : "p2", "type" : "paper", "quantity" : 150 }

To view the query plan selected, use the explain("executionStats") method:

db.inventory.find(
{ quantity: { $gte: 100, $lte: 200 } }

).explain("executionStats")

explain() returns the following results:

{
"queryPlanner" : {

"plannerVersion" : 1,
...
"winningPlan" : {

"stage" : "COLLSCAN",
...

}
},
"executionStats" : {

"executionSuccess" : true,
"nReturned" : 3,
"executionTimeMillis" : 0,
"totalKeysExamined" : 0,
"totalDocsExamined" : 10,
"executionStages" : {

"stage" : "COLLSCAN",
...

},
...

},
...

}

• queryPlanner.winningPlan.stage displays COLLSCAN to indicate a collection scan.

• executionStats.nReturned displays 3 to indicate that the query matches and returns three documents.

• executionStats.totalDocsExamined display 10 to indicate that MongoDB had to scan ten docu-
ments (i.e. all documents in the collection) to find the three matching documents.

The difference between the number of matching documents and the number of examined documents may suggest that,
to improve efficiency, the query might benefit from the use of an index.

Query with Index

To support the query on the quantity field, add an index on the quantity field:

db.inventory.createIndex({ quantity: 1 })

To view the query plan statistics, use the explain("executionStats") method:

68 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

db.inventory.find(
{ quantity: { $gte: 100, $lte: 200 } }

).explain("executionStats")

The explain() method returns the following results:

{
"queryPlanner" : {

"plannerVersion" : 1,
...
"winningPlan" : {

"stage" : "FETCH",
"inputStage" : {

"stage" : "IXSCAN",
"keyPattern" : {

"quantity" : 1
},
...

}
},
"rejectedPlans" : []

},
"executionStats" : {

"executionSuccess" : true,
"nReturned" : 3,
"executionTimeMillis" : 0,
"totalKeysExamined" : 3,
"totalDocsExamined" : 3,
"executionStages" : {

...
},
...

},
...

}

• queryPlanner.winningPlan.inputStage.stage displays IXSCAN to indicate index use.

• executionStats.nReturned displays 3 to indicate that the query matches and returns three documents.

• executionStats.totalKeysExamined display 3 to indicate that MongoDB scanned three index en-
tries.

• executionStats.totalDocsExamined display 3 to indicate that MongoDB scanned three documents.

When run with an index, the query scanned 3 index entries and 3 documents to return 3 matching documents. Without
the index, to return the 3 matching documents, the query had to scan the whole collection, scanning 10 documents.

3.8.2 Compare Performance of Indexes

To manually compare the performance of a query using more than one index, you can use the hint() method in
conjunction with the explain() method.

Consider the following query:

db.inventory.find({ quantity: { $gte: 100, $lte: 300 }, type: "food" })

The query returns the following documents:

3.8. Analyze Query Performance 69

MongoDB CRUD Operations, Release 3.2.3

{ "_id" : 2, "item" : "f2", "type" : "food", "quantity" : 100 }
{ "_id" : 5, "item" : "f3", "type" : "food", "quantity" : 300 }

To support the query, add a compound index. With compound indexes, the order of the fields matter.

For example, add the following two compound indexes. The first index orders by quantity field first, and then the
type field. The second index orders by type first, and then the quantity field.

db.inventory.createIndex({ quantity: 1, type: 1 })
db.inventory.createIndex({ type: 1, quantity: 1 })

Evaluate the effect of the first index on the query:

db.inventory.find(
{ quantity: { $gte: 100, $lte: 300 }, type: "food" }

).hint({ quantity: 1, type: 1 }).explain("executionStats")

The explain() method returns the following output:

{
"queryPlanner" : {

...
"winningPlan" : {

"stage" : "FETCH",
"inputStage" : {

"stage" : "IXSCAN",
"keyPattern" : {

"quantity" : 1,
"type" : 1

},
...
}

}
},
"rejectedPlans" : []

},
"executionStats" : {

"executionSuccess" : true,
"nReturned" : 2,
"executionTimeMillis" : 0,
"totalKeysExamined" : 5,
"totalDocsExamined" : 2,
"executionStages" : {
...
}

},
...

}

MongoDB scanned 5 index keys (executionStats.totalKeysExamined) to return 2 matching documents
(executionStats.nReturned).

Evaluate the effect of the second index on the query:

db.inventory.find(
{ quantity: { $gte: 100, $lte: 300 }, type: "food" }

).hint({ type: 1, quantity: 1 }).explain("executionStats")

The explain() method returns the following output:

70 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

{
"queryPlanner" : {

...
"winningPlan" : {

"stage" : "FETCH",
"inputStage" : {

"stage" : "IXSCAN",
"keyPattern" : {

"type" : 1,
"quantity" : 1

},
...

}
},
"rejectedPlans" : []

},
"executionStats" : {

"executionSuccess" : true,
"nReturned" : 2,
"executionTimeMillis" : 0,
"totalKeysExamined" : 2,
"totalDocsExamined" : 2,
"executionStages" : {

...
}

},
...

}

MongoDB scanned 2 index keys (executionStats.totalKeysExamined) to return 2 matching documents
(executionStats.nReturned).

For this example query, the compound index { type: 1, quantity: 1 } is more efficient than the com-
pound index { quantity: 1, type: 1 }.

See also:

Query Optimization (page 13), Query Plans (page 15), https://docs.mongodb.org/manual/tutorial/optimize-query-performance-with-indexes-and-projections,
https://docs.mongodb.org/manual/applications/indexes

3.8.3 Additional Resources

• MongoDB Performance Evaluation and Tuning Consulting Package7

3.9 Perform Two Phase Commits

7https://www.mongodb.com/products/consulting?jmp=docs#performance_evaluation

3.9. Perform Two Phase Commits 71

https://www.mongodb.com/products/consulting?jmp=docs#performance_evaluation

MongoDB CRUD Operations, Release 3.2.3

On this page

• Synopsis (page 72)
• Background (page 72)
• Pattern (page 72)
• Recovering from Failure Scenarios (page 75)
• Multiple Applications (page 78)
• Using Two-Phase Commits in Production Applications (page 78)

3.9.1 Synopsis

This document provides a pattern for doing multi-document updates or “multi-document transactions” using a two-
phase commit approach for writing data to multiple documents. Additionally, you can extend this process to provide
a rollback-like (page 76) functionality.

3.9.2 Background

Operations on a single document are always atomic with MongoDB databases; however, operations that involve multi-
ple documents, which are often referred to as “multi-document transactions”, are not atomic. Since documents can be
fairly complex and contain multiple “nested” documents, single-document atomicity provides the necessary support
for many practical use cases.

Despite the power of single-document atomic operations, there are cases that require multi-document transactions.
When executing a transaction composed of sequential operations, certain issues arise, such as:

• Atomicity: if one operation fails, the previous operation within the transaction must “rollback” to the previous
state (i.e. the “nothing,” in “all or nothing”).

• Consistency: if a major failure (i.e. network, hardware) interrupts the transaction, the database must be able to
recover a consistent state.

For situations that require multi-document transactions, you can implement two-phase commit in your application to
provide support for these kinds of multi-document updates. Using two-phase commit ensures that data is consistent
and, in case of an error, the state that preceded the transaction is recoverable (page 76). During the procedure, however,
documents can represent pending data and states.

Note: Because only single-document operations are atomic with MongoDB, two-phase commits can only offer
transaction-like semantics. It is possible for applications to return intermediate data at intermediate points during the
two-phase commit or rollback.

3.9.3 Pattern

Overview

Consider a scenario where you want to transfer funds from account A to account B. In a relational database system,
you can subtract the funds from A and add the funds to B in a single multi-statement transaction. In MongoDB, you
can emulate a two-phase commit to achieve a comparable result.

The examples in this tutorial use the following two collections:

1. A collection named accounts to store account information.

2. A collection named transactions to store information on the fund transfer transactions.

72 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

Initialize Source and Destination Accounts

Insert into the accounts collection a document for account A and a document for account B.

db.accounts.insert(
[

{ _id: "A", balance: 1000, pendingTransactions: [] },
{ _id: "B", balance: 1000, pendingTransactions: [] }

]
)

The operation returns a BulkWriteResult() object with the status of the operation. Upon successful insert, the
BulkWriteResult() has nInserted set to 2 .

Initialize Transfer Record

For each fund transfer to perform, insert into the transactions collection a document with the transfer information.
The document contains the following fields:

• source and destination fields, which refer to the _id fields from the accounts collection,

• value field, which specifies the amount of transfer affecting the balance of the source and
destination accounts,

• state field, which reflects the current state of the transfer. The state field can have the value of initial,
pending, applied, done, canceling, and canceled.

• lastModified field, which reflects last modification date.

To initialize the transfer of 100 from account A to account B, insert into the transactions collection a document
with the transfer information, the transaction state of "initial", and the lastModified field set to the current
date:

db.transactions.insert(
{ _id: 1, source: "A", destination: "B", value: 100, state: "initial", lastModified: new Date() }

)

The operation returns a WriteResult() object with the status of the operation. Upon successful insert, the
WriteResult() object has nInserted set to 1.

Transfer Funds Between Accounts Using Two-Phase Commit

Step 1: Retrieve the transaction to start.

From the transactions collection, find a transaction in the initial state. Currently the transactions
collection has only one document, namely the one added in the Initialize Transfer Record (page 73) step. If the
collection contains additional documents, the query will return any transaction with an initial state unless you
specify additional query conditions.

var t = db.transactions.findOne({ state: "initial" })

Type the variable t in the mongo shell to print the contents of the variable. The operation should print a document
similar to the following except the lastModified field should reflect date of your insert operation:

{ "_id" : 1, "source" : "A", "destination" : "B", "value" : 100, "state" : "initial", "lastModified" : ISODate("2014-07-11T20:39:26.345Z") }

3.9. Perform Two Phase Commits 73

MongoDB CRUD Operations, Release 3.2.3

Step 2: Update transaction state to pending.

Set the transaction state from initial to pending and use the $currentDate operator to set the
lastModified field to the current date.

db.transactions.update(
{ _id: t._id, state: "initial" },
{

$set: { state: "pending" },
$currentDate: { lastModified: true }

}
)

The operation returns a WriteResult() object with the status of the operation. Upon successful update, the
nMatched and nModified displays 1.

In the update statement, the state: "initial" condition ensures that no other process has already updated this
record. If nMatched and nModified is 0, go back to the first step to get a different transaction and restart the
procedure.

Step 3: Apply the transaction to both accounts.

Apply the transaction t to both accounts using the update() method if the transaction has not been applied to the
accounts. In the update condition, include the condition pendingTransactions: { $ne: t._id } in
order to avoid re-applying the transaction if the step is run more than once.

To apply the transaction to the account, update both the balance field and the pendingTransactions field.

Update the source account, subtracting from its balance the transaction value and adding to its
pendingTransactions array the transaction _id.

db.accounts.update(
{ _id: t.source, pendingTransactions: { $ne: t._id } },
{ $inc: { balance: -t.value }, $push: { pendingTransactions: t._id } }

)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to 1.

Update the destination account, adding to its balance the transaction value and adding to its
pendingTransactions array the transaction _id .

db.accounts.update(
{ _id: t.destination, pendingTransactions: { $ne: t._id } },
{ $inc: { balance: t.value }, $push: { pendingTransactions: t._id } }

)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to 1.

Step 4: Update transaction state to applied.

Use the following update() operation to set the transaction’s state to applied and update the lastModified
field:

db.transactions.update(
{ _id: t._id, state: "pending" },
{

$set: { state: "applied" },

74 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

$currentDate: { lastModified: true }
}

)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to 1.

Step 5: Update both accounts’ list of pending transactions.

Remove the applied transaction _id from the pendingTransactions array for both accounts.

Update the source account.

db.accounts.update(
{ _id: t.source, pendingTransactions: t._id },
{ $pull: { pendingTransactions: t._id } }

)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to 1.

Update the destination account.

db.accounts.update(
{ _id: t.destination, pendingTransactions: t._id },
{ $pull: { pendingTransactions: t._id } }

)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to 1.

Step 6: Update transaction state to done.

Complete the transaction by setting the state of the transaction to done and updating the lastModified field:

db.transactions.update(
{ _id: t._id, state: "applied" },
{

$set: { state: "done" },
$currentDate: { lastModified: true }

}
)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to 1.

3.9.4 Recovering from Failure Scenarios

The most important part of the transaction procedure is not the prototypical example above, but rather the possibility
for recovering from the various failure scenarios when transactions do not complete successfully. This section presents
an overview of possible failures and provides steps to recover from these kinds of events.

Recovery Operations

The two-phase commit pattern allows applications running the sequence to resume the transaction and arrive at a
consistent state. Run the recovery operations at application startup, and possibly at regular intervals, to catch any
unfinished transactions.

The time required to reach a consistent state depends on how long the application needs to recover each transaction.

3.9. Perform Two Phase Commits 75

MongoDB CRUD Operations, Release 3.2.3

The following recovery procedures uses the lastModified date as an indicator of whether the pending transaction
requires recovery; specifically, if the pending or applied transaction has not been updated in the last 30 minutes,
the procedures determine that these transactions require recovery. You can use different conditions to make this
determination.

Transactions in Pending State

To recover from failures that occur after step “Update transaction state to pending. (page ??)” but before “Update
transaction state to applied. (page ??)” step, retrieve from the transactions collection a pending transaction for
recovery:

var dateThreshold = new Date();
dateThreshold.setMinutes(dateThreshold.getMinutes() - 30);

var t = db.transactions.findOne({ state: "pending", lastModified: { $lt: dateThreshold } });

And resume from step “Apply the transaction to both accounts. (page ??)“

Transactions in Applied State

To recover from failures that occur after step “Update transaction state to applied. (page ??)” but before “Update
transaction state to done. (page ??)” step, retrieve from the transactions collection an applied transaction for
recovery:

var dateThreshold = new Date();
dateThreshold.setMinutes(dateThreshold.getMinutes() - 30);

var t = db.transactions.findOne({ state: "applied", lastModified: { $lt: dateThreshold } });

And resume from “Update both accounts’ list of pending transactions. (page ??)“

Rollback Operations

In some cases, you may need to “roll back” or undo a transaction; e.g., if the application needs to “cancel” the
transaction or if one of the accounts does not exist or stops existing during the transaction.

Transactions in Applied State

After the “Update transaction state to applied. (page ??)” step, you should not roll back the transaction. Instead,
complete that transaction and create a new transaction (page 73) to reverse the transaction by switching the values in
the source and the destination fields.

Transactions in Pending State

After the “Update transaction state to pending. (page ??)” step, but before the “Update transaction state to applied.
(page ??)” step, you can rollback the transaction using the following procedure:

Step 1: Update transaction state to canceling.

Update the transaction state from pending to canceling.

76 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

db.transactions.update(
{ _id: t._id, state: "pending" },
{

$set: { state: "canceling" },
$currentDate: { lastModified: true }

}
)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to 1.

Step 2: Undo the transaction on both accounts.

To undo the transaction on both accounts, reverse the transaction t if the transaction has been applied. In the update
condition, include the condition pendingTransactions: t._id in order to update the account only if the
pending transaction has been applied.

Update the destination account, subtracting from its balance the transaction value and removing the transaction
_id from the pendingTransactions array.

db.accounts.update(
{ _id: t.destination, pendingTransactions: t._id },
{

$inc: { balance: -t.value },
$pull: { pendingTransactions: t._id }

}
)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to
1. If the pending transaction has not been previously applied to this account, no document will match the update
condition and nMatched and nModified will be 0.

Update the source account, adding to its balance the transaction value and removing the transaction _id from
the pendingTransactions array.

db.accounts.update(
{ _id: t.source, pendingTransactions: t._id },
{

$inc: { balance: t.value},
$pull: { pendingTransactions: t._id }

}
)

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to
1. If the pending transaction has not been previously applied to this account, no document will match the update
condition and nMatched and nModified will be 0.

Step 3: Update transaction state to canceled.

To finish the rollback, update the transaction state from canceling to cancelled.

db.transactions.update(
{ _id: t._id, state: "canceling" },
{

$set: { state: "cancelled" },
$currentDate: { lastModified: true }

}
)

3.9. Perform Two Phase Commits 77

MongoDB CRUD Operations, Release 3.2.3

Upon successful update, the method returns a WriteResult() object with nMatched and nModified set to 1.

3.9.5 Multiple Applications

Transactions exist, in part, so that multiple applications can create and run operations concurrently without causing
data inconsistency or conflicts. In our procedure, to update or retrieve the transaction document, the update conditions
include a condition on the state field to prevent reapplication of the transaction by multiple applications.

For example, applications App1 and App2 both grab the same transaction, which is in the initial state. App1
applies the whole transaction before App2 starts. When App2 attempts to perform the “Update transaction state to
pending. (page ??)” step, the update condition, which includes the state: "initial" criterion, will not match
any document, and the nMatched and nModified will be 0. This should signal to App2 to go back to the first step
to restart the procedure with a different transaction.

When multiple applications are running, it is crucial that only one application can handle a given transaction at any
point in time. As such, in addition including the expected state of the transaction in the update condition, you can
also create a marker in the transaction document itself to identify the application that is handling the transaction. Use
findAndModify() method to modify the transaction and get it back in one step:

t = db.transactions.findAndModify(
{
query: { state: "initial", application: { $exists: false } },
update:
{
$set: { state: "pending", application: "App1" },
$currentDate: { lastModified: true }

},
new: true

}
)

Amend the transaction operations to ensure that only applications that match the identifier in the application field
apply the transaction.

If the application App1 fails during transaction execution, you can use the recovery procedures (page 75), but appli-
cations should ensure that they “own” the transaction before applying the transaction. For example to find and resume
the pending job, use a query that resembles the following:

var dateThreshold = new Date();
dateThreshold.setMinutes(dateThreshold.getMinutes() - 30);

db.transactions.find(
{

application: "App1",
state: "pending",
lastModified: { $lt: dateThreshold }

}
)

3.9.6 Using Two-Phase Commits in Production Applications

The example transaction above is intentionally simple. For example, it assumes that it is always possible to roll back
operations to an account and that account balances can hold negative values.

Production implementations would likely be more complex. Typically, accounts need information about current bal-
ance, pending credits, and pending debits.

78 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

For all transactions, ensure that you use the appropriate level of write concern (page 88) for your deployment.

3.10 Update Document if Current

On this page

• Overview (page 79)
• Pattern (page 79)
• Example (page 79)
• Modifications to the Pattern (page 80)

3.10.1 Overview

The Update if Current pattern is an approach to concurrency control (page 34) when multiple applications have access
to the data.

3.10.2 Pattern

The pattern queries for the document to update. Then, for each field to modify, the pattern includes the field and its
value in the returned document in the query predicate for the update operation. This way, the update only modifies the
document fields if the fields have not changed since the query.

3.10.3 Example

Consider the following example in the mongo shell. The example updates the quantity and the reordered fields
of a document only if the fields have not changed since the query.

Changed in version 2.6: The db.collection.update() method now returns a WriteResult() object that
contains the status of the operation. Previous versions required an extra db.getLastErrorObj() method call.

var myDocument = db.products.findOne({ sku: "abc123" });

if (myDocument) {
var oldQuantity = myDocument.quantity;
var oldReordered = myDocument.reordered;

var results = db.products.update(
{

_id: myDocument._id,
quantity: oldQuantity,
reordered: oldReordered

},
{

$inc: { quantity: 50 },
$set: { reordered: true }

}
)

if (results.hasWriteError()) {
print("unexpected error updating document: " + tojson(results));

}

3.10. Update Document if Current 79

MongoDB CRUD Operations, Release 3.2.3

else if (results.nMatched === 0) {
print("No matching document for " +

"{ _id: "+ myDocument._id.toString() +
", quantity: " + oldQuantity +
", reordered: " + oldReordered
+ " } "

);
}

}

3.10.4 Modifications to the Pattern

Another approach is to add a version field to the documents. Applications increment this field upon each update
operation to the documents. You must be able to ensure that all clients that connect to your database include the
version field in the query predicate. To associate increasing numbers with documents in a collection, you can use
one of the methods described in Create an Auto-Incrementing Sequence Field (page 81).

For more approaches, see Concurrency Control (page 34).

3.11 Create Tailable Cursor

On this page

• Overview (page 80)

3.11.1 Overview

By default, MongoDB will automatically close a cursor when the client has exhausted all results in the cursor. How-
ever, for capped collections you may use a Tailable Cursor that remains open after the client exhausts the
results in the initial cursor. Tailable cursors are conceptually equivalent to the tail Unix command with the -f
option (i.e. with “follow” mode). After clients insert new additional documents into a capped collection, the tailable
cursor will continue to retrieve documents.

Use tailable cursors on capped collections that have high write volumes where indexes aren’t practical. For instance,
MongoDB replication uses tailable cursors to tail the primary’s oplog.

Note: If your query is on an indexed field, do not use tailable cursors, but instead, use a regular cursor. Keep track of
the last value of the indexed field returned by the query. To retrieve the newly added documents, query the collection
again using the last value of the indexed field in the query criteria, as in the following example:

db.<collection>.find({ indexedField: { $gt: <lastvalue> } })

Consider the following behaviors related to tailable cursors:

• Tailable cursors do not use indexes and return documents in natural order.

• Because tailable cursors do not use indexes, the initial scan for the query may be expensive; but, after initially
exhausting the cursor, subsequent retrievals of the newly added documents are inexpensive.

• Tailable cursors may become dead, or invalid, if either:

– the query returns no match.

80 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

– the cursor returns the document at the “end” of the collection and then the application deletes that docu-
ment.

A dead cursor has an id of 0.

See your driver documentation for the driver-specific method to specify the tailable cursor.

3.12 Create an Auto-Incrementing Sequence Field

On this page

• Synopsis (page 81)
• Considerations (page 81)
• Procedures (page 81)

3.12.1 Synopsis

MongoDB reserves the _id field in the top level of all documents as a primary key. _id must be unique, and always
has an index with a unique constraint. However, except for the unique constraint you can use any value for the _id
field in your collections. This tutorial describes two methods for creating an incrementing sequence number for the
_id field using the following:

• Use Counters Collection (page 81)

• Optimistic Loop (page 83)

3.12.2 Considerations

Generally in MongoDB, you would not use an auto-increment pattern for the _id field, or any field, because it does
not scale for databases with large numbers of documents. Typically the default value ObjectId is more ideal for the
_id.

3.12.3 Procedures

Use Counters Collection

Counter Collection Implementation

Use a separate counters collection to track the last number sequence used. The _id field contains the sequence
name and the seq field contains the last value of the sequence.

1. Insert into the counters collection, the initial value for the userid:

db.counters.insert(
{

_id: "userid",
seq: 0

}
)

3.12. Create an Auto-Incrementing Sequence Field 81

MongoDB CRUD Operations, Release 3.2.3

2. Create a getNextSequence function that accepts a name of the sequence. The function uses the
findAndModify() method to atomically increment the seq value and return this new value:

function getNextSequence(name) {
var ret = db.counters.findAndModify(

{
query: { _id: name },
update: { $inc: { seq: 1 } },
new: true

}
);

return ret.seq;
}

3. Use this getNextSequence() function during insert().

db.users.insert(
{

_id: getNextSequence("userid"),
name: "Sarah C."

}
)

db.users.insert(
{

_id: getNextSequence("userid"),
name: "Bob D."

}
)

You can verify the results with find():

db.users.find()

The _id fields contain incrementing sequence values:

{
_id : 1,
name : "Sarah C."

}
{
_id : 2,
name : "Bob D."

}

findAndModify Behavior

When findAndModify() includes the upsert: true option and the query field(s) is not uniquely indexed,
the method could insert a document multiple times in certain circumstances. For instance, if multiple clients each
invoke the method with the same query condition and these methods complete the find phase before any of methods
perform the modify phase, these methods could insert the same document.

In the counters collection example, the query field is the _id field, which always has a unique index. Consider
that the findAndModify() includes the upsert: true option, as in the following modified example:

function getNextSequence(name) {
var ret = db.counters.findAndModify(

82 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

{
query: { _id: name },
update: { $inc: { seq: 1 } },
new: true,
upsert: true

}
);

return ret.seq;
}

If multiple clients were to invoke the getNextSequence() method with the same name parameter, then the
methods would observe one of the following behaviors:

• Exactly one findAndModify() would successfully insert a new document.

• Zero or more findAndModify() methods would update the newly inserted document.

• Zero or more findAndModify() methods would fail when they attempted to insert a duplicate.

If the method fails due to a unique index constraint violation, retry the method. Absent a delete of the document, the
retry should not fail.

Optimistic Loop

In this pattern, an Optimistic Loop calculates the incremented _id value and attempts to insert a document with the
calculated _id value. If the insert is successful, the loop ends. Otherwise, the loop will iterate through possible _id
values until the insert is successful.

1. Create a function named insertDocument that performs the “insert if not present” loop. The function wraps
the insert() method and takes a doc and a targetCollection arguments.

Changed in version 2.6: The db.collection.insert() method now returns a writeresults-insert object
that contains the status of the operation. Previous versions required an extra db.getLastErrorObj()
method call.

function insertDocument(doc, targetCollection) {

while (1) {

var cursor = targetCollection.find({}, { _id: 1 }).sort({ _id: -1 }).limit(1);

var seq = cursor.hasNext() ? cursor.next()._id + 1 : 1;

doc._id = seq;

var results = targetCollection.insert(doc);

if(results.hasWriteError()) {
if(results.writeError.code == 11000 /* dup key */)

continue;
else

print("unexpected error inserting data: " + tojson(results));
}

break;
}

}

3.12. Create an Auto-Incrementing Sequence Field 83

MongoDB CRUD Operations, Release 3.2.3

The while (1) loop performs the following actions:

• Queries the targetCollection for the document with the maximum _id value.

• Determines the next sequence value for _id by:

– adding 1 to the returned _id value if the returned cursor points to a document.

– otherwise: it sets the next sequence value to 1 if the returned cursor points to no document.

• For the doc to insert, set its _id field to the calculated sequence value seq.

• Insert the doc into the targetCollection.

• If the insert operation errors with duplicate key, repeat the loop. Otherwise, if the insert operation encoun-
ters some other error or if the operation succeeds, break out of the loop.

2. Use the insertDocument() function to perform an insert:

var myCollection = db.users2;

insertDocument(
{

name: "Grace H."
},
myCollection

);

insertDocument(
{

name: "Ted R."
},
myCollection

)

You can verify the results with find():

db.users2.find()

The _id fields contain incrementing sequence values:

{
_id: 1,
name: "Grace H."

}
{
_id : 2,
"name" : "Ted R."

}

The while loop may iterate many times in collections with larger insert volumes.

3.13 Perform Quorum Reads on Replica Sets

New in version 3.2.

84 Chapter 3. MongoDB CRUD Tutorials

MongoDB CRUD Operations, Release 3.2.3

3.13.1 Overview

When reading from the primary of a replica set, it is possible to read data that is stale or not durable, depending
on the read concern used 8. With a read concern level of "local" (page 91), a client can read data before it is
durable; that is, before they have propagated to enough replica set members to avoid a rollback. A read concern level
of "majority" (page 91) guarantees durable reads but may return stale data that has been overwritten by another
write operation.

This tutorial outlines a procedure that uses db.collection.findAndModify() to read data that is not stale and
cannot be rolled back. To do so, the procedure uses the findAndModify() method with a write concern (page 88)
to modify a dummy field in a document. Specifically, the procedure requires that:

• db.collection.findAndModify() use an exact match query, and a unique index must exist to
satisfy the query.

• findAndModify() must actually modify a document; i.e. result in a change to the document.

• findAndModify() must use the write concern { w: "majority" } (page 89).

Important: The “quorum read” procedure has a substantial cost over simply using a read concern of "majority"
(page 91) because it incurs write latency rather than read latency. This technique should only be used if staleness is
absolutely intolerable.

3.13.2 Prerequisites

This tutorial reads from a collection named products. Initialize the collection using the following operation.

db.products.insert([
{

_id: 1,
sku: "xyz123",
description: "hats",
available: [{ quantity: 25, size: "S" }, { quantity: 50, size: "M" }],
_dummy_field: 0

},
{

_id: 2,
sku: "abc123",
description: "socks",
available: [{ quantity: 10, size: "L" }],
_dummy_field: 0

},
{

_id: 3,
sku: "ijk123",
description: "t-shirts",
available: [{ quantity: 30, size: "M" }, { quantity: 5, size: "L" }],
_dummy_field: 0

}
])

8 In some circumstances, two nodes in a replica set may transiently believe that they are the primary, but at most, one of them will be able to
complete writes with { w: "majority" } (page 89) write concern. The node that can complete { w: "majority" } (page 89) writes
is the current primary, and the other node is a former primary that has not yet recognized its demotion, typically due to a network partition. When
this occurs, clients that connect to the former primary may observe stale data despite having requested read preference primary, and new writes
to the former primary will eventually roll back.

3.13. Perform Quorum Reads on Replica Sets 85

MongoDB CRUD Operations, Release 3.2.3

The documents in this collection contain a dummy field named _dummy_field that will be incre-
mented by the db.collection.findAndModify() in the tutorial. If the field does not exist, the
db.collection.findAndModify() operation will add the field to the document. The purpose of the field
is to ensure that the db.collection.findAndModify() results in a modification to the document.

3.13.3 Procedure

Step 1: Create a unique index.

Create a unique index on the fields that will be used to specify an exact match in the
db.collection.findAndModify() operation.

This tutorial will use an exact match on the sku field. As such, create a unique index on the sku field.

db.products.createIndex({ sku: 1 }, { unique: true })

Step 2: Use findAndModify to read committed data.

Use the db.collection.findAndModify() method to make a trivial update to the document you want to read
and return the modified document. A write concern of { w: "majority" } (page 89) is required. To specify
the document to read, you must use an exact match query that is supported by a unique index.

The following findAndModify() operation specifies an exact match on the uniquely indexed field sku and in-
crements the field named _dummy_field in the matching document. While not necessary, the write concern for
this command also includes a wtimeout (page 90) value of 5000 milliseconds to prevent the operation from blocking
forever if the write cannot propagate to a majority of voting members.

var updatedDocument = db.products.findAndModify(
{

query: { sku: "abc123" },
update: { $inc: { _dummy_field: 1 } },
new: true,
writeConcern: { w: "majority", wtimeout: 5000 }

},
);

Even in situations where two nodes in the replica set believe that they are the primary, only one will be able to com-
plete the write with w: "majority" (page 89). As such, the findAndModify() method with "majority"
(page 89) write concern will be successful only when the client has connected to the true primary to perform the
operation.

Since the quorum read procedure only increments a dummy field in the document, you can safely repeat invocations
of findAndModify(), adjusting the wtimeout (page 90) as necessary.

86 Chapter 3. MongoDB CRUD Tutorials

CHAPTER 4

MongoDB CRUD Reference

On this page

• Query Cursor Methods (page 87)
• Query and Data Manipulation Collection Methods (page 87)
• MongoDB CRUD Reference Documentation (page 88)

4.1 Query Cursor Methods

Name Description
cursor.count() Modifies the cursor to return the number of documents in the result set rather than the

documents themselves.
cursor.explain()Reports on the query execution plan for a cursor.
cursor.hint() Forces MongoDB to use a specific index for a query.
cursor.limit() Constrains the size of a cursor’s result set.
cursor.next() Returns the next document in a cursor.
cursor.skip() Returns a cursor that begins returning results only after passing or skipping a number of

documents.
cursor.sort() Returns results ordered according to a sort specification.
cursor.toArray()Returns an array that contains all documents returned by the cursor.

4.2 Query and Data Manipulation Collection Methods

Name Description
db.collection.count() Wraps count to return a count of the number of documents in a collection or

matching a query.
db.collection.distinct()Returns an array of documents that have distinct values for the specified field.
db.collection.find() Performs a query on a collection and returns a cursor object.
db.collection.findOne()Performs a query and returns a single document.
db.collection.insert()Creates a new document in a collection.
db.collection.remove()Deletes documents from a collection.
db.collection.save() Provides a wrapper around an insert() and update() to insert new

documents.
db.collection.update()Modifies a document in a collection.

87

MongoDB CRUD Operations, Release 3.2.3

4.3 MongoDB CRUD Reference Documentation

Write Concern (page 88) Description of the write operation acknowledgements returned by MongoDB.

Read Concern (page 90) Description of the readConcern option.

SQL to MongoDB Mapping Chart (page 92) An overview of common database operations showing both the Mon-
goDB operations and SQL statements.

The bios Example Collection (page 98) Sample data for experimenting with MongoDB. insert(), update()
and find() pages use the data for some of their examples.

4.3.1 Write Concern

On this page

• Write Concern Specification (page 88)

Write concern describes the level of acknowledgement requested from MongoDB for write operations to a standalone
mongod or to replica sets or to sharded clusters. In sharded clusters, mongos instances will pass the
write concern on to the shards.

Changed in version 3.2: For replica sets using protocolVersion: 1 and running with the journal enabled:

• w: "majority" (page 89) implies j: true (page 89).

• Secondary members acknowledge replicated write operations after the secondary members have written to their
respective on-disk journals, regardless of the j (page 89) option used for the write on the primary.

Changed in version 2.6: A new protocol for write operations integrates write concerns with the write operations and
eliminates the need to call the getLastError command. Previous versions required a getLastError command
immediately after a write operation to specify the write concern.

Write Concern Specification

Write concern can include the following fields:

{ w: <value>, j: <boolean>, wtimeout: <number> }

• the w (page 88) option to request acknowledgment that the write operation has propagated to a specified number
of mongod instances or to mongod instances with specified tags.

• the j (page 89) option to request acknowledgement that the write operation has been written to the journal, and

• wtimeout (page 90) option to specify a time limit to prevent write operations from blocking indefinitely.

w Option

The w option requests acknowledgement that the write operation has propagated to a specified number of mongod
instances or to mongod instances with specified tags.

Using the w option, the following w: <value> write concerns are available:

Note: Standalone mongod instances and primaries of replica sets acknowledge write operations after applying the
write in memory, unless j:true (page 89).

88 Chapter 4. MongoDB CRUD Reference

MongoDB CRUD Operations, Release 3.2.3

Changed in version 3.2: For replica sets using protocolVersion: 1, secondaries acknowlege write operations
after the secondary members have written to their respective on-disk journals, regardless of the j (page 89) option.

Value Description

<number>
Requests acknowledgement that the write operation has
propagated to the specified number of mongod in-
stances. For example:
w: 1 Requests acknowledgement that the write op-

eration has propagated to the standalone mongod
or the primary in a replica set. w: 1 is the de-
fault write concern for MongoDB.

w: 0 Requests no acknowledgment of the write op-
eration. However, w: 0may return information
about socket exceptions and networking errors to
the application.
If you specify w: 0 but include j: true
(page 89), the j: true (page 89) prevails to request
acknowledgement from the standalone mongod
or the primary of a replica set.

Numbers greater than 1 are valid only for replica sets
to request acknowledgement from specified number of
members, including the primary.

"majority"
Changed in version 3.2
Requests acknowledgment that write operations have
propagated to the majority of voting nodes 1, includ-
ing the primary, and have been written to the on-disk
journal for these nodes.
For replica sets using protocolVersion: 1, w:
"majority" (page 89) implies j: true (page 89).
So, unlike w: <number>, with w: "majority"
(page 89), the primary also writes to the on-disk journal
before acknowledging the write.
After the write operation returns with a w:
"majority" (page 89) acknowledgement to the
client, the client can read the result of that write with a
"majority" (page 91) readConcern.

<tag set>
Requests acknowledgement that the write operations
have propagated to a replica set member with the speci-
fied tag.

j Option

The j (page 89) option requests acknowledgement from MongoDB that the write operation has been written to the
journal.

4.3. MongoDB CRUD Reference Documentation 89

MongoDB CRUD Operations, Release 3.2.3

j
Requests acknowledgement that the mongod instances,
as specified in the w: <value> (page 88), have written
to the on-disk journal. j: true does not by itself
guarantee that the write will not be rolled back due to
replica set primary failover.
Changed in version 3.2: With j: true (page 90),
MongoDB returns only after the requested number of
members, including the primary, have written to the
journal. Previously j: true (page 90) write concern
in a replica set only requires the primary to write to the
journal, regardless of the w: <value> (page 88) write
concern.
For replica sets using protocolVersion: 1, w:
"majority" (page 89) implies j: true (page 89), if
journaling is enabled. Journaling is enabled by default.

Changed in version 2.6: Specifying a write concern that includes j: true to a mongod or mongos running with
--nojournal option produces an error. Previous versions would ignore the j: true.

wtimeout

This option specifies a time limit, in milliseconds, for the write concern. wtimeout is only applicable for w values
greater than 1.

wtimeout causes write operations to return with an error after the specified limit, even if the required write concern
will eventually succeed. When these write operations return, MongoDB does not undo successful data modifications
performed before the write concern exceeded the wtimeout time limit.

If you do not specify the wtimeout option and the level of write concern is unachievable, the write operation will
block indefinitely. Specifying a wtimeout value of 0 is equivalent to a write concern without the wtimeout option.

4.3.2 Read Concern

On this page

• Storage Engine and Drivers Support (page 90)
• Read Concern Levels (page 91)
• readConcern Option (page 91)

New in version 3.2.

MongoDB 3.2 introduces the readConcern query option for replica sets and replica set shards. By default, Mon-
goDB uses a read concern of "local" to return the most recent data available to the MongoDB instance at the time
of the query, even if the data has not been persisted to a majority of replica set members and may be rolled back.

Storage Engine and Drivers Support

For the WiredTiger storage engine, the readConcern option allows clients to choose a level of isolation
for their reads. You can specify a read concern of "majority" to read data that has been written to a majority of
replica set members and thus cannot be rolled back.

With the MMAPv1 storage engine, you can only specify a readConcern option of "local".

90 Chapter 4. MongoDB CRUD Reference

MongoDB CRUD Operations, Release 3.2.3

Tip
The serverStatus command returns the storageEngine.supportsCommittedReads field which indi-
cates whether the storage engine supports "majority" read concern.

readConcern requires MongoDB drivers updated for 3.2.

Read Concern Levels

By default, MongoDB uses a readConcern of "local" which does not guarantee that the read data would not be
rolled back.

You can specify a readConcern of "majority" to read data that has been written to a majority of replica set
members and thus cannot be rolled back.

level Description

"local"
Default. The query returns the instance’s most recent
copy of data. Provides no guarantee that the data has
been written to a majority of the replica set members.

"majority"
The query returns the instance’s most recent copy of data
confirmed as written to a majority of members in the
replica set.
To use a read concern level of "majority"
(page 91), you must use the WiredTiger stor-
age engine and start the mongod instances
with the --enableMajorityReadConcern
command line option (or the
replication.enableMajorityReadConcern
setting if using a configuration file).
Only replica sets using protocol version 1 sup-
port "majority" (page 91) read concern. Replica
sets running protocol version 0 do not support
"majority" (page 91) read concern.
To ensure that a single thread can read its own
writes, use "majority" (page 91) read concern and
"majority" (page 89) write concern against the pri-
mary of the replica set.

Regardless of the read concern level, the most recent data on a node may not reflect the most recent version of the data
in the system.

readConcern Option

Use the readConcern option to specify the read concern level.

readConcern: { level: <"majority"|"local"> }

For the level field, specify either the string "majority" or "local".

The readConcern option is available for the following operations:

• find command

• aggregate command and the db.collection.aggregate() method

• distinct command

• count command

4.3. MongoDB CRUD Reference Documentation 91

MongoDB CRUD Operations, Release 3.2.3

• parallelCollectionScan command

• geoNear command

• geoSearch command

To specify the read concern for the mongo shell method db.collection.find(), use the
cursor.readConcern() method.

4.3.3 SQL to MongoDB Mapping Chart

On this page

• Terminology and Concepts (page 92)
• Executables (page 92)
• Examples (page 93)
• Additional Resources (page 97)

In addition to the charts that follow, you might want to consider the
https://docs.mongodb.org/manual/faq section for a selection of common questions about Mon-
goDB.

Terminology and Concepts

The following table presents the various SQL terminology and concepts and the corresponding MongoDB terminology
and concepts.

SQL Terms/Concepts MongoDB Terms/Concepts
database database
table collection
row document or BSON document
column field
index index
table joins embedded documents and linking
primary key
Specify any unique column or column
combination as primary key.

primary key
In MongoDB, the primary key is automatically set to the _id field.

aggregation (e.g. group by) aggregation pipeline
See the
https://docs.mongodb.org/manual/reference/sql-aggregation-comparison.

Executables

The following table presents some database executables and the corresponding MongoDB executables. This table is
not meant to be exhaustive.

MongoDB MySQL Oracle Informix DB2
Database Server mongod mysqld oracle IDS DB2 Server
Database Client mongo mysql sqlplus DB-Access DB2 Client

92 Chapter 4. MongoDB CRUD Reference

MongoDB CRUD Operations, Release 3.2.3

Examples

The following table presents the various SQL statements and the corresponding MongoDB statements. The examples
in the table assume the following conditions:

• The SQL examples assume a table named users.

• The MongoDB examples assume a collection named users that contain documents of the following prototype:

{
_id: ObjectId("509a8fb2f3f4948bd2f983a0"),
user_id: "abc123",
age: 55,
status: 'A'

}

Create and Alter

The following table presents the various SQL statements related to table-level actions and the corresponding MongoDB
statements.

4.3. MongoDB CRUD Reference Documentation 93

MongoDB CRUD Operations, Release 3.2.3

SQL Schema Statements MongoDB Schema Statements

CREATE TABLE users (
id MEDIUMINT NOT NULL

AUTO_INCREMENT,
user_id Varchar(30),
age Number,
status char(1),
PRIMARY KEY (id)

)

Implicitly created on first insert() operation. The
primary key _id is automatically added if _id field is
not specified.
db.users.insert({

user_id: "abc123",
age: 55,
status: "A"

})
However, you can also explicitly create a collection:
db.createCollection("users")

ALTER TABLE users
ADD join_date DATETIME

Collections do not describe or enforce the structure of
its documents; i.e. there is no structural alteration at the
collection level.
However, at the document level, update() operations
can add fields to existing documents using the $set op-
erator.
db.users.update(

{ },
{ $set: { join_date: new Date() } },
{ multi: true }

)

ALTER TABLE users
DROP COLUMN join_date

Collections do not describe or enforce the structure of
its documents; i.e. there is no structural alteration at the
collection level.
However, at the document level, update() operations
can remove fields from documents using the $unset
operator.
db.users.update(

{ },
{ $unset: { join_date: "" } },
{ multi: true }

)

CREATE INDEX idx_user_id_asc
ON users(user_id)

db.users.createIndex({ user_id: 1 })

CREATE INDEX
idx_user_id_asc_age_desc

ON users(user_id, age DESC)

db.users.createIndex({ user_id: 1, age: -1 })

DROP TABLE users db.users.drop()

For more information, see db.collection.insert(), db.createCollection(),
db.collection.update(), $set, $unset, db.collection.createIndex(), indexes,
db.collection.drop(), and https://docs.mongodb.org/manual/core/data-models.

94 Chapter 4. MongoDB CRUD Reference

MongoDB CRUD Operations, Release 3.2.3

Insert

The following table presents the various SQL statements related to inserting records into tables and the corresponding
MongoDB statements.

SQL INSERT Statements MongoDB insert() Statements

INSERT INTO users(user_id,
age,
status)

VALUES ("bcd001",
45,
"A")

db.users.insert(
{ user_id: "bcd001", age: 45, status: "A" }

)

For more information, see db.collection.insert().

Select

The following table presents the various SQL statements related to reading records from tables and the corresponding
MongoDB statements.

4.3. MongoDB CRUD Reference Documentation 95

MongoDB CRUD Operations, Release 3.2.3

SQL SELECT Statements MongoDB find() Statements

SELECT *
FROM users

db.users.find()

SELECT id,
user_id,
status

FROM users

db.users.find(
{ },
{ user_id: 1, status: 1 }

)

SELECT user_id, status
FROM users

db.users.find(
{ },
{ user_id: 1, status: 1, _id: 0 }

)

SELECT *
FROM users
WHERE status = "A"

db.users.find(
{ status: "A" }

)

SELECT user_id, status
FROM users
WHERE status = "A"

db.users.find(
{ status: "A" },
{ user_id: 1, status: 1, _id: 0 }

)

SELECT *
FROM users
WHERE status != "A"

db.users.find(
{ status: { $ne: "A" } }

)

SELECT *
FROM users
WHERE status = "A"
AND age = 50

db.users.find(
{ status: "A",
age: 50 }

)

SELECT *
FROM users
WHERE status = "A"
OR age = 50

db.users.find(
{ $or: [{ status: "A" } ,

{ age: 50 }] }
)

SELECT *
FROM users
WHERE age > 25

db.users.find(
{ age: { $gt: 25 } }

)

SELECT *
FROM users
WHERE age < 25

db.users.find(
{ age: { $lt: 25 } }

)

SELECT *
FROM users
WHERE age > 25
AND age <= 50

db.users.find(
{ age: { $gt: 25, $lte: 50 } }

)

SELECT *
FROM users
WHERE user_id like "%bc%"

db.users.find({ user_id: /bc/ })

SELECT *
FROM users
WHERE user_id like "bc%"

db.users.find({ user_id: /^bc/ })

SELECT *
FROM users
WHERE status = "A"
ORDER BY user_id ASC

db.users.find({ status: "A" }).sort({ user_id: 1 })

SELECT *
FROM users
WHERE status = "A"
ORDER BY user_id DESC

db.users.find({ status: "A" }).sort({ user_id: -1 })

SELECT COUNT(*)
FROM users

db.users.count()
or
db.users.find().count()

SELECT COUNT(user_id)
FROM users

db.users.count({ user_id: { $exists: true } })
or
db.users.find({ user_id: { $exists: true } }).count()

SELECT COUNT(*)
FROM users
WHERE age > 30

db.users.count({ age: { $gt: 30 } })
or
db.users.find({ age: { $gt: 30 } }).count()

SELECT DISTINCT(status)
FROM users

db.users.distinct("status")

SELECT *
FROM users
LIMIT 1

db.users.findOne()
or
db.users.find().limit(1)

SELECT *
FROM users
LIMIT 5
SKIP 10

db.users.find().limit(5).skip(10)

EXPLAIN SELECT *
FROM users
WHERE status = "A"

db.users.find({ status: "A" }).explain()

96 Chapter 4. MongoDB CRUD Reference

MongoDB CRUD Operations, Release 3.2.3

For more information, see db.collection.find(), db.collection.distinct(),
db.collection.findOne(), $ne $and, $or, $gt, $lt, $exists, $lte, $regex, limit(), skip(),
explain(), sort(), and count().

Update Records

The following table presents the various SQL statements related to updating existing records in tables and the corre-
sponding MongoDB statements.

SQL Update Statements MongoDB update() Statements

UPDATE users
SET status = "C"
WHERE age > 25

db.users.update(
{ age: { $gt: 25 } },
{ $set: { status: "C" } },
{ multi: true }

)

UPDATE users
SET age = age + 3
WHERE status = "A"

db.users.update(
{ status: "A" } ,
{ $inc: { age: 3 } },
{ multi: true }

)

For more information, see db.collection.update(), $set, $inc, and $gt.

Delete Records

The following table presents the various SQL statements related to deleting records from tables and the corresponding
MongoDB statements.

SQL Delete Statements MongoDB remove() Statements

DELETE FROM users
WHERE status = "D"

db.users.remove({ status: "D" })

DELETE FROM users db.users.remove({})

For more information, see db.collection.remove().

Additional Resources

• Transitioning from SQL to MongoDB (Presentation)2

• Best Practices for Migrating from RDBMS to MongoDB (Webinar)3

• SQL vs. MongoDB Day 1-24

• SQL vs. MongoDB Day 3-55

2http://www.mongodb.com/presentations/webinar-transitioning-sql-mongodb?jmp=docs
3http://www.mongodb.com/webinar/best-practices-migration?jmp=docs
4http://www.mongodb.com/blog/post/mongodb-vs-sql-day-1-2?jmp=docs
5http://www.mongodb.com/blog/post/mongodb-vs-sql-day-3-5?jmp=docs

4.3. MongoDB CRUD Reference Documentation 97

http://www.mongodb.com/presentations/webinar-transitioning-sql-mongodb?jmp=docs
http://www.mongodb.com/webinar/best-practices-migration?jmp=docs
http://www.mongodb.com/blog/post/mongodb-vs-sql-day-1-2?jmp=docs
http://www.mongodb.com/blog/post/mongodb-vs-sql-day-3-5?jmp=docs

MongoDB CRUD Operations, Release 3.2.3

• MongoDB vs. SQL Day 146

• MongoDB and MySQL Compared7

• Quick Reference Cards8

• MongoDB Database Modernization Consulting Package9

4.3.4 The bios Example Collection

The bios collection provides example data for experimenting with MongoDB. Many of this guide’s examples on
insert, update and read operations create or query data from the bios collection.

The following documents comprise the bios collection. In the examples, the data might be different, as the examples
themselves make changes to the data.

{
"_id" : 1,
"name" : {

"first" : "John",
"last" : "Backus"

},
"birth" : ISODate("1924-12-03T05:00:00Z"),
"death" : ISODate("2007-03-17T04:00:00Z"),
"contribs" : [

"Fortran",
"ALGOL",
"Backus-Naur Form",
"FP"

],
"awards" : [

{
"award" : "W.W. McDowell Award",
"year" : 1967,
"by" : "IEEE Computer Society"

},
{

"award" : "National Medal of Science",
"year" : 1975,
"by" : "National Science Foundation"

},
{

"award" : "Turing Award",
"year" : 1977,
"by" : "ACM"

},
{

"award" : "Draper Prize",
"year" : 1993,
"by" : "National Academy of Engineering"

}
]

}

6http://www.mongodb.com/blog/post/mongodb-vs-sql-day-14?jmp=docs
7http://www.mongodb.com/mongodb-and-mysql-compared?jmp=docs
8https://www.mongodb.com/lp/misc/quick-reference-cards?jmp=docs
9https://www.mongodb.com/products/consulting?jmp=docs#database_modernization

98 Chapter 4. MongoDB CRUD Reference

http://www.mongodb.com/blog/post/mongodb-vs-sql-day-14?jmp=docs
http://www.mongodb.com/mongodb-and-mysql-compared?jmp=docs
https://www.mongodb.com/lp/misc/quick-reference-cards?jmp=docs
https://www.mongodb.com/products/consulting?jmp=docs#database_modernization

MongoDB CRUD Operations, Release 3.2.3

{
"_id" : ObjectId("51df07b094c6acd67e492f41"),
"name" : {

"first" : "John",
"last" : "McCarthy"

},
"birth" : ISODate("1927-09-04T04:00:00Z"),
"death" : ISODate("2011-12-24T05:00:00Z"),
"contribs" : [

"Lisp",
"Artificial Intelligence",
"ALGOL"

],
"awards" : [

{
"award" : "Turing Award",
"year" : 1971,
"by" : "ACM"

},
{

"award" : "Kyoto Prize",
"year" : 1988,
"by" : "Inamori Foundation"

},
{

"award" : "National Medal of Science",
"year" : 1990,
"by" : "National Science Foundation"

}
]

}

{
"_id" : 3,
"name" : {

"first" : "Grace",
"last" : "Hopper"

},
"title" : "Rear Admiral",
"birth" : ISODate("1906-12-09T05:00:00Z"),
"death" : ISODate("1992-01-01T05:00:00Z"),
"contribs" : [

"UNIVAC",
"compiler",
"FLOW-MATIC",
"COBOL"

],
"awards" : [

{
"award" : "Computer Sciences Man of the Year",
"year" : 1969,
"by" : "Data Processing Management Association"

},
{

"award" : "Distinguished Fellow",
"year" : 1973,
"by" : " British Computer Society"

},

4.3. MongoDB CRUD Reference Documentation 99

MongoDB CRUD Operations, Release 3.2.3

{
"award" : "W. W. McDowell Award",
"year" : 1976,
"by" : "IEEE Computer Society"

},
{

"award" : "National Medal of Technology",
"year" : 1991,
"by" : "United States"

}
]

}

{
"_id" : 4,
"name" : {

"first" : "Kristen",
"last" : "Nygaard"

},
"birth" : ISODate("1926-08-27T04:00:00Z"),
"death" : ISODate("2002-08-10T04:00:00Z"),
"contribs" : [

"OOP",
"Simula"

],
"awards" : [

{
"award" : "Rosing Prize",
"year" : 1999,
"by" : "Norwegian Data Association"

},
{

"award" : "Turing Award",
"year" : 2001,
"by" : "ACM"

},
{

"award" : "IEEE John von Neumann Medal",
"year" : 2001,
"by" : "IEEE"

}
]

}

{
"_id" : 5,
"name" : {

"first" : "Ole-Johan",
"last" : "Dahl"

},
"birth" : ISODate("1931-10-12T04:00:00Z"),
"death" : ISODate("2002-06-29T04:00:00Z"),
"contribs" : [

"OOP",
"Simula"

],
"awards" : [

{

100 Chapter 4. MongoDB CRUD Reference

MongoDB CRUD Operations, Release 3.2.3

"award" : "Rosing Prize",
"year" : 1999,
"by" : "Norwegian Data Association"

},
{

"award" : "Turing Award",
"year" : 2001,
"by" : "ACM"

},
{

"award" : "IEEE John von Neumann Medal",
"year" : 2001,
"by" : "IEEE"

}
]

}

{
"_id" : 6,
"name" : {

"first" : "Guido",
"last" : "van Rossum"

},
"birth" : ISODate("1956-01-31T05:00:00Z"),
"contribs" : [

"Python"
],
"awards" : [

{
"award" : "Award for the Advancement of Free Software",
"year" : 2001,
"by" : "Free Software Foundation"

},
{

"award" : "NLUUG Award",
"year" : 2003,
"by" : "NLUUG"

}
]

}

{
"_id" : ObjectId("51e062189c6ae665454e301d"),
"name" : {

"first" : "Dennis",
"last" : "Ritchie"

},
"birth" : ISODate("1941-09-09T04:00:00Z"),
"death" : ISODate("2011-10-12T04:00:00Z"),
"contribs" : [

"UNIX",
"C"

],
"awards" : [

{
"award" : "Turing Award",
"year" : 1983,
"by" : "ACM"

4.3. MongoDB CRUD Reference Documentation 101

MongoDB CRUD Operations, Release 3.2.3

},
{

"award" : "National Medal of Technology",
"year" : 1998,
"by" : "United States"

},
{

"award" : "Japan Prize",
"year" : 2011,
"by" : "The Japan Prize Foundation"

}
]

}

{
"_id" : 8,
"name" : {

"first" : "Yukihiro",
"aka" : "Matz",
"last" : "Matsumoto"

},
"birth" : ISODate("1965-04-14T04:00:00Z"),
"contribs" : [

"Ruby"
],
"awards" : [

{
"award" : "Award for the Advancement of Free Software",
"year" : "2011",
"by" : "Free Software Foundation"

}
]

}

{
"_id" : 9,
"name" : {

"first" : "James",
"last" : "Gosling"

},
"birth" : ISODate("1955-05-19T04:00:00Z"),
"contribs" : [

"Java"
],
"awards" : [

{
"award" : "The Economist Innovation Award",
"year" : 2002,
"by" : "The Economist"

},
{

"award" : "Officer of the Order of Canada",
"year" : 2007,
"by" : "Canada"

}
]

}

102 Chapter 4. MongoDB CRUD Reference

MongoDB CRUD Operations, Release 3.2.3

{
"_id" : 10,
"name" : {

"first" : "Martin",
"last" : "Odersky"

},
"contribs" : [

"Scala"
]

}

4.3. MongoDB CRUD Reference Documentation 103

	MongoDB CRUD Introduction
	Database Operations

	MongoDB CRUD Concepts
	Read Operations
	Write Operations
	Read Isolation, Consistency, and Recency

	MongoDB CRUD Tutorials
	Insert Documents
	Query Documents
	Modify Documents
	Remove Documents
	Limit Fields to Return from a Query
	Limit Number of Elements in an Array after an Update
	Iterate a Cursor in the mongo Shell
	Analyze Query Performance
	Perform Two Phase Commits
	Update Document if Current
	Create Tailable Cursor
	Create an Auto-Incrementing Sequence Field
	Perform Quorum Reads on Replica Sets

	MongoDB CRUD Reference
	Query Cursor Methods
	Query and Data Manipulation Collection Methods
	MongoDB CRUD Reference Documentation

