Crash Reporting:

Mozilla’s Open Source Solution

K Lars Lohn
Ted Mielczarek
Austin King

Friday, July 24, 2009

Howdy, I’'m Lars from Mozilla, I’'m here today with my colleagues, Ted Mill-char-ek and Austin King to talk about Crash
Reporting.

What is 1t?

e 0o Mozilla Crash Reporter

We're Sorry

Firefox had a problem and crashed. We'll try to restore
your tabs and windows when it restarts.

To help us diagnose and fix the problem, you can send us

a crash report.

W Tell Mozilla about this crash so they can fix it
| Details...)

" lInclude the address of the page | was on
lz[Email me when more information is available

lars@mozilla.com

Your crash report will be submitted before you quit or
restart.

/_ Quit Firefox'\ (Restart Firefox)

Friday, July 24, 2009
Have you ever seen Firefox crash? Have you ever wondered what happens after you hit the “restart firefox” button?

In the next 45 minutes, we’re going to take you down the rabbit hole and show you what we do. We want our processes to be
open.

When you experience a problem with any Mozilla product, we want _everyone_, not just the developers, to watch the flow of
information about a problem for its initial occurrence, through data collection and triage, on to Bugzilla and to an eventual
resolution.

Crash reporting
1s the transmission of
information
to the developers
about the state of an application
during a catastrophic failure.

Crash reporting is the transmission of information about the state of an application during a catastrophic failure to the
developers.

The goal is to give the developers information that they would not otherwise have had.

Google SOCorro Socorro Ul
Breakpad Server (reporter)

minidump_ stackwalk

Friday, July 24, 2009
Our crash reporting system can be divided into three parts.

Breakpad - a google project - this code lives mainly within the Firefox application
Socorro (in two movements) the backend server and the user interface running at Mozilla.
written in three languages <click> <click> <click>

Ted, Austin and | are the three developers in charge of the three sections. We’re going to talk in turn about our sections.

Google SOCorro Socorro Ul
Breakpad Server (reporter)

minidump_ stackwalk

C++

Friday, July 24, 2009
Our crash reporting system can be divided into three parts.

Breakpad - a google project - this code lives mainly within the Firefox application
Socorro (in two movements) the backend server and the user interface running at Mozilla.
written in three languages <click> <click> <click>

Ted, Austin and | are the three developers in charge of the three sections. We’re going to talk in turn about our sections.

Google SOCorro Socorro Ul
Breakpad Server (reporter)

minidump_ stackwalk

C++ Python

Friday, July 24, 2009
Our crash reporting system can be divided into three parts.

Breakpad - a google project - this code lives mainly within the Firefox application
Socorro (in two movements) the backend server and the user interface running at Mozilla.
written in three languages <click> <click> <click>

Ted, Austin and | are the three developers in charge of the three sections. We’re going to talk in turn about our sections.

Google SOCorro Socorro Ul
Breakpad Server (reporter)

minidump_ stackwalk

C++ Python PHP

Friday, July 24, 2009
Our crash reporting system can be divided into three parts.

Breakpad - a google project - this code lives mainly within the Firefox application
Socorro (in two movements) the backend server and the user interface running at Mozilla.
written in three languages <click> <click> <click>

Ted, Austin and | are the three developers in charge of the three sections. We’re going to talk in turn about our sections.

Google Breakpad

Google Breakpad

Open Source project started by Google

BSD licensed:
http://code.google.com/p/google-breakpad/

Client-side support for Linux (x86), Windows
(x86), OS X (x86/PPC), Solaris (x86/SPARC)

Server-side runs on POSIX systems

| , Ju ,
Used by a few applications you might know: Firefox, Chrome, Google Earth
Supports a number of platforms as clients, the server side runs on POSIX systems.

Why Use It?

For Mozilla:

Hundreds of developers
Hundreds of millions of users

Difficult to reproduce issues

Get crash reports from any user on a standard
release build

Friday, July 24, 2009
For us, it gives us these benefits:

The number of users is so much greater than the number of developers, so that larger group will always encounter problems that
developers never see. You may have timing sensitive bugs or bugs that only occur when certain third party software is installed.

For Mozilla, the sheer number of webpages on the internet guarantees that users will hit unique situations every day.
In addition, every user becomes a source of information about crashes.

Breakpad Pieces

Build-time (src/tools/{platform}):

dump_syms: extract debug symbols from
native format to textual format

Client-side (src/client/{platform})
Exception Handler
Crash Report Sender

Server-side (src/processor)

Friday, July 24, 2009

Breakpad consists of three separate sets of code:

* build time tool to extract debug symbols to a common textual format

* two client side libraries:
- “Exception Handler” - catching crashes and doing something about it
- “Crash Report Sender” - sending the results to a server for handling

* server side libraries and tools for turning binary reports into useful data

Breakpad Basics

Build application with debug info

Extract debug symbols to textual format
during build

Install exception handler on startup
Send crash report from exception handler

Server marries crash report with debug
symbols to produce stack trace

Friday, July 24, 2009

Using Breakpad in your application can be broken down along those lines:

Steps you take when you build your application for distribution to users (build, extract debug info)
Steps your application takes to catch and submit crashes (handler, sender)

Steps the server takes to get the useful data out of the report (processor)

Exception Handler

Create ExceptionHandler object with callback

On crash, Breakpad writes crash data and calls
your callback

Your callback does something useful

Friday, July 24, 2009

The exception handler is the key part that lets you handle crashes in your application. You provide a callback function, and when
the application crashes Breakpad writes out information about the state of the application to disk, then calls your callback with

the path to that data file (*“minidump”). You can then do something useful with it (although probably in a separate process, since
this one has crashed!) In Firefox, we spawn a separate crash reporter process.

Crash report sender

Varies per-OS, but boils down to:
Send(URL, parameters, dumpfile)
Sends via HTTP POST

Not included for OS X (easy to do with Cocoa)

Friday, July 24, 2009

Once you have a crash report, you need to send it to your server for processing. Breakpad provides support for sending via HTTP
POST. The minidump is sent as a file upload, other params can be sent as form data.

Server-side

minidump_ stackwalk </path/to/dump>
| </path/to/symbols>]

Produces stack trace, with function names
+ source info if available

Intended as a “sample” application, but
Mozilla is using in production

Breakpad libraries provide greater
flexibility at cost of writing more code

Friday, July 24, 2009

The final piece of Breakpad is the processor, which can take a crash report along with the symbols from the build and produce a
stack trace. The command line tool that does this is called minidump_stackwalk, it simply takes the crash report and symbol
path on the command line. You can go further by using the processor code as a library, but you’ll need to write some C++ glue
code.

Socorro Server

Socorro Server

Collector

Monitor

Processor

Data Aggregators as cron jobs

Data Cleanup as cron jobs

Friday, July 24, 2009
The Socorro Server consists of several long running processes: the Collectors, the Monitor and the Processors.

There are also several processes that run as periodic cron jobs.

These cron jobs are in charge of generating aggregate information for reports as well as periodic system maintenance of file
system storage.

o (ot] ,< - (oo)
_ —
0
' H
T

R
e g

devs

C ron l

Firefoxen
rron 2 |

uon 3 -

I\\

bugzilla

Friday, July 24, 2009

This is an overview of the data flow whole system. It shows the long running processes as well as the aggregate and clean up

jobs, just indicated as cron 1 through 3. There are actually more of them, but this is an overview, so we’re going to gloss over
some details.

You’ll notice here that we’ve got lots of different data storage areas. Off the the right of center, we’ve got our instance of

PostgreSQL. This is the heart of the system: it stores data about crashes as well as serves as a queuing system to coordinate the
timing of processes.

We’re going to look at the data flow - how crash information actually moves through the system

First, the collector.

\I*
A‘l‘/

\

Firefoxen |

Friday, July 24, 2009
First we'll focus on Collector.

This is a python script running under Apache using mod-python. When Firefox crashes, in a last ditch effort before it quits, it
sends off an http post of crash information to these Collectors. There can be any number of them, load balanced out front with
whatever suits your fancy. We use Netscaler.

<CLICK>

When collector receives a crash, it examines the meta information about the crash: the product, the version, etc. At this point it

can make some snap decisions in a process called “throttling” on whether to pass the crash on for further processing, refuse it
or dump it into a deferred storage for later use.

Statistically, we don’t have to collect every crash. In fact, we don’t have that much disk space.

<CLICK>
<CLICK>

<CLICK>

When we finally do accept a crash (and we accept only about 10%), it get assigned a 32 character uuid and dropped into
“standard” storage.

|

Firefoxen |

Friday, July 24, 2009
First we'll focus on Collector.

This is a python script running under Apache using mod-python. When Firefox crashes, in a last ditch effort before it quits, it
sends off an http post of crash information to these Collectors. There can be any number of them, load balanced out front with
whatever suits your fancy. We use Netscaler.

<CLICK>

When collector receives a crash, it examines the meta information about the crash: the product, the version, etc. At this point it

can make some snap decisions in a process called “throttling” on whether to pass the crash on for further processing, refuse it
or dump it into a deferred storage for later use.

Statistically, we don’t have to collect every crash. In fact, we don’t have that much disk space.

<CLICK>
<CLICK>

<CLICK>

When we finally do accept a crash (and we accept only about 10%), it get assigned a 32 character uuid and dropped into
“standard” storage.

\I*
A‘l‘/

\

Firefoxen |

|

Friday, July 24, 2009
First we'll focus on Collector.

This is a python script running under Apache using mod-python. When Firefox crashes, in a last ditch effort before it quits, it
sends off an http post of crash information to these Collectors. There can be any number of them, load balanced out front with
whatever suits your fancy. We use Netscaler.

<CLICK>

When collector receives a crash, it examines the meta information about the crash: the product, the version, etc. At this point it

can make some snap decisions in a process called “throttling” on whether to pass the crash on for further processing, refuse it
or dump it into a deferred storage for later use.

Statistically, we don’t have to collect every crash. In fact, we don’t have that much disk space.

<CLICK>
<CLICK>

<CLICK>

When we finally do accept a crash (and we accept only about 10%), it get assigned a 32 character uuid and dropped into
“standard” storage.

\I*
A‘l‘/

\

Firefoxen |

|

Friday, July 24, 2009
First we'll focus on Collector.

This is a python script running under Apache using mod-python. When Firefox crashes, in a last ditch effort before it quits, it
sends off an http post of crash information to these Collectors. There can be any number of them, load balanced out front with
whatever suits your fancy. We use Netscaler.

<CLICK>

When collector receives a crash, it examines the meta information about the crash: the product, the version, etc. At this point it

can make some snap decisions in a process called “throttling” on whether to pass the crash on for further processing, refuse it
or dump it into a deferred storage for later use.

Statistically, we don’t have to collect every crash. In fact, we don’t have that much disk space.

<CLICK>
<CLICK>

<CLICK>

When we finally do accept a crash (and we accept only about 10%), it get assigned a 32 character uuid and dropped into
“standard” storage.

)

\I*
A‘l‘/

Firefoxen |

|

Friday, July 24, 2009
First we'll focus on Collector.

This is a python script running under Apache using mod-python. When Firefox crashes, in a last ditch effort before it quits, it
sends off an http post of crash information to these Collectors. There can be any number of them, load balanced out front with
whatever suits your fancy. We use Netscaler.

<CLICK>

When collector receives a crash, it examines the meta information about the crash: the product, the version, etc. At this point it

can make some snap decisions in a process called “throttling” on whether to pass the crash on for further processing, refuse it
or dump it into a deferred storage for later use.

Statistically, we don’t have to collect every crash. In fact, we don’t have that much disk space.

<CLICK>
<CLICK>

<CLICK>

When we finally do accept a crash (and we accept only about 10%), it get assigned a 32 character uuid and dropped into
“standard” storage.

File System Structure

year month day hour S min host name
interval
date 2008 1 01)(10 webhead(01l 0
2007 webhead(02 0
2006 ebhead(02 1
. . . ebhead03 0 UoTo

name . JUID. ¢

(UUID s a 32-digit identifier
beginning odddddd. L)

Friday, July 24, 2009

We use file system storage like a hierarchical database. We want to be able to look up a crash with out having to spend any time
searching. With 2 million of these things, you can’t just dump them all into one directory.

We use a radix scheme to save crashes by name. Say we have a file called “aabbcc.json”

The “name” branch of this structure uses two characters at each directory level.

The “date” branch uses the same radix idea with datetimes. However, rather than having a data file at the leaf node, it has a
symbolic link over to the where the data is stored in the name branch.

We can rapidly lookup crashes either by name or date, without wasting time having to search.

Back to our data flow...

File System Structure

year month day hour S min host name
interval
date 2008 D1 D1)C 10 webhead(O1l 0
2007 webhead(02 0
2006 webhead02 1
. . . webhead03 0 UuIp
JUID.json

name] (ITD

(UUID s a 32-digit identifier
beginning odddddd. L)

Friday, July 24, 2009

We use file system storage like a hierarchical database. We want to be able to look up a crash with out having to spend any time
searching. With 2 million of these things, you can’t just dump them all into one directory.

We use a radix scheme to save crashes by name. Say we have a file called “aabbcc.json”

The “name” branch of this structure uses two characters at each directory level.

The “date” branch uses the same radix idea with datetimes. However, rather than having a data file at the leaf node, it has a
symbolic link over to the where the data is stored in the name branch.

We can rapidly lookup crashes either by name or date, without wasting time having to search.

Back to our data flow...

©
N -
4'/

|

Firefoxen |

Friday, July 24, 2009
<CLICK>

|
- (Leotector
collector
o (o) ,< e (o)

v'j l l

Firefoxen
9., &
llIIIIIII

R
e g

devs

cron 1

cron 2 |

uon 3 -

I\\

bugzilla

=
_

Friday, July 24, 2009
Now we’re going to look at Monitor, the ring master of this circus

Mm

Friday, July 24, 2009

We’ve got a crash waiting in “standard” storage. The monitor can detect that it’s there by following the date directory branches
of the file system.

<CLICK>

It doesn’t actually read the crash data, it just notes its existence and saves the name in the database.
<CLICK>

Friday, July 24, 2009

We’ve got a crash waiting in “standard” storage. The monitor can detect that it’s there by following the date directory branches
of the file system.

<CLICK>

It doesn’t actually read the crash data, it just notes its existence and saves the name in the database.
<CLICK>

Mm

Friday, July 24, 2009

We’ve got a crash waiting in “standard” storage. The monitor can detect that it’s there by following the date directory branches
of the file system.

<CLICK>

It doesn’t actually read the crash data, it just notes its existence and saves the name in the database.
<CLICK>

Socorro Monitor

Watches file system storage for new crashes
Schedules crashes to be processed

Watches the database for priority jobs
Monitors the health of Processors

Maintains and cleans file system storage

Friday, July 24, 2009

We’ve already seen how monitor watches the file system storage and schedules crashes (at this point referred to as jobs) with
processors.

It also watches a special table in the database for priority job requests. Crash processing is not generally a real time activity.
Sometimes, we need to get the processed result quickly. Since Monitor is in charge of scheduling, it can let some crashes jump
the queue for immediate responses. That’s how jobs from that “deferred” storage can get processed.

Since it’s in charge of scheduling, monitor also watches the health of the processors. If a processor becomes unresponsive and

is not doing its work, the monitor has the power to take the processor’s jobs away from it and hand them off to a more
responsive processor.

Finally, monitor also is in charge of cleaning old files out of the file system storage. This task may be moved into a cron jon in
the future.

With all this stuff to do, it is not surprising that Monitor is a multithreaded application.

Process Control

jobs
id serial
pathname varchar (1024)
uuid varchar (50) processors
owner int4 > id serial
priority int4 name varchar (255)
queueddatetime timestamp startdatetime timestamp
starteddatetime timestamp lastseendatetime timestamp
completeddatetime timestamp
success bool
message text (2147483647)
. 21
nor\t\IJobS" . 22
T N : — JOD>—
priorityjobs priority_jobs_XX V\O"WT) jobs 23
jority g
uuid varchar (255) uuid varchar (255) prt

Friday, July 24, 2009
In PostgreSQL, the Monitor uses these table for process control. Jobs are assigned to Processors by the Monitor.

H

Friday, July 24, 2009

>

=8
-

Firefoxen
SO BINC
llllllll

=
_

I\\

—
e

cron l

cron 2 |

cron 3 -
bugzilla

devs

Friday, July 24, 2009

&l

o o
' > - —

We start with a crash dump saved in “standard” storage and meta information about the crash in the database in a queue for this
processor.

Friday, July 24, 2009

<CLICK>

The processor grabs its next job from the queue and using the meta information, grabs the files to be processed from
“standard” storage.

Once it has the crash dump, it invokes Google Breakpad’s minidump_stackwalk program to take the raw crash, remarry it with
symbol table information and then save the results.

<CLICK>

The original crash files are shuffled off to “Successful” storage. If something went wrong with minidump_stackwalk, the original

files may head down to “Failed” storage instead. These are optional steps, if configured to do so, processor could just throw the
originals away.

<CLICK>

The output of minidump_stackwalk is saved to processed dump storage. This will eventually be used by the UlI.
<CLICK>

information parsed from the minidump_stackwalk results is saved in the database. This data is used in the cron jobs to great
aggregate reports.

Y
S (&
' > E - >

SEA
Sls

We start with a crash dump saved in “standard” storage and meta information about the crash in the database in a queue for this
processor.

Friday, July 24, 2009

<CLICK>

The processor grabs its next job from the queue and using the meta information, grabs the files to be processed from
“standard” storage.

Once it has the crash dump, it invokes Google Breakpad’s minidump_stackwalk program to take the raw crash, remarry it with
symbol table information and then save the results.

<CLICK>

The original crash files are shuffled off to “Successful” storage. If something went wrong with minidump_stackwalk, the original

files may head down to “Failed” storage instead. These are optional steps, if configured to do so, processor could just throw the
originals away.

<CLICK>

The output of minidump_stackwalk is saved to processed dump storage. This will eventually be used by the UlI.
<CLICK>

information parsed from the minidump_stackwalk results is saved in the database. This data is used in the cron jobs to great
aggregate reports.

\

o o
_ " D

SEA

g O

We start with a crash dump saved in “standard” storage and meta information about the crash in the database in a queue for this
processor.

~
"\

Friday, July 24, 2009

<CLICK>

The processor grabs its next job from the queue and using the meta information, grabs the files to be processed from
“standard” storage.

Once it has the crash dump, it invokes Google Breakpad’s minidump_stackwalk program to take the raw crash, remarry it with
symbol table information and then save the results.

<CLICK>

The original crash files are shuffled off to “Successful” storage. If something went wrong with minidump_stackwalk, the original

files may head down to “Failed” storage instead. These are optional steps, if configured to do so, processor could just throw the
originals away.

<CLICK>

The output of minidump_stackwalk is saved to processed dump storage. This will eventually be used by the UlI.
<CLICK>

information parsed from the minidump_stackwalk results is saved in the database. This data is used in the cron jobs to great
aggregate reports.

\

o o
— " B

SEA

&l
(0

Friday, July 24, 2009

We start with a crash dump saved in “standard” storage and meta information about the crash in the database in a queue for this
processor.

<CLICK>

The processor grabs its next job from the queue and using the meta information, grabs the files to be processed from
“standard” storage.

Once it has the crash dump, it invokes Google Breakpad’s minidump_stackwalk program to take the raw crash, remarry it with
symbol table information and then save the results.

<CLICK>

The original crash files are shuffled off to “Successful” storage. If something went wrong with minidump_stackwalk, the original

files may head down to “Failed” storage instead. These are optional steps, if configured to do so, processor could just throw the
originals away.

<CLICK>

The output of minidump_stackwalk is saved to processed dump storage. This will eventually be used by the UlI.
<CLICK>

information parsed from the minidump_stackwalk results is saved in the database. This data is used in the cron jobs to great
aggregate reports.

o o
— " B

SEA *

&l
(0

Friday, July 24, 2009

We start with a crash dump saved in “standard” storage and meta information about the crash in the database in a queue for this
processor.

<CLICK>

The processor grabs its next job from the queue and using the meta information, grabs the files to be processed from
“standard” storage.

Once it has the crash dump, it invokes Google Breakpad’s minidump_stackwalk program to take the raw crash, remarry it with
symbol table information and then save the results.

<CLICK>

The original crash files are shuffled off to “Successful” storage. If something went wrong with minidump_stackwalk, the original

files may head down to “Failed” storage instead. These are optional steps, if configured to do so, processor could just throw the
originals away.

<CLICK>

The output of minidump_stackwalk is saved to processed dump storage. This will eventually be used by the UlI.
<CLICK>

information parsed from the minidump_stackwalk results is saved in the database. This data is used in the cron jobs to great
aggregate reports.

Socorro Processor

Watches a job queue in the database
for each job found, applies minidump_ stackwalk
saves originals in “success” or “failed” storage

saves processed crash in “processed dump”
storage

saves parsed crash info in the database

Friday, July 24, 2009

ok, we’ve seen how the processors watch the job queue and applies minidump_stackwalk and then dumps the results into a file
system _and_ the database.

Database Crash Data

reports

bug_associations

signature text (2147483547)
bug id int4

bugs

id "4

status text (2147483647)
resolution lext (2147483647)

short desc text (2147483647)

id
client_crash_date
date_processed
uuid

product

VErSIon

build

signature

url

nstall_age
ast_crash
uptime
cpu_name
cpu_info

@l

0s_name
Qs_version
ema

oulld_date

user_id
started_datetime
completed_datetime
SUCCEasS

fruncated
Drocassor_notes
user_commeants
app_notes
distributor

distnbutor_version

sanal
timeastampiz
umestamp
varchar (50)
varchar {30)
varchar (16)
varchar (30)
varchar (255)

varchar (255)

o

int4

int4

int4

varchar (100)
varchar (100)
varchar (255)
varchar (20)
varchar (100)
varchar (100)
varchar (100)
umestamp
varchar (50)
umestamp
timastamp
ool

bool

text (2147483647)
varchar (1024)
varchar (1024)
varchar (20)

varchar (20)

branches

product varchar (30)
version varchar (18)

branch varchar (24)

frames

report_id int4
data_processed timestamp
frame_num inta
signature varchar (255)

extensions

report_id ni4

date_processad timastamp
exlension_key n4

extension id

extension_verson varchar (

varchar (100)

(2]}

Friday, July 24, 2009

The reports, frames and extensions tables are partitioned. For efficiency in the database, there are many instances of these
tables each holding data from a range in time. Partitioning is implemented using PostgreSQL table inheritance.

processor

Friday, July 24, 2009

<CLICK>

| collector h

7 i

Firefoxen cron 2 |
@ processor
' - ~ cron3) ~—t—
|

D=y
96 PN

devs

cron l

/ I\
)00

bugzilla

=
_

Friday, July 24, 2009

Cron Jobs

@D
<<————+>—‘!@HE. -
|

bugzilla

Friday, July 24, 2009
These are cluster of auxiliary applications that feed off the crash data in the database.

Cron Jobs

mean time before failure
top crasher by signature
top crasher by url
bugzilla associator

file system cleaner

Data Aggregation Schema

product_visibility

productdims_id int4

start_date timestamp
end_dale timestamp
ignore bool

time_before_failure

productdims .
id sernal

id serial ‘ sum_uptime_seconds int4

product text (2147483647)

report count int4

version text (2147483647) productdims_id int4 osdims

release release enum (2147483647) osdims id int4 > id sadal
window_end timestamp os name varchar (100)
window_size interval (49) 0s_version varchar (100)

top_crashes_by_signature

id senal

count int4

uptime floatd (8.8)
signature text (2147483647)

productdims_id int4

osdims id int4

topcrashurlfactsreports
window end timestamp

id sernal - - ey
window size interval (49)

uuid varchar (50)

comments varchar (500)

topcrashurlfacts id int4

top_crashes_by_url

— \—> id seral

. urldims
top_crashes_by_url_signature count Int4 N
- uridims_id int4 > id serial
top _crashes_by ur id int4 y L . .
) productdims_id int4 domain varchar (255)
signature text (2147483647))) , ~
osdims_id int4 url varchar (255)
count int4 i
window_end timestamp

window size interval (49)

Friday, July 24, 2009

These are the tables the support the “materialized views” of the crash data. These support the getting statistical information out
of the database more quickly than trying to regenerate it on demand.

Socorro Ul
(reporter)

oo O Mozilla Crash Reports

6) F’)' (C‘) (X) (ﬁ) (-’; http://crash-stats.mozilla.com/

ﬁ V\ - (@' Creative Commons Q\

crash reports

Mozilla Crash Reports

Product Version: Operating System
All O All indows

Camino ac OS X

Firefox " inux

SeaMonkey v olaris

» Advanced Filters

(Filter Crash Reports)

Top Crashes By Url

Firefox 3.6a1pre

Full Report

Thunderbird 3.1a1pre

More ~ Trend Reports ~ Advanced Search

Top Crashes By Signature
1 JS_GetClass 217
2 _VEC _memzero 137
3 js3250.dII@0x3ae04 66
Full Report

Sunbird 1.0pre
Thunderbird 3.0b4pre

<« »(

Done

N

Friday, July 24, 2009

3 ways to play

View Your Crash
Search

Trend Reports

View Your Crash

o T o o

Submitted Crash Reports

- e

':;L/L/" LRE',,I k?’é} LR‘H‘J,I C._. about:crashes i
Submitted Crash Reports (Remove Reports)
Report ID Date Submitted
ad95cc92-acee-de2f-afea-7ace3d 2090608 6/8/09 8:25 PM
f75ed8de-bacf-4aad-adb5-11e792090608 6/8/09 8:23 PM
8f6c833a-24bc-41fb-8aa0-42c1f2090608 6/8/09 8:13 PM
efb2d4fe-f98e-4a46-93f4-69eb62090608 6/8/09 8:04 PM
9fddf8dd-cc9e-4cal-9aab-6644f2090507 5/7/09 7:56 PM
JabfdOfa-7f0d-4fe3-92d3-c06af2090421 4/21/09 8:19 AM
fe88a8b6-4f0c-4000-b793-3583c2090319 3/19/09 2:48 PM
d92ebf79-9858-450d-9868-0fe042090211 2/11/09 9:19 AM
a67d53d1-2674-42b5-9f37-029132090211 2/11/09 8:51 AM
c7fe5394-a34d-4f4c-9409-4c66f2090209 2/9/09 2:22 PM
36e53db2-c93b-42a0-b59d-817322090209 2/9/09 2:18 PM
940db996-19bd-4a63-aa86-4e5ac2081229 12/29/08 3:02 PM
67e34d92-1203-4bb7-855b-ed5920081119 11/19/08 10:31 AM
€191213d-f39d-4ac0-bbe5-7f5f20081119 11/19/08 10:30 AM

Friday, July 24, 2009

mN e ;N

[@ _VEC_memzero] - Firefox 3.6alpre Crash Report - Report ID: d425189f-148b-461c-ba3d-c6c0b2090721

/‘3—) . >
C/ :)' (C') (X) (ﬁ) (-:. http://crash-stats.mozilla.com/report/index/d42S189f-148b—461c—ba3d—c6c0b209’N‘V\. - (@' Creative Commons Q)

J

Advanced Search

Firefox + Thunderbird ~ More «

crash reports

Trend Reports ~

Firefox 3.6a1pre Crash Report [@_VEC_memzero]
ID: d425189f-148b-461c-ba3d-c6c0b2090721

Get Help

Signature: _VEC_memzero

Modules Raw Dump

Signature

uuID

Time

Uptime

Last Crash

Product

Version

Build ID

Branch

0s

OS Version

CPU

CPU Info

Crash Reason

Crash Address

User Comments

Processor Notes

_VEC_memzero
d4251891-148b-461c-ba3d-c6c0b2090721
2008-07-21 22:59:00.57631

2406

264597 seconds before submission

Firefox

3.6aipre

20090721044139

1.9.2

Windows NT

6.1.7100

x86

Genuinelntel family 6 model 23 stepping 10
EXCEPTION_ACCESS_VIOLATION
0x4fb03de

Was just closing a tab but the entirety of Minefield seem to close with it lol.

Related Bugs

D

Y

Done

VZ

Friday, July 24, 2009

OO0 [@ _VEC_memzero] - Firefox 3.6alpre Crash Report - Report ID: d425189f-148b-461c-ba3d-c6c0b2090721 (@)

6) F’)' (C‘) (X) (ﬁ) (-’; http://crash-stats.mozilla.com/report/index/d425189f-148b-461c-ba3d-c6c0b209 '{,3‘ v\ - C@'/ Creative Commons Q\

Firefox 3.6a1pre Crash Report [@_VEC_memzero] Get Help O

ID: d425189f-148b-461c-ba3d-c6c0b2090721
Signature: _VEC_memzero

Modules Raw Dump

Signature

uuID

Time

Uptime

Last Crash

Product

Version

Branch

0s

OS Version

CPU

CPU Info

Crash Reason

Crash Address

User Comments

Processor Notes

_VEC_memzero
d425189f-148b-461c-ba3d-c6c0b2090721
2009-07-21 22:59:00.57631

2406

264597 seconds before submission
Firefox

3.6a1pre

20090721044139

1.9.2

Windows NT

6.1.7100

x86

Genuinelntel family 6 model 23 stepping 10
EXCEPTION_ACCESS_VIOLATION
Ox4fb03de

Was just closing a tab but the entirety of Minefield seem to close with it lol.

Related Bugs

DUPLICATE

501322 RESOLVED Crash [@ _VEC_memzero] during shutdown
500675 RESOLVED Thunderbird 3.1a1pre Crash [@ _VEC_memzero]

_Crachinn Thraad

Friday, July 24, 2009

OO O

[@ _VEC_memzero] - Firefox 3.6alpre Crash Report - Report ID: d425189f-148b-461c-ba3d-c6c0b2090721

o

6) F’)' (C‘) (X) (ﬁ) (-’; http://crash-stats.mozilla.com/report/index/d425189f-148b-461c-ba3d-c6c0b209 1.7 v\ . C@'/ Creative Commons Q\

Crashing Thread

Frame|Module Signature [Expand] [Source O

0 mozert19.dil _VEC_memzero

1 xul.dil xul.dll@0x3e34ba

Show/hide other threads

Thread 1

Frame|Module Signature [Expand] Source

0 ntdll.dll ntdll.dil@0x1f861

1 kernel32.dll kernel32.dII@0x11168

2 kernel32.dll kernel32.dII@0x1118f

3 nspr4.dll _PR_MD_WAIT_CV nsprpub/prisre/md/windows/w35cv.c:280

< nspr4.dll _PR_WaitCondVar nsprpub/pr/srcithreads/combined/prucv.c:204

5 nspr4.dll PR_WaitCondVar nsprpub/prisrcithreads/combined/prucv.c:547

6 xul.dll TimerThread::Run xpcom/threads/TimerThread.cpp:344

7 xul.dll nsThread::ProcessNextEvent xpcom/threads/nsThread.cpp:527

8 xul.dll NS_ProcessNextEvent_P obj-firefox/xpcom/build/nsThreadUtils.cpp:230

9 xul.dll nsThread:: ThreadFunc xpcom/threads/nsThread.cpp:254

10 nspr4.dll _PR_NativeRunThread nsprpub/pr/src/threads/combined/pruthr.c:426

1 nspr4.dll pr_root nsprpub/prisrc/md/windows/w35thred.c:122

12 mozcrt19.dil _calithreadstartex obj-firefox/memory/jemalloc/crisrc/threadex.c:348

13 mozcrt19.dil _threadstartex obj-firefox/memory/jemalloc/crisrc/threadex.c:326

14 kernel32.dll kernel32.dIl@0x13f38

15 ntdll.dll ntdll.dIl@0x50408

16 ntdll.dll ntdll.dIl@0x503db

Thread 2

Frame|Module Signature [Expand] Source :
T = e e »<Ts

Done

Friday, July 24, 2009

OO0 0 mozilla-central: nsprpub/pr/src/md/windows /w95cv.c@f2a58ffcd00c (annotated) (D)

®_w>' (C) (X) (ﬁ) (;’J http://hg.mozilla.org/mozilla-central fannotate /f2a58ffcd00c/nsprpub/pr/src/mc [fq v\ - (@' " Creative Commons Q\
280

benjamin€l15272 rv = WaitForSingleObject(thred->md.blocked sema, msecs); o~

benjamin€l15272 281

benjamin€l15272 282 EnterCriticalSection(&(lock->mutex));

benjamin€15272 283

benjamin€l15272 284 PR_ASSERT(rv != WAIT_ ABANDONED);

benjamin€l15272 285 PR_ASSERT(rv != WAIT FAILED);

benjamin€15272 286 PR_ASSERT(rv != WAIT OBJECT 0 || thred->md.inCVWaitQueue == PR _FALSE);

benjamin€15272 287

benjamin€l15272 288 if (rv == WAIT TIMEOUT) (

benjamin@15272 289 if (thred->md.inCvVWaitQueue) {

benjamin€l15272 290 PR_ASSERT((cv->waitTail != NULL && cv->waitHead != NULL)

benjamin€15272 291 || (cv->waitTail == NULL && cv->waitEead == NULL));

benjamingl15272 292 cv=>nwait == 1;

benjamingl5272 293 thred->md.inCVWaitQueue = PR_FALSE;

benjamin€l15272 294 if (cv->waitHead == thred) {

benjamin€l15272 295 cv->waitHead = thred->md.next;

benjamin€15272 296 if (cv->waitHead == NULL) {

benjamin€15272 297 cv->waitTail = NULL;

benjamin€l15272 298 } else {

benjamin€l15272 299 cv->waitHead->md.prev = NULL;

benjamin€l15272 300 }

benjamin€l15272 301 } else {

benjamingl15272 302 PR_ASSERT(thred->md.prev != NULL);

benjamingl5272 303 thred->md.prev->md.next = thred->md.next;

benjamin€l15272 304 if (thred->md.next != NULL) {

benjamin€15272 305 thred->md.next->md.prev = thred->md.prev;

benjamin€15272 306 } else {

benjamin€l15272 307 PR_ASSERT(cv->waitTail == thred);

benjamingl15272 308 cv->waitTail = thred->md.prev;

benjaming15272 309 }

benjaming15272 310 }

benjamin€l15272 311 thred->md.next = thred->md.prev = NULL;

benjamin€l15272 312 } else {

benjamin€15272 313 /*

benjamin€l15272 314 * This thread must have been notified, but the -

benjamin€15272 315 * ReleaseSemaphore call happens after WaitForSingleObject A

benjamin€l15272 316 * times out. Wait on the semaphore again to make it) §
Done

N

Friday, July 24, 2009

oloKe, [@ _VEC_memzero] - Firefox 3.6alpre Crash Report - Report ID: d425189f-148b-461c-ba3d-c6c0b2090721 -
G/) ‘)' (C') (X) (ﬁ) (?, { http://crash-stats.mozilla.com/report/index/d425189f-148b-461c-ba3d-c6c0b209 ’N‘ v). (@' " Creative Commons Q\

Crash ID or Signature |

craSh reports Firefox + Thunderbird + More ~ Trend Reports ~ Advanced Search

Firefox 3.6a1pre Crash Report [@_VEC_memzero] Get Help ||

ID: d425189f-148b-461c-ba3d-c6c0b2090721
Signature: VEC_memzero

Detalils Modtles Raw Dump

Filename Version Debug Identifier Debug Filename

smime3.dIl 3.124.0 FD441C024E3B44D9B316836A69033F051 smime3.pdb

nssutil3.dll 3.124.0 189F37A165644A9E95CCD1DB70F5C73E1 nssutil3.pdb

plcd.dil 48.0.0 70561011889C4F5C950AES880573CF741 plc4.pdb

plds4.dll 48.0.0 5A4E10745154493ABF94CB4FAS4FBDCE1 plds4.pdb

ssi3.dll 3.124.0 D3A149E8977943998BCB8092D181227C1 ssi3.pdb

nss3.dll 3.124.0 75A3B3905D7B4E1CAD4409F339593E5A1 nss3.pdb

firefox.exe 1.9.2.3489 88ABAD54BE1048D2B616A14F6607426B2 firefox.pdb

softokn3.dll 3.124.0 43619D2FDBAC43F29B2A4BA64563887C1 softokn3.pdb

nssdbm3.dll 3.124.0 4F3F17935848439481CAE62B85DDCD7D1 nssdbm3.pdb

freebl3.dll 3.124.0 84A3018DD14B484297AF38972B5373751 freebl3.pdb

nssckbi.dll 1.75.0.0 731BD47F47C344C69BE0S0C4997F63961 nssckbi.pdb

nspr4.dll 48.0.0 E327C2DB03D94E198CCCB056A65268EC1 nsprd.pdb

xul.dll 1.9.2.3489 B9018363477E4AC9962D06989BFFDFEC2 xul.pdb

NPSWF32.dll 10.0.2.54 E214D1CB28F545C0A386B7554CD5410F1 NPSWF32.pdb

schannel.dll 6.1.7100.0 435BA528322D4EC98BA29394DB32A30D2 schannel.pdb

midimap.dli 6.1.7100.0 AB8C2774CC58D4A9099656AE1281E7AC72 midimap.pdb

msacm32.drv 6.1.7100.0 625BBCO9ABCD4328A6531070FACB64FA1 msacm32.pdb .

dbghelp.dll 6.1.7100.0 79B3E2040AES4E7DOB23FFA4046DE14E2 dbghelp.pdb |12
e AudinSes dll A1.71000 CARRANAANNNS14RAARASNT1ARARATNARCF22 _ AudinSes ndh » <] 1

Done Yy

Friday, July 24, 2009

OO0 0 [@ _VEC_memzero] - Firefox 3.6alpre Crash Report - Report ID: d425189f-148b-461c-ba3d-c6c0b2090721

@' (C) (X) (ﬁ) (s http://crash-stats.mozilla.com/report/index/d425189f- 148b-461c-ba3d-c6c0b209 1.7 V} - (@' " Creative Commons Q}

Advanced Search

craSh reports Firefox + Thunderbird + More ~ Trend Reports ~

Firefox 3.6a1pre Crash Report [@_VEC_memzero]

ID: d425189f-148b-461c-ba3d-c6c0b2090721
Signature: VEC_memzero

Details Modules RELAYN WY

Get Help

0S |Windows NT|6.1.7100

CPU|x86 |GenuineIntel family 6 model 23 stepping 10|2

Crash|EXCEPTION_ ACCESS_VIOLATION|O0x4fb03de|0

Module |smime3.d11|3.12.4.0|smime3.pdb|FD441C024E3B44D9B316836A69033F051|0x00020000|0x00037£££f|1
Module |[nssutil3.dl1|3.12.4.0|nssutil3.pdb|189F37A165644A9E95CCDIDB70F5C73E1|0x000£0000|0x00103£f£f£|0
Module |plc4.d11|/4.8.0.0|plcd.pdb|70561011889C4F5C950AES5880573CF741|0x00110000|0x00116£££|0

Module |plds4.d11|4.8.0.0|plds4.pdb|5A4E10745154493ABF94CB4FAS4FBDCEL | 0x00120000 | 0x00126£££|0

Module |ss13.d11|3.12.4.0|ss13.pdb|D3A149EB977943998BCB8092D181227C1|0x00130000|0xXx0014£f£££|0

Module |nss3.d11|3.12.4.0|nss3.pdb|75A383905D7B4E1CAD4409F339593E5A1|0x00200000 | 0x0029afff|0

Module |firefox.exe|1.9.2.3489|firefox.pdb|88ABAD54BE1048D2B616A14F6607426B82|0x00ec0000|0x00ed6£££|0
Module |softokn3.d11|3.12.4.0|softokn3.pdb|43619D2FDBAC43F29B2A4BA64563887C1|0x02430000|0x02455£££|0
Module |nssdbm3.d11|3.12.4.0|nssdbm3.pdb|4F3F17935848439481CAE62B85DDCD7D1 | 0x02a00000|0x02a17£f££|0
Module |freebl3.d11|3.12.4.0|freebl3.pdb|84A3018DD14B484297AF38972B5373751|0x03cb0000|0x03cf0£f££f|0
Module |nssckbi.dll|1.75.0.0|nssckbi.pdb|7318BD47F47C344C69BE090C4997F63961|0x04800000|0x0484bEf£f|0
Module |nspr4.dll|4.8.0.0|nspr4.pdb|E327C2DB03D94E198CCCB056A65268ECL | 0x10000000|0x10028£££|0

Module |xul.dl1|1.9.2.3489|xul.pdb|B9018363477E4AC9962D06989BFFDFEC2 | 0x6de90000 | 0x6e9adfff |0

Module |NPSWF32.d11|10.0.2.54 | NPSWF32.pdb|E214D1CB28F545C9A386B7554CD5410F1 |0x6£540000| 0x6fa66££f |0
Module |schannel.dl1|6.1.7100.0|schannel.pdb|435BA528322D4EC98BA29394DB32A30D2 | 0x6£c70000 | 0x6fcaB8fff |0
Module |midimap.dll|6.1.7100.0|midimap.pdb|A8C2774CC58D4A9099656AE1281E7ACT2|0x717c0000|0x717c6££ff|0
Module |msacm32.drv|6.1.7100.0|msacm32.pdb|625BBCO9ABCD4328A6531070FACB864FAL|0x717d0000|0x717d7£££|0
Module |dbghelp.dll|6.1.7100.0|dbghelp.pdb|79B3E2040AES4ET7D9B23FFA4046DE14E2 | 0x718a0000|0x7198bfff|0
Module |AudioSes.dl1|6.1.7100.0|AudioSes.pdb|C68AD44DD0514B3984501693A7036CF22|0x71990000|0x719c5£££|0
Module |avrt.dl1l|6.1.7100.0|avrt.pdb|FO1E2E77841844A598746CDE69982B3A2 | 0x719d40000| 0x719d6£££ |0

Module |ksuser.dll|6.1.7100.0|ksuser.pdb|CAD77320EF364F05B7D6EOF891FE6CF72|0x719e0000|0x719e3£f££|0
Module |wdmaud.drv|6.1.7100.0 |wdmaud.pdb|D2BDD113556142BBB66F460B0E2881EF2 | 0x719£0000|0x71alffff|0
Module |wsock32.d11|6.1.7100.0|wsock32.pdb|96E9CBECFA2B40BTAT76F5A7410CC27812|0x71a40000|0x71a46££ff|0
Module |MMDevAPI.d11|6.1.7100.0|MMDevAPI.pdb|E35EAD6FFEEB499A9A99A2B2FFF6FEE72|0x71a£0000|0x71b28£££|0

Wl

<«/»l

Done

VZ

Friday, July 24, 2009

Query Results - Mozilla Crash Reports
(:T\'n- (@) (x) (a) (ol hup: h ill #
& >) J(A) () r ttp://crash-stats.mozilla.com/query/query

T ’ , N
wy) " (@' Creative Commons Q)

Firefox + Thunderbird + More ~ Trend Reports ~ Advanced Search

Mozilla Crash Reports

Product Version:

Operating System
All 0 All 0 Windows
Camino Firefox 3.0 Mac OS X
Firefox .| [Firefox 3.0.1 .| |Linux
SeaMonkey v| Firefox 3.0.10 v Solaris

» Advanced Filters

Branch: Occurs before Within the last
19 ' 1 [Weeks :]
180

=3 Stack Signature

[sexacty)

v

(Filter Crash Reports)

Done

Friday, July 24, 2009

66 Query Results - Mozilla Crash Reports

(D)

6) P)' CC) CX) (ﬁ) (_q‘,‘_ﬁfhttp://crash-stats.mozilIa.com/query/query?product=Firefox&version=Firefox%3A3.E{} ') - @fﬁ:cfeative Commons Q)

—

Query Results r

Results within 1 weeks of now, and the product is one of Firefox, and the version is one of Firefox:3.6a1pre, and the platform is one of mac.

Rank $ Signature $ #$ Win$s Mac$ Ling Sol$ Bugzllalds E

1 PORT_ZFree_Util 1 0 11 0 0

2 nangjit::Assembler.:nPatchBranch(unsigned char®, unsigned char*) 8 0 8 0 0 "

3 JS_GetClass 6 0 6 0 0 502678, 502505, More

4 @0x0 | BuildTextRunsScanner::ScanFrame(nsIFrame®) 6 0 6 0 0

5 Flash_EnforceLocalSecurity 6 0 6 0 0 486805, More

6 PR_EnumerateAddrinfo 5 0 5 0 0 502360, More

7 4 0 4 0 0

8 nsContentSink::ProcessHeaderData(nslAtom*, nsAString_internal const&, nsiContent*) 4 0 4 0 0 502275, More

9 CoreFoundation@Cxcat0 3 0 3 0 0 e/

10 nsBaseWidget::Destroy() 3 0 3 0 0 503196, 470487, More

11 nsFocusManager::GetCommonAncestor{nsPIDOMWindow*, nsPIDOMWindow®*) 2 0 2 0 0

12 @;(;30 | nsinlineFrame::Reflow(nsPresContext®, nsHTMLReflowMetrics&, nsHTMLReflowState const&, unsigned 2 0 2 0 0

in

13 nsSVGGraphicElement::GetTransformToElement(nsIDOMSVGE/ement*®, nsIDOMSVGMatrix**) 2 0 2 0 0

14 libmozjs.dylib@0x2f8f4 2 0 2 0 0

15 libmozjs.dylib@0x2fde0 2 0 2 0 0

16 nsHtmISTreeBuilder::popOnEof() 2 0 2 0 0

17 js_MonitorLoopEdge(JSContext*, unsigned int&) 2 0 2 0 0 500936, 498169, 480822, More

18 NSSRWLock_LockRead_Util 1 0 1 0 0 427715, 498455, More

19 XUL@0x20cf7a 1 0 1 0 0

20 AffixMgr::suffix_check(char const®, int, int, AffEntry®, char**, int, int*, unsigned short, unsigned short, char) 1 0 1 0 0

21 nsCrasher::Crash(short) 1 0 1 0 0

22 libobjc.A.dylib@0xaSc1 1 0 1 0 0

23 Flash Player@0x3933e6 1 0 1 0 0 \:

24 nsJPEGDecoder::ProcessDatalchar const®, unsigned int, unsigned int*) 1 0 1 0 0 i
Done /i

Friday, July 24, 2009

Crash Reports in Flash_EnforcelLocalSecurity

@' (C) (X) (ﬁ) (o i http://crash-stats.mozilla.com/report/list?product=Firefox&version=Firefox%3A3.6a. ’N‘ Vj - (@' " Creative Commons Q}

Crash Reports in Flash_EnforcelLocalSecurity
Results within 1 weeks of now, and the product is one of Firefox, and the version is one of Firefox:3.6a1pre, and the platform is one of mac.

Graph Table Bugzilla

Date s
2008-07-21 00:12

2009-07-20 16:086

2009-07-17 02:47

2009-07-16 19:14

2009-07-15 12:41

2009-07-15 12:15

Product$ Version$

Firefox

Firefox

Firefox

Firefox

Firefox

Firefox

crash reports

Firefox ~

Thunderbird ~

Trend Repo

rs «

Advanced Search

3.6alpre

3.6a1pre

3.6a1pre

3.6a1pre

3.6a1pre

3.6a1pre

Build s
20090720031604

20090720031604

20090702031635

20090613032901

20090715031744

20090712031423

0s

Mac OS X 10.5.7
9J61

Mac OS X 10.5.7
9J61

Mac OS X 10.4.11
852167

Mac OS X 10.5.7
9J61

Mac OS X 10.5.7
9J61

Mac OS X 10.5.7
9J61

4

CPU

x86

x86

x86

x86

x86

x86

Reason

EXC_BAD_ACCESS/
KERN_PROTECTION_FAILURE

EXC_BAD_ACCESS/
KERN_PROTECTION_FAILURE

EXC_BAD_ACCESS/
KERN_INVALID_ADDRESS

EXC_BAD_ACCESS/
KERN_INVALID_ADDRESS

EXC_BAD_ACCESS/
KERN_PROTECTION_FAILURE

EXC_BAD_ACCESS/
KERN_INVALID_ADDRESS

4

Address ¢

Oxffff0269

0Ox1bf7db62

Ox1bbac8bf

0x1d32f2ad

Oxffff0269

0x1533a817

Uptime &
12985

349

181690

2573

8286

238430

./

<« »l

Done

N

Friday, July 24, 2009

OO0 Crash Reports in Flash_EnforceLocalSecurity

G/) b)' (C‘) (X) (ﬁ) (?, i http://crash-stats.mozilla.com/report/list?product=Firefox&version=Firefox%3A3.6a. ’N‘ v \ - (@' " Creative Commons Qw

Firefox + Thunderbird~ More ~ Trend Reports ~

Crash Reports in Flash_EnforcelLocalSecurity
Results within 1 weeks of now, and the product is one of Firefox, and the version is one of Firefox:3.6a1pre, and the platform is one of mac.

m Table Reports Bugzilla

Advanced Search

Crashes By Build
I Win I Mac Lin I so
2.0)
1.5
1.00) Q O
0.5
0.0 Qe Qe O Q)
06M13 07102 0712 0715 07720

<« »l

Done

N

Friday, July 24, 2009

OO O Crash Reports in _VEC_memzero

D

Firefox + Thunderbird ~

crash reports

Crash Reports in _VEC_memzero
Results within 1 weeks of now, and the product is one of Firefox, and the version is one of Firefox:3.6a1pre.

m Table Reports

Bugzilla

More «

@' (C) (X) (ﬁ) (o i http://crash-stats.mozilla.com/report/list?product=Firefox&version=Firefox%3A3.6a. ’N‘ Vj - (@' " Creative Commons Q}

Trend Reports ~

Advanced Search

Crashes By Build

I Win I Mac I s

B Lin

75

50

25

0
o715

06/23

06/26 0&/27 06/28 07/01 07/03 Q7/06 07/08 07108 o712 0713 07114

07116

0717

0719 07/20 o721

./

<« »l

Done

N

Friday, July 24, 2009

OO0 Crash Reports in Flash_EnforceLocalSecurity

C)

6) ’)' (C‘) (X) (ﬁ) (?, http: //crash-stats.mozilla.com/report/list?product=Firefox&version=Firefox%3A3.6a. 1.7 ¥ pE (@' " Creative Commons Qw

Crash reports .o sess woe mescnesons-

Crash Reports in Flash_EnforcelLocalSecurity
Results within 1 weeks of now, and the product is one of Firefox, and the version is one of Firefox:3.6a1pre, and the platform is one of mac.

Graph Table Reports

Advanced Search

Bugs for Flash_EnforceLocalSecurity

OPEN
486805 UNCONFIRMED Camino "unexpectedly quits" [@ Flash_EnforcelLocalSecurity] on some video-heavy sites

<« »l

Done

N

Friday, July 24, 2009

Crash Reports in Flash_EnforcelLocalSecurity

@' (C) (X) (ﬁ) (o i http://crash-stats.mozilla.com/report/list?product=Firefox&version=Firefox%3A3.6a. ’N‘ Vj - (@' " Creative Commons Q}

Crash Reports in Flash_EnforcelLocalSecurity
Results within 1 weeks of now, and the product is one of Firefox, and the version is one of Firefox:3.6a1pre, and the platform is one of mac.

Graph Table Bugzilla

Date s
2008-07-21 00:12

2009-07-20 16:086

2009-07-17 02:47

2009-07-16 19:14

2009-07-15 12:41

2009-07-15 12:15

Product$ Version$

Firefox

Firefox

Firefox

Firefox

Firefox

Firefox

crash reports

Firefox ~

Thunderbird ~

Trend Repo

rs «

Advanced Search

3.6alpre

3.6a1pre

3.6a1pre

3.6a1pre

3.6a1pre

3.6a1pre

Build s
20090720031604

20090720031604

20090702031635

20090613032901

20090715031744

20090712031423

0s

Mac OS X 10.5.7
9J61

Mac OS X 10.5.7
9J61

Mac OS X 10.4.11
852167

Mac OS X 10.5.7
9J61

Mac OS X 10.5.7
9J61

Mac OS X 10.5.7
9J61

4

CPU

x86

x86

x86

x86

x86

x86

Reason

EXC_BAD_ACCESS/
KERN_PROTECTION_FAILURE

EXC_BAD_ACCESS/
KERN_PROTECTION_FAILURE

EXC_BAD_ACCESS/
KERN_INVALID_ADDRESS

EXC_BAD_ACCESS/
KERN_INVALID_ADDRESS

EXC_BAD_ACCESS/
KERN_PROTECTION_FAILURE

EXC_BAD_ACCESS/
KERN_INVALID_ADDRESS

4

Address ¢

Oxffff0269

0Ox1bf7db62

Ox1bbac8bf

0x1d32f2ad

Oxffff0269

0x1533a817

Uptime &
12985

349

181690

2573

8286

238430

./

<« »l

Done

N

Friday, July 24, 2009

mN e ;N

[@ Flash_EnforcelocalSecurity] - Firefox 3.6alpre Crash Report - Report ID: ddb8ab07-3bdb-4c92-8228-c0f7d2090721

Q/j :)' (C') (X) (ﬁ) (-:. http://crash-stats.mozilla.com/report/index/ddb8ab07-3bdb-4c92-8228-c0f7d20¢S 17 v) (@' " Creative Commons Q)

crash reports

Firefox «~

Thunderbird ~

Firefox 3.6a1pre Crash Report [@Flash_EnforceLocalSecurity]
ID: ddb8ab07-3bdb-4c92-8228-c0f7d2090721

Signature: Flash_EnforcelLocalSecurity

Modules Raw Dump

More «

Prmebh I Ar O b 1o
orasn |,Er : rf._—, ignature

Trend Reports ~

J

Advanced Search

Get Help

Signature

uuID

Time

Uptime

Last Crash

Product

Version

Build ID

Branch

0s

OS Version

CPU

CPU Info

Crash Reason

Crash Address

User Comments

Processor Notes

Flash_EnforceLocalSecurity
ddb8ab07-3bdb-4c92-8228-c0f7d2090721
2009-07-21 00:12:17.284743

12985

12992 seconds before submission

Firefox

3.6aipre

20090720031604

19.2

Mac OS X

10.5.7 9J61

x86

Genuinelntel family 6 model 15 stepping 10

EXC_BAD_ACCESS / KERN_PROTECTION_FAILURE

0xffff0269

Related Bugs

D

./

Y

Done

VZ

Friday, July 24, 2009

Trend Reports

IAI |’\ ‘AV

Top Crashers for Firefox 3.6alpre

g v) (@' " Creative Commons Q\

@)' (C') (X) (ﬁ) (?, i http://crash-stats.mozilla.com/topcrasher/byversion/Firefox/3.6alpre

crash reports

Top Crashers for Firefox 3.6a1pre
Below are the top 100 crashers as of 2009-07-08 07:46:32.

Thunderbird ~

More «

Trend Reports ~

|

Advanced Search

Rank Signature = Win Lin Mac

1 _VEC_memzero 160 160 0 0

2 JS_GetClass 158 140 0 18

3 fastzero_| 68 68 0 0

4 nsContentSink::ProcessHeaderData(nslAtom*, nsAString_internal const&, nslContent*) 62 45 5 12

5 183250.4dIl@0x3ae04 59 59 0 0

6 js_Interpret 58 56 1 1

7 @0x0 57 |57 0 0

8 strien 54 53 0 1

9 nsAlertsiconListener::SendClosed() 50 0 50 0

10 memset 47 47 0 0

11 nsFocusManager::GetCommonAncestor(nsPIDOMWindow®, nsPIDOMWindow®) 37 32 0 5

12 183250.4Il@0x2e9b6 32 32 0 0

13 RtEnterCriticalSection 30 30 0 0

14 @O0x0 | libflashplayer.so@0x1c8bdc 19 0 19 0

15 npjaval3.di@0x1674 17 17 0 0

16 strchr | XPT_DoCString 17 17 0 0

17 free | PORT_ZFree_Util 17 17 0 0

18 NPJava13.dIl@0x12e7 16 16 0 0

19 TraceRecorder::.compile(JSTraceMonitor*) 16 16 0 0 -

20 BuildTextRunsScanner::ScanFrame(nsIFrame®) 16 14 2 0 ' :
Done Yy

Friday, July 24, 2009

OO O

Top Crashers for Firefox 3.5

v v)e (@' " Creative Commons Q)

@)' (C') (X) (ﬁ) (?, i http://crash-stats.mozilla.com/topcrasher/byurl/Firefox/3.5

crash reports

Top Crashers By URL for Firefox 3.5
Below are the top crash signatures by URL from 2009-07-08 to 2009-07-22
Switch to by breakdown by Domain

Firefox «

Thunderbird ~

More «

Trend Reports ~

|

Advanced Search

URL =
2] httpinwww bitd.des # 0
NPSWF32.dIl@0x5b2c8 28
NPSWF32.dli@0xbee93 8
NPSWF32.dIl@0x5aa48 4
http:/ipages.ebay.deiviewitemitutorial .html # 17
El http:/iwww.apple.comftrailers/weinstein/inglouricusbasterds/ # 15
QuickTimeH264.qtx@0x78eal 15
B http://apps.facebook.com/restaurantcity/ # 12
NPSWF32.dIl@0x1e6afd 12
|E| http://apps.facebook.com/farmtown/play/ # 10
NPSWF32.dIl@0x77540 5
memmove 3
NPSWF32.dIl@0x775b1 2
E http://s3.vuaphapthuat.zooz.vn/s/s7/index.php # 8
NPSWF32.dIl@0x1c721a 5
NPSWF32.dIl@0x1c6168 4
E http:/Awww.moshimonsters.com/monsters # 8 ‘;
NPSWF32.dIl@0x216821 - v
Done /i

Friday, July 24, 2009

Oop Lrasners 1or rirerox

@_’)’ (C) (X) (ﬁ) (__-‘,__(fhttp://crash-stats.mozilIa.com/topcrasher/byurI/Firefox/B.1b2

1 we Top Crashers for Firefox 3.1b2

mozilla crash-stats

Top Crashers By URL for Firefox 3.1b2

Below are the top crash signatures by URL from 2009-06-25 to 2009-07-09
Switch to by breakdown by Domain

Mozilla Developer v

URL -
-
http:/wwaw.orkut.co.in/Main#Home aspx # 34
hitp:/is3.vuaphapthuat.zooz vnis/s 7/index.php # 19
hitp:/iwwaw.baidu.com/ # 12
hitp:/leducar sc.usp.bribiologia/textos/m a_txt5.html # 10
http:/fwwaw.facebook.com/home php # 10
hito:/www.tianya.enffocus/ # 9
hitp:fiwww.126.com/ # 8
hitp:/iwww.myspace.com/4 19996227 # 6
hito:/fwwav.cosplayzone.net/bbs/thread-112655-1-1.html # 4
hitp://club.6park. cominetstar/first1.shtml # 4
hitp:/iwww.pormotegue.net/Tv04 htm # 4
hito:/buonchuyen.infoltin-tuc-shock-hangtoi-di-qoi-dau-om-6231.him| # 4
hitp:/iwww.tianya. cnffocus/index shtml # 4
hitp:/iwww.crazyprofile.com/water _effectiwater effect.asp # 4
hitp:/lapps.51.com/farm # 4
htto:/iwww.shtyle fmhome.do # 3
hitp:/fwwaw.meebo.com/ # 3
hitp:/iwww.socnhi.comichupanh/ # 3 L
hitp:/fwwaw.camacity.info/ # 3 3
2y, 4 -

Friday, July 24, 2009

OO0

MTBF of Firefox (major) (@)

@_P)' LGN) (f) (_g‘,i,_{__fhttp://crash-stats.mozilIa.com/mtbf/of/Firefox/major

1 ?. MTBF of Firefox (major)

Mean Time Before Failure

mozilla crash-stats

Mozilla Developer

Firefox major re|eases Release type:Major Milestone Development
Firetox 3.0.4
Firetox 3.0.5
I Firetox 3.0.6
2500000 Bl Firefox 3.0.7
Il Firetox 3.0.8
2000000

1500000
1000000
o »
.
. . A
500000 o .‘
’
“
.
h
™R : A"?‘ﬁ"‘ "
O : eg e e, . ‘.00 v 2 ' o
- N AR GC DAL T RO - . o o \J W
e_e . . . ’ .
.I.l. O - - . - L™)) .
0 5 10 15 20 25 30 35 55

Average number of seconds before a crash. Day 0 of release through day 60.

Drill down on OS

Want to slice and dice? CSV Formatted Raw Data

Firefox 3.0.4- MTBF 4378 seconds based on 2360938 crash reports of 2058808 users (blackboxen) from period between 2008-11-05 and 2009-01-03
Firefox 3.0.5- MTBF 25551 seconds based on 4903072 crash reports of 4068321 users (blackboxen) from period between 2008-12-10 and 2009-02-07
Firefox 3.0.6- MTBF 3206 seconds based on 2940288 crash reports of 436 users (blackboxen) from period between 2009-02-03 and 2009-04-03
Firefox 3.0.7- MTBF 1077 seconds based on 1093388 crash reports of 0 users (blackboxen) from period between 2009-03-04 and 2009-05-02

Firefox 3.0.8- MTBF 4146 seconds based on 2828870 crash reports of O users (blackboxen) from period between 2008-03-27 and 2009-05-25

Done

RS

Friday, July 24, 2009

The Why and the How

Open Wins

Restart (Shut Down)

Screenshot: Adriano Castro on Flickr http://www.flickr.com/photos/acastro

Friday, July 24, 2009

http://www.flickr.com/photos/acastro
http://www.flickr.com/photos/acastro

Open Has Limits

Mozilla values privacy
Project has vacillated over fields like email

Urls and other data are aggregated and
truncated

QA and Devs would love more types of crash
data, but privacy concerns trump these
enhancements

Development

Evolutionary - Incremental
Community Driven - Bugzilla
No “benevolent dictator”

Driven by the quest for Quality Software

Technology
e PHP / Kohana o flot

* jQuery e ezComponents

-

e Postgresql

- e Memcached

T Internet

Crash Reporting:

Mozilla’s Open Source Solution

IRC: #breakpad (irc.mozilla.com)
http://code.google.com/p/google-breakpad/
http://code.google.com/p/socorro/

Friday, July 24, 2009

http://code.google.com/p/google-breakpad/
http://code.google.com/p/google-breakpad/
http://code.google.com/p/socorro/
http://code.google.com/p/socorro/

