Overview of MOSIX2 for Clusters and Multi-Clusters

Prof. Amnon Barak Department of Computer Science The Hebrew University

http://www.MOSIX.Org

January 2009

Copyright © Amnon Barak 2009

Copyright © Amnon Barak 2009

Reasonable overhead:

Linux vs. migrated MOSIX process times (Sec.), 1Gbit-Ethernet

Application	RC	SW	JEL	BLAT
Local - Linux process	723.4	627.9	601.2	611.6
Total I/O (MB)	0	90	206	476
Migrated process- same cluster	725.7	637.1	608.2	620.1
slowdown	0.32%	1.47%	1.16%	1.39%
Migrated process across	727.0	639.5	608.3	621.8
1Km campus slowdown	0.5%	1.85%	1.18%	1.67%
Sample applications: RC = CPU-bound job JEL = electron motion	SW = proteins sequences BLAT = protein alignments			

