TOWARDSA GENERIC AND ADAPTABLE J2EE-BASED
FRAMEWORK FOR ENGINEERING PERSONALIZABLE
“MY” PORTALS

Fernando Bellas, Daniel Fernandez, 1ago Toral and Abd Muifio
Department of Information and Communications Technologies. University of A Corufia.
Facultad de Informética. Campus de Elvifia. 15071. A Corufia. Spain
fbellas@udc.es, email @danigarrido.com, iagotq@lycos.com and abel.muinho@mundo-r.com

ABSTRACT

There exist many portal servers that support the construction of personalizable “My” portals, that is, portalsthat alow the
user to have one or more personal pages composed of personalizable srvices. The main drawback of current portal
serversisits lack of generality and adaptability. This paper presents the approach we are following in the new version of
MyPersonalizer, a J2EE-based framework for engineering personalizable “My” portals. My Persondlizer is being
structured according to the Model-View-Controller (MVC) architectural pattern, providing generic and adaptable model
and controller layers that implement the typical use cases of aMy portal. The controller layer is built upon Jakarta Struts,
“de facto” MV C framework for J2EE web applications and is tightly integrated with it. So, in order to build aMy portal,
developers implement the portal view as JSP pages by using Struts and JSTL tags, integrate personalized service
responses, specify portal configuration and maybe redefine some policiesif necessary.

KEYWORDS
Web Engineering, Personalized Web Sites and Services.

1. INTRODUCTION

Internet portals, such as Yahoo!, Excite, Lycos etc., offer many sarvices (weether, news, sports, €c.)
providing a huge amount of information to the user. In order to help the user in the access to the information,
many of these portds dso provide persondized versons, the so cdled "My" portas (my.yahoo.com,
my.excitecom, my.lycoscom, ec). These portds dlow the user to have one or more persond pages
composed of a number of persondizable services that the user sdects from a paette of avalable services.
Each of these sarvices is displayed with a button bar (edit, maximize/minimize, dedtroy, etc) and an
information area. The edit button dlows the user to access a persondization wizard (form) for customizing
the service (eg. to sdect sections and the total number of headlines for a news headlines service), so that
such a service will present information in its area according to the user's persondization (eg. the number of
news headlines corresponding to the sdected sections) whenever the usr accesses the page containing it. The
user can aso personaize other aspects, such as, the layout of ®vices in persond pages and page skins. This
portd modd is dso being used for the condruction of persondizable versions of intranet portas, giving usars
apersondized and restricted view of the company information.

From an architectural point of view, building a My portd involves two key aspects. building the porta
skeleton and integrating the services. The former means building a web gpplication with support for use cases
such as dgning up and dgning in a user, page credtion and destruction, and sdection of services and their
layout in persond pages. The latter means that for each service it is necessary to build a persondization
wizard, implement support for service persondization persistence and integrate the persondized response in
the porta. Furthermore, services usudly exist before the decison of building the My portd has been taken,
and so, they have probably been constructed with heterogeneous technologies (2EE, .NET, LAMP, &c.).

Currently, there exis many porta servers that support the congruction of My portas (eg. BEA
WebLogic Portd, IBM WebSphere Porta, Jakarta Jetspeed, etc). These portd servers provide a pre-built
portad where developers integrate the sarvices. The main drawback of this approach is its lack of gnerdity

and adaptability, snce they impose a particular modd of porta, with a given user regidration information, a
fixed set of possible service buttons (eg. edit, maximize/minimize and destroy), types of page layouts (eg.
two and three columns), etc., which may not be appropriate for al portals. Current porta servers just alow
mainly to customize the portal view by using adminigtration applications. Furthermore, they offer little
support for service integration, not providing generic support for facilitating the consgtruction of
persondization wizards and automating service persondization persigence, forcing the developer to take
charge of these time-consuming and error-prone tasks for each service that must beintegrated in the portd.

This paper presents the approach we are currently following in the new verson of MyPersondizer, a
JEE-based framework for engineering My portals. MyPersondizer is being sructured according to the
Mode-View-Contraller (MVC) architecturd pattern [Crupi et d 2001, Sngh e d 2002], providing generic
and adapteble modd and controller layers (figure 1). The modd layer (section 2) represents persistent objects
(eg. usx regidration information, page layout, service persondization, eic) in a generic way, handles ther
persgence in a relationad database, includes a framework to execute modd actions and provides an action for
exch typicad use case of the porta skdeton and service persondizetion. The controller layer (section 3) is
built upon Jekata Struts [Jekarta Strutg], the “de facta” MVC framework for J2EE web applications and
provides a Struts action per use case, tha delegates on the corresponding modd action. In order to support
the construction of the porta view, rather than building a large and specific JSP tag library, controller actions
are tightly integrated with Struts, so that the developer can implement the porta view as JSP pages by using
Struts and JSTL tags, without inserting Java code. Persondized service responses are integrated in the portal
by providing plug-ins as extensions to the controller layer.

Service-1 content
database

%k
Service-1

Portal View

Controller
(MyPersonalizer)

Personalization
information

database Service plug-ins K]
| Mode =|
@ (MyPer sonalizer
\ My Portal J/ Service-N content

J2EE web container dat

Figure 1. Architecture of aMy Portal built with MyPersonalizer

2. THEMODEL LAYER

Figure 2 shows a class diagram illustrating the classes provided by the framework to mode the persistent
objects tha must be dored for each user and the classes supporting generic property definition.
Servi ceProperty represents the persondization of a service. Since some buttons may adso have persstent
state associaged with them, such as buttons for maximizing/minimizing a service or showing service hep
information, it is aso necessary to store the states of such buttons Ger vi ceBut t ons St at e) for each sarvice.
A WorkSpacelayout object represents the layout of the services in a workspace (page) and contains the keys
of the Ser vi ceProperty and Servi ceButtonsSt at e objects corresponding to the services contained in such a
workspace. Smilarly, a Deskt opLayout object contains an ordered list of the keys of the Wor kspacelLayout
objects owned by a user. Findly, A User Regi strationl nformation object contans the user registration
information and the key of his’her desktop layouit.

Different services have different persondizable properties. Different portas request different information
when a usr signs up. Some portas only provide the user with a desktop with one workspace, while others
dlow the user to creste a number of workspaces. Portds dso differ in the types of workspace layouts
provided to the user (two columns three columns, ec). And findly, dthough most of portds have a
minimize/maximize button, which date is persstent, some of them dso provide other types of buttons with
persstent state, such as, abutton to show help information in place of the norma service response.

AbstractProperty 1.n PropertyStructure

<<interface>> -
r—— 1 tiesMap : M
™ Property propertiesMap : Map

llk 0.n

SimpleProperty CompoundProperty |

~values : Object[] - values : PropertyStructure{] H

Figure 2. Personal persistent objects and support for generic property definition

|UserRegisIraIionI nformatiol

ServiceProperty

ServiceButtonsState

DesktopLayout

WorkspacelL ayout

- simpleName: String

So, in order to provide a geneic modd layer, the cdasses dove commented must be generic enough to
accommodate to any portd. Taking asde the keys, al classes must provide support for specifying a number
of properties, where each property is defined by a name and a vaue. Figure 2 dso shows a class diagram
with the classes provided by the framework for property definition. Such a diagram corresponds to the
gpplication of the Composite design pattern [Gamma et d 1994]. A Property has a Smple name and a vaue.
As some properties may be uni-valued (eg. number of heedlines) or multi-vadlued (eg. news sections), the
vaue is modded as an aray of objects, with one dement a mogt for uni-valued properties and zero or more
for multi-valued properties. A simple property &i npl eProperty) is one which vaue is an array of objects of
basic types (eg. I nt eger, Fl oat,€tc), String or Cal endar. A compound property (ConpoundPr operty)is
one which value is an aray of property sructures (PropertyStructure), containing a map of properties
(emple or compound). All the casses modding persond persstent objects are composed of a key and a
compound property containing the rest of propertties (smple or compound). For instance, the personaization
of the news headlines sarvice used as an example dong this paper can be modeled with a Servi ceProperty
which compound property is composed of only one property structure, containing a smple uni-vaued integer
property for the number of headlines and a smple multi-vaued character string property for the sdected
news sections.

As shown in figure 3, the modd layer provides an absract factory [Gamma e d 1994
(Reposi toryAccessor Fact ory) that alows to create instances of DAOs [Crupi et d 2001] for accessng to
persona persgent objects, and a default implementation for relationa databases. In order to map the state of
persgent objects to relationd tables, this implementation requires the developer, as pat of the porta
configuration, to provide metainformation about the structure of properties in esch type of object. Storing
personal objects in a structured way dlows to implement complex queries efficiently (eg. getting the emails
of dl users fulfilling a set of conditions in terms of the persond information, for later sending them an e
mail). The framework provides a default implementation of each typica use case in a separate Acti on cdlass
that accesses the user’s persond information by using the gppropriate DAOs. Actions aso delegate part of
their job in globa plugable policies (eg. to provide a default service persondization in function of the user
registration information whenever asarviceis added to aworkspace).

ActionProcessor Singleton I <”Ki;if3§e>> T - - [Absiractaction
+execute(actionName: String,event: Serializabl e): Serializabl g 7AN
1

|SignUpAction| | S’gnInAction| | ChangeServicePropertyAction | |ChangeWorksp&eLayoutAction| |MainPageAction| .

| Tt TIT- - - - """ Al
. V2 \Vi V4
<<interface>> <<interface>> <<interface>>

JUserRegistrationl nformationAccessor| |Workspacel ayoutAccessor | | ServicePropertyAccessor

Figure 3. Implementation of use cases in the model layer

Findly, the modd layer exposes a minimd interface to the controler through a plugade facade,
Acti onProcessor Si ngl et on, tha corresponds to a variant of the Sesson Facade pattern Bngh et d 2002],
providing only one method to execute an action by its name. The framework provides two implementations
of this facade, one for locd execution of actions and another one for remote execution of actions by usng a
stateless EJB.

3. THECONTROLLER LAYER

The controller layer is built upon Jakata Struts and provides a Struts action per use case. Each action
acceses the HTTP request parameters, executes the pardld modd action, adds necessary dtributes to the
request for errors or action results, and forwards or redirects to the next URL, normdly a JSP page
Controller actions are tightly integrated with Struts, so that the developer can implement the portal view as
JSP pages by using Struts and JSTL tags, without inserting Java code. For example, in order to implement the
view of the persondization wizard corresponding to the example news headlines service, the developer
writes a JSP page by using Struts and JSTL tags that generstes an HTML form dlowing the user to edit the
number of headlines and sections. Helshe dso specifies in the Struts configuration file a Struts Act i onForm
(probably dynamic) to do basic vdidation and associates the URL in the HTML form action with the
controller action ChangeSer vi cePropertyAction provided by the framework. Such an action accessss the
vaues in the ActionForm and cdls on the pardld modd action, which modifies persigtently the smple
propertiesnunber Of Headl i nes andsect i ons inthe corresponding Ser vi cePr oper t y object.

Persondized sarvice responses are integrated in the portd by providing plugins as extensons to the
controller layer (figure 1). Each plugin implements an interface with an operation that receives the sarvice
persondization and the states of service buttons, and returns the personaized HTML response. A plugrin is
typicdly implemented as a proxy of the red service, cdling the service with the service persondization (a
leest) as parameter. Red sarvices are normaly HTTP services returning its reply in HTML or XML, or
SOAP web services. In these last two cases, the plugin must format the reply to HTML. The controller layer
provides an abstract implementation of a plugrin for facilitating the integration of services.

4. CONCLUSON

The main contribution of the gpproach we are following with regard to current portad servers is the generic
and adgpteble MVC architecture of MyPersondizer. The framework provides a generic implementation of
eech typicd use case in a My portd, where each use case is implemented a Struts action in the controller that
delegates in a pardld modd action. Both actions (in the controller or mode) and globd policies can be
redefined if necessary. The framework dso tries to be easy to use and to dlow for a good separation of roles
in the devedopment team. Portal view, which represent the most time-consuming task, can be developed by
graphical designers with skills on Struts and JSTL tags. The rest of tasks, mainly, integration of persondized
sarvice responses and portd configuration can be undertaken by software engineers. We hope to complete a
full OpenSource version by the end of 2003. As future work, we will replace Struts integration with
JavaSarver Faces integration, the future standard MVC framework for J2EE web applications. We will dso
implement upcoming standards for integration of servicesin portals ([Portlet API] and [WSRP]).

ACKNOWLEDGEMENT

Thiswork has been supported by the Spanish program CICY T (TIC2001-0547).

REFERENCES

Crupi, J., Alur, D. and Malks, D., 2001. Core J2EE Patterns. Prentice Hall.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., 1994. Design Patterns. Elements of Reusable Object-Oriented
Software, Addisson-Wesley.

Jakarta Struts. http://jakarta.apache.org/struts/index.html.

Portlet API. http://www.jcp.org/jsr/detail/168.jsp.

Singh, |., Stearns, B. and Johnson, M., 2002. Designing Enterprise Applications with the J2EE Platform, Second Edition.
Addison-Wesley.

Web Services For Remote Portals (WSRP). http://www.oasis-open.org/committees/tc_home.php2wg_abbrev=wsrp.

