
A Flexible Framework for Engineering “My” Portals
Fernando Bellas, Daniel Fernández and Abel Muiño

Department of Information and Communications Technologies. University of A Coruña
Facultad de Informática. Campus de Elviña. E-15071. A Coruña. Spain

Tel.: +34 981 167 000
fbellas@udc.es, email@dfernandez.org and abel.muinho@mundo-r.com

ABSTRACT
There exist many portal servers that support the construction of
“My” portals, that is, portals that allow the user to have one or
more personal pages composed of a number of personalizable
services. The main drawback of current portal servers is their lack
of generality and adaptability. This paper presents the design of
MyPersonalizer, a J2EE-based framework for engineering My
portals. The framework is structured according to the Model-
View-Controller and Layers architectural patterns, providing
generic, adaptable model and controller layers that implement the
typical use cases of a My portal. MyPersonalizer allows for a
good separation of roles in the development team: graphical
designers (without programming skills) develop the portal view
by writing JSP pages, while software engineers implement service
plugins and specify framework configuration.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
domain-specific architectures, patterns; D.2.13 [Software
Engineering]: Reusable Software – domain engineering, reusable
libraries.

General Terms
Design, Experimentation.

Keywords
Web Engineering, Web Application Frameworks and
Architectures, Portal Technology, Design Patterns, J2EE.

1. INTRODUCTION
Internet portals, such as Yahoo!, Lycos, etc, offer many services
(weather, news, sports, etc) providing a huge amount of
information to the user. In order to allow users easy access to
information, many of these portals also provide personalized
versions, the so called “My” portals (my.yahoo.com [15],
my.lycos.com, etc). Such portals allow the user to have one or
more personal pages composed of a number of personalizable
services. The portal typically decorates the response returned by a
service with a title and a number of buttons, such as
minimize/maximize, edit (personalization) and destroy. The edit
button allows the user to access a personalization wizard (form) to
personalize the service (e.g. for a news service, selecting the
maximum number of headlines and the sections the user is
interested in), so that such a service provides information
according to the user’s preferences (e.g. news headlines
corresponding to the selected sections). Usually, the user can also

personalize other aspects, such as the layout of services in
personal pages and page skins. This portal model is also
beginning to appear in corporate intranets, giving users a
personalized and restricted view of the company’s information.

From an architectural point of view, building a My portal
comprises two tasks: building the portal skeleton and integrating
the services. The former involves building a web application with
support for use cases such as sign in, sign up, page creation and
destruction, selection of service layout in a personal page, etc.
The latter means that for each service, it is necessary to build a
personalization wizard, implement support for handling the
persistence of the user’s preferences and integrate the
personalized response in the portal. Furthermore, services may
exist before the decision of building the portal has been taken or
be supplied by external providers, and in consequence, they can
be built with heterogeneous technologies (J2EE, .NET, PHP, etc).

Currently, there exist many software platforms, known as portal
servers [19], that support the construction of My portals (BEA
WebLogic Portal, IBM WebSphere Portal, Jakarta Jetspeed, etc).
These portal servers follow an application-oriented approach,
rather than a framework-oriented approach, providing a pre-built
portal application where developers can integrate services. As a
consequence, they tend to impose a particular model of portal,
which results in an inherent lack of generality and adaptability for
portal development.

In particular, the persistent objects that must be stored for each
user (user registration information, layout of services in a given
page, etc), hereafter referred to as “personal persistent objects”,
are not modeled in a generic way in the pre-built portal. Different
portals request different information (login name, password, first
name, surname, email address, etc) when a user signs up. Some
portals only provide the user with a desktop containing one
workspace (page), while others allow the user to create a number
of workspaces. Portals also differ in the types of workspace
layouts provided to the user (two columns, three columns, one
row and two columns, etc).

Some service buttons have states that must be remembered by the
portal whenever the user clicks on them. One typical example of
such buttons is the minimize/maximize button that almost all
portals have. If the user minimizes a service by clicking on the
minimize/maximize button, the service should remain minimized
until the user maximizes it by clicking on the button again, maybe
in a different session. We refer to these buttons as “stateful
buttons”. Other portals also provide more types of stateful
buttons, such as a help button to show help information in place
of the normal service response. So, what if the pre-built portal
does not provide all the properties the particular portal needs for
the user registration information?, what if the pre-built portal does
not provide all the types of workspace layouts the particular portal
needs?, what if the pre-built portal does not provide all the

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

stateful buttons the particular portal needs?, etc. If personal
persistent objects are not modeled in a generic way, it will be
difficult to support the construction of a portal with personal
persistent objects that differ from those provided by the pre-built
portal.

Another type of personal persistent objects are those modeling the
service preferences. The user’s preferences for a news service can
be represented as an object storing the maximum number of
headlines and the sections the user is interested in. The user’s
preferences for a stock quote service could be modeled as an
object storing the list of stock symbols the user is interested in.
Representing such objects in a generic way allows to automate
persistence and provide generic support for the implementation of
personalization wizards (all service personalization wizards
retrieve the appropriate preferences object from the database,
modify it with the data specified by the user, and finally store it in
the database).

Another consequence of not modeling personal persistent objects
in a generic and consistent way is that it is more difficult to
exploit user information in an efficient way. As an example,
consider that the portal administrator, as part of an advertising
campaign, wishes to get the email addresses of all users that live
in Spain and have added the news service to one of their personal
pages, personalized with the “economy” section. In order to make
this possible, assuming that the underlying database is relational,
which is usually the case, personal persistent objects should be
represented in a generic way and mapped according to the
relational data model, so that complex queries can be executed in
an efficient way. Finally, since the pre-built portal already
provides the portal view, it will not be easy to change it
significantly.

This paper extends the short paper [3] presenting the main design
decisions of the final architecture of MyPersonalizer [16], a J2EE-
based framework for engineering My portals. MyPersonalizer is
structured according to the Model-View-Controller (MVC) and
Layers architectural patterns [5][17][4], providing generic,
adaptable model and controller layers (Figure 1) for building any
My portal. The model layer represents personal persistent objects
in a generic way, maps them to a relational database, includes a
framework for executing model actions and provides an action for
each typical use case of the portal skeleton and service
personalization. The controller layer builds on Jakarta Struts
[10][8]. Struts has become the “de facto” framework for building
J2EE web applications structured according to the MVC
architectural pattern. The MyPersonalizer controller layer
provides a Struts action per use case. Each action gets the HTTP
request parameters and invokes the parallel model action. The
framework can be used with any standard J2EE web container. In
order to assist the developer, a number of command line tools and
a web administration tool have been implemented. Such tools are
out of the scope of this paper.

In general, implementing a My portal with MyPersonalizer
comprises two tasks: implementing the portal view and getting the
personalized service responses. The former involves writing the
JSP pages making up the portal view. In order to do so, the
developer can make use of the JSP Standard Tag Library (JSTL)
[14] and all of the view-related infrastructure provided by Struts
(e.g. the HTML tag library), since the MyPersonalizer controller
layer builds on Struts. So, rather than building a specific view-
related technology for use in JSP pages (e.g. a specific HTML tag

library), standard technology can be used. Furthermore, these JSP
pages can be written without inserting Java code, which enables
graphical designers without programming skills to accomplish
this task. In order to get the personalized service responses,
software engineers must implement a plugin for each service,
which typically acts as a proxy of the service. Therefore, this
approach allows for a good separation of roles in the development
team.

Figure 1. Architecture of a portal built with MyPersonalizer.

The rest of the paper is organized as follows. Sections 2 and 3
present the main design decisions of the model and controller
layers, respectively. Section 4 describes an example of portal
development. Section 5 compares the framework architecture with
recent portal standards. Section 6 presents conclusions and future
work.

2. THE MODEL LAYER
2.1 Generic Personal Persistent Objects
Figure 2 shows a class diagram illustrating the classes provided
by the framework to model (in a generic way) the persistent
objects that must be stored for each user. ServiceProperty
represents the user’s preferences for a service.
ServiceButtonsState represents the state of the stateful buttons
associated to a given service. A WorkspaceLayout object specifies
the layout of the services in a workspace (page) and also contains
the keys of the ServiceProperty and ServiceButtonsState
objects corresponding to the services contained in such a
workspace. Similarly, a DesktopLayout object specifies the layout
of the workspaces the user owns and also contains the keys of the
WorkspaceLayout objects owned by such a user. Finally, a
UserRegistrationInformation object contains the user’s
registration information and the key of his or her DesktopLayout.

Figure 2. Personal persistent objects provided by
MyPersonalizer.

Service-1 content
database

Service-N content
database

Service-1

Service-N

. . .

Portal view

Controller
(MyPersonalizer)

Model
(MyPersonalizer)

Service plugins
Personal

information
database

My portal

J2EE web container

- key : Long
- property : Property

- key : Long
- property : Property

1 UserRegistrationInformation

0..n

- loginName : String
- property : Property

DesktopLayout

WorkspaceLayout

ServiceButtonsState

- key : Long
- property : Property

ServiceProperty

- key : ServicePropertyKey
- property : Property 0..n

0..n

ServicePropertyKey

- serviceIdentifier : String
- propertyIdentifier : Long

1

With respect to the keys, DesktopLayout, ServiceButtonsState
and WorkspaceLayout have auto-generated numeric keys. The
user’s login name has been chosen as the key of
UserRegistrationInformation. And finally, ServiceProperty
has a compound key consisting of a service identifier
(StockQuote, Weather, MyBookmarks, etc) and an auto-generated
numeric identifier that uniquely identifies a preferences object for
such a service.

Each of the above classes also has a list of properties. As shown
in Figure 3, such a list is modeled according to the Composite
design pattern [6]. All properties have a simple name and a value.
Since some properties (single-valued) can have one value at most
(e.g. maximum number of headlines) while another ones (multi-
valued) can have a number of them (e.g. sections), the value of a
property is modeled as an array of objects. There are two kinds of
properties: simple and compound. The value of a simple property
(SimpleProperty) is an array of objects of basic types (Integer,
Float, etc) or String, while the value of a compound property
(CompoundProperty) is an array of PropertyStructure objects,
where each object contains a map of properties, which in turn can
be simple or compound. All PropertyStructure instances are
supposed to have the same types of properties. Conceptually, a
compound property allows to represent the values of a complex
type.

Figure 3. Generic support for property definition.

The property attribute contained in each of the classes shown in
Figure 2 is a compound property (single-valued or multi-valued)
containing the rest of properties. In order to illustrate the
flexibility of this system of properties, Figure 4 shows the
structure of the properties that could be used for the personal
persistent objects in a typical portal. Non-leaf nodes correspond to
compound properties, while the leaves of the tree represent simple
properties. Multi-valued properties (simple or compound) are
marked with an asterisk. Each PropertyStructure instance is
displayed as a small rectangle below the compound property, with
a number representing its index in the array of values.

The properties of a UserRegistrationInformation object could
be modeled as a compound property containing a simple property
for each requested field (login name, password, country, etc), and
another one (dlPropId) for storing the key of the user’s
DesktopLayout object. The properties of a DesktopLayout object
could be modeled as a compound property containing a multi-

valued simple property (wlPropIds) for storing the keys of the
user’s WorkspaceLayout objects and a simple property
(dwlPropId) for storing the key of the default workspace, that is,
the workspace that must be shown when the user accesses the
portal at the beginning of a session. Typically, the order in the
array of values of the wlPropIds property determines the order of
the links (usually, presented as tabs) the portal displays in the
main page for enabling the user to select a workspace.

Figure 4. Examples of properties in personal persistent

objects.
The structure of properties in a WorkspaceLayout object is the
most complex one. On the one hand, the root compound property
could contain simple properties for storing the workspace type
(InternetServices, FinancialIntranetServices, etc), a user-selected
name and the type of layout used in such a workspace (2Columns,
3Columns, 1Row2Columns, etc). On the other hand, the root
property could contain a multi-valued compound property
(services), with one value for each service the user has added to
that workspace. Each value could contain simple properties for
storing the keys of the ServiceProperty (serviceId and
servicePropId) and ServiceButtonsState (buttonsPropId)
objects corresponding to that service. There is also an Integer
simple property (area) that specifies the “area” (first column, top
row, etc) the service is placed on (e.g. 0 could mean “first
column”). There is no need to use a simple property for
specifying the position of a service in its area, as long as the order
in the array of values of the services property is consistent with
the positions of services in their corresponding areas.

The properties of a ServiceButtonsState object for a portal
providing the minimize/maximize and help stateful buttons could
be modeled as a compound property composed of two Boolean
simple properties, one for each button. The properties of the
ServiceProperty object for a news service could be modeled as a

<<interface>>
Property

AbstractProperty

- simpleName : String

SimpleProperty

- values : Object[]

CompoundProperty

- values : PropertyStructure[]

PropertyStructure + getSimpleName() : String
+ setSimpleName(name : String)
+ getValuesAsString() : String[]
+ setValuesAsString(values : String[])
+ getValuesAsObject() : Object[]
+ setValuesAsObject(values : Object[])

0..n

0.n
- propertiesMap : Map
+ get(name : String) : Property
+ put (property : Property)

properties

loginName = […] password = […] dlPropId = […] country = […] . . .

0

properties

wlPropIds = […, …, …] dwlPropId = […]

0

UserRegistrationInformation properties

DesktopLayout properties

properties

workspaceType = […] layoutType = […] workspaceName = […]

0

WorkspaceLayout properties

services

0 1 …

serviceId = […] servicePropId = […] buttonsPropId = […] area = […]

… …

properties

sections = […, …, …] maxHeadlines = […]

0

News properties

properties

minimized = […] help = […]

0

ServiceButtonsState properties

*

*

*

compound property composed of two simple properties, one for
specifying the maximum number of headlines and another one
(multi-valued) for storing the news sections the user prefers.

Figure 5 illustrates how to create instances of properties for the
news service used above as an example. Even though the creation
of properties can seem a little bit complex, it is important to note
that the framework hides this complexity from the programmer
since properties are created and modified automatically by the
framework by using meta-information (Section 2.2). Finally,
since values of simple properties can be instances of any basic
type (in addition to String) and the user types information as
character strings, simple properties implement
setValuesAsString and getValuesAsString (Figure 3), which
automatically convert from String to the appropriate Java type
(by using JavaBeans property editors) and vice versa,
respectively.

Figure 5. Example of property creation.

2.2 Persistence Implementation
In order to abstract the type of persistent storage (relational
database, object-oriented database, LDAP, etc) to be used for
personal persistent objects and the persistence strategy, the model
layer provides an abstract factory [6],
RepositoryAccessorFactory (Figure 6), that allows to create
instances of Data Access Objects (DAOs) [5] (called “accessors”
in the diagram). Such DAOs provide methods for finding (by
key), creating, updating and removing persistent objects from the
database.

Figure 6. DAO factory.

The framework provides an implementation of the above DAOs
that maps objects to a relational database by using a strategy
consistent with the relational data model. A compound property is
mapped to a table with one column for each single-valued simple
property. If the compound property is multi-valued, the table
includes a numeric column that allows to maintain the order of

values and also acts as the key. A multi-valued simple property is
mapped to a table with one column for storing each individual
value and a numeric column similar to the one used for multi-
valued compound properties. In order to set up relationships in the
tree of properties, each table used for a non-root compound
property or a multi-valued simple property includes a foreign key
referring to the key of the table used by the parent property. As a
particular case, the root property includes a column for the key of
the corresponding persistent object. This column also acts as the
key of the table when the compound property is single-valued.

In order to make possible this mapping, the developer provides
the framework with meta-information about the structure of
properties in each object. Figure 7 shows the meta-information
corresponding to the preferences object (ServiceProperty) for the
news service used previously as an example. service-id specifies
the type of persistent object being described: a service identifier if
the object corresponds to a service preferences object or a
reserved identifier if it corresponds to any other type of object
(e.g. URI for the user registration information).

Figure 7. Example of meta-information.

The framework also provides a command-line tool that takes the
meta-information of a given type of object as input, and generates
the SQL script for creating necessary tables. Figure 8 shows the
tables generated for the meta-information specified in Figure 7.
The sections simple property has been mapped to a separate
table (News1sections) since it is multi-valued. The sections
column stores individual values. The genId column corresponds
to the key of the table and also allows to maintain the order of
values. The propId column is a foreign key referring to the
propId key in the News table. propId is the auto-generated
numeric identifier contained in the ServicePropertyKey object
(Figure 2), which uniquely identifies each instance of
ServiceProperty for the news service.

Figure 8. Tables (MySQL) generated for the meta-
information specified in Figure 7.

In theory, it should be possible to access any relational database
by using JDBC and standard SQL. In practice, shortcomings in
the SQL specification and vendor-specific features make it

Property props = new
 CompoundProperty("properties");
PropertyStructure[] propsValues =
 new PropertyStructure[1];

propsValues[0].put(
 new SimpleProperty("sections",
 new String[]{"international",
 "sports", "economy"}));
propsValues[0].put(
 new SimpleProperty("maxHeadlines",
 new Integer[]{new Integer(3)}));
props.setValuesAsObject(propsValues);

<service>
 <service-id>News</service-id>
 <persistence-type>RELATIONAL</persistence-type>
 <compound-property>
 <simple-name>properties</simple-name>
 <multi-valued>FALSE</multi-valued>
 <simple-property>
 <simple-name>sections</simple-name>
 <multi-valued>TRUE</multi-valued>
 <java-type>java.lang.String</java-type>
 </simple-property>
 <simple-property>
 <simple-name>maxHeadlines</simple-name>
 <multi-valued>FALSE</multi-valued>
 <java-type>java.lang.Integer</java-type>
 </simple-property>
 </compound-property>
</service>

News

- propId : BIGINT {k}
- maxHeadlines : INTEGER

News1sections

- propId : BIGINT {fk}
- genId : BIGINT {k}
- sections : VARCHAR(255) BINARY

1 0..n

RepositoryAccessorFactory

<<interface>>
ServicePropertyAccessor

<<interface>>
ServiceButtonsStateAccessor

<<interface>>
WorkspaceLayoutAccessor

<<interface>>
UserRegistrationInformationAccessor

<<interface>>
DesktopLayoutAccessor

impossible. The names of the supported column types or the use
of sequences versus auto-generated columns are typical examples
of incompatibilities. The default implementation of the DAOs
provided by the framework and the command-line tool try to be as
generic as possible, and ideally any relational database is
supported. In order to do so, the specific details of each database
(e.g. the default mapping of Java types to the underlying types
provided by the database) are isolated in an XML configuration
file (one per database). This way, supporting a new database only
requires providing its specific configuration file. In particular, the
framework has been successfully used with Oracle, PostgreSQL
and MySQL.

2.3 Query Language
Figure 9 shows the mapping corresponding to the sample personal
persistent objects depicted in Figure 4, except the one
corresponding to the news service preferences (Figure 8).
UserRegistrationInformation maps to the URI table.
DesktopLayout maps to the DL and DL1wlPropIds (wlPropIds
multi-valued property) tables. In the same way, WorkspaceLayout
maps to the WL and WL1services (services multi-valued property)
tables. Finally, ServiceButtonsState maps to the SBS table. Since
each object keeps the keys of the related objects (e.g. dlPropId
property in UserRegistrationInformation specifies the key of
the user’s DesktopLayout), relationships are not only set up
between the tables a single object is mapped to (News and
News1sections, DL and DL1wlPropIds, etc), but also between the
root tables of related objects (e.g. dlPropId in the URI table acts as
a foreign key referring to the propId key in the DL table).

Figure 9. Tables (MySQL) generated for the personal

persistent objects depicted in Figure 4, except the news service
preferences.

With this strict and consistent object-to-relational mapping for all
personal persistent objects, as opposed to a serialization storage
strategy, it should be possible to efficiently execute complex
queries in terms of personal information. As an example, consider
a portal administrator that, as part of an advertising campaign,

wishes to send a promotional email (e.g. promoting a new
newspaper specialized in Spanish economy) to all the users that
live in Spain and have added the news service to one of their
personal pages, personalized with the “economy” section. In order
to make this possible, the framework must provide (1) a query
language, (2) a query engine and (3) a task execution framework.
The query language must allow to retrieve the user registration
information corresponding to the users that fulfill a set of
conditions in terms of their personal persistent objects. This query
language must abstract the type of persistent storage and be easy
to use. Rather than proposing a specific query language, we have
implemented a small subset (the basic functionality of the order
by and return clauses) of XQuery [22]. XQuery is a rich query
language that can be used to query XML data sources. It uses
XPath 2.0 [21] expressions to locate nodes in XML data. The data
sources do not necessarily store the data in XML. The important
thing is that any data source can be seen as XML data. In our
case, regardless of the underlying persistent storage, properties in
personal persistent objects present a hierarchical structure (Figure
3), and personal persistent objects themselves are hierarchically
related (Figure 2). In consequence, personal persistent objects can
be seen as XML data sources. As an example, consider the
following query:

order by /URI/email
return /URI[country = "Spain" and
 desktop/page/services/News/sections="economy"]

The above query allows to retrieve all
UserRegistrationInformation objects, ordered by email,
corresponding to the users fulfilling the conditions of the above
advertising campaign. In the XPath expressions, some properties
correspond to real properties. For example, country corresponds
to the country property in UserRegistrationInformation. In
order to facilitate the specification of queries, we have allowed
the use of virtual properties. For example, URI refers to
UserRegistrationInformation, desktop refers to the user’s
DesktopLayout, page refers to any of the workspaces the user
owns, and so on. Note also that as sections is a multi-valued
property, the condition sections="economy" checks if economy is
one of the values of such a property.
Figure 10 shows a simplified view of the query engine and the
task execution framework. A concrete query engine must
implement the QueryExecutorDelegate interface that provides
operations for executing queries. The framework provides a
default implementation for relational databases. Such an
implementation translates an XQuery query into a standard SQL
query that performs a join of the tables involved in the query.
QueryExecutor allows the developer to execute a query by
selecting the concrete engine specified as part of the framework
configuration. TaskExecutor allows the execution of a task for all
the objects returned by a given query. As part of the web
administration tool, we have implemented two tasks: one for
removing users and another for sending emails.
It is important to note that we could not have used an existing
object-to-relational mapping tool, such as Hibernate [7] or any
tool implementing the Java Data Objects (JDO) specification [11],
for implementing the mapping of personal persistent objects to the
database. These tools are designed for persisting JavaBean
classes, which properties (accessible via getter and setter
methods) are explicitly defined in the classes, and therefore, can

URI

- loginName : VARCHAR(255) BINARY {k}
- password : VARCHAR(255) BINARY
- country : VARCHAR(255) BINARY
…
- dlPropId: BIGINT {fk}

DL

- propId : BIGINT {k}
- dwlPropId : BIGINT {fk}

1 1

DL1wlPropIds

- propId : BIGINT {fk}
- genId : BIGINT {k}
- wlPropIds : BIGINT {fk}

1

0..n
WL

- propId : BIGINT {k}
- workspaceType : VARCHAR(255) BINARY
- workspaceName : VARCHAR(255) BINARY
- layoutType : VARCHAR(255) BINARY

1 1

WL1services

- propId : BIGINT {fk}
- genId : BIGINT {k}
- serviceId : VARCHAR(255) BINARY
- servicePropId : BIGINT {fk}
- buttonsPropId : BIGINT {fk}
- area : INTEGER

1

0..n

SBS

- propId : BIGINT {k}
- minimized : TINYINT
- help : TINYINT

1 1

be discovered by using the Java introspection mechanism.
However, MyPersonalizer models the properties of all personal
persistent objects by using a generic tree of properties (Figure 3).
Each type of object has a particular tree of properties, which can
only be discovered by using the corresponding meta-information.

Figure 10. Support for execution of queries and tasks.

2.4 Use Case Implementation
As shown in Figure 11, the model layer provides a default
implementation of each typical use case (sign up, sign in, change
workspace layout, change service preferences, etc) in a separate
Action class. All actions implement the execute method, which
receives an event containing the data the use case needs (e.g. the
login name and password for the “SignIn” use case) and returns a
result. Actions can be transactional or not. Usually, concrete
actions extend from AbstractAction, which leaves the execute
method as abstract.

Figure 11. Implementation of use cases in the model layer.

Concrete actions access personal persistent objects by using the
appropriate DAOs. As part of the framework configuration, there
is an action mapping that specifies for each action: its symbolic
name (e.g. “SignIn”), the full name of the action class and
whether it is transactional or not. ActionRegistrySingleton
reads this configuration information and creates a single instance
of each action.

Finally, in order to expose an easy interface to the controller layer
that hides the details of action execution (and even the action

classes themselves), the model layer provides a pluggable facade,
ActionProcessorSingleton, that corresponds to a variant of the
Session Facade and Business Delegate patterns [5][17]. The
execute method allows to request the execution of an action by
using its symbolic name and an event.

The default implementation of ActionProcessorSingleton
provided by the framework, PlainActionProcessorSingleton,
makes use of ActionRegistrySingleton for getting the requested
action and a transaction manager that uses the JDBC basic
transaction API for executing transactional actions. Another
implementation of ActionProcessorSingleton could make use of
a different mechanism, such as the Java Transaction API (if
available in the web container).

Actions also make use of global pluggable policies. One such
policy is the manipulation and the access to the values of some
properties required by the framework in the DesktopLayout,
WorkspaceLayout, ServiceButtonsState and
UserRegistrationInformation objects. For example, the
framework requires the user registration information to have
properties for storing the login name and password. Since the
framework can not assume a particular property structure, a
mechanism has to be provided that allows to access and modify
these properties. In this sense, the framework provides
EditorFactory (Figure 12), which allows to create an editor for
each type of object. Each editor provides methods for modifying
and accessing the values of the properties required by the
framework. The default editors provided by the framework
assume a structure of properties similar to that shown in Figure 4,
which is generic enough for most portals.

Figure 12. Editors for personal persistent objects.

3. THE CONTROLLER LAYER
3.1 Struts, JSTL and JSF
The controller layer builds on Jakarta Struts [10][8]. Struts has
become the “de facto” framework for building J2EE web
applications structured according to the MVC architectural
pattern. In order to support the implementation of the controller
layer, Struts provides a servlet acting as a Front Controller [5] that
receives HTTP requests and dispatches them to action classes.
Typically, the developer implements an action class per use case.
In general, each action gets the HTTP request parameters, invokes
the corresponding use case on the model layer (usually invoking a
method on one of the facades provided by the model), adds the
results of the use case to the request as an attribute (or more), and
finally forwards the request on to a JSP page that displays the
results.

In order to write the JSP pages displaying results (view layer), the
developer can make use of the JSP Standard Tag Library (JSTL)
[14], which provides tags for accessing the attributes stored in the

EditorFactory

<<interface>>
DesktopLayoutEditor

<<interface>>
WorkspaceLayoutEditor

<<interface>>
ServiceButtonsStateEditor

<<interface>>
UserRegistrationInformationEditor

ActionProcessorSingleton

+ execute(actionName : String, event : Serializable) : Serializable

AbstractAction

<<interface>>
Action

+ execute(event : Serializable) : Serializable
+ isTransactional() : Boolean
+ setTransactional(transactional : boolean)

SignUpAction SignInAction ChangeWorkspa-
ceLayoutAction

ChangeService-
PropertyAction . . .

RepositoryAccessorFactory

ActionRegistrySingleton

0..n

PlainActionProcessorSingleton

TaskExecutor

+ execute(q: Query, t : Task)

<<interface>>
Task

QueryExecutor <<interface>>
QueryExecutorDelegate

request, iterating over them, checking conditions, etc. In order to
write the JSP pages displaying forms, the developer can make use
of the Struts HTML tag library that allows to generate data entry
fields and treat user errors detected in the server side. Struts also
provides other useful components for implementing the view,
such as a mechanism for specifying validation rules for data entry
fields (Validator) and a template system for defining the screens
of the application (Tiles).

These tag libraries together with the controller action framework
allow to write JSP pages that do not contain Java code, enabling a
good separation of roles in the development team. Graphical
designers, without programming skills, write the JSP pages, while
software engineers implement the controller and model layers.
Regarding the implementation of the model, Struts does not
provide any specific support.

In relation to the Struts HTML tag library, the upcoming
JavaServer Faces (JSF) specification [13] defines a user interface
component model for developing web applications much the same
way as the Swing component model does for graphical standalone
Java applications. In particular, it provides a tag library that
represents a standard alternative to the Struts HTML tag library.
Currently, Struts provides a beta version of an integration library
with JSF that allows to use the JSF tags in substitution of those
provided by Struts. This integration library makes the controller
of a Struts-based web application independent of the use of any of
these two HTML tag libraries in the view layer.

3.2 Use Case Implementation
The MyPersonalizer controller layer (Figure 13) provides a Struts
action per use case that requests the execution of the parallel
model action by using ActionProcessorSingleton. Controller
actions also make use of global pluggable policies (e.g. cookie
management). The URLs the graphical designer specifies in the
links and forms in the JSP pages point to the corresponding
controller actions.

Figure 13. Implementation of use cases in the controller.

Implementing the controller layer upon Jakarta Struts does not
only allow to reuse its controller framework, but also allows the
graphical designer to make use of all the Struts view-related
infrastructure for writing the JSP pages making up the portal view
(the HTML tag library, the Validator and Tiles).

3.3 Service Response Integration
Personalized service responses are integrated into the portal by
providing plugins as extensions to the controller layer (Figure 14).
Each plugin implements the ServiceController interface that
specifies the getPersonalizedReply method. This method takes
the service preferences object and the state of the buttons as
parameters, and returns the personalized HTML response.

In order to facilitate the implementation of the
ServiceController interface, the framework provides the
DefaultServiceController abstract class that implements the
getPersonalizedReply method as a Template Method [6] by
calling the getPersonalizedReplyRequest abstract method. This
method takes the same parameters as getPersonalizedReply and
returns a PersonalizedReplyRequest object.
A concrete plugin implements getPersonalizedReplyRequest by
returning a PersonalizedReplyRequest object that contains the
URL of the service and the parameters for obtaining the
personalized response. The plugin constructs the parameters by
using the service preferences object and the state of the buttons.
The implementation of getPersonalizedReply in
DefaultServiceController, after calling
getPersonalizedReplyRequest, sends an HTTP request to that
URL with the corresponding parameters and sets a timeout. The
URL typically corresponds to a component local to the portal, that
acts as a proxy of an external XML/HTTP or SOAP/HTTP
service, and finally formats the response in HTML. Section 4.3
provides implementation examples of typical plugins.

Figure 14. Service response integration.

3.4 Controller Cache
The access to a personal page is a resource-intensive operation
since it requires: (1) retrieving the WorkspaceLayout object
associated to such a page and the preferences object together with
the state of the stateful buttons for each service in the page, and
(2) sending a request to each service (possibly remote) to obtain
the personalized response. Each service in turn has to access its
content database. As the user can access several times any
personal page during a session, it is important to optimize the
execution of this use case. In this sense, for each page the user
accesses, the controller caches the WorkspaceLayout object
together with the ServiceButtonsState objects in the session
(HttpSession). The controller also caches HTML service
responses in the database. This cache strategy represents a trade-
off between efficiency and scalability. Caching all data in the
session is the most efficient strategy, but it does not scale when
the number of concurrently connected users increases.

4. PORTAL DEVELOPMENT
4.1 MyPortal: A Sample Portal
In order to test the framework, a sample portal, MyPortal [16]
(Figure 15), has been developed. The portal integrates seven
services. Two of them, BBC World News and BBC Tech News,
are XML/HTTP services provided by the BBC. Another two,
Stock Quote and Stock News, are SOAP/HTTP services provided
by Xignite. The rest of services, My Bookmarks, Tip Of The Day
and Weather, are local services (Weather service only prints

AbstractAction

SignUpAction SignInAction ChangeWorkspa-
ceLayoutAction

ChangeService-
PropertyAction

. . .

ActionProcessorSingleton

Action (Struts)

<<interface>>
ServiceController

+ getPersonalizedReply(…) : String

DefaultServiceController

+ getPersonalizedReply(…) : String
getPersonalizedReplyRequest(…) : PersonalizedReplyRequest

PersonalizedReplyRequest

- contextRelativePath : String
- parameters : Map

HTML links to weather images provided by Weather
Underground). Jakarta Tomcat is used as web container.

Figure 15. MyPortal - A sample portal.

4.2 The Graphical Designer
The graphical designer must write the JSP pages making up the
portal view. Basically, there are two kinds of pages: those
displaying data and those displaying forms. The former
correspond to the pages displaying service responses and to the
main page of the portal (that aggregates the responses of the
services the user has in the workspace he or she is using). These
pages display the data that has been stored in the request as
attributes by the corresponding controller actions. The graphical
designer makes use of JSTL tags for accessing attributes, iterating
over collections, checking conditions, etc.

Figure 16. Excerpt of the JSP page displaying the BBC World
News personalization wizard.

The pages displaying forms correspond to those requesting data
for use cases such as sign up, sign in, change service preferences,
etc. The graphical designer writes each form by using the Struts
HTML tag library. The URL specified in the form (action

attribute) points to the appropriate controller action. The graphical
designer has to use just one MyPersonalizer-specific tag (myper-
html:wizard) that that sets MyPersonalizer-required internal
parameters as hidden fields. As an example, Figure 16 shows an
excerpt of the page displaying the personalization wizard
corresponding to the BBC World News service (Figure 17). The
Struts configuration file contains an entry specifying that HTTP
requests directed to /services/bbcwn/DoBBCWNEdit.do must be
processed by the MyPersonalizer controller action
ChangeServiceProperty.

When the user clicks on the Update button, the request is received
by the Struts Front Controller, which delegates the processing of
the request to the MyPersonalizer controller action
ChangeServiceProperty. This action in turn gets the form’s
parameters (in this case, maxHeadlines) and requests the
execution of the MyPersonalizer model action
ChangeServiceProperty. This action retrieves the preferences
object from the database, gets the properties to modify (in this
case, maxHeadlines), modifies them and updates the preferences
object in the database.

Figure 17. BBC World News personalization wizard.

4.3 The Software Engineer
The software engineer must specify the portal configuration
(meta-information about personal persistent objects, Struts
configuration, etc) and implement the service plugins that get the
personalized responses. Figure 18 shows the typical
implementation of a plugin for an XML/HTTP service: the BBC
World News service. The software engineer implements the
BBCWNController plugin by extending from
DefaultServiceController (Figure 14). BBCWNController
implements the getPersonalizedReplyRequest method. Such a
method returns the URL corresponding to BBCWNResponse.jsp and
the maxHeadlines parameter with the value personalized by the
user. Next, the getPersonalizedReply method (inherited from
DefaultServiceController) sends a request to such a URL and
gets its response. BBCWNResponse.jsp connects to the BBC World
News service that returns the XML response. Finally, the JSP
page formats the XML response by applying an XSL
transformation or by using the XML tags provided by JSTL.

The integration of a SOAP/HTTP service differs from an
XML/HTTP service in that the URL returned by
getPersonalizedServiceReply typically points to a Struts action
that calls one of the operations of the service. Then, the action
adds the service result to the request as an attribute and forwards
the request on to a JSP page that formats the result. Figure 19
illustrates the execution of the plugin for the Xignite Stock Quote
service.

<html:form action="/services/bbcwn/DoBBCWNEdit.do">
 <myper-html:wizard>
 <myper-html:wizard-field name="maxHeadlines"/>
 </myper-html:wizard>
 <table border="0" cellspacing="10"
 class="formTable">
 <tr>
 <td align="right" width="200">
 <fmt:message
 key="Wizards.BBCNews.maxHeadlines"/>
 </td>
 <td align="left">
 <html:select property="maxHeadlines">
 <html:option value="1">1</html:option>
 [...]
 <html:option value="10">10</html:option>
 </html:select>
 <html:errors property="maxHeadlines"/>
 </td>
 </tr>
 <tr>
 <td align="center" colspan="2">
 <html:submit>
 <fmt:message key="Buttons.update"/>
 </html:submit>
 </td>
 </tr>
 </table>
</html:form>

In the general case, the integration of a local service is similar to
the integration of a SOAP/HTTP service with the difference that
the Struts action calls on a service model facade that accesses a
local content database, rather than calling on a remote web
service. If the local service (e.g. My Bookmarks) does not display
content other than the service preferences, there is no need to
develop a Struts action, and the URL returned by the plugin
points to the JSP displaying the personalized service response.

Figure 18. Personalized response integration for an

XML/HTTP service.

In all cases, the software engineer implements the necessary Java
classes, and the graphical designer writes the JSP pages
displaying the service responses.

Figure 19. Personalized response integration for a
SOAP/HTTP service.

5. COMPARISON WITH RECENT
PORTAL STANDARDS
Current remote XML and SOAP services consumed by portals
provide only content, rather than the user interface (HTML). This
forces portal developers to implement the user interface of each
service (e.g. the personalization wizard and the integration of the
personalized response) in each consuming portal. To face this
problem, in September 2003, OASIS released the first version of
the Web Services for Remote Portlets (WSRP) standard [18][2].
In the WSRP standard, a portlet is a remote, interactive web mini-
application that renders markup fragments that remote portals can
aggregate into a page. A portlet provider, known as WSRP
producer, implements a number of standard web service interfaces
that allow remote portals to interact with the portlets the provider
owns and get the markup.

In October 2003, the Java Community Process released the first
version of the Java Portlet Specification (JSR 168) [12][2]. This

specification standardizes a Java API for developing portlets that
run in a portlet container, which typically is part of a Java portal
server. In order to allow the use of Java web technologies, portlets
can delegate content generation to servlets and JSP pages.

Figure 20 shows the typical architecture of a Java portal server
that supports WSRP and the Java Portlet Specification. The
portlet container component manages the life cycle of local
portlets much the same way as a J2EE web container manages the
life cycle of servlets. The Java Portlet Specification standardizes
the API this component exposes to local portlets. The portlet
container is also responsible for managing the persistence of
portlet preferences. The portal web application component is a
web application that defines the portal information model (e.g.
user registration information, desktop layout, workspace layout
and stateful buttons) and implements the use cases the end user
needs (sign in, sign up, select portlet layout, aggregate portlet
responses into a page, etc). Whenever it needs to interact with the
local portlets, it calls on the specific API provided by the portlet
container.

Figure 20. Typical architecture of a Java portal server
supporting WSRP and the Java Portlet Specification.

Even though Java portlets are local to the portlet container, the
portal server can include a WSRP producer component that
provides an implementation of the WSRP interfaces, allowing
other WSRP-compatible portals to access local Java portlets. In
fact, the Java Portlet Specification can be considered as an API
for implementing WSRP portlets in Java. A portal server can also
include a WSRP consumer component. This component is
implemented as a Java portlet that acts as a proxy of any WSRP
producer, allowing the portal to consume remote WSRP portlets.
Compared to the architecture illustrated in Figure 20,
MyPersonalizer corresponds mainly to the portal web application
component. Portal servers typically implement this component
with an application-oriented approach, which results in an
inherent lack of generality and adaptability for portal
development, as explained in Section 1. MyPersonalizer provides
generic, adaptable model and controller layers that allow to
develop this component as needed for a particular portal. Unlike
current portal servers, MyPersonalizer also allows to exploit user
information in terms of personal persistent objects. This has been
possible because objects are modeled in a generic way and
mapped to a relational database according to the relational data
model.

Like a Java portlet container, MyPersonalizer allows to develop
portlets. However, as we have developed the framework at the
same time the Java Portlet Specification was being standardized,
MyPersonalizer does not support the standard Java portlet API.
Portlets preferences in the standard Java portlet API are modeled
as a set of name-value pairs, where the value of a preference is an

: BBCWN-
Controller

:BBCWN-
Response.jsp

<<remote>>
:BBCWN

getPersona-
lizedReply

read URL?max-
Headlines=3 get XML

 (HTTP)

getPersonalized-
ReplyRequest

Portal web
application

Java
portlet
container

WSRP
producer

WSRP
consumer
portlet

Internet/Intranet

WSRP
producer

Browser

Other
portals

Portal

Local
portlets

: XigniteSQ-
Controller

:XigniteSQ-
Action

<<remote>>
:XigniteSQ

getPersona-
lizedReply

read URL?symbols=IBM&-
symbols=SUNW getQuickQuotes

 (SOAP)

getPersonalized-
ReplyRequest

:XigniteSQ-
Response.jsp

forward

array of String objects. WSRP defines a richer model for portlet
preferences, where the value of a preference is an array of objects.
Object types are defined in an XML schema. In consequence,
basic and complex types are supported. This model is equivalent
to the system of properties provided by MyPersonalizer. Each
preference is represented as a property, which value is an array of
objects of basic types or String (simple properties), or complex
types (compound properties).

Again, as we have developed the framework at the same time
WSRP was being standardized, MyPersonalizer does not provide
the WSRP producer and consumer components. In consequence,
MyPersonalizer portlets can not be consumed by remote WSRP-
compatible portals, and MyPersonalizer portals can not consume
WSRP portlets.

We are currently refactoring controller and model actions so that
a Java portlet container can be plugged into the framework. In
particular, we are integrating Jakarta Pluto [9], which is the
reference implementation of a Java portlet container. We will also
integrate Apache WSRP4J [20], which builds on Jakarta Pluto,
and provides the WSRP producer and consumer components.

6. CONCLUSIONS AND FUTURE WORK
Current portal servers provide a pre-built My portal where
developers can integrate services. We have followed a different
approach for engineering My portals. MyPersonalizer is a
framework that provides generic, adaptable model and controller
layers that implement the typical use cases of a My portal. Our
approach presents the following advantages:

• The model layer represents personal persistent objects in a
generic way. This lets developers specify the properties the
particular portal needs for each type of object.

• The model layer maps personal persistent objects according
to the relational data model. This lets administrators exploit
user information, since complex queries can be executed in
an efficient way.

• There is a clear separation of roles in the development team.
Graphical designers (without programming skills) develop
the portal view. Software engineers implement service
plugins, redefine model or controller policies (if necessary)
and specify framework configuration.

• The controller layer builds on Jakarta Struts. This lets
graphical designers use all the Struts view-related
infrastructure for implementing the view.

We are currently adding support for WSRP and the Java Portlet
Specification in MyPersonalizer, and replacing the Struts HTML
tags with the standard tags provided by JavaServer Faces in the
MyPortal demo portal (this should not affect MyPersonalizer).
With respect to the query language, we are considering what other
constructions of XQuery could be useful for exploiting user
information. We are also considering a number of future lines of
research, in particular, (1) supporting other types of persistent
stores (e.g. LDAP) and comparing their performance, (2) using
AspectJ [1] (an extension to Java that adds aspect-oriented
programming capabilities) to simplify the implementation of
crosscutting concerns (logging, security, etc), and (3) wrapping
web applications as portlets.

7. ACKNOWLEDGEMENTS
This work has been supported by the Spanish Science and
Technology Ministry under contract TIC2001-0547.

8. REFERENCES
[1] AspectJ. http://www.eclipse.org/aspectj.

[2] Bellas, F. Standards for Second-Generation Portals. IEEE
Internet Computing, vol. 8, no. 2, March/April 2004.

[3] Bellas, F., Fernández, D., Toral, I., and Muiño, A. Towards a
Generic and Adaptable J2EE-based Framework for
Engineering Personalizable “My” Portals. Proceedings of the
IADIS International Conference “WWW/Internet 2003”, pp.
789-792, Algarve, Portugal, 2003.

[4] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
and Stal, M. Pattern-Oriented Software Architecture: A
System of Patterns. John Wiley and Sons, 1996.

[5] Crupi, J., Alur, D., and Malks, D. Core J2EE Patterns, 2nd
edition. Prentice Hall, 2003.

[6] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[7] Hibernate. http://www.hibernate.org.

[8] Husted, T., Dumoulin, C., Franciscus, G., and Winterfeldt,
D. Struts in Action. Manning, 2003.

[9] Jakarta Pluto. http://jakarta.apache.org/pluto.

[10] Jakarta Struts. http://jakarta.apache.org/struts.

[11] Java Data Objects Specification. http://access1.sun.com/jdo.

[12] Java Portlet Specification.
http://jcp.org/aboutJava/communityprocess/final/jsr168.

[13] JavaServer Faces Specification.
http://java.sun.com/j2ee/javaserverfaces.

[14] JavaServer Pages Standard Tag Library.
http://java.sun.com/products/jsp/jstl.

[15] Manber, U., Patel, A., and Robison, J. Experience with
Personalization on Yahoo!. Communications of the ACM,
vol. 43, no. 8, pp. 35-39, August 2000.

[16] MyPersonalizer.
http://www.tic.udc.es/~fbellas/mypersonalizer.

[17] Singh, I., Stearns, B., and Johnson, M. Designing Enterprise
Applications with the J2EE Platform, 2nd edition. Addison-
Wesley, 2002.

[18] Web Services For Remote Portlets Specification.
http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsrp.

[19] Wege, C. Portal Server Technology. IEEE Internet
Computing, vol. 6, no. 3, pp. 73-77, May/June 2002.

[20] WSRP4J. http://ws.apache.org/wsrp4j.

[21] XPath 2.0. http://www.w3.org/TR/xpath20.

[22] XQuery. http://www.w3.org/TR/xquery.

