
MySQL 101
Designing effective schema for InnoDB

Yves Trudeau
April 2015

About myself : Yves Trudeau

• Principal architect at Percona since 2009

• With MySQL then Sun, 2007 to 2009

• Focus on MySQL HA and distributed systems

• Database and science background

2

Plan

• What's so special about InnoDB?

• Design of a web file sharing application

3

A brief introduction to InnoDB Internals

A table .ibd file

InnoDB Buffer Pool

ibdata1

unallocated page

allocated page

 Dictionary

 Change buf.

 Undo

ib_logfiles

Life cycle of an update query

A table .ibd file

InnoDB Buffer Pool

ibdata1

 Dictionary

 Change buf.

 Undo

ib_logfiles

InnoDB Buffer PoolInnoDB Buffer Pool

ibdata1

ib_logfiles

Where's the data in InnoDB?

• The rows are stored as values in the B-tree of
the primary key

• The secondary keys store as values the primary
keys of the matching rows

Can't be true
I don't have PKs and it works!!

3326
Node

2012

The primary key B-tree
7

PK column: id integer 1
Root

1 12 22

Node
 2211 5 9

Node

1 2 4

Leaf

R
o

w

R
o

w

R
o

w

5 7 8
Leaf

R
ow

R
o

w

R
o

w

9 10 11
Leaf

R
o

w

R
ow

R
o

w

18 1912
Leaf

R
ow

R
o

w

R
o

w

35 3633
Leaf

R
o

w

R
o

w

R
o

w

2120
Leaf

R
o

w

R
o

w

24 2522
Leaf

R
ow

R
o

w

R
o

w

2726
Leaf

R
o

w

R
o

w

R
o

w

30

MM
Node

 M F

A secondary key B-tree
8

SK column: gender char(1) F
Root
 F M

Node
 MF F F

Node

F F F

Leaf

 5 4 2

F F F
Leaf

1812 9

F F F
Leaf

262221

 F M F
Leaf

13630

 M M M
Leaf

353327

 M M
Leaf

 8 7

 M M M
Leaf

191110

 M M
Leaf

252420

 M

Enough about InnoDB internals...

NewBox application, schema v1
user

userId
name
password
…

userPref

userPrefId
userId
prefName
value
...

object

objectId
parentId
owner
type
...

share

shareId
objectId
userId
rights
...

activityLog

activityLogId
userId
objectId
action
...

NewBox application, table user

 CREATE TABLE `user` (
 `userId` char(36) NOT NULL,
 `name` varchar(255) DEFAULT NULL,
 `password` char(32) DEFAULT NULL,
 `srvSchema` varchar(20) DEFAULT
NULL,
 `email` varchar(255) DEFAULT NULL,
 `updatedAt` datetime DEFAULT NULL,
 `createdAt` datetime DEFAULT NULL,
 `lastLogin` datetime DEFAULT NULL,
 `gender` char(1) DEFAULT NULL,

 PRIMARY KEY (`userId`),
 KEY `idx_name` (`name`),
 KEY `idx_password` (`password`)
) ENGINE=InnoDB DEFAULT
CHARSET=utf8

NewBox application, table userPref

 CREATE TABLE `userPref` (
 `userPrefId` char(36) NOT NULL,
 `userId` char(36) DEFAULT NULL,
 `prefName` varchar(255) DEFAULT
NULL,
 `value` varchar(255) DEFAULT NULL,
 `updateddAt` datetime DEFAULT
NULL,
 `createdAt` datetime DEFAULT NULL,

 PRIMARY KEY (`userPrefId`),
 KEY `idx_userId` (`userId`)
) ENGINE=InnoDB DEFAULT
CHARSET=utf8

NewBox application, table object

CREATE TABLE `object` (
 `objectId` char(36) NOT NULL,
 `parentId` char(36) DEFAULT NULL,
 `ownerId` char(36) DEFAULT NULL,
 `type` varchar(20) DEFAULT NULL,
 `name` varchar(255) DEFAULT NULL,
 `urlStore` varchar(255) DEFAULT
NULL,
 `version` int(11) DEFAULT NULL,
 `deleted` int(11) DEFAULT NULL,
 `updatedAt` datetime DEFAULT NULL,
 `createdAt` datetime DEFAULT NULL,

 PRIMARY KEY (`objectId`),
 KEY `idx_owner` (`ownerId`),
 KEY `idx_name` (`name`),
 KEY `idx_urlStore` (`urlStore`),
 KEY `idx_deleted` (`deleted`)
) ENGINE=InnoDB DEFAULT
CHARSET=utf8

NewBox application, table share

CREATE TABLE `share` (
 `shareId` char(36) NOT NULL,
 `objectId` char(36) DEFAULT NULL,
 `userId` char(36) DEFAULT NULL,
 `ownerId` char(36) DEFAULT NULL,
 `rights` varchar(20) DEFAULT NULL,
 `updatedAt` datetime DEFAULT NULL,
 `createdAt` datetime DEFAULT NULL,

 PRIMARY KEY (`shareId`),
 KEY `idx_user` (`userId`)
) ENGINE=InnoDB DEFAULT
CHARSET=latin1

NewBox application, table activityLog

CREATE TABLE `activityLog` (
 `ActivityId` char(36) NOT NULL,
 `userId` char(36) DEFAULT NULL,
 `objectId` char(36) DEFAULT NULL,
 `action` varchar(255) DEFAULT NULL,
 `returnCode` int(11) DEFAULT NULL,
 `error` varchar(255) DEFAULT NULL,
 `IP` varchar(16) DEFAULT NULL,
 `createdAt` datetime DEFAULT NULL,

 PRIMARY KEY (`ActivityId`),
 KEY `idx_user` (`userId`),
 KEY `idx_object` (`objectId`),
 KEY `idx_created` (`createdAt`)
) ENGINE=InnoDB DEFAULT
CHARSET=utf8

NewBox application, Coding

NewBox application, pilot testing

NewBox application, stage load test

NewBox application, what's wrong?

● Dataset is bigger than expected
● Database uses more CPU
● Database becomes slow when buffer pool is full
● Got lockings contention and even deadlocks!!!
● Disks are very busy

NewBox application, what can we do?

● More RAM?
● Faster drives?
● Shard earlier/more?
● Maybe my schema isn't that great...

NewBox application, review of the data types

Importance of using the correct types
● Optimal size = more data in cache
● Less reads and writes to disk
● Faster comparisons (less CPU)

NewBox application, review of the data types

char with utf8
● char type uses 3 bytes per char!!!
● uuid columns are thus char(108)
● keys on uuid columns with uuid pk are 216

bytes per entry
● change to varchar or use latin1 for the columns

NewBox application, review of the data types

varchar with utf8
● Why varchar(255)?
● a second length byte after 85
● Use proper length or stop at 85

NewBox application, review of the data types

low cardinality columns
● object.type → {file, folder, link}
● userPref.prefName → {theme, itemPerPage,

defaultSort, etc}
● Use ENUM or a dictionary table

NewBox application, review of the data types

Datetime
● Arbitrary date and time
● 8 bytes with 5.5.x, 5 bytes with 5.6.4+
● Timestamp ok for [1970,2036]
● Use timestamp

NewBox application, review of the data types

Int types
● Use the correct type → object.deleted tinyint
● No negative → unsigned
● bigint... is big
● using int unsigned for IPs (inet_aton and

inet_ntoa functions)

NewBox application, review of the data types

Blob/text types
● Split storage → overlay page
● More iops per row
● More on disk temp tables for queries

(join/sort/group)
● Use compression if possible

NewBox application, review of the data types

Is uuid a good thing?
● Large varchar → slow to compare
● hex has low cardinality per byte
● inflate the size of the Sks
● random insert order
● Should use int unsigned auto_increment

3326
Node

2012

NewBox application, review of the PKs
2
9

1
Root

1 12 22

Node
 2211 5 9

Node

1 2 4

Leaf

R
o

w

R
o

w

R
o

w

5 7 8
Leaf

R
ow

R
o

w

R
o

w

9 10 11
Leaf

R
o

w

R
ow

R
o

w

18 1912
Leaf

R
ow

R
o

w

R
o

w

35 3633
Leaf

R
o

w

R
o

w

R
o

w

2120
Leaf

R
o

w

R
o

w

24 2522
Leaf

R
ow

R
o

w

R
o

w

2726
Leaf

R
o

w

R
o

w

R
o

w

30

NewBox application, review of the PKs

userPref, object, share
● Retrieving object rows for a given userId or

ownerId
● SKey on userId = 3 gives us: {8,12,27}

1 2 4

Leaf

R
o

w

R
o

w

R
o

w

5 7 8
Leaf

R
o

w

R
o

w

R
ow

9 10 11
Leaf

R
o

w

R
o

w

R
o

w

18 1912
Leaf

R
o

w

R
o

w

R
o

w

35 3633
Leaf

R
o

w

R
o

w

R
o

w

2120
Leaf

R
o

w

R
o

w

24 2522
Leaf

R
o

w

R
o

w

R
ow

2726
Leaf

R
o

w

R
ow

R
o

w

30

NewBox application, review of the PKs

userPref, object, share
● Reordering the Pks: objectId → UK
● PK → (userId,objectId)

82 1

Leaf

R
o

w

R
o

w

R
o

w

5

7 12

Leaf

R
o

w

R
o

w

R
ow

41011

Leaf

R
o

w

R
o

w

R
o

w

2019

Leaf

R
o

w

R
o

w

R
o

w
Leaf

R
o

w

R
o

w

R
o

w

27

Leaf

R
o

w

R
o

w

9 1822

Leaf

R
o

w

R
o

w

R
ow

24 25

Leaf

R
o

w

R
ow

R
o

w

1 1 1 1 2 2 3 3 3
36

6 6 6 6 7 8 88 8 8 8 9 9

35 5 30 21 3326

NewBox application, review of the PKs

activityLog
● Lots of inserts
● Ok as auto_increment → merges writes
● minimize keys on master → use a slave
● Good idea to use partitions on ranges of

activityLogId

NewBox application, be sharding ready

Sharding
● The ultimate scaling
● Start with 2 schema, NewBox_common and

NewBox_data_1
● NewBox_common: { user, userPref }
● NewBox_data_1: { object, share, activityLog }

NewBox application, indexing correctly

On large varchar
● Slow to compare and big
● object.idx_name and object.idx_urlStore
● prefix issue with objstore, all start with 'http://'
● md5 hash?
● Better with a CRC32

NewBox application, indexing correctly

Redundant keys
PRIMARY KEY (`userId`,`shareId`),
 KEY `idx_user` (`userId`)

● idx_user is useless, covered by the Primary key
● pt-duplicate-key-checker is your friend

NewBox application, indexing correctly

Covering keys
Select o.* from object o inner join share s on
 o.objectId = s.objectId where s.userId = 12345;

● idx_userId is there, not bad
● For each userId, needs to dive in s PK btree
● What about: (userId,objectId)

NewBox application, indexing correctly

Index for sorting
Select o.* from object where ownerId = 12345
 order by createdAt;

● idx_owner is there
● Still has to sort the rows
● What if the key is : (ownerId,createdAt)

NewBox application, indexing correctly

Over indexing...
● No workload is the same
● Write intensive → be greedy on keys
● Read intensive → be generous on keys but

careful not to harm cache

NewBox application, indexing correctly

Tools
● explain
● pt-query-digest
● Percona cloud tool

Questions

	Diapo 1
	Diapo 2
	Sample Text Page
	Sample Graphic Page
	Diapo 5
	Sample Graph Page
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40

