
Booking.com:
Evolution of MySQL System Design

Nicolai Plum <nicolai.plum@booking.com>

Booking.com

2

Early days
● Founded in 1996
● as bookingsportal.nl

● Purchased by Priceline.com Inc in 2005
● Became Booking.com in 2006

Still small in 1999…

Picture by Geert-Jan Bruinsma

Available
Accommodations

Daily
Reservations

We got bigger since then

Travel business opportunity

Booking.com

Accommodation
Opportunty
Other spend

Architecture decisions
● Around 2003 we decided
● Keep using Perl
● MySQL + replication
● Analytics and dashboards
● A/B testing

7

Hotel reservation website design experts

Picture by SantiMB.Photos on flickr; license cc-by-na

8

Scalability dimensions
● Schema growth
● Data growth
● Query rate
● Data complexity

 Each has different solutions
9

Scalability dimensions
● Schema growth
● Data growth
● Query rate
● Data complexity

 Each has different solutions
10

Data complexity
●  Complex multi-directional relations and normalisation
●  Many-way JOINs
●  Foreign Key constraints
●  All put stress on…

●  SQL Optimiser query plans
●  Storage engines
●  Schema design
●  Developers
●  DBAs

11

Data complexity reduction
● Prefer client-side logic to Foreign Keys and

Stored Procedures
● Client-side scales better in CPU
● We have control of all our code

● Prefer simpler joins
● Denormalise pragmatically
● Fast schema changes
● Online schema change, low bureaucracy

12

Scalability dimensions
● Schema growth
● Data growth
● Query rate
● Data complexity

13

Query rate
● Travel websites are all read-intensive
● Replication for the win!
● Winning for us since 2003

● How to monitor and manage?
● Puppet, Graphite, Nagios, etc

● Comprehensive application event and error
analysis

14

Databases - beginning

15

Database replication

16

Sharing databases – Cells

17

Sharing databases – Cells
● Simple to administer
● Good failure isolation
● Poor efficiency
● Even worse with many schemas

18

Use a Load Balancer !

19

Use a Load Balancer!
● Network stress
● Single Point Of Failure
● Scalability nightmare

20

Use a Load Balancer!

21

✖

DNS Database Load Balancer
● Separate control and signal path
● Modified HAProxy
● Standard HAProxy MySQL healthcheck
● HAProxy tracks server availability
● Returns list of severs in DNS query

22

DNS Database Load Balancer

23

DNS Database Load Balancer

24

Rosters of eligible DB servers
●  Separate control and signal path
●  De-centralised service checks
●  Apache Zookeeper
●  Pools of available servers

●  ZooAnimal deamon registers available database
servers

●  ZooRoster deamon retrieves servers for clients

25

Rosters of eligible DB servers

26

Rosters of eligible DB servers

27

Reliability
● Cells
● Strong failure isolation, inflexible

● DNS LB
● Less failure isolation, more flexible, LB is scaling

and reliability problem
● Rosters
● Less failure isolation, more flexible, very scalable,

Zookeper very reliable

28

Replication
●  Speed challenges

●  Single threading hurts us
●  Especially on a SAN
●  Careful optimisation of bulk jobs

●  Binlog server, make it all faster
●  Some help with failover

●  Bodge: copy tables
●  Works on myisam
●  Needs transportable tables for InnoDB
●  Alter tables from innodb to myisam, copy

29

Scalability dimensions
● Schema growth
● Data growth
● Query rate
● Data complexity

30

Acommodation reservation data
● Accommodation catalogue
● Descriptions, amenities, policies

●  Inventory
● Room prices, quantities and restrictions

● Customer details
● Names, contact info, payment

● Different growth and use patterns
31

Multiple schemas
● Split data by function
● Keeps it simple for most developers

● Queries against single schema

● Keeps it simple for DBAs
● Less simple for infrastructure developers

● ORM changes, data pumps, consistency checks
● Just feed them more coffee…

32

Multiple schemas

33

Multiple schemas
● Consistency…
● Distributed transactions, XA = pain
● DB failures, code bugs, app server crashes
● Careful order of updates so critical things last
● Consistency check references later

● Requires skilled developers and strong code
knowledge

● APIs and ORM layers help
34

When to split?
● Analysis tools for busiest tables
● Performance_Schema and SYS Schema

● Business impacts, development time
●  Isolate critical functions from complex, less

critical functions

35

Scalability dimensions
● Schema growth
● Data growth
● Query rate
● Data complexity

36

Data growth
● Business growth 30-50% annually
● Data growth 40-60% annually
● Faster than Moore’s Law
● And disk IOPS

37

38

We outgrow CPU speed

39

Booking.com CPU industry

SPEC graph by
Jeff Preshing

40

Database growing pains
Dataset size exceeds memory Read performance decreases (a lot)

Dataset size exceeds local disc size SAN latency, management, cost
Write perf decreases, Read perf
decreases more

Dataset exceeds size a CPU can
scan in reasonable time

Ad-hoc queries are impossible,
analyse table difficult, schema
changes difficult, table scans lethal

Dataset exceeds storage volume
size, disc array size, backup
capacity, filesystem limits

Totally unmanageable. Give up!

41

Database growing pains
Dataset size exceeds memory Read performance decreases (a lot)

~200GB

Dataset size exceeds local
disc size

SAN latency, cost, complexity
Write perf decreases, Read perf decreases
more

~5TB

Dataset exceeds size a CPU
can scan in reasonable time

Ad-hoc queries are impossible, analyse table
difficult, schema changes difficult, table scans
lethal

~20TB

Dataset exceeds storage
volume size, disc array size,
backup capacity, filesystem
limits

Totally unmanageable. Give up! ~300TB

42

Archives
● Separate transcational and analytical
● Store the past in another schema

● File off payment, PII where possible
● Also shrinks dataset
● Win-win J

● … but you need more (later)
43

Materialisation and data models
●  Read-optimised is not write-optimised
● OLTP vs OLAP – the timeless struggle

●  Two schemas
●  Different read and write data models
●  Data pumps, materialisation queues
●  Inevitably more complex
●  Needs smarter infrastructure to keep feature

development easy

44

Inventory – first materialisation
● Flat availability
● Write
● Complex relational structure of rooms, rates,

restrictions
● Read
● Simple point query for inventory for a single stay

● Much more predictable than caching
45

Row index – Hotel ID order

46

Hotel_ID District City UFI Country
1 Kensington London England
2 Chaoyang Beijing China
… … … …
20000 La Défense Paris France
20001 Dongchen Beijing China
20002 TriBeCa New York USA
….
35678 Xicheng Beijing China
35679 Gentofte København Danmark
….
70035 Chaoyang Beijing China

Row indexing – Hotel ID order

47

Row index – UFI order

48

Hotel_ID District City UFI Country
1 Kensington London England
…
70035 Chaoyang Beijing China
35678 Xicheng Beijing China
2 Chaoyang Beijing China
20001 Dongchen Beijing China
…
20002 TriBeCa New York USA
20000 La Défense Paris France
…
35679 Gentofte København Danmark

Row indexing – UFI order

49

Location coding - Z-order curve
● Location latitude and longitude
● 12 bits is
● 10km longitude
● 6-10km latitude (for most hotels)

●  Index with bitwise interleave of latitude
and longitude in a space-filling curve

50

51
(David Eppstein, via Wikipedia)

Row index – Z-order

52

Hotel_ID District City UFI Country Z-location
1 Kensington London England 3456789

…
35678 Xicheng Beijing China 6788567
70035 Chaoyang Beijing China 6789456
2 Chaoyang Beijing China 6789456
20001 Dongchen Beijing China 6790463
…
20002 TriBeCa New York USA 8534535

20000 La Défense Paris France 10013346

…
35679 Gentofte København Danmark 13036743

Row indexing Z-order curve

53

Materialised inventory

54

Sharding
● Prefer schema split to sharding
● Necessary in growing, busy, transactional

schemas
●  Inventory
● Materialised datasets

● Requires good API (or developer awareness)
● Complexity, overhead

55

Analytics
● Two types of analytics
● Exploitation
● Canned reports with some parameters

exploited many staff
● Exploration
● New queries, unknown unknowns

56

Analytics – exploitation
●  Pre-prepared reports - Controlrooms
●  Part pre-aggregated data
●  Intermediate infrastructure between raw data and

single purpose report data
●  Satisfies need for regular reports, common questions

● Fixed reports with parameters
●  Less flexible for ad-hoc queries
●  Technical dead-end, useful for medium-term

●  Moving to Hadoop
57

Analytics – exploration
● Surprisingly easy to make a write only

dataset in various ways
● Too big to query
● Queries hit performance too hard
● Can’t add indexes so queries hit too hard
● Users too bad at SQL (Excel/ODBC) so they

give up

58

Analytics - exploration
● Need constant compute power per unit of

data during growth
● Data to MySQL and Hadoop
● Hadoop answers in linear time
● but not quickly

● Business analysts love it
● Most people need a friendly interface

59

Business systems
● Web marketing
● More traditional database
● Large imports, ETL
● >20TB MySQL

● Even with split schemas
● Analysis is moving to Hadoop

60

Masters
●  First DRBD
●  Now SAN Netapp filers
●  Future is trying to reduce number of important machines
●  Now: rapid automated failovers
●  SAN == safety + latency
●  For arbitrary topology changes, need a global way to identify

of changes (transactions)
●  GTID

●  Future: (pseudo) gtid, no special masters

61

Measuring capacity
●  In fixed config cells, you need more DB than app
●  In flexible pools, capacity is hard

●  Metrics lie, due to nonlinearity in the database
●  Qps, etc, help a bit
●  Traffic replay at high rate helps more (if you can)
●  Replication capacity is also important

●  Single thread, often a limit
●  Stop slave and measure time to catch up
●  P_S replication stats too complicated in 5.6
●  Contention and non-linearity really hard

62

Abstraction Layers
●  No need for a full microservice intercommunication

framework architecture standardisation
committee…

●  Just a function call will do
●  Inventory was easy
●  Few calls to well defined API functions

●  Search was not
●  Search: everyone fetched hotels and filtered

themselves even for common searches
63

64

nicolai.plum@booking.com

