
MySQL Replication :
advanced features in all flavours
Giuseppe Maxia

Quality Assurance Architect at VMware

@datacharmer

1

Who’s this guy?
About me

‣ Giuseppe Maxia, a.k.a. "The Data Charmer"
• QA Architect at VMware

• 25+ years development and DB experience

• Long timer MySQL community member.

• Oracle ACE Director

• Blog: http://datacharmer.blogspot.com

• Twitter: @datacharmer

2

A

Supporting material

‣ MySQL Replication monitoring 101

‣ http://bit.ly/repl-mon-101

‣ Slides:

‣ http://bit.ly/adv-repl-all-flavors-2015

3

http://bit.ly/repl_mon_101
http://bit.ly/adv-repl-all-flavors-2015

What will we see in this tutorial
Summary

‣ The concepts of Replication

‣ Why monitoring matters

‣ Global Transaction Identifiers

‣ Multi source replication

‣ Parallel replication

4

We will see practical examples with the following systems
Actors

‣ MySQL 5.6.24

‣ MySQL 5.7.7

‣ MariaDB 10.0.17

‣ Tungsten Replicator 3.0.1

5

Why MySQL?

6

The world today is
dominated by the
web economy

www
$$$

7

Databases are
the backbone

of the web
economy

www
$$$

8

What database for the web?

1 Copyright © 2011, Oracle and/or its affiliates. All rights

reserved.

Insert Information Protection Policy Classification from Slide 8

Oracle: The most powerful database

Postgresql: The most advanced
open source database

SQLite: The most deployed open
source database

MySQL: The most popular open
source database

9

Actually, MySQL
databases are the

backbone of the web
economy

www
$$$

10

What database for the web?

1 Copyright © 2011, Oracle and/or its affiliates. All rights

reserved.

Insert Information Protection Policy Classification from Slide 8

No built-in replication

No built-in replication

No built-in replication

Built-in replication

11

✔

✗
✗
✗

More precisely, MySQL
REPLICATION is the
backbone of the web

economy

www
$$$

12

MySQL

A community tool for
the enterprise.

How did it happen?

WHY?

The building block of the web
economy

Why is MySQL popular?

• PERFORMANCE : small, agile, fast!

• RELIABILITY: keeps your data safe, runs forever

• EASE OF USE: up and running in minutes!

• SCALABLE

• FRIENDLY

Scaling UP

Scaling OUT

writes

reads

client

Scaling OUT

writes

reads

client

Replication in a nutshell

19

The basics
The concepts of replication

20

client
master

transaction

slave

Physical

logical

The basics
The concepts of replication

21

client
master

transaction

binary log

relay log

extractor

applier

slave

The basics
The concepts of replication

22

client
master

transaction

binary log

relay log

extractor

applier

slave

origin data stream

extraction
position

apply
position

data stream

Why we will see lots of monitoring concepts
Focus on monitoring

‣ Monitoring tells you if replication is working properly

‣ It also show us how some features work

‣ If we can see the data moving, we understand it
better

23

The most important reason:
Focus on monitoring

‣ Replication will fail, sooner or later.

‣ Good monitoring metadata is what can tell you
what the problem is

24

There is more than one way of knowing if replication is
working

MySQL replication monitoring

‣ Sentinel data : tap tap, is this thing working?

‣ Monitoring: are you still there?

‣ Latency: are you catching up?

‣ Status persistence: are you OK, dear?

‣ Completeness: did you miss anything?

‣ Checksum probes: have you got it all?

25

The simplest, system-independent method of testing
replication

Sentinel data : tap tap, is this thing on?

1. Make sure the data is not in the master or in the
slave

2. Write the data to the master

3. Retrieve the data in the slave

4. Modify the data in the master

5. Check the changes in the slave

6. Delete the data from the master

7. Make sure it was also deleted in the slave
26

Caveats
Sentinel data: what is it and isn’”⁹t

‣ It tells you if replication CAN work

‣ It won’t tell you if replication works ALWAYS

‣ It won’t tell you if all your data is replicated

27

Objectives of monitoring :
Monitoring: are you still there?

1. Making sure that the slave is replicating from the
intended master.

2. Checking that the slave is replicating from the right
binary logs.

3. Checking that the data from the master is
transferred to the slave.

4. Checking that the slave is applying data without
errors.

5. Checking that the slave is keeping up with the
master

28

To monitor effectively, we need to cover all bases
How monitoring works

‣ We need to know :
• who the master is

• what the master is doing

• what the slave is doing

‣ And then compare what we have got

29

Get information about the master, from the master server
Who is the master?

mysql> show variables like 'port';

 +---------------+-------+

 | Variable_name | Value |

 +---------------+-------+

 | port | 22786 |

 +---------------+-------+

30

Get information about the master, from the master server
Who is the master?

mysql> show variables like 'hostname';

 +---------------+-----------+

 | Variable_name | Value |

 +---------------+-----------+

 | hostname | localhost |

 +---------------+-----------+

31

Get information about the master, from the master server
What is the master doing?

mysql> show master status\G

 *************************** 1. row

 File: mysql-bin.000003

 Position: 5149170

 Binlog_Do_DB:

 Binlog_Ignore_DB:

 1 row in set (0.00 sec)

32

This means, usually, running “SHOW SLAVE STATUS”
What is the slave doing?

SHOW SLAVE STATUS\G

Master_Host: 127.0.0.1

Master_Port: 22786

Master_Log_File: mysql-bin.000003

Read_Master_Log_Pos: 5149170

Relay_Log_Pos: 2060153

Relay_Master_Log_File: mysql-bin.000003

Slave_IO_Running: Yes

Slave_SQL_Running: Yes

Exec_Master_Log_Pos: 2060007

Relay_Log_Space: 5149528 33

Are you catching up?
Latency

‣ Delta between
• Time of commit in the master

• Time of apply in the slave

‣ Can be measured with a simple sentinel system

1. Insert a high res timestamp in the master

2. Retrieve the record from the slave

3. Measure the interval

4. Subtract the commit time.
34

Assume your servers will fail. Prepare for it
Status persistence

‣ Problem:
• When server crashes and resumes, replication status

on file may not be in sync

‣ Solution:
• Crash-safe slave tables

• Replication status is kept in the database

35

Using filters during extraction or apply can have side
effects

Completeness: did you miss anything?

‣ Data can be removed by filters
• in the master bin log (never gets to the slaves)

• in the slaves (apply rules)

‣ Data can be modified
• for heterogeneous replication

• for ETL tasks

‣ If you have filters, your slave CAN`T become
master.

36

Checking that replicas have the right data is a sound idea
Checksum probes: have you got it all?

‣ total probes (expensive: may stop or slow down
operations)

‣ incremental probes (take long time, but have low
impact on operations)

‣ Many methods. A popular one is pt-table-checksum
from Percona Toolkit

37

Global Transaction Identifiers

38

You think you know where your transactions are … until
something unexpected happens

Transactions blues

‣ Problem:
• MySQL replication identifies transactions with a

combination of binary log file name and offset position;

• When using many possible masters, file names and
positions may differ.

• Practical cases: failover, circular replication,
hierarchical replication

‣ Solution: use a global ID, not related to the file
name and position

39

A half baked feature, which kind of works
Implementation: (1) MySQL 5.6 & 5.7

‣ Made of server UUID + transaction ID
• (e.g.: “e8679838-b832-11e3-b3fc-017f7cee3849:1”)

‣ Only transactional engines

‣ No “create table … select …” supported

‣ No temporary tables within transactions

‣ Requires log-slave-updates in all nodes

40

A half baked feature, which kind of works
Implementation: (1) MySQL 5.6 & 5.7

‣ The good
• GTID are easily parseable by scripts in the binlog

• Failover and transaction tracking are easier

‣ The bad
• Not enabled by default

• Hard to read for humans!

• Little integration between GTID and existing software
(ignored in crash-safe tables, parallel replication)

• makes log-slave updates mandatory
41

Something was changed ...
GTID in MySQL 5.7.6+

‣ GTID can now be enabled dynamically.

‣ However, it requires a 9 (NINE!) steps procedure.

‣ http://mysqlhighavailability.com/enabling-gtids-
without-downtime-in-mysql-5-7-6/

42

http://mysqlhighavailability.com/enabling-gtids-without-downtime-in-mysql-5-7-6/

A well thought feature, with some questionable choices
Implementation (2) MariaDB 10

‣ Made of domain ID+server ID + number
• e.g. (0-101-10)

‣ Enabled by default

‣ Uses a crash-safe table

‣ No limitations

‣ Lack of integration with old replication coordinates.

43

The oldest implementation, well designed and integrated
Implementation (3) Tungsten Replicator

‣ Made of service name + transaction number
• e.g. “alpha 1”

‣ Integrated with crash-safe tables

‣ Integrated with old coordinates

‣ Provides extra information about each transaction

‣ No limitations

44

GTID demo

45

Monitoring (MySQL 5.6+ - MariaDB 10)

46

(Almost) all data is now in tables
The new trend : using tables to monitor

‣ Both MySQL and MariaDB 10 can monitor
replication using tables.

‣ Well ... almost all

47

There are tables that can replace files, and SHOW
statements ... up to a point

MySQL 5.6 crash-safe tables

‣ up to 5.5:
• SQL in the slave

- show slave status

• SQL in the master

- show master status

48

‣ 5.6 & 5.7:
‣ Tables in the slave

‣ slave_master_info

‣ slave_relay_log_info

‣ SQL in the master

‣ show master status

‣ select
@@global.gtid_executed

Very detailed, but designed in different stages
MySQL tables

‣ One table replaces the file master.info

‣ Another replaces relay-log.info

‣ They were designed before introducing GTID

‣ There IS NO GTID in these tables

‣ They are not updated continuously

49

Performance Schema helps with monitoring
(NOTE: table names changed in 5.7.6)

MySQL 5.7 additional tables

‣ replication_applier_configuration

‣ replication_applier_status

‣ replication_applier_status_by_coordinator

‣ replication_applier_status_by_worker

‣ replication_connection_configuration

‣ replication_connection_status

50

A complete redesign of the monitoring system, integrated
with GTID

MariaDB 10 crash-safe tables

‣ up to 5.5:
• SQL in the slave

- show slave status

• SQL in the master

- show master status

51

‣ 10.0
• Table in the slave

- gtid_slave_pos

• SQL in the master

- show master status

- select
@@gtid_current_pos

Monitoring demo

52

Multi-source replication

53

The dream of every DBA is to have a group of database
servers that behave like a single server

What is it?

‣ Traditional replication allows master/slave and
chain replication (a.k.a. circular or ring)

‣ Up to MySQL 5.6, a slave cannot have more than
one master.

‣ Multi source is the ability of replicating from more
than one master at once.

‣ Implemented in Tungsten Replicator (2009),
MySQL 5.7 (2015), MariaDB 10 (2013).

54

An evaluation release, which might not be in the final GA
Implementation (1) MySQL 5.7.7

‣ New syntax: CHANGE MASTER TO … FOR
CHANNEL “name”

‣ SHOW SLAVE STATUS FOR CHANNEL “name”

‣ START/STOP SLAVE FOR CHANNEL “name”

‣ Includes replication tables in performance_schema

‣ Requires log-slave-updates for monitoring

55

Now GA, the multi source was well planned and executed
implementation (2) : MariaDB 10

‣ New syntax “CHANGE MASTER “name” …”

‣ START/STOP/RESET SLAVE “name”

‣ SHOW SLAVE “name” STATUS

‣ SHOW ALL SLAVES STATUS

56

An external tool for replication, which supports multiple
topologies

Implementation (3) Tungsten Replicator

‣ Can create pre-defined topologies, and complex
ones on-the-fly

‣ Supports the concept of service data streams,
allowing multiple streams per server

‣ No SQL syntax implemented. All admin work
through dedicated tools.

‣ Full integration with GTID

‣ Allows both point-to-point replication and full slave
replay.

57

When the data is applied, saved to a binary log, and then
replicated again, we have a full slave replay

Full slave replay

58

host1

host4

host2

host3

Circular replication

When the data is applied, saved to a binary log, and then
replicated again, we have a full slave replay

Full slave replay

59

star replication

host1

host4

host2

host3

hub

Allows data flow where the replicated data is applied only once
Point-to-point replication

60

host1

host4

host2

host3point-to-point,
all-masters replication

Multi-Source demo

61

Parallel replication

62

When the slave lags, using parallel threads may speed up
things

Parallel apply

‣ It’s the ability of executing binary log events in
parallel.

‣ Implemented in Tungsten Replication (2011,
schema based), MySQL 5.6 (2012, schema
based), MariaDB 10 (2013, boundless), MySQL 5.7
(2013, boundless)

63

The granddaddy of parallel replication, happily deployed in
production for years

Implementation (1) Tungsten Replicator

‣ Based on schema boundaries.

‣ No risk of deadlocks.

‣ Can be shared by criteria other than database, but
only during provisioning.

‣ Fully integrated in the instrumentation;

‣ Provides extra information for monitoring and
troubleshooting

64

The first integrated solution for parallel replication
Implementation (2) MySQL 5.6

‣ Schema based, same as Tungsten.

‣ Requires both master and slave of the same
version;

‣ No integration with GTID;

‣ No extra instrumentation.

65

Breaking the schema barriers
Implementation (3) MySQL 5.7

‣ Not schema based. Parallelism is defined by extra
metadata from the master.

‣ Requires both master and slave of the same
version;

‣ Uses monitoring tables in performance schema

‣ Limited troubleshooting info;

‣ With multi-source, it’s all or nothing

66

The latest contender
Implementation (4) MariaDB 10

‣ Not schema based. Uses information from the
coordinator to define how to parallelise;

‣ Integrated with GTID;

‣ Little instrumentation for troubleshooting.

‣ You can choose to which channel to apply (set
default_master_connection='x').

67

A new algorithm for parallel replication
New development in MariaDB 10.1

‣ Optimistic parallelisation

‣ Does not require preparation in the master

‣ Still in beta.

68

Supporting material

‣ MySQL Replication monitoring 101

‣ http://bit.ly/repl-mon-101

‣ Slides:

‣ http://bit.ly/adv-repl-all-flavors-2015

‣ Scripts
69

http://bit.ly/repl_mon_101
http://bit.ly/adv-repl-all-flavors-2015
https://www.dropbox.com/s/dq8ecw6rkfjba68/advanced_replication_scripts.zip?dl=0

Useful links

‣ GTID in MySQL

‣ Performance_schema tables for replication

‣ GTID in MariaDB

‣ Multi Source in MySQL

‣ Multi Source in MariaDB

‣ Parallel Replication in MariaDB

‣ Parallel Replication in Tungsten
70

https://dev.mysql.com/doc/refman/5.7/en/replication-gtids.html
http://shivjijha.blogspot.com/2013/09/Introducing-the-performance-schema-tables-to-monitor-MySQL-replication.html
https://mariadb.com/kb/en/global-transaction-id/
https://dev.mysql.com/doc/refman/5.7/en/replication-multi-source.html
https://mariadb.com/kb/en/mariadb/multi-source-replication/
https://mariadb.com/kb/en/parallel-replication/
https://docs.continuent.com/tungsten-replicator-2.2/operations-parallel.html

Q&A

71

