

Installing MooseFS

Step by Step Tutorial

Michał Borychowski

MooseFS Support Manager

contact@moosefs.org

march 2010

Gemius SA

2

Overview.. 3

MooseFS install process on dedicated machines .. 3

Master server installation ... 3

Backup server (metalogger) installation ... 4

Chunk servers installation ... 5

Users’ computers installation .. 6

Installing MooseFS on one server ... 7

Basic MooseFS Usage .. 9

Stopping MooseFS ... 10

3

Overview
Below we present a step-by-step installation process of MooseFS system on Linux platform. We

assume that the system will be run by a user mfs which belongs to mfs group. We will use FHS

(Filesystem Hierarchy Standard) compliant paths, and source archive

mfs-1.6.15.tar.gz would be placed in /usr/src. We’ll show how to install the system on

separate dedicated machines and how to make a test install on one server.

The latest stable release of MooseFS can be downloaded from

http://sourceforge.net/projects/moosefs/, and on user computers you would need FUSE package

which can be downloaded from http://sourceforge.net/projects/fuse/.

MooseFS install process on dedicated machines
We assume that our machines have following IP addresses:

• Master server: 192.168.1.1

• Metalogger server: 192.168.1.2

• Chunk servers: 192.168.1.101 and 192.168.1.102

• Users’ computers (clients): 192.168.2.x

Master server installation

When installing the master server we disable in ./configure installation of a chunk server

(--disable-mfschunkserver) and of a client (--disable-mfsmount). We do the

following steps:

#groupadd mfs

#useradd -g mfs mfs

#cd /usr/src

#tar -zxvf mfs-1.6.15.tar.gz

#cd mfs-1.6.15

#./configure --prefix=/usr --sysconfdir=/etc

--localstatedir=/var/lib --with-default-user=mfs

--with-default-group=mfs --disable-mfschunkserver --disable-mfsmount

#make

#make install

Sample configuration files will be created in /etc with the extension .dist. We’ll use these files as

our target configuration files:

#cd /etc

#cp mfsmaster.cfg.dist mfsmaster.cfg

#cp mfsmetalogger.cfg.dist mfsmetalogger.cfg

#cp mfsexports.cfg.dist mfsexports.cfg

If we would like to change any of the settings we should uncomment the given line and write a

different value. For the lines which are commented out the system will use built-in default values.

4

File mfsmaster.cfg contains master server settings, here we leave it unchanged. You can find out

more information about this file in the man pages (man mfsmaster.cfg).

File mfsexports.cfg specifies which users’ computers can mount the file system and with what

privileges. For our example we’ll specify that only machines addressed as 192.168.2.x can use the

whole structure of MooseFS resources (/) in read/write mode. In the first line which is not

commented out we change an asterisk (*) to 192.168.2.0/24 so that we have:

192.168.2.0/24 / rw,alldirs,maproot=0

Binary metadata file and changelog text files are kept in a folder set during compilation as

localstatedir – in our example the folder is: /var/lib/mfs. At the first installation an empty

metadata file is created with a name of metadata.mfs.empty, which we change to

metadata.mfs:

#cd /var/lib/mfs

#cp metadata.mfs.empty metadata.mfs

We alse need to specify in /etc/hosts that name mfsmaster refers to the machine of

192.168.1.1 address:

192.168.1.1 mfsmaster

At this moment it is possible to run the master server (server would be run as a user given in the

install configuration, in our case it is mfs):

#/usr/sbin/mfsmaster start

In a production environment it would be necessary to set up automatic start of mfsmaster process

at system start.

We can now also run CGI monitor which shows current system status in a browser:

#/usr/sbin/mfscgiserv

Information should now be available under http://192.168.1.1:9425/ (for the moment there would

be no data about chunk servers).

Backup server (metalogger) installation

Machine used to install the backup server should be as much strong as the master server (at least

with amount of RAM). In case of the master server failure, after importing changelogs to the

metadata file, the metalogger server would be able to take over functions of the managing server

(more about this can be read at http://www.moosefs.org/mini-howtos.html#redundant-master).

Metalogger installation is very similar to that of the master server. We issue the following

commands:

#groupadd mfs

#useradd -g mfs mfs

#cd /usr/src

#tar -zxvf mfs-1.6.15.tar.gz

#cd mfs-1.6.15

5

#./configure --prefix=/usr --sysconfdir=/etc

--localstatedir=/var/lib --with-default-user=mfs

--with-default-group=mfs --disable-mfschunkserver --disable-mfsmount

#make

#make install

#cd /etc

#cp mfsmetalogger.cfg.dist mfsmetalogger.cfg

Similarly, in /etc/hosts we add:

192.168.1.1 mfsmaster

Now we are ready to start the backup server process:

#/usr/sbin/mfsmetalogger start

In a production environment you should set up automatic start of mfsmetalogger.

Chunk servers installation

We issue the following commands on the machines which are to be chunks servers:

#groupadd mfs

#useradd -g mfs mfs

#cd /usr/src

#tar -zxvf mfs-1.6.15.tar.gz

#cd mfs-1.6.15

#./configure --prefix=/usr --sysconfdir=/etc

--localstatedir=/var/lib --with-default-user=mfs

--with-default-group=mfs --disable-mfsmaster

#make

#make install

Now we similarly prepare configuration files of the chunk server:

#cd /etc/

#cp mfschunkserver.cfg.dist mfschunkserver.cfg

#cp mfshdd.cfg.dist mfshdd.cfg

For our test installation we leave mfschunkserver.cfg unchanged; You can find out more

information about this file in the man pages (man mfschunkserver.cfg).

In a mfshdd.cfg file we give locations in which we have mounted hard drives / partitions

purposed for the chunks of the system. It is recommended that they are used exclusively for the

MooseFS - this is necessary to manage the free space properly. Let’s assume we’ll use

/mnt/mfschunks1 and /mnt/mfschunks2 locations, so we add these two lines to

mfshdd.cfg file:

/mnt/mfschunks1

/mnt/mfschunks2

Before we start chunks server we have to make sure that the user mfs has rights to write in the

mounted partitions (which is necessary to create a .lock file):

#chown -R mfs:mfs /mnt/mfschunks1

#chown -R mfs:mfs /mnt/mfschunks2

6

Similarly we add the following line in /etc/hosts file:

192.168.1.1 mfsmaster

Now we are ready to start the chunk server:

#/usr/sbin/mfschunkserver start

We repeat the same steps for each chunk server we want to use for data storing in MooseFS system.

Now at http://192.168.1.1:9425/ is available full information about the system, including the master

server and chunk servers.

Users’ computers installation

In order to mount a file system based on MooseFS it is necessary that users’ computers have FUSE

package (at least in version 2.6, recommended >=2.7.2). If it is not present, you have to install it. One

of the options is to compile it from sources – you can get them from

http://sourceforge.net/projects/fuse/:

#cd /usr/src

#tar -zxvf fuse-2.8.3.tar.gz

#cd fuse-2.8.3

#./configure

#make

#make install

In order to install mfsmount package we do the following steps:

#tar -zxvf mfs-1.6.15.tar.gz

#cd mfs-1.6.15

#./configure --prefix=/usr --sysconfdir=/etc

--localstatedir=/var/lib --with-default-user=mfs

--with-default-group=mfs --disable-mfsmaster

--disable-mfschunkserver

#make

#make install

In a /etc/hosts file we add this line:

192.168.1.1 mfsmaster

Let’s assume that we will mount the system in a /mnt/mfs folder on a client’s machine. We issue

the following commands:

#mkdir -p /mnt/mfs

#/usr/bin/mfsmount /mnt/mfs -H mfsmaster

Now after issuing the df -h | grep mfs command we should get information similar to this:

/storage/mfschunks/mfschunks1

 2.0G 69M 1.9G 4% /mnt/mfschunks1

/storage/mfschunks/mfschunks2

 2.0G 69M 1.9G 4% /mnt/mfschunks2

mfs#mfsmaster:9421 3.2G 0 3.2G 0% /mnt/mfs

7

Installing MooseFS on one server
If you want to make a test installation of the system on one machine, you should follow the following

steps. We won’t install metalogger process here and we assume that the server has 192.168.1.1

address.

In order to mount a file system based on MooseFS it is necessary that users’ computers have FUSE

package (at least in version 2.6, recommended >=2.7.2). If it is not present, you have to install it. One

of the options is to compile it from sources – you can get them from

http://sourceforge.net/projects/fuse/:

#cd /usr/src

#tar -zxvf fuse-2.8.3.tar.gz

#cd fuse-2.8.3

#./configure

#make

#make install

Now we start installation of MooseFS:

#groupadd mfs

#useradd -g mfs mfs

#cd /usr/src

#tar -zxvf mfs-1.6.15.tar.gz

#cd mfs-1.6.15

#./configure --prefix=/usr --sysconfdir=/etc

--localstatedir=/var/lib --with-default-user=mfs

--with-default-group=mfs

#make

#make install

It is important to dedicate file systems used by MooseFS chunks exclusively to it - this is necessary to

manage the free space properly. MooseFS does not take into account that a free space accessible to

it could be taken by other data. If it's not possible to create a separate disk partition, filesystems in

files can be used. For needs of this test install we will prepare two 2GB files (located in

/storage/mfschunks), we’ll format them as ext3 and mount as /mnt/mfschunks1 and

/mnt/mfschunks2.

#mkdir -p /storage/mfschunks

#dd if=/dev/zero of=/storage/mfschunks/mfschunks1 bs=1024 count=1

seek=$((2*1024*1024-1))

#mkfs -t ext3 /storage/mfschunks/mfschunks1

#mkdir -p /mnt/mfschunks1

#mount -t ext3 -o loop /storage/mfschunks/mfschunks1 /mnt/mfschunks1

#dd if=/dev/zero of=/storage/mfschunks/mfschunks2 bs=1024 count=1

seek=$((2*1024*1024-1))

#mkfs -t ext3 /storage/mfschunks/mfschunks2

#mkdir -p /mnt/mfschunks2

#mount -t ext3 -o loop /storage/mfschunks/mfschunks2 /mnt/mfschunks2

8

Before we start chunks server we have to make sure that the user mfs has rights to write in the

mounted partitions (which is necessary to create a .lock file):

#chown -R mfs:mfs /mnt/mfschunks1

#chown -R mfs:mfs /mnt/mfschunks2

Sample configuration files will be created in /etc with the extension .dist. We’ll use these files as

our target configuration files:

#cd /etc

#cp mfsexports.cfg.dist mfsexports.cfg

#cp mfsmaster.cfg.dist mfsmaster.cfg

#cp mfschunkserver.cfg.dist mfschunkserver.cfg

#cp mfshdd.cfg.dist mfshdd.cfg

Files mfsexports.cfg and mfsmaster.cfg refer to master server settings and files

mfschunkserver.cfg and mfshdd.cfg to chunk server.

File mfsexports.cfg specifies which users’ computers can mount the file system and with what

privileges. For our example we’ll specify that only machines addressed as 192.168.1.x can use the

whole structure of MooseFS resources (/) in read/write mode. In the first line which is not

commented out we change an asterisk (*) to 192.168.1.0/24 so that we have:

192.168.1.0/24 / rw,alldirs,maproot=0

In a mfshdd.cfg file we give locations of our filesystems in files (if you have independent

partitions / hard drives, write them here):

/mnt/mfschunks1

/mnt/mfschunks2

For our example we leave other options of mfsmaster.cfg and mfschunkserver.cfg

unchanged.

Binary metadata file and changelog text files are kept in a folder set during compilation as

localstatedir – in our example the folder is: /var/lib/mfs. At the first installation an empty

metadata file is created with a name of metadata.mfs.empty, which we change to

metadata.mfs:

#cd /var/lib/mfs

#cp metadata.mfs.empty metadata.mfs

We also add to /etc/hosts the following line:

192.168.1.1 mfsmaster

At this moment it is possible to run processes of master server, CGI monitor and chunk server:

#/usr/sbin/mfsmaster start

#/usr/sbin/mfscgiserv

#/usr/sbin/mfschunkserver start

Information about the current state of the system will be available under http://192.168.1.1:9425/.

9

Now we’ll mount the system as /mnt/mfs folder:

#mkdir -p /mnt/mfs

#/usr/bin/mfsmount /mnt/mfs -H mfsmaster

After issuing the df -h | grep mfs command we should get information similar to this:

/storage/mfschunks/mfschunks1

 2.0G 69M 1.9G 4% /mnt/mfschunks1

/storage/mfschunks/mfschunks2

 2.0G 69M 1.9G 4% /mnt/mfschunks2

mfs#mfsmaster:9421 3.2G 0 3.2G 0% /mnt/mfs

Basic MooseFS Usage
Let’s create folder1 in /mnt/mfs, in which we would store files in one copy (setting goal=1):

mkdir -p /mnt/mfs/folder1

and folder2, in which we would store files in one copy (setting goal=2):

mkdir -p /mnt/mfs/folder2

The number of copies for the folder is set with the mfssetgoal –r command:

#mfssetgoal -r 1 /mnt/mfs/folder1

/mnt/mfs/folder1:

 inodes with goal changed: 0

 inodes with goal not changed: 1

 inodes with permission denied: 0

#mfssetgoal -r 2 /mnt/mfs/folder2

/mnt/mfs/folder2:

 inodes with goal changed: 0

 inodes with goal not changed: 1

 inodes with permission denied: 0

Let’s copy now a file to both folder:

cp /usr/src/mfs-1.6.15.tar.gz /mnt/mfs/folder1

cp /usr/src/mfs-1.6.15.tar.gz /mnt/mfs/folder2

The command mfscheckfile is used for checking in how many copies the given file is stored. For

the folder1 we have one copy stored in one chunk:

#mfscheckfile /mnt/mfs/folder1/mfs-1.6.15.tar.gz

/mnt/mfs/folder1/mfs-1.6.15.tar.gz:

1 copies: 1 chunks

And in the folder2 the file mfs-1.6.15.tar.gz is saved in two copies:

#mfscheckfile /mnt/mfs/folder2/mfs-1.6.15.tar.gz

/mnt/mfs/folder2/mfs-1.6.15.tar.gz:

2 copies: 1 chunks

Additional information. When all the processes are installed on one server you would see that even

for the goal=2 the files are saved in just one copy – this is a proper behavior because in spite of two

disks we have one chunk server.

10

You can read more information about usage and commands of MooseFS on this page:

http://www.moosefs.org/reference-guide.html#using-moosefs

We also recommend to read the FAQ page:

http://www.moosefs.org/moosefs-faq.html

Stopping MooseFS
In order to safely stop the MooseFS cluster you have to do the following steps:

• Unmount the file system on all machines using umount command (in our examples it would

be: umount /mnt/mfs)

• Stop the chunk server processes: /usr/sbin/mfschunkserver stop

• Stop the metalogger process: /usr/sbin/mfsmetalogger stop

• Stop the master server process: /usr/sbin/mfsmaster stop

