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About myself : Yves Trudeau

• Principal architect at Percona since 2009

• With MySQL then Sun, 2007 to 2009

• Focus on MySQL HA and distributed systems

• Database and science background
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Plan

• What's so special about InnoDB?

• Design of a web file sharing application
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A brief introduction to InnoDB Internals

A table .ibd file

InnoDB Buffer Pool

ibdata1

unallocated page

allocated page

    Dictionary

 Change buf.

           Undo

ib_logfiles



Life cycle of an update query

A table .ibd file

InnoDB Buffer Pool

ibdata1

    Dictionary

 Change buf.

           Undo

ib_logfiles

InnoDB Buffer PoolInnoDB Buffer Pool

ibdata1

ib_logfiles



Where's the data in InnoDB?

• The rows are stored as values in the B-tree of 
the primary key

• The secondary keys store as values the primary 
keys of the matching rows

Can't be true
I don't have PKs and it works!!
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The primary key B-tree
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A secondary key B-tree
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SK column: gender char(1) F
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Enough about InnoDB internals...



NewBox application, schema v1
user

userId
name
password
…

userPref

userPrefId
userId
prefName
value
...

object

objectId
parentId
owner
type
...

share

shareId
objectId
userId
rights
...

activityLog

activityLogId
userId
objectId
action
...



NewBox application, table user

  CREATE TABLE `user` (
  `userId` char(36) NOT NULL,
  `name` varchar(255) DEFAULT NULL,
  `password` char(32) DEFAULT NULL,
  `srvSchema` varchar(20) DEFAULT 
NULL,
  `email` varchar(255) DEFAULT NULL,
  `updatedAt` datetime DEFAULT NULL,
  `createdAt` datetime DEFAULT NULL,
  `lastLogin` datetime DEFAULT NULL,
  `gender` char(1) DEFAULT NULL,

 PRIMARY KEY (`userId`),
  KEY `idx_name` (`name`),
  KEY `idx_password` (`password`)
) ENGINE=InnoDB DEFAULT 
CHARSET=utf8



NewBox application, table userPref

 CREATE TABLE `userPref` (
  `userPrefId` char(36) NOT NULL,
  `userId` char(36) DEFAULT NULL,
  `prefName` varchar(255) DEFAULT 
NULL,
  `value` varchar(255) DEFAULT NULL,
  `updateddAt` datetime DEFAULT 
NULL,
  `createdAt` datetime DEFAULT NULL,

  PRIMARY KEY (`userPrefId`),
  KEY `idx_userId` (`userId`)
) ENGINE=InnoDB DEFAULT 
CHARSET=utf8



NewBox application, table object

CREATE TABLE `object` (
  `objectId` char(36) NOT NULL,
  `parentId` char(36) DEFAULT NULL,
  `ownerId` char(36) DEFAULT NULL,
  `type` varchar(20) DEFAULT NULL,
  `name` varchar(255) DEFAULT NULL,
  `urlStore` varchar(255) DEFAULT 
NULL,
  `version` int(11) DEFAULT NULL,
  `deleted` int(11) DEFAULT NULL,
  `updatedAt` datetime DEFAULT NULL,
  `createdAt` datetime DEFAULT NULL,

  PRIMARY KEY (`objectId`),
  KEY `idx_owner` (`ownerId`),
  KEY `idx_name` (`name`),
  KEY `idx_urlStore` (`urlStore`),
  KEY `idx_deleted` (`deleted`)
) ENGINE=InnoDB DEFAULT 
CHARSET=utf8



NewBox application, table share

CREATE TABLE `share` (
  `shareId` char(36) NOT NULL,
  `objectId` char(36) DEFAULT NULL,
  `userId` char(36) DEFAULT NULL,
  `ownerId` char(36) DEFAULT NULL,
  `rights` varchar(20) DEFAULT NULL,
  `updatedAt` datetime DEFAULT NULL,
  `createdAt` datetime DEFAULT NULL,

  PRIMARY KEY (`shareId`),
  KEY `idx_user` (`userId`)
) ENGINE=InnoDB DEFAULT 
CHARSET=latin1



NewBox application, table activityLog

CREATE TABLE `activityLog` (
  `ActivityId` char(36) NOT NULL,
  `userId` char(36) DEFAULT NULL,
  `objectId` char(36) DEFAULT NULL,
  `action` varchar(255) DEFAULT NULL,
  `returnCode` int(11) DEFAULT NULL,
  `error` varchar(255) DEFAULT NULL,
  `IP` varchar(16) DEFAULT NULL,
  `createdAt` datetime DEFAULT NULL,

  PRIMARY KEY (`ActivityId`),
  KEY `idx_user` (`userId`),
  KEY `idx_object` (`objectId`),
  KEY `idx_created` (`createdAt`)
) ENGINE=InnoDB DEFAULT 
CHARSET=utf8



NewBox application, Coding



NewBox application, pilot testing



NewBox application, stage load test



NewBox application, what's wrong?

● Dataset is bigger than expected
● Database uses more CPU
● Database becomes slow when buffer pool is full
● Got lockings contention and even deadlocks!!!
● Disks are very busy



NewBox application, what can we do?

● More RAM?
● Faster drives?
● Shard earlier/more?
● Maybe my schema isn't that great... 



NewBox application, review of the data types

Importance of using the correct types
● Optimal size = more data in cache
● Less reads and writes to disk
● Faster comparisons (less CPU)



NewBox application, review of the data types

char with utf8
● char type uses 3 bytes per char!!!
● uuid columns are thus char(108)
● keys on uuid columns with uuid pk are 216 

bytes per entry
● change to varchar or use latin1 for the columns



NewBox application, review of the data types

varchar with utf8
● Why varchar(255)?  
● a second length byte after 85
● Use proper length or stop at 85



NewBox application, review of the data types

low cardinality columns
● object.type → {file, folder, link}
● userPref.prefName → {theme, itemPerPage, 

defaultSort, etc}
● Use ENUM or a dictionary table



NewBox application, review of the data types

Datetime
● Arbitrary date and time
● 8 bytes with 5.5.x, 5 bytes with 5.6.4+
● Timestamp ok for [1970,2036]
● Use timestamp



NewBox application, review of the data types

Int types
● Use the correct type → object.deleted tinyint
● No negative → unsigned
● bigint...  is big
● using int unsigned for IPs (inet_aton and 

inet_ntoa functions)



NewBox application, review of the data types

Blob/text types
● Split storage → overlay page
● More iops per row
● More on disk temp tables for queries 

(join/sort/group)
● Use compression if possible



NewBox application, review of the data types

Is uuid a good thing?
● Large varchar → slow to compare
● hex has low cardinality per byte
● inflate the size of the Sks
● random insert order
● Should use int unsigned auto_increment
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NewBox application, review of the PKs
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NewBox application, review of the PKs

userPref, object, share
● Retrieving object rows for a given userId or 

ownerId
● SKey on userId = 3 gives us: {8,12,27}
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NewBox application, review of the PKs

userPref, object, share
● Reordering the Pks: objectId → UK
● PK → (userId,objectId)
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NewBox application, review of the PKs

activityLog
● Lots of inserts
● Ok as auto_increment → merges writes
● minimize keys on master → use a slave
● Good idea to use partitions on ranges of 

activityLogId



NewBox application, be sharding ready

Sharding
● The ultimate scaling
● Start with 2 schema, NewBox_common and 

NewBox_data_1
● NewBox_common: { user, userPref } 
● NewBox_data_1: { object, share, activityLog }



NewBox application, indexing correctly

On large varchar
● Slow to compare and big
● object.idx_name and object.idx_urlStore
● prefix issue with objstore, all start with 'http://'
● md5 hash?
● Better with a CRC32



NewBox application, indexing correctly

Redundant keys
PRIMARY KEY (`userId`,`shareId`),
  KEY `idx_user` (`userId`)

● idx_user is useless, covered by the Primary key
● pt-duplicate-key-checker is your friend



NewBox application, indexing correctly

Covering keys
Select o.* from object o inner join share s on 
   o.objectId = s.objectId where s.userId = 12345;

● idx_userId is there, not bad
● For each userId, needs to dive in s PK btree
● What about: (userId,objectId)



NewBox application, indexing correctly

Index for sorting
Select o.* from object where ownerId = 12345 
   order by createdAt;

● idx_owner is there
● Still has to sort the rows
● What if the key is : (ownerId,createdAt)



NewBox application, indexing correctly

Over indexing...
● No workload is the same
● Write intensive → be greedy on keys
● Read intensive → be generous on keys but 

careful not to harm cache



NewBox application, indexing correctly

Tools
● explain
● pt-query-digest
● Percona cloud tool



Questions
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