
1
Copyright © Amnon Barak 2009

MOSIX2 Tutorial

L. Amar, A. Barak, T. Maoz, E. Meiri, A. Shiloh
Department of Computer Science

The Hebrew University

http:// www . MOSIX . org

January 2009

Copyright © Amnon Barak 2009

2
Copyright © Amnon Barak 2009

About

This tutorial has 2 parts:
• The first part is intended for new users. It covers basic

tools and operations such as monitors, how to run and
control processes, view processes, view and control the
queue and how to handle unsupported features

• The second part includes advanced topics such as freezing
processes, checkpoint & recovery, running a large set of
processes, I/O optimizations, running Matlab, running
parallel jobs, configuration and management, and the
programming interface

3
Copyright © Amnon Barak 2009

Part I: Basics

• Tools
– mon, mmon
– mosrun, native
– mosps
– mosq
– migrate

• Operations
– Initial assignment
– Running Linux

processes

• Encountering
unsupported features

Detailed information about each command
is available in the corresponding manual pages:

man mosix | mosrun | mosps…

4
Copyright © Amnon Barak 2009

Monitors - seeing what is going on

mon and mmon are 2 monitors for viewing the status of
the resources in each cluster and all the clusters

• mon – displays basic information (tty format) about
resources in the local cluster

• To display type:
• “l” – CPU load (relative)
• “f” – Number of frozen processes
• “m” - Memory (used + free), swap-space (used + free) – type

consecutively
• “u” - Utilization
• “d/D” - Dead nodes
• “h” – help for complete list of options

5
Copyright © Amnon Barak 2009

mmon

• mmon – includes all the options of mon and many more

• To display type (consecutively):
• “l” - Load, load + frozen processes, frozen processes
• “m” - Memory (used + free), swap-space, disk-space
• “g” – multi-cluster status (running local/guests, priority)
• “i” – Read I/O rate, Write rate, total I/O
• “o” – network activity (in, out, total), RPC rate
• “s” - CPU speed, status, MOSIX version, uptime
• “d/D” - dead nodes
• “h” – help for complete list of options

6
Copyright © Amnon Barak 2009

Other mmon features

• Can run on non-MOSIX nodes, e.g. your workstation
• mmon –h bmos-01 (node #1 in the bmos cluster)

• Display the status of several clusters (consecutively)
• Example: mmon –c amos-01, bmos-01, cmos-01

• Use the > ,< keys to skip from one cluster to another

• Private color scheme using the file ~/.mmon.cfg

7
Copyright © Amnon Barak 2009

mosrun – running MOSIX processes

• To run a program under the MOSIX discipline start it
with mosrun, e.g., mosrun myprog
• Such programs can migrate to other nodes
• Example:

> mosrun myprog 1 2 3 (run myprog, possibly with arguments)
• Programs that are not started by mosrun run in native

Linux mode and CANNOT migrate
• A program that is started by mosrun and all its children

remain under the MOSIX discipline
• MOSIX processes (that were started by mosrun) can use

the native utility to spawn children that run in native
Linux mode

8
Copyright © Amnon Barak 2009

Example: view the process migration

• Login to any node in a MOSIX cluster

• On one window run mon or mmon

• On another window start 2 CPU-intensive processes, e.g. the
testload program (included in the MOSIX distribution):

>mosrun testload &
>mosrun testload &

• Observe in the mon/mmon window how the processes
move across the cluster’s nodes

• Type moskillall to stop the running processes

9
Copyright © Amnon Barak 2009

mosrun – node assignment options

• -r{hostname} – run on this host (node)

• -{a.b.c.d} – run on node with this IP

• -{n} – run on node number n

• -h – run on the home node

• -b – attempt to select the best node

• -jID1-ID2[,ID3-ID4] – run on a random node in the ranges

ID1-ID2, ID3-ID4, …

• Examples:
> mosrun –rmos1 myprog (run on node mos1)
> mosrun –b myprog (run on the best node)
> mosrun –3 myprog 1 2 3 (run on node #3, with arg 1 2 3)

10
Copyright © Amnon Barak 2009

mosrun – where can processes migrate to

• -G – allows processes to migrate to nodes in other clusters
• Otherwise, processes are confined to the local cluster
• -G{class} – if class > 0 than a process is allowed to migrate to

nodes in other clusters. Note that –G is equivalent to –G1
• -m{megabytes} – specifies the maximal amount of memory

needed by your program, to prevent migration of processes
to nodes that do not have sufficient free memory

• Beside migration, the –G and -m options also affect the
initial assignment (-b flag) and queuing (see below)

• Example:
> mosrun –G –m1000 myprog (allows myprog to run on other
clusters, but only on nodes with at least 1GB of free memory)

11
Copyright © Amnon Barak 2009

mosrun - marking your processes

• The -J{Job Id} option of mosrun allows bundling for easy
identification of several instances of mosrun
• The “Job Id” is an integer (default value is 0)
• Each user can assign their own “Job Ids”

• “Job Id” is inherited by all child processes
• “Job Id” can be viewed by mosq and mosps
• All jobs of a user with the same “Job Id” can be collectively

killed (signaled) by moskillall and migrated by migrate
• Examples:

> mosrun –J20 myprog (run myprog with Job_ID = 20)
> mosps –J20 (list only my processes with Job_ID = 20)
> moskillall –J20 (kill all my processes with Job_ID = 20)

12
Copyright © Amnon Barak 2009

mosrun – run batch jobs

mosrun can send batch jobs to other nodes in the local cluster
• There are 2 types:
• -E – runs native Linux processes
• -M – runs MOSIX processes but their home node can be a different node in

the local cluster
• The combination of -E and –b attempts to assign a Linux job to the best

available node
• The combination of -M and –b attempts to assign both the home-node and

where the process starts to run, to the best available nodes
• The -E/{dir} and –M/{dir} specify the directory where the job should run

• By default it will run in the directory named as the current directory in this node

• Examples:
> mosrun –E –rmos4 mylinuxprog
> mosrun –M/tmp –b mymosixprog

13
Copyright © Amnon Barak 2009

mosps – view MOSIX processes

mosps (like ps) provides information about your MOSIX processes
(and many standard ps fields, see the next slide), including:

• WHERE – where (or in what special state) is your process

• FROM – from where this process came

• ORIGPID – original pid at home node

• CLASS – class of the process
• For MOSIX processes defined by mosrun –G{class)
• Other values are batch and native

• FRZ – if frozen why: A- auto frozen (due to load); E- expelled;
M- manually; - - NOTFROZEN; N/A – can’t be frozen;
DUE – when user expects process to complete

• NMIGS – number of migrations so far

14
Copyright © Amnon Barak 2009

mosps - options

mosps supports most standard ps flags
• Special mosps flags are:
• -I – nodes displayed as IP addresses
• -h – nodes displayed as host names
• -M – display only last component of host name
• -L – show only local processes
• -O – Show only local processes that are away
• -n – display NMIGS
• -V – show only guest processes
• -P – display ORIGPID
• -D – display DUE
• -J{JobID} – show only processes with this Job ID (see advanced features)

15
Copyright © Amnon Barak 2009

mosps – example

> mosps –AMn

PID WHERE FROM CLASS FRZ NMIGS TTY CMD

24078 cmos-18 here local - 1 pts/1 mosrun -b testload

24081 here here local - 0 pts/1 mosrun -b testload

24089 cmos-16 here local - 1 pts/1 mosrun -b testload

30145 queue here N/A N/A N/A pts/1 mosqueue -b testload

30115 here here local M 0 pts/1 mosrun testload

30253 here mos3 local N/A N/A ? /sbin/remote

16
Copyright © Amnon Barak 2009

mosrun - queuing

• With the -q flag, mosrun places the job in a queue
• Jobs from all the nodes in each cluster share one queue
• The prevailing queue policy is First-come-first-serve, with

several exceptions
• Users can assign priorities to their jobs, using the –q{pri} option

• The lower the value of pre the higher priority
• The default priority is 50. It can be changed by the sysadmin
• Running jobs with pri < 50 should be coordinated with the cluster’s manager

• Examples:
> mosrun –q –b –m1000 myprog (queue a MOSIX program to run in the cluster)

> mosrun –q60 –G –b -J1 myprog (queue a low priority job to run in the multi-
cluster)
>mosrun –q30 –E –m500 myprog (queue a high priority batch job)

17
Copyright © Amnon Barak 2009

mosq – view and control the queue

• mosq list – list the jobs waiting in the queue

• mosq listall – list jobs already running from the queue and jobs
waiting in the queue

• Mosq delete {pid} – delete a waiting job from the queue

• Mosq run {pid} – run a waiting process now

• Mosq cngpri {newpri}{pid} – change the priority of a waiting job

• Mosq advance {pid} – move a waiting job to the head of its priority
group within the queue

• Mosq retard {pid} – move a waiting job to the end of its priority group
within the queue

For more options, see the mosq manual

18
Copyright © Amnon Barak 2009

mosq - example

> mosq listall

PID USER MEM(MB) GRID PRI FROM COMMAND

21666 lior - NO RUN here mosrun -b testload

21667 lior - NO 50 here mosrun -b testload

21155 lior - NO 50 cmos-17 mosrun testload

> mosq cngpri 20 21155

> mosq listall

PID USER MEM(MB) GRID PRI FROM COMMAND

21666 lior - NO RUN here mosrun -b testload

21155 lior - NO 20 cmos-17 mosrun testload

21667 lior - NO 50 here mosrun -b testload

19
Copyright © Amnon Barak 2009

migrate – control MOSIX processes

• migrate{pid} {node-number | ip-address | host-name} – move
your process to the given node

• migrate{pid} home - request your process to return home
• migrate{pid} freeze – request to freeze your process
• migrate{pid} continue – unfreeze your process
• migrate{pid} checkpoint – request your process to checkpoint
• migrate{pid} checkstop – request your process to checkpoint

and stop
• migrate{pid} exit – checkpoint your process and exit
For more options, see the migrate manual

20
Copyright © Amnon Barak 2009

Encountering unsupported features

Some utilities and libraries use features that are not
supported by MOSIX

Usually, such features are not critical
If you run a utility and encounter a message such as:
• MOSRUN: Shared memory (MAP_SHARED) not supported

under MOSIX
or
• MOSRUN: system-call ‘futex’ not supported under MOSIX

Try to use the “-e” flag of mosrun to bypass the problem

• Example: instead of mosrun ls -la use mosrun –e ls –la

21
Copyright © Amnon Barak 2009

Part II: Advanced topics

• Freezing processes
• Checkpoint/Recovery
• running a large set of

processes
• Before using the multi-

cluster
• I/O optimizations
• Running Matlab

• Parallel jobs
• What is not supported
• Configuration and

management
• The programming

interface

22
Copyright © Amnon Barak 2009

Freezing processes

MOSIX process can be frozen, usually to prevent
memory threshing
• While frozen, the process is still alive but is not

running - its memory image is left in the disk
• Frozen processes do not respond to caught signals

• Processes can be frozen in 3 ways:
• Manually – upon user’s request
• When being evacuated from a remote node that was reclaimed
• When the local load is too high for a certain class of processes

23
Copyright © Amnon Barak 2009

Freezing - example

• Running some processes
• 6 X “mosrun –J1 testload –m 2”

• Using the migrate command to freeze all the
processes from job 1
• migrate –J1 freeze

• Using migrate to “continue” frozen processes
• migrate –J1 continue

• Note that it is possible to freeze/continue individual
processes as well

24
Copyright © Amnon Barak 2009

Checkpoint/recovery

Most CPU-intensive MOSIX processes can be checkpointed,
then recovered from that point
• In a checkpoint, the image of a process is saved to a file
• Processes with open pipes or sockets, or with setuid/setgid

privileges cannot be checkpointed
• Processes that wait indefinitely, e.g. for terminal/pipe/socket

I/O or another process, will only produce a checkpoint once
the wait is over

• The following processes may not run correctly after a recovery:
• Processes that rely on process id or parent-child relations
• Processes that communicate with other processes
• Processes that rely on timers and alarms or cannot afford to lose signals

25
Copyright © Amnon Barak 2009

mosrun - how to checkpoint

• -C{base-filename} – specifies file names (with extensions .1, .2, .3,…)
where checkpoints are to be saved

• -N{max} – specifies the maximum number of checkpoints to
produce before re-cycling extensions

• -A{min} – produces a checkpoint every given number of minuts
• Checkpoint can also be triggered by the program itself (see the MOSIX

manual) and by the user (see the migrate manual)
• Example:

> mosrun –C/tmp/myckpt –A20 myprog (create a checkpoint
every 20 minuts to files: /tmp/myckpt.1, /tmp/myckpt.2, …)
> mosrun myprog (whenever the user requests a checkpoint
manually, a checpoint will be written to files: ckpt.{pid}.1,
ckpt.{pid}.2, …)

26
Copyright © Amnon Barak 2009

mosrun – how to recover

• Use -I{file} to view the list of files that where used by the process at
the time of checkpoint

• Use -R{file} to recover and continue the program from a given
checkpoint

• With -R{file} you can also use –O{fd1=filename1, fd2=filename2,…} - to use the
given file location(s) per file-descriptor instead of the original location(s)

• Examples:
> mosrun –I/tmp/ckpt.1

Standard Input (0): special file, Read-Write
Standard Output(1): special file, Read-Write
Standard Error (2): special file, Read-Write
File-Descriptor #3: /usr/home/me/tmpfile, offset=1234, Read-Write

> mosrun –R/tmp/ckpt.1 –O3=/user/home/me/oldtmpfile

27
Copyright © Amnon Barak 2009

mosrun - running a large set of processes

• The -S{maxjobs} option runs under mosrun multiple
command-lines from the file commands-file
• Command-lines are started in the order they appear

• Each line contains a program and its given mosrun arguments
• Example of a commands-file:

my_program –a1 –if1 –of1
my_program –a2 –if2 –of2
my_program –a3 –if3 –of3

• While the number of command-lines is unlimited, mosrun will
run up to maxjobs command-lines concurrently at any time

• Whenever one process finish, a new line will start

28
Copyright © Amnon Barak 2009

Before running processes on the multi-cluster

• Some programs do not perform well on the cluster (multi-cluster) due to
various overheads and improper tuning. To check a specific program,
run a sample copy 3 (4) times on identical nodes and measure the times:
• As a regular Linux process (without mosrun)
• As a non-migrated MOSIX process in the local node

• mosrun –h –L …
• As a migrated MOSIX process to a remote node in the local cluster

• mosrun –r<node-name> -L …
• In case of multi-cluster, repeat the last test to a remote node in another cluster

• The running times of the program should increase gradually by few
percents but not significantly
• If this is not the case you should investigate the reasons
• For example: use strace to see if the process is doing I/O in an efficient way (a

reasonable system call rate)

29
Copyright © Amnon Barak 2009

Example: Matlab with an external library

Matlab needs to load a special external library

The measured run times are:

• As a Linux process (no mosrun): 12:06 Min.

• With mosrun, on the home node: 12:27 Min.

• With mosrun in a remote node in the same cluster: 12:47 Min.

• With mosrun on a remote node in another cluster: 13:04 Min.
The slowdown is caused by the time to load the external library, Matlab

performs many system calls during this phase

• In longer jobs, the slowdown is less significant

30
Copyright © Amnon Barak 2009

Using strace to see what your process is doing

• strace = trace system calls and signals
• Allow you to see which system calls are used by your process

• Use the –c argument of strace to print a summary
of all the system calls used

• A special version of strace can also show a
histogram of the block sizes
• /cs/mosix/sbin/strace

31
Copyright © Amnon Barak 2009

Example: blas with too many futex

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------

99.78 16.847495 17 1019960 2712 futex

0.17 0.028892 95 303 275 open

0.01 0.002178 128 17 munmap

0.01 0.002096 40 53 read

0.01 0.001843 29 64 60 stat64

0.01 0.000993 7 143 brk

0.00 0.000474 43 11 11 access

0.00 0.000370 10 38 old_mmap

0.00 0.000300 12 25 mmap2

0.00 0.000236 9 27 close

0.00 0.000160 6 28 fstat64

0.00 0.000115 58 2 write

0.00 0.000087 12 7 mprotect

0.00 0.000073 6 13 times

0.00 0.000056 5 11 _llseek

0.00 0.000025 5 5 gettimeofday

0.00 0.000020 20 1 clone

0.00 0.000011 11 1 _sysctl

0.00 0.000010 5 2 rt_sigaction

------ ----------- ----------- --------- --------- ----------------

100.00 16.885463 1020716 3058 total

32
Copyright © Amnon Barak 2009

blas using a different implementation

Allocation memory

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------

78.32 0.030613 99 309 281 open

5.54 0.002167 22 98 83 stat64

5.33 0.002083 130 16 munmap

4.78 0.001868 37 51 read

1.76 0.000689 5 138 brk

0.87 0.000339 42 8 8 access

0.84 0.000329 8 40 old_mmap

0.68 0.000267 9 29 fstat64

0.46 0.000178 7 27 close

0.37 0.000143 72 2 write

0.28 0.000110 11 10 mprotect

0.28 0.000108 5 21 mmap2

0.13 0.000049 49 1 uname

0.12 0.000046 4 13 times

0.09 0.000034 3 11 _llseek

0.05 0.000018 18 1 set_thread_area

0.04 0.000017 3 5 gettimeofday

0.02 0.000008 8 1 _sysctl

0.02 0.000007 4 2 rt_sigaction

0.01 0.000005 5 1 futex

------ ----------- ----------- --------- --------- ----------------

100.00 0.039088 787 372 total

33
Copyright © Amnon Barak 2009

I/O considerations

• MOSIX programs that issue a large number of
system-calls or perform intensive I/O relative to
the amount of computation are expensive because
those operations are emulated

• When a process is running in a remote node, there
is also overhead of sending those operations to the
home-node over the network

• Such processes will automatically be migrated
back to the home-node, to eliminate the
communication overhead

34
Copyright © Amnon Barak 2009

Using strace to see the I/O granularity

/cs/mosix/sbin/strace -c testload -f big --write 4 --iosize 10

Allocation memory

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------

97.73 0.017740 7 2560 write

1.55 0.000282 47 6 2 open

0.01 0.000002 2 1 getpid

… … … … …

0.01 0.000002 2 1 set_thread_area

------ ----------- ----------- --------- --------- ----------------

100.00 0.018152 2598 5 total

IO Summary:

sys-call MB

read 0.001 (64B : 1) (512B : 1)

write 10.000 (4K : 2560)

35
Copyright © Amnon Barak 2009

Improving the I/O performance

• Consider running such programs as native Linux, using the “-E”
flag of mosrun for the main process, or “native” for child processes

• “gettimeofday()” can be a very frequent system-call: use the “-t”
flag to get the time from the hosting node instead of the home-node

• Try to perform I/O in larger chunks (less system-calls)

• Avoid unnecessary system-calls (such as “lseek()” - use
"pread/pwrite“ instead)

• The "-c" flag prevents bringing home processes due to system-
calls: it should be used when the I/O phase is expected to be short.
For programs with more complex patterns of alternating CPU-
intensive and I/O periods, learn about the "-d" option

36
Copyright © Amnon Barak 2009

Running jobs with intensive I/O

• Use the “network display” and “disk display”
screens of mmon to see what you application is doing

• Spread your input files across the cluster
• In /tmp or /scratch

• Use the –M flag to spread the processes home nodes
across different nodes in the cluster, to balance the I/O

37
Copyright © Amnon Barak 2009

Temporary private files

• Normally files are accessed via the home-node
• In certain cases it is possible to use

Temporary Private Files
• Such private files can be accessed only by the

processes
• When the process migrate, temporary private files

are migrated with it
• Once the process exit, the files are automatically

deleted

38
Copyright © Amnon Barak 2009

Example: temporary private files

• mosrun –X/tmp –rmos2 –L testload –f/tmp/big –iosize
100 –write 4 –cpu 1

• In this example the testload program writs a file
named /tmp/big in chunks of 4KB up to a size of
100MB

• Since the temporary private files feature is used, the
file access will be performed locally

39
Copyright © Amnon Barak 2009

Running Matlab Version 7.4 (or older) jobs

The Matlab program in /usr/local/bin/ is usually a wrapper script like:

• #! /bin/sh -
• LM_LICENSE_FILE=1700@my.university.edu
• export LM_LICENSE_FILE
• LD_ASSUME_KERNEL=2.4.1
• export LD_ASSUME_KERNEL
• exec /usr/local/matlab7/5/bin/matlab $*

To run Matlab in the MOSIX environment comment out the following lines:

• #LD_ASSUME_KERNEL=2.4.1
• #export LD_ASSUME_KERNEL

When running jobs, the following Matlab (and mosrun) flags should be used:

• mosrun -e matlab -nojvm -nodesktop -nodisplay < matlab-script.m

See the MOSIX FAQ for further details

40
Copyright © Amnon Barak 2009

Running Matlab Version 7.5 (or newer) jobs

• Jobs running MATLAB Version 7.5 (or newer)
should be started by
> mosrun -E -b -i matlab
for assignment to the best node in the cluster.

• Example: to run the MATLAB test.m program:
a=randn(3000);
b=svd(a);
use:

mosrun -E -b -i matlab -nojvm -nodesktop -nodisplay < test.m

41
Copyright © Amnon Barak 2009

Running parallel jobs

• mosrun -P{n} –q / -Q: to run {n} parallel processes
by requesting n nodes simultaneously from the
queue manager

• A patch for MPI uses the above option. It allows
adding of an MPI job with n processes to the queue,
so that the job is released from the queue only when
n processors are available
• Note: this patch uses the –b option of mosrun in order

to place processes on the best available nodes

42
Copyright © Amnon Barak 2009

What is not supported

• Shared memory, including files mmap'ed as MAP_SHARED and
SYSV-shm

• The “clone” system-call (causing parent and child processes to share
memory and/or files and/or signals and/or current-directory, etc)

• Mapping special block/character files to memory
• Process tracing (ptrace)
• System calls that are esoteric; recently added; intended for system-

administration; or to support cloning
• Locking memory in core (mlock – has no meaning when a process

migrates)
• The “-e” flag fails MOSRUN unsupported system-calls (with errno

ENOSYS) rather than abort the program when such calls are
encountered. “-w” also produces a warning on stderr

43
Copyright © Amnon Barak 2009

What is not supported - example

mos1:~> mosrun ls –la
MOSRUN: Shared memory (MAP_SHARED) not supported under MOSIX

• Mmap with the flag “MAP_SHARED” is not supported under mosix

• The command “ls –la” will work when using the –e flag of mosrun
(mosrun –e ls –la).

• This is since the –e tells mosrun to replace the MAP_SHARED with
MAP_PRIVATE

• Same goes for the error
• MOSRUN: system-call ‘futex’ not supported under MOSIX

• This will not work for all cases, see the MOSIX manual “man mosix”
for further details

44
Copyright © Amnon Barak 2009

Solving problems

• In case of a problem:
• Check with mmon, mon that the cluster is working
• Run “setpe –r” to see the cluster/multi-cluster

configuration
• Run “mosctl status” on the problematic node
• Try sending a process manually with

mosrun –rnode-name program

45
Copyright © Amnon Barak 2009

Configuration

• All MOSIX configuration files are kept in the
/etc/mosix directory

• These files can be modified manually
• Or by using the mosconf program which allows

the sysadmin to configure a MOSIX cluster/multi-
cluster by following few basic steps

46
Copyright © Amnon Barak 2009

mosctl – reading the MOSIX state

• mosctl status {node-number | ip-address | host-name} -
provides useful information about MOSIX nodes

• mosctl localstatus – provides more information about the
local node

• mosctl whois {node-number} – convert a logical MOSIX
node number to a host name (or IP address if host name
can’t be located)

• mosctl whois {IP-address | host-name} - convert an IP
address or a host name to a logical MOSIX node number

• For explanations of output and more options see the mosctl
manual

47
Copyright © Amnon Barak 2009

mosctl - example

> mosctl status
Status: Running Normally
Load: 0.29 (equivalent to about 0.29 CPU processes)
Speed: 10012 units
CPUS: 1
Frozen: 0
Util: 100%
Avail: YES
Procs: Running 1 MOSIX processes
Accept: Yes, will welcome processes from here
Memory: Available 903MB/1010MB

48
Copyright © Amnon Barak 2009

mosctl localstatus - example

root@mos1:~# mosctl localstatus
Status: Running Normally
Load: 0
Speed: 3333 units
CPUS: 1
Frozen: 0
Util: 100%
Avail: YES
Procs: Running 0 MOSIX processes
Accept: Yes, will welcome processes from here
Memory: Available 93MB/249MB
Swap: Available 0.8GB/0.9GB
Daemons:

Master Daemon: Up
MOSIX Daemon : Up
Queue Manager: Up
Remote Daemon: Up

Guest processes from grid: 0/10

49
Copyright © Amnon Barak 2009

setpe – view the cluster/multi-cluster configuration

• setpe -r lists the nodes in the local cluster

• setpe -R lists the nodes in the local cluster and the multi-
cluster

• Important information that may be listed:
• pri={pri} - priority we give to that cluster: the lower the better

• proximate - there is a very fast network connection to those nodes

• outsider - processes of class 0 cannot migrate there

• dontgo - local processes cannot migrate there

• dont_take - not accepting guests from there

50
Copyright © Amnon Barak 2009

setpe - example

mos1:~> setpe -R

This MOSIX node is: 132.65.174.1 (mos1.cs.huji.ac.il) (no features)

Nodes in this cluster:

======================

mos1.cs.huji.ac.il - mos38.cs.huji.ac.il

Nodes from the rest of the multi-cluster:

================================

mos51.cs.huji.ac.il - mos66.cs.huji.ac.il: pri=45,proximate,outsider

cmos-16.cs.huji.ac.il - cmos-20.cs.huji.ac.il: pri=45,proximate,outsider

vmos-02.cs.huji.ac.il - vmos-03.cs.huji.ac.il: pri=45,proximate,outsider

51
Copyright © Amnon Barak 2009

The MOSIX programming interface

• The MOSIX interface allows the users to control some MOSIX
options from within their programs

• This can be done by accessing special files on the /proc filesystem.

• The files are private to the process

• The files include:
• /proc/self/migrate
• /proc/self/lock
• /proc/self/whereami
• /proc/self/nmigs
• /proc/self/needmem
• /proc/self/clear
• ….

52
Copyright © Amnon Barak 2009

Programming interface - examples

• To modify the maximal amount of memory that a
process may require:
• open("/proc/self/needmem", 1|O_CREAT, 1200)

• To lock the program in the current node:
• open("/proc/self/lock", 1|O_CREAT, 1)

• To clear statistics after some phase of the program:
• open("/proc/self/clear", 1|O_CREAT, 1)

• To find where the current process is running now:
• open("/proc/self/whereami", 0)

