
Pythian Operational Visibility

Percona Live Santa Clara, 2015
April 13, 2015

Derek Downey
MySQL Principal Consultant

Laine Campbell
Co-Founder, Open Source Database Practice

ABOUT PYTHIAN

• 200+ leading brands trust us to keep their systems fast,
relaible, and secure

• Elite DBA & SysAdmin workforce: 7 Oracle ACEs, 2 Oracle ACE
Directors, 5 Microsoft MVPs, 1 Cloudera Champion of Big Data,
1 Datastax Platinum Administrator — More than any other
company, regardless of head count

• Oracle, Microsoft, MySQL, Hadoop, Cassandra, MongoDB, and
more.

• Infrastructure, Cloud, SRE, DevOps, and application expertise

• Big data practice includes architects, R&D, data scientists, and
operations capabilities

• Zero lock-in, utility billing model, easily blended into existing
teams.

10,000
Pythian currently manages more than 10,000

systems.

350
Pythian currently employs more than 350

people in 25 countries worldwide.

1997
Pythian was founded in 1997

content

© 2014 Pythian

● discussion
○ laine campbell
○ one hour

● set-up host environments to monitor
○ derek downey
○ 30 minutes

● review observability stack
○ laine campbell
○ 30 minutes

● attach to observability stack, hands-on, Q&A
○ derek downey and laine campbell
○ one hour

Our Goals: to understand

© 2014 Pythian

● observability objectives, principles and outcomes
● current state and problems
● metrics
● observability architecture
● choosing what to measure

○ business KPIs and ways to track them
○ pre-emptive and diagnostics measurements

● the Pythian opsviz stack
○ what it is
○ how to set it up
○ how to visualize data

operational visibility

continuous improvement

kaizen recognizes improvement can be small or large.

many small improvements can make a big change.

to improve a system, you must...

© 2014 Pythian

● understand it

● describe it

● involve, and motivate all
 stakeholders

enabling kaizen

© 2014 Pythian

plan do

act study

we can do none of this...

© 2014 Pythian

without visibility

the objectives of observability

© 2014 Pythian

● business velocity

● business availability

● business efficiency

● business scalability

the principles of observability

© 2014 Pythian

● store business and operations data together

● store at low resolution for core KPIs

● support self-service visualization

● keep your architecture simple and scalable

● democratize data for all

● collect and store once

the outcomes of observability

© 2014 Pythian

● high trust and transparency

● continuous deployment

● engineering velocity

● happy staff (in all groups)

● cost-efficiency

state of the union

© 2014 Pythian

starting to address the traditional problems with
opsviz

traditional monitoring

© 2014 Pythian

the problems

© 2014 Pythian

● too many dashboards

● data collected multiple
times

● resolution much too
high

● does not support
ephemeral

● hard to automate

● logs not centralized

better...

© 2014 Pythian

● telemetry collected
once

● logs centralized

● logs alerted on and
graphed

● 1 second resolution
possible

● supports ephemeral

● plays well with CM

● database table data
into dashboards

what must we improve?

© 2014 Pythian

● architectural component complexity and fragility

● functional automation and ephemeral support

● storage and summarization

● naive alerting and anomaly detection

● not understanding and using good math

● insufficient visualization and analysis

what’s in a metric?

© 2014 Pythian

resolution

latency

diversity

telemetry

● counters
● gauges

events

traditional

synthetic

architectural components

© 2014 Pythian

sensing

collecting

analysis

storage

visualization

alerting

architectural components

© 2014 Pythian

● Telemetry

● Events and Logs

● Applications

● Databases and SQL

● Servers and Resources

sensing

architectural components

© 2014 Pythian

● Agent or Agentless

● Push and Pull

● Filtering and Tokenizing

● Scaling

● Performance Impact

sensing

collecting

architectural components

© 2014 Pythian

● In-Stream

● Feeding into Automation

● Anomaly Detection

● Aggregation and
Calculations

sensing

collecting

analysis

architectural components

© 2014 Pythian

● Telemetry

● Events

● Resolution and
Aggregation

● Backends

sensing

collecting

analysis

storage

architectural components

© 2014 Pythian

● rules-based processing

● notification routing

● event aggregation and
management

● under, not over paging

● actionable alerts

sensing

collecting

analysis

storage

alerting

architectural components

© 2014 Pythian

● executive dashboards

● operational dashboards

● anomaly identification

● capacity planning

sensing

collecting

analysis

storage

alerting

visualization

what to measure?

© 2014 Pythian

we measure to support our KPIs

we measure to pre-empt incidents

we measure to diagnose problems

we alert when customers feel the pain

supporting our KPIs

© 2014 Pythian

velocity

efficiency

security

performance

availability

https://derpicdn.net/img/view/2012/8/3/65841__safe_fluttershy_tank_scooter_artist-colon-giantmosquito_tortoise_vespa.jpg

velocity

© 2014 Pythian

velocity

https://derpicdn.net/img/view/2012/8/3/65841__safe_fluttershy_tank_scooter_artist-colon-giantmosquito_tortoise_vespa.jpg

how fast can the org push new features?

how fast can the org pivot?

how fast can the org scale up or down?

deployment counts
DB object changes
data loads and changes

provisioning counts
cluster add/removal
member add/removal

engineering support
query review turnaround
data model review
turnaround

deployment time
DDL timings
data load timings

provisioning timing
cluster add/removal
member add/removal

deployment errors
failed DDL/DML
schema mismatch

provisioning errors
cluster add/removal
member add/removal

efficiency

© 2014 Pythian

velocity

https://derpicdn.net/img/view/2012/8/3/65841__safe_fluttershy_tank_scooter_artist-colon-giantmosquito_tortoise_vespa.jpg

how cost-efficient is our environment?

how elastic is our environment?

cloud spend
data storage costs
data compute costs
data in/out costs

physical spend
data storage costs
data compute costs
data in/out costs

staffing spend
DBE spend
Ops spend

cloud utilization
database capacity
database utilization

physical utilization
database capacity
database utilization

staffing utilization
DBE utilization
Ops utilization

provisioning counts
cluster add/removal
member add/removal

application utilization
percent capacity used
mapped to product or
feature

staffing elasticity
DBE/ops hiring time
DBE/ops training time

efficiency

security

© 2014 Pythian

velocity

https://derpicdn.net/img/view/2012/8/3/65841__safe_fluttershy_tank_scooter_artist-colon-giantmosquito_tortoise_vespa.jpg

how secure is our environment?

penetration tests
frequency
success

classified storage
live
in backups

audit results
frequency
results

audit trail data
utilization
access

users with access
account access
account audit

infosec incidents
event frequency

efficiency

security

performance

© 2014 Pythian

velocity

https://derpicdn.net/img/view/2012/8/3/65841__safe_fluttershy_tank_scooter_artist-colon-giantmosquito_tortoise_vespa.jpg

What is the AppDex of our environment?

AppDex(n), where n is the latency

AppDex(2.5), score of 95 indicates:

● 70% of queries under 2.5
● 25% of queries tolerable (5)
● 5% of queries as outliers

efficiency

security

performance

© 2014 Pythian

availability

© 2014 Pythian

velocity

https://derpicdn.net/img/view/2012/8/3/65841__safe_fluttershy_tank_scooter_artist-colon-giantmosquito_tortoise_vespa.jpg

how available is our environment to
customers?

how available is each component to the
application?

external response
pings
websites
APIs

system availability
server uptime
daemon uptime
accessibility to app

resource consumption
CPU
storage
memory
network

efficiency

security

performance

availability

pre-empting incidents
supporting diagnostics

© 2014 Pythian

identify anomalies in latency or utilization

identify dangerous trends in latency or utilization

identify error rates indicating potential failure

measure as much as possible

alert on as little as possible

© 2014 Pythian

● align alerts to customer pain

● automate remediation if possible

● use metrics and events to solve
what cannot be remediated

https://fc04.deviantart.net/fs71/i/2012/110/0/1/ninja_lyra_by_x72assassin-d4x0xqn.png

https://lockerdome.com/vox.com/7101308691941396

when measuring, understand...

© 2014 Pythian

your artificial bounds, which:

● to ensure resources are not exhausted
● to ensure application concurrency stays in control

your resource constraints

compromising on storage

© 2014 Pythian

telemetry data

© 2014 Pythian

collect and then flush

storing more than just averages
● min/max
● standard deviation
● percentiles for outlier removal

averages lie

storing histograms

http://s3.amazonaws.com/bronibooru/941e30f3cb2129951df0d7d674fefcad.png

the application

© 2014 Pythian

closest to perceived customer experience

documenting application components in SQL

understanding end to end
transactions

prioritization by latency
budgets

the application

© 2014 Pythian

application performance management tools

application logging to logstash

fire and forget to an event processing system

telemetry for occurrence counts

histograms for visualizing

the server

© 2014 Pythian

the basics, resource utilization, process behavior and the
network

log aggregation and measuring
● syslogs
● mysql logs
● cron, authentication, mail logs

aggregation up in distributed systems

https://lockerdome.com/vox.com/7101308691941396

the database: mysql

© 2014 Pythian

exposed database metrics

sql analytics and metrics

connection layer

how does they impact:

● availability KPIs

● concurrency KPIs

● latency KPIs

database metrics: workload

© 2014 Pythian

generic workload distribution

impacts to latency budgets

how fast are we hitting our resource and concurrency bounds?

● selects
● prepared statements
● ddl - data definition language
● dml - data manipulation language
● administrative commands

correlate DDL and admin to availability impacts

measure shifts in workload that may be impacting latency

database metrics: workload

© 2014 Pythian

data access behavior
● sort statistics
● join statistics
● handler status variables

○ index scans vs. full table scans
○ key index access
○ commits and rollbacks

how are we impacting our latency
budgets?

https://e621.net/data/e4/e4/e4e434d480672a67550c7c4113c85c73.jpg

database metrics: workload
event metrics, inside out

© 2014 Pythian

statement event

stage/sql/creating
sort event

stage/sql/copying
to tmp table

stage/sql/checking
query cache for sql

sql stage

stage/com/ping

stage/com/quit

stage/com/error

com stage

helps identify where
time is spent, in SQL
statements

this helps to
diagnose and
improve
performance

database metrics: workload
where is time being spent?

© 2014 Pythian

wait event

event name

event source code

event operation
(read|write|lock)

stage/com/ping

stage/com/quit

stage/com/error

joined with threads,
allows for trending of
counts of wait
events.

this helps to
diagnose and
improve concurrency
and performance
issues

database metrics: sql

© 2014 Pythian

all sql should be logged, with context
● comments pointing to application source code
● latency, and the components therein
● resources consumed
● data access paths taken

performance schema -> event and log analysis and visualization

slow logs -> event and log analysis and visualization

network sniffing -> event and log analysis and visualization

© 2014 Pythian

database metrics: sql

© 2014 Pythian

all SQL should be logged, with context

THIS IS HARD
solutions like vivid cortex can radically improve velocity

the database: connection layer

© 2014 Pythian

this is key to latency and availability KPIs

you must connect to your database

for latency, you have a fixed budget

getting to your network, other transaction
components and SQL consume much of it

for availability, you must understand
your bounds

tcp ports and mysql

© 2014 Pythian

max_connections (mysql)
● take one tcp port

time_wait (kernel)
● how long the port stays open
● 60 in most linux kernels
● effectively reduces port range by a factor of 60

port range of 30,000 limits to 5,000 total network
connections

http://fc06.deviantart.net/fs71/f/2012/119/d/3/fat_pinkie_pie_by_nice123456-d4xy2w3.png

the database: network
mysql (5.6)

© 2014 Pythian

OS fixed amounts

● max tcp ports
● max tcp backlog
● network bandwidth

the database: network
mysql (5.6)

© 2014 Pythian

mysql configuration

● max_connections
● back_log
● max_connect_errors
● connect_timeout
● net_read_timeout
● net_write_timeout
● open_files_limit

connections: putting it together
use your network bounds
monitor proximity

© 2014 Pythian

status counters - network

● packets per sec
● request times
● requests per sec
● connection state (time_wait, listen, established)
● backlog
● socket queue drops and overflows
● time to get a tcp connection

the database: memory
operating system

© 2014 Pythian

shared memory, file descriptors, semaphores

● max shared memory segment size
● max number of segments
● max total of all memory available
● max file_descriptors per system and user
● max semaphores

the database: memory
mysql (5.6)

© 2014 Pythian

global memory bounds

● key_buffer_size
● innodb_buffer_pool_size
● innodb_additional_mem_pool_size
● innodb_log_buffer_size
● query_cache_size

the database: memory
mysql (5.6)

© 2014 Pythian

connection memory (max_connections)

● stack (thread_stack)
● connection and result buffers (net_buffer_length)

○ up to max_allowed_packet
● random read buffer (read_rnd_buffer_size)
● sequential read buffer (read_buffer_size)
● sort buffer (max of sort_buffer_size or max_heap_table_size)
● join buffer (join_buffer_size)
● (binlog_cache_size)

the database: memory
mysql (5.6)

© 2014 Pythian

max_connections = 1000
● thread_stack = 256k
● net_buffer_length x2 = 16k x 2 = 32k

○ up to max_allowed_packet x2 = 1m x2 = 2m
● read_rnd_buffer_size = 256k
● read_buffer_size = 128k
● sort_buffer_size = 256k max_heap_table_size = 16M
● join_buffer_size = 128k
● binlog_cache_size = 32k

total = 18.78m (reduce to ~3m by reducing max_heap…)
1000 connections = 2.9 GB

connections: putting it together
understand mysql impact to latency
understand proximity to mysql bounds

© 2014 Pythian

status counters: mysql
● processlist: connection and state counts
● thread statistics (thread_xxx)
● connection durations
● open_tables and open_files
● semaphores globally and per thread
● aborted_clients
● aborted_connects
● connection high water marks
● mysql network traffic
● mysql handlers - for buffer usage
● query response times

what’s next?

© 2014 Pythian

better time series storage

● automatically distributed and federated, thus manageable and scalable
● leverage parallelism and data aggregation
● proper data consistency, backup and recovery
● instrumented and tuneable
● can consume billions of metrics and store them

what’s next?

© 2014 Pythian

machine learning

● using code to pull out the signal from the noise
● easier correlation of metrics
● anomaly detection
● incident prediction
● capacity prediction
● REAL MATH

what’s next?

© 2014 Pythian

consolidation

● business metrics
● telemetry data
● event and log text data

lab time
● set-up your hosts
● stretch, hydrate and use facilities
● 30 minutes

setup ec2

● https://github.com/dtest/plsc15-opvis

asbolus
the pythian opsviz stack

© 2014 Pythian

https://github.com/pythian/opsviz
http://dashboard.pythian.asbol.us/

resides in AWS, built via cloudformation and opsworks

internet facing rabbitMQ listener
● for external logstash/statsd/sensu clients
● using AMQP, SSL elastic load balancer
● in AWS VPC

https://github.com/pythian/opsviz
https://github.com/pythian/opsviz
http://dashboard.pythian.asbol.us/
http://dashboard.pythian.asbol.us/

asbolus
the pythian opsviz stack

© 2014 Pythian

originally conceived and built by blackbird devops team
● taylor ludwig https://github.com/taylorludwig
● jonathan dietz https://github.com/jonathandietz
● aaron lee https://github.com/aaronmlee

continued development by pythian
● alex lovell-troy https://github.com/alexlovelltroy
● derek downey https://github.com/dtest
● laine campbell https://github.com/lainevcampbell
● dennis walker https://github.com/denniswalker

https://github.com/taylorludwig
https://github.com/jonathandietz
https://github.com/aaronmlee
https://github.com/alexlovelltroy
https://github.com/jonathandietz
https://github.com/lainevcampbell
https://github.com/denniswalker

asbolus

© 2014 Pythian

telemetry data: sensu

© 2014 Pythian

generated from sensu agent

● sensu agent on host polls from 1 to 60 seconds
● agent pushes to rabbitMQ
● rabbitMQ sends to sensu

once in sensu

● event handlers review
● flushed to carbon/graphite

telemetry data: logstash

© 2014 Pythian

generated from logstash agent

● logstash agent on host pushes to logstash server
● logstash server tokenizes and submits to statsD
● statsD flushes and sends to carbon/graphite

event data: logstash

© 2014 Pythian

generated from logstash agent

● logstash agent on host pushes to logstash server
● logstash server tokenizes and submits to elasticsearch

monitoring: sensu

© 2014 Pythian

sensu server receives data from
● sensu agents
● statsD on logstash host

sensu handlers:
● flush to graphite
● send alerts to pagerduty
● create tickets in jira
● send messages to chat rooms

sensu
architecture

© 2014 Pythian

monitoring: why sensu?

© 2014 Pythian

clients subscribe to checks, supporting ephemeral hosts

sensu server can be parallelized and ephemeral

clients easily added to configuration management

backwards compatible to nagios

multiple multi-site strategies available

excellent API

telemetry storage: graphite

© 2014 Pythian

why graphite?
● works with many different pollers, to graph everything!
● combines maturity with functionality better than others
● can be clustered for scale

what are the limitations?
● clustering for scale is complex, not native
● flat files means no joining multiple series for complex

queries
● advanced statistical analysis not easy

event storage: elasticsearch

© 2014 Pythian

why?
● native distribution via clustering and sharding
● performant indexing and querying
● elasticity (unicorn scale)

what are the limitations?
● security still minimal
● enterprise features becoming available (at a price)

visualization

© 2014 Pythian

telemetry: grafana

logs/events: kibana

incidents/alerts: uchiwa

scaled and available sensu

© 2014 Pythian

rabbitMQ
● network partition

○ pause-minority
● node failures

○ mirrored queues
○ tcp load balancers

● AZ failures
○ multiple availability zones
○ pause minority recovery

● scaling concerns
○ auto-scaling nodes
○ elastic load balancer

scaled and available sensu

© 2014 Pythian

sensu servers
● redis failure

○ elasticache, multi-AZ

● sensu main host
○ multiple hosts
○ use the same redis service
○ multi-AZ

monitoring your monitor

© 2014 Pythian

rabbitMQ
● monitor queue growth for anomalies
● monitor for network partitions
● monitor auto scaling cluster size

sensu
● sensu cluster size (n+1 sensu hosts)
● redis availability

© 2014 Pythian

workflow

● metric sent to ELB
● ELB sends to rabbitMQ cluster
● rabbitMQ

○ writes to master
○ replicates to mirror

● rabbitMQ sends to sensu

scaled and available graphite

© 2014 Pythian

carbon cache (tcp daemon, listening for metrics)
● scale with multiple caches on each host

carbon relay
● used to distribute to multiple carbon caches
● by metric name, or consistent hashing
● can be redundant, using load balancers

whisper (flat file database, storage)
● can be replicated at the relay level
● running out of capacity and having to grow requires

rehashing

© 2014 Pythian

workflow

● metric sent to ELB
● ELB sends to carbon relay
● carbon relay

○ chooses carbon cache
○ replicates as needed

● carbon cache flushes to
whisper

scaling and available
elasticsearch

© 2014 Pythian

node and cluster scaling
● clustering scales reads
● distribute across availability zones
● sharding indices allows for distributing data
● multiple clusters for multiple indexes

network partitions
● running masters on dedicated nodes
● running data nodes on dedicated nodes
● run search load balancers on dedicated nodes

© 2014 Pythian

workflow

● master/replica nodes route data
and manage the cluster

● client nodes redirect queries
● data nodes store index shards

what’s next?

© 2014 Pythian

visualization
● use sensu API to get incidents/alerts into graphite/
● merge kibana and grafana to one page

monitoring
● integrate flapjack for event aggregation and routing
● continue to add more metrics

full stack
● anomaly detection via heka or skyline
● influxdb for storage

lab time
● work on dashboards!
● 15 minute walkthrough w/ derek
● 45 minute play time

Q&A

email: downey@pythian.com
twitter: https://twitter.com/derek_downey

