
The MOSIX2 Management System for Linux Clusters

and Multi-Cluster Organizational Grids

A White Paper

A. Barak and A. Shiloh
http://www.MOSIX.org

January 2009

Overview

MOSIX1 Version 2 (MOSIX2) for Linux-2.6 is an
operating system like management system tar-
geted for high performance computing on x86
based (32-bit and 64-bit) Linux clusters and multi-
cluster (organizational) Grids [5]. MOSIX sup-
ports both interactive processes and batch jobs. It
incorporates dynamic resource discovery and au-
tomatic workload distribution, commonly found
on single computers with multiple processors. In
a MOSIX system, users can run applications by
creating multiple processes, then let MOSIX seek
resources and automatically migrate processes
among nodes to improve the overall performance,
without changing the run-time environment of mi-
grated processes.

MOSIX is implemented as a software layer that
provides applications with an unmodified Linux
run-time environment. Therefore, there is no need
to change or even link applications with any spe-
cial library. Moreover, MOSIX supports most ad-
ditional Linux features that are relevant to or-
dinary, non-threaded Linux applications, so that
most Linux programs can run unchanged.

MOSIX Version 1 was originally developed to
manage a single cluster. MOSIX2 was extended
with a comprehensive set of new features for man-
aging a cluster and a multi-cluster Grid, e.g., in
different departments of an organization, as well as
shared servers and independent workstations [1].
For example, a new feature allows owners of clus-
ters to share their computational resources from

1MOSIX® is a registered trademark of A. Barak and A.

Shiloh. Copyright © A. Barak 2009. All rights reserved.

time to time, while still preserving the autonomy
of the owners to disconnect their clusters from the
Grid at any time, without sacrificing guest pro-
cesses from other clusters.

In a MOSIX configuration, nodes can be par-
titioned into logical (virtual) clusters that are al-
located to specific user(s) or purpose(s). Logical
clusters do not necessarily correspond to physical
clusters.

Resources are managed by the automatic re-
source discovery and the process migration algo-
rithms. The resource discovery algorithm pro-
vides each node with the latest information about
resource availability and the state of the nodes.
Based on this information and subject to priori-
ties, the process migration algorithms can initiate
reallocation of processes among nodes, such as to
improve the performance, e.g., by load-balancing,
or to move processes from a disconnecting cluster.

A priority method ensures that local processes
and processes with a higher priority can always
move in and force out guest (migrated) processes
with a lower priority. The priority method can be
used to guarantee fair access to users. It can also
be used to support flexible configurations in which
clusters can be shared (symmetrically or asym-
metrically) among users of different clusters. By
proper setting of priorities, processes from a higher
priority cluster can move to other clusters and if
necessary, even to all the Grid nodes. Users need
not know the details of the configuration nor the
state of any resource.

Other features of MOSIX include migratable
sockets by direct communication between mi-
grated processes; a secure run-time environment

1



Department B

cluster

Department A

cluster

MOSIX2 Organizational Grid

A shared 

cluster

Logicl-clusters

Figure 1: A multi-cluster Grid with 3 clusters and 2 workstations, forming 4 logical clusters.

(sandbox) that prevents guest processes from ac-
cessing local resources in hosting nodes; “live-
queuing” that preserves the full generic Linux
environment of queued jobs; gradual release of
queued jobs, to prevent flooding of any cluster;
checkpoint and recovery and support of batch jobs.

Due to networking and management overheads,
MOSIX is particularly suited to run compute in-
tensive and other applications with low to mod-
erate amounts of I/O. Tests of MOSIX show that
the performance of several such applications over
a 1Gb/s campus backbone is nearly identical to
that within the same cluster [1].

A key requirement for safe Grid computing is
trust, i.e., a guarantee that applications are not
viewed or tempered when running in remote clus-
ters. Other safety requirements include a secure
network and that the Grid includes only autho-
rized nodes with identifiable IPs. Since nowa-
days these requirements are standard within clus-
ters and intra-organizational Grids, but usually
not elsewhere, we recommend using MOSIX in
such configurations. Other than the above require-
ments, MOSIX could be used in any Grid.

Figure 1 illustrates the flexibility of partitions
of nodes in a multi-cluster Grid with two depart-
mental clusters and a shared cluster. In this Grid,
the green (red) logical cluster consist of sets of
nodes from Department A (B) and the shared clus-

ter. Another logical cluster is formed by the (blue)
workstation and the Blue nodes in the shared clus-
ter. In the above configuration, when the shared
cluster is disconnected from the Grid, all guest
processes are either moved out to other clusters,
or to their respective home-clusters or to the work-
station, where they continue to run or are frozen
until other nodes become available.

The ability to form logical clusters provides
greater flexibility in the allocation of nodes to
users. For example, nodes from the shared clus-
ter can, without being stopped, be disconnected
from one logical cluster and be moved to another,
without losing running processes - this feature can
be useful for groups that need to partition a large
cluster among different users. Further flexibility
can be obtained by proper setting of the priorities.
For example, if the processes of the user in the red
cluster are given a higher priority, then this user
can get all the nodes in the shared cluster, and if
necessary, even all the Grid nodes.

A production campus Grid with 15 MOSIX
clusters (∼ 650 CPUs) in different depart-
ments is operational at our university (see
http://www.MOSIX.org/webmon). The features
of MOSIX2 allow better utilization of Grid re-
sources by users who need to run demanding ap-
plications but can not afford such a large cluster.

2



1 Main Features of MOSIX2

This section describes the main features of
MOSIX2.

1.1 Logical Clusters

A cluster or a multi-cluster (Grid) can be parti-
tioned into several logical clusters, each allocated
to a user, a group of users or a general pool for
shared use. A logical cluster may span nodes from
the same cluster or from different physical clusters.
Normally, each user is expected to login and cre-
ate processes only in one logical cluster, called the
home-cluster. The section on the priority method
explains how partitions to logical clusters can pro-
vide fair-share access among different users.

Allocation of nodes to logical clusters is done
by administrators, who can modify the allocations
from time to time to reflect changing demands.
Below, all references to clusters mean logical clus-
ters.

1.2 Automatic Resource Discovery

Resource discovery is performed by an on-line in-
formation dissemination algorithm, providing each
node in the cluster (Grid) with the latest informa-
tion about availability and the state of system-
wide resources. The algorithm is based on a ran-
domized gossip dissemination, in which each node
regularly monitors the state of its resources, in-
cluding the CPU speed, current load, free and used
memory, etc. This information, along with simi-
lar information that has been recently received by
that node is routinely sent to a randomly chosen
node, where a higher probability is given to choos-
ing target nodes in the local cluster.

Information about newly available resources,
e.g., nodes that have just joined, is gradually dis-
seminated across the active nodes, while informa-
tion about disconnected nodes is quickly phased
out. In [6] we presented bounds for the age prop-
erties and the rates of propagation of the above
information dissemination algorithm.

1.3 Types of Processes

MOSIX2 recognizes two types of processes: Linux
processes and MOSIX processes. Linux processes
are not affected by MOSIX, they run in native

Linux mode and can not be migrated. MOSIX
processes can be migrated.

Linux processes usually include administrative
tasks and processes that are not suitable for mi-
gration. Another class of Linux processes is those
created by the “mosrun -E” command. These pro-
cesses can not be migrated, but can be assigned
to the least loaded nodes in the cluster by the
“mosrun -b” option.

MOSIX processes are usually user applications
that are suitable and can benefit from migration.
All MOSIX processes are created by the “mosrun”
command. MOSIX processes are started from
standard Linux executables, but run in an envi-
ronment that allows each process to migrate from
one node to another. Each MOSIX process has a
unique home-node, which is usually the node in
which the process was created [3]. Child processes
of MOSIX processes remain under the MOSIX dis-
cipline (with the exception of the native utility,
which allows programs, mainly shells, already run-
ning under mosrun, to spawn children in native
Linux mode). Below, all references to processes
mean MOSIX processes.

1.4 Process Migration

MOSIX2 supports cluster and Grid-wide (preemp-
tive) process migration [3]. Process migration can
be done either automatically or manually. The mi-
gration itself amounts to copying the memory im-
age of the process and setting its run-time environ-
ment. To reduce network occupancy, the memory
image is often compressed using LZOP [4].

Automatic migrations are supervised by on-line
algorithms that continuously attempt to improve
the performance, e.g., by load-balancing; by mi-
grating processes that requested more than avail-
able free memory (assuming that there is another
node with sufficient free memory); or by migrat-
ing processes from slower to faster nodes. These
algorithms are particularly useful for applications
with unpredictable or changing resource require-
ments and when several users run simultaneously.

Automatic migration decisions are based on
(run-time) process profiling and the latest infor-
mation on availability of Grid resources, as pro-
vided by the information dissemination algorithm.
Process profiling is performed by continuously col-
lecting information about its characteristics, e.g.,

3



size, rates of system-calls, volume of IPC and I/O.
This information is then used by competitive on-
line algorithms [2] to determine the best location
for the process. These algorithms take into ac-
count the respective speed and current load of the
nodes, the size of the migrated process vs. the free
memory available in different nodes, and the char-
acteristics of the processes. This way, when the
profile of a process changes or when new resources
become available, the algorithm automatically re-
sponds by considering reassignment of processes
to better locations.

1.5 The Run-Time Environment

MOSIX is implemented as a software layer that
allows applications to run in remote nodes, away
from its home-node, as if they run locally. This
is accomplished by intercepting all system-calls,
then if the process was migrated, the majority of
its system-calls are forwarded to its home-node,
where they are performed on behalf of the process
as if it was running in the home-node, then the
results are sent back to the process.

In MOSIX, applications run in an environment
where even migrated process seem to be running
in their home-node. As a result, users do not
need to know where their programs run, they need
not modify applications, link applications with
any library, login or copy files to remote nodes.
Furthermore, file and data consistency, as well
as most normal IPC mechanisms such as signals,
semaphores and process-ID’s are intact.

The outcome is a run-time environment where
each user gets the impression of running on a sin-
gle computer. The drawback of this approach is
increased overheads, including management of mi-
grated processes and networking.

1.5.1 Overhead of Migrated Processes

To illustrate the overhead of running migrated
processes we ran four real-life applications, each
with a different amount of I/O. The first applica-
tion, RC, is an intensive CPU (satisfiability) pro-
gram. The second application, SW (proteins se-
quences), uses a small amount of I/O. The third
program, JELlium (molecular dynamics), uses a
larger amount of I/O. Finally, BLAT (bioinfor-
matics) uses a moderate amount of I/O.

We ran each program in three different ways:

1. As a local Linux process.

2. As a migrated MOSIX process to another
node in the same cluster.

3. As a migrated MOSIX process to a cluster
located about 1 Km away, on a campus Grid.

In all cases we used identical Xeon 3.06GHz servers
that were connected by a 1Gb/s Ethernet.

Table 1: Local vs. Remote Run-times (Sec.)

RC SW JEL BLAT

Linux times 723.4 627.9 601.2 611.6
Total I/O 0MB 90MB 206MB 476MB
Block size – 32KB 32KB 64KB
#-Syscalls 3,050 16,700 7,200 7,800
Cluster times 725.7 637.1 608.2 620.1
Slowdown 0.32% 1.47% 1.16% 1.39%
Grid times 727.0 639.5 608.3 621.8
Slowdown 0.50% 1.85% 1.18% 1.67%

The results (averaged over 5 runs) are shown in
Table 1. The first four rows show the Linux run-
times (Sec.), the total amounts of I/O (MB), the
I/O block size (KB) and the number of system-
calls performed. The next two rows list the run-
times of migrated MOSIX processes and the slow-
downs (vs. the Linux times) in the same cluster.
The last two rows list the run-times and the slow-
downs across the campus Grid.

Table 1 shows that with a 1Gb/s Ethernet, the
average slowdown (vs. the Linux times) of all the
tested programs was 1.085% in the same cluster,
and 1.3% across a campus Grid, an increase of
only 0.215%. These results confirm the claim that
MOSIX is suitable to run compute bound and ap-
plications with moderate amounts of I/O over fast
networks.

1.5.2 Migratable Sockets

Migratable sockets allows processes to exchange
messages by direct communication, bypassing
their respective home-nodes.

For example, if process X whose home-node is A
and runs on node B wishes to send a message over
a socket to process Y whose home-node is C and

4



runs on node D, then without a migratable socket,
the message has to pass over the network from B
to A to C to D. Using direct communication, the
message will pass directly from B to D. Moreover,
if X and Y run on the same node, then the network
will not be used at all.

To facilitate migratable sockets, each MOSIX
process can own a “mailbox”. MOSIX Processes
can send messages to mailboxes of other processes
anywhere in the Grid (that are willing to accept
them).

Migratable sockets makes the location of pro-
cesses transparent, so the senders do not need to
know where the receivers run, but only to identify
them by their home-node and process-ID (PID) in
their home-node.

Migratable sockets guarantees that the order of
messages per receiver is preserved, even when the
sender(s) and receiver migrate several times.

1.5.3 A Secure Run-Time Environment

The MOSIX software layer guarantees that a mi-
grated (guest) process can not modify or even ac-
cess local resources other than CPU and memory
in a remote (hosting) node. Due care is taken to
ensure that those few system-calls that are per-
formed locally, can not access resources in the
hosting node. The majority are forwarded to the
home-node of the process. The net result is a se-
cure run-time environment (sandbox), protecting
the host from stray guest processes.

1.6 The Priority Method

The priority method ensures that local processes
and processes with a higher priority can always
move in and push out all processes with a lower
priority. The priority method allows flexible use of
nodes within and among groups. By default, guest
processes are automatically moved out whenever
processes of the cluster’s owner or other more priv-
ileged processes are moved in.

Owners of clusters can determine from which
other cluster they are willing to accept processes
and which clusters to block. Processes from unrec-
ognized clusters are not allowed to move in. Note
that the priority applies to the home-node of each
process rather than to where it happens to arrive
from.

By proper setting of the priority, two or more
clusters could be shared (symmetrically or asym-
metrically) among users of each cluster; a cluster
can be shared among users or owners (with the
same priority processes) from other clusters, or mi-
gration from one cluster could be blocked to other
clusters.

Within a cluster, the priority method can be
used to guarantee fair-share access to users, e.g.,
when some users run many jobs, thus depriving
other users from their share. The priority method
can also be helpful when some users run long jobs
while other users need to run (from time to time)
short jobs. In both of these scenarios, the sys-
admin can partition the cluster to several logical
sub-clusters, then allow each user to login to only
one sub-cluster. As explained above, processes of
local users (in each sub-cluster) has higher priority
over guest processes from other sub-clusters. Note
that users of each sub-cluster can still benefit from
idle nodes in the other sub-clusters.

1.7 Flood Control

Flooding can occur when a user creates a large
number of processes, either unintentionally or with
the hope that somehow the system will run it.
Flooding can also occur when a large number of
processes migrate back to their respective home-
clusters, when other clusters are disconnected or
are reclaimed.

MOSIX has several built-in features to prevent
flooding. For example, the load-balancing algo-
rithm does not permit migration of a process to a
node with insufficient free memory. Another ex-
ample is the ability to limit the number of guest
processes per node.

To prevent flooding by a large number of pro-
cesses, including returning processes, each node
can set a limit on the number of local processes of
certain classes. When this limit is reached, addi-
tional processes of those classes are automatically
frozen and their memory images are stored in regu-
lar files. This method ensures that a large number
of processes can be handled without exhausting
the CPU and memory.

Frozen processes are reactivated in a circular
fashion, to allow some work to be done without
overloading the owner’s nodes. Later, when more
resources become available, the load-balancing al-

5



gorithm migrates running processes away, thus al-
lowing reactivation of more frozen processes.

1.8 Disruptive Configurations

In a MOSIX2 based multi-cluster, authorized ad-
ministrators of each physical cluster can connect
(disconnect) it to (from) the Grid at any time.
After a request is issued to disconnect a cluster,
all guest processes, if any, are moved out and all
local processes that were migrated to other clus-
ters are brought back. Note that guest processes
can be migrated to any available node - not nec-
essarily to their respective home-nodes. For this
reason, users are not expected to login and/or ini-
tiate processes from remote clusters, since if that
was allowed and those clusters were disconnected,
the processes would have nowhere to return.

1.8.1 Time to Evacuate a Cluster

We measured the time to move out (evacuate)
guest processes from a hosting cluster that is about
to be disconnected from the Grid. We used 2 clus-
ters, cluster A with 14 nodes and cluster B with 20
nodes. All the nodes were Xeon 3.06GHz servers
that were connected by a 1Gb/s Ethernet.

The test started with a given set of identical
CPU-bound processes from cluster A running on
cluster B. We issued a cluster-disconnect command
on cluster B that forced all the guest processes
out. The test ended when all the processes were
running in cluster A.

Table 2: Time to Evacuate a 20 Node Cluster

No. of Process Migration
Processes Size Time Rate

40 512 MB 198 Sec 103 MB/Sec
40 1024 MB 397 Sec 103 MB/Sec

80 256 MB 192 Sec 106 MB/Sec
80 512 MB 388 Sec 105 MB/Sec

The results are presented in Table 2. Column 1
lists the total number of guest processes; Column 2
lists the size of each process; Column 3 shows the
average (over 4 runs) of the measured migration
times, and Column 4 shows the migration rates
(MB/s).

The obtained results show that MOSIX can mi-
grate a set of processes at an average (weighted
over all cases) rate of 102.6 MB/s, which is about
93% of the maximal TCP/IP rate over a 1Gb/s
Ethernet.

1.8.2 Long-Running Processes

The process migration, the freezing and the grad-
ual reactivation mechanisms provide support to
applications that need to run for a long time, e.g.,
days or even weeks, in different clusters across the
Grid. As explained above, before a remote clus-
ter is disconnected, all guest processes are moved
out. These processes are frozen in their respective
home-nodes and are gradually reactivated when
Grid nodes become available again. For exam-
ple, long processes from one department migrate
at night to unused nodes in another department.
During the day most of these processes are frozen
in their home-cluster until the next evening.

1.9 Live Queuing

MOSIX2 incorporates a First-Come-First-Serve
(FCFS) dynamic queuing that allows users to dis-
patch a large number of jobs, to run once sufficient
resources are available.

Unlike other queuing systems, MOSIX2 uses
“live-queuing” that allows queued jobs to preserve
their full connection with their Linux environment
(such as the controlling terminal, parent-process,
signals, pipes, sockets, shared file-descriptors,
etc.).

The MOSIX2 queuing system includes tools for
tracing queued jobs, changing their priorities or
the order of execution and for running parallel,
e.g., MPI jobs.

1.9.1 Urgent Jobs

Despite the FCFS queuing policy, MOSIX allows
to assign an additional number of “urgent” jobs
to run regardless of the available resources and
other limitations. Obviously, there are restrictions
who is allowed to use this option and which jobs
should be considered as “urgent”. It is the sys-
admin responsibility to ensure that at any given
time, running those additional “urgent” jobs will
in fact have sufficient memory/swap-space to pro-
ceed reasonably.

6



1.9.2 Out-of-order Jobs

MOSIX can be configured to guarantee a minimal
(usually, small) number of jobs per user to start
out of order, even when resources are insufficient.
This, for example, allows users to run short jobs
while very long jobs of other users are already run-
ning or are placed in the queue.

The only restriction on out of order jobs is that
there is sufficient free memory, so that jobs that
require much memory are not started. Jobs (per
user) above this number and jobs that require
more memory, are queued.

1.10 Checkpoint and Recovery

Checkpoint and recovery are supported for most
computational MOSIX processes. When a process
is checkpointed, its image is saved to a file. If
necessary, the process can later be recovered from
that file and continue to run from the point it was
last checkpointed. Checkpoints can be triggered
by the program itself, by a manual request or can
automatically be taken on a time basis.

Some processes may not be checkpointed and
other processes may not run correctly after recov-
ery. For example, for security reasons checkpoint
of processes with setuid/setgid privileges is not
permitted. In general, checkpoint and recovery
are not supported for processes that depend heav-
ily on their Linux environment, such as processes
with open pipes or sockets.

Processes that can be checkpointed but may not
run correctly after being recovered include pro-
cesses that rely on process-ID’s of either them-
selves or other processes; processes that rely on
parent-child relations; processes that rely on ter-
minal job-control; processes that coordinate their
input/output with other running processes; pro-
cesses that rely on timers and alarms; processes
that can not afford to lose signals; and processes
that use system-V semaphores and messages.

1.11 Batch Jobs

MOSIX2 supports batch jobs that can be sent to
any node in the local cluster (as opposed to non-
batch jobs that require the specific environment of
their dispatching node).

There are two types of batch jobs: Linux and
MOSIX. Linux batch processes do not migrate,

while MOSIX batch processes can migrate, but
their home-node can be different than their dis-
patching node. MOSIX can assist both types by:
(a) Queuing the job until resources are available
(using “mosrun -q”, “mosrun -S” or both); and (b)
Selecting the best initial assignment for the job.

Batch jobs are started from binaries in another
node and preserve only some of the caller’s en-
vironment: they receive the environment vari-
ables; they can read from their standard-input
and write to their standard output and error, but
not from/to other open files; they receive signals,
but if they fork, signals are delivered to the whole
process-group rather than just the parent; they
can not communicate with other processes on the
calling node using pipes and sockets (other than
standard input/output/error), semaphores, mes-
sages, etc. and can only receive signals, but not
send them to processes on the calling node.

The main advantage of batch jobs is that
they save time by not needing to refer to the
dispatching-node to perform system-calls, and
that temporary files can be created on the node
where they start, preventing the dispatching node
from becoming a bottleneck. This approach is
therefore recommended for programs that perform
a significant amount of I/O.

1.12 The Monitors

Two monitors, mon and mmon, provide informa-
tion about resources in the Grid and each cluster,
e.g., CPU-speed, load, free vs. used memory, swap
space, number of active and inactive nodes, guest
processes, etc.

2 Support for 32-bit and 64-bit

MOSIX2 supports both 32-bit (i386) and 64-bit
(x86 64) architectures. 32-bit programs can run
on 64-bit nodes and migrate as needed between 32-
bit and 64-bit nodes. 32-bit programs must have
a 32-bit home-node. 64-bit programs can not run
on 32-bit computers.

It is possible to mix 32-bit and 64-bit nodes in
the same cluster, but performance can be better
when 32-bit and 64-bit nodes are kept as separate
clusters within a multi-cluster Grid.

The installation script automatically detects
and installs the appropriate binaries.

7



3 Running in a Virtual Machine

MOSIX can run in native Linux mode or in a Vir-
tual Machine (VM). In native mode, performance
is better, but it requires some modifications to the
base Linux kernel, whereas a VM can run on top
of any unmodified operating system that supports
virtualization, including Linux, OS-X and Win-
dows.

4 How to Request a Copy

The MOSIX web provides a free, limited evalu-
ation copy for non-profit use. Distributions are
provided as RPMs for openSUSE, for use in native
Linux mode and as a pre-installed virtual-disk im-
age that can be used to create a MOSIX virtual
cluster on Windows and/or Linux computers.

Faculty and research staff can obtain an
unlimited trial copy for use in academic
and research organizations. For details see
http://www.MOSIX.org/txt grid.html.

Non-academic users can apply for a copy from
http://www.mosix.com.au.

5 Conclusions

MOSIX2 is an operating system like management
system that includes a comprehensive set of tools
for sharing computational resources in a Linux
cluster and a multi-cluster organizational Grid.

Logical clusters allow the sys-admin(s) to divide
nodes into private partitions. Automatic resource
discovery along with process migration and the
priority method allow processes to migrate among
nodes in the same cluster as well as among nodes
in different clusters, to take advantage of remote
nodes beyond the fixed set of allocated nodes in
any cluster. This is particularly useful in shared
clusters or when it is necessary to allocate a large
number of nodes to one group, e.g., to meet a dead-
line. The flood prevention and the disruptive con-
figuration provisions allow an orderly evacuation
of disconnecting clusters as well as migrating away
long running processes when remote resources are
no longer available.

The home-node model along with the MOSIX
software layer provide an environment in which
users need not modify applications, link applica-

tions with any library, login or copy files to remote
nodes. It also provides a secure run time environ-
ment to hosting nodes by preventing migrated pro-
cesses from accessing or modifying local resources.
In particular, this means that even a user with one
workstation can use Grid resources by migrating
processes to available nodes, and also store such
processes locally when these nodes are no longer
available. Other supported features include batch
jobs, checkpoint and recovery, live queuing and an
on-line monitor.

A production campus Grid with 15 MOSIX clus-
ters is operational in our university. The fea-
tures of MOSIX2 allow better utilization of Grid
resources, including idle workstations in student
labs. Performance of user’s applications across dif-
ferent clusters in this Grid was found to be nearly
identical to that of a single cluster [1].

References

[1] A. Barak, A. Shiloh and L. Amar, “ An Or-
ganizational Grid of Federated MOSIX Clus-
ters,” Proc. 5-th IEEE International Sym-
posium on Cluster Computing and the Grid
(CCGrid05), Cardiff, May 2005.

[2] A. Keren, and A. Barak, “Opportunity Cost
Algorithms for Reduction of I/O and Inter-
process Communication Overhead in a Com-
puting Cluster,” IEEE Tran. Parallel and
Dist. Systems, 14(1), pp. 39–50, 2003.

[3] A. Barak, O. La’adan and A. Shiloh,
“Scalable Cluster Computing with MOSIX
for Linux,” Proc. 5th Annual Linux Expo,
Raleigh, NC, pp. 95–100, 1999.

[4] LZOP, http://www.lzop.de, 2009.

[5] MOSIX, http://www.MOSIX.org, 2009.

[6] Amar L., Barak A., Drezner Z. and Okun M.,
“Randomized Gossip Algorithms for Main-
taining a Distributed Bulletin Board with
Guaranteed Age Properties,” 2008.

8


