
Crash Reporting:
Mozilla’s Open Source Solution

K Lars Lohn
Ted Mielczarek

Austin King

Friday, July 24, 2009

Howdy, I’m Lars from Mozilla, I’m here today with my colleagues, Ted Mill-char-ek and Austin King to talk about Crash
Reporting.

What is it?

Friday, July 24, 2009

Have you ever seen Firefox crash? Have you ever wondered what happens after you hit the “restart firefox” button?

In the next 45 minutes, we’re going to take you down the rabbit hole and show you what we do. We want our processes to be
open.

When you experience a problem with any Mozilla product, we want _everyone_, not just the developers, to watch the flow of
information about a problem for its initial occurrence, through data collection and triage, on to Bugzilla and to an eventual
resolution.

Crash reporting
is the transmission of

information
to the developers

about the state of an application
during a catastrophic failure.

Friday, July 24, 2009

Crash reporting is the transmission of information about the state of an application during a catastrophic failure to the
developers.

The goal is to give the developers information that they would not otherwise have had.

Google
Breakpad

Socorro
Server

Socorro UI
(reporter)

minidump_stackwalk

Friday, July 24, 2009

Our crash reporting system can be divided into three parts.

Breakpad - a google project - this code lives mainly within the Firefox application

Socorro (in two movements) the backend server and the user interface running at Mozilla.

written in three languages <click> <click> <click>

Ted, Austin and I are the three developers in charge of the three sections. We’re going to talk in turn about our sections.

Google
Breakpad

Socorro
Server

Socorro UI
(reporter)

minidump_stackwalk

C++

Friday, July 24, 2009

Our crash reporting system can be divided into three parts.

Breakpad - a google project - this code lives mainly within the Firefox application

Socorro (in two movements) the backend server and the user interface running at Mozilla.

written in three languages <click> <click> <click>

Ted, Austin and I are the three developers in charge of the three sections. We’re going to talk in turn about our sections.

Google
Breakpad

Socorro
Server

Socorro UI
(reporter)

minidump_stackwalk

C++ Python

Friday, July 24, 2009

Our crash reporting system can be divided into three parts.

Breakpad - a google project - this code lives mainly within the Firefox application

Socorro (in two movements) the backend server and the user interface running at Mozilla.

written in three languages <click> <click> <click>

Ted, Austin and I are the three developers in charge of the three sections. We’re going to talk in turn about our sections.

Google
Breakpad

Socorro
Server

Socorro UI
(reporter)

minidump_stackwalk

C++ Python PHP

Friday, July 24, 2009

Our crash reporting system can be divided into three parts.

Breakpad - a google project - this code lives mainly within the Firefox application

Socorro (in two movements) the backend server and the user interface running at Mozilla.

written in three languages <click> <click> <click>

Ted, Austin and I are the three developers in charge of the three sections. We’re going to talk in turn about our sections.

Google Breakpad

Friday, July 24, 2009

Google Breakpad

•Open Source project started by Google

•BSD licensed:
http://code.google.com/p/google-breakpad/

•Client-side support for Linux (x86), Windows
(x86), OS X (x86/PPC), Solaris (x86/SPARC)

•Server-side runs on POSIX systems

Friday, July 24, 2009

Used by a few applications you might know: Firefox, Chrome, Google Earth
Supports a number of platforms as clients, the server side runs on POSIX systems.

Why Use It?

•For Mozilla:

•Hundreds of developers

•Hundreds of millions of users

•Difficult to reproduce issues

•Get crash reports from any user on a standard
release build

Friday, July 24, 2009

For us, it gives us these benefits:
The number of users is so much greater than the number of developers, so that larger group will always encounter problems that
developers never see. You may have timing sensitive bugs or bugs that only occur when certain third party software is installed.
For Mozilla, the sheer number of webpages on the internet guarantees that users will hit unique situations every day.
In addition, every user becomes a source of information about crashes.

Breakpad Pieces
•Build-time (src/tools/{platform}):

•dump_syms: extract debug symbols from
native format to textual format

•Client-side (src/client/{platform})

•Exception Handler

•Crash Report Sender

•Server-side (src/processor)
Friday, July 24, 2009

Breakpad consists of three separate sets of code:
* build time tool to extract debug symbols to a common textual format
* two client side libraries:
 - “Exception Handler” - catching crashes and doing something about it
 - “Crash Report Sender” - sending the results to a server for handling
* server side libraries and tools for turning binary reports into useful data

Breakpad Basics

•Build application with debug info

•Extract debug symbols to textual format
during build

•Install exception handler on startup

•Send crash report from exception handler

•Server marries crash report with debug
symbols to produce stack trace

Friday, July 24, 2009

Using Breakpad in your application can be broken down along those lines:
Steps you take when you build your application for distribution to users (build, extract debug info)
Steps your application takes to catch and submit crashes (handler, sender)
Steps the server takes to get the useful data out of the report (processor)

Exception Handler
•Create ExceptionHandler object with callback

•On crash, Breakpad writes crash data and calls
your callback

•Your callback does something useful

Friday, July 24, 2009

The exception handler is the key part that lets you handle crashes in your application. You provide a callback function, and when
the application crashes Breakpad writes out information about the state of the application to disk, then calls your callback with
the path to that data file (“minidump”). You can then do something useful with it (although probably in a separate process, since
this one has crashed!) In Firefox, we spawn a separate crash reporter process.

Crash report sender

•Varies per-OS, but boils down to:

•Send(URL, parameters, dumpfile)

•Sends via HTTP POST

•Not included for OS X (easy to do with Cocoa)

Friday, July 24, 2009

Once you have a crash report, you need to send it to your server for processing. Breakpad provides support for sending via HTTP
POST. The minidump is sent as a file upload, other params can be sent as form data.

Server-side

•minidump_stackwalk </path/to/dump>
[</path/to/symbols>]

•Produces stack trace, with function names
+ source info if available

•Intended as a “sample” application, but
Mozilla is using in production

•Breakpad libraries provide greater
flexibility at cost of writing more code

Friday, July 24, 2009

The final piece of Breakpad is the processor, which can take a crash report along with the symbols from the build and produce a
stack trace. The command line tool that does this is called minidump_stackwalk, it simply takes the crash report and symbol
path on the command line. You can go further by using the processor code as a library, but you’ll need to write some C++ glue
code.

Socorro Server

Friday, July 24, 2009

Socorro Server

•Collector

•Monitor

•Processor

•Data Aggregators as cron jobs

•Data Cleanup as cron jobs

Friday, July 24, 2009

The Socorro Server consists of several long running processes: the Collectors, the Monitor and the Processors.

There are also several processes that run as periodic cron jobs.

These cron jobs are in charge of generating aggregate information for reports as well as periodic system maintenance of file
system storage.

Friday, July 24, 2009

This is an overview of the data flow whole system. It shows the long running processes as well as the aggregate and clean up
jobs, just indicated as cron 1 through 3. There are actually more of them, but this is an overview, so we’re going to gloss over
some details.

You’ll notice here that we’ve got lots of different data storage areas. Off the the right of center, we’ve got our instance of
PostgreSQL. This is the heart of the system: it stores data about crashes as well as serves as a queuing system to coordinate the
timing of processes.

We’re going to look at the data flow - how crash information actually moves through the system

First, the collector.

Friday, July 24, 2009

First we’ll focus on Collector.

This is a python script running under Apache using mod-python. When Firefox crashes, in a last ditch effort before it quits, it
sends off an http post of crash information to these Collectors. There can be any number of them, load balanced out front with
whatever suits your fancy. We use Netscaler.

<CLICK>

When collector receives a crash, it examines the meta information about the crash: the product, the version, etc. At this point it
can make some snap decisions in a process called “throttling” on whether to pass the crash on for further processing, refuse it
or dump it into a deferred storage for later use.

Statistically, we don’t have to collect every crash. In fact, we don’t have that much disk space.

<CLICK>

<CLICK>

<CLICK>

When we finally do accept a crash (and we accept only about 10%), it get assigned a 32 character uuid and dropped into
“standard” storage.

Friday, July 24, 2009

First we’ll focus on Collector.

This is a python script running under Apache using mod-python. When Firefox crashes, in a last ditch effort before it quits, it
sends off an http post of crash information to these Collectors. There can be any number of them, load balanced out front with
whatever suits your fancy. We use Netscaler.

<CLICK>

When collector receives a crash, it examines the meta information about the crash: the product, the version, etc. At this point it
can make some snap decisions in a process called “throttling” on whether to pass the crash on for further processing, refuse it
or dump it into a deferred storage for later use.

Statistically, we don’t have to collect every crash. In fact, we don’t have that much disk space.

<CLICK>

<CLICK>

<CLICK>

When we finally do accept a crash (and we accept only about 10%), it get assigned a 32 character uuid and dropped into
“standard” storage.

Friday, July 24, 2009

First we’ll focus on Collector.

This is a python script running under Apache using mod-python. When Firefox crashes, in a last ditch effort before it quits, it
sends off an http post of crash information to these Collectors. There can be any number of them, load balanced out front with
whatever suits your fancy. We use Netscaler.

<CLICK>

When collector receives a crash, it examines the meta information about the crash: the product, the version, etc. At this point it
can make some snap decisions in a process called “throttling” on whether to pass the crash on for further processing, refuse it
or dump it into a deferred storage for later use.

Statistically, we don’t have to collect every crash. In fact, we don’t have that much disk space.

<CLICK>

<CLICK>

<CLICK>

When we finally do accept a crash (and we accept only about 10%), it get assigned a 32 character uuid and dropped into
“standard” storage.

Friday, July 24, 2009

First we’ll focus on Collector.

This is a python script running under Apache using mod-python. When Firefox crashes, in a last ditch effort before it quits, it
sends off an http post of crash information to these Collectors. There can be any number of them, load balanced out front with
whatever suits your fancy. We use Netscaler.

<CLICK>

When collector receives a crash, it examines the meta information about the crash: the product, the version, etc. At this point it
can make some snap decisions in a process called “throttling” on whether to pass the crash on for further processing, refuse it
or dump it into a deferred storage for later use.

Statistically, we don’t have to collect every crash. In fact, we don’t have that much disk space.

<CLICK>

<CLICK>

<CLICK>

When we finally do accept a crash (and we accept only about 10%), it get assigned a 32 character uuid and dropped into
“standard” storage.

Friday, July 24, 2009

First we’ll focus on Collector.

This is a python script running under Apache using mod-python. When Firefox crashes, in a last ditch effort before it quits, it
sends off an http post of crash information to these Collectors. There can be any number of them, load balanced out front with
whatever suits your fancy. We use Netscaler.

<CLICK>

When collector receives a crash, it examines the meta information about the crash: the product, the version, etc. At this point it
can make some snap decisions in a process called “throttling” on whether to pass the crash on for further processing, refuse it
or dump it into a deferred storage for later use.

Statistically, we don’t have to collect every crash. In fact, we don’t have that much disk space.

<CLICK>

<CLICK>

<CLICK>

When we finally do accept a crash (and we accept only about 10%), it get assigned a 32 character uuid and dropped into
“standard” storage.

File System Structure

Friday, July 24, 2009

We use file system storage like a hierarchical database. We want to be able to look up a crash with out having to spend any time
searching. With 2 million of these things, you can’t just dump them all into one directory.

We use a radix scheme to save crashes by name. Say we have a file called “aabbcc.json”

The “name” branch of this structure uses two characters at each directory level.

The “date” branch uses the same radix idea with datetimes. However, rather than having a data file at the leaf node, it has a
symbolic link over to the where the data is stored in the name branch.

We can rapidly lookup crashes either by name or date, without wasting time having to search.

Back to our data flow...

File System Structure

Friday, July 24, 2009

We use file system storage like a hierarchical database. We want to be able to look up a crash with out having to spend any time
searching. With 2 million of these things, you can’t just dump them all into one directory.

We use a radix scheme to save crashes by name. Say we have a file called “aabbcc.json”

The “name” branch of this structure uses two characters at each directory level.

The “date” branch uses the same radix idea with datetimes. However, rather than having a data file at the leaf node, it has a
symbolic link over to the where the data is stored in the name branch.

We can rapidly lookup crashes either by name or date, without wasting time having to search.

Back to our data flow...

Friday, July 24, 2009

<CLICK>

Friday, July 24, 2009

Now we’re going to look at Monitor, the ring master of this circus

Friday, July 24, 2009

We’ve got a crash waiting in “standard” storage. The monitor can detect that it’s there by following the date directory branches
of the file system.

<CLICK>

It doesn’t actually read the crash data, it just notes its existence and saves the name in the database.

<CLICK>

Friday, July 24, 2009

We’ve got a crash waiting in “standard” storage. The monitor can detect that it’s there by following the date directory branches
of the file system.

<CLICK>

It doesn’t actually read the crash data, it just notes its existence and saves the name in the database.

<CLICK>

Friday, July 24, 2009

We’ve got a crash waiting in “standard” storage. The monitor can detect that it’s there by following the date directory branches
of the file system.

<CLICK>

It doesn’t actually read the crash data, it just notes its existence and saves the name in the database.

<CLICK>

Socorro Monitor

•Watches file system storage for new crashes

•Schedules crashes to be processed

•Watches the database for priority jobs

•Monitors the health of Processors

•Maintains and cleans file system storage

Friday, July 24, 2009

We’ve already seen how monitor watches the file system storage and schedules crashes (at this point referred to as jobs) with
processors.

It also watches a special table in the database for priority job requests. Crash processing is not generally a real time activity.
Sometimes, we need to get the processed result quickly. Since Monitor is in charge of scheduling, it can let some crashes jump
the queue for immediate responses. That’s how jobs from that “deferred” storage can get processed.

Since it’s in charge of scheduling, monitor also watches the health of the processors. If a processor becomes unresponsive and
is not doing its work, the monitor has the power to take the processor’s jobs away from it and hand them off to a more
responsive processor.

Finally, monitor also is in charge of cleaning old files out of the file system storage. This task may be moved into a cron jon in
the future.

With all this stuff to do, it is not surprising that Monitor is a multithreaded application.

Process Control

Friday, July 24, 2009

In PostgreSQL, the Monitor uses these table for process control. Jobs are assigned to Processors by the Monitor.

Friday, July 24, 2009

Friday, July 24, 2009

Friday, July 24, 2009

We start with a crash dump saved in “standard” storage and meta information about the crash in the database in a queue for this
processor.

<CLICK>

The processor grabs its next job from the queue and using the meta information, grabs the files to be processed from
“standard” storage.

Once it has the crash dump, it invokes Google Breakpad’s minidump_stackwalk program to take the raw crash, remarry it with
symbol table information and then save the results.

<CLICK>

The original crash files are shuffled off to “Successful” storage. If something went wrong with minidump_stackwalk, the original
files may head down to “Failed” storage instead. These are optional steps, if configured to do so, processor could just throw the
originals away.

<CLICK>

The output of minidump_stackwalk is saved to processed dump storage. This will eventually be used by the UI.

<CLICK>

information parsed from the minidump_stackwalk results is saved in the database. This data is used in the cron jobs to great
aggregate reports.

Friday, July 24, 2009

We start with a crash dump saved in “standard” storage and meta information about the crash in the database in a queue for this
processor.

<CLICK>

The processor grabs its next job from the queue and using the meta information, grabs the files to be processed from
“standard” storage.

Once it has the crash dump, it invokes Google Breakpad’s minidump_stackwalk program to take the raw crash, remarry it with
symbol table information and then save the results.

<CLICK>

The original crash files are shuffled off to “Successful” storage. If something went wrong with minidump_stackwalk, the original
files may head down to “Failed” storage instead. These are optional steps, if configured to do so, processor could just throw the
originals away.

<CLICK>

The output of minidump_stackwalk is saved to processed dump storage. This will eventually be used by the UI.

<CLICK>

information parsed from the minidump_stackwalk results is saved in the database. This data is used in the cron jobs to great
aggregate reports.

Friday, July 24, 2009

We start with a crash dump saved in “standard” storage and meta information about the crash in the database in a queue for this
processor.

<CLICK>

The processor grabs its next job from the queue and using the meta information, grabs the files to be processed from
“standard” storage.

Once it has the crash dump, it invokes Google Breakpad’s minidump_stackwalk program to take the raw crash, remarry it with
symbol table information and then save the results.

<CLICK>

The original crash files are shuffled off to “Successful” storage. If something went wrong with minidump_stackwalk, the original
files may head down to “Failed” storage instead. These are optional steps, if configured to do so, processor could just throw the
originals away.

<CLICK>

The output of minidump_stackwalk is saved to processed dump storage. This will eventually be used by the UI.

<CLICK>

information parsed from the minidump_stackwalk results is saved in the database. This data is used in the cron jobs to great
aggregate reports.

Friday, July 24, 2009

We start with a crash dump saved in “standard” storage and meta information about the crash in the database in a queue for this
processor.

<CLICK>

The processor grabs its next job from the queue and using the meta information, grabs the files to be processed from
“standard” storage.

Once it has the crash dump, it invokes Google Breakpad’s minidump_stackwalk program to take the raw crash, remarry it with
symbol table information and then save the results.

<CLICK>

The original crash files are shuffled off to “Successful” storage. If something went wrong with minidump_stackwalk, the original
files may head down to “Failed” storage instead. These are optional steps, if configured to do so, processor could just throw the
originals away.

<CLICK>

The output of minidump_stackwalk is saved to processed dump storage. This will eventually be used by the UI.

<CLICK>

information parsed from the minidump_stackwalk results is saved in the database. This data is used in the cron jobs to great
aggregate reports.

Friday, July 24, 2009

We start with a crash dump saved in “standard” storage and meta information about the crash in the database in a queue for this
processor.

<CLICK>

The processor grabs its next job from the queue and using the meta information, grabs the files to be processed from
“standard” storage.

Once it has the crash dump, it invokes Google Breakpad’s minidump_stackwalk program to take the raw crash, remarry it with
symbol table information and then save the results.

<CLICK>

The original crash files are shuffled off to “Successful” storage. If something went wrong with minidump_stackwalk, the original
files may head down to “Failed” storage instead. These are optional steps, if configured to do so, processor could just throw the
originals away.

<CLICK>

The output of minidump_stackwalk is saved to processed dump storage. This will eventually be used by the UI.

<CLICK>

information parsed from the minidump_stackwalk results is saved in the database. This data is used in the cron jobs to great
aggregate reports.

Socorro Processor

•Watches a job queue in the database

•for each job found, applies minidump_stackwalk

•saves originals in “success” or “failed” storage

•saves processed crash in “processed dump”
storage

•saves parsed crash info in the database

Friday, July 24, 2009

ok, we’ve seen how the processors watch the job queue and applies minidump_stackwalk and then dumps the results into a file
system _and_ the database.

Database Crash Data

Friday, July 24, 2009

The reports, frames and extensions tables are partitioned. For efficiency in the database, there are many instances of these
tables each holding data from a range in time. Partitioning is implemented using PostgreSQL table inheritance.

Friday, July 24, 2009

<CLICK>

Friday, July 24, 2009

Cron Jobs

Friday, July 24, 2009

These are cluster of auxiliary applications that feed off the crash data in the database.

Cron Jobs

•mean time before failure

•top crasher by signature

•top crasher by url

•bugzilla associator

•file system cleaner

Friday, July 24, 2009

Data Aggregation Schema

Friday, July 24, 2009

These are the tables the support the “materialized views” of the crash data. These support the getting statistical information out
of the database more quickly than trying to regenerate it on demand.

Socorro UI
(reporter)

Friday, July 24, 2009

Friday, July 24, 2009

3 ways to play

•View Your Crash

•Search

•Trend Reports

Friday, July 24, 2009

View Your Crash

Friday, July 24, 2009

Friday, July 24, 2009

Friday, July 24, 2009

Friday, July 24, 2009

Friday, July 24, 2009

Friday, July 24, 2009

Friday, July 24, 2009

Search

Friday, July 24, 2009

Friday, July 24, 2009

Friday, July 24, 2009

Friday, July 24, 2009

Friday, July 24, 2009

Friday, July 24, 2009

Friday, July 24, 2009

Friday, July 24, 2009

Friday, July 24, 2009

Trend Reports

Friday, July 24, 2009

Friday, July 24, 2009

Friday, July 24, 2009

Friday, July 24, 2009

Friday, July 24, 2009

The Why and the How

Friday, July 24, 2009

Open Wins

Screenshot: Adriano Castro on Flickr http://www.flickr.com/photos/acastro

Friday, July 24, 2009

http://www.flickr.com/photos/acastro
http://www.flickr.com/photos/acastro

Open Has Limits

•Mozilla values privacy

•Project has vacillated over fields like email

•Urls and other data are aggregated and
truncated

•QA and Devs would love more types of crash
data, but privacy concerns trump these
enhancements

Friday, July 24, 2009

Development

•Evolutionary - Incremental

•Community Driven - Bugzilla

•No “benevolent dictator”

•Driven by the quest for Quality Software

Friday, July 24, 2009

Technology

• PHP / Kohana

• jQuery

• flot

• ezComponents

• Postgresql

• Memcached

The Internet

Friday, July 24, 2009

IRC: #breakpad (irc.mozilla.com)

http://code.google.com/p/google-breakpad/

http://code.google.com/p/socorro/

Crash Reporting:
Mozilla’s Open Source Solution

Friday, July 24, 2009

http://code.google.com/p/google-breakpad/
http://code.google.com/p/google-breakpad/
http://code.google.com/p/socorro/
http://code.google.com/p/socorro/

